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應用真實流向概念重建通量法則於靜直接模擬法速解尤

拉方程式的研究 

學生: 林雅茹   指導教授: 吳宗信 博士 

 

國立交通大學 

機械工程學系博士班 

 

中文摘要 

 

近年來一項以模擬粒子為基礎來解非黏滯尤拉方程式的數值方法稱之為靜態

直接模擬法（Quiet Direct Simulation, QDS）[Albright et al., 2002]。此方法利用高

司-赫麥（Gauss-Hermite）積分集合式來取代馬克斯威爾與波茲曼（Maxwell-

Boltzmann）速度分佈的表示。不僅可以輕易地處理流體中急遽變化的變數分佈

（如大部分的計算流體力學一樣）更可以準確的仿效真實流的運行方式引入真實

方向的守恒場，又因為具有地域性高（不需要大範圍考慮周遭的網格）的特點使

得平行化的計算程式得以輕易達成。由於在每個網格內都擁有相同的離散速度分

佈，因此對於計算時所要求的記憶體需求可減至最低。但所謂有一利必有一弊，

因而衍生出數值擴散性（numerical diffusion）太強等問題，驅使 Smith 等人

[Smith et al., 2009]發展出另一項以近二階 QDS 方法（QDS-2N）來改善相關問題

以達到大幅提升數值的精確度。但是，在改善的過程中仍未真正考慮到流體真實

流向的概念而有所遺憾。為解決此問題，本論文將對此數值方法提出改善方法並

且用理論分析的角度進行探討。 

在第一部份方面，就數值方法的觀點來說，本論文一樣是利用以近二階靜態

直接模擬法來求解尤拉方程式，目的是發展一項根據流體的真實流向概念而進行

的重建通量法則，我們稱之為 QDS-N2 法。不同於傳統的有限差分法是把通量計

算存取於網格間的界面，相較之下，QDS 則是根據流體的真實流向來決定該網格

的通量方式，其間，實際計算通過網格的流量並有效地存取於網格內使其達到完
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全遵循流體真實流向之計算法。在計算通量之前，我們會在每一個網格中引入數

顆 QDS 粒子，而此粒子根據瞬間加權擁有守恒場的變數值，並包含了質量、動

量與能量等計算值。甚至守恒場的變數值變化情形（可以依據多項式表示）在同

一網格中皆可被允許隨空間變化。雖然在一維流流場中，QDS-N2 法的重建通量

表示式與 QDS-2N 法的重建通量表示式是一模一樣，不過在流場延伸至多維度時

兩種方法卻有所不同。為了呈現兩方法的優異性，在二維流的計算中，我們經由

幾項不同的算例結果來驗證此新的流量重建法的優異性，並且在第二部份理論分

析方面以解析解的方式探討與 QDS-2N 方法的差異。文中我們對於二維的研究比

對項目包含了震波撞擊低壓近似氣泡問題、尤拉四震波的交互作用問題、尤拉四

面波交互作用問題、三馬赫波正面衝擊水平台階和水平渦流擾動問題。並且對於

模擬時所耗費的計算時間與更高階計算之效果做進一步的探討。根據結果顯示，

在相較於 QDS-2N 法的情況之下，本文所提出的多維度重建法則在計算的精確度

上確實有很大的提升。以得到相同數值精確度的標準而言，屏除因考慮流體真實

流向而增加計算量所耗費的時間外，就水平渦流擾動問題的結果來說，相較於

QDS-2N 法，QDS-N2 法在計算上所消耗的時間可以大幅減少。此外，誠如先前所

提及 QDS 乃是一個高地域性的數值方法，非常有利於分散式叢集電腦上進行平

行計算。因此，發展三維的 QDS 數值方法也將一併利用平行方式進行。而文中

所有提及平行效率的研究與相關的平行計算，皆在台灣國家實驗研究院所屬國家

高速網路與計算中心內所提供的 ALPS 叢集電腦中完成。就平行效率的研究方面，

我們在計算大尺度的問題時使用高達 256 顆處理器分別完成 0.5、2、12.5 百萬的

計算網格，根據 strong scaling 所得的結果顯示，得到的平行效率可達 75%、

68.5%與 65.5%。另一項 weak scaling 的研究，比對理想值為 1.0 的平行效率，使

用本方法所得到的效率可達 1.2，其中處理器最高達到 128 顆，而平均每一顆處

理器皆包含計算 2 萬個計算網格。 

在第二部份理論分析方面，我們將所有有關質量、動量與能量的通量分別對

QDS-2N 和 QDS-N2 兩種數值方法進行解析解的分析推導。比較方式是針對兩運

算法在流場中因不同變數值的改變於彼此之間所產生的通量差異。結果顯示二者

通量值於低密度、低溫與高速的流域範圍中較易產生較大差異，而此範圍往往也

是擴散波出現的地方。除此之外，本研究觀察到當兩數值方法在處理水平和垂直

軸（x 軸與 y 軸）的計算問題時彼此所產生的通量值差異甚小，反之在計算斜角
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流場時會相差較大。因此，可以根據本研究結果知道在未來處理模擬流場等問題

時，得以輕易地判斷合適於問題的 QDS-N2 法或 QDS-2N 方法而有效地取得所預

期的結果，高精確度以利分析或是快速地得到流場趨勢。 

對於主要的研究結果與未來研究方向的建議將總結於文末。 
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Reconstruction Scheme in the Quiet Direct Simulation 

Method for Euler Equation 
 

Student: Ya-Ju Lin        Advisor: Dr. Jong-Shinn Wu 

 

Department of Mechanical Engineering 

National Chiao Tung University 

 

Abstract 

 
A particle-based quiet direct simulation (QDS) method [Albright et al., 2002] was 

invented to solve the inviscid Euler equation, in which the Maxwell-Boltzmann velocity 

distribution is enforced through the use of Gauss-Hermite quadrature integration 

without using any random number. It is a very fast Euler equation solver, which is 

deterministic with large dynamic range of flow properties like most conventional CFD 

methods, employs true-direction conservative fluxes for faithfully mimicking real flow 

motion, is highly localized (a small stencil) for easier parallelization and requires very 

low memory because the discrete velocities can be re-used in each cell. However, it is 

numerically very diffusive and has been extended to a nearly second-order numerical 

scheme by Smith et al. [2009] without really considering true-direction flux 

reconstruction. Thus, we intend to further address this problem from both numerical and 

theoretical viewpoints in this thesis. 

In the numerical part, a true-direction flux reconstruction of the second-order quiet 

direct simulation (QDS) as an equivalent Euler equation solver, called QDS-N2, is 

presented. Because of the true-directional nature of QDS, where volume-to-volume 
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(true direction) fluxes are computed, as opposed to fluxes at cell interfaces as employed 

by traditional finite volume schemes, a volumetric reconstruction is required to reach a 

totally true-direction scheme. The conserved quantities are permitted to vary (according 

to a polynomial expression) across all simulated dimensions. Prior to the flux 

computation, QDS particles are introduced using properties based on weighted moments 

taken over the polynomial reconstruction of the conserved variables such as mass, 

momentum and energy. The resulting flux expressions are shown to exactly reproduce 

the existing second-order extension for a one-dimensional flow, while providing a 

means for true multi-dimension reconstruction.The new reconstruction is demonstrated 

in several verification studies. These include several two-dimensional test cases such as 

shock bubble interaction problem, an Euler-four-shock interaction, Euler-four-contact 

interaction, Mach 3 facing over a forward step, and the advection of a vortical 

disturbance. These results are presented, and the increased computational time and the 

effect of higher-order extension are discussed. The results show that the proposed multi-

dimensional reconstruction provides a significant increase in the accuracy of the 

solution as compared to the previously developed QDS-2N method. We show that, 

despite the increase in the computational expense, the computational speed of the 

proposed QDS-N2 method is several times higher than that of the previously proposed 

QDS-2N method for a fixed degree of numerical accuracy, at least, for the test problem 

of the advection of vertical disturbances. As mentioned earlier, QDS method is 

intrinsically a highly localized numerical scheme, which makes it highly suitable for 

parallel computing on distributed-memory cluster machines using domain 

decomposition. With parallel implementation, an extension to three-dimensional QDS 

method is also demonstrated. The results show that the parallel efficiency, based on a 

strong scaling study, for a large-scale problem using 0.5, 2, and 12.5 million cells can 
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reach up to 75%, 68.5%, and 65.5% with 256 processors respectively. In addition, the 

parallel efficiency, based on a weak scaling study, for a shock bubble interaction is 1.2, 

which the ideal efficiency is 1.0, up to 49 processors for 20,000 cells per processor. 

Note all the parallel performance tests were performed at the APLS cluster of National 

Center for High-Performance Computing, Taiwan.  

In the theoretical part, we have derived the analytical expressions of all the fluxes 

related to mass, momentum and energy in the two-dimensional QDS-N2 and QDS-2N 

methods respectively. Comparisons are made systematically between the corresponding 

fluxes in the two methods by varying flow properties. Results show that a large 

discrepancy of fluxes between these two methods occurs in the ranges of low density, 

low temperature, and high velocity.It is also interesting to learn that this range of gas 

flow often corresponds to an expansion wave region. Moreover, the fluxes using both 

methods are similar horizontal and vertical directions (x and y-direction), while large 

discrepancy is found in the fluxes going to the diagonal direction.With this observation, 

we can evaluate the accuracy of QDS-2Nmethod as compared to QDS-N2 method in the 

flow field, which may be important in deciding which method to be used for different 

flow problems. 

The major findings of the research with the recommendations for future study are 

summarized at the end of the thesis. 
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Chapter 1 Introduction 

 

1.1 Background and Motivation 

There are a number of approaches for the simulation of gas flows, depending on the 

nature and level of rarefaction of the flow. Computational fluid dynamics (CFD) 

typically uses the finite volume method to solve a set of discretized governing 

equations, usually the Euler or Navier-Stokes equations. Contemporary finite-volume 

CFD divides the computational domain into a grid of cells, and fluxes of mass, 

momentum, and energy are calculated through the interfaces between these cells. This 

technique suffers from the major disadvantage that the poor alignment of the grid with 

the flow field may result in large errors for some important flows (e.g., explosive blast 

wave), since fluxes can only occur between elements that share an interface, i.e., no 

reflection of the true-direction nature of the gas flow. Thus, CFD requires a careful grid 

design to ensure accurate results, convergence, and stability. 

 

1.1.1 Direct Simulation Monte Carlo Method 

The direct simulation Monte Carlo (DSMC) method has become the gold standard 

for stochastic flow field simulation. Arguably, this method has been the most successful 

for simulating rarefied gas flows since its development by Bird in the 1960s [Bird, 

1994]. In the DSMC method the ballistic motion of the particles and their collisions are 

decoupled by moving the particles over a time step that is smaller than their mean 

collision time, indexing the particles to within a grid having dimensions that are smaller 

than the mean free path and then choosing collision partners from within this grid. 
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The DSMC algorithm requires the use of random numbers and is thus subject to 

statistical scatter and requires averaging over a large number of time steps to reduce the 

scatter in the sampled macroscopic properties. However the fluxes of properties in 

DSMC are “true-direction” since a particle can carry its mass, momentum, and energy 

between any two points in the flow field, not just between elements that share an 

interface. Furthermore, DSMC handles non-equilibrium effects by stochastically 

performing collisions between selected collision pairs, thus allowing gradual and 

selective transfer of momentum and energy. 

In the high collision rate limit of DSMC, the particle velocity distributions 

approach that of the Maxwell-Boltzmann equilibrium distribution and moments of the 

Boltzmann equation reduce to the Euler equations [Gombosi, 1994]. 

 

1.1.2 Quiet Direction Simulation Monte Carlo Method 

Albright et al. [2002] developed the quiet direction simulation Monte Carlo 

(QDSMC), a method for modeling plasmas. They subsequently applied this method to 

the simulation of Eulerian fluids for Sod’s one-dimensional shock tube problem and a 

simple two-dimensional blast wave problem. Since then little further work has been 

done, the only example being by Peter [Gombosi, 1994] who applied a random time 

step to the movement of simulation particles for simulating a typical diffusion equation. 

Unlike the DSMC method, there is no random number (or Monte Carlo) component to 

the algorithm. In the QDSMC method, the effect of sampling using random numbers is 

replaced by using the weights and abscissas of a Gauss–Hermite quadrature. Thus, it is 

valid only when thermal equilibrium can be assumed. Moreover, this method is a 

particle-based Euler solver that exhibits negligible statistical scatter and has a large 

dynamic range. 
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1.2 Literature Survey 

Bird [Bird, 1994] showed that the DSMC method essentially provides a statistical 

solution to the Boltzmann equation, and Wagner [Wagner, 1992] proved 

mathematically that DSMC provides a solution to the Boltzmann equation as the 

number of simulated particles approaches the number in the actual system. This method 

was used to model the relaxation of a non-equilibrium gas towards the equilibrium 

distribution [Bird, 1963] and since that time it has been used in a wide array of 

applications including CVD reactor modeling [Coronell et al, 1992], hypersonic flight 

simulations [LeBeau et al., 2001], supersonic jet studies [Boyd et al., 1994; Teshima et 

al., 2001], microfluidic simulations [Karniadakis, 2002], and modeling of molecular 

pumps [Kwon et al., 2006]. The method has grown increasingly sophisticated and 

powerful as improved algorithms, intermolecular collision models, gas-phase chemistry 

and boundary conditions have been developed and implemented. 

