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Method for Euler Equation
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Abstract

A particle-based quiet direct simulation (QDS) method [Albright ef al., 2002] was
invented to solve the inviscid Euler equation, in which the Maxwell-Boltzmann velocity
distribution is enforced through the use of Gauss-Hermite quadrature integration
without using any random number. It is a very fast Euler equation solver, which is
deterministic with large dynamic range of flow properties like most conventional CFD
methods, employs true-direction conservative fluxes for faithfully mimicking real flow
motion, is highly localized (a small stencil) for easier parallelization and requires very
low memory because the discrete velocities can be re-used in each cell. However, it is
numerically very diffusive and has been extended to a nearly second-order numerical
scheme by Smith et al. [2009] without really considering true-direction flux
reconstruction. Thus, we intend to further address this problem from both numerical and
theoretical viewpoints in this thesis.

In the numerical part, a true-direction flux reconstruction of the second-order quiet
direct simulation (QDS) as an equivalent Euler equation solver, called QDS-N?, is

presented. Because of the true-directional nature of QDS, where volume-to-volume
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(true direction) fluxes are computed, as opposed to fluxes at cell interfaces as employed
by traditional finite volume schemes, a volumetric reconstruction is required to reach a
totally true-direction scheme. The conserved quantities are permitted to vary (according
to a polynomial expression) across all simulated dimensions. Prior to the flux
computation, QDS particles are introduced using properties based on weighted moments
taken over the polynomial reconstruction of the conserved variables such as mass,
momentum and energy. The resulting flux expressions are shown to exactly reproduce
the existing second-order extension for a one-dimensional flow, while providing a
means for true multi-dimension reconstruction.The new reconstruction is demonstrated
in several verification studies. These include several two-dimensional test cases such as
shock bubble interaction problem, an Euler-four-shock interaction, Euler-four-contact
interaction, Mach 3 facing over a forward step, and the advection of a vortical
disturbance. These results are presented, and the increased computational time and the
effect of higher-order extension are discussed. The results show that the proposed multi-
dimensional reconstruction provides a significant increase in the accuracy of the
solution as compared to the previously developed QDS-2N method. We show that,
despite the increase in the computational expense, the computational speed of the
proposed QDS-N? method is several times higher than that of the previously proposed
QDS-2N method for a fixed degree of numerical accuracy, at least, for the test problem
of the advection of vertical disturbances. As mentioned earlier, QDS method is
intrinsically a highly localized numerical scheme, which makes it highly suitable for
parallel computing on distributed-memory cluster machines wusing domain
decomposition. With parallel implementation, an extension to three-dimensional QDS
method is also demonstrated. The results show that the parallel efficiency, based on a

strong scaling study, for a large-scale problem using 0.5, 2, and 12.5 million cells can



reach up to 75%, 68.5%, and 65.5% with 256 processors respectively. In addition, the
parallel efficiency, based on a weak scaling study, for a shock bubble interaction is 1.2,
which the ideal efficiency is 1.0, up to 49 processors for 20,000 cells per processor.
Note all the parallel performance tests were performed at the APLS cluster of National
Center for High-Performance Computing, Taiwan.

In the theoretical part, we have derived the analytical expressions of all the fluxes
related to mass, momentum and energy in the two-dimensional QDS-N? and QDS-2N
methods respectively. Comparisons are made systematically between the corresponding
fluxes in the two methods by varying flow properties. Results show that a large
discrepancy of fluxes between these two methods occurs in the ranges of low density,
low temperature, and high velocity.lt is also interesting to learn that this range of gas
flow often corresponds to an expansion wave region. Moreover, the fluxes using both
methods are similar horizontal and vertical directions (x and y-direction), while large
discrepancy is found in the fluxes going to the diagonal direction.With this observation,
we can evaluate the accuracy of QDS-2Nmethod as compared to QDS-N? method in the
flow field, which may be important in deciding which method to be used for different
flow problems.

The major findings of the research with the recommendations for future study are

summarized at the end of the thesis.
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Chapter 1  Introduction

1.1 Background and Motivation

There are a number of approaches for the simulation of gas flows, depending on the
nature and level of rarefaction of the flow. Computational fluid dynamics (CFD)
typically uses the finite volume method to solve a set of discretized governing
equations, usually the Euler or Navier-Stokes equations. Contemporary finite-volume
CFD divides the computational domain into a grid of cells, and fluxes of mass,
momentum, and energy are calculated through the interfaces between these cells. This
technique suffers from the major disadvantage that the poor alignment of the grid with
the flow field may result in large errors for some important flows (e.g., explosive blast
wave), since fluxes can only occur between elements that share an interface, i.e., no
reflection of the true-direction nature of the gas flow. Thus, CFD requires a careful grid

design to ensure accurate results, convergence, and stability.

1.1.1 Direct Simulation Monte Carlo Method

The direct simulation Monte Carlo (DSMC) method has become the gold standard
for stochastic flow field simulation. Arguably, this method has been the most successful
for simulating rarefied gas flows since its development by Bird in the 1960s [Bird,
1994]. In the DSMC method the ballistic motion of the particles and their collisions are
decoupled by moving the particles over a time step that is smaller than their mean
collision time, indexing the particles to within a grid having dimensions that are smaller

than the mean free path and then choosing collision partners from within this grid.



The DSMC algorithm requires the use of random numbers and is thus subject to
statistical scatter and requires averaging over a large number of time steps to reduce the
scatter in the sampled macroscopic properties. However the fluxes of properties in
DSMC are “true-direction” since a particle can carry its mass, momentum, and energy
between any two points in the flow field, not just between elements that share an
interface. Furthermore, DSMC handles non-equilibrium effects by stochastically
performing collisions between selected collision pairs, thus allowing gradual and
selective transfer of momentum and energy.

In the high collision rate limit of DSMC, the particle velocity distributions
approach that of the Maxwell-Boltzmann equilibrium distribution and moments of the

Boltzmann equation reduce to the Euler equations [Gombosi, 1994].

1.1.2 Quiet Direction Simulation Monte Carlo Method

Albright et al. [2002] developed the quiet direction simulation Monte Carlo
(QDSMC), a method for modeling plasmas. They subsequently applied this method to
the simulation of Eulerian fluids for Sod’s one-dimensional shock tube problem and a
simple two-dimensional blast wave problem. Since then little further work has been
done, the only example being by Peter [Gombosi, 1994] who applied a random time
step to the movement of simulation particles for simulating a typical diffusion equation.
Unlike the DSMC method, there is no random number (or Monte Carlo) component to
the algorithm. In the QDSMC method, the effect of sampling using random numbers is
replaced by using the weights and abscissas of a Gauss—Hermite quadrature. Thus, it is
valid only when thermal equilibrium can be assumed. Moreover, this method is a
particle-based Euler solver that exhibits negligible statistical scatter and has a large

dynamic range.



1.2 Literature Survey

Bird [Bird, 1994] showed that the DSMC method essentially provides a statistical
solution to the Boltzmann equation, and Wagner [Wagner, 1992] proved
mathematically that DSMC provides a solution to the Boltzmann equation as the
number of simulated particles approaches the number in the actual system. This method
was used to model the relaxation of a non-equilibrium gas towards the equilibrium
distribution [Bird, 1963] and since that time it has been used in a wide array of
applications including CVD reactor modeling [Coronell ef al, 1992], hypersonic flight
simulations [LeBeau ef al., 2001], supersonic jet studies [Boyd et al., 1994; Teshima et
al., 2001], microfluidic simulations [Karniadakis, 2002], and modeling of molecular
pumps [Kwon et al., 2006]. The method has grown increasingly sophisticated and
powerful as improved algorithms, intermolecular collision models, gas-phase chemistry
and boundary conditions have been developed and implemented.

Since the development of DSMC by Bird to solve the Boltzmann equation
statistically, a large number of continuum kinetic theory based-schemes have emerged
that follow a similar path.In 1980, Pullin proposed the equilibrium flux method (EFM)
as an analytical equivalent to the equilibrium particle simulation method (EPSM),
which is a direct simulation method where particles are forced to assume the Maxwell-
Boltzmann equilibrium velocity probability distribution function instead of performing
collisions [Pullin, 1980]. Later, Smith et al. [Smith et al., 2008] proposed a general
form of the EFM method known as the true direction equilibrium flux method
(TDEFM), which more accurately captures the transport mechanism employed by
EPSM. Fluxes calculated by TDEFM represent the true analytical solution to the
molecular free flight problem, under the assumption of thermal equilibrium and

uniformly distributed quantities. The calculated fluxes are valid for any size time step,



and the algorithm is unconditionally stable, although the kinetic Courant-Friedrich-Levy
(CFL) number should be kept below unity to ensure physical correctness. The primary
disadvantage to TDEFM is the large computational cost associated with the evaluation
of the numerous exponential and error function evaluations.

As mentioned previously, Albright ef al. [2002] developed the QDSMC method, a
numerical scheme for the solution of the Euler equations. They subsequently applied
QDSMC to the simulation of Eulerian fluids for problems like shock tube flow and blast
wave propagation. In this method, the integrals encountered in the TDEFM formulation
are replaced by approximations using Gaussian numerical integration, effectively
replacing the continuous velocity distribution function with a series of discrete
velocities. The method was later renamed the quiet direct simulation (QDS) method due
to the lack of stochastic processes and was extended to second order spatial accuracy.
The lack of complex mathematical functions results in a computationally very efficient
scheme with considerably higher performance than EFM while maintaining the
advantages of true directional fluxes like TDEFM.

Due to the assumption of unrestricted motion during free flight, each of the above-
mentioned kinetic solvers has a large amount of (cell-size-based) numerical diffusion.
To combat this dissipation, a common strategy, employed in more conventional finite
volume methods, is to apply higher-order reconstruction of properties or fluxes.
Macrossan [Macrossan, 1989] applied EFM using higher order spatial extensions, while
Smith [Smith, 2008] attempted the analytical inclusion of gradients into true-direction
volume-to-volume fluxes, only to find that the complete analytical inclusion of gradient
terms in the TDEFM flux expressions is impossible. Smith ef al. [Smith et al., 2009]

reduced the numerical diffusion by applying “simplified” flux reconstruction at the



interface. This method, known as QDS-2N, improves the original QDS to be almost
second order in spatial accuracy.

The particle-based QDS-2N method is easily extended to multi-dimensions and
multi-species. It is computationally inexpensive, easily implemented on parallel
computers and, since it is a particle-based method, and does not require direction
decoupling. The major disadvantage is that the scheme is inherently very diffusive. The
particle-based Euler solver has two advantages. First, hybridization between the solver
and a pure DSMC solver which is capable of simulating the non-continuum regions of
flow is relatively simple. Several authors, including Macrossan [Macrossan, 2001],
Chen [Chen, 2003], Smith [Smith, 2003] and Wu [2003], have developed such particle-
based hybrid methods. The second major advantage is that particle-based methods can
exchange fluxes between any two cells on the grid for any given time step. Direction
decoupled CFD methods only allow fluxes to be exchanged between cells sharing a
common interface. This physically unrealistic situation results in non-physical results in
CFD simulations [Smith ez al., 2008: Cook, 1998].

The second-order QDS-2N method was applied by Cave [Lim et al., 2010: Cave, et
al., 2010] to simulate highly unsteady low pressure flows encountered in a pulsed

pressure chemical vapour deposition (PP-CVD) reactor.



1.3 Specific Objectives of this Thesis

Based on the preceding discussion of studies related to the QDS-2N method, it is
clear that further numerical study is needed to improve the accuracy of the QDS-2N
method and, consequently, lead to more effective applications.

In this thesis, we extend the second-order QDS algorithm (QDS-2N) [Smith et al.,
2009] to flux reconstruction through true-direction polynomial multi-dimensional
reconstruction of conserved properties across each cell width; this method is called
QDS-N”.

