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強健性心電信號壓縮演算法之研究 

研究生：黎忠孝指導教授：張文輝 

 

國立交通大學 

電信工程研究所 

 

 

摘要 

因應高齡化社會的未來趨勢，遠距醫療與居家健康照護已經成為先進國家重點發

展的新興服務產業。本論文旨在發展一高效能的心電信號壓縮演算法，以期長時間監

測心臟機能的異常徵兆而防患於未然。演算法的設計需兼顧即時製作與強健性能，前

者強調簡化運算得以快速實現，後者則要求訊源與量測雜訊能分離處理。第一項研究

課題著重於理想傳輸環境下心電訊號壓縮演算法的設計。一維壓縮演算法是採用增益-

形狀碼本結構的多層級向量量化機制，另一種是基於國際影像壓縮標準 JPEG2000 的

二維壓縮演算法。第二項課題旨在探討能有效對抗環境雜訊干擾的信號除噪技術，其

關鍵是參考希伯特-黃轉換理論而設計一兼顧時域及頻域非穩態特性的信號分析技術。

針對 MIT-BIH 心電圖資料庫進行的系統模擬結果顯示，新的方法適用於行動心臟照護

系統的未來應用。 

  

關鍵字：心電信號壓縮，向量量化，小波，信號除噪，希伯特-黃轉換 
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Abstract 

 The volume of ECG data produced by monitoring systems can be quite large, and data 

compression is needed for efficient transmission over mobile networks. We first propose a 

new method based on the multiple stage vector quantization in conjunction with gain-shape 

codebooks. The compression of ECG signals using JPEG2000 is also investigated. The good 

time-frequency localization properties of wavelets make them especially suitable for ECG 

compression applications. Also proposed is a method of ECG signal denoising based on 

Hilbert-Huang transform. This method uses empirical mode decomposition to decompose the 

signal into several intrinsic mode functions (IMFs) and then the noisy IMFs are removed by 

using soft-threshold method. Experiments using the MIT-BIH arrhythmia database illustrate 

that the proposed approach has improved the performance at a high compression ratio. 

  

Keywords: ECG compression, vector quantization, wavelets, signal denosing, Hilbert-

Huang transform 
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Chapter 1  Introduction 

Wireless patient monitoring has been of recent interest to researchers aiming to develop 

ubiquitous health-care systems able to provide personalized medical treatment continuously 

and remotely. To realize such systems, physiological signals such as ECG are measured and 

transmitted wirelessly to the remote server. Due to the limited bandwidth of transmission 

channel, ECG signal compression methodsare used to reduce the large amount of data.  

Every country in the worldis aging with an increase of senior populations. With the 

increase of the elderly (65 years and over), the health-care issues are becoming more and 

more significant. Although traditional medical treatments such as face-to-face consultant 

cannot be replaced, some treatments can be done more efficiently with the biotelemetry. 

According to Table 1.1, heart diseases account for 12.8% of all deaths in 2008. The ECG is a 

graphical representation of the electrical activity in the heart and is useful for cardiac disease 

diagnosis. This motivates the research in designingan ECG monitoring system which can 

compress and transmit the ECG signals to the hospital or clinical center.  

Table 1.1 World’s top ten causes of death (2008) - WHO 

World  Deaths in millions % of deaths 

Ischaemic heart disease 7.25 12.8% 

Stroke and other cerebrovascular disease 6.15 10.8% 

Lower respiratory infections 3.46 6.1% 

Chronic obstructive pulmonary disease 3.28 5.8% 

Diarrhoeal diseases 2.46 4.3% 

HIV/AIDS 1.78 3.1% 

Trachea, bronchus, lung cancers 1.39 2.4% 

Tuberculosis 1.34 2.4% 

Diabetes mellitus 1.26 2.2% 

Road traffic accidents 1.21 2.1% 

 

With the advanced development of mobile cellular network, more services can be 

provided for home health-care applications. A coding technique that provides channel 

efficiency is needed because it helps reduce resources usage, such as data storage space or 
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transmission capacity. This thesis first applies theHilbert-Huang Transform as a method to 

ECG signaldenoising.One dimensional ECG compression is achieved by using theMultistage 

Vector quantization (MSVQ) together with Gain-shape codebooks. Also proposed is a 

compression scheme based on JPEG2000, a well-established standard for compression of still 

images.  

ECG signalsare often corruptedby some noise during the measurement. The main 

interferences include baseline drift, electromyography, interference and frequency 

interference. Since ECG is very weak compared tonoise, digital signal processing methods 

used for signal denoisingarenecessary. Previous research suggests the use of Hilbert-Huang 

Tranform for noise filtering and denoising. The empirical mode decomposition (EMD) and 

the associated Hilbert transform, together designated as the Hilbert-Huang Transformation 

(HHT), are discussed in this work. The expansion of ECG data via the EMD method only has 

only a limited number of intrinsic mode functions(IMFs). Since the smaller scale IMFs can 

be considered as noise-dominated components, soft-threshold denoising methods can be used 

to remove the most noisy IMFs. 

Most of the existing ECG compression methods adopt one-dimensional (1-D) 

representations for ECG signals, including direct waveform coding, transform coding, and 

parameter extraction methods. However, since the ECG signals have both sample-to-sample 

(intra-beat) and beat-to-beat (inter-beat) correlation, some 2-D compression techniques have 

been proposed for higher compression ratios [27,28]. These methods start with a preprocess 

procedure that converts 1-D to 2-D representations through the combined use of QRS 

detection and period normalization. Afterwards, the conventional image codec such as the 

JPEG standard can be used to compress these resulting 2-D arrays. JPEG2000 is the latest 

international standard for compression of still images. Although the JPEG2000 codec is 

designed to compress images, we illustrate that it can also be used to compress other signals. 

http://en.wikipedia.org/wiki/Bandwidth_%28computing%29
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In this thesis, we illustrate how the JPEG2000 codec can be used to compress 

electrocardiogram (ECG) data. In addition, this workalso proposes a method based on 

multiple stage vector quantization (MSVQ) in conjunction with gain-shape codebook 

structure.We will evaluate the performances of the proposed schemes by using the ECG 

records from the MIT-BIH arrhythmia database. 

This thesis is organized as follows. In Chapter 2, the fundamental of ECG signal will be 

reviewed, including the characteristic of ECG and the MIT-BIH database. Chapter 3 

introduces the HHT algorithm and using HHT for denoising. Chapter 4 represents VQ-based 

compression, including GSVQ and MSVQ. Chapter 5is derived by using JPEG2000 

compression codec on ECGsignals. Chapter 6 and Chapter 7 givesthe results of experiments 

and conclusion. 
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Chapter 2  Fundamental of ECG Signals 

Electrocardiography(ECG) is a transthoracic (across the thorax or chest) interpretation 

of the electrical activity of the heart over a period of time, as detected by electrodes attached 

to the surface of the skin and recorded by a device external to the body. The recording 

produced by this noninvasive procedure is termed an ECG. ECG is commonly used to 

measurethe rate and regularity of heartbeats, as well as the size and position of the chambers, 

the presence of any damage to the heart, and the effects of drugs or devices used to regulate 

the heart, such as a pacemaker. The ECG sources used in this research are acquired by using 

an open MIT-BIH database.In this chapter, introduction of ECG measurement and the ECG 

MIT-BIH sources used in our workare discussed. 

2.1 ECGcharacteristic 

Goal of an ECG device is to detect, amplify, and record the electrical changes caused 

bydepolarization and repolarization of heart muscle. Each heart muscle cell, at rest condition, 

has a negative charge across its cell membrane and is called polarized. The negative charge 

can be increased to zero, and the phenomenon of depolarization causes the heart to contract. 

Afterwards, the heart muscle cell will be recharged, called repolarization, which makes the 

heart to expand. A cardiac cycle begins when the sinoatrial node (SA) generates the impulse, 

which will run through the heart. The conducting system of the heart can be summarized as 

follows: 

1. The impulse generated from SA node will signal the muscle in the atria to beat, 

resulting in contraction,during which the blood is pushed from atria into ventricles. 

2. The impulse propagates to atrioventricular(AV) node and then delays for about 1 

millisecond to allow the blood to fill the ventricles. 

http://en.wikipedia.org/wiki/Human_thorax
http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Electrode
http://en.wikipedia.org/wiki/Non-invasive_%28medical%29
http://en.wikipedia.org/wiki/Artificial_pacemaker
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3. The impulse propagates to the ventricles through the right bundle branch (RBB), 

the left bundle branch (LBB), and other nerves. Thisresultsin the ventricular 

contraction, during which the blood is pushed to the body. 

4. The muscle cells are recharged (repolarization) and it expands the atrial so that the 

blood is allowed to return to the heart. Then, the next heartbeat repeats. 

A typical cardiac cycle (ECG cycle) is composed of a P wave, a QRS complex, and a T 

wave. In addition, there are U wave and J wave within an ECG cycle, but their amplitudesare 

so low that they are often ignored. Different types of wave reflect the different stages of the 

heartbeats. A detailed description of each wave and its duration are shown in Fig2.1and 

Table2.1. ECG is the most important tool to diagnose any damage to the heart. Symptoms 

like arrhythmia and myocardial infarction can be easily detected through ECG. For example, 

hyperacute T waves indicate that acute myocardial infarction may occur. 

 

PR 

interval

S

Q

P

R

T

ST segment

QRS 

complex

RR interval

S

Q

P
T

R

 

Figure 2.1 Typical cardiac cycle. 
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Table 2.1 Descriptions of waves and durations. 

Name Descriptions Duration 

P wave Represents theatrial depolarization. Shorter than 0.12 seconds 

PR interval 
The interval between the points of the P 

wave to Q wave. 

Longer than 0.12 seconds and 

shorter than 0.2 seconds. 

QRS complex 
Represents the ventricular depolarization 

and atrial repolarization. 

Longer than 0.08 seconds and 

shorter than 0.12 seconds. 

ST segment 
The period during which the ventricles are 

depolarized. 

Longer than 0.08 seconds and 

shorter than 0.12 seconds 

T wave 
The last wave of a normal cardiac cycle, 

representing the ventricular repolarization. 
Shorter than 0.16 seconds 

RR interval The interval between two R waves. 
Longer than 0.6 seconds and 

shorter than 1.2 seconds 

 

While the heartbeats are caused by a series of electrical activities in the heart, we can 

collect and record these signals by attaching electrodes on the surface of the skin. When 

measuring ECG, usually more than two electrodes are used and they can be combined into a 

pair whose output is called a lead. The most common clinically-used one is 12-lead ECG 

where ten electrodes are used. Each electrode has a specific label (name), including RA, LA, 

RL, LL, V1, V2, V3, V4, V5, and V6. The placements and labels of electrodes are illustrated 

inFig2.2 andTable 2.2, respectively. 
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RA LA

RL LL

(a) (b)
 

Figure 2.2 Placements of electrodes 

 

Table 2.2 Placements of electrodes 

Electrodes’ label Placement 

RA On the right arm. 

LA On the left arm. 

RL On the right leg. 

LL On the left leg. 

V1 In the space, between rib 4 and rib 5, to the right side of the breastbone. 

V2 In the space, between rib 4 and rib 5, to the left side of the breastbone. 

V3 In the place between lead V2 and lead V4. 

V4 In the space between rib 5 and rib 6, and on an imaginary line extended 

from the collarbone’s midpoint. 

V5 In the place between lead V4 and lead V6. 

V6 In the space horizontally even with lead V4 and V5, and on an imaginary 

line extended from the middle of the armpit. 
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The twelve leads contain sixprecordial leads (V1~V6) in the horizontal plane, three 

standard limb leads (I, II, III), and three augmented limb leads (aVR, aVL, aVF) in the frontal 

plane.The twelve leads can also be divided into two types: bipolar and unipolar. While the 

former has one positive and one negative pole, the latter has two poles with the negative 

onemade of signals from many other electrodes. For example, leads I, II, and III are bipolar 

leads, while others are unipolar leads. Thedefinitions of twelve leads are given as below. 

1. Lead aVR: the positive electrode is on the right arm and the negative one is a 

combination of two electrodes on the left arm and left leg. 

 
 ( ) / 2RA LA LLLead aVR V V V    (2.1) 

2. LeadaVL: the positive electrode is on the left arm and the negative one is a 

combination of two electrodes on the right arm and left leg. 

 
 ( ) / 2LA RA LLLead aVL V V V    (2.2) 

3. Lead aVF: the positive electrode is on the leftleg and the negative one is a 

combination of two electrodes on the left arm and right arm. 

 
 ( ) / 2LL LA RALead aVF V V V    (2.3) 

4. Lead I: the positive electrode is on the leftarm and the negative one is on the right 

arm. 

 
 ( )LA RALead I V V   (2.4) 

5. Lead II: the positive electrode is on the leftleg and the negative one is on the right 

arm. 

 
 ( )LL RALead II V V   (2.5) 

6. Lead III: the positive electrode is on the leftleg and the negative one is on the left 

arm. 

 
 ( )LL LALead III V V   (2.6) 
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Of the 12 leads in total, each records the electrical activity of the heart from a different 

perspective, which also correlates to different anatomical areas of the heart for the purpose of 

identifying acute coronary ischemia or injury. Two leads that look at neighbouring anatomical 

areas of the heart are said to be contiguous. The relevance of this is in determining whether 

an abnormality on the ECG is likely to represent true disease or a spurious finding. 

Modern ECG monitors offer multiple filters for signal processing. The most common 

settings are monitor mode and diagnostic mode. In monitor mode, the low-frequency filter is 

set at either 0.5Hz or 1Hz and the high-frequency filter is set at 40Hz. This limits artifacts for 

routine cardiac rhythm monitoring. The high-pass filter helps reduce wandering baseline and 

the low-pass filter helps reduce 50- or 60-Hz power line noise. 

2.2 MIT-BIHECGdatabase 

The MIT-BIH Arrhythmia Database was the first generally available set of standard test 

material for evaluation of arrhythmia detectors, and it has been used for that purpose as well 

as for basic research into cardiac dynamics at about 500 sites worldwide since 1980. Together 

with the American Heart Association (AHA) Database, it played an interesting role for 

evaluating automated arrhythmia analysis in research community. The ECG recordings came 

from the Beth Israel Deaconess Medical Center and were further digitized and annotated by a 

group at Massachusetts Institute of Technology. The database contains a total of 48 half-hour 

data, two-channel, 24-hour, obtainedfrom 47 subjects.The subjects included 25men aged 32 

to 89 years and 22 womenaged 23 to 89 years; approximately 60%of the subjects were 

inpatients.One channel is a modified limb II (MLII), and the other is usually V1 but can be 

V2, V4, or V5. The sample rate is 360Hz and each sample point is scalar quantized into 11 

bits.  

Most MIT-BIH databases include one or more sets of annotations for each recording. 

Annotations are labels that point to specific locations within a recording and describe events 
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at those locations. The annotators were instructed to useall evidence available from both 

signals toidentify every detectable QRS complex. For example, many of the recordings that 

contain ECG signals have annotations that indicate the times of occurrence and types of each 

individual heart beat. The standard set of annotation codes was originally defined for ECGs, 

and includes both beat annotations and non-beat annotations. Most MIT-BIH databases use 

these codes(annotation) as described below.  

Table 2.3 Beat annotations: 

Code Description 

N Normal beat (displayed as "·") 

L Left bundle branch block beat 

R Right bundle branch block beat 

B Bundle branch block beat (unspecified) 

A Atrial premature beat 

a Aberrated atrial premature beat 

J Nodal (junctional) premature beat 

S Supraventricular premature or ectopic beat (atrial or nodal) 

V Premature ventricular contraction 

r R-on-T premature ventricular contraction 

F Fusion of ventricular and normal beat 

e Atrial escape beat 

j Nodal (junctional) escape beat 

n Supraventricular escape beat (atrial or nodal) 

E Ventricular escape beat 

/ Paced beat 

f Fusion of paced and normal beat 

Q Unclassifiable beat 

? Beat not classified during learning 
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Table 2.4 Non-beat annotations: 

Code Description 

[ Start of ventricular flutter/fibrillation 

! Ventricular flutter wave 

] End of ventricular flutter/fibrillation 

x Non-conducted P-wave (blocked APC) 

( Waveform onset 

) Waveform end 

p Peak of P-wave 

t Peak of T-wave 

u Peak of U-wave 

` PQ junction 

' J-point 

^ (Non-captured) pacemaker artifact 

| Isolated QRS-like artifact  

~ Change in signal quality  

+ Rhythm change  

s ST segment change  

T T-wave change  

* Systole 

D Diastole 

= Measurement annotation 

“ Comment annotation 

@ Link to external data 

 

As shown in Fig 2.3, “A” and“”represent atrial premature beat and normal beats and 

can be seen in MIT-100. 

  

http://www.physionet.org/physiobank/annotations.shtml#noise
http://www.physionet.org/physiobank/annotations.shtml#noise
http://www.physionet.org/physiobank/annotations.shtml#aux
http://www.physionet.org/physiobank/annotations.shtml#aux
http://www.physionet.org/physiobank/annotations.shtml#aux
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Figure 2.3 MIT-100 waveform 

As shown in Fig 2.4 – Fig 2.6, several annotations are combined in MIT 205 with “F” 

and “V”, or with only specific annotation such as “L” inMIT-207 and “R” in MIT-118. 

 

 

Figure 2.4 MIT-205 waveform 

 

Figure 2.5 MIT-207 waveform 

 

Figure 2.6 MIT-118 
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Chapter 3  Hilbert-Huang Transform for ECG Denoising 

ECG signals are very weak compared to the measurement noise, so that some analysis 

tools are needed for signal denoising. Hilbert-Huang Transform (HHT) has become a 

powerful tool for signal analysis, since its introduction in 1996. This is due to its ability to 

extract periodic components which are embedded in a certain signal. This chapter briefly 

introduces HHT and its aplications to ECG signal denoising, especially on high frequencies 

denoising.  

3.1  Hilbert-Huang Transform 

Traditional data analysis methods are derived by assuming that the signals are linear and 

stationary. In recent years some new methods have been proposed which apply an adaptive 

basis to analyze nonstationary and nonlinear data. Among them, HHT seems to be a good 

approach which matches all the requirements. 

The HHT consists of two parts: empirical mode decomposition (EMD) followed by 

Hilbert spectral analysis (HAS). For nonlinearand nonstationary data,this method provides a 

powerful analysis, especially for time-frequency analysis and energy representations. In 

addition, theHHT displays the physical meanings of signals under investigation. The power 

of the method is verified by experiment and its applications have been widely studied. 

3.1.1 Empirical mode decomposition (EMD) 

As discussed by Huang et al[20], EMD is the first step to deal with data from 

nonstationary and nonlinear processes. The decomposition is based on the simple assumption 

that any data is composed of different intrinsic modes functions (IMF). Each IMF, linear or 

nonlinear, represents a simple oscillation, which has the same number of extrema and zero-

crossings. At any given time, the data may have many different coexisting modes of 

oscillation, one superimposing on the others. Each of these oscillatory modes IMF must meet 
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the following two conditions: 

(1) In the whole data set, an IMF with the number of zero and extreme crossings must 

equal or differ at most by one  

(2) At the random time, the mean value of two envelopes which are defined by the local 

maximum and local minimum need to be zero. On the time axis, this implies that the 

envelopes are symmetric. 

With the definition of the IMF, we can observe that IMF is typical of an oscillatory mode. 

The IMF not only represents constant amplitude and frequency, as each harmonic component 

does, but also has a variable amplitude and frequency as functions of time.  

The procedure of producing IMFs starts with finding local maximum and minimum of 

the signal. The up and down of the signal are calculated by cubic spline interpolation. The 

average value of the curve’s maxima and minima is called 1m with relation to ( )x t  as: 

    1 1( )x t m t h t   (3.1) 

The first component 1h is checked to see if it satisfies the above-mentioned two conditions. If 

not satisfied, we treat 1h  as original data and repeat the above process to obtain 

 1 11 11( ) ( ) ( )h t m t h t 
 (3.2) 

This calculation is repeated till we find out 1kh ,  

 
       1 11 1 k kk

h t m t h t


   (3.3) 

which satisfies the two conditions and is designed as the first IMF    1 1kc t h t . It means 1c  

should contain the shortest periodic component of the signal.  

After taking 1c  out of the original data, we have the residue, 

    1 1( )x t c t R t   (3.4) 

Since the residue still contains the long-cycle variations in the data, it will be treated as the 
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new data followed by the filtering process. This procedure is repeated with all 
iR  

            1 2 2 1,..., n n nR t c t R t R t c t R t     (3.5) 

The process can be stopped when  nR t becomes so small that no more IMFs can be 

extracted or when nR becomes a single function. By summing up the IMFs, the ( )x t  can be 

represented by:  

    
1

( )
n

i n

i

x t c t R t


   (3.6) 

By decomposing a data into n-empirical modes, the whole EMD can be considered as the 

mean trend or the scale processing with each IMF representing the characteristics of each 

scale. In other words, the IMF eliminates the nonstationary character of the original signal. 

3.1.2 Hilbert Transform 

Having obtained the IMF components, the Hilbert transform process is performed on 

every IMF to obtain a new time series ( )iy t  in the transform domain as follow 

 
1 ( ')

( ) '
'

i
i

c t
y t p dt

t t


  (3.7) 

With this definition, a complex series ( )iz t  is formed in terms of 

 ( )( ) ( ) ( ) ( ) j t

i i i i iz t c t jy t a t e     (3.8) 

where the amplitude of ( )iz t  will be: 

 2 2( ) ( ) ( )i i ia t c t y t   (3.9) 

and phase 

 
( )

( ) arctan
( )

i
i

i

y t
t

c t


 
  

 
 (3.10) 

In addition, instantaneous  frequency is calculated by 
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( )

( ) i
i

d t
t

dt




 
  
 

 (3.11) 

Unlike the FFT,  ia t  and  i t  derived by HHT are functions of time t, so the HHT can 

characterize the variation of power with time. 

3.2  HHT-based denoising 

After EMD on the noisy signal are conducted, the energy of the IMFs is analyzed to 

separate the IMF components into signal-dominated parts and noise-dominated parts. By 

exploiting the fact that the scale of the IMFs components is dramatically increasing, the 

energy of IMFs of Gauusian white noise will reduce as the number of decomposition 

increases. With this approach, the denoising processing based on HHT will be performed by 

applying filtering on each IMF.  

A. Energy analysis 

Following the work of [24-25] the energy of ( )x t  can be represented as 

  2
T

t i

E a t


  (3.12) 

According to the observation of N.E.Huang [20], when the energy approaches the lowest 

point, this point is considered as the boundary between the most noisy part and signal part. 

When the energy of iIMF  lower than 1iIMF , iIMF  is considered to be the boundary. 

B. Soft-threshold denoising process 

Soft-threshold denoising method is proposedby Donohoet. al.[21-23].Each IMF 

component dominated by the Gaussian white noise must carry out soft-thresholddenoising 

process, and the corresponding threshold is 

  2logi ithr N  (3.13) 

where N is the length of each IMF. 2

i is the noise variance in each IMF and is calculated by 
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the equation / 0.6745i iMAD  . 
iMAD is the absoluate median deviation of the i-th layer 

iIMF  

    i i iMAD median abs IMF median IMF   (3.14) 

After all IMFs are applied with soft-threshold denoising process, we reconstruct the denoised 

signal by overlaying the EMD. 
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Chapter 4  VQ-based ECG Compression 

Vector quantization (VQ) is a lossy data compression method based on the principle of 

block coding. It is a fixed-to-fixed length algorithm. In the earlier days, the design of a vector 

quantizer (VQ) is considered to be a challenging problem due to the need for multi-

dimensional integration. In 1980, Linde, Buzo, and Gray (LBG) proposed a VQ codebook 

construction algorithm based on a training sequence, which bypasses the need for multi-

dimensional integration. 

4.1  Vector Quantization 

Extensive studies of vector quantizers or multidimensionalquantizershave long been 

performed by many researchers [1-5]. The design of optimal vector quantizers fromempirical 

data were proposed byLinde, Buzo, and Gray [6] using a clustering approach. This algorithm 

is now commonlyreferred to as the LBG algorithm. A vector quantizer can bedefined as a 

mapping Q of K-dimensional Euclidean space 
kR into a finite subset Yof 

kR . Thus, 

 : KQ R Y  (4.1) 

where  ; 1,2,...,iY x i N  is a set of N reproductionvectors.As shown in Fig 4.1, the VQ can 

also be seenas a combination of two functions: an encoder, which representsthe input vector 

xwith an index of the reproductionvector specified by  Q x , and a decoder, which uses 

thisindex to generate the reproduction vector ˆ
ix . Thebest mapping Qis the one which 

minimizes a distortionmeasure  ,d x x which represents the penalty or costassociated with 

reproducing vectors xby x . TheLBG algorithm and other variations of this algorithm are 

derived basedupon this minimization, using a training set as the signal. 

One simple distortion measure for waveform coding is thesquare error distortion given 

by 

http://www.data-compression.com/theory.shtml#theory
http://www.data-compression.com/theory.shtml#theory
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    
1

2 2

0

,
K

j j

j

d x x x x x x




     (4.2) 

A weighted mean square error (WMSE) distortion can also be used [7]. Other error distortion 

measures have also beensuggested, but they are too expensive computationally forpractical 

implementation. One problem with vector quantizationis that the encoder needs to searchthe 

whole codebook in order to identify the nearest vector template matchingto an input vector. 

The most important part which cosumes the most time is VQ codebook design.The goal 

in designing an optimal vector quantizer is toobtain a codebook consisting of N reproduction 

vectors, suchthat it minimizes the expected distortion. Optimality is said tobe achieved if 

there is no other quantizer that can achieve theminimum expected distortion. Lloyd [8] 

proposed an iterativenonvariational technique known as his “Method I” for thedesign of 

scalar quantizers. Linde et al [9]. extendedLloyds’ basic approach to the general case of 

vector quantizers. 

Let the expected distortion be approximated by the time-averagedsquare error distortion 

given by  

     
1

0

1
, ,

N

i i

i

D x q x d x x
N





   (4.3) 

The LBG algorithm for an unknown distribution training sequenceis given as follows 

1) Let N = number of levels; distortion threshold 0  .Assume an initial N level 

reproduction alphabet
0Â , and atraining sequence  ; 0,1,..., 1jx j n  , and m = number of 

iterations, set to zero. 

2) Given  ˆ ; 1,...,m iA y i N  , find the minimumdistortion partition 

   ˆ ; 1,...,m iP A S i N   of thetraining sequence: 
j ix S , if    , ,j i j ld x y d x y , for all 

l.Compute the average distortion 
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       
1

0

ˆ ˆ, 1   min ,
m

n

m m m j
y A

j

D D A P A n d x y





   
    (4.4) 

3) If  1 /m m mD D D    , stop the iteration and use ˆ
mA  asthe final reproduction alphabet; 

otherwise continue. 

4) Find the optimal reproduction alphabet      ˆˆ ˆ ; 1,...,m ix P A x S i N  for  ˆ
mP A  

where 

  
:

1
ˆ

j i

m

i j

j x Si

x S x
S 

   (4.5) 

5) Set  1
ˆ ˆ

m iA x S   increment m to m+ 1, and go to step 2). 

Nearest Neighbor 

Rule
Table Look UpChannel

XXXXXX

XXXXXX

XXXXXX

XXXXXX

XXXXXX

...

...

…

Codebook

XXXXXX

XXXXXX

XXXXXX

XXXXXX

XXXXXX

...

...

…

Codebook

Input 

Vector Index
Output

 

Figure 4.1 The VQ transmission system 

In the above iterative algorithm an initial reproductionalphabet 
0Â  was assumed in 

order to start the algorithm. Thereare a number of techniques to construct the initial codebook. 

Thesimplest technique is to use the first widely spaced words fromthe training sequence. 

Linde et al. [9] used a splittingtechnique where the centroid for the training sequence 

wascalculated and split into two close vectors. The centroids or thereproduction vectors for 

the two partitions were then calculated.Each resulting vector was then split into two vectors 
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andthe above procedure was repeated until an N-level initialreproduction vector was created. 

Splitting was performed byadding a fixed perturbation vector   to each vector 
jy  producing 

two vectors  and j jy y   . 

4.2  VQ for ECG Compression 

The lengths of heart-beat segmentsare different so each ECG cycle has to be normalized 

to a fixed length. A predefined length is obtained by calculating the average length of a large 

training set of ECG cycles. Cubic spline interpolation is then used due to the simplicity of 

construction, and accuracy of evaluation. The block diagram of VQ-based ECG compression 

is shown in Fig 4.2. 

 

Period normalization Vector Quantization Channel
Reconstruct ECG 

Signal
ECG Signal

 

Figure 4.2 VQ-based ECG compression 

4.2.1 Gain-Shape Vector Quantization 

Although conventional VQ works well for its high compression ratio and high 

qualityreconstruction, there exist many variants for different applications.Theconventional 

VQ encoder requires computational complexity proportional to 2Mk , which implies that 

itscomplexity grows exponentially. A large codebook is needed to achieve reasonable 

performance if the dynamic range of the input vector is large, since there should be more 

codewords to represent original input vectors. Therefore a good performance of VQ is 

reached at the cost of high encoding complexity due to the use of a large codebook. To solve 

this problem, gain-shapeVQ(GSVQ) is used in this thesis. GSVQ is a technique that 

decomposes reproduction vector into a scalar gain and a shape vector, which is normalized by 

the root mean-square value of the vector components. This quantity is called the gain and 
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serves as a normalizing scale factor. The normalized input vector is called the shape. 

Thebasic idea of GSVQ is that the same pattern of variation in a vector may recur with a wide 

variety of gain values. It suggests that the probability distribution of the shape is 

approximately independent of the gain. We would then expect very little compromise in 

optimality with a product code structure. Viewing from another perspective, we can say that 

the code is permitted to handle the dynamic range of the vector separately from the shape of 

the vector. GSVQ was introduced in [10] and optimized in [11]. 

Gain 

estimator

Shape VQ 

encoder

Gain VQ 

encoder

Shape VQ 

decoder

Gain VQ 

decoder

÷ ×nX ˆ
nX

n

n

X

g

ng ˆ
ng

ˆ
nY

 Codebook          

 Codebook 

Index j

Index i

SC

gC

 

Figure 4.3 The gain-shape VQ system 

In Gain-shape VQ, the gain ng is the norm of a k-dimensional input vector nX ,  

 

1
2

2

1

k

n n ni

i

g X x


 
   

 
  (4.6) 

and shape nS  refers to the normalized input vector, that is,  

 n n n
S X g  (4.7) 

All the shape vectors in the shape codebook Cs have unit gain. With this product code 

decomposition, the shape vector lies on the surface of a hypersphere in k-dimensional space 

and is therefore easier to quantize than the original vector X. In order to determine the 

optimal encoding structure, we begin by examiningthe performance criteria. Here we assume 

the squared errordistortion measure 
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  
2

ˆ ˆˆ ˆ,d X gS X gS   (4.8) 

where ĝ  is the quantized version of g and Ŝ  is the quantized version of theshape S. The gain 

and shape codebooks are denoted by Cg and Cswith sizes Ng and Ns, respectively. Expanding 

this expression gives 

    2 2ˆ ˆˆ ˆ ˆ, 2 td X gS X g g X S    (4.9) 

This distortion can be minimized over ĝ  and Ŝ  in two steps. First select the shape 

vector S which minimizes the third term, that is, pick the Ŝ  that maximizes ˆtX S . Note that 

ĝ  is always positive and its value does not influence the choice of Ŝ . It is also important to 

note that the input vector need not be itself gain normalized in order to choose the best shape 

vector. Such normalization would involve division by the input gain and would significantly 

increase the encoder complexity. The maximum correlation selection obviates any such 

computation. Once the shape codeword is chosen, select the ĝ  to minimize the resulting 

function of ĝ , thus 

       
2 22 22 ˆ ˆ ˆˆ ˆ ˆ ˆ2 t t tX g g X S X g X S g X S       (4.10) 

which is accomplished by chosing ĝ  to minimize 

 
2

ˆˆ tg X S 
 

 (4.11) 

for the previously chosen (unit norm) S. Note that the second step requires only a standard 

scalar quantization operation, where the gain nearest to the quantity ˆtX S is selected fromthe 

gain codebook. 

The optimal encoding rule is a two-step procedure, where the first step involves a single 

feature (the shape) and one codebook. The second step depends on the first step in its 

computation of the nearest neighbor for the second feature (the gain) in its codebook. In 
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effect, the first step affects the distortion measure used to compute the second step. Note that 

this is the reverse of the mean-removed VQ where the scalar parameter is quantized followed 

by the residual (corresponding to the shape) quantized. This procedure can also be seen to 

yield the optimal (nearest neighbor) product codeword by observing that 

      2 2

ˆ ˆˆˆ,

ˆ ˆˆ ˆ ˆ ˆmin 2 min 2 maxt t

gS g S
g g X S g g X S    (4.12) 

Both the encoder and decoder of the gain-shapequantizerare shown in Fig 4.4 and 4.5 

We next consider the task of codebook design for gain-shape VQ. We begin with a 

training setT of input vectors, ix , each of which realizes the random vector X. The 

objectiveis to find the shape and gain codebooks that minimize the averagedistortion incurred 

in encoding the training vectors. There are several variations of the Lloyd algorithm by 

whichthis task can be accomplished [11], but we focus on the basic onewith good properties. 

A Gain-shape VQ is completely described by three objects: 

 The gain codebook  ˆ ; 1,2,...,g i gC g i N  , 

 The shape codebook  ˆ ; 1,2,...,S j SC S j N  , and 

 A partition  , ; 1,2,..., ; 1,2,...,i j g sR R i N j N   of g sN N  cells describing the 

encoder, that is, if ,i jx R , then x is mapped into (i,j) and the resulting 

reproduction is formed from the shape-gain vector  ˆˆ ,i jg S . We express this as 

  ˆ
ig x g and   ˆ

jS x S . 
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Figure 4.4 Gain-shape VQ (a) encoder (b)decoder 

4.2.2 Multistage VQ 

In some cases, ECG signals have a wide variation of gain or of mean values, then shape-

gain or mean-removed VQ methods are not likely to be very helpful. This motivates own 

research into ECG compression using other variants of VQ. If the dimension is quite large, 

partitioned VQ would certainly solve the complexity problem but might severely degrade 

performance when there is substantial statistical interdependence between different 

subvectors. If we are concerned with storage as well as search complexity, then tree-
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structured VQ and classified VQ are not helpful. Furthermore, transform VQ may be of 

limited use if the degree of achievable compaction still results in a high vector dimension.  

One alternative technique that has proved valuable in speech and image coding 

applications is the multistage or cascaded VQ [12]. The basic idea of multistage VQ (MSVQ) 

is to divide the encoding task into successive stages, where the first stage performs a coarse 

quantization of the input vector using a small codebook. Then, a second stage quantizer 

operates on the error vector between the original and first stagequantizer’s output. The 

quantized error vector provides a second approximation to the original input vector, thereby 

leading to a refined representation of the input. We first consider the special case of two-stage 

VQ as illustrated in Fig 4.5. The input vector X is quantized by first stage vector quantizer 

denoted by 1Q . The quantized approximation 
1X̂  is then subtracted from Xto produce the 

error vector 2E . This error vector is then applied to a second vector quantizer 2Q , yielding 

the quantized output
2Ê . The overall approximation X̂ to the input X is formed by summing 

the first and second approximations, 
1X̂ and 

2Ê . The encoder for this MSVQ scheme 

transmits a pair of indexes specifying the selected code vectors for each stage.The decoder 

performs two table lookups and then sums the two code vectors. 

+nX ˆ
nX

1Q

2Q +
+

+

+

_

2E

1X̂

2Ê

1X̂

 

Figure 4.5 The Two-Stage MSVQ system 

By inspection of the figure it may be seen that the input-output error isequal to the 

quantization error introduced by the second stage, 
2 2

ˆ ˆX X E E   . From this equation it 
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can be readily seen that the signal toquantizing noise power ratio in dB (SNR) for the two 

stage quantizer isgiven by 1 2    SNR SNR SNR  , where 
iSNR is the SNR for the i-

thquantizer. In comparison with a single quantizer with thesame total number of bits, a two-

stage quantizer has the advantage that thecodebook size of each stage is considerably reduced 

so that both the storagerequirement and the search complexity are substantially lowered. 

Theprice paid for this advantage is an inevitable reduction in the overall SNRachieved with 

two stages.The general MSVQ method can be generalized by induction fromthe two-stage 

scheme. By replacing the box labeled 2Q in Fig4.5, witha two-stage VQ structure, we obtain 

3-stage VQ. By replacing the last stageof an m-stage structure, we increase the number of 

stages to m + 1.  

An ECG compression technique is suggested in this thesis thattakes into consideration 

both dynamic range of the input vector, as well as light complexity of the reconstruction. In 

practice, multistage coders oftenhave only two and occasionally three stages. As far as we 

know, there hasbeen no report of a coding system using four or more stages.In our work, the 

dynamic range isreduced by using Gain-shape VQas the first stage. The second stage 

quantizeristhen used toquantize the first stage error vector to provide a further refinement as 

shown in Fig 4.6.The encoder transmits indexes 1 2 3, ,I I I to the decoder, which then performs 

a table-lookup in the respective codebooks and forms the multiply and sum as Fig 3.8. The 

complexity is reduced from 
1 1

m m

i i

i i

N N N
 

   . Thus both the complexity and storage 

requirementscan be greatly reduced using multistage GSVQ. 
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Figure 4.6 The proposed ECG compression system: (a) the encoder, (b) the decoder 
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Chapter 5  JPEG2000-Based ECG Compression 

With the increasing use of multimedia technologies, image compression requires higher 

performance as well as new features. To address this need in the specific area of still image 

encoding, a new standard the JPEG2000is currently being developed. It is not only intended 

to provide rate-distortion and subjective image quality performance superior to existing 

standards, but also to provide features and functionalities that current standards can either not 

address efficiently or in many cases cannot address at all. Lossless and lossy compression, 

embedded lossy to lossless coding, progressive transmission by pixel accuracy and by 

resolution, robustness to the presence of bit-errors and region-of-interest coding, are some 

representative features. It is interesting to note that JPEG2000 is being designed to address 

the requirements of a diversity of applications, e.g. Internet, color facsimile, printing, 

scanning, digital photography, remote sensing, mobile applications, medical imagery, digital 

library and E-commerce. This chapter presents a brief introduction to JPEG2000, including 

JPEG compressing architecture and its application to ECG signals.  

5.1  JPEG2000 

Since the mid-80s, members from both the International Telecommunication Union (ITU) 

and the International Organization for Standardization (ISO) have been working together to 

establish a joint international standard for the compression of grayscale and color still images. 

This effort has been known as JPEG, the Joint Photographic Experts Group the “joint” in 

JPEG refers to the collaboration between ITU and ISO. 

The JPEG2000 standard provides a set of features that are of importance to many high-

end and emerging applications. It applications include Internet, color facsimile, printing, 

scanning (consumer and prepress), digital photography, remote sensing, mobile, medical 

imagery, digital libraries/archives and Ecommerce. Each application area imposes some 

requirements that the standard should fulfill. Some ofthe most important features that this 
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standard should possess are the following: 

 Superior low bit-rate performance 

 Lossless and lossy compression 

 Progressive transmission by pixel accuracy andresolution 

 Region-of-Interest Coding 

 Random codestream access and processing 

 Robustness to bit-errors 

 Open architecture 

 Content-based description 

 Side channel spatial information(transparency) 

 Protective image security 

 Continuous-tone and bi-level compression 

Forward

Transform
Quantization

Entropy 

Encoding
Compressed Image Data

Store

or

Transmit

Inverse

Transform
Dequantization

Entropy 

Decoding
Compressed Image Data

Source Image 

Data

Reconstructed 
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Figure 5.1 The block diagrams of JPEG2000 codec 

The block diagram of the JPEG2000 codec is illustrated in Fig. 5.1. The discrete 

transform is first applied on the source image data. The transform coefficients are then 

quantized and entