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Abstract—An approach of rapidly computing the projective
width of lanes is presented to predict the projective positions and
widths of lanes. The Lane Marking Extraction Finite State Ma-
chine is designed to extract points with features of lane markings
in the image, and a cubic B-spline is adopted to conduct curve
fitting to reconstruct road geometry. A statistical search algorithm
is also proposed to correctly and adaptively determine thresholds
under various kinds of illumination conditions. Furthermore, the
parameters of the camera in a moving car may change with the
vibration, so a dynamic calibration algorithm is applied to cali-
brate camera parameters and lane widths with the information of
lane projection. Moreover, a fuzzy logic is applied to determine the
situation of occlusion. Finally, a region-of-interest determination
strategy is developed to reduce the search region and to make the
detection more robust with respect to the occlusion on the lane
markings or complicated changes of curves and road boundaries.

Index Terms—Autonomous vehicle, driving assistance, fuzzy
logic, lane detection, vision-based.

I. INTRODUCTION

IN THE DRIVING assistant systems, traffic information can
be acquired by sensors to make driving safe and easy [1],

[2]. For example, vision-based driving assistant systems can
determine positions of lanes and obstacles preceding a host
vehicle, and the detected information can serve as guidance for
driving safety of vehicles [3]–[5]. In the system, the detection of
lane is based on image processing techniques to search for the
road edges or the lane markings [6], [7], and then, the lane in-
formation is applied to the detection of obstacles in determining
obstacle positions [8]–[10]. However, occlusions of obstacles
on lane markings may affect results of lane detection [11].
Therefore, lane detection requires not only fast executive speed
to achieve real-time detection but also a solution to occlusions.

There are many ways that lane detection can be achieved. In
early studies, Dickmanns and Mysliwetz [12] conducted a 3-D
road recognition by adopting horizontal and vertical mapping
models, the approach of extracting features with edge elements,
and recursive estimation techniques. The results were applied to
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their test vehicle (VaMoRs) to function as autonomous vehicle
guidance. Broggi et al. [13], [14] used inverse perspective
mapping (IPM) to transfer a 3-D world coordinate to a 2-D
image coordinate and detected road markings using top-view
images. Kreucher and Lakshmanan [15] suggested detecting
lane markings with frequency-domain features that capture rel-
evant information about edge-oriented features. The objectives
of many studies on lane detection include autonomous vehicle
guidance and driving assistance such as lane-departure-warning
and driver-attention monitoring systems. Some assumptions in
common are as follows: 1) The road is flat or follows a precise
model; 2) the appearance of lane markings follows strict rules;
and 3) the road texture is consistent. The main difficulty in
lane detection is how to recognize roads efficiently in vari-
ous situations, including complex shadowing and changes in
illumination [8], [16]. Furthermore, the vibration of a moving
camera causes changes in camera parameters and thus leads to
errors in geometric transformation. To solve the problem, dy-
namic calibration of cameras is required to improve robustness
[17]–[22].

The task of lane detection can be summarized as two main
sections: 1) the acquisition of features and 2) a road model
for reconstructing road geometry. In addition, to accelerate the
detection and make it robust, some approaches are added such
as narrowing the search region, the determination of region
of interest (ROI), dynamic calibration for the camera, and
position-tracking methods using consecutive images.

The first step of detecting lanes is to extract their features.
On most occasions, there are lane markings on both the left
and the right side of the driving lane, while, sometimes, only
the boundaries of the road exist without any lane marking.
Most parts of the lane markings are like two parallel ribbons
with some variations, for example, being straight or curved,
solid lines or dashed lines, and in the color of white, yellow,
or red. The occlusion of trees and buildings and their shadows
makes it more difficult to detect positions of lanes. In addition,
visibility varying with illumination adds difficulty to detections
[7], [23].

In acquiring features, there are four major types of methods:
pixel-based, edge-detection-based, marking-based, and color-
based methods. The pixel-based type is to classify pixels into
certain domains and to put pixels of the road boundaries
in one category [24]–[26]. The edge-detection-based type in-
volves conducting edge detection in the image first. Then, find
straight lines with Hough transform [27], [28] or adopt an
ant-based approach to start a bottom–up search for possible
path of the road boundary in the image [29]–[32] or determine
search regions by road models for detection of road boundaries
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[33]–[36]. Those two methods are time-consuming and easily
cause errors when complex shadows or obstacle occlusion
exists. The marking-based type is based on features of lane
markings. For example, Bertozzi and Broggi [14] proposed
IPM and black–white–black transitions to detect lane markings.
This method may effectively deal with some situations of
shadows or obstacle occlusions. However, the vibration caused
by the moving vehicle may influence the extrinsic parameters of
the camera and thus arouse unexpected mapping distortions on
images, which may cause errors on lane detection results. The
color-based type is to utilize color information of the road in the
image [26], [37]–[39]. In this way, there is more information
about the lane and better abilities to resist noise. However,
it takes more computation time to extract color features of
interest.

Since shadows of trees or other noises usually exist and some
lane markings are dash lines, the detected features of road
boundaries are often incomplete. Therefore, the methods of
interpolation or curve fitting are needed to reconstruct the road
geometry. Kreucher and Lakshmanan [15] used a deformable
template shape model to detect lanes. They believed that two
sides of a road respectively approximate a quadratic equation,
so they established their coefficients to determine the curvature
and orientation of the road. However, curve fitting cannot
be done by a quadratic equation on the lanes with S-shaped
turns. Therefore, Wang et al. [40] adopted spline interpolation
which can be used in various curves to connect line segments.
However, when there are vehicles in the lane occluding parts
of the lane boundary, some errors may arise, because this ap-
proach found a vanishing point depending on Hough transform
followed by line-length voting. Thus, vehicles on the lanes may
form spurious lines which may influence the determination of
the vanishing line. Furthermore, Hough transform and Canny
edge detector utilized in the approaches of Wang et al. may
take more computation time.

Another issue to promote lane detection efficiency and de-
press noise sensitivity is to set appropriate ROI. Lin et al. [41]
applied the information of both lane boundaries obtained from
initial detection in the first frame to the finding of ROI on
Hough domain. Then, ROI was adopted as search parameters
of lane boundaries in the subsequent frames. The method
can effectively accelerate lane detection process on a straight
lane, but errors may arise on road curves. The method of
Chapuis et al. [6] utilized an initially determined ROI to re-
cursively recognize a probabilistic model to conduct iterative
computation and adopted a training phase to define the best
interesting zone. The initially set ROI is effective in the gen-
eral roads; however, diverse road curves may make the initial
ROI too large on the farther part of the road and thus raise
noise sensitivity. Therefore, an effective method is needed for
adaptive determination of ROI and adjustment to changes of
road curves in the image sequences, and thus, ROI can be
significantly narrowed to obtain more accurate and faster lane
detection results.

This paper applied geometry transformation and a method
of rapid computation of lane width to predict the projective
positions and widths of lanes and markings. Then, an ap-
proach named the Lane Marking Extraction (LME) Finite State

Fig. 1. Projective geometry of a camera model. (a) The mapping of the
Y - and Z-coordinates on the v-coordinate. (b) The mapping of the X- and
Z-coordinates on the u-coordinate.