The specific objectives and organization of this thesis can be summarized as
follows:

1. To improve the QDS-2N method by first studying its advantages and
disadvantages. Flux reconstruction calculated using QDS-2N neglects
neighbourhood cells when calculating diagonally cells. (Chapter 2)

2. To develop a QDS-N’method for solving Euler’s equation for inviscid fluid flow.
The fluxes of conserved properties are calculated by a sum of weighted
moments over the polynomial spatial reconstruction of mass, momentum, and
energy across the cell width. The particle properties are updated, considering the
average value of the conserved quantity between the region bounds, which are
required in translational directions and the application of splitting. (Chapter 2)

3. To develop the QDS-N? method in three-dimensions. (Chapter 2)

4. To apply the QDS-N* method to a numerical problem and an experimental case.
Various numerical methods, including Riemann solvers and total variation
diminishing (TVD) methods, were compared as a benchmark. (Chapter 3)

5. To apply the QDS-N” method in the three-dimensional flow. (Chapter 3)



6. To develop the parallel QDS-N’method for large-scale applications such that the
computational time problem is reduced efficiently. The scheme includes weak
scaling and strong scaling. (Chapter 3)

7. To analyzedifferences associated with the QDS-2Nmethod and compare QDS-
2Nto QDS-N2This involves measurements to reveal differences between the
two methods and provides information to determine which problem will be
considered first. (Chapter 4)

8. The concluded by summarizing the major findings found in this thesis and

outlining the recommendations for the future work. (Chapter 5)



Chapter 2

Numerical Methods

2.1 Overview of Euler Equation Solver

The Euler equations describe how the density, velocity, and pressure of a moving
fluid are related. The Euler equations directly represent conservation of mass,
momentum, and energy, and correspond to the Navier-Stokes equations without
viscosity and heat conduction terms. Eq. (1) shows a two-dimensional formulation of

the Euler equations.

Continuity: a_p =¥ J (’Ou) + d (pv) =0
ot ox dy

dpu N a(PUZ) +8(puv) giioE

— 1
ot ox ady ox W)

X-momentum:

a 2
Y-momentum: apv + a(puv) + (pv ) = _B_P
ot ox dy dy

Although the continuity and momentum equations have been derived in the past,

the energy equation has been included in the Euler equations in fluid dynamics literature

[Anderson, 1995].

2.1.1 Computational Fluid Dynamics
Engineers made further approximations and simplifications to the equation set until
they had a group of equations that they could solve. Recently, high speed computers

have been used to solve approximations to the equations using a variety of techniques,



such as finite difference, finite volume, finite element, and spectral methods. This area
of study is called CFD.
The Euler equation for the conservation of continuity, momentum and energy

equation is:

p pu pv
9| pu|, 2 pu’+P P) puy

+_
at| pv | ox puv dy| pV+P
pE pu(E+p/p) pv(E+p/p)

=0 (2)

where F =e+%(u2+v2) is the total energy and e is internal energy e=e(7).For a

perfect gas, internal energy is only dependent on temperature. Pressure is presented by p
= (y- 1)pe with y = c,/¢, the ratio of specific heats (y = 7/5 for air).

Most numerical schemes for solving Euler equations are built around the Riemann
solver. For example, Godunov technique provided two and three dimension applications
in new finite volume numerical schemes and total variation diminishing (TVD)
properties [Toro, 2009; LeVeque, 2004], and achieved second-order accuracy. Although,
such numerical methods were generally accurate, they incurred high computational
costs. However, approximate numerical schemes that reduce computational costs are not
only less accurate and less robust but are also based on solutions of a Riemann problem.
More extensive introductions to numerical method for the Euler equations ware given
by Godlewski and Raviart [1996], Kroner [1997], Laney [1998], Majda [1984], Toro

[1997], Smoller [1983], and Hirsch [1990].

2.1.2 Kinetic Method
The classical kinetic theory of gas emerged from a combination of mechanics and
statistics. The motions of molecules are described by probability rather than their

individual orbits. This kinetic theory of gases has led to important descriptions of 1)



pressure, temperature, and a generalized equation of state for gases, and 2) transport
properties (velocity, thermal conductivity, diffusion coefficients) based on first
principles.

The kinetic method can be introduced by the Boltzmann equation, which is used in
the study of a collection of particles in non-equilibrium statistical mechanics. The
Boltzmann equation was devised by Ludwig Boltzmann in 1872 [Lerner et al., 1991].
The equation is a phase space of system that contains seven variables: three coordinates
for position coordinates x, y, z, where each coordinate is parameterized by time ¢ and
three for each momentum component p,, py, p- and each coordinate is parameterized by
time z. The volume element for position » and momenta p can be expressed as follows:

&rd’p = dx dy dz dp.dp, dp. (3)

For one chemical species, the Boltzmann equation can be written as follows:

(4)

+V, ta,—=
Jo v, oy

oF LOF  OF_(F
A §t coll

where F is the phase space velocity distribution function which is the density of
particles in the d°rd’p phase space volume element around the phase space point (7, p).

OF/ot is the total time derivative of the phase space distribution function, and(5F /1)

coll

= rate of change of the phase-space distribution function due to collisions.
The Euler equation can be described using by kinetic theory. Here the conservation

equation of mass, momentum and energy are derived as follows:

d(m,n,)

v +V-(mn,)=0
Ju
1, -t (u-Vu)+Vp-mn,a,=0 (5)
30p 3 5
3P L3V p+2 p(Veu)=0
2at+2(u )p+2p( u)
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where m, is the mass of the molecular object and #, is the number of molecule per unit
configuration-space volume. Because the Euler equations are non-linear hyperbolic
equations, the shock waves are generally described by these equations. Several highly
successful algorithms have been developed to solve such problems [Jameson, 1986;
MacCormack et al., 1975; Jameson et al., 1981].

In addition to the Boltzmann equation, Maxwell-Boltzmann distribution also
contributed to the kinetic theory of gasses. This distribution was first carried out in 1859
and was named after James Clerk Maxwell and Ludwig Boltzmann. The distribution

function can be expressed as follows:

3

f(vv,m.)= (é Al 6)

T

where the constant value £ = L
2kT

This distribution function assumes the ideal gas is isotropic and that velocity is
statistically independent. This means that there is no preferred direction and the
function is independent of the orientation of the coordinate system. The gas for this
distribution is close to thermodynamic equilibrium. An understanding of the Maxwell-
Boltzmann distribution function is essential when studying the QDS method. The detail

will be discussed in the next section (subchapter 2.2).

2.2 Quiet Direct Simulation (QDS) Method [Albright ez al., 2002]

The normal random variable N(0,1) is defined by the probability density:
x)= 7
P( ) m (7

by using a Gaussian quadrature approximation, the integral of Eq.(7) over its limits can

be approximated by:
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oo e—x22
N

where w; and ¢, are the weights and abscissas of the Gaussian quadrature (also known

f(X)dngwa(qJ) ®)

as the Gauss-Hermite parameters) shown in Table 1, and N is the number of terms. The
abscissas are the roots of the Hermite polynomials, which can be defined by the
recurrence equation:

Hn+l (q) = 2an - 2an—l (9)

where H_;=0, and H,=1. The weights can be determined from:

A AN

Wy =— : (10
h [anl (CIJ)]

The moment of the form are represented as
o 1) y

Ie U"dszWJq; (11)

N2z J=1

where r=0,1,..., 2N-1.

The particle simulation of fluid behaviour involved random variables which
governed by stochastic differential equations of motion. For example, the one-
dimensional Ornstein-Uhlenbeck (OU) equations describe the random dynamics of a

particle of mass relaxing at a rate y to the local fluid velocity u and temperature

kT = mo;, shown as:

dx=vdt (12)

dv, =—y(v, —u)dt ++2y02dtN(0,1) (13)
where N(0,1) is random variable. When eq.(13) in the initial condition v, (0) =0, it
can be solved [Gardiner, 1985] from following equation:

v, (A)=u+e™ (v, —u)+0,N1-e™N(0,1) (14)
In the thermalization yAt >>1, eq. (13) can be described as u+o,N (O,l) drawn

from a local Maxwellian.
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As same as DSMC calculations to split particle transport and particle
thermalization into two distinct operations, we presented operations by differential OU

process which denoted with subscript ¢ and ¢4 respectively as follows:

dx \ (vdt) 0 (15)
dv, 0 ) | =7(v, —u)dt++2y52dtN(0,1) A

The transport differential operator describes particle free streaming, while

thermalization operator drives particle velocities toward u+o, N (0,1) without

changing their positions. In the QDS algorithm, the part of #r preforms particle
properties i.e. masses, momenta, special internal energies in each mash; The part of
represents each particle which is advanced to a new position. Those parts are established
local thermodynamic equilibrium throughout the fluid.

The net fluxes of mass, momentum and energy of a cell are given by the sum of

individual flux contributions from all the particles flowing in and out as follows:

) R rim A 2 -
[Z ] [Z j (16)

where F’ and F/

sss Fiou v 18 the individual mass flux, individual momentum and
individual energy from particle J respectively, M and N is the number of inflow and
outflow particles respectively into the cell under consideration. Each of the individual
contribution (with first order spatial accuracy) can be described by the expressions, e.g.,
in one-dimensional case:

vJAt vJAt

7 v, At 1
m; Fyoy = Ax - m,v, FEJNG ZFmJ[EV§+SJ:| (17)

J
F MASS —

where the particle mass my, particle velocity v, and particle internal energy £, are

expressed as:

pj’%” v, =u++20q, a=¢ (18)

m; =
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where o is the density, u is the bulk (or mean) flow velocity, and ¢ = (RT)"? in a

given source cell. Note R is the universal gas constant, and 7 is the gas temperature. The
total number of degrees of freedom & is defined as £ =2(y—1)"" and ) is the number
of simulated degrees of freedom (e.g., (2 = 1 for one dimensional flow). In the existing
QDS-2N [Smith ef al., 2009], the values of p, u, and o employed in QDS particle
initialization are taken from reconstructions based on linear variations. Despite fluxes
being true direction in nature, the reconstructions performed by previous
implementations are direction decoupled — i.e. a flux is computed through the product of

(separate) fluxes previously computed (for 2D flow) in the x and y directions. For the

2D case, the particle mass and velocities in Eq. (9) become:

PAXAYW, Wy,
m, =————= /
" /4 v, =u,+320%g, szuy—i-\/ZO'qu (19)
where there are K=1,..., M particles in the y-direction and the definition of other

variables are the same as those in 1D case. The internal energy remains identical to the
1-D case, allowing for a corresponding increase in € to account for the extra simulated
dimension. The fluxes from sources cell to any arbitrary destination cell can be
calculated by the particle position distributions. The fluxes of mass, momentum and
energy, which are based on the proportion of the overlapped area to the area of the
original cell, are given by:

A A A
Fss = AT My Fyou-x = Z MV,  Fyoyy = I My Vg
S S S

A 1
Fing :ImJK ‘:5("5 +V12<)+€JK:| (20)

N

where 4 is the overlapped area as uxvxdt® and A, is the source cell area as dxxdy.
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2.3 QDS-2N Method

In the QDS-2N algorithm used in the present study, the concept of QDS “particles”
whose properties are interpolated onto a grid (as used by Albright ez al. [2002] in their
original development of the technique) is replaced by the concept of fluxes of a large
number of particles uniformly distributed across the cell, as described by Smith et al.
[Smith et al., 2008]. In this finite volume approach, quantities such as mass,
momentum and energy are exactly conserved by tracking fluxes from source volumes to
destination volumes. If the particle position distributions (i.e. gradients of density in the
flow) are known, the flux from the source region to any arbitrary destination volume
can be calculated.

In the present implementation of QDS-2N, the flux scheme employed by Smith ef
al. [2009] is used for the efficient calculation of two dimensional, true direction fluxes.
Here the N, fluxes in each coordinate direction are computed separately requiring the
calculation of 2N fluxes for the two-dimensional case.

In the second order scheme the gradients of cell velocity in the x-coordinate
direction (du/dx), can be used to update the flux velocity:

vJ=u+@AxL+ 20.q, (21
dx

where Ax; represents the location in the cell from where the flow properties are taken.
Fluxes moving to the right are assumed to take their quantities from the reconstructed
state Ax; = 0.5(Ax — v,A?) to the right of the cell canter, where Ax is the cell size and At
is the simulation time step. This corresponds to the displacement of the centre of mass
of the flux which moves into the destination cell. Left moving fluxes have properties
constructed in a similar fashion for which Ax; = 0.5(-Ax — vyA?¢). The flux then moves

in free flight, justifying the use of a linear interpolation routine.
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The total mass and energy associated with the particles in the particular “bucket”
for the second-order case in the x-direction can be determined from the cell’s density

(p), energy (E) and their respective gradients by:

= (22)
J \/;
where w; are weights of the Gauss-Hermite quadrature, and:
2
(£-0)| o+9% A,
e = dx (23)
2Q

where Q=2 for two-dimensional simulations. Any unused translational and other non-
translational degrees of freedom are thus treated as internal structural degrees of
freedom.

The amount of mass which fluxes to the new cell can be determined by multiplying
Eq. (22) by v,At./Ax. The gradients used in Eq. (21) to (23) are determined using the
MINMOD (Minimum Modulus) and the MC (Monotonized Central Difference) scheme
[Van Leer, 1977]. Using density in the x-direction as an example, the gradient using the

MC slope limiter is:

d—p:MHVMOD P — P ,MHVMOD 2pi+1 —Pi ,2 Pi —Pia (24)
dx 2Ax Ax Ax

where the MINMOD scheme is:

0 IFSIGN(ab)< 0
MINMOD[a,b]=1a IF(SIGN(ab)> 0) AND (|a| < [5])
b IF(SIGN(ab)>0) AND (|b| < |a|) 25)
It should be noted that when non-uniform grids are employed (for example, when

adaptive mesh refinement and coarsening is employed) the fluxes must be calculated

together (for a total of N,*N, fluxes). In this case, for a purely two-dimensional
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simulations, the amount of flux from one cell to another can be calculated trivially by
determining the overlap area A=vAf (where there are k = 1,...,N fluxes in the y-
direction and v 1s calculated in the same manner as Eq. (21) divided by the source cell

area As = AxAy, as shown in Figure 2-1. The mass m and the energy ¢ are thus given
by:

[p+[AxL C;'O+AyL dpﬂAxAyijk
Ix dy

m, = . (26)

(5—Q){a+[AxLCZg+AyL6Zﬂ
2

27

Ep =

where A4y, is calculated in a similar manner to Ax;. Thus the amount of mass mys,
energy Ep, and momentum in each coordinate direction py s, and p,, g which must be

added to the destination cell and subtracted from the source cell are given by:

A
mﬂux = A—m (28)
S
A 1
Eﬂw:A_Sm|:5(sz+vkz)+ng:| (29)
A
pﬂux,x = A_mvj (30)
S
A
pﬂux,y :A_mvk (31)

S

A variable time step scheme is used to maintain the maximum kinetic Courant—
Friedrichs—Levy (CFL) number in the domain below a desired value (usually <1). It is
important to note that this CFL restriction is to maintain physical realism and is not
related to the numerical stability of the scheme. For a two-dimensional or axisymmetric

simulation, the CFL number is given by:
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(1 /(u2 +v2) +qj(max)\/ﬁ)At

(Ax® +Ay2)

CFL = (32)

where gjmax) 15 the maximum value of the particle abscissas (i.e. the value which gives
the maximum particle thermal velocity).

In the current implementation boundary conditions are handled using ghost cells.
These cells can be used to represent walls, stream boundaries, inflow boundaries and
zero-gradient outflow boundaries. The interaction of a gas with a wall is identical to the
interaction of that flow with an adjacent cell having the same flow properties but a
reversed flow direction normal to the wall. The basic description of the simulation

processes for QDS-2N method is available in Figure 2-2.

2.4 QDS-N* Method

2.4.1 Spatial Reconstruction and Flux Calculation
In the current study, referring to Figure 2-3, the general extension to higher order in

QDS in one-dimensional case is performed using a spatial reconstruction of the form:
Q(x)=QL_+(d—Qj (x=0.5A%)
dx ) _gsa

2 _ 2 n-1 _ n—1
+(d gj (x—0.5Ax) +m+(d Ql) (x O.SAx')
dx x=0.5Ax 2 dx x=0.5Ax (n - 1)'

(33)

where Q(x) is the value of a conserved property (mass, momentum, or energy) at a
distance x from the left hand side of the cell, and integer n indicates the order of the
reconstruction. Note Q. is the value of Q(x) at the cell centre. This value is calculated

from Q(x) integrating over the cell width divided by the cell width equalling to the

existing average value of the source cell Qs, presented below:
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(34)

:|:ch+%(622 ](x—O.SAx)Z +é[d;Q ](x—O.SAx)B +} h

X X
x=X;

By using our revised reconstruction, the bounds of integration are X;=0 and Xz=Ax.

Then, Eq. (34) leads to:

_ sz dZQ Ax4 d4Q ZAxnfl 1 d dn IQ
= + + +...+ 35
0.=C 24 (a’x2 ] 1920| dx* n! e 33)
Alternatively, Q. can be expressed as follows:
— A (d’ Ax* [d* 2Ax" (1Y (d™
0.-p - [0 O -2l g (36)
24 | dx 1920\ dx n! |2 dx

where 7 is assumed to be an odd number. This shows that the correction is only required

when the scheme is third order (z = 3) accurate or higher, otherwise Q. = QS (e.g., n=2).

Thus, the complete correct form of the higher order reconstruction of Q(x) using QS
contains additional terms on every even derivative:
p d’0 ) A (d'Q)) (dO d’Q \(x-0.5Ax)’
-== +| =2 |(x—0:5A%) +
Ox)= (Q (dx ] 1920(dx4 i O a’ | 2!

{40 sy [ LONETST

(37)

Specifically, as n=2, the above is reduced to the following form because of Q. =0, ,

as shown below:

_ A, 40 1d°0 2
0(x) =0, +— 2 (x=0.540) + = = (x=0.54%) (38)

The above reduces to exactly the same form as in QDS-2N [Smith et al., 2009].

Next, referring to Figure 2-4, the outgoing flux value of average conserved quantity

successfully moving from the source cell into the destination cell (denoted by Q_tr) 1s:
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x=Ax

0, = mﬁ: O(x)dx = ﬁ{gcx%(fl—gj(x—o.sm)z +}

X=X, x
VS

(X.-X,) 2(‘2—%](x—o.smf+.,1

x=Ax—ult (3 9)

x=Ax
x=Ax—ult

where the bounds of integration are X;=Ax-uAt and Xz=Ax.

Now, the transition of mean values Q_” can be used to calculate particle properties.

Assigning the flux out of average conserved properties Qm, QM and Q3t,, as the mass,

momentum, and energy, respectively, the resulting QDS particle properties for particle J

are:

5 W _ _ — 2\ |2
m, = Qltr J v, = QZtr + 2R2 Qhr _l Q_z” PN (40)
\/; 0 tr (Cv ) ) r 2 Ql”

g, =

(£-QR( D, 1 [QM ]
2 G, 2\ Qn
To calculate the average value of conserved property for higher order
reconstruction, it is important how the flux limiting is coupled. According to the value
of conserved property O(x) (see Eq. (33)), the gradient of Q. is defined in flux limiting
during the reconstruction process. In each cell, we employ the monotonized central

difference (MC) limiter to the effective gradients of conserved properties, as described

below:

(2H(8) w0

¢(0) =max| O, min( 2, —, 29] (42)
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where ¢ is the equivalent flux limiter and F is the gradient calculated using forward

differences. The theta 6 is the ratio of the first order gradient calculated using forward

and backward differences:

dQ\ (doY"
9= (_Qj (_Q) (43)
dx )p\ dx ),
Therefore, an alternate representation of the variation of Q(x) over space must be:

0(x)=0, +Kd—Q]F¢(9)_ (x—0.5Ax)

dx dx=05Ax
+1Kd2—§j 6(6) (x—O.SAx)2+...+inH?J ¢(e)} (x—0.5A%)" (44)
2| dx” ), | nl|\ dx" ), x=0.5Ax

2.4.2 One-Dimensional Flux Calculation and Implementation

In QDS simulations, we require flux from a volume to another volume. Since
fluxes are split, the qualities of the flux depend entirely on the region from which they
originated. The flux calculation is described as a flowchart in Figure 2-5, and
summarized briefly as follows:

1. The gradients of conserved properties Q are first calculated using standard finite
difference approximations in each cell i. For example, for a 5" order accurate

reconstruction, one might use the stencils like:

(d_Q) :(M) sz :(Qi+1+Qi—1_2Qi)
dx J; Ax dx* ), 2Ax

S GREIRES

dx’® i_sz dx )., dx ), dx ),

d'Q) _ 1 ((d) (dQ) (dQ

dx* ) A \\de® ) ax® ) ax” )

2. For each QDS particle:

(45)

21



a. Calculate the approximate particle velocity based on the current cell Q,

which should give the same particle velocity as 1% order QDS.

1
_ — — 2 |2
Q_z_RQ_l(Q_J .

J 2| A
‘ C, 2
Qsl Qsl Qsl (46)
b. Calculate the integral bounds X; and Xk:
X, =Ax—ult ) X,=0
IfvV>0, , otherwise
X, =Ax X, =ult (47)

c. Calculate the flux out values of average conserved properties Q_” of
particles to successfully move into the destination region.
d. Calculate the particle properties based on the average values Q_”

e. Calculate the fluxes of conserved properties to neighbouring cells

following the standard QDS algorithm in subsection 2.2.

2.4.3 Two-Dimensional Flux Calculation and Implementation
Multi-dimensional extension is performed using the same principles applied for a
one-dimensional reconstruction. The variation of conserved quantity Q(x, y) over two-

dimensional space is assumed to be:

(x,y)=0.
dO d’0 (x—0.5Ax) d™'0 (x—0.5Ax)""
+(d_x) x 0 SAX) [ dx? ] 2 "™ (n —1)'
x=0.5Ax x=0.5Ax x=0.5Ax :
d d> ~0.509) dr! —0.5A)""
(—Q] (y- 0.5Ay)+[ ?] (»=0.54) +[ ?] (v y')
dy =0.5Ay dy y=0.5Ay 2 dx /y=0.5Ay (n _1)'

The subsequent cell centred value of Q. is:
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Q _é _sz d2Q ~ AX4 d4Q _2Axn—] l G dn—IQ
©T 240 d ) 19200 dxt [T m! (2) | ax™

AyZ dZQ _ Ay4 d4Q _2Ayn—1 l /1 dn—lQ
4\ ad* | 19200 &' |7 m! (2] ™!

Following this, the average value of conserved quantity in the region bound by [ X,

(49)

Ys] — [Xg, Y7] is formulated as:

Y Xp

- 1
Ot | 2=
( —OSAx) +[d"1Q\(XR—o.5Ax)”]
1 dx"_]J n!

Tx-x,) [dQ\ —OSAx) +[d"-1Q\(XL—0.5Ax)”]
dx”']J n!

[ d0 \(Ye= OSAy) m+(d”“Q\(YR—O.5Ay)"]

1 } dy’HJ n!
o) H do, - OSAy +(d"-lg\(YL—o.SAy)’l
dy dy'HJ n! (50)

where Y7 and Y are the bounds of integration in y direction.

Since the average requires bounding regions in both translational directions,
application of splitting (as applied to TDEFM to improve computational efficiency) is
impossible, and the full N* number of particles (i.e. nine when three particles are used
per direction, sixteen for four, etc.) are required for a complete flux computation.
Previous extensions required only the 2N particles. Unlike the one-dimensional
reconstruction, each particle carries three separate fluxes (for three different destination
cells) and so any single QDS particle possesses three “sub-particles” based on different
integral bounds. This concept is demonstrated in Figure 2-6, showing each unique sub-

region (A — C). The area of the sub-region A is u x v x df as described earlier in Section

2.2 for the QDS-2N method.
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2.4.4 Three-Dimensional Flux Calculation and Implementation
As previous section, the three-dimensional flux calculation is followed the same
way for a one-dimensional reconstruction. The variation of conserved quantity Q(x, )

over three-dimensional space is assumed as follows:

Q(X’yaz)ch
’ ~0.5Ax)" -l ~0.5Ax)""
+ 49 (x—0.5Ax) + d? (x=0.54%) +ot a9 g (x=05A7)
dxX )—osar ax” | s 2 X" ) s (n—1)!
’ ~0.50y)’ ! ~0.5A)""
+ LY (y—0.5Ay)+ d? & ) et d g & )
D )oosay ) e 2 ") e (1)
dQ d’Q (z-0.542)° d"0 (z-0.5A2)""
b (z—O.SAz)+[dZ2 J > |~ (=11
2=0.5Az 2=0.5Az 0.5Az :
(1)

The subsequent cell centred value of Q. is:

Q _é _Ax2 dZQ % Ax4 d4Q _2Axn—l l ( dn—lQ
©OT 24lde ) 1920\ @t |l (2| @

AN (dPQ) A (d'o ) 28" (1Y (d"'Q (52)
24 | dy* | 1920\ @v* | ml |2 )| &

Following this, the average value of conserved quantity in the region bound by [X},

Y, Z1] — [ Xz Y1, Zo] is formulated as:
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Zo Yr Xp

_ 1

o (XR _XL)(YT_YB)(ZO _ZI);:);[)}[Q(X,y,Z)dxdy:Qc
g \(XR —0.5Ax)2 N d”—IQ \(XR _O.SAx)n
B i vl

)
XX _[(dQ (X, —05AY) m+[d”‘1Q \(x, —o.sm)”]

dx"™! J n!

[ar_Q\(YR—o.SAy)2 [0 (¥ —058y)
J (

1 dy 2 ay"! J n!
AT { d0 \(¥, -0.540)" (a0 (¥, -0.54)’
(L) ...{dynl Joie ]
Hd_g\(zo —0562)" (d”‘lQ \(Z, -05Az)" }
. 1 /2 } 2 Tl de! J n!
(Zo=2)| [ra0\(z,-0582) (a0 \(Z,=0.5Ac)" (53)
_[[_Z) 2 +[ dz""! J n! :I

where Zo and Z; are the bounds of integration in z direction.

The N? number of particle is 27 which 3 particles are used in one direction.
Therefore, each particle must be completed calculation for flux reconstruction in a time
step. Especially the calculation for diagonal cell, the particle has 7 sub-regions (A — G)
to be considered which are based on the difference bound. The concept is same as

section 2.4.5 demonstrated in Figure 2-7.

2.5 Brief Summary

The characterization of the QDS-N? method developed in this chapter can be
summarized as follows:
1. The QDS method replaces the random sampling method used in the DSMC
method. Particles are permitted to move in physically realistic directions;
therefore flux exchange is not limited to cells sharing an adjacent interface as in

conventional direction decoupled finite volume solvers.
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. In QDS method, the particles are recreated deterministically from the properties
stored on the mesh using Gauss—Hermite quadrature weights and abscissas.

. The QDS-N? and QDS-2N methods use the same procedure to calculate flux
reconstruction in one-dimension.

. In the QDS-N? method, article properties are updated, considering the average
value of the conserved quantity between the region bounds, which are required
in translational directions and the application of splitting.

. With parallel implementation, an extension to three-dimensional QDS method is

also demonstrated.
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Chapter 3
Complex Gas Flow Simulations using the QDS-N*

Method

3.1 Introduction

To determine the effectiveness of the QDS algorithm, several test cases, including
three cases of one-dimensional domain, six of two-dimensional domain, and one of
three-dimensional domain were used. The test cases were chosen for the following
reasons:

e The cases are suitable for solving the Euler equation.

e The benchmark is well known and many numerical methods or experimental

results are available for comparison.

e All qualitative, quantitative, computational, and experimental results are readily

available.

The QDS-2N and QDS-N*methods are compared for both accuracy and
computational time. We also parallelize the QDS-N* method to increase calculation
speed. As well, the literature related to the test cases is surveyed to determine useful

benchmarks to which the present code can be compared.

3.2 QDS Method in One-Dimension Flow

3.2.1 Shock Tube
The shock tube is an important application in unsteady wave motion, the study of

high-temperature gases in physics and chemistry, and the testing of supersonic bodies
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and hypersonic entry vehicles. Figure 3-1 shows the features of a shock tube after the
diaphragm has been broken. The region to the left of the diaphragm is the driver section
and the region to the right is the driven section.

We consider the shock tube problem to validate the accuracy of the QDS code,
especially a Riemann solver [Toro, 1999], which represents the majority of solution

methods. The initial condition for the simulation consists of two constants:

(100, 00, 10) 0<x<05,

PrD=10, 00, 10) 05<x<l.

(54)
To compare the results easily, we set the number of cells for QDS and the Riemann
solver to 200. Simulation time is 0.1 s, and the walls are reflected. Figure 3-2 shows
density results for the first to the third order QDS and the Riemann solver. We observed
a great improvement between the first and the second orders. Although the second and
the third order QDS results are closer to the benchmark than first order results, the

improvement between the second and the third order is negligible.

3.2.2 Shock-blast wave interaction

The shock blast problem suggested as a benchmark in [Woodward et al., 1984]
included two blast waves contacted by strong shocks. By initial pressure jumps, this
version of the problem will indicate a flow containing three distinct fluids.

The initial condition for simulation is expressed as:

(10, 00, 10°) 00<x<0.1
(p.v.p)=1(10, 00, 107) 0.1<x<09
0, 00, 10°) 09<x<10

(10, 00, 10*) 09<x 55)

Each result was examined at time 0.038 s. The reflective boundary condition is

applied to both ends. The comparable benchmark is an almost identical to shock tube

interaction using the WENO-3 scheme (fifth order) [Jiang ef al., 1996] with 10,000
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grids. The benchmark is used to measure errors by comparing the different methods
considered here. Figure 3-3 shows a contrasting profile of the density computed by the
QDS method with 400 cells using the MC limiter. As can be seen, the second order
QDS method is much better than the first order, and the third order QDS method is
slightly better than the second order. The difference between second and third order
schemes can be seen easily at a range of 0.7 to 0.8 in the x direction. However, the pre-
QDS method can be extended to calculate the case in which acoustic wave oscillation is
quite large. Therefore, the next test case considers the pre-QDS method, which is an

easy way to measure the oscillation accurately by ignoring the limiter.

3.2.3 Shock acoustic wave interaction

An ideal case for testing the general one-dimensional extension of the pre-QDS
method is the interaction of a Mach 3 shock wave with an acoustic wave as proposed by
Shuv [Shu, et al., 1988]. When a higher density shock wave contacts a smooth acoustic
wave, an amplified wave with higher frequency results. The initial conditions are:

( 3.857143, 2.629369, 10.333333) x<-4,

(p v, P )= (56)

( 1.0+%sin5x, 00, 1.0 ) —4 < x.

Results for various QDS configurations with 200 cells compared to a WENO
[Huang, ef al., 2009] benchmark with 2000 cells are shown in Figure 3-4. The result is
obtained at time 1.8 and the limiter is not applied. The improvement from first to second
order is the most significant; higher orders show only slight improvement. The general
trend is in agreement with the WENO benchmark and third order QDS solutions that
result in similar levels of dissipation to those of a fifth-order WENO solution.

3.3 QDS Method in Two-Dimension Flow
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In this section, we present four test cases for comparing theN? and 2N methods.
The major discussions focus on the time cost and accuracy between the two methods in

two-dimensional problems.

3.3.1Shock-Bubble Interaction

The strength of correct multi-dimension reconstruction is demonstrated in two
dimensions with the shock/bubble interaction problem [Cada et al., 2009]. The initial
conditions for this problem are shown in Figure 3-5. The simulation calculated a shock
wave, moving from left to right with a velocity of Much number 2.85 in an ideal,
inviscid gas and interacting with a pseudo bubble at x=0.3. The results are presented at
t=0.2. The results of the numerical schlieren (gradients of density) are presented in
Figure 3-6 for various QDS methods and the TVD schemes on a grid of 1700 x 500
cells. The application of correct multi-dimensional reconstructions results in a relatively
high resolution of the circulation and reflected shock located at x = 0.6.

Figure 3-7 displays two QDS methods with different numbers of cells. We
compare the N* method (Figure 3-7a) against the 2N method (Figures 3-7b, ¢ and d) by
using 300 x 100, 450 x 150, and 600 x 200 cells. For the sake of comparison, the limiter
for each simulation is the monotonized central (MC) limiter. In Figures 3-7a and b the
difference in resolution is clear despite the fact that both these methods employ the
same number of cells. As the number of cells employed by the 2N method increases
(shown up to 600 x 200 cells here), the results gradually approach those of the N*
scheme with relatively few cells (1/4). Obviously, the multi-dimensional computation
(N? method) achieves higher accuracy than the 2N scheme.

Further, we consider the computation time required by each method in this case.

The N? method is true-directional, in that each possible combination of discrete velocity
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must be considered (nine instances with three discrete velocities per direction), while
the 2N method employs approximate dimensional extension and only requires six
discrete velocity computation in a two-dimensional computation. Moreover, for each
particle, three space-averaging computations are required for each fraction falling into
separate destination cells. Therefore, the N> method requires more computation time for
the same number of cells. The computation time of the two solvers are summarized in
Table 3-1. According to these data, the N* extension of QDS requires approximately
three times the computation time as compared to that of the original 2N method for the
same number of cells. However, for any given degree of accuracy, we find that the N*
method provides an increase in computational efficiency of almost three times (300 x
100 vs. 600 x 200 for 2N vs. N?). Thus, the application of the N* method is justified

over that of the 2N method for high-resolution solutions.

3.3.2 Euler-Four-Shocks problem

This test case was introduced in Serna[2006], which computed the numerical
solution employing thepiecewise hyperbolic method-Marquina’s flux formula(PHM-
MFF) and power PHM-MFF schemes. The test problem is initially divided into four
quadrants sharing a common corner at 0.75 and 0.75 in the domain [0,1] x [0,1], as
illustrated in Figure 3-8. These quadrants initially have the following different but

uniform conditions:

(1.5, 0, 0, 15), [075, 1] x [075, 1]
(05323, 1206, 0, 03),  [0: 0.75) x [0.75, 1]

(p.u,v.p) = (0.138, 1206, 1.206, 0029), [0, 0.75) x [0, 0.75) (57)
(05323, 0, 1206, 0.3), 075, 1] x [0, 075)

Figure 3-9 shows four results of a comparison between the 2N and N* solvers at

the time of 0.4. The Courant—Friedrichs—Lewy factor (CFL) is set as 0.5. We compare
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the results of the two QDS solvers using 100 x 100 to 300 % 300 cells. As can be seen,
the result of the QDS N? solver obtained using a coarse grid (100 x 100 cells) is only
approached by the 2N solver when employing considerably fine grids (300 x 300 cells).
Furthermore, the result we obtained using the QDS N” solver on a computational grid of
1000 x 1000 cells is similar to that obtained using the TVD-MUSCL scheme [Cada et
al.,2009] (see Figure 3-10a).

An investigation of the computational expense of each scheme showed that the N
solver takes approximately four times longer to complete the simulation than the 2N
solver. This comparison of computational expense is summarized in Table 3-2. The
increase in computational time with the refinement of the computational grid is due to

the constant “kinetic”” CFL condition that we employ, which is defined as follows:

(\/u_2+3*\/ﬁ)*dt (x/v_2+3*\/ﬁ)*dt

dx dy

CFL = Max (58)
This basically ensures that particles in free flight do not travel further than the
adjacent cells. Although the result take more time to compute using the N? solver, the
accuracy is considerably better than that of the 2N solver, in fact, it is not clear that the
2N solver will ever approach the solution obtained using the N” solver, irrespective of

the number of cells employed.

3.3.3 Euler-Four-Contacts problem

This test case involves the Euler-four-contacts interaction problem defined by
Schulz-Rinne, Collins, and Glaz [Schulz-Rinne ef al., 1993]. The same test case with a
different higher-order method is also presented in [Salichs ef al., 2005]. This Riemann
problem briefly shows four constant states consisting of four quadrants and two shocks

generated clockwise at the origin. The contact point is cantered about the location (X,
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y)=(0.5, 0.5). A representation of the structure of the flow domain is shown in Figure 3-
11. The initial flow condition is imposed by four difference shock waves and satisfies

the following relation:

(1 075 -0s. 1) (4)

(p.u,v,p)=

(1. -075. 05, 1), (©)

(3. ~075. 05 1),

[

(2. 075 05 1), [ 0. 05
[
[

]

0. 1] ® 59
)
)

(D)

Figure 3-12 shows the numerical result of the second-order TVD-MUSCL method
for a density contour profileon a 1000 x 1000 uniform grid, taken from [Cada et al.,
2009].For the QDS method, the result obtained at the time of 0.8 on a 1000 x 1000
uniform grid can be seen in Figure 3-13. Two results are shown for the second-order
method with the N* and 2N solvers. Both enforce a constant CFL number of 0.25. The
contours of density are presented with levels of 0 to 2.4. In this case, a shock wave is
generated and spirals from the contact point in an unsteady fashion. By comparing the
two figures, we find that both the N* and the 2N solver results are symmetrical and that
the result obtained using the N* solver is closer to the TVD-MUSCL result presented in
Figure 3-12. As in the previous test cases, in the current test case, the accuracy of the N*
method is superior to that of the 2N method. In this instance, however, the WENO
results [Schulz-Rinne et al., 1993] are still superior to the N? results: this can be
attributed to the small stencil employed for the estimation of the higher-order gradients,
or to flux splitting employed and the inevitably associated numerical dissipation; this
may require further investigation.

Further, we have compared the timings and the accuracy for this test problem with

different N for both QDS-2N and QDS-N* with 1000 x 1000 cells since both schemes
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scale differently with N. The results are essentially the same as those obtained for N = 3
when N increases to 5 or 9 for both the abovementioned methods, as shown in Figure 3-
14. This is reasonable since the integration of a Gaussian function with a polynomial,
having two or less degrees, becomes exact, if the number of Gaussian-Hermite
integration points is 3 or more. Expectedly, the computation time increases roughly 3
times from N = 3 to N =9 for both the methods. Further, Figure 3-15 shows the density
contours when the grid resolution increases from 1000 x 1000 cells to 2000 x 2000 and
3000 x 3000 cells. In brief summary, for both the QDS-2N and the QDS-N? methods for
solving the Euler equation, accuracy effectively increases with increasing grid

resolution, while it is essentially the same when N > 3,

3.3.4 Mach 3 Flow over a Forward Step

The fourth test problem for the second-order QDS method is the Mach 3 flow over
a forward facing step in a high-speed wind tunnel. The main of this case is designed to
solve complex oblique shock reflections. This problem was first introduced by Emery
[Emery et al., 1968] and has since been used by Woodward and Colella to test a number
of differencing schemes [Woodward et al., 1984]. The same problem using second
order QDS scheme was used by Smith [2009] to demonstrate that QDS the effectively
captures all features of the flow fluid and compare with Keats and Lien’s scheme [Keats
et al., 2004]. Keats mentions that this case is well known problem to evaluate the
robustness of numerical method. It is difficult to maintain positivity pressure and
density using various numerical methods when the strong shock reflection at a step
during first time step. Therefore, this test case has proven to be a well test for a long
time by several of methods. For QDS method, it must be more careful to deal with

particle actions facing the corner of the step. That will useful for us to expend a laugh of
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blocks in a domain.

Here present the geometry and boundary conditions used in the problem (see
Figure 3-16). As an initial condition, the flow is everywhere uniform at Mach 3 with a
density of 1.4, a pressure of 1.0, gas constant R = 1.0 and a specific heat ratio ¢ = 1.4.
The CFL number is set as 0.1. This is equivalent to an impulsively started flow and the
simulations capture the unsteady development of the flow structure.

The QDS simulations utilized a second-order scheme and third-order with 4 QDS
particles per cell on a uniform grid consisting of 100,800 square cells (the number of
cells for total domain which included the step is 600 x 200). The number of contours is
30 from 0.2568 to 6.067. Figure 3-17 shows the density profile generated using two
QDS solver — 2N solver and N* solver — at time = 4.0 s. The result is compared with
that of Keats and Lien who employed a second order Godunov method on an adaptively
refined mesh [Keats ef al., 2004]. We observe the results in both figures are similar

whenever the solver is 2N or N solver.

3.3.5 Shock Wave Diffraction over a 90 degree sharp corner

This test case uses the same geometrical as previous test case which a block in the
domain. The geometric configuration of this case is the forward-facing steps. This case
is also an important case to observe shock wave diffraction which is designed to solve
the Euler equation. The shock wave diffraction induces more phenomena in the
perturbed region behind the shock [Skews, 1967]. Those included shock wave, vortex,
terminator and an incident sound wave. The problem contain both computational and
the mathematical studies. Secondly, the experimental results are available for variety of
geometries and Mach number [Takayama et al., 1991]. More numerical studies can be

found from Skews [1967], Schardin [Dyke, 1997], Bazhenova [Bazhenova et al., 1984].
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Figure 3-18 shows structure of the perturbed region behind a diffracting shock wave
presented form Skews [1967]. Skews performed experiments for a variety of Mach
numbers and convex corner angles and has outlined the structure of the perturbed region.
The detail of the structure is described in appendix A.

The output format of this case shows in Figure 3-19[Takayama et al., 1991]. The
incident shock Mach number is 1.5 which the normal shock moves to right. The
isopycnics are to be displayed with each isopycnic corresponding to an increase of 4%
of the initial density. The geometry and boundary conditions of this test case can be
seen in Figure 3-20. The normal shock wave which propagates through space to the
right is set at the edge of the step between the fluid state 1 and state 2. The moving

shock Mach number M, is defined as:

M =

s

4 (60)
a

where W is velocity of the gas ahead of the shock wave, relate the wave. a; is the speed
of the sound of the gas in state 1. Figure 3-2lillustrates the schematic of moving shock
waves relating the W, u,, state 1 and 2.The W is important for that is relates the wave
velocity of the moving shock wave to the pressure ratio across the wave and the speed
of sound of the gas into which the wave is propagating, shown as follows (derived in

[Anderson, 1990]):

w=a, L P2y | 61)
2y \ py
the velocity U, behind the wave in state 2 is defined as:
u, =w|1-L£ (62)
P,

The initial velocity in the state 1 is set to zero. The x-component of the initial

velocity in the state 2 is set to u,. Table 3-3 summarizes the temperature ratio, density
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ratio and up initial conditions for the moving shock Mach number M;, determined form
[Anderson, 1990]. The simulation time ¢ is depend on the location of the incident shock,
which is approximately W x ¢. For example in this test case, the incident shock is 1.3L
as shown in Figure 3-19 , the initial normal shock wave is set at the 0.3L where near
from inlet boundary on the edge of the step, the simulation time is 1.464.

Figure 3-22 shows three density results that obtain using the second-order TVD
extension of Godunov method [Takayama et al., 1991], N? and 2N method with 400 x
400 cells. The vortex obtained using both QDS method below the slipstream is close to
the benchmark. The position of the vortex, incident shock and slipstream are perfectly
in the correct please as the second-order TVD extension of Godunov method
[Takayama et al., 1991].1t is able to gauge the ability of the QDS method to detect
shock, contact and expansion regions. To compare with experimental result made by
Ritzerfeld et al. [Takayama et al., 1991], the schlieren result is easily to identify that the
vortex obtained using N* method is clearer to observe as we can see from Figure 3-23.
According the results in this test case, the accuracy obtain using N® method is

considerably better than that of the 2N method.

3.3.6 Advection of Vortical Disturbance

The final test case consists of an inviscid unsteady flow in which a vortex is located
at the canter of a uniform domain (xc, yc). The mean flow for this case uses Mach

number M-=0.1. The case tests the capabilities of the QDS method compared to the

exact solution taken from [Visbal et al., 1999] in order to accurately advent vertical
disturbance. This problem also appears in Tutkun and Bdis [Tutkun et al., 2010]. The

initial conditions are shown as follows:
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- dx 2 dy 2
’ ( )2 ( )2 )
pC x—x,) +t(y—y.
p—pw:2RE2 exp(rz) , rt= — Y7y

where u, v and R. determine the Cartesian velocity components and the vortex

radius. C is the vortex strength parameter, defined as follows:

=0.02 (64)

The density is assumed to be constant and the vortex radius R, is taken to be 1.0 in

this case.
Figure 3-24 shows the vorticity contours of the N” and the 2N methods with 800 x
800cells using the second-order method. The limiter in this case is the monotonized

central (MC) method. A constant CFL number (0.1) is enforced such that the non-
dimensional time step size is AtU_/R. =40X107 . The result of the N* solver is

essentially the same as the exact solution and shows a perfect circular shape of the
vorticity distribution while that of the 2N solver does not. The result of the 2N solver
shows more significant dissipation and anisotropy errors as compared to that of the N*
solver. Figure 3-25 shows the vorticity distributions of various simulations along a
horizontal line (at y = 8.0) passing through the vortex center in Figure 3-24. We have
compared the results obtained by using the two solvers (2N and N?) on a uniform grid
containing three different levels of resolution (160 x 160, 800 x 800, and 1600 % 1600
cells). The result obtained using the N* solver in the case of 800 x 800 cells is in
excellent agreement with the exact solution and radial symmetry, while the results
obtained using the 2N solver are far from the correct solution even in the case of 1600 x

1600 cells. Thus, the influence of multi-dimensional reconstruction is significant for the
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QDS, particularly on the numerical accuracy of the solution for a gas flow field as in the
current problem.

The investigation of the computational expense again reveals a trade-off between
computational time and accuracy. The computational time of the N” solver in terms of
calculation time is approximately 3~4 times less than that of the 2N solver for any given
computational grid although the accuracy of the former is considerably better than that
of the latter. This leads to a question whether the use of the N* method is worthwhile or
not. Thus, we compare the results obtained using the N’method using160 x 160 cells
with those obtained using the 2N method using1600 x 1600 cells, as shown in Figure 3-
25. The results show that they are essentially the same for the same level of accuracy;
thus, the proposed the N” solver is approximately 25 times faster than the 2N solver in
this case. Once again, we are unsure whether the 2N result will ever converge to the
analytical solution, thereby justifying the application of the N* solver and its proposed

multi-dimensional reconstruction of QDS particles.

3.4 QDS Method in Three-Dimension Flow

The three-dimensional QDS method is necessary to develop a complete method for
large-scale domains. Such a method will cover many problems that the two-dimensional
method cannot solve. In this paper, the second-order QDS-N? method is extended to a
three-dimensional method. This extension is non-trivial and requires the application of a
number of modifications. These modifications are required in QDS but not in
conventional finite volume schemes because fluxes are calculated from volume to
volume, incorporating the influence of spatially varying primitive quantities, and
because the scheme is based on kinetic theory rather than a solution to a governing set

of equations. The scheme is validated by simulating a simple test case.
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3.4.1 Mach 2 Flow over a Pillar
This test case is to validate the three-dimensional method can be available as the
two-dimensional method. The geometry represented in Figure 3-26 shows a pillar in the
center of the domain facing a Mach number 2.0 in the x-direction. The y- and z-
components of initial velocity are set to zero. The initial density and the temperature are
set to 1.0. The number of cells is set to 200 x 200 x 100 in a full domain (x, y, z) = (1.0,
1.0, 0.5). The results are presented at = 0.1 with the MINMOD limiter, and the CFL
number is set to 0.5. The results obtained using N* method in a three-dimensional
domain are compared to results obtained in a two-dimensional domain in Figure 3-27.
The results for both domains are identical. This indicates that the results obtained in a
three-dimensional domain can calculate any of those obtained in a two-dimensional
domain without computational error. This case is an easy way to identify that the QDS
code can be applied to a three-dimensional domain. Furthermore, we observe the same
flow condition with a block in the center of the domain, as shown in Figure 3-28.
Compared with Figure 3-27 b, the results are evident in the x-y surface. Note that Figure
3-29 shows different results. The z-component is considered in the three-dimensional
domain but not in the two-dimensional domain. Therefore, it is evident that the three-

dimensional method is necessary.
Furthermore, in both two- and three-dimensional simulation domains, the
computational time increases when the number of cells is increased. Therefore, we
improved the QDS method to include parallel code. Performance results are presented

in the next section.
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3.5 Parallel Computing of QDS method

As described in the previous section, although the accuracy of the results for the N*
method in the two-dimensional flow is higher than the 2N method, computational time
is longer. The capacity of the N* technique can be increased by parallelizing the code so
that computational load is shared across a number of processors. In this section, a
parallel QDS method is discussed. In addition, various code improvements and a

validation simulation are also discussed.

3.5.1 Overview of Parallel Implementation

Parallel computing involves the division of a task into smaller subtasks and the
assignment of such subtasks to individual processors. These processors perform the sub-
tasks and communicate when required. One method for dividing work between
processors is domain (or data) decomposition into subdomains. In one-dimensional
decomposition, the subdomains are determined by latitude or longitude; in two-
dimensional decomposition they are determined by both latitude and longitude.

In this work, we introduce the Message Passing Interface (MPI) to the N* code to
speed up computation time. MPI is a parallel computer message-passing library for

communication among processes that have separate address spaces.

3.5.2 Simulation Conditions

A 2D shock-bubble interaction problem is simulated to obtain the computation time
for the parallel N* method, as shown in Figure 3-30. The initial condition is as same as
Section 3.3.1, i.e., Mach 2.81 with pressure 10 from x = 0 moving to the right will face
a low density gas bubble. The computational problem is a symmetric domain with a

boundary at y > 0, reflecting boundary condition at y = 0.5 and inflow at x =—0.1.
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3.5.3 Parallel Performance

Strong and weak scaling are two basic ways to measure the parallel performance of
a given application, depending on whether the application is CPU bound or memory
bound.

Tables 3-4 to 3-7 summarize the computational time using the parallel N* method.
The results were computed on the ALPS—Acer AR585 F1 Cluster at the National Center
for High-performance Computing (NCHC) of Taiwan. The F1 Cluster uses the AMD
Opteron 6174 processor with 12 cores operating at 2.2 GHz and 128 GB of main

memory (per node).

3.5.3.1 Weak Scaling

Weak scaling is used for programs that require significant memory or other system
resources. The purpose of this measurement is to observe the run time while
maintaining a constant or line scaling as the relationship between the number of

processors and cells is gradually increased. Weak scaling efficiency is given as:

(’1 ]100% (65)

tl
where ¢ is the time required to complete a job unit. The subscript indicates the number
of processors. fy is the amount of time required to complete N job units with N
processors.

The results of weak scaling for a shock-bubble interaction case are presented in
Table 3-4. In this case, the largest number of processor is 122, and the largest number of
cells is 2.4 million. Each process is assigned a constant number of cells (20,000 grids).
Simulation time 1s 0.2 with 2000 time-steps.

Figure 3-30 shows a weak scaling diagram for the shock-bubble interaction case

using the parallel N> method. The results summarized in Table 3-4 show that the
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efficiency of this case is approximately 1.2. The ideal efficiency of weak scaling is 1.0,
which is denoted by the dash-dot line in Figure 3-30 (60 processors). The average
efficiency achieved (1.2) is an acceptable result. The result indicates that, when we
employ larger core counts to simulate a problem with the N* method, 20% of

computation is consumed communicating data.

3.5.3.2 Strong Scaling

Strong scaling, which fixes computational domain size but increases the number of
processors, is also used to measure the parallel performance of a given application.
Strong scaling is used to determine a reasonable length of time to process a relatively
large application using many processors without excessive overhead cycles. Strong

scaling efficiency is give as:

N[ ’;i ]100%. (66)
I

where ¢ is the time required to complete a job unit. The subscript indicates the number
of processors. ty is the amount of time required to complete N job units with N
processors.

In this section, in Tables 3-5 to 3-7, we present three strong scaling performance
results for different numbers of cells, representing small, medium, and large-scale
domains. These tables show the relationships among computation time, number of
processors, and number of cells per processor. The largest number of processors we
consider is 256. As shown in Figure 3-31, for a 2D shock-bubble problem using
500,000 cells and 2,000 time steps, there was a net increase in speed of approximately

78% when compared with ideal performance (red line). As illustrated in Figures 3-32

and 3-33, for 2 million and 12.5 million cells, the speed up was 68.5% and 65.5%,
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respectively. On the other hand, if we compare results for the three cases when the
number of cells per processor is equal, the results are approximately equal. For example,
for 125,000 cells per processor, computation times are 2761.14 s, 2890.74 s, and
2806.29 s. This indicates that, regardless of the size of the computational domain, we

can obtain a rational answer using the same number of cells for each processor.

3.6 Brief Summary

The major findings of the study of the QDS algorithm for the N* and 2N methods

can be summarized as follows:

1. The one-dimensional QDS method extended to a higher order method is useful
for simulating the shock acoustic wave problem and can be used to compute
higher-order problems.

2. Using the N* method in a two-dimensional domain obtains results comparable to
the benchmark. The accuracy achieved using the N* method is considerably
better than that achieved using the 2N method.

3. The N? extension of the QDS method requires approximately three times the
computation time compared to the original 2N method for the same number of
cells.

4. For both the 2N and the N” methods, when solving the Euler equation, accuracy
effectively increases with increasing grid resolution. However, it is essentially
the same when N > 3.

5. The advection of vertical distribution test case results show that both methods
are essentially equally accurate; however, the proposed the N? solver is

approximately 25 times faster than the 2N solver.
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6. The QDS method is suitable for three-dimensional computation and can be
applied to three-dimensional simulation problems.

7. Parallel performance studies, including strong and weak scaling, show that the
parallel efficiency for a large-scale problem (0.5, 2, and 12.5 million cells) can
reach up to 75%, 68.5%, and 65.5%, respectively, using 256 processors at the

NCHC APLS cluster.
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Chapter 4
Analysis of QDS-2NMethod as Compared to QDS-
N’Method

4.1 Introduction

In the previous section, we identify the difference between 2N and N* method by
comparing with several numerical methods as benchmark. Since both one-dimensional
2N and N? method are theoretical the same. The major difference of both methods is
mathematically the flux reconstruction travelled to the diagonal cell in two-dimension.
In this chapter, we use an analytical aspect to discuss the difference and to observe

which flow condition is suitable for N> method or 2N method for simulation.

4.2 Derivation of Analytical Fluxes of QDS Methods (2N vs. Nz)

4.2.1 Mass Flux

According to chapter 2, the different part of two methods is flux reconstruction in
two-dimension. Here we present the fluxes value which contributed to correct cell after
a time step At when the source cell travelled to the diagonal destination cell in Figure 1.

The net of mass fluxes M,y obtained from 2" order 2N method shows blow.

’_ 7 2 , \2
m.m ! ’ ¢ P
b, oL A PR El(i} _1( ] J

X
J
T m Ax| m! C,\m. 2\m | 2|\m

Vv

’ 2 4 2
- ’ -5 ’ J
m, 2\ m,

At| P R| E
+ (2

Y Y

1
Ay| m C|m 2

’
v y

(67)
where m,, m,’, P, P,’, E\’, E,” are the value of conserved properties (mass, momentum,

energy) for 2™ order in x and y-direction . Those are described blow,
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1 dm 1 dm
T =m+——(Ax—uAt " =m+——(Ay—vAt 68
, 1 1d
P =P (Ax—uAt) P =P +——=(Ay—vAr)
dx Y 2dy (69)
E =m (CT+1u +1v2) 1dE — (Ax—uAr) (70)
2 2 2 dx

E = CT+1u +1v2 1dE(Ay VA?)
! 2 2 2 dy (71)

the total mass, momentum and energy in the source cell is m, Py, P, E.

On the other hand, the analytical mass flux equation My’ obtained from 2" order

N’method is
P’ EI PI 2 P/ 2
M, =lm,',2wf A X;Nz .S 2 -k x;NZ ' L,Nz ’
T Ax m C, m, 2 m 2 m,
(72)
i , 2 , 2
olZha, | xfE (L
Ay | m, C, | my 2| m, 2| m, d

where the subscript shows N is the value of conserved properties for N> method

described as follows:

, 1 dm 1 dm

m+——(Ax—ulAt)+ Ay —vAt
e = 2dx( uae)+ 2dy(y VAL (73)
dp, dp,
P =P+ (Ac—un)+ L L (ay v
y_N 2 dx 2 dy (74)
P LdF = (Ax—uAt) £ (Ay—vAr)
xN dx 2 dy (75)

E,=m CVT+lu2+lv ld—E(Ax ult)+ ldE(Ay—vAt)
N 2 2 2 dx 2 dy (76)

As we can see, the difference of 2N and N? method for net mass flux form source

cell to the diagonal destination cell is presented
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M ,-M

N 2N

(77)
The difference of 2N method can be identified form Eq.(78).
M ,—-M
‘N—” 100% (78)
NZ

4.2.2 Momentum Fluxes
The momentum flux is performed using the same principles applied for two-
dimensional reconstruction of mass flux.The momentum flux for the 2N method in x-

component and y-component can be described as follows:

2 , \2
P E’ P I
Py =My =+ 7 f_l =5 _l . J (79)
- m, C |m, 2\m ARS
P E 1(PY 1(PY
R '
})y72N:M2N _y/+ 2— i__ b g y, J (80)
m, C, n, 2\ m, 2 m,

The N? method of momentum fluxes in x-component g 4 and in y-component Py »

are present as below:

4 V4 2 Vi 2
P, ! P, P,
Px N2 :MN2 x,,N + 25 E]/VZ _l xjN _l y;/N J (81)
- m, C, n,, 2 n,, 2 n,
P/ E, Pr 2 P/ 2
Poo=M | 2y p R S L Do ) LD | (82)
r- n, C, m, 2 m, 2 m,

To simplify the equation of momentum fluxes, those equations are described with
the net of mass flux reconstruction. The net momentum fluxes in two components are

described as follows:
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The difference of 2N method can be identified from Eq. (83):
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(84)

4.2.3 Energy Flux

Follow the previous section, the energy fluxes of the 2N method are divided with

Eq. (68) ~ Eq. (71), shown in below:

- N
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where Q is the number of simulated degrees of freedom (i.e. in this chapter, Q = 2). The

energy fluxes in N” method is described by following equation:
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Therefore, the net energy flux is combined with Eq. (85) and Eq. (86) that can be

formulated as

E . -E,, (87)

N

According to Eq. (87), the difference of two methods can be shown that

E.,—-E,),

100% (88)

NZ

4.3 Results and Discussion

4.3.1 Diagrams of Relative Difference Distribution

In order to estimate the difference between the two methods, the unknown elements
in the equation have to be defined. The test cases that we simulate contain a domain of
1000 x 1000 cells; the cell size in the x and y directions is 1.0e” (Ax = Ay = 1.0¢™), and
the time step Az is equal to 1.0e*. The density, velocity, and temperature are changed
from 0.1 to 5.0, which are observed for the difference in the fluxes. Therefore, the CFL
number is calculated to be 0.01-0.5 on the basis of the changing value of the density,
velocity, and temperature. The gradients for all the conserve properties are assumed to
be 1.0¢” and 1.0e% for two cases. Therefore, on the basis of our assumptions, we
calculate the difference in density (Ap) to be 1.0e” for the first case by using the mass
gradient shown in Eq. (67). Furthermore, the difference in velocity (Av, Au) and
temperature (A7) are obtained in the same manner. For another case, the difference in
the density, velocity, and temperature are 1.0¢™.

dm VAp s
—=—"=1.0e 89
dx Ax (89

The purpose of this simulation is to estimate the difference in the fluxes between

the 2N and the N* methods in terms of the mass flux, momentum flux, and energy flux
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on the basis of the variations of the density, velocity, and energy observed when the
source cell travels to the diagonal destination cell. We compare two cases in which the
differences in the density, velocity, and temperature are 1.0e” and 1.0e”, respectively.

Figure 4-1a shows the mass value of the difference between the 2N and the N*
method in the density, velocity, and temperature range from 0.1 to 5.0. Most of the
significant difference in the mass flux is observed in the low-density range, and in
particular, the largest difference is observed when the temperature is equal to 0.1 and
the velocity is increased to 2.5. Another range in which we can clearly see the
difference is the low-density and low-velocity range in which the temperature is either
low or high. The tendency of case 2 for the largest difference is shown in Figure 4-1b.
The other results of the comparison of the difference between the two methods with
respect to the momentum and the energy are shown in Figures 4-2 to 4-4.

As we can see from the figures, the highest value of the difference is obtained in
the low-density range. Figure 4-5 shows two cases when the difference value is in the
low-density range. We compare velocity with the value of mass flux for three
temperatures that each of them has the lowest point which 1s 1.2, 2.1, and 2.6. Even case
2 has the same lowest point as case 1.

Therefore, when the simulation domain is in the low-density, low-temperature, and
high-velocity range, the accuracy obtained using the N* method is considerably better

than that obtained using the 2N method.

4.3.2 Example with Large Difference
In the previous section, we discussed that most of the different fluxes between 2N
and N? are around two parts: the first part is at the low density, low speed, and the

second part is at the low density, low temperature, and high speed as shown in Figures
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4-1 to 4-4. In order to validate the discussion, section 4.3.1 is provided; here, we discuss
four test cases, namely shock-bubble interaction, Euler-four-shock, and Mach 3 over a

forward step and a backward step.

4.3.2.1 Shock-Bubble Interaction

The first test case is demonstrated in the same manner as the preceding case
discussed in Section 3.3.1. The comparisons shown in the schlieren image show that the
accuracy obtained by using the N? method is considerably better than that obtained by
using the 2N method. Although both methods can identify the right position for the
shock wave, the result obtained using the 2N method does not descript specifically at a
complex place, especially in the bubble. In this section, we discuss in more detail, the
conditions in the fluid that lead to a more significant difference between the two
methods. Figure 4-6 shows the four contours of the N* method, namely density,
temperature, and two dimensions of velocity. The result obtained is the same as that
shown in Figure 3-6. According to Figure 3-6, most differences are almost around the x
=0.6~07 and y = 0.1~0.15 region. In order to analyze the result, the properties around
the bubble that attacked after the shock wave are considered to be low density, high
temperature, and high velocity. In order to observe higher difference of two methods,
we decrease the temperature of the bubble from 10 to 2 initially. The schlieren result
shows that the N* method descripts more details than the 2N method at a low density
and a low temperature as shown in Figure 4-7. The density and the temperature contours
of this result are illustrated in Figures 4-8 and 4-9. The temperature contour shows a
more considerable difference between the two methods than the density contour. As

expected, the difference between the two methods is more distinct in the complex

52



region. Therefore, the complex region provides more specific results in the low-density

environment in the case of the N> method.

4.3.2.2. Euler-Four-Shock Simulation

The analytical fluxes that we discussed in the previous section are focused on the
diagonal direction. The first case gave a hint about the difference between the two
methods in a complex fluid. Therefore, the second test case combines the diagonal
direction and the complex flow introduced in Salichs [2006]. The benchmark is used for
computing the numerical solution employing the piecewise hyperbolic method-
Marquina’s flux formula (PHM-MFF) and the power PHM-MFF schemes. The test
problem is initially divided into four quadrants sharing a common corner at 0.75 and
0.75 in the domain [0, 1] % [0, 1], as illustrated in Figure 3-8. These quadrants initially
have the relationship shown in Eq. (57).

The result that we obtained using the N* solver on a computational grid of 1000 x
1000 cells at the time of 0.4 is similar to that obtained using the total variation
diminishing-monotone upstream centered schemes for conservation laws (TVD-
MUSCL) [Cada et al., 2009] (see Figure 3-10a). The Courant—Friedrichs—Lewy (CFL)
factor is set as 0.5. All three approximations obtain the basic structure of the solution
where the four shock waves interact. Three results show that the position of the shock
wave is the same as that shown in Figure 3-10. However, the area from (x, y) = (0.2, 0.2)
to (0.4, 0.4) is not for the 2N method that has less variation. The differences between
the N” and the 2N methods are observed in the contact area. In the same way, in order to
analyze the differences, we observe four properties of the contour results of the N*
method in Figure 4-10. The results indicate that the density and the temperature in the

contact area are lower than those in any other area. According to Figure 4-10, it is
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reasonable to explicate why the accuracy of the N> method is better than that of the 2N

method.

4.3.2.3 Mach 3 Flow over a Forward Step

This case is designed for a high-speed velocity model through a forward step and
involves complex oblique shock reflections. The inlet and the outlet boundary
conditions in the domain are both supersonic flows. The geometry of the test case is
illustrated in Figure 3-16, and the result of the flow is shown in Figure 3-17. The
purpose of this test case is to demonstrate that the two methods obtain approximately
the same result. Since a normal shock wave moves along the x direction, the flux
reconstruction calculated in the diagonal direction is not considered to be significant.
Based on the discussion presented in Section 4.3.1, we know that most of the
differences in the flux can be observed in the diagonal direction. Moreover, the oblique
shocks usually occur with an increase in the temperature, pressure, and density. This is
contrary to the definition of the difference between both the QDS methods carried out
under low-density, low-temperature, and high-velocity conditions. Figures 4-11 and 4-
12 show that the density and the temperature contours use the same initial flow and
boundary conditions as those discussed in Section 3.3.4. The results revealed a
considerably high density and temperature; few results of low density and temperature
were observed behind a corner. The most obvious discrepancy between the 2N method,
the N* method, and Keats’s results is the location of the shock reflection on the upper
wall. The point located at x = 2.4 is the contact point between an incident shock and a
reflected shock obtained using the N* method; it is at the same position as that in

Keats’s result. Consequently, the results reveal two not-so-apparent differences: first,
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the flow properties as low velocity, high density, and high temperature; and second, the

flow around the shock wave and the oblique shock.

4.3.2.4 Shock Wave Diffraction over a 90-degree Sharp Corner

Different from the preceding geometric configuration, the oblique shock does not
occur in this test case instead of secondary physical phenomena such as a second shock,
contact surface, and vortex. The last case discussed in this chapter involves the use of
the same geometrical and boundary conditions as those considered in the case discussed
in Section 3.3.5. The initial conditions of the flow for M, are listed in Table 3-3.
According to the explanation of the structure of the perturbed region by Skews [1967],
the location of the vortex is well defined for M < 1.5. Therefore, in order to observe
more secondary physical phenomena in this test case, we discuss the case of shock wave
diffraction by using the initial flow velocity of M; = 2.4. The experimental result
obtained by Schardun [Dyke, 1997] is selected as the benchmark. The flow structure
around a perturbed region is outlined in Appendix A. Because the comparison has an
experimental result as a benchmark, the resolutions of the simulation are calculated
using a considerably fine cell: 1000 x 1000 uniform grids. The CFL number is set to 0.2.
The simulation time is calculated using the same principle as that discussed in Section
3.3.4and is t=0.775.

Figure 3-13 shows three schlieren results using the second-order 2N method, N*
method, and the experimental result separately. These results can be used for gauging
the ability of these methods to detect the expansion region by juxtaposing them with the
three results shown in Figure 3-18. The shape of the primary shock wave shown in
Figure 3-13b and c matches the experimental result. The secondary shock waves

obtained using the two methods are accurately located at the correct position behind the
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wall and between the slipstream and the contact surface corresponding to the
experimental result. The accuracy of the second shock wave in both the results is clear.
However, the phenomena in the vortex and the contact surface of both the results are
contrary to the second shock. It is obvious that the vortex obtained using the N> method
is presented in considerable detail than that obtained using the 2N method. The contact
wave is considerably diffused as compared to that in the case of the N* method and the
experimental result. The density, temperature, and velocity contours in this case are
shown in Figures 4-14 to 4-16. These results show that the vortex belongs to the region
with a low density, low temperature, and high velocity. The contact surface in the
results is shown in the region of low density, low temperature, and low velocity. This is
reasonable for supporting the theory in Section 4.3.1 that a more significant difference
between the two methods shows the same trend as the large discrepancy is in the region

of low density, low temperature, and low velocity.

4.4 Brief Summary

The major findings of the study of the difference analysis of the QDS-2N method
presented in this chapter can be summarized as follows:

1. There are two regions of flow properties where a large discrepancy of
conservative fluxes occurs between the QDS-2N and the QDS-N* methods. The
first is in the region of low density (down to 1.0), low temperature (down to 2.5),
and high velocity (up to 2.0). The second is in the region of low density and low
velocity (down to 1.2).

2. The conservative fluxes of the QDS-2N method that move along the diagonal

direction exhibit a considerably large difference as compared to the QDS-N?

56



method. In contrast, the conservative fluxes that move along the horizontal or
the vertical direction exhibit a significantly smaller discrepancy.

. The normal shock and oblique shock waves in the resolution obtained by using
the two methods are approximately located in the same region, and most of the
shock waves, as predicted by the QDS-2N method, move in the diagonal
direction.

. Because the properties of an after-expansion wave are low density, low
temperature, and high velocity, we have found a large discrepancy between the

QDS-2N method and the QDS-N? method.
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Chapter 5

Conclusion and Recommendations of Future Work

5.1 Summary

In this thesis, a true-direction multi-dimensional higher-order extension of the QDS
method, referred to as the QDS-N* method, for solving the inviscid Euler equation is
investigated numerically and theoretically. The major findings of this thesis are

summarized in the following two sections in turn.

5.1.1 Numerical Investigation of QDS-N* Method

1. The results of the one-dimensional shock and acoustic wave interaction problem
demonstrate an improvement for higher orders of accuracy (up to third-order) of
the QDS-N* method.

2. The QDS-N? method improves the solution in the flows unaligned with the
computational grid as compared to the QDS-2N method.

3. The QDS-N? method significantly reduced the amount of numerical dissipation
within the solution as compared to the QDS-2N method.

4. Despite the additional computational expense associated with the QDS-N?
method for the same computational grid, for any given degree of accuracy, the
proposed solver was found to be several times (up to 25 times in the case of the
advection of vortical disturbances) faster than the original QDS-2N method.

5. Of particular interest is the test case of the advection of vortical disturbances,

where the QDS-N? method improves the radial symmetry of the result
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approaching the analytical solution, while the QDS-2N method failed to
converge to the analytical solution even when a very fine grid is used.

6. The results are essentially the same when N> 3 because the integration of the
Gauss function with a polynomial (degree < 2) using the Gauss-Hermite
integration technique becomes exact.

7. Parallel performance studies, including strong and weak scaling, show that the
parallel efficiency of shock bubble interaction for a large-scale problem (0.5, 2,
and 12.5 million cells) can reach up to 75%, 68.5%, and 65.5% respectively
using 256 processors at the APLS cluster of National Center for High-
Performance Computing, Taiwan.

8. Parallel performance of weak scaling shows that the average efficiency of shock
bubble interaction using 20,000 cells per processor is about 1.2, which the ideal

efficiency is 1.0.

5.1.2 Theoretical Analyses of Conservation Fluxes of QDS-2N Method and QDS-N2
Method
1. There are two regions of flow properties where a large discrepancy of
conservative fluxes occurs between the QDS-2N and the QDS-N* methods. The
first is in the region of low density (down to 1.0), low temperature (down to 2.5),
and high velocity (up to 2.0). The second is in the region of low density, and low
velocity (down to 1.2).
2. The conservative fluxe of the QDS-2N method that moves along the diagonal
direction has considerably large difference as compared to the QDS-N* method.
On the contrary, the conservative fluxes move along horizontal or vertical

direction has a much smaller discrepancy.
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3. The normal shock and oblique shock wave in the flow obtained using two
methods are approximately located in the same region, even the direction of the
shock wave, predicted by the QDS-2N method, moves to be more in diagonal
direction.

4. Because the properties of an after expansion wave are in the region of low
density, low temperature, and high velocities, we have found that a large

discrepancy occurs between the QDS-2N method and the QDS-N? method.

5.2 Recommendations of Future Work

In this thesis, we have demonstrated that the QDS-N’ method is a very fast
numerical method without being subject to convergence problem like conventional CFD
methods. However, there are several areas need to be done in pushing the method
forward, The areas outlined below should be examined in the future:

e To further reduce the computational time for large-scale multi-dimensional
problems, the method should be implemented on multiple extension graphics
processing units (GPU).

e To further reduce the numerical diffusion, a high-order stencil in calculating the
conservative fluxes may be considered.

e To implement an adaptive mesh function in the region where large gradient of
flow properties occurs.

e To extend the QDS-N* method for modelling the Navier-Stokes equation by
employing the Chapmann-Engskog expansion theory to account for the viscous

effect.
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Appendix A

Flow Structures of the Shock Wave Diffraction

Keats [Keats et al., 2004] describes the theory of the shock wave diffraction that
including experimental and computational result from Skews [1967], and summarized
the secondary physical phenomena in the perturbed region behind the shock wave.
Skews performed experiments for a variety of Mach numbers and convex corner angles,
and has outline the structure of the perturbed region; the structure is shown in Figure 3-

5.1. Skews determined experimentally and tabulated the following correlations:

The slipstream angle variation with the shock Mach number M.

The terminator angle variation with M.

The relationship between M, and the velocity of the secondary shock.

The contact surface velocity variation with M.
e The variation of the vortex angle and velocity with M.

The flow structures can be described as follows:

e Incident shock: Diffracts in a similar way to a sound wave: its radius of
curvature is approximately Wz.

e Reflected sound wave: Propagates upstream and marks the start of the curvature
of the incident shock.

e Slipstream: Due to separation, it separates high-velocity gas on the upper side
from almost stationary gas on the lower side. It represents the outermost

characteristic of the Prandtl-Meyer expansion fan.

67



Terminator: The first characteristic of the Prandtl-Meyer expansion; the single
separating the terminator from the horizontal increases with rising M;.

Second shock: The region between the slipstream and the terminator is a
uniform flow region parallel to the slipstream, and the second shock is a normal
shock caused when the flow in this region exceed Mach 1.0 [Sun et al., 1997].
Vortex: Located just below the slipstream, its location is well defined for M<
1.5. The angle between the vortex and the slipstream decreases as M, increases.
Contact surface: Originates at the intersection point of the reflected sound wave
and the incident shock, but is highly diffuse in this region. It becomes better-

defined as it nears the region containing the rest of the flow structures.
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Table 2-1 The value of weight and abscissas for the Gaussian quadrature.

Tables

Number of QDS particles Weight (w)) Abscissas (g;)
2 22 Lz
2 2
3 0 2
1 1
+-/6 3
2J— 6&
) L1 [3-46 T
- 5 4(3—\/6)
L1 [3+46 Nz
) 2 4(3_,_\/6)
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Table 3-1 Comparison of computational expenses for QDS schemes using 2N and N*

dimensional reconstruction.

QDS solvers

Number of cells

2N N?
300x100 8.41 min 23.15 min
450x150 28.9 min 78.3 min
600x200 68.56 min 183.6 min
1000x500 478.4 min 1282.6 min
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Table 3-2 QDS scheme time cost in Euler-4-shocks interaction case.

QDS solvers

Number of cells

2N N?
1000x1000 13.29 hours 55.6 hours
100x100 45 (s) 189 (s)
200x200 375(s) 1520 (s)
300x300 1307 (s) 5199 (s)
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Table 3-3 pre- and post-shock fluid initial conditions.

Mach number

1.5 2.4
P,/P, 1.862 3212
T/T, 1.32 2.04

U 0.8215 1.956
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Table 3-4 Parallel Performance for a 2D shock-bubble problem with 2.4

millioncomputational cells.

Number of processors Computation time (sec.) Number of cells

1 361.613 20000

4 348.995 80,000

9 428.812 180,000
16 410.294 320,000
25 425.229 500,000
36 444.135 720,000
49 472.599 980,000
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Table 3-5 Parallel computation times for shock-bubble problem with 500,000 cells at

2000 time steps in simulation time 0.2.

o Number of Cells for one
Number of processors ~ Computation time (s)

processor
1 8220.19 500,000
2 4299.89 250,000
4 2761.14 125,000
8 1210.08 62,500
16 762.245 31,250
25 425.229 20,000
32 347.833 15,625
64 158.845 7,813
80 132.77 6,250
100 106.164 5,000
256 42.9935 1,953
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Table 3-6 Parallel computation times for shock-bubble problem with 2 million cells in

2000 time steps.
Number of processors Computation time Number of cells for one
(sec.) processor
1 29740.59 2,000,000
4 8744.45 500,000
8 4978.56 250,000
16 2890.74 125,000
25 1827.92 80,000
32 1348.79 62,500
64 679.745 31,250
128 340.572 15,625
256 172.599 7,813
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Table 3-7 Parallel computation times for shock-bubble problem with 12.5 million cells

in 2000 time steps.

Number of processors Computation time Number of cells for one
(sec.) processor
1 187130.1 12,500,000
8 27532.8 1,562,500
16 19929.3 781,250
32 8613.3 390,625
64 4463.82 195,313
100 2806.29 125,000
128 2225.91 97,656
256 1115.02 48,828
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Figure 2-1. Schematic showing the way fluxes of conserved quantities between source
and destination cells are calculated using the “overlap” function in QDS [Smith ef al.,

2009].
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1990].
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Figure 3-3. The interaction of two blast wave computed by the QDS method with 400
grids at t = 0.0038. The solid black line is WENO (fifth order) scheme with 10,000

grids.
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Figure 3-4. Density profile of the shock-acoustic-wave case at t = 1.8. The solid black

line is WENO-3 (fifth order) with 2000 grids compared with QDS method which

without limiter form 1% order to 3"order.
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Figure 3-5. The structure of shock bubble interaction.
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(c)
Figure 3-6. Zoom of shock-bubble Schlieren image with 1000x500 cells at time of 0.2.

QDS 2™ order (a) 2N method with van Leer’s limiter, (b) N* method, and (c) 2" order

TVD result presented in [Cada, 2009] using the same resolution.
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Figure 3-7. Zoom of Schlieren image of shock bubble problem at time of 0.2; (a) QDS-
N? method with 300x100 cells; (b) QDS-2N method with 300x100 cells; (c) QDS-2N

method with 450x150 cells; (d) QDS-2N scheme with 600x200 cells.
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Figure 3-8. The initial conditions for the first problem of Euler-4 shocks interaction.
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Figure 3-9. Zoom of density contour line of Euler-four-shocks problem. Comparing the
second-order QDS-N? method (a) using 100x100 grids with MC limiter and 2N method
using 100x100 grids (b) and 200%200 grids (c), 300x300 grids (d) with MC limiter at

time of 0.4.
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Figure 3-10. Zoom of the density contour lines of Euler four shocks problem. (a) the P
order TVD-MUSCL method taken from Cada [Cada et al., 2009] using 1000x1000
points, CFL=0.8. (b) The third-order QDS-N* method used 1000x1000 grids with MC
limiter at time of 0.8. (c) The third-order QDS-2N method used 1000x1000 grids with

MC limiter.
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Figure 3-11. The initial conditions for the second problem of Euler-four-shock

interaction.
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Figure 3-12. Density profile of the four contacts problem for second-order TVD-

MUSCL method taken from [Cada et al., 2009].
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(b)
Figure 3-13. Density contour obtained from QDS N? solver (a) and 2N solver (b) by
using 1000x1000 cells, 2™ order method with MINMOD limiter. The CFL number is

0.5. Level form 0 to 2.4 at 0.05 interval of line.

96



ANESSS e AL SRS A
P)))) 7)) ) SRR

.ﬂ\\ \\\\ / \\.

\\\ \\\

0.8

G

0.2

0.3

Gt

)

b

(

)

(a

0.6

.4

0.z

4 0.6

o

0.2

X

2N solver with 5 particles (a) and 9

method with 5 particles (¢) and 9 particles in each

000 cells, 2™ order method with MINMOD limiterat

000x1,

b

97

~
s
R SS

. 7
e (i
i
e
(]

s
s
(=)

> o
(= [}

A

time of 0.8. The CFL number is 0.5. Level form 0 to 2.1 at 0.05 interval of line.

direction (d) by using 1

~~
o
N
]
701
a)
<o
g
o
&
T o
£ Z
Z 7
o
2
el
o ©
M(
e
S ¢
~> O
Q +
ed
A 5
< 8
=
mm
B0 2
= =
o



X "l
0.6
> - 4

0.4 F#

02K

D

(b)
Figure 3-15. Density contour obtained from QDS-N?solverusing (a) 2,000x2,000and (b)

3,000%3,000 cells, 2" order method with MINMOD limiterat time of 0.8. The CFL

number 1s 0.5. Level form 0 to 2.1 at 0.05 interval of line.
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Figure 3-16. Geometry and boundary conditions for the Mach 3 flow over a forward
facing step in a wind tunnel. All boundaries with exceptions to the inflow and outflow
are secularly reflective. The outflow boundary is calculated through interpolation of

states of interior cells.
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Figure 3-17. Contour of density at 4.0s for Mach 3 flow over a foeward facing step in a
wind tunnel. Compare the 2" order QDS-2N method (top) and QDS-N? method

(middle) for 600%200 grids. (buttom) The result of Keats and Lien [Keats ef al., 2004]
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Figure 3-18. Structure of the perturbed region behind a diffracting shock wave, defined

by from Skews [1967].
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Figure 3-19. The output for compulsory figure for shock wave diffraction (by Takayama

[1991]).
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Figure 3-20. The initial geometry of the shock wave diffraction over degree sharp

Ccorner.
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Figure 3-22. The density contours of the shock wave diffracting over 90 degree sharp
corner with 400 x 400 grid, M=1.5. (a) the second-order TVD extension of Godunov
method [Takayama ef al., 1991]. (b) the second-order QDS-2N method and (c) the

second-order QDS-N? method with MC linter, CFL=0.5.
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Figure 3-23. Schlieren image of the shock wave diffracting over a 90 degree sharp
corner, M=1.5.(a) the experimental result made form Ritzerfeldet al. [Takayama et al.,
1991]. (b) second-order QDS-2N method and (c) QDS-N* method with 400x 400 cells,

MC limiter, CFL=0.5.
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Figure 3-24. Vorticity magnitude contours compared (a) exact solution and two result

using 2™ order (b) QDS 2N method and (c) QDS N? in 800x800 uniform cells. All

results are taken the CFL number to 0.1.
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Figure 3-25. The vorticity profiles along the central line passing through the vortex. The
comparison contained the exact solution (blue squeal-symbol line), the QDS-N’method
using160x160 cells (red line), 800x800 cells (black dash-dot line), and 2N method
using 800x800 cells (purple long-dash line),1600x1600 cells (green doted line). Two

method s are computed in MC limiter and CFL=0.1 at time 8.0.
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Figure 3-26. The three-dimensional geometry of the Mach 2 flow over a pillar.

109



X
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Figure 3-27. The Density contour of the Mach 2 flow over a pillar obtained using the

second-order QDS-N? method (a) in two-dimension with 200 x 200 cells; (b) in three-

dimension with 200 x 200 x 100 cells. The CFL factor is 0.5 using MINMOD limiter.
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Figure 3-28. The three-dimensional geometry of the Mach 2 flow over a square block.
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Figure 3-29. The Density contour of the Mach 2 flow over a square block obtained

using the second-order QDS-N? method with 200 x 200 x 100 cells (a) in x-y surface;

(b) in x-z surface. The CFL factor is 0.5 using MINMOD limiter.
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Figure 3-30. Parallel Performance of a 2D shock-bubble interaction with 2.4 million

computational Cells.
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Figure 3-31.Strong scaling performance in the QDS-N” method with 500,000 cells on

various massively parallel systems.
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Figure 3-32.Strong scaling performance in the QDS-N* method with 2 million cells on

various massively parallel systems.
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Figure 3-33.Strong scaling performance in the QDS-N” method with 12.5 million cells

on various massively parallel systems.
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Figure 4-1 The value of mass flux for the difference of 2N and N* method. (a) The case

1 with the gradient 1.0¢”; (b) case 2 with the gradient 1.0e™.
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Figure 4-2.The value of momentum flux in x-direction for the difference of 2N and N*

method.(a) The case 1 with the gradient 1.0¢”; (b) case 2 with the gradient 1.0¢™.
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Figure 4-3.The value of momentum flux in y-direction for the difference of 2N and N*

method.(a) The case 1 with the gradient 1.0¢”; (b) case 2 with the gradient 1.0¢™.
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Figure 4-4.The value of energy flux for the difference of 2N and N* method.(a) The

case 1 with the gradient 1.0¢”; (b) case 2 with the gradient 1.0¢™°.
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Figure 4-6. Contour profile of Shock-bubble interaction. QDS-N? 2™ order method
using 1700x500 cells with MC limiter at time of 0.2. (a) Density, (b) temperature, (¢)

velocity in x-direction and (d) velocity in y-direction.
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Figure 4-7Shock-bubble Schlieren image with 1700x500 cells at time of 0.2. QDS 2nd

order (a) 2N scheme with van Leer’s limiter, (b) N* scheme.
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Figure 4-8. The density contour obtianed using (a) the 2N method; (b) the N* method

with MC limiter, CFL=0.5, 1700x500 cells.
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Figure 4-10. contour profile of N* method. (a)Density, (b) temperature, (c) velocity in

x-direction and (d) velocity in y-direction.
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Figure 4-11. Contour of density at 4.0s for Mach 3 flow over a foeward facing step in a
wind tunnel. Compare the 2" order QDS-2N method (top) and QDS-N* method

(middle) for 600%200 grids. (buttom) The result of Keats and Lien [Keats ef al., 2004]
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Figure 4-12. Contour of temperature obtained using second-order QDS-2N (top) and
QDS-N? method using 4 simulation particles for Mach 3 flow over a forward facing

step in a wind tunnel.
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Figure 4-13. Schlieren image of the shock wave diffracting over a 90 degree sharp
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corner, M=2.4.(a) The experimental result made form Ritzerfeld et al. [Dyke, 1997]. (b)
the second-order QDS-2N method, and (c) QDS-N2 method with 1000%1000 cells, MC

limiter, CFL=0.2.
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Figure 4-14. Density contours of Mach 2.4 shock diffraction using the second-order 2N
method (top) and the N> method with 1000x 1000 uniform grids. The CFL number uses

0.2 with MC limiter.
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Figure 4-15. Temperature contours of Mach 2.4 shock diffraction using the second-
order 2N method (top) and the N* method with 1000x 1000 uniform grids. The CFL

number uses 0.2 with MC limiter.
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Figure 4-16. Velocity contours of Mach 2.4 shock diffraction using the second-order 2N
method (top) and the N> method with 1000x 1000 uniform grids in x-direction. The CFL

number uses 0.2 with MC limiter.
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