Since the development of DSMC by Bird to solve the Boltzmann equation 

statistically, a large number of continuum kinetic theory based-schemes have emerged 

that follow a similar path.In 1980, Pullin proposed the equilibrium flux method (EFM) 

as an analytical equivalent to the equilibrium particle simulation method (EPSM), 

which is a direct simulation method where particles are forced to assume the Maxwell-

Boltzmann equilibrium velocity probability distribution function instead of performing 

collisions [Pullin, 1980]. Later, Smith et al. [Smith et al., 2008] proposed a general 

form of the EFM method known as the true direction equilibrium flux method 

(TDEFM), which more accurately captures the transport mechanism employed by 

EPSM. Fluxes calculated by TDEFM represent the true analytical solution to the 

molecular free flight problem, under the assumption of thermal equilibrium and 

uniformly distributed quantities. The calculated fluxes are valid for any size time step, 
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and the algorithm is unconditionally stable, although the kinetic Courant-Friedrich-Levy 

(CFL) number should be kept below unity to ensure physical correctness. The primary 

disadvantage to TDEFM is the large computational cost associated with the evaluation 

of the numerous exponential and error function evaluations. 

As mentioned previously, Albright et al. [2002] developed the QDSMC method, a 

numerical scheme for the solution of the Euler equations. They subsequently applied 

QDSMC to the simulation of Eulerian fluids for problems like shock tube flow and blast 

wave propagation. In this method, the integrals encountered in the TDEFM formulation 

are replaced by approximations using Gaussian numerical integration, effectively 

replacing the continuous velocity distribution function with a series of discrete 

velocities. The method was later renamed the quiet direct simulation (QDS) method due 

to the lack of stochastic processes and was extended to second order spatial accuracy. 

The lack of complex mathematical functions results in a computationally very efficient 

scheme with considerably higher performance than EFM while maintaining the 

advantages of true directional fluxes like TDEFM.  

Due to the assumption of unrestricted motion during free flight, each of the above-

mentioned kinetic solvers has a large amount of (cell-size-based) numerical diffusion. 

To combat this dissipation, a common strategy, employed in more conventional finite 

volume methods, is to apply higher-order reconstruction of properties or fluxes. 

Macrossan [Macrossan, 1989] applied EFM using higher order spatial extensions, while 

Smith [Smith, 2008] attempted the analytical inclusion of gradients into true-direction 

volume-to-volume fluxes, only to find that the complete analytical inclusion of gradient 

terms in the TDEFM flux expressions is impossible. Smith et al. [Smith et al., 2009] 

reduced the numerical diffusion by applying “simplified” flux reconstruction at the 
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interface. This method, known as QDS-2N, improves the original QDS to be almost 

second order in spatial accuracy. 

The particle-based QDS-2N method is easily extended to multi-dimensions and 

multi-species. It is computationally inexpensive, easily implemented on parallel 

computers and, since it is a particle-based method, and does not require direction 

decoupling. The major disadvantage is that the scheme is inherently very diffusive. The 

particle-based Euler solver has two advantages. First, hybridization between the solver 

and a pure DSMC solver which is capable of simulating the non-continuum regions of 

flow is relatively simple. Several authors, including Macrossan [Macrossan, 2001], 

Chen [Chen, 2003], Smith [Smith, 2003] and Wu [2003], have developed such particle-

based hybrid methods. The second major advantage is that particle-based methods can 

exchange fluxes between any two cells on the grid for any given time step. Direction 

decoupled CFD methods only allow fluxes to be exchanged between cells sharing a 

common interface. This physically unrealistic situation results in non-physical results in 

CFD simulations [Smith et al., 2008: Cook, 1998]. 

The second-order QDS-2N method was applied by Cave [Lim et al., 2010: Cave, et 

al., 2010] to simulate highly unsteady low pressure flows encountered in a pulsed 

pressure chemical vapour deposition (PP-CVD) reactor.  
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1.3 Specific Objectives of this Thesis 

Based on the preceding discussion of studies related to the QDS-2N method, it is 

clear that further numerical study is needed to improve the accuracy of the QDS-2N 

method and, consequently, lead to more effective applications. 

In this thesis, we extend the second-order QDS algorithm (QDS-2N) [Smith et al., 

2009] to flux reconstruction through true-direction polynomial multi-dimensional 

reconstruction of conserved properties across each cell width; this method is called 

QDS-N2. 

The specific objectives and organization of this thesis can be summarized as 

follows: 

1. To improve the QDS-2N method by first studying its advantages and 

disadvantages. Flux reconstruction calculated using QDS-2N neglects 

neighbourhood cells when calculating diagonally cells. (Chapter 2)     

2. To develop a QDS-N2method for solving Euler’s equation for inviscid fluid flow. 

The fluxes of conserved properties are calculated by a sum of weighted 

moments over the polynomial spatial reconstruction of mass, momentum, and 

energy across the cell width. The particle properties are updated, considering the 

average value of the conserved quantity between the region bounds, which are 

required in translational directions and the application of splitting. (Chapter 2) 

3. To develop the QDS-N2 method in three-dimensions. (Chapter 2) 

4. To apply the QDS-N2 method to a numerical problem and an experimental case. 

Various numerical methods, including Riemann solvers and total variation 

diminishing (TVD) methods, were compared as a benchmark. (Chapter 3) 

5. To apply the QDS-N2 method in the three-dimensional flow. (Chapter 3) 
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6. To develop the parallel QDS-N2method for large-scale applications such that the 

computational time problem is reduced efficiently. The scheme includes weak 

scaling and strong scaling. (Chapter 3) 

7. To analyzedifferences associated with the QDS-2Nmethod and compare QDS-

2Nto QDS-N2.This involves measurements to reveal differences between the 

two methods and provides information to determine which problem will be 

considered first.  (Chapter 4) 

8. The concluded by summarizing the major findings found in this thesis and 

outlining the recommendations for the future work. (Chapter 5) 
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Chapter 2  

Numerical Methods 

 

2.1 Overview of Euler Equation Solver 

The Euler equations describe how the density, velocity, and pressure of a moving 

fluid are related. The Euler equations directly represent conservation of mass, 

momentum, and energy, and correspond to the Navier-Stokes equations without 

viscosity and heat conduction terms. Eq. (1) shows a two-dimensional formulation of 

the Euler equations. 

Continuity: ( ) ( ) 0
u v

t x y
ρ ρρ ∂ ∂∂ + + =

∂ ∂ ∂
 

X-momentum: 
( ) ( )2u uvu P

t x y x
ρ ρρ ∂ ∂∂ ∂+ + = −

∂ ∂ ∂ ∂
    (1) 

Y-momentum:
( ) ( )2vuvv P

t x y y
ρρρ ∂∂∂ ∂+ + = −

∂ ∂ ∂ ∂
 

Although the continuity and momentum equations have been derived in the past, 

the energy equation has been included in the Euler equations in fluid dynamics literature 

[Anderson, 1995]. 

 

2.1.1 Computational Fluid Dynamics 

Engineers made further approximations and simplifications to the equation set until 

they had a group of equations that they could solve. Recently, high speed computers 

have been used to solve approximations to the equations using a variety of techniques, 
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such as finite difference, finite volume, finite element, and spectral methods. This area 

of study is called CFD.  

The Euler equation for the conservation of continuity, momentum and energy 

equation is: 

( ) ( )

2

2 0

u v
u P uvu
uv v Pvt x y

u E p v E pE

ρ ρρ
ρ ρρ
ρ ρρ

ρ ρ ρ ρρ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ +∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ +∂ ∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (2) 

where ( )2 21
2

E e u v= + +  is the total energy and e is internal energy e=e(T).For a 

perfect gas, internal energy is only dependent on temperature. Pressure is presented by p 

= (γ - 1)ρe with γ = cp/cυ the ratio of specific heats (γ = 7/5 for air). 

Most numerical schemes for solving Euler equations are built around the Riemann 

solver. For example, Godunov technique provided two and three dimension applications 

in new finite volume numerical schemes and total variation diminishing (TVD) 

properties [Toro, 2009; LeVeque, 2004], and achieved second-order accuracy. Although, 

such numerical methods were generally accurate, they incurred high computational 

costs. However, approximate numerical schemes that reduce computational costs are not 

only less accurate and less robust but are also based on solutions of a Riemann problem. 

More extensive introductions to numerical method for the Euler equations ware given 

by Godlewski and Raviart [1996], Kroner [1997], Laney [1998], Majda [1984], Toro 

[1997], Smoller [1983], and  Hirsch [1990].  

 

2.1.2 Kinetic Method 

The classical kinetic theory of gas emerged from a combination of mechanics and 

statistics. The motions of molecules are described by probability rather than their 

individual orbits. This kinetic theory of gases has led to important descriptions of 1) 
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pressure, temperature, and a generalized equation of state for gases, and 2) transport 

properties (velocity, thermal conductivity, diffusion coefficients) based on first 

principles. 

The kinetic method can be introduced by the Boltzmann equation, which is used in 

the study of a collection of particles in non-equilibrium statistical mechanics. The 

Boltzmann equation was devised by Ludwig Boltzmann in 1872 [Lerner et al., 1991]. 

The equation is a phase space of system that contains seven variables:  three coordinates 

for position coordinates x, y, z, where each coordinate is parameterized by time t and 

three for each momentum component ͘px, ͘py, ͘pz and each coordinate is parameterized by 

time t. The volume element for position r and momenta ͘p can be expressed as follows:   

d3rd3 ͘p = dx dy dz d͘px d͘py d͘pz      (3) 

For one chemical species, the Boltzmann equation can be written as follows: 

i i
colli i

F F F Fv a
t x v t

δ
δ

∂ ∂ ∂ ⎛ ⎞+ + = ⎜ ⎟∂ ∂ ∂ ⎝ ⎠
      (4) 

where F is the phase space velocity distribution function which is the density of 

particles in the d3rd3 ͘p phase space volume element around the phase space point (r, p͘). 

∂F/∂t is the total time derivative of the phase space distribution function, and ( )/
coll

F tδ δ  

= rate of change of the phase-space distribution function due to collisions.  

The Euler equation can be described using by kinetic theory. Here the conservation 

equation of mass, momentum and energy are derived as follows: 

  

( ) ( )

( )

( ) ( )

0

0

0

3 3 5 0
2 2 2

o o
o o

o o o o o o

m n
m n

t
um n m n u u p m n a
t

p u p p u
t

∂
+∇⋅ =

∂
∂ + ⋅∇ +∇ − =
∂

∂ + ⋅∇ + ∇⋅ =
∂

    (5) 
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where mo is the mass of the molecular object and no is the number of molecule per unit 

configuration-space volume. Because the Euler equations are non-linear hyperbolic 

equations, the shock waves are generally described by these equations. Several highly 

successful algorithms have been developed to solve such problems [Jameson, 1986; 

MacCormack et al., 1975; Jameson et al., 1981]. 

In addition to the Boltzmann equation, Maxwell-Boltzmann distribution also 

contributed to the kinetic theory of gasses. This distribution was first carried out in 1859 

and was named after James Clerk Maxwell and Ludwig Boltzmann. The distribution 

function can be expressed as follows:  

( ) ( )2 2 2
3
2

, , x y zv v v
x y zf v v v e ββ

π
− + +⎛ ⎞= ⎜ ⎟⎝ ⎠

     (6) 

where the constant value 
2
m
kT

β =  

This distribution function assumes the ideal gas is isotropic and that velocity is 

statistically independent.  This means that there is no preferred direction and the 

function is independent of the orientation of the coordinate system. The gas for this 

distribution is close to thermodynamic equilibrium. An understanding of the Maxwell-

Boltzmann distribution function is essential when studying the QDS method. The detail 

will be discussed in the next section (subchapter 2.2).  

 

2.2 Quiet Direct Simulation (QDS) Method [Albright et al., 2002]  

The normal random variable N(0,1) is defined by the probability density: 

    
     

 (7) 

by using a Gaussian quadrature approximation, the integral of Eq.(7) over its limits can 

be approximated by: 
� 

p x( ) =
e
−x 2

2

2π
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    ( ) ( )
2

2

12

x N

J J
J

e f x dx w f q
π

−∞

=−∞

≈∑∫    (8) 

where wJ and qJ are the weights and abscissas of the Gaussian quadrature (also known 

as the Gauss-Hermite parameters) shown in Table 1, and N is the number of terms. The 

abscissas are the roots of the Hermite polynomials, which can be defined by the 

recurrence equation: 

        (9) 

where H-1=0, and H0=1. The weights can be determined from: 

    
( )

1

22
1

2 !n

J

n J

nw
n H q

π−

−

=
⎡ ⎤⎣ ⎦

     (10) 

The moment of the form are represented as 

( )2

2

12

N
r r

J J
J

e d w q
υ

υ υ
π

−
∞

=−∞

≈∑∫       (11) 

where r=0,1,…, 2N-1. 

The particle simulation of fluid behaviour involved random variables which 

governed by stochastic differential equations of motion. For example, the one-

dimensional Ornstein-Uhlenbeck (OU) equations describe the random dynamics of a 

particle of mass relaxing at a rate γ to the local fluid velocity u and temperature 

2kT m υσ=  shown as:  

xdx dtυ=         (12) 

( ) 22 (0,1)x xd u dt dtNυυ γ υ γσ= − − +     (13) 

where N(0,1) is random variable. When eq.(13) in the initial condition ( ) 00x xυ υ=  ,it 

can be solved [Gardiner, 1985] from following equation: 

( ) ( ) ( )0 1 0,1t t
x xt u e u e Nγ γ

υυ υ σ− Δ − ΔΔ = + − + −     (14) 

In the thermalization γ∆t >>1, eq. (13) can be described as ( )0,1u Nυσ+  drawn 

from a local Maxwellian. 

Hn+1(q) = 2qHn − 2nHn−1
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As same as DSMC calculations to split particle transport and particle 

thermalization into two distinct operations, we presented operations by differential OU 

process which denoted with subscript tr and th respectively as follows: 

( ) 2

0

0 2 (0,1)
x

x tr x th

dx dt
d u dt dtNυ

υ
υ γ υ γσ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − +⎝ ⎠⎝ ⎠ ⎝ ⎠

    (15) 

The transport differential operator describes particle free streaming, while 

thermalization operator drives particle velocities toward ( )0,1u Nυσ+  without 

changing their positions. In the QDS algorithm, the part of tr preforms particle 

properties i.e. masses, momenta, special internal energies in each mash; The part of th 

represents each particle which is advanced to a new position. Those parts are established 

local thermodynamic equilibrium throughout the fluid.  

The net fluxes of mass, momentum and energy of a cell are given by the sum of 

individual flux contributions from all the particles flowing in and out as follows: 

1 1

M N
J J

MASS MASS MASS
J Jin out

F F F
= =

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ,

1 1

M N
J J

MOM MOM MOM
J Jin out

F F F
= =

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ,

 
1 1

M N
J J

ENG ENG ENG
J Jin out

F F F
= =

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑       (16) 

where ,  and  is the individual mass flux, individual momentum and 

individual energy from particle J respectively, M and N is the number of inflow and 

outflow particles respectively into the cell under consideration. Each of the individual 

contribution (with first order spatial accuracy) can be described by the expressions, e.g., 

in one-dimensional case: 

     (17) 

where the particle mass mJ, particle velocity vJ, and particle internal energy  are 

expressed as: 

     (18) 

J
MASSF J

MOMF J
ENGF

FJ
MASS =

vJΔt
Δx

mJ FMOM
J =

vJΔt
Δx

mJvJ FENG
J =

vJΔt
Δx

mJ
1
2
vJ
2 + ε J

⎡
⎣⎢

⎤
⎦⎥

Jε

π
ρ J

J
xw

m
Δ

= vJ = u + 2σqJ
( )

2

2σξε Ω−=J
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where ρ is the density, u is the bulk (or mean) flow velocity, and σ = (RT)1/2 in a 

given source cell. Note R is the universal gas constant, and T is the gas temperature. The 

total number of degrees of freedom ξ is defined as  and Ω is the number 

of simulated degrees of freedom (e.g., Ω = 1 for one dimensional flow). In the existing 

QDS-2N [Smith et al., 2009], the values of ρ, u, and σ employed in QDS particle 

initialization are taken from reconstructions based on linear variations. Despite fluxes 

being true direction in nature, the reconstructions performed by previous 

implementations are direction decoupled – i.e. a flux is computed through the product of  

(separate) fluxes previously computed (for 2D flow) in the x and y directions. For the 

2D case, the particle mass and velocities in Eq. (9) become: 

J K
JK

x yw wm ρ
π

Δ Δ=
 

22J x Jv u qσ= +  22K y Kv u qσ= +   (19) 

where there are K=1,…, M particles in the y-direction and the definition of other 

variables are the same as those in 1D case. The internal energy remains identical to the 

1-D case, allowing for a corresponding increase in Ω to account for the extra simulated 

dimension. The fluxes from sources cell to any arbitrary destination cell can be 

calculated by the particle position distributions. The fluxes of mass, momentum and 

energy, which are based on the proportion of the overlapped area to the area of the 

original cell, are given by: 

MASS JK
s

AF m
A

=  MOM X JK J
s

AF m v
A− =  MOM Y JK K

s

AF m v
A− =

 ( )2 21
2ENG JK J K JK

s

AF m v v
A

ε⎡ ⎤= + +⎢ ⎥⎣ ⎦
      (20) 

where A is the overlapped area as u×v×dt2 and As is the source cell area as dx×dy. 

 

1)1(2 −−= γξ
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2.3 QDS-2N Method 

In the QDS-2N algorithm used in the present study, the concept of QDS “particles” 

whose properties are interpolated onto a grid (as used by Albright et al. [2002] in their 

original development of the technique) is replaced by the concept of fluxes of a large 

number of particles uniformly distributed across the cell, as described by Smith et al. 

[Smith et al., 2008].  In this finite volume approach, quantities such as mass, 

momentum and energy are exactly conserved by tracking fluxes from source volumes to 

destination volumes.  If the particle position distributions (i.e. gradients of density in the 

flow) are known, the flux from the source region to any arbitrary destination volume 

can be calculated. 

In the present implementation of QDS-2N, the flux scheme employed by Smith et 

al. [2009] is used for the efficient calculation of two dimensional, true direction fluxes.  

Here the Nx fluxes in each coordinate direction are computed separately requiring the 

calculation of 2N fluxes for the two-dimensional case.  

In the second order scheme the gradients of cell velocity in the x-coordinate 

direction (du/dx), can be used to update the flux velocity: 

    22J L v J
duv u x q
dx

σ= + Δ +     (21) 

where ΔxL represents the location in the cell from where the flow properties are taken.  

Fluxes moving to the right are assumed to take their quantities from the reconstructed 

state ΔxL = 0.5(Δx – vxj∆t) to the right of the cell canter, where ∆x is the cell size and ∆t 

is the simulation time step.  This corresponds to the displacement of the centre of mass 

of the flux which moves into the destination cell.  Left moving fluxes have properties 

constructed in a similar fashion for which ΔxL = 0.5(–Δx – vxj∆t).  The flux then moves 

in free flight, justifying the use of a linear interpolation routine. 



 

 16 

The total mass and energy associated with the particles in the particular “bucket” 

for the second-order case in the x-direction can be determined from the cell’s density 

(ρ), energy (E) and their respective gradients by: 

    
L J

J

d x xw
dxm

ρρ

π

⎛ ⎞+ Δ Δ⎜ ⎟⎝ ⎠=     (22) 

where wj are weights of the Gauss-Hermite quadrature, and:  

    
( )

2

2

L

J

d x
dx
σξ σ

ε

⎛ ⎞−Ω + Δ⎜ ⎟⎝ ⎠=
Ω

    (23) 

where Ω=2 for two-dimensional simulations. Any unused translational and other non-

translational degrees of freedom are thus treated as internal structural degrees of 

freedom.   

The amount of mass which fluxes to the new cell can be determined by multiplying 

Eq. (22) by vJ∆t /∆x. The gradients used in Eq. (21) to (23) are determined using the 

MINMOD (Minimum Modulus) and the MC (Monotonized Central Difference) scheme 

[Van Leer, 1977]. Using density in the x-direction as an example, the gradient using the 

MC slope limiter is: 

   (24) 

where the MINMOD scheme is: 

   (25) 

It should be noted that when non-uniform grids are employed (for example, when 

adaptive mesh refinement and coarsening is employed) the fluxes must be calculated 

together (for a total of Nx*Ny fluxes).  In this case, for a purely two-dimensional 

⎥
⎦
⎤

⎢
⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

Δ
−

Δ
−

Δ
−= −+−+

xx
MINMOD

x
MINMOD

dx
d iiiiii 1111 2,2,

2
ρρρρρρρ

[ ]
( )

( )
( )⎪

⎩

⎪
⎨

⎧

<>
<>
<

=
)( AND )0(SIGN IF    
)( AND )0(SIGN IF    
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simulations, the amount of flux from one cell to another can be calculated trivially by 

determining the overlap area A=vJvk∆t2 (where there are k = 1,…,N fluxes in the y-

direction and vk is calculated in the same manner as Eq. (21) divided by the source cell 

area AS = ∆x∆y, as shown in Figure 2-1.  The mass m and the energy ɛ are thus given 

by:  

L L J k

Jk

d dx y x yw w
dx dy

m

ρ ρρ

π

⎡ ⎤⎛ ⎞+ Δ +Δ Δ Δ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦=

 
  (26) 

   
( )

2

L L

Jk

d dx y
dx dy
σ σξ σ

ε

⎡ ⎤⎛ ⎞−Ω + Δ +Δ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦=    (27) 

where ΔyL is calculated in a similar manner to ΔxL.  Thus the amount of mass mflux, 

energy Eflux and momentum in each coordinate direction px,flux and py,flux which must be 

added to the destination cell and subtracted from the source cell are given by: 

    flux
S

Am m
A

=       (28) 

    ( )2 21
2flux J k Jk

S

AE m v v
A

ε⎡ ⎤= + +⎢ ⎥⎣ ⎦
   (29)

    ,flux x J
S

Ap mv
A

=      (30)

    ,flux y k
S

Ap mv
A

=      (31) 

A variable time step scheme is used to maintain the maximum kinetic Courant–

Friedrichs–Levy (CFL) number in the domain below a desired value (usually ≤1).  It is 

important to note that this CFL restriction is to maintain physical realism and is not 

related to the numerical stability of the scheme.  For a two-dimensional or axisymmetric 

simulation, the CFL number is given by:  
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( )( )
( )

2 2
(max)

2 2

Ju v q RT t
CFL

x y

+ + Δ
=

Δ +Δ
   (32) 

where qj(max) is the maximum value of the particle abscissas (i.e. the value which gives 

the maximum particle thermal velocity). 

In the current implementation boundary conditions are handled using ghost cells.  

These cells can be used to represent walls, stream boundaries, inflow boundaries and 

zero-gradient outflow boundaries.  The interaction of a gas with a wall is identical to the 

interaction of that flow with an adjacent cell having the same flow properties but a 

reversed flow direction normal to the wall. The basic description of the simulation 

processes for QDS-2N method is available in Figure 2-2. 

 

2.4 QDS-N2 Method 

2.4.1 Spatial Reconstruction and Flux Calculation 

In the current study, referring to Figure 2-3, the general extension to higher order in 

QDS in one-dimensional case is performed using a spatial reconstruction of the form: 

  (33) 

where Q(x) is the value of a conserved property (mass, momentum, or energy) at a 

distance x from the left hand side of the cell, and integer n indicates the order of the 

reconstruction. Note Qc is the value of Q(x) at the cell centre. This value is calculated 

from Q(x) integrating over the cell width divided by the cell width equalling to the 

existing average value of the source cell sQ , presented below:   

Q x( ) =Qc +
dQ
dx

⎛
⎝⎜

⎞
⎠⎟ x=0.5Δx

x − 0.5Δx( )

+ d 2Q
dx2

⎛
⎝⎜

⎞
⎠⎟ x=0.5Δx

x − 0.5Δx( )2
2

+ ...+ dn−1Q
dxn−1

⎛
⎝⎜

⎞
⎠⎟ x=0.5Δx

x − 0.5Δx( )n−1
n −1( )!
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( )

( ) ( )
2

2 3

1

1 10.5 0.5 ...
2 6

R

L

R

L

X

s X
R L

x X

c

x X

Q Q x dx
X X

dQ d QQ x x x x x
dx dx

=

=

=
−

⎡ ⎤⎛ ⎞⎛ ⎞= + − Δ + − Δ +⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

∫
  (34) 

By using our revised reconstruction, the bounds of integration are XL=0 and XR=∆x. 

Then, Eq. (34) leads to: 

2 2 4 4 1 1

2 4 1

2 1...
24 1920 ! 2

nn n

cs n

x d Q x d Q x d QQ Q
dx dx n dx

− −

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ Δ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  (35) 

Alternatively, Qc can be expressed as follows: 

2 2 4 4 1 1

2 4 1

2 1...
24 1920 ! 2

nn n

c s n

x d Q x d Q x d QQ Q
dx dx n dx

− −

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ Δ ⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  (36) 

where n is assumed to be an odd number. This shows that the correction is only required 

when the scheme is third order (n = 3) accurate or higher, otherwise c sQ Q=  (e.g., n=2). 

Thus, the complete correct form of the higher order reconstruction of Q(x) using sQ  

contains additional terms on every even derivative:   

( ) ( ) ( )

( ) ( )

22 2 4 4 2

2 4 2

3
3

3

0.5
0.5

24 1920 2!

0.51 0.5
3! !

s

nn

n

x xx d Q x d Q dQ d QQ x Q x x
dx dx dx dx

x xd Q d Qx x
dx dx n

⎛ ⎞ − Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ ⎛ ⎞= − − + − Δ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
− Δ⎛ ⎞ ⎛ ⎞

+ − Δ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (37) 

Specifically, as n=2, the above is reduced to the following form because of c sQ Q= , 

as shown below:

 
2

2
2

1( ) ( 0.5 ) ( 0.5 )
2!s

dQ d QQ x Q x x x x
dx dx

= + − Δ + − Δ     (38) 

The above reduces to exactly the same form as in QDS-2N [Smith et al., 2009]. 

Next, referring to Figure 2-4, the outgoing flux value of average conserved quantity 

successfully moving from the source cell into the destination cell (denoted by trQ ) is: 
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( ) ( ) ( ) ( )

( ) ( )

2

2

1 1 1 0.5 ...
2

1 1 0.5 ...
2

R

L

x x
X

ctr X
R L R L x x u t

x x

c
R L x x u t

dQQ Q x dx Q x x x
X X X X dx

dQQ x x
X X dx

=Δ

=Δ − Δ

=Δ

=Δ − Δ

⎡ ⎤⎛ ⎞= = + − Δ +⎜ ⎟⎢ ⎥− − ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= + − Δ +⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

∫
    (39) 

where the bounds of integration are XL=∆x-u∆t and XR=∆x.  

Now, the transition of mean values trQ  can be used to calculate particle properties. 

Assigning the flux out of average conserved properties 1 2,   tr trQ Q  and 3trQ  as the mass, 

momentum, and energy, respectively, the resulting QDS particle properties for particle J 

are: 

1tr J
J
Q Wm

π
= , 

1
2 2

2 3 2
2

1 1 1

2 1
( ) 2

tr tr tr
J J

tr v tr tr

Q Q QRv q
Q C Q Q

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= + − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
 ,   (40)

( ) 2

3 2

1 1

1
2 2

tr tr
J

tr tr

R Q Q
Q Q

ξ
ε

⎛ ⎞−Ω ⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠       
 

To calculate the average value of conserved property for higher order 

reconstruction, it is important how the flux limiting is coupled. According to the value 

of conserved property Q(x) (see Eq. (33)), the gradient of Qc is defined in flux limiting 

during the reconstruction process. In each cell, we employ the monotonized central 

difference (MC) limiter to the effective gradients of conserved properties, as described 

below: 

         (41) 

     (42) 

dQ
dx

⎛
⎝⎜

⎞
⎠⎟ =

dQ
dx

⎛
⎝⎜

⎞
⎠⎟ F

φ θ( )

φ θ( ) = max 0, min 2, θ +1
2
, 2θ

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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where  is the equivalent flux limiter and F is the gradient calculated using forward 

differences. The theta  is the ratio of the first order gradient calculated using forward 

and backward differences: 

         (43) 

Therefore, an alternate representation of the variation of Q(x) over space must be: 

   (44) 

 

2.4.2 One-Dimensional Flux Calculation and Implementation 

In QDS simulations, we require flux from a volume to another volume. Since 

fluxes are split, the qualities of the flux depend entirely on the region from which they 

originated. The flux calculation is described as a flowchart in Figure 2-5, and 

summarized briefly as follows: 

1. The gradients of conserved properties Q are first calculated using standard finite 

difference approximations in each cell i. For example, for a 5th order accurate 

reconstruction, one might use the stencils like: 

  (45)
 

 

 

2. For each QDS particle: 
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a. Calculate the approximate particle velocity based on the current cell sQ , 

which should give the same particle velocity as 1st order QDS.     

1
2 2

2 3 2
2

1 1 1

2 1
2

s s s
J J

vs s s

Q Q QRv q
CQ Q Q

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= + − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦     (46)

 

b. Calculate the integral bounds XL and XR: 

If V > 0,  , otherwise 
   (47)

 

c. Calculate the flux out values of average conserved properties trQ of 

particles to successfully move into the destination region.  

d. Calculate the particle properties based on the average values trQ . 

e. Calculate the fluxes of conserved properties to neighbouring cells 

following the standard QDS algorithm in subsection 2.2. 

 

2.4.3 Two-Dimensional Flux Calculation and Implementation 

Multi-dimensional extension is performed using the same principles applied for a 

one-dimensional reconstruction. The variation of conserved quantity Q(x, y) over two-

dimensional space is assumed to be: 
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+ − Δ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

(48) 

The subsequent cell centred value of Qc is:  

XR = Δx − uΔt
XL = Δx

⎧
⎨
⎩

⎫
⎬
⎭

XR = 0
XL = uΔt

⎧
⎨
⎩

⎫
⎬
⎭



 

 23 

2 2 4 4 1 1

2 4 1

2 2 4 4 1 1

2 4 1

2 1...
24 1920 ! 2

2 1...
24 1920 ! 2

nn n

c s n

nn n

n

x d Q x d Q x d QQ Q
dx dx n dx

y d Q y d Q y d Q
dy dy n dy

− −

−

− −

−
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Following this, the average value of conserved quantity in the region bound by [XL, 

YB] – [XR, YT] is formulated as:   
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where YT and YB are the bounds of integration in y direction. 

Since the average requires bounding regions in both translational directions, 

application of splitting (as applied to TDEFM to improve computational efficiency) is 

impossible, and the full N2 number of particles (i.e. nine when three particles are used 

per direction, sixteen for four, etc.) are required for a complete flux computation. 

Previous extensions required only the 2N particles. Unlike the one-dimensional 

reconstruction, each particle carries three separate fluxes (for three different destination 

cells) and so any single QDS particle possesses three “sub-particles” based on different 

integral bounds.  This concept is demonstrated in Figure 2-6, showing each unique sub-

region (A – C). The area of the sub-region A is u × v × dt as described earlier in Section 

2.2 for the QDS-2N method. 
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2.4.4 Three-Dimensional Flux Calculation and Implementation 

As previous section, the three-dimensional flux calculation is followed the same 

way for a one-dimensional reconstruction. The variation of conserved quantity Q(x, y) 

over three-dimensional space is assumed as follows: 
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The subsequent cell centred value of Qc is: 
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   (52)
 

Following this, the average value of conserved quantity in the region bound by [XL, 

YB, ZI] – [XR, YT, ZO] is formulated as:   
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where ZO and ZI are the bounds of integration in z direction. 

The N2 number of particle is 27 which 3 particles are used in one direction. 

Therefore, each particle must be completed calculation for flux reconstruction in a time 

step. Especially the calculation for diagonal cell, the particle has 7 sub-regions (A – G) 

to be considered which are based on the difference bound. The concept is same as 

section 2.4.5 demonstrated in Figure 2-7.   

 

2.5 Brief Summary 

The characterization of the QDS-N2 method developed in this chapter can be 

summarized as follows: 

1. The QDS method replaces the random sampling method used in the DSMC 

method. Particles are permitted to move in physically realistic directions; 

therefore flux exchange is not limited to cells sharing an adjacent interface as in 

conventional direction decoupled finite volume solvers. 
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2. In QDS method, the particles are recreated deterministically from the properties 

stored on the mesh using Gauss–Hermite quadrature weights and abscissas. 

3. The QDS-N2 and QDS-2N methods use the same procedure to calculate flux 

reconstruction in one-dimension. 

4. In the QDS-N2 method, article properties are updated, considering the average 

value of the conserved quantity between the region bounds, which are required 

in translational directions and the application of splitting. 

5. With parallel implementation, an extension to three-dimensional QDS method is 

also demonstrated. 
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Chapter 3  

Complex Gas Flow Simulations using the QDS-N2 

Method 

 

3.1 Introduction 

To determine the effectiveness of the QDS algorithm, several test cases, including 

three cases of one-dimensional domain, six of two-dimensional domain, and one of 

three-dimensional domain were used. The test cases were chosen for the following 

reasons: 

• The cases are suitable for solving the Euler equation. 

• The benchmark is well known and many numerical methods or experimental 

results are available for comparison. 

• All qualitative, quantitative, computational, and experimental results are readily 

available. 

The QDS-2N and QDS-N2 methods are compared for both accuracy and 

computational time. We also parallelize the QDS-N2 method to increase calculation 

speed. As well, the literature related to the test cases is surveyed to determine useful 

benchmarks to which the present code can be compared. 

 

3.2 QDS Method in One-Dimension Flow 

3.2.1 Shock Tube 

The shock tube is an important application in unsteady wave motion, the study of 

high-temperature gases in physics and chemistry, and the testing of supersonic bodies 
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and hypersonic entry vehicles. Figure 3-1 shows the features of a shock tube after the 

diaphragm has been broken. The region to the left of the diaphragm is the driver section 

and the region to the right is the driven section. 

We consider the shock tube problem to validate the accuracy of the QDS code, 

especially a Riemann solver [Toro, 1999], which represents the majority of solution 

methods. The initial condition for the simulation consists of two constants: 

   (54)
 

To compare the results easily, we set the number of cells for QDS and the Riemann 

solver to 200. Simulation time is 0.1 s, and the walls are reflected. Figure 3-2 shows 

density results for the first to the third order QDS and the Riemann solver. We observed 

a great improvement between the first and the second orders. Although the second and 

the third order QDS results are closer to the benchmark than first order results, the 

improvement between the second and the third order is negligible.  

 

3.2.2 Shock-blast wave interaction 

The shock blast problem suggested as a benchmark in [Woodward et al., 1984] 

included two blast waves contacted by strong shocks. By initial pressure jumps, this 

version of the problem will indicate a flow containing three distinct fluids. 

The initial condition for simulation is expressed as:  

                                                       (55)

 

Each result was examined at time 0.038 s. The reflective boundary condition is 

applied to both ends. The comparable benchmark is an almost identical to shock tube 

interaction using the WENO-3 scheme (fifth order) [Jiang et al., 1996] with 10,000 

� 

ρ,v,T( ) =
10.0, 0.0, 1.0( ) 0 ≤ x < 0.5,
1.0, 0.0, 1.0( ) 0.5 ≤ x ≤1.

� 

ρ,v, p( ) =
1.0, 0.0, 103( ) 0.0 ≤ x < 0.1
1.0, 0.0, 10−2( ) 0.1≤ x < 0.9
1.0, 0.0, 102( ) 0.9 ≤ x ≤1.0

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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grids. The benchmark is used to measure errors by comparing the different methods 

considered here. Figure 3-3 shows a contrasting profile of the density computed by the 

QDS method with 400 cells using the MC limiter. As can be seen, the second order 

QDS method is much better than the first order, and the third order QDS method is 

slightly better than the second order. The difference between second and third order 

schemes can be seen easily at a range of 0.7 to 0.8 in the x direction. However, the pre-

QDS method can be extended to calculate the case in which acoustic wave oscillation is 

quite large. Therefore, the next test case considers the pre-QDS method, which is an 

easy way to measure the oscillation accurately by ignoring the limiter. 

 

3.2.3 Shock acoustic wave interaction 

An ideal case for testing the general one-dimensional extension of the pre-QDS 

method is the interaction of a Mach 3 shock wave with an acoustic wave as proposed by 

Shuv [Shu, et al., 1988]. When a higher density shock wave contacts a smooth acoustic 

wave, an amplified wave with higher frequency results. The initial conditions are: 

  (56) 

Results for various QDS configurations with 200 cells compared to a WENO 

[Huang, et al., 2009] benchmark with 2000 cells are shown in Figure 3-4. The result is 

obtained at time 1.8 and the limiter is not applied. The improvement from first to second 

order is the most significant; higher orders show only slight improvement. The general 

trend is in agreement with the WENO benchmark and third order QDS solutions that 

result in similar levels of dissipation to those of a fifth-order WENO solution. 

3.3 QDS Method in Two-Dimension Flow 

ρ, ν, P( ) =
3.857143, 2.629369, 10.333333( ) x < −4,

1.0 + 1
5
sin5x, 0.0, 1.0

⎛

⎝⎜
⎞

⎠⎟
−4 ≤ x.
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In this section, we present four test cases for comparing theN2 and 2N methods. 

The major discussions focus on the time cost and accuracy between the two methods in 

two-dimensional problems.  

 

3.3.1Shock-Bubble Interaction 

The strength of correct multi-dimension reconstruction is demonstrated in two 

dimensions with the shock/bubble interaction problem [Čada et al., 2009]. The initial 

conditions for this problem are shown in Figure 3-5. The simulation calculated a shock 

wave, moving from left to right with a velocity of Much number 2.85 in an ideal, 

inviscid gas and interacting with a pseudo bubble at x=0.3. The results are presented at 

t=0.2. The results of the numerical schlieren (gradients of density) are presented in 

Figure 3-6 for various QDS methods and the TVD schemes on a grid of 1700 × 500 

cells. The application of correct multi-dimensional reconstructions results in a relatively 

high resolution of the circulation and reflected shock located at x = 0.6. 

 Figure 3-7 displays two QDS methods with different numbers of cells. We 

compare the N2 method (Figure 3-7a) against the 2N method (Figures 3-7b, c and d) by 

using 300 × 100, 450 × 150, and 600 × 200 cells. For the sake of comparison, the limiter 

for each simulation is the monotonized central (MC) limiter. In Figures 3-7a and b the 

difference in resolution is clear despite the fact that both these methods employ the 

same number of cells. As the number of cells employed by the 2N method increases 

(shown up to 600 × 200 cells here), the results gradually approach those of the N2 

scheme with relatively few cells (1/4). Obviously, the multi-dimensional computation 

(N2 method) achieves higher accuracy than the 2N scheme.   

Further, we consider the computation time required by each method in this case. 

The N2 method is true-directional, in that each possible combination of discrete velocity 
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must be considered (nine instances with three discrete velocities per direction), while 

the 2N method employs approximate dimensional extension and only requires six 

discrete velocity computation in a two-dimensional computation. Moreover, for each 

particle, three space-averaging computations are required for each fraction falling into 

separate destination cells. Therefore, the N2 method requires more computation time for 

the same number of cells. The computation time of the two solvers are summarized in 

Table 3-1. According to these data, the N2 extension of QDS requires approximately 

three times the computation time as compared to that of the original 2N method for the 

same number of cells. However, for any given degree of accuracy, we find that the N2 

method provides an increase in computational efficiency of almost three times (300 × 

100 vs. 600 × 200 for 2N vs. N2). Thus, the application of the N2 method is justified 

over that of the 2N method for high-resolution solutions. 

 

3.3.2 Euler-Four-Shocks problem 

This test case was introduced in Serna[2006], which computed the numerical 

solution employing thepiecewise hyperbolic method-Marquina’s flux formula(PHM-

MFF) and power PHM-MFF schemes. The test problem is initially divided into four 

quadrants sharing a common corner at 0.75 and 0.75 in the domain [0,1] × [0,1], as 

illustrated in Figure 3-8. These quadrants initially have the following different but 

uniform conditions: 

 (57) 

 Figure 3-9 shows four results of a comparison between the 2N and N2 solvers at 

the time of 0.4. The Courant–Friedrichs–Lewy factor (CFL) is set as 0.5. We compare � 

ρ,u,υ, p( ) =

1.5, 0, 0, 1.5( ),
0.5323, 1.206, 0, 0.3( ),

0.138, 1.206, 1.206, 0.029( ),
0.5323, 0, 1.206, 0.3( ),

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

0.75, 1[ ] × 0.75, 1[ ]
0, 0.75)[ × 0.75, 1[ ]
0, 0.75)[ × 0, 0.75)[
0.75, 1[ ] × 0, 0.75)[
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the results of the two QDS solvers using 100 × 100 to 300 × 300 cells. As can be seen, 

the result of the QDS N2 solver obtained using a coarse grid (100 × 100 cells) is only 

approached by the 2N solver when employing considerably fine grids (300 × 300 cells). 

Furthermore, the result we obtained using the QDS N2 solver on a computational grid of 

1000 × 1000 cells is similar to that obtained using the TVD-MUSCL scheme [Čada et 

al., 2009] (see Figure 3-10a).  

An investigation of the computational expense of each scheme showed that the N2 

solver takes approximately four times longer to complete the simulation than the 2N 

solver. This comparison of computational expense is summarized in Table 3-2. The 

increase in computational time with the refinement of the computational grid is due to 

the constant “kinetic” CFL condition that we employ, which is defined as follows:  

 (58) 

This basically ensures that particles in free flight do not travel further than the 

adjacent cells. Although the result take more time to compute using the N2 solver, the 

accuracy is considerably better than that of the 2N solver, in fact, it is not clear that the 

2N solver will ever approach the solution obtained using the N2 solver, irrespective of 

the number of cells employed.  

 

3.3.3 Euler-Four-Contacts problem 

This test case involves the Euler-four-contacts interaction problem defined by 

Schulz-Rinne, Collins, and Glaz [Schulz-Rinne et al., 1993]. The same test case with a 

different higher-order method is also presented in [Salichs et al., 2005]. This Riemann 

problem briefly shows four constant states consisting of four quadrants and two shocks 

generated clockwise at the origin. The contact point is cantered about the location (x, 
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y)=(0.5, 0.5). A representation of the structure of the flow domain is shown in Figure 3-

11. The initial flow condition is imposed by four difference shock waves and satisfies 

the following relation:  

(59) 

Figure 3-12 shows the numerical result of the second-order TVD-MUSCL method 

for a density contour profileon a 1000 × 1000 uniform grid, taken from [Čada et al., 

2009].For the QDS method, the result obtained at the time of 0.8 on a 1000 × 1000 

uniform grid can be seen in Figure 3-13. Two results are shown for the second-order 

method with the N2 and 2N solvers. Both enforce a constant CFL number of 0.25. The 

contours of density are presented with levels of 0 to 2.4. In this case, a shock wave is 

generated and spirals from the contact point in an unsteady fashion. By comparing the 

two figures, we find that both the N2 and the 2N solver results are symmetrical and that 

the result obtained using the N2 solver is closer to the TVD-MUSCL result presented in 

Figure 3-12. As in the previous test cases, in the current test case, the accuracy of the N2 

method is superior to that of the 2N method. In this instance, however, the WENO 

results [Schulz-Rinne et al., 1993] are still superior to the N2 results: this can be 

attributed to the small stencil employed for the estimation of the higher-order gradients, 

or to flux splitting employed and the inevitably associated numerical dissipation; this 

may require further investigation.   

Further, we have compared the timings and the accuracy for this test problem with 

different N for both QDS-2N and QDS-N2 with 1000 × 1000 cells since both schemes 

ρ,u,υ, p( ) =

1, 0.75, −0.5, 1( ),
2, 0.75, 0.5, 1( ),
1, −0.75, 0.5, 1( ),
3, −0.75, −0.5, 1( ),

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

0.5, 1⎡⎣ ⎤⎦ × 0.5, 1⎡⎣ ⎤⎦ (A)

0, 0.5 )⎡
⎣ × 0.5, 1⎡⎣ ⎤⎦ (B)

0, 0.5 )⎡
⎣ × 0, 0.5 )⎡

⎣ (C)

0.5, 1⎡⎣ ⎤⎦ × 0, 0.5 ) (D)⎡
⎣
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scale differently with N. The results are essentially the same as those obtained for N = 3 

when N increases to 5 or 9 for both the abovementioned methods, as shown in Figure 3-

14. This is reasonable since the integration of a Gaussian function with a polynomial, 

having two or less degrees, becomes exact, if the number of Gaussian-Hermite 

integration points is 3 or more. Expectedly, the computation time increases roughly 3 

times from N = 3 to N = 9 for both the methods. Further, Figure 3-15 shows the density 

contours when the grid resolution increases from 1000 × 1000 cells to 2000 × 2000 and 

3000 × 3000 cells. In brief summary, for both the QDS-2N and the QDS-N2 methods for 

solving the Euler equation, accuracy effectively increases with increasing grid 

resolution, while it is essentially the same when N ≥ 3. 

 

3.3.4 Mach 3 Flow over a Forward Step 

The fourth test problem for the second-order QDS method is the Mach 3 flow over 

a forward facing step in a high-speed wind tunnel. The main of this case is designed to 

solve complex oblique shock reflections. This problem was first introduced by Emery 

[Emery et al., 1968] and has since been used by Woodward and Colella to test a number 

of differencing schemes [Woodward et al., 1984]. The same problem using second 

order QDS scheme was used by Smith [2009] to demonstrate that QDS the effectively 

captures all features of the flow fluid and compare with Keats and Lien’s scheme [Keats 

et al., 2004]. Keats mentions that this case is well known problem to evaluate the 

robustness of numerical method. It is difficult to maintain positivity pressure and 

density using various numerical methods when the strong shock reflection at a step 

during first time step. Therefore, this test case has proven to be a well test for a long 

time by several of methods. For QDS method, it must be more careful to deal with 

particle actions facing the corner of the step. That will useful for us to expend a laugh of 
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blocks in a domain.  

Here present the geometry and boundary conditions used in the problem (see 

Figure 3-16). As an initial condition, the flow is everywhere uniform at Mach 3 with a 

density of 1.4, a pressure of 1.0, gas constant R = 1.0 and a specific heat ratio c = 1.4. 

The CFL number is set as 0.1. This is equivalent to an impulsively started flow and the 

simulations capture the unsteady development of the flow structure. 

The QDS simulations utilized a second-order scheme and third-order with 4 QDS 

particles per cell on a uniform grid consisting of 100,800 square cells (the number of 

cells for total domain which included the step is 600 × 200). The number of contours is 

30 from 0.2568 to 6.067. Figure 3-17 shows the density profile generated using two 

QDS solver – 2N solver and N2 solver − at time = 4.0 s. The result is compared with 

that of Keats and Lien who employed a second order Godunov method on an adaptively 

refined mesh [Keats et al., 2004]. We observe the results in both figures are similar 

whenever the solver is 2N or N2 solver.  

 

3.3.5 Shock Wave Diffraction over a 90 degree sharp corner 

This test case uses the same geometrical as previous test case which a block in the 

domain. The geometric configuration of this case is the forward-facing steps. This case 

is also an important case to observe shock wave diffraction which is designed to solve 

the Euler equation. The shock wave diffraction induces more phenomena in the 

perturbed region behind the shock [Skews, 1967]. Those included shock wave, vortex, 

terminator and an incident sound wave. The problem contain both computational and 

the mathematical studies. Secondly, the experimental results are available for variety of 

geometries and Mach number [Takayama et al., 1991]. More numerical studies can be 

found from Skews [1967], Schardin [Dyke, 1997], Bazhenova [Bazhenova et al., 1984]. 
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Figure 3-18 shows structure of the perturbed region behind a diffracting shock wave 

presented form Skews [1967]. Skews performed experiments for a variety of Mach 

numbers and convex corner angles and has outlined the structure of the perturbed region. 

The detail of the structure is described in appendix A. 

    The output format of this case shows in Figure 3-19[Takayama et al., 1991]. The 

incident shock Mach number is 1.5 which the normal shock moves to right. The 

isopycnics are to be displayed with each isopycnic corresponding to an increase of 4% 

of the initial density. The geometry and boundary conditions of this test case can be 

seen in Figure 3-20. The normal shock wave which propagates through space to the 

right is set at the edge of the step between the fluid state 1 and state 2. The moving 

shock Mach number Ms is defined as: 

     
1

s
WM
a

=      (60) 

where W is velocity of the gas ahead of the shock wave, relate the wave.  a1 is the speed 

of the sound of the gas in state 1. Figure 3-21illustrates the schematic of moving shock 

waves relating the W, up, state 1 and 2.The W is important for that is relates the wave 

velocity of the moving shock wave to the pressure ratio across the wave and the speed 

of sound of the gas into which the wave is propagating, shown as follows (derived in 

[Anderson, 1990]): 

    2
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pW a
p

γ
γ
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    (61) 

the velocity Up behind the wave in state 2 is defined as: 

    1

2

1p
pu W
p

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
     (62) 

The initial velocity in the state 1 is set to zero. The x-component of the initial 

velocity in the state 2 is set to up. Table 3-3 summarizes the temperature ratio, density 
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ratio and up initial conditions for the moving shock Mach number Ms, determined form 

[Anderson, 1990]. The simulation time t is depend on the location of the incident shock, 

which is approximately W × t. For example in this test case, the incident shock is 1.3L 

as shown in Figure 3-19 , the initial normal shock wave is set at the 0.3L where near 

from inlet boundary on the edge of the step, the simulation time is 1.464.  

Figure 3-22 shows three density results that obtain using the second-order TVD 

extension of Godunov method [Takayama et al., 1991], N2 and 2N method with 400 × 

400 cells. The vortex obtained using both QDS method below the slipstream is close to 

the benchmark. The position of the vortex, incident shock and slipstream are perfectly 

in the correct please as the second-order TVD extension of Godunov method 

[Takayama et al., 1991].It is able to gauge the ability of the QDS method to detect 

shock, contact and expansion regions. To compare with experimental result made by 

Ritzerfeld et al. [Takayama et al., 1991], the schlieren result is easily to identify that the 

vortex obtained using N2 method is clearer to observe as we can see from Figure 3-23. 

According the results in this test case, the accuracy obtain using N2 method is 

considerably better than that of the 2N method.  

 

3.3.6 Advection of Vortical Disturbance 

The final test case consists of an inviscid unsteady flow in which a vortex is located 

at the canter of a uniform domain (xc, yc). The mean flow for this case uses Mach 

number M∞=0.1. The case tests the capabilities of the QDS method compared to the 

exact solution taken from [Visbal et al., 1999] in order to accurately advent vertical 

disturbance. This problem also appears in Tutkun and Bdis [Tutkun et al., 2010]. The 

initial conditions are shown as follows: 
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  (63) 

where u, υ and Rc determine the Cartesian velocity components and the vortex 

radius. C is the vortex strength parameter, defined as follows: 

         (64) 

The density is assumed to be constant and the vortex radius Rc is taken to be 1.0 in 

this case.  

Figure 3-24 shows the vorticity contours of the N2 and the 2N methods with 800 × 

800cells using the second-order method. The limiter in this case is the monotonized 

central (MC) method. A constant CFL number (0.1) is enforced such that the non-

dimensional time step size is . The result of the N2 solver is 

essentially the same as the exact solution and shows a perfect circular shape of the 

vorticity distribution while that of the 2N solver does not. The result of the 2N solver 

shows more significant dissipation and anisotropy errors as compared to that of the N2 

solver. Figure 3-25 shows the vorticity distributions of various simulations along a 

horizontal line (at y = 8.0) passing through the vortex center in Figure 3-24. We have 

compared the results obtained by using the two solvers (2N and N2) on a uniform grid 

containing three different levels of resolution (160 × 160, 800 × 800, and 1600 × 1600 

cells). The result obtained using the N2 solver in the case of 800 × 800 cells is in 

excellent agreement with the exact solution and radial symmetry, while the results 

obtained using the 2N solver are far from the correct solution even in the case of 1600 × 

1600 cells. Thus, the influence of multi-dimensional reconstruction is significant for the 

u =U∞ −
C y − yc( )

dx
exp −r

2

2
, υ =

C x − xc( )
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exp −r
2
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p − p∞ =
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C
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ΔtU∞ Rc = 4.0 ×10
−3
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QDS, particularly on the numerical accuracy of the solution for a gas flow field as in the 

current problem. 

The investigation of the computational expense again reveals a trade-off between 

computational time and accuracy. The computational time of the N2 solver in terms of 

calculation time is approximately 3~4 times less than that of the 2N solver for any given 

computational grid although the accuracy of the former is considerably better than that 

of the latter.  This leads to a question whether the use of the N2 method is worthwhile or 

not. Thus, we compare the results obtained using the N2method using160 × 160 cells 

with those obtained using the 2N method using1600 × 1600 cells, as shown in Figure 3-

25. The results show that they are essentially the same for the same level of accuracy; 

thus, the proposed the N2 solver is approximately 25 times faster than the 2N solver in 

this case. Once again, we are unsure whether the 2N result will ever converge to the 

analytical solution, thereby justifying the application of the N2 solver and its proposed 

multi-dimensional reconstruction of QDS particles. 

 

3.4 QDS Method in Three-Dimension Flow 

The three-dimensional QDS method is necessary to develop a complete method for 

large-scale domains. Such a method will cover many problems that the two-dimensional 

method cannot solve. In this paper, the second-order QDS-N2 method is extended to a 

three-dimensional method. This extension is non-trivial and requires the application of a 

number of modifications. These modifications are required in QDS but not in 

conventional finite volume schemes because fluxes are calculated from volume to 

volume, incorporating the influence of spatially varying primitive quantities, and 

because the scheme is based on kinetic theory rather than a solution to a governing set 

of equations. The scheme is validated by simulating a simple test case. 
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3.4.1 Mach 2 Flow over a Pillar 

This test case is to validate the three-dimensional method can be available as the 

two-dimensional method. The geometry represented in Figure 3-26 shows a pillar in the 

center of the domain facing a Mach number 2.0 in the x-direction. The y- and z-

components of initial velocity are set to zero. The initial density and the temperature are 

set to 1.0. The number of cells is set to 200 × 200 × 100 in a full domain (x, y, z) = (1.0, 

1.0, 0.5). The results are presented at t = 0.1 with the MINMOD limiter, and the CFL 

number is set to 0.5. The results obtained using N2 method in a three-dimensional 

domain are compared to results obtained in a two-dimensional domain in Figure 3-27. 

The results for both domains are identical. This indicates that the results obtained in a 

three-dimensional domain can calculate any of those obtained in a two-dimensional 

domain without computational error. This case is an easy way to identify that the QDS 

code can be applied to a three-dimensional domain. Furthermore, we observe the same 

flow condition with a block in the center of the domain, as shown in Figure 3-28. 

Compared with Figure 3-27 b, the results are evident in the x-y surface. Note that Figure 

3-29 shows different results. The z-component is considered in the three-dimensional 

domain but not in the two-dimensional domain. Therefore, it is evident that the three-

dimensional method is necessary.      

    Furthermore, in both two- and three-dimensional simulation domains, the 

computational time increases when the number of cells is increased. Therefore, we 

improved the QDS method to include parallel code. Performance results are presented 

in the next section.  
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3.5 Parallel Computing of QDS method 

As described in the previous section, although the accuracy of the results for the N2 

method in the two-dimensional flow is higher than the 2N method, computational time 

is longer. The capacity of the N2 technique can be increased by parallelizing the code so 

that computational load is shared across a number of processors. In this section, a 

parallel QDS method is discussed. In addition, various code improvements and a 

validation simulation are also discussed. 

 

3.5.1 Overview of Parallel Implementation 

Parallel computing involves the division of a task into smaller subtasks and the 

assignment of such subtasks to individual processors. These processors perform the sub-

tasks and communicate when required. One method for dividing work between 

processors is domain (or data) decomposition into subdomains. In one-dimensional 

decomposition, the subdomains are determined by latitude or longitude; in two-

dimensional decomposition they are determined by both latitude and longitude.  

In this work, we introduce the Message Passing Interface (MPI) to the N2 code to 

speed up computation time. MPI is a parallel computer message-passing library for 

communication among processes that have separate address spaces.   

 

3.5.2 Simulation Conditions 

A 2D shock-bubble interaction problem is simulated to obtain the computation time 

for the parallel N2 method, as shown in Figure 3-30. The initial condition is as same as 

Section 3.3.1, i.e., Mach 2.81 with pressure 10 from x = 0 moving to the right will face 

a low density gas bubble. The computational problem is a symmetric domain with a 

boundary at y ≥ 0, reflecting boundary condition at y = 0.5 and inflow at x = −0.1.   
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3.5.3 Parallel Performance 

Strong and weak scaling are two basic ways to measure the parallel performance of 

a given application, depending on whether the application is CPU bound or memory 

bound.  

Tables 3-4 to 3-7 summarize the computational time using the parallel N2 method. 

The results were computed on the ALPS–Acer AR585 F1 Cluster at the National Center 

for High-performance Computing (NCHC) of Taiwan. The F1 Cluster uses the AMD 

Opteron 6174 processor with 12 cores operating at 2.2 GHz and 128 GB of main 

memory (per node). 

 

3.5.3.1 Weak Scaling 

Weak scaling is used for programs that require significant memory or other system 

resources. The purpose of this measurement is to observe the run time while 

maintaining a constant or line scaling as the relationship between the number of 

processors and cells is gradually increased. Weak scaling efficiency is given as: 

 
1

100%Nt
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (65) 

where t is the time required to complete a job unit. The subscript indicates the number 

of processors. tN is the amount of time required to complete N job units with N 

processors.  

The results of weak scaling for a shock-bubble interaction case are presented in 

Table 3-4. In this case, the largest number of processor is 122, and the largest number of 

cells is 2.4 million. Each process is assigned a constant number of cells (20,000 grids). 

Simulation time is 0.2 with 2000 time-steps. 

Figure 3-30 shows a weak scaling diagram for the shock-bubble interaction case 

using the parallel N2 method. The results summarized in Table 3-4 show that the 
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efficiency of this case is approximately 1.2. The ideal efficiency of weak scaling is 1.0, 

which is denoted by the dash-dot line in Figure 3-30 (60 processors). The average 

efficiency achieved (1.2) is an acceptable result. The result indicates that, when we 

employ larger core counts to simulate a problem with the N2 method, 20% of 

computation is consumed communicating data.  

  

3.5.3.2 Strong Scaling 

Strong scaling, which fixes computational domain size but increases the number of 

processors, is also used to measure the parallel performance of a given application. 

Strong scaling is used to determine a reasonable length of time to process a relatively 

large application using many processors without excessive overhead cycles. Strong 

scaling efficiency is give as: 

1

N 100%Nt
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

.    (66) 

where t is the time required to complete a job unit. The subscript indicates the number 

of processors. tN is the amount of time required to complete N job units with N 

processors.   

In this section, in Tables 3-5 to 3-7, we present three strong scaling performance 

results for different numbers of cells, representing small, medium, and large-scale 

domains. These tables show the relationships among computation time, number of 

processors, and number of cells per processor. The largest number of processors we 

consider is 256. As shown in Figure 3-31, for a 2D shock-bubble problem using 

500,000 cells and 2,000 time steps, there was a net increase in speed of approximately 

78% when compared with ideal performance (red line). As illustrated in Figures 3-32 

and 3-33, for 2 million and 12.5 million cells, the speed up was 68.5% and 65.5%, 



 

 44 

respectively. On the other hand, if we compare results for the three cases when the 

number of cells per processor is equal, the results are approximately equal. For example, 

for 125,000 cells per processor, computation times are 2761.14 s, 2890.74 s, and 

2806.29 s. This indicates that, regardless of the size of the computational domain, we 

can obtain a rational answer using the same number of cells for each processor.  

 

3.6 Brief Summary 

The major findings of the study of the QDS algorithm for the N2 and 2N methods 

can be summarized as follows:  

1. The one-dimensional QDS method extended to a higher order method is useful 

for simulating the shock acoustic wave problem and can be used to compute 

higher-order problems. 

2. Using the N2 method in a two-dimensional domain obtains results comparable to 

the benchmark. The accuracy achieved using the N2 method is considerably 

better than that achieved using the 2N method. 

3. The N2 extension of the QDS method requires approximately three times the 

computation time compared to the original 2N method for the same number of 

cells. 

4. For both the 2N and the N2 methods, when solving the Euler equation, accuracy 

effectively increases with increasing grid resolution. However, it is essentially 

the same when N ≥ 3. 

5. The advection of vertical distribution test case results show that both methods 

are essentially equally accurate; however, the proposed the N2 solver is 

approximately 25 times faster than the 2N solver. 
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6. The QDS method is suitable for three-dimensional computation and can be 

applied to three-dimensional simulation problems. 

7. Parallel performance studies, including strong and weak scaling, show that the 

parallel efficiency for a large-scale problem (0.5, 2, and 12.5 million cells) can 

reach up to 75%, 68.5%, and 65.5%, respectively, using 256 processors at the 

NCHC APLS cluster.  
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Chapter 4  

Analysis of QDS-2NMethod as Compared to QDS-

N2Method 
 

4.1 Introduction 

In the previous section, we identify the difference between 2N and N2 method by 

comparing with several numerical methods as benchmark. Since both one-dimensional 

2N and N2 method are theoretical the same. The major difference of both methods is 

mathematically the flux reconstruction travelled to the diagonal cell in two-dimension. 

In this chapter, we use an analytical aspect to discuss the difference and to observe 

which flow condition is suitable for N2 method or 2N method for simulation.   

 

4.2 Derivation of Analytical Fluxes of QDS Methods (2N vs. N2) 

4.2.1 Mass Flux 

According to chapter 2, the different part of two methods is flux reconstruction in 

two-dimension. Here we present the fluxes value which contributed to correct cell after 

a time step ∆t when the source cell travelled to the diagonal destination cell in Figure 1. 

The net of mass fluxes M2N obtained from 2nd order 2N method shows blow. 
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where mx′, my′, Px′, Py′, Ex′, Ey′ are the value of conserved properties (mass, momentum, 

energy) for 2nd order in x and y-direction . Those are described blow,  
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the total mass, momentum and energy in the source cell is m, Px, Py, E.  

On the other hand, the analytical mass flux equation MN
2 obtained from 2nd order 

N2method is  
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  (72) 

where the subscript shows N2 is the value of conserved properties for N2 method 

described as follows: 
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As we can see, the difference of 2N and N2 method for net mass flux form source 

cell to the diagonal destination cell is presented   
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2 2NN
M M−

      (77) 

The difference of 2N method can be identified form Eq.(78). 

    2
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     (78) 

 

4.2.2 Momentum Fluxes 

The momentum flux is performed using the same principles applied for two-

dimensional reconstruction of mass flux.The momentum flux for the 2N method in x-

component and y-component can be described as follows: 
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The N2 method of momentum fluxes in x-component 2_x N
P and in y-component 2_y N

P  

are present as below: 
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To simplify the equation of momentum fluxes, those equations are described with 

the net of mass flux reconstruction. The net momentum fluxes in two components are 

described as follows: 
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The difference of 2N method can be identified from Eq. (83):   
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4.2.3 Energy Flux 

Follow the previous section, the energy fluxes of the 2N method are divided with 

Eq. (68) ~ Eq. (71), shown in below:  
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where Ω is the number of simulated degrees of freedom (i.e. in this chapter, Ω = 2). The 

energy fluxes in N2 method is described by following equation:  
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Therefore, the net energy flux is combined with Eq. (85) and Eq. (86) that can be 

formulated as  

    2 2NN
E E−       (87) 

According to Eq. (87), the difference of two methods can be shown that  

    2

2

2 100%NN

N

E E
E
−

     (88) 

 

4.3 Results and Discussion 

4.3.1 Diagrams of Relative Difference Distribution 

In order to estimate the difference between the two methods, the unknown elements 

in the equation have to be defined. The test cases that we simulate contain a domain of 

1000 × 1000 cells; the cell size in the x and y directions is 1.0e-3 (∆x = ∆y = 1.0e-3), and 

the time step ∆t is equal to 1.0e-4. The density, velocity, and temperature are changed 

from 0.1 to 5.0, which are observed for the difference in the fluxes. Therefore, the CFL 

number is calculated to be 0.01–0.5 on the basis of the changing value of the density, 

velocity, and temperature. The gradients for all the conserve properties are assumed to 

be 1.0e-5 and 1.0e-6 for two cases. Therefore, on the basis of our assumptions, we 

calculate the difference in density (∆ρ) to be 1.0e-2 for the first case by using the mass 

gradient shown in Eq. (67). Furthermore, the difference in velocity (∆v, ∆u) and 

temperature (∆T) are obtained in the same manner. For another case, the difference in 

the density, velocity, and temperature are 1.0e-3.       

51.0dm V e
dx x

ρ −Δ= =
Δ

     (89) 

The purpose of this simulation is to estimate the difference in the fluxes between 

the 2N and the N2 methods in terms of the mass flux, momentum flux, and energy flux 
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on the basis of the variations of the density, velocity, and energy observed when the 

source cell travels to the diagonal destination cell. We compare two cases in which the 

differences in the density, velocity, and temperature are 1.0e-2 and 1.0e-3, respectively.  

Figure 4-1a shows the mass value of the difference between the 2N and the N2 

method in the density, velocity, and temperature range from 0.1 to 5.0. Most of the 

significant difference in the mass flux is observed in the low-density range, and in 

particular, the largest difference is observed when the temperature is equal to 0.1 and 

the velocity is increased to 2.5. Another range in which we can clearly see the 

difference is the low-density and low-velocity range in which the temperature is either 

low or high. The tendency of case 2 for the largest difference is shown in Figure 4-1b. 

The other results of the comparison of the difference between the two methods with 

respect to the momentum and the energy are shown in Figures 4-2 to 4-4.  

As we can see from the figures, the highest value of the difference is obtained in 

the low-density range. Figure 4-5 shows two cases when the difference value is in the 

low-density range. We compare velocity with the value of mass flux for three 

temperatures that each of them has the lowest point which is 1.2, 2.1, and 2.6. Even case 

2 has the same lowest point as case 1.  

Therefore, when the simulation domain is in the low-density, low-temperature, and 

high-velocity range, the accuracy obtained using the N2 method is considerably better 

than that obtained using the 2N method. 

 

4.3.2 Example with Large Difference 

In the previous section, we discussed that most of the different fluxes between 2N 

and N2 are around two parts: the first part is at the low density, low speed, and the 

second part is at the low density, low temperature, and high speed as shown in Figures 
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4-1 to 4-4. In order to validate the discussion, section 4.3.1 is provided; here, we discuss 

four test cases, namely shock-bubble interaction, Euler-four-shock, and Mach 3 over a 

forward step and a backward step.  

 

4.3.2.1 Shock-Bubble Interaction 

The first test case is demonstrated in the same manner as the preceding case 

discussed in Section 3.3.1. The comparisons shown in the schlieren image show that the 

accuracy obtained by using the N2 method is considerably better than that obtained by 

using the 2N method. Although both methods can identify the right position for the 

shock wave, the result obtained using the 2N method does not descript specifically at a 

complex place, especially in the bubble. In this section, we discuss in more detail, the 

conditions in the fluid that lead to a more significant difference between the two 

methods. Figure 4-6 shows the four contours of the N2 method, namely density, 

temperature, and two dimensions of velocity. The result obtained is the same as that 

shown in Figure 3-6. According to Figure 3-6, most differences are almost around the x 

= 0.6~07 and y = 0.1~0.15 region. In order to analyze the result, the properties around 

the bubble that attacked after the shock wave are considered to be low density, high 

temperature, and high velocity. In order to observe higher difference of two methods, 

we decrease the temperature of the bubble from 10 to 2 initially. The schlieren result 

shows that the N2 method descripts more details than the 2N method at a low density 

and a low temperature as shown in Figure 4-7. The density and the temperature contours 

of this result are illustrated in Figures 4-8 and 4-9. The temperature contour shows a 

more considerable difference between the two methods than the density contour. As 

expected, the difference between the two methods is more distinct in the complex 
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region. Therefore, the complex region provides more specific results in the low-density 

environment in the case of the N2 method. 

 

4.3.2.2. Euler-Four-Shock Simulation 

The analytical fluxes that we discussed in the previous section are focused on the 

diagonal direction. The first case gave a hint about the difference between the two 

methods in a complex fluid. Therefore, the second test case combines the diagonal 

direction and the complex flow introduced in Salichs [2006]. The benchmark is used for 

computing the numerical solution employing the piecewise hyperbolic method-

Marquina’s flux formula (PHM-MFF) and the power PHM-MFF schemes. The test 

problem is initially divided into four quadrants sharing a common corner at 0.75 and 

0.75 in the domain [0, 1] × [0, 1], as illustrated in Figure 3-8. These quadrants initially 

have the relationship shown in Eq. (57). 

The result that we obtained using the N2 solver on a computational grid of 1000 × 

1000 cells at the time of 0.4 is similar to that obtained using the total variation 

diminishing-monotone upstream centered schemes for conservation laws (TVD-

MUSCL) [Čada et al., 2009] (see Figure 3-10a). The Courant–Friedrichs–Lewy (CFL) 

factor is set as 0.5. All three approximations obtain the basic structure of the solution 

where the four shock waves interact. Three results show that the position of the shock 

wave is the same as that shown in Figure 3-10. However, the area from (x, y) = (0.2, 0.2) 

to (0.4, 0.4) is not for the 2N method that has less variation. The differences between 

the N2 and the 2N methods are observed in the contact area. In the same way, in order to 

analyze the differences, we observe four properties of the contour results of the N2 

method in Figure 4-10. The results indicate that the density and the temperature in the 

contact area are lower than those in any other area. According to Figure 4-10, it is 
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reasonable to explicate why the accuracy of the N2 method is better than that of the 2N 

method.  

 

4.3.2.3 Mach 3 Flow over a Forward Step 

This case is designed for a high-speed velocity model through a forward step and 

involves complex oblique shock reflections. The inlet and the outlet boundary 

conditions in the domain are both supersonic flows. The geometry of the test case is 

illustrated in Figure 3-16, and the result of the flow is shown in Figure 3-17. The 

purpose of this test case is to demonstrate that the two methods obtain approximately 

the same result. Since a normal shock wave moves along the x direction, the flux 

reconstruction calculated in the diagonal direction is not considered to be significant. 

Based on the discussion presented in Section 4.3.1, we know that most of the 

differences in the flux can be observed in the diagonal direction. Moreover, the oblique 

shocks usually occur with an increase in the temperature, pressure, and density. This is 

contrary to the definition of the difference between both the QDS methods carried out 

under low-density, low-temperature, and high-velocity conditions. Figures 4-11 and 4-

12 show that the density and the temperature contours use the same initial flow and 

boundary conditions as those discussed in Section 3.3.4. The results revealed a 

considerably high density and temperature; few results of low density and temperature 

were observed behind a corner. The most obvious discrepancy between the 2N method, 

the N2 method, and Keats’s results is the location of the shock reflection on the upper 

wall. The point located at x = 2.4 is the contact point between an incident shock and a 

reflected shock obtained using the N2 method; it is at the same position as that in 

Keats’s result. Consequently, the results reveal two not-so-apparent differences: first, 
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the flow properties as low velocity, high density, and high temperature; and second, the 

flow around the shock wave and the oblique shock. 

 

4.3.2.4 Shock Wave Diffraction over a 90-degree Sharp Corner 

Different from the preceding geometric configuration, the oblique shock does not 

occur in this test case instead of secondary physical phenomena such as a second shock, 

contact surface, and vortex. The last case discussed in this chapter involves the use of 

the same geometrical and boundary conditions as those considered in the case discussed 

in Section 3.3.5. The initial conditions of the flow for Ms are listed in Table 3-3. 

According to the explanation of the structure of the perturbed region by Skews [1967], 

the location of the vortex is well defined for Ms < 1.5. Therefore, in order to observe 

more secondary physical phenomena in this test case, we discuss the case of shock wave 

diffraction by using the initial flow velocity of Ms = 2.4. The experimental result 

obtained by Schardun [Dyke, 1997] is selected as the benchmark. The flow structure 

around a perturbed region is outlined in Appendix A. Because the comparison has an 

experimental result as a benchmark, the resolutions of the simulation are calculated 

using a considerably fine cell: 1000 × 1000 uniform grids. The CFL number is set to 0.2. 

The simulation time is calculated using the same principle as that discussed in Section 

3.3.4 and is t = 0.775.  

Figure 3-13 shows three schlieren results using the second-order 2N method, N2 

method, and the experimental result separately. These results can be used for gauging 

the ability of these methods to detect the expansion region by juxtaposing them with the 

three results shown in Figure 3-18. The shape of the primary shock wave shown in 

Figure 3-13b and c matches the experimental result. The secondary shock waves 

obtained using the two methods are accurately located at the correct position behind the 
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wall and between the slipstream and the contact surface corresponding to the 

experimental result. The accuracy of the second shock wave in both the results is clear. 

However, the phenomena in the vortex and the contact surface of both the results are 

contrary to the second shock. It is obvious that the vortex obtained using the N2 method 

is presented in considerable detail than that obtained using the 2N method. The contact 

wave is considerably diffused as compared to that in the case of the N2 method and the 

experimental result. The density, temperature, and velocity contours in this case are 

shown in Figures 4-14 to 4-16. These results show that the vortex belongs to the region 

with a low density, low temperature, and high velocity. The contact surface in the 

results is shown in the region of low density, low temperature, and low velocity. This is 

reasonable for supporting the theory in Section 4.3.1 that a more significant difference 

between the two methods shows the same trend as the large discrepancy is in the region 

of low density, low temperature, and low velocity.        

 

4.4 Brief Summary 

The major findings of the study of the difference analysis of the QDS-2N method 

presented in this chapter can be summarized as follows: 

1. There are two regions of flow properties where a large discrepancy of 

conservative fluxes occurs between the QDS-2N and the QDS-N2 methods. The 

first is in the region of low density (down to 1.0), low temperature (down to 2.5), 

and high velocity (up to 2.0). The second is in the region of low density and low 

velocity (down to 1.2). 

2.  The conservative fluxes of the QDS-2N method that move along the diagonal 

direction exhibit a considerably large difference as compared to the QDS-N2 
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method. In contrast, the conservative fluxes that move along the horizontal or 

the vertical direction exhibit a significantly smaller discrepancy. 

3. The normal shock and oblique shock waves in the resolution obtained by using 

the two methods are approximately located in the same region, and most of the 

shock waves, as predicted by the QDS-2N method, move in the diagonal 

direction.  

4. Because the properties of an after-expansion wave are low density, low 

temperature, and high velocity, we have found a large discrepancy between the 

QDS-2N method and the QDS-N2 method. 
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Chapter 5  

Conclusion and Recommendations of Future Work 

 

5.1 Summary 

In this thesis, a true-direction multi-dimensional higher-order extension of the QDS 

method, referred to as the QDS-N2 method, for solving the inviscid Euler equation is 

investigated numerically and theoretically. The major findings of this thesis are 

summarized in the following two sections in turn. 

 

5.1.1 Numerical Investigation of QDS-N2 Method 

1. The results of the one-dimensional shock and acoustic wave interaction problem 

demonstrate an improvement for higher orders of accuracy (up to third-order) of 

the QDS-N2 method.  

2. The QDS-N2 method improves the solution in the flows unaligned with the 

computational grid as compared to the QDS-2N method. 

3. The QDS-N2 method significantly reduced the amount of numerical dissipation 

within the solution as compared to the QDS-2N method. 

4. Despite the additional computational expense associated with the QDS-N2 

method for the same computational grid, for any given degree of accuracy, the 

proposed solver was found to be several times (up to 25 times in the case of the 

advection of vortical disturbances) faster than the original QDS-2N method. 

5. Of particular interest is the test case of the advection of vortical disturbances, 

where the QDS-N2 method improves the radial symmetry of the result 
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approaching the analytical solution, while the QDS-2N method failed to 

converge to the analytical solution even when a very fine grid is used. 

6. The results are essentially the same when N≥ 3 because the integration of the 

Gauss function with a polynomial (degree ≤ 2) using the Gauss-Hermite 

integration technique becomes exact. 

7. Parallel performance studies, including strong and weak scaling, show that the 

parallel efficiency of shock bubble interaction for a large-scale problem (0.5, 2, 

and 12.5 million cells) can reach up to 75%, 68.5%, and 65.5% respectively 

using 256 processors at the APLS cluster of National Center for High-

Performance Computing, Taiwan. 

8. Parallel performance of weak scaling shows that the average efficiency of shock 

bubble interaction using 20,000 cells per processor is about 1.2, which the ideal 

efficiency is 1.0.  

 

5.1.2 Theoretical Analyses of Conservation Fluxes of QDS-2N Method and QDS-N2 

Method 

1. There are two regions of flow properties where a large discrepancy of 

conservative fluxes occurs between the QDS-2N and the QDS-N2 methods. The 

first is in the region of low density (down to 1.0), low temperature (down to 2.5), 

and high velocity (up to 2.0). The second is in the region of low density, and low 

velocity (down to 1.2). 

2.  The conservative fluxe of the QDS-2N method that moves along the diagonal 

direction has considerably large difference as compared to the QDS-N2 method. 

On the contrary, the conservative fluxes move along horizontal or vertical 

direction has a much smaller discrepancy. 
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3. The normal shock and oblique shock wave in the flow obtained using two 

methods are approximately located in the same region, even the direction of the 

shock wave, predicted by the QDS-2N method, moves to be more in diagonal 

direction.  

4. Because the properties of an after expansion wave are in the region of low 

density, low temperature, and high velocities, we have found that a large 

discrepancy occurs between the QDS-2N method and the QDS-N2 method.  

 

5.2 Recommendations of Future Work 

In this thesis, we have demonstrated that the QDS-N2 method is a very fast 

numerical method without being subject to convergence problem like conventional CFD 

methods. However, there are several areas need to be done in pushing the method 

forward, The areas outlined below should be examined in the future: 

• To further reduce the computational time for large-scale multi-dimensional 

problems, the method should be implemented on multiple extension graphics 

processing units (GPU). 

• To further reduce the numerical diffusion, a high-order stencil in calculating the 

conservative fluxes may be considered.  

• To implement an adaptive mesh function in the region where large gradient of 

flow properties occurs. 

• To extend the QDS-N2 method for modelling the Navier-Stokes equation by 

employing the Chapmann-Engskog expansion theory to account for the viscous 

effect. 
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Appendix A 

Flow Structures of the Shock Wave Diffraction  

 

Keats [Keats et al., 2004] describes the theory of the shock wave diffraction that 

including experimental and computational result from Skews [1967], and summarized 

the secondary physical phenomena in the perturbed region behind the shock wave. 

Skews performed experiments for a variety of Mach numbers and convex corner angles, 

and has outline the structure of the perturbed region; the structure is shown in Figure 3-

5.1. Skews determined experimentally and tabulated the following correlations:  

• The slipstream angle variation with the shock Mach number Ms. 

• The terminator angle variation with Ms. 

• The relationship between Ms and the velocity of the secondary shock. 

• The contact surface velocity variation with Ms. 

• The variation of the vortex angle and velocity with Ms. 

The flow structures can be described as follows: 

• Incident shock: Diffracts in a similar way to a sound wave: its radius of 

curvature is approximately Wt. 

• Reflected sound wave: Propagates upstream and marks the start of the curvature 

of the incident shock.  

• Slipstream: Due to separation, it separates high-velocity gas on the upper side 

from almost stationary gas on the lower side. It represents the outermost 

characteristic of the Prandtl-Meyer expansion fan. 
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• Terminator: The first characteristic of the Prandtl-Meyer expansion; the single 

separating the terminator from the horizontal increases with rising Ms. 

• Second shock: The region between the slipstream and the terminator is a 

uniform flow region parallel to the slipstream, and the second shock is a normal 

shock caused when the flow in this region exceed Mach 1.0 [Sun et al., 1997]. 

• Vortex: Located just below the slipstream, its location is well defined for Ms≤ 

1.5. The angle between the vortex and the slipstream decreases as Ms increases. 

• Contact surface: Originates at the intersection point of the reflected sound wave 

and the incident shock, but is highly diffuse in this region. It becomes better-

defined as it nears the region containing the rest of the flow structures.  
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Tables 

 

 

 

 

 

Table 2-1 The value of weight and abscissas for the Gaussian quadrature. 

Number of QDS particles Weight (wJ) Abscissas (qJ) 

2 
1 2
2

±  1
2

π  

3 0 
2
3

π  

 
1 6
2

±  1
6

π  

4 1 3 6
2 2

−±  ( )4 3 6
π
−

 

 1 3 6
2 2

+±  ( )4 3 6
π
+
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Table 3-1 Comparison of computational expenses for QDS schemes using 2N and N2 

dimensional reconstruction. 

Number of cells 
QDS solvers 

2N N2 

300x100 8.41 min 23.15 min 

450x150 28.9 min 78.3 min 

600x200 68.56 min 183.6 min 

1000x500 478.4 min 1282.6 min 
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Table 3-2 QDS scheme time cost in Euler-4-shocks interaction case. 

Number of cells 
QDS solvers 

2N N2 

1000x1000 13.29 hours 55.6 hours 

100x100 45 (s) 189 (s) 

200x200 375(s) 1520 (s) 

300x300 1307 (s) 5199 (s) 
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Table 3-3 pre- and post-shock fluid initial conditions. 

 Mach number 

1.5 2.4 

ρ
2
/ρ
1
 1.862 3.212 

T
2
/T
1
 1.32 2.04 

U
p
 0.8215 1.956 
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Table 3-4 Parallel Performance for a 2D shock-bubble problem with 2.4 

millioncomputational cells. 

Number of processors Computation time (sec.) Number of cells 

1 361.613 20000 

4 348.995 80,000 

9 428.812 180,000 

16 410.294 320,000 

25 425.229 500,000 

36 444.135 720,000 

49 472.599 980,000 
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Table 3-5 Parallel computation times for shock-bubble problem with 500,000 cells at 

2000 time steps in simulation time 0.2. 

Number of processors Computation time (s) 
Number of Cells for one 

processor 

1 8220.19 500,000 

2 4299.89 250,000 

4 2761.14 125,000 

8 1210.08 62,500 

16 762.245 31,250 

25 425.229 20,000 

32 347.833 15,625 

64 158.845 7,813 

80 132.77 6,250 

100 106.164 5,000 

256 42.9935 1,953 
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Table 3-6 Parallel computation times for shock-bubble problem with 2 million cells in 

2000 time steps. 

Number of processors Computation time 
(sec.) 

Number of cells for one 
processor 

1 29740.59 2,000,000 

4 8744.45 500,000 

8 4978.56 250,000 

16 2890.74 125,000 

25 1827.92 80,000 

32 1348.79 62,500 

64 679.745 31,250 

128 340.572 15,625 

256 172.599 7,813 
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Table 3-7 Parallel computation times for shock-bubble problem with 12.5 million cells 

in 2000 time steps. 

Number of processors 
Computation time 

(sec.) 
Number of cells for one 

processor 

1 187130.1 12,500,000 

8 27532.8 1,562,500 

16 19929.3 781,250 

32 8613.3 390,625 

64 4463.82 195,313 

100 2806.29 125,000 

128 2225.91 97,656 

256 1115.02 48,828 
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Figures 
 

 

 

 

 

 

 

Figure 2-1.  Schematic showing the way fluxes of conserved quantities between source 

and destination cells are calculated using the “overlap” function in QDS [Smith et al., 

2009]. 
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Figure 2-2.Flowchart describing QDS-2N particle computation with gradient inclusion. 
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Figure 2-3. The special reconstruction convention for current amount of conserved 

quantity Q in one cell. 

  



 

 80 

 

 

 

 

 

 

 

 

Figure 2-4. QDS flux procedure within a general (arbitrary) spatial reconstruction of 

conserved quantity Q. 
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Figure 2-5. Flowchart describing QDS particle computation with gradient inclusion. 
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Figure 2-6. Two-dimensional motion of a single QDS particle showing “sub-particle” 

contributions. 
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Figure 2-7. Three-dimensional motion of a single QDS particle showing “sub-particle” 

contributions.The green parallelogram is presented the concept in two-dimensional. 
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Figure 3-1. Waves generated in shock tube following rupture of diaphragm [Anderson, 

1990].	  
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Figure 3-2. The shock tube problem as computed by pre-QDS method with a uniform 

grid of 200 zones. The results were discussed thedifference to the QDS 1st ~3rdmethod 

and Riemann solver using MINMOD limiter at time 0.1. 
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Figure 3-3. The interaction of two blast wave computed by the QDS method with 400 

grids at t = 0.0038. The solid black line is WENO (fifth order) scheme with 10,000 

grids. 
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Figure 3-4. Density profile of the shock-acoustic-wave case at t = 1.8. The solid black 

line is WENO-3 (fifth order) with 2000 grids compared with QDS method which 

without limiter form 1st order to 3rdorder. 
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Figure 3-5. The structure of shock bubble interaction. 
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(a)       (b) 

 

(c) 

Figure 3-6. Zoom of shock-bubble Schlieren image with 1000×500 cells at time of 0.2. 

QDS 2nd order (a) 2N method with van Leer’s limiter, (b) N2 method, and (c) 2nd order 

TVD result presented in [Čada, 2009] using the same resolution. 
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	   	   	   (a)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (b)	  

	  

	  

	  

	  

	  

	  

	  

	  (c)	  	   	   	   	   	   	   (d)	  

Figure 3-7. Zoom of Schlieren image of shock bubble problem at time of 0.2; (a) QDS-

N2 method with 300×100 cells; (b) QDS-2N method with 300x100 cells; (c) QDS-2N 

method with 450×150 cells; (d) QDS-2N scheme with 600×200 cells. 
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Figure 3-8. The initial conditions for the first problem of Euler-4 shocks interaction. 
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(a)	   	   	   	   	   	   (b)

	  

(c)	   	   	   	   	   	   (d) 

Figure 3-9. Zoom of density contour line of Euler-four-shocks problem. Comparing the 

second-order QDS-N2 method (a) using 100×100 grids with MC limiter and 2N method 

using 100×100 grids (b) and 200×200 grids (c), 300×300 grids (d) with MC limiter at 

time of 0.4. 
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(a)         (b) 

 

(c) 

Figure 3-10. Zoom of the density contour lines of Euler four shocks problem. (a) the 2nd 

order TVD-MUSCL method taken from Čada [Čada et al., 2009] using 1000x1000 

points, CFL=0.8. (b) The third-order QDS-N2 method used 1000x1000 grids with MC 

limiter at time of 0.8. (c) The third-order QDS-2N method used 1000x1000 grids with 

MC limiter. 
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Figure 3-11. The initial conditions for the second problem of Euler-four-shock 

interaction. 
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Figure 3-12. Density profile of the four contacts problem for second-order TVD-

MUSCL method taken from [Čada et al., 2009]. 
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(a)	  

	  

(b)	  

Figure 3-13. Density contour obtained from QDS N2 solver (a) and 2N solver (b) by 

using 1000×1000 cells, 2nd order method with MINMOD limiter. The CFL number is 

0.5. Level form 0 to 2.4 at 0.05 interval of line. 
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       (a)                                              (b) 

 
                               (c)                                              (d) 

Figure 3-14. Density contour obtained from QDS-2N solver with 5 particles (a) and 9 

particles in each direction (b);QDS-N2method with 5 particles (c) and 9 particles in each 

direction  (d) by using 1,000×1,000 cells, 2nd order method with MINMOD limiterat 

time of 0.8. The CFL number is 0.5. Level form 0 to 2.1 at 0.05 interval of line. 
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(a) 

 
(b) 

Figure 3-15. Density contour obtained from QDS-N2solverusing (a) 2,000×2,000and (b) 

3,000×3,000 cells, 2nd order method with MINMOD limiterat time of 0.8. The CFL 

number is 0.5. Level form 0 to 2.1 at 0.05 interval of line.  
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Figure 3-16. Geometry and boundary conditions for the Mach 3 flow over a forward 

facing step in a wind tunnel. All boundaries with exceptions to the inflow and outflow 

are secularly reflective. The outflow boundary is calculated through interpolation of 

states of interior cells. 
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Figure 3-17. Contour of density at 4.0s for Mach 3 flow over a foeward facing step in a 

wind tunnel. Compare the 2nd order QDS-2N method (top) and QDS-N2 method 

(middle) for 600×200 grids. (buttom) The result of Keats and Lien [Keats et al., 2004] 
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Figure 3-18. Structure of the perturbed region behind a diffracting shock wave, defined 

by from Skews [1967]. 
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Figure 3-19. The output for compulsory figure for shock wave diffraction (by Takayama 

[1991]). 
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Figure 3-20. The initial geometry of the shock wave diffraction over degree sharp 

corner.  
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Figure 3-21. Schematic of moving shock waves [Anderson, 1990]. 
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(a) 

(b)                                                               (c) 

Figure 3-22. The density contours of the shock wave diffracting over 90 degree sharp 

corner with 400 × 400 grid, Ms=1.5. (a) the second-order TVD extension of Godunov 

method [Takayama et al., 1991]. (b) the second-order QDS-2N method and (c) the 

second-order QDS-N2 method with MC linter, CFL=0.5. 
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(a) 

 

(b)      (c) 

Figure 3-23. Schlieren image of the shock wave diffracting over a 90 degree sharp 

corner, Ms=1.5.(a) the experimental result made form Ritzerfeldet al. [Takayama et al., 

1991]. (b) second-order QDS-2N method and (c) QDS-N2 method with 400× 400 cells, 

MC limiter, CFL=0.5. 
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      (a) 

 
(b)     (c) 

Figure 3-24. Vorticity magnitude contours compared (a) exact solution and two result 

using 2nd order (b) QDS 2N method and (c) QDS N2 in 800×800 uniform cells. All 

results are taken the CFL number to 0.1. 
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Figure 3-25. The vorticity profiles along the central line passing through the vortex. The 

comparison contained the exact solution (blue squeal-symbol line), the QDS-N2method 

using160×160 cells (red line), 800×800 cells (black dash-dot line), and 2N method 

using 800×800 cells (purple long-dash line),1600×1600 cells (green doted line). Two 

method s are computed in MC limiter and CFL=0.1 at time 8.0. 
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Figure 3-26. The three-dimensional geometry of the Mach 2 flow over a pillar.  
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(a) 

 
(b) 

Figure 3-27. The Density contour of the Mach 2 flow over a pillar obtained using the 

second-order QDS-N2 method (a) in two-dimension with 200 × 200 cells; (b) in three-

dimension with 200 × 200 × 100 cells. The CFL factor is 0.5 using MINMOD limiter. 
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Figure 3-28. The three-dimensional geometry of the Mach 2 flow over a square block.  
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(a) 

 

(b) 

Figure 3-29.  The Density contour of the Mach 2 flow over a square block obtained 

using the second-order QDS-N2 method with 200 × 200 × 100 cells (a) in x-y surface; 

(b) in x-z surface.  The CFL factor is 0.5 using MINMOD limiter. 
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Figure 3-30. Parallel Performance of a 2D shock-bubble interaction with 2.4 million 

computational Cells. 
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Figure 3-31.Strong scaling performance in the QDS-N2 method with 500,000 cells on 

various massively parallel systems. 
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Figure 3-32.Strong scaling performance in the QDS-N2 method with 2 million cells on 

various massively parallel systems. 
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Figure 3-33.Strong scaling performance in the QDS-N2 method with 12.5 million cells 

on various massively parallel systems. 
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(a) 

(b) 

Figure 4-1 The value of mass flux for the difference of 2N and N2 method. (a) The case 

1 with the gradient 1.0e-5; (b) case 2 with the gradient 1.0e-6. 
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(a) 

(b) 

Figure 4-2.The value of momentum flux in x-direction for the difference of 2N and N2 

method.(a) The case 1 with the gradient 1.0e-5; (b) case 2 with the gradient 1.0e-6. 
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(a) 

 
(b) 

Figure 4-3.The value of momentum flux in y-direction for the difference of 2N and N2 

method.(a) The case 1 with the gradient 1.0e-5; (b) case 2 with the gradient 1.0e-6.  
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(a) 

 
(b) 

Figure 4-4.The value of energy flux for the difference of 2N and N2 method.(a) The 

case 1 with the gradient 1.0e-5; (b) case 2 with the gradient 1.0e-6. 

 

 

 

 



 

 121 

 

 
(a) 

 

 
(b) 

Figure 4-5. The value of energy flux for the difference of 2N and N2 method at the low 

density range.(a) The case 1 with the gradient 1.0e-5; (b) case 2 with the gradient 1.0e-6. 
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(a)        (b) 
 

 

 

 

 

 

 

 

 

(b)        (d) 

Figure 4-6.  Contour profile of Shock-bubble interaction. QDS-N2 2nd order method 

using 1700×500 cells with MC limiter at time of 0.2. (a) Density, (b) temperature, (c) 

velocity in x-direction and (d) velocity in y-direction. 
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(a) 

 

 
(b) 

 
Figure 4-7Shock-bubble Schlieren image with 1700×500 cells at time of 0.2. QDS 2nd 

order (a) 2N scheme with van Leer’s limiter, (b) N2 scheme. 
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 (a) 

 

(b) 

Figure 4-8. The density contour obtianed using (a) the 2N method; (b) the N2 method 

with MC limiter, CFL=0.5, 1700×500 cells. 

  



 

 125 

 
 
 

 
(a) 

 
(b) 

Figure 4-9. The temperature contour obtianed using (a) the 2N method; (b) the N2 

method with MC limiter, CFL=0.5, 1700×500 cells. 
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(a)       (b) 

 
(c)       (d) 

Figure 4-10. contour  profile of N2 method. (a)Density, (b) temperature, (c) velocity in 

x-direction and (d) velocity in y-direction. 
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Figure 4-11. Contour of density at 4.0s for Mach 3 flow over a foeward facing step in a 

wind tunnel. Compare the 2nd order QDS-2N method (top) and QDS-N2 method 

(middle)  for 600×200 grids. (buttom) The result of Keats and Lien [Keats et al., 2004] 
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Figure 4-12. Contour of temperature obtained using second-order QDS-2N (top) and 

QDS-N2 method using 4 simulation particles for Mach 3 flow over a forward facing 

step in a wind tunnel.  
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(a) 

 
(b)      (c) 

Figure 4-13.  Schlieren image of the shock wave diffracting over a 90 degree sharp 

corner, Ms=2.4.(a) The experimental result made form Ritzerfeld et al. [Dyke, 1997]. (b) 

the second-order QDS-2N method,  and (c) QDS-N2 method with 1000×1000 cells, MC 

limiter, CFL=0.2. 
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Figure 4-14. Density contours of Mach 2.4 shock diffraction using the second-order 2N 

method (top) and the N2 method with 1000×1000 uniform grids. The CFL number uses 

0.2 with MC limiter. 
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Figure 4-15. Temperature contours of Mach 2.4 shock diffraction using the second-

order 2N method (top) and the N2 method with 1000×1000 uniform grids. The CFL 

number uses 0.2 with MC limiter. 
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Figure 4-16. Velocity contours of Mach 2.4 shock diffraction using the second-order 2N 

method (top) and the N2 method with 1000×1000 uniform grids in x-direction. The CFL 

number uses 0.2 with MC limiter. 
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