Machine (FSM) is designed to find lane markings efficiently.
A statistical search algorithm is also proposed to correctly
and adaptively determine thresholds under various illumination
conditions. Furthermore, a dynamic calibration algorithm is
presented to update the information of a camera’s parameters
and lane widths. Moreover, a fuzzy logic scheme is adopted
to judge the correctness of the detected lane markings, and the
results are applied to the selection of knots when reconstructing
road geometry by B-spline. Finally, the ROI determination
strategy is proposed to constrain the search region to make
the detection more robust and fast. Therefore, even though
obstacles occlude parts of the lane markings, road boundaries
can still be reconstructed correctly. Moreover, the relative po-
sitions between lane markings and cameras can be more pre-
cisely estimated with the camera tilt obtained through dynamic
calibration.

This paper is organized as follows. Section II presents image
analyses using a camera model and the approach of dynamic
calibration. Section III describes the proposed approaches to
lane detection, including analyses of lane features, a novel
LME method adopting an FSM, a strategy for determining
ROI, postprocessing by fuzzy reasoning, the determination of
road boundaries by B-spline curve fitting, and overall process of
lane detection. Then, the experimental results of lane detection
and analyses are shown in Section IV. Section V concludes the
paper.

II. CAMERA MODEL WITH DYNAMIC CALIBRATION

The position of any point in the 3-D world coordinates
(X,Y,Z) projected onto a 2-D image plane (u, v) can be
obtained through perspective transformation [23]. According to
an assumption of a flat ground, mapping a point of the ground
plane onto an image plane is a one-to-one transformation. This
transformation of the two coordinates can be employed to
estimate the distance between the camera and any point on the
ground.

A. Camera Model

In our previous work [7], a simple camera model was pre-
sented to estimate lane projection. In this paper, this camera
model is extended. Based on this new model, some techniques
have been developed. Fig. 1 shows the projective geometry of
a camera model, where Ow denotes the origin of the world
coordinates (X,Y,Z) and Oi represents the origin of the image
coordinates (u, v, w). Let λ, p, and h be the focal length of
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the camera, the lens center, and the height between p and Ow,
respectively, so (0, h, 0) would be the lens center in the world
coordinate.

In Fig. 1(a), the parameter α is the tilt angle, representing the
angle between the Z-axis and the optical axis, OiE. In Fig. 1(a),
a point in P1(X, 0, Z) in the world coordinates is mapped onto
v1(u, v) in the image coordinates. The relation between Z and
v is shown as (1), and the vertical distance between P1 and the
camera is OwZ, where

Z = h · tan
((π

2
− α

)
− tan−1

( v

λ

))
. (1)

Fig. 1(b) is a top view of the actual lane. As illus-
trated, A1(X1, 0, Z) is a point on the left lane marking and
B1(X2, 0, Z) is a point on the right one. With the known
Z-coordinate obtained from (1), the X-coordinate determines
where in the u-coordinate A1 and B1 are projected onto. In
Fig. 1(b), the lane width is A1B1 and the width of its projection
in the image is a1b1. Based on similar triangles, the relation
between a1b1 and A1B1 is shown as

a1b1 = A1B1 × λ/Z. (2)

According to (1) and (2), the projective lane width can be
appropriately predicted and can be applied to the following
lane detection process. Similarly, the projective width of lane
markings can also be correctly estimated.

B. Rapid Estimation of the Projective Width

With the known lane width on the world coordinate, the
corresponding projective width of the lane can be computed
by (1) and (2). However, the computation of trigonometric
functions is time-consuming. In this paper, an approach for
rapid estimation of projective lane width is proposed, in which
WWL represents the width of a lane in the world coordinates,
and its associated width of lane projection in the v-coordinate
is wL(v). The relation between wL(v) and the v-coordinate can
be expressed by a linear equation as shown in (3). The approach
can suppress the computation cost of trigonometric functions.
The proof is presented in Appendix A

wL(v) .=
(

WWL

h

)
× v + c (3)

where c is a translation.
In Fig. 2, take the internal parameters of the Hitachi KP-F3

camera for example. The relation between wL(v) and the
v-coordinate is computed by (2) and (3). The physical pixel size
is 7.4 μm(H) × 7.4 μm(V), and the focal length λ = 15 mm.
The height h is 1.32 m, and the lane width is set to be 3.3 m.
The horizontal axis represents the v-coordinate of the lane
projection, while the vertical stands for the projective width.
Line (WA) shows the estimation result of projective lane width
when α = 3◦, and Line (WB) demonstrates the result when
α = 10◦. As shown in Fig. 2, with a fixed parameter of the
camera, the relation between wL(v) and the v-coordinate is

Fig. 2. Relation between wL(v) and the v-coordinate.

linear. To estimate c in (3), let the projective lane width be
w1, when it is projected onto v1. w1 is obtained from the
computation of (1) and (2). Substitute v1 and w1 for v and
wL(v) in (3), respectively, and c is derived from (4). Therefore,
the relation between wL and the v-coordinate can be depicted in
(5). Take two points on the line from the slope in Fig. 2, and the
slope is computed as 2.51. Compared with the slope WWL/h =
2.5 in (3), these two results are very similar. Therefore, the
calculation of (2) and (3) can be replaced with the approach
of rapid computation of the width to reduce computation cost

c =w1 −
(

WWL

h

)
× v1 (4)

wL =
(

WWL

h

)
× v + w1 −

(
WWL

h

)
× v1. (5)

Likewise, the projective width of the lane markings wm can
be shown by

wm(v) .=
(

Wwm

h

)
× v + c1 (6)

where Wwm denotes the actual width of lane markings and c1

is a translation.

C. Dynamic Calibration

In computing lane width with coordinate transformation, if
the tilt angle of the camera is not accurate, huge errors may arise
[19]. However, even though the preset tilt angle of the camera
is known, there are still some errors because of the road bumps
and vibration of moving vehicles. In this paper, an accurate
tilt angle and actual lane width can be obtained by using the
extracted lane markings in each frame.

1) Calibration of the Tilt Angle of Camera: In this paper,
lane markings are supposed to be two parallel lines, and thus,
their intersection Zi would be at infinity. In the image, the
intersection of the extension of the two lane markings is the
vanishing point VP (uvp, vvp), with mappings onto Zi. Accord-
ing to (1), the relation of α, Zi, and vvp is shown as (7).
Substitute (8) into (7), and α is shown as (9). Therefore, α
can be obtained through VP . Furthermore, let the four points
of the Z-coordinate = ZN1, and ZN2 on the left and right lane
markings, i.e., QL1, QL2, QR1, QR2, respectively, mapping
onto PL1, PL2, PR1, and PR2 in the image plane. As shown
in Fig. 3, suppose that the lane width is fixed, QL1QR1 =
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Fig. 3. Estimated vanishing point.

QL2QR2, and the area enclosed by the closed area formed by
the four points will be a parallelogram in the world coordinate.
Extend PL1PL2 and PR1PR2, and the intersection of them is
also a vanishing point, VP . Then, vvp is derived from (10).
In this paper, VP is determined this way to avoid the wrong
calculation caused by the blur or occlusion in the farther part of
the lane marking

α =π/2 − tan−1(vvp/λ) − tan−1(Zi/h) (7)

lim
Zi→∞

tan−1(Zi/h) = π/2 (8)

α = −tan−1(vvp/λ) (9)

vvp =
f2

f1

f1 =
vR1 − vR2

uR1 − uR2
− vL1 − vL2

uL1 − uL2

f2 =
(

uL1vL2 − vL1uL2

uL1 − uL2

)(
vR1 − vR2

uR1 − uR2

)

−
(

vL1 − vL2

uL1 − uL2

)(
uR1vR2 − vR1uR2

uR1 − uR2

)
(10)

where the coordinates of PL1, PL2, PR1, and PR2 are (uL1,
vL1), (uL2, vL2), (uR1, vR1), and (uR2, vR2), respectively.

2) Lane Width Refinement: According to the coordinates of
PL1 and PR1, the associated projective lane width is |uR1 −
uL1|, when projected onto the row at vL1. Substitute |uR1 −
uL1| and vL1 into (1) and (2), and then, the lane width in the
world coordinates A1B1 can be estimated. It shows that the lane
width can be obtained depending on the detected lane markings.
Likewise, the actual width of lane markings can be acquired
by applying the width of detected lane markings. Thus, those
widths can be accurately gained even when they vary with
changes of the environment.

III. LANE DETECTION

Both sides of road markings are supposed to be parallel on
the ground plane, and their widths are assumed to stay stable
or have very slight changes. An approach of extracting lane
markings based on a lane model is presented in this section.

Fig. 4. Lane marking model on a road with lane markings. (a) Actual lane
marking image. (b) The gray-level distribution of (a). (c) The gray-level
distribution of lane markings in the image coordinates. (d) The variance of gray
level in a row of lane marking.

A. Model of Lane Markings

Lane markings usually appear as white, yellow, or red curves
and lines. Their intensity in the image is usually higher than
that of the ground because they reflect more brightness than
road colors. Fig. 4 shows the analysis of a lane marking
model. Fig. 4(a) shows a segment of one lane marking. The
M -coordinate and the N -coordinate denote the horizontal and
vertical coordinates, respectively. Fig. 4(b) shows the gray-
level distribution of the pixels in Fig. 4(a). In these figures,
it can be observed that the gray level of the lane marking is
much higher than that of the ground. Fig. 4(c) shows both the
gray-level ranges of lane markings and ground in the image
coordinates. As can be seen, GmH and GmL, respectively,
denote the lane marking’s largest and smallest gray levels, while
GgH and GgL, respectively, represent the largest and smallest
of the ground’s gray levels. Fig. 4(d) shows the gradient model
of the gray level in each row of the lane marking, where Dg1

is the range of ground’s gray level. Dg2 is the range of lane
markings’ gray level. Dg12 is the difference between GmL and
GgH . A statistical search algorithm is proposed to adaptively
determine Dg1, Dg2, and Dg12. They are adaptively adjusted
under various illumination conditions. Dg1, Dg2, and Dg12 can
be determined by (11), and the detailed explanation is given in
Appendix B. The zone between M1 and M2 is the left border
of the lane named BS with an upward trend of the gray level,
while the zone between M3 and M4 is the right border called
BT whose gray levels decline. These features of lane markings
are called bright feature transition (BFT). The distance between
BS and BT represents the length of BFT and is named by BL.
A lane marking can be reconstructed by searching the BFT row
by row and connecting BFTs in each row

Dg1 = GgH − GgL

Dg2 = GmH − GmL

Dg12 = GmL − GgH . (11)
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Fig. 5. Lane marking’s relative positions to PA and PB in different states.

B. Lane Marking Extraction

In the image, the BFT approximates to the width of the lane
markings and is possibly part of the lane markings. In this
section, an LME FSM is proposed to extract BFT similar to
the lane marking width in the images. First, set a BFT detector
in each row of the image, which contains two detection points
PA and PB . The distance between these two points is dm,
as shown in (12). When this BFT detector moves from the
left to the right, the difference of the gray levels between PA

and PB , named Gd(PA, PB), will be updated with respect
to the detector’s move to the right. When the BFT detector
moves one pixel rightward, Gd(PA, PB) is accordingly updated
and served as a new input signal of the LME FSM. If bright
features are found within the current range of the BFT detector
where PA and PB are moving, the input of Gd(PA, PB) would
accordingly transfer the state of LME FSM from State 0 to
State 5. Therefore, bright features in every row can be detected
according to the transitions of the processing state. If its BL

approximates to the computed width of the lane marking wm

obtained from (6), then the likelihood of its being an actual lane
marking is high

dm(N) =
1
2
× wm(N) (12)

where wm(N) denotes the projective width of the lane marking
in the N -coordinate. dm(N) represents the distance between
PA and PB in the N th row. The distance is set to be half of the
estimated width of the lane marking wm in the same row. When
BFT detector is applied to detect lane markings, the associated
change of Gd(PA, PB) passing the lane markings can be shown
as in Fig. 5.

In Fig. 5, when lane markings appear in the image, the range
of Gd(PA, PB) will change by five states, associated with BFT
detector shifting rightward across a lane marking. In State 1,
the interval where the detector is located is a lowland zone. In
State 2, the part where the detector lies in is an uphill zone.
In State 3, the section with the detector is a plateau zone. In
State 4, the detector is in a downhill zone. In State 5, the de-
tector comes back to the lowland zone. Table I shows the range
of predictive Gd in those states. If Gd(PA, PB)=Gd1, Gd(PA,
PB) can match the Gd condition |Gd| < Dg1. Likewise, the Gd

condition of Gd2, Gd3, and Gd4 can be obtained from Table I in
the same way. Fig. 6 shows the state diagram. The transitional
operations of the five states are described as follows.

TABLE I
DENOTATIONS OF THE FIVE Gd CONDITIONS

Fig. 6. State diagram of LME FSM.

In State 0, LME FSM is in the initial state, and no bright
feature has been detected yet in this state. When Gd(PA, PB)
satisfies the condition Gd1, BFT is possibly within the search
region and FSM moves into State 1.

In State 1, the BFT detector lies in the lowland zone. If
Gd(PA, PB) still meets Gd1, then the next state will still be
State 1; if Gd(PA, PB) satisfies Gd2, FSM will move into
State 2. Otherwise, FSM goes back to State 0.

In State 2, the BFT detector is located in the uphill zone.
If Gd(PA, PB) meets Gd2, the next state will still be State 2;
if Gd(PA, PB) meets Gd3, FSM will move into State 3. Other-
wise, FSM goes back to State 0. As soon as FSM enters State 2,
PA may shift to the region between M1 and M2 as in Fig. 4(d),
the left border between the lane marking and the gray ground.
In this condition, the gray level of PA would be larger than that
of PB .

In State 3, the BFT detector is in the plateau zone. If
Gd(PA, PB) meets Gd3, the next state is still State 3; if
Gd(PA, PB) meets Gd4, FSM will move into State 4. Other-
wise, FSM goes back to State 0. When FSM enters State 3, the
BFT detector may have already shifted to the range between
M2 and M3 as in Fig. 4(d). Now, the gray level of PA is similar
to that of PB .

In State 4, the BFT detector is situated in the downhill zone.
If Gd(PA, PB) meets Gd4, next state is State 4; if Gd(PA, PB)
meets Gd1, FSM moves into State 5. Otherwise, FSM goes back
to State 0. When FSM moves into State 4, PA may have shifted
to the zone between M3 and M4 as in Fig. 4(d), the right border
between the lane marking and the road ground. Then, the gray
level of PA is smaller than that of PB .

In State 5, the BFT detector returns to the lowland zone. If
FSM enters State 5, that means BFT has been detected and FSM
will go back to State 0 to find the next BFT.

LME FSM is efficient in detecting BFT and computing BL.
It is also suitable for hardware implementation.
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C. ROI Determination Strategy

In this section, two properties of changes about positions
of lane boundaries are introduced. 1) Longitudinal consistency
property: From the nearby position to the farther position, lane
markings appear to be lines or curves which are either contin-
uous or dashed. Therefore, by observing the positions of the
closer lane markings, the possible positions of the farther parts
can be accordingly predicted. 2) Lateral consistency property:
Vehicles often move in the middle of the lane, so lateral changes
of a lane marking’s position are usually slight in the sequential
road-scene images. Thus, the possible position of the lane
marking in the next frame can be predicted according to that
of the current one. The predictive area of the lane marking
is the ROI, also the search area of BFT. If the ROI is too
large, the computation cost would increase and the ROI may
be stained by noise. On the other hand, if the ROI is too small,
the actual position of the lane marking may not be appropriately
covered. Therefore, the ROI should be the smallest area which
can still include the area of the lane markings. Strategies for
determining the ROI and three determination approaches to the
ROI are presented in the subsection. Choosing the best strategy
for the associated case is an effective way to reduce errors and
computation costs

Roi(M,Np)={I(M,N)|M ∈ [ML,MR]; N =Np} . (13)

The ROI is illustrated as (13), where I(M,N) represents the
image coordinates. The M -coordinate and the N -coordinate,
respectively, denote the horizontal and vertical coordinates.
Here, the left bottom coordinate is defined as the origin shown
in Fig. 8. The ROI in the Npth row is denoted by Roi(Mp, Np),
where M ∈ [ML,MR], with ML being the left border within
the range and MR being the right border. Our proposed lane
detection method consists of two modes. 1) Single mode: Only
the information of the current processed frame is considered.
2) Sequential mode: Using the temporal information of the
previous frames to shrink the search area of the current frame so
as to accelerate the detection and reduce errors. The selection
of the suitable ROI determining strategies for different models
is given as follows.

1) In every row, the sequence of ROI is determined by fol-
lowing the bottom–up direction on the N -coordinate and
starting from N = 0 row to the preset terminal row Ne.

2) In single mode, the fixed area approach, as depicted in
Section III-C1, is first applied to determine the front parts
of two lane markings, and then, the coordinates of the de-
tected lane markings are considered the start coordinates
of the left and right lane markings. Afterward, the ROI of
the farther parts of lane markings is determined by the
expansion approach to follow the bottom–up direction
on N -coordinate to the terminal Ne, as described in
Section III-C2.

3) In sequential mode, the ROI is determined by the tracking
approach as described in Section III-C3. If the informa-
tion of the previous frames does not include Ne, then the
expansion approach will be conducted to continue the
detection to reach Ne.

Fig. 7. Flowchart of the selection of ROI determination strategies.

Fig. 8. ROI of fixed area.

The flowchart of selecting ROI determination strategies is
shown in Fig. 7.

The following sections will present three kinds of ROI deci-
sion approaches.

1) Fixed Area Approach: This approach is to detect the po-
sition of the nearby part of the lane marking. As shown in Fig. 8,
the determination of the coordinates N1 and N2 was based on
their mappings onto the two Z-coordinates, respectively, 8 and
25 m on the ground plane because lane markings in this range
are usually very clear. After determining N1 and N2, let the two
hexagonal areas be the ROI, and these sections are divided by
the v-axis. The BFTs detected on the left side are the possible
positions of the left lane markings, and the ones on the right
side are the possible right lane markings. The search area of this
approach is larger, and it is used when no temporal information
of lane markings is available.

2) Expansion Approach: This approach includes two
phases. Phase 1 is a bidirectional expansion scheme. In this
scheme, the latest detected position of the BFT is considered as
a center, and then, the ROI is determined by expanding row by
row along the direction of the N -coordinate, as shown in (14)
and (15). Fig. 9(a) shows the ROI set in this way, where the ROI
is the area within the two blue dotted lines along the two sides of
the lane markings. In this way, the ROI is set by linear equations
as in (14) and (15). The approach is simple and rapid, but the
ROI may expand when the distance between the current row
and the last row is extended. Phase 2 is a tendency expansion
scheme. This approach is performed by computing the slope of
the lane marking to predict its trend and expanding along the
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Fig. 9. (a) Bidirectional expansion scheme. (b) Tendency expansion scheme.

direction of the N -coordinate to determine the ROI. The com-
putation method of the slope is shown in Fig. 9(b), where mb

denotes the slope of the lane marking. If a BFT is detected con-
tinuously in some rows, but cannot be detected in the following
several consecutive rows, then let MBS(NL) be the BS on the
latest BFT and let MBS1 be the BS on the BFT in the previous
rows of MBS(NL). Then, the slope of the lane markings can
be computed using these two points. With the slope, the ROI
can be determined by (16) and (17). The ROI calculated in this
way is smaller, where the lane marking is included; however,
the computational cost of the slope may increase.

ML =
(
MBS(NL) − Ds

)
− (Np − NL) × tan(βs1) (14)

where
MBS(NL) M -coordinate of BS in the NL row;
NL row where BFT is latest detected;
Ds fixed shift range;
βs1 fixed angle of expansion.

MR =
(
MBT (NL) + Ds

)
+ (Np − NL) × tan(βs1) (15)

where
MBT (NL) M -coordinate of BT in the NL row.

ML =
(
MBS(NL) − Ds

)
+ (Np − NL)/mL (16)

where
MBS(NL) = (mBS , NL);
mBS denotes the M -coordinate of BS;
MBS1 = (m1, n1) represents another MBS ;

β = tan−1
(

NL−n1
mBS−m1

)
;

mL = tan(β + βs2);
βs2 fixed angle of expansion.

MR =
(
MBT (NL) + Ds

)
+ (Np − NL)/mR (17)

where
mR = tan(β − βs2).
3) Tracking Approach: Based on the lane marking features

found in previous frames, the ROI can be found by (18) and
(19). The ROI area found in this way is the smallest one, so
it is the best choice for the sequential prediction mode of lane
detection

ML = MBS(t−1) − Ds (18)

Fig. 10. Acquisition of BFT in a fixed area.

Fig. 11. Select of ROI and its range. (a)–(c) The application of the expansion
approach. (d) The adoption of the tracking approach.

where
MBS(t−1) M -coordinate of BS in the Np row in the

previous frame;
t current frame, and t − 1 is the last frame.

MR = MBT (t−1) + Ds (19)

where
MBT (t−1) M -coordinate of BT in the Np row in the

previous frame.
Fig. 10 shows the acquisition of BFT in a fixed area. The

detection distance is set to be about 25 m. In the figure, black
lines appear only when the distance between BFT on both sides
approximates to wL. Fig. 11 shows the selection of the ROI and
its range. In (a), (b) and (c), the two-side expansion phase and
tendency expansion phase are applied in turn, while the tracking
approach is adopted in (d). In Fig. 11, the black lines on the two
sides of the lane markings, respectively, represent ML and MR

of those rows. On the lane markings of both sides, there are
totally four big black points that denote PL1, PL2, PR1, and
PR2 for calibrating α.
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D. Postprocessing by Fuzzy Reasoning

Some objects or noises whose features are similar to those
of lane markings may exist in the image, so they may also
be extracted simultaneously. In this paper, a postprocessing
scheme based on fuzzy logic is adopted to determine whether
the potential objects are actual lane markings in the extracted
image. The following rules are applied to the identification of
lane markings.

1) When the length of BFT BL(N) detected in the N th
row of the image approximates closer to the computed
width of the lane markings wm(N), the BFT has a
higher possibility of being part of the lane markings. A
triangular fuzzy number is used as a membership grade
μ1 to represent the degrees of their similarity as in (20),
shown at the bottom of the page, where BL(N) means the
length of BFT first detected by FSM in the N th row and
wm(N) denotes the width of the lane marking projected
on the N th row by (6). The notation μ1(N) represents
the degrees of similarity between wm(N) and BL(N).
The larger the membership grade is, the higher possibility
it is for the detected BFT to be part of the actual lane
markings. Otherwise, a smaller membership grade reveals
that the detected BFT may just be noise.

2) Given a row on the image plane, a pair of BFTs is detected
within ROI of both the left and right lane markings, and
then, the two BFTs may possibly be parts of the lane
markings. The possibility rises with the distance between
the two BFTs DB getting more close to the computed
width of the projected lane marking wL. The notation
μ2(N) represents the degrees of similarity between DB

and wL in (21), shown at the bottom of the page, where
DB(N) represents the distance between two BFTs on the
N th row and wL(N) means the projective lane width on
the N th row by (3). μ2(N) denotes the similarity between
DB(N) and wL(N).

3) Suppose that all lane markings are longitudinally con-
sistent; thus, the BFT detected within the ROI on the
left or right lane markings should be parts of them. Let
the range of the projective lane markings be the rows
of [0, Ne] on the N -coordinate, then each BFT detected
within the area can obtain a membership grade μ1. Let
a fuzzy set FM denote the set of μ1 on the same lane
marking as in (22). All membership grades in FM should

be similar since they belong to the BFT on the same
lane marking. Therefore, if μ1 of one BFT matches the
condition in (23), then the BFT is regarded as a part of
the lane marking; otherwise, it is noise

FM = {(N,μ1(N)) |N ∈ [0, Ne]} (22)

where Ne represents the preset terminal row.

|μ1(N) − μm| ≤ σ2
1 (23)

where μm is the mean of μ1(N) in fuzzy set FM and σ2
1

is the variance of μ1(N) in fuzzy set FM .
4) Let lane projections be within the range [0, Ne] in the

N -coordinate. If BFT is detected within the left and right
areas of the ROI, then μ2(N) can be obtain by (21). Let
fuzzy set FL denote the set of μ2 on the same lane as
in (24). Supposing that changes of lane width are slight,
then each μ2(N) computed based on the BFT should be
similar. The existence of lane markings on both sides
in the N row is determined by (25) and μ2(N). Ac-
cordingly, whether lane markings exist on both sides can
be determined. Moreover, search the BFTs on the same
lane marking which meet rule 3, and next, compute the
associated Z-coordinates of those BFTs’ v-coordinates
by (1). If the Z-coordinates between two neighboring
BFTs exceed 10 m, it means that the area between them
is occluded. Then, one side of the lane marking should be
compensated by the other side

FL = {(N,μ2(N)) |N ∈ [0, Ne]} (24)

|μ2(N) − μ2m| ≤ σ2
2 (25)

where μ2m is the mean of μ2(N) in the fuzzy set FL and
σ2

2 is the variance of μ2(N) in the fuzzy set FL.

The application of the rules is described as follows: First,
compute μ1(N) and μ2(N) by rules 1 and 2. Then, choose
the BFT which satisfies most conditions of lane markings by
rule 3. Next, rule 4 is applied to judge whether there is any
occlusion on the left and right lane markings. Finally, determine
the positions of knots based on rules 3 and 4 to reconstruct the
lane as shown in the following section.

μ1(N) =

⎧⎨
⎩

(BL(N) − wm(N)) /wm(N) + 1, if 0 ≤ BL(N) ≤ wm(N)
− (BL(N) − wm(N)) /wm(N) + 1, if wm(N) ≤ BL(N) ≤ 2 × wm(N)
0, otherwise

(20)

μ2(N) =

⎧⎨
⎩

2 × (DB(N) − wL(N)) /wL(N) + 1, if 0.5 × wL(N) ≤ DB(N) ≤ wL(N)
−2 × (DB(N) − wL(N)) /wL(N) + 1, if wL(N) ≤ DB(N) ≤ 1.5 × wL(N)
0, otherwise

(21)



WU et al.: DYNAMIC CALIBRATION AND OCCLUSION HANDLING ALGORITHMS FOR LANE TRACKING 1765

Fig. 12. B-spline model for lane marking detection.

E. Reconstruction Process of Occluded Lanes

Some lane markings are dashed lines, and some may be
occluded by obstacles; thus, the detected lane markings cannot
completely reveal the driving lane in the whole area. To over-
come these issues, the B-spline technique is used to interpolate
the positions of lane markings to obtain the complete lane
boundaries. The cubic B-spline is a smooth curve with contin-
uous second-order derivatives [40], [42]–[44], fitting curves of
various lane markings by using several control points.

1) Decision of Control Points: Let Ci be the ith control
point in the control point set Cs, as expressed in (26), and then,
the cubic B-spline is B(s), as shown in (27), which contains
connected curve segments gi(s)

Cs = {Ci|i = 1, 2, . . . , n} (26)

where the coordinates of Ci are (Mi, Ni). Mi and Ni, re-
spectively, represent the M -coordinate and N -coordinate in the
image. i ranges from 1 to n, which means that the number of
control points is n

B(s) =
∑

i

gi(s), 0 ≤ s ≤ 1 (27)

where

gi(s) = (Mi(s), Ni(s))

= [s3 + s2 + s + 1]

⎡
⎢⎣
− 1

6
1
2 − 1

2
1
6

1
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2 0
− 1

2 0 1
2 0

1
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1
6 0

⎤
⎥⎦

⎡
⎢⎣

Ci−1

Ci

Ci+1

Ci+2

⎤
⎥⎦

with i = 2, 3, . . . , n − 2. The range of i is from 2 to n − 2,
which shows that, when there are n control points, the number
of curves is n − 3. s is a normalized curve length.

Lane markings may appear in straight lines, curves, and even
S-shape turns. Therefore, it is difficult to completely model lane
markings with various forms with linear or quadratic equation
models. In this paper, a B-spline of four connected curve
segments gi(s) is applied to fitting the curved lane markings.
A variety of lane markings with general characteristics can be
modeled by this approach. To enable B-spline to go through the
first and last control points, the two control points are repeated
three times. Five control points are determined to be C1, C1,
C1, C2, C3, C4, C5, C5, C5 as shown in Fig. 12. The connected
points of the curves are named knot points. The positions of the
control points can be determined according to those of the knot
points. Substituting s = 0 into (27), the results in (28) can be
obtained. Then, based on (28), three knot points k2, k3, and k4

Fig. 13. Procedures of the lane marking detection.

on the lane marking are selected between C1 and C5 to obtain
three control points C2, C3, and C4 as shown in (29)

Ci =
3
2
ki −

1
4
× (Ci−1 + Ci+1) (28)

where i = 2, 3, . . . , n − 2,

⎡
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⎤
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⎡
⎢⎢⎢⎣

C1

k2
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k4

C5

⎤
⎥⎥⎥⎦ . (29)

2) Decision of Knot Points: In this paper, a lane mark-
ing is formed by connecting five knot points using B-spline.
The position of the second knot point k2 is selected by the
mapping position in the image of the lane marking near the
Z-coordinate = 10 m; in the third knot k3, the associated
Z-coordinate is about 25 m. The lines passing through k3 and
k2 intersect at the bottom row of the image coordinate, and the
associated intersection is denoted by k1. Knot 5 is at the end of
the lane marking, and knot 4 is chosen from a suitable place
between knots 3 and 5 which is the most probable position
of a BFT on a lane marking by fuzzy rule. Knots 1 and 5 are
determined by this way as well, and they are the control points
C1 and C5.

F. Overall Process of Lane Detection

In single mode, the fixed area ROI approach is first applied
to the LME FSM process to extract lane markings. After lane
markings are found, the lane width and the tilt angle of the cam-
era are updated by the dynamic calibration process, and then,
the expansion ROI approach is applied again to extracting lane
markings. This process can provide more accurate detection
results. Because the calibration of the camera tilt angle and lane
widths requires information of two lane markings, therefore, in
the single mode, the information of the two lane markings in
the fixed ROI is needed. If only the information of the left or
right lane marking is available, it is possible that one side of
the lane marking is occluded. The information of this occluded
lane marking can be compensated by the information of the
previously detected lane width and the other side of the lane
marking. The procedures are shown in Fig. 13.

Step 1) Selection of Modes: Apply the sequential mode
when the previous information is logical and ade-
quate; otherwise, use the single mode.

Step 2) ROI determination strategy.
Step 3) Detection of BFT by LME FSM.
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TABLE II
COMPUTATION TIMINGS UNDER DIFFERENT CONDITIONS BY THE

PROPOSED SYSTEM

Fig. 14. Result of the dynamic calibration of camera’s tilt angle.

Step 4) Fuzzy reasoning: Determine the points used to cal-
ibrate the tilt angle of the camera and the knots
adopted to reconstruct road boundaries.

Step 5) Dynamic calibration and promotion of robustness:
Apply dynamic calibration to obtain the actual
tilt angle of camera and lane width. Then, ap-
ply the Kalman filters to stabilize the calibration
results.

Step 6) Reconstruction of road boundaries: Reconstruct
road boundaries using B-spline, and then, go back
to Step 1).

IV. EXPERIMENTAL RESULTS

In this section, comparative experiments on lane detection
are conducted. This paper utilizes a Hitachi KP-F3 camera
mounted in an experimental intelligent car with a physical pixel
size of 7.4 μm(H) × 7.4 μm(V), and the image resolution is
644 × 493. The height of the camera is set at 1.32 m, the
focal length f = 15 mm, and tilt angle α is about 4◦. Our
experimental system is a PC with CPU Pentium IV 2.8 GHz.
Suppose that the width of the lane marking is 0.1 m and the
initial lane width is 3.3 m. The farthest distance of detection
is 60 m, and the associated computed projective width of the
lane marking is about 5 pixels. The experimental conditions
and results are shown in Table II. The average computation time
that the proposed method required is less than 13 ms per frame.
Under general conditions, the average detection rate can reach
above 98% and exceed 95% when there are occlusions.

A. Lane Detection Results

1) Dynamic Calibration of Camera Tilt Angle: Fig. 14
shows the result of the dynamic calibration of camera’s tilt
angle. In the figure, “Original” means the calculated tilt angle
in each frame. “Kalman” denotes the processed tilt angle by
a Kalman filter. The Kalman filter can provide the robust
estimation of the current tilt angles through recursive functions

Fig. 15. Estimated lane width in every frame.

TABLE III
RESULTS OF LANE WIDTH ESTIMATION IN THE FOUR SITUATIONS

[45], [46]. This process provides the more stable and robust
calibration results of the tilt angle for the lane detection system.
Fig. 14 shows that the change of “Kalman” gets smaller.

2) Lane Width Refinement: In lane detection, the initial
settings are based on general width of lanes, i.e., 3–5 m, and
the actual lane widths will later be adaptively refined based
on the detected positions of the left and right lane markings in
the image. Moreover, to promote the robustness of lane width
refinement, a Kalman filter is also adopted to stabilize and
refine the process of lane width estimation.

Fig. 15 shows the estimated lane widths with different pre-
set widths and with/without Kalman filters in the sequential
frames, where curves “(A) original 3 m” and “(C) original 5 m,”
respectively, represent the estimated lane widths with initial
lane widths in 3 and 5 m. The initial lane widths of curves (A)
and (C) were, respectively, set to be 3 and 5 m. The curves “(B)
Kalman 3 m” and “(D) Kalman 5 m,” respectively, denote the
estimated lane widths of curves (A) and (C) refined by the
Kalman filter. By observing those results, the estimated lane
widths with different preset lane widths will finally be refined to
be closer to the actual ones. The application of the Kalman filter
ensures stable and robust estimate results of the lane widths in
the world coordinates. Table III displays the mean, standard
deviation, and average errors of the estimated lane widths in
curves (A), (B), (C), and (D), and the actual lane width is
about 3.4 m. As can be seen, the estimated results in sequential
frames are all quite close to the actual lane width, and all of
the average errors are under 0.024 m. Furthermore, when the
initially set lane width changes within the range of 3–5 m,
the obtained estimation results are still similar and close to the
actual lane widths. The results show that our approach of lane
width refining is robust and accurate.

3) Results of Adaptation to Illumination Conditions: Dg1,
Dg2, and Dg12 are determined by a statistical search algorithm
based on the following two principles: 1) All gray levels of
lane markings are higher than those of the ground, and 2) the
variations of the gray levels of the ground and lane markings
are within a reasonably fixed range. To demonstrate that our
approaches are robust and adaptive to changes of illumination,
variations of the gray levels of lane markings and grounds under
four different illuminations are analyzed. The results are shown
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Fig. 16. Gray level of lane markings under different illumination. (a) General light. (b) Strong sunshine. (c) Dusk. (d) Night.

TABLE IV
OBTAINED PARAMETERS UNDER DIFFERENT ILLUMINATION CONDITIONS

Fig. 17. (a) Curves. (b) A slope. (c) and (d) A cloverleaf interchange.

in Fig. 16, where lanes and lane markings display the different
gray level and contrast under different illumination. As can be
seen from this fact, the principles 1) and 2) are appropriately
followed under different illumination conditions, and the pro-
posed statistical search algorithm can correctly and adaptively
determine Dg1, Dg2, and Dg12 under various illumination
conditions. Table IV displays Dg1, Dg2, and Dg12 obtained

Fig. 18. (a)–(f) Situations of occlusion with different obstacles.

from the four sample road scenes under different illumination
conditions in Fig. 16, where Dg1, Dg2, and Dg12 are adaptively
adjusted with various illuminations. As shown in Figs. 17–21,
the adaptively determined thresholds can provide satisfactory
lane detection results under different illumination conditions.
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Fig. 19. Results of the nighttime road scene. (a) and (b) With road lamps.
(c) and (d) Without road lamps.

Fig. 20. Detection results under strong sunlight. (a) and (b) No occlusion of
vehicles. (c) and (d) With the occlusion of a vehicle.

Fig. 17 shows the conditions of curves and a slope. In these
figures, the roads with sharp curves and slopes can still be
described by B-spline with four segments. Fig. 18 shows the
situations with occlusion of obstacles, where the near front
vehicle occluded lane markings of both sides (a), the vehicle
occluded the right lane marking (b), the vehicle moved back to
the road center (c), the vehicle occluded the left lane marking
(d), the vehicles approached lane markings (e), and another
vehicle occluded the right lane marking (f). The figures prove
that the problem of occlusion can be solved by the proposed
approaches. The information of the side which is not occluded
can be used to substitute the occluded one. When both sides
of the lane markings are occluded, then only the parts that are
not occluded can be shown. Fig. 19 shows the detection results
at night in situations including roads with or without road
lamps and textures on the road surface, and roads with curves

Fig. 21. Detection result of a motorcycle inside and outside the lane.
(a) Inside. (b) Outside.

Fig. 22. Results of the road scene that the lane markings are occluded with
shadows, signs of braking. (a) Results of Jung and Kelber’s approach [28].
(b) Results of the proposed approach.

and occlusion. Figs. 17–19 show that FSM can extract BFT
in various situations regardless of the influences of patterns
on the road surface and illumination, and B-spline with four
sections is able to display a variety of road conditions. Fig. 20
shows the detection result under strong sunlight. The proposed
approach can correctly detect the lane markings without being
influenced by the strong sunlight. Fig. 21(a) and (b) shows
a clear discrimination of a motorcycle inside and outside the
lane, respectively. Obstacles inside the lane will affect driving
safety. However, most contemporary lane detection approaches
may not be able to discriminate whether an obstacle is inside
or outside the lane when obstacles appear near the lane, so they
cannot correctly detect lane markings. In contrast, the proposed
approach can resolve the problem of obstacle occlusion to
reconstruct correct lane markings.

B. Comparative Performance Evaluation

In this section, comparative experiments on Jung and
Kelber’s method [28] and the proposed approach are conducted
to evaluate their performances on lane detection under different
conditions. The following is a comparison of acquiring BFT by
FSM and other approaches.

Figs. 22–26 show the comparative results of Jung and
Kelber’s [28] and our proposed approaches under different
situations, where (a) is Jung and Kelber’s approach and (b) is
our proposed approach. Fig. 22 shows the condition that the
lane markings are occluded with shadows, signs of braking, and
other vehicles. Jung and Kelber adopted Sobel edge features
of lane boundaries, which left large gradient points in the
thresholded edge image, as shown in Fig. 22(a), where the sur-
rounding vehicle may cause false detection in the edge feature
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Fig. 23. Results of road scenes with a curve lane and occlusion. (a) Results of
Jung and Kelber’s approach [28]. (b) Results of the proposed approach.

Fig. 24. Results of the road scene under strong sunlight. (a) Results of Jung
and Kelber’s approach [28]. (b) Results of the proposed approach.

Fig. 25. Results of the nighttime road scene. (a) Results of Jung and Kelber’s
approach [28]. (b) Results of the proposed approach.

extraction process and result in detective errors. As shown in
Fig. 22(b), the proposed approach successfully extracts features
of lane markings with the BFT detector. The end part of the
reconstructed lane boundary is the position of the last BFT,
and the missing part at the end of the left-side lane marking
is reconstructed with the information of the lane width and of
the right-side lane marking.

Fig. 23 shows the results of the road scene consisted of curve
lane and occlusion. Fig. 23(a) shows that the lane markings
obtained by Jung and Kelber’s method have errors occurring on
curves of roads when edge features of vehicles are misdetected
as the lane markings. Fig. 23(b) shows that our BFT approach
can compensate the influences of appearing vehicles. Fig. 24
shows the detection results under strong sunlight. In Fig. 24(a),
the edge features of vehicles associated with significant gra-
dient features under strong sunlight cause possibly wrong de-
termination of lane features. As shown in Fig. 24(b), with the
BFT method, the proposed approach will not capture positions
without lane markings to avoid wrong judgments in the far end
of the lane. Therefore, lane boundaries can be reconstructed
successfully.

Fig. 26. Results of the road scene with an S-shaped lane. (a) and (b) Results of
Jung and Kelber’s approach [28]. (c) and (d) Results of the proposed approach.

Fig. 25 shows the detection results at night. In Fig. 25(a),
larger gradient arouses detection errors because of the opposite
vehicle light and the light reflection of the preceding vehicle.
The proposed approach can detect lane markings efficiently and
correctly, as shown in Fig. 25(b), because it takes projective
sizes and sequences of lane markings into consideration in
capturing BFT.

Fig. 26 shows the detection results of the road scene with an
S-shape lane. In Fig. 26(a), the S-shaped lane cannot be com-
pletely reconstructed when Jung and Kelber applied a linear-
parabolic model to reconstruct lane boundaries. Fig. 26(b)
shows that the proposed approach can successfully reconstruct
the S-shaped lane boundary.

As can be seen from the aforementioned comparative re-
sults, the proposed approach can obtain satisfactory detection
results under different situations, such as different illumination
conditions, curve roads, and occlusions. This is because lane
markings are extracted by the proposed BFT detector and the
extraction errors can be effectively reduced by the proposed
dynamic calibration method, ROI determination strategy, and
fuzzy rule-based scheme, and road boundaries are effectively
reconstructed by the B-spline technique. Moreover, when both
sides of lane markings do not exist, or are occluded at the
farther parts of the road, the range of the reconstructed lane
is determined by the actual visible position of the lane, so the
information obtained from previous frames will not be misused
to reconstruct false lanes and driving safety can be improved.

C. Comparative Analysis

In this section, a comparative analysis on the methods of
Jung and Kelber [28], Jeong and Nedevschi [25], Cheng et al.
[39], and the proposed method is provided as shown in Table V.
Cheng et al. adopted a color camera, while others used mono-
chrome cameras. The color camera is able to obtain information
on colors in the images, but it costs more and takes more time
to process more information.
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TABLE V
COMPARISON OF DIFFERENT ALGORITHMS

As to the extraction methods, Jung and Kelber [28] used a
Sobel mask to conduct edge extraction, in which processing one
pixel required ten additions, four multiplications, and a Hough
transform to carry out line detection, so this method suffers high
computation cost. Jeong and Nedevschi [25] applied a Gabor
filter, which required complicated computational cost for expo-
nential and trigonometric functions. Cheng et al. [39] adopted
three multivariable Gaussian distributions to show three classes
of lane-mark colors and computed the probability distribution
of pixels belonging to the lane-mark, which also involved more
complicated computations to analyze three color classes. The
proposed LME FSM needs only simple linear equation in every
row to determine widths of lanes and lane markings, and it
only requires one subtraction to calculate the difference in
gray level of each pixel. Therefore, the computation cost is
the smallest and is applicable to an embedded system. The
proposed ROI could effectively choose a suitable strategy to
narrow down the detection area and greatly reduce the time for
detection. Furthermore, only the proposed approaches obtained
both the camera tilt angle and the lane width with the infor-
mation of images and solved the problem of moving camera
vibrations and occlusion on the lane marking without the in-
formation of colors. Moreover, the proposed approach adopts
the statistical search algorithm to determine the gray-level
range of ground and lane markings, so it enables BFT detector
to effectively extract lane markings in various conditions of
illumination.

V. CONCLUSION

To apply lane detection for the guidance of autonomous vehi-
cles and driving assistance system, a variety of road conditions
should be considered, such as changes of illumination, a great
diversity of road curvature, and difference in the configura-
tions of lane markings like continuous, dashed, or occluded
road markings. A lane detection system should have high
efficiency, robustness, and reliability to make driving at high
speed safe.

This paper has proposed a rapid computation of lane width
to predict the projective positions and widths of lane markings,
and an approach LME FSM is designed to extract lane markings
efficiently. A statistical search algorithm is also proposed to cor-
rectly and adaptively determine thresholds under various kinds
of illumination conditions. Moreover, a dynamic calibration
algorithm is applied to update the information of a camera’s
parameters and lane width. In addition, a method of fuzzy

reasoning is adopted to determine whether the lane marking
is continuous, dashed, or occluded. Finally, the strategy of
the ROI is proposed to narrow the search region and make
the detection more robust. The experimental results show that
even when obstacles occlude parts of the lane markings or lane
markings have complicated curvature, road boundaries still can
be reconstructed correctly by B-spline with four segments. In
conclusion, even with the information of lanes, there are still
many threats from surrounding vehicles and obstacles when
driving. Thus, the function of obstacle detection should be
combined with lane detection systems to make the guidance of
autonomous vehicles and driving assistance systems better in
the future.

APPENDIX A
RELATION OF PROJECTED WIDTH AND V -COORDINATE

If the lane width is WWL and the projective lane width on the
v-coordinate is wL(v), then (A-1) can be obtained from (1) and
(2). Equation (A-2) means the first derivative for v to wL(v).
Let ξ=(π/2 − α), and τ =tan−1(v/λ). Then, (A-4) and (A-5)
can be derived from (A-2) and (A-3). Since the camera was
placed in a vehicle to detect the lane, when α is large, the farther
part of the lane would not appear in the image. Therefore, α
is usually between 0◦ and 6◦. In this paper, let the tilt angle
α < 10◦, and then, the value of ξ will be larger than 80◦, and
they are substituted in (A-6) and (A-7). Next, they are applied
to (A-5) to obtain (A-8) and (A-9). Equation (A-9) shows that
the first derivative of wL(v) is a constant. The relation between
wL(v) and v can be expressed by a linear equation such as (3)

WL(v) =
WwL × λ

h · tan
((

π
2 − α

)
− tan−1

(
v
λ

)) (A-1)

dWL(v)
dv

=
WwL × λ

h

×
(
d cot

((π

2
− α

)
− tan−1

( v

λ

)) /
dv

)

(A-2)

cot(ξ − τ) =
1 + tan(ξ) × tan(τ)

tan(ξ) − tan(τ)
(A-3)

dWL(v)
dv

=
WWL × λ

h
×

(
κ × dω

dv
− ω × dκ

dv

) /
κ2

(A-4)
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where ω = 1 + tan(ξ) × tan(τ); κ = tan(ξ) × tan(τ),

dWL(v)
dv

=
WWL × λ

h

×
(
tan(ξ) − v

λ

)
× tan(ξ)

λ −
(
1 + tan(ξ) × v

λ

)
×

(
− 1

λ

)
(
tan(ξ) − v

λ

)2

(A-5)

tan(ξ) � v

λ
(A-6)

tan(ξ) × tan(ξ)
λ

�
(

v

λ2
× tan(ξ) +

1
λ

)
(A-7)

dWL(v)
dv

≈ WWL × λ

h
×

(tan(ξ)) × tan(ξ)
λ

(tan(ξ))2
(A-8)

dWL(v)
dv

≈ WWL

h
. (A-9)

APPENDIX B
ADAPTATION TO ILLUMINATION CONDITIONS

The proposed statistical search algorithm determines GgH ,
GgL, GmH , and GmL in the ROI for detecting lane markings.
The procedures for determining the thresholds in each row are
given as follows.

Step 1) Setting search windows: Set a window in each N th
row to search for GgH , GgL, GmH , and GmL. The
width of the search window on the N th row Ww(N)
is shown as (B-1). Here, the left border of the search
window is also the left border of the search region of
the lane marking on the N th row

Ww(N) =
{

5 × wm(N), if (SR ≥ 5 × wm(N))
SR, otherwise

(B-1)

where wm(N) is the estimated width of the lane
marking on the N th row and SR denotes the search
region.

Step 2) Finding zone of lane marking and ground in the
window: Since the gray levels of lane markings
are obviously higher than those of the ground, the
distribution of gray levels in a search window can
be divided into three main zones if a row of lane
markings appears close to the center of the search
window. The three main zones in sequence are a
lowland, a plateau, and again a lowland of gray-
level groups. These three zones can be determined
according to the representative bright and dark levels
of the lane markings and the ground, which are, re-
spectively, the average gray levels of lane markings
and the ground. Let G denote the gray levels in M -
coordinate in the search window, as shown in (B-2).
Compute the pixel number of the lane marking and
the ground in the window, respectively, Am and Ag ,
by (B-3). Let a set L be the ordered gray levels of
the pixels in G, which are arranged from large to
small as in (B-4), where L1 and LAw, respectively,
represent the highest and lowest gray levels in G.

Fig. 27. Gray-level distribution with a row of lane marking in the search
window.

Lm is the average gray level of lane markings, i.e.,
the average of the brightest Am pixels with the
highest gray level among the set L. Lg is the average
gray levels of the ground, also the average of the
darkest Ag pixels with the lowest gray level among
L as shown in (B-5). After finding the representative
bright and dark levels of the lane markings and the
ground, three zones of interest can be found based
on the following definitions. In the search window,
the left and right borders of the lane marking, MmL

and MmR, are respectively defined as the leftest and
rightest pixel whose gray levels are larger than Lm.
The left border of ground MgL is defined as the pixel
whose gray level is lower than Lg and being closest
to MmL. The right border of the ground MgR is
defined as the pixel with gray level lower than Lg

and closest to MmR. Fig. 27 shows the gray level
of each pixel in G when a row of the lane marking
exists in the search window. As can be seen, the
plateau zone [MmL,MmR] of the lane marking in
G can be found by Lm, and the lowland zone, union
of [MwL,MgL] and [MgR,MwR], of the ground can
be found by Lg

G
Δ= {GM |M ∈ [MwL,MwR]} (B-2)

where GM denotes the gray level in M -coordinate
and MwL and MwR, respectively, represent the left
and right boundaries of the search window

Am =rmw×Aw rmw =
wm(N)
Ww(N)

Ag =Aw−Am (B-3)

where Aw is the number of pixels in the search
window and rmw denotes the ratio of wm(N) to
Ww(N)

L
Δ= {Lj |j ∈ [1, Aw]} (B-4)

Lm =
1

Am

Am∑
j=1

Lj Lg =
1

Ag

Aw∑
j=Am+1

Lj . (B-5)

Step 3) Determining GmH , GmL, GgH , and GgL: Deter-
mine the highest and lowest gray levels in the
plateau zone, GmH and GmL, using (B-6), and the
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highest and lowest in the lowland zone, GgH and
GgL, by (B-7)

GmH
Δ= max{GM |M ∈ [MmL,MmR]}

GmL
Δ= min{GM |M ∈ [MmL,MmR]} (B-6)

GgH
Δ= max{GM |M ∈{[MwL,MgL]∪[MgR,MwR]}}

GgL
Δ= min{GM |M ∈{[MwL,MgL]∪[MgR,MwR]}}. (B-7)

Step 4) Verifying GmH , GmL, GgH , and GgL: Check
whether the determined GgH , GgL, GmH , and GmL

are correct by verifying that GgH is smaller than
GmL. If so, substitute GgH , GgL, GmH , GmL in
(11) to obtain the corresponding Dg1, Dg2, Dg12 on
this row and go to step 6. Otherwise, go to step 5.

Step 5) Checking whether SR is completely searched: If so,
let Dg1, Dg2, Dg12 in this row be the same as those
in the previous row and go to step 6. Otherwise, shift
the window rightward for the distance of wm(N)
and return to Step 2).

Step 6) Terminate the determination process of the N th
row, and export the results of GmH , GmL, GgH ,
and GgL.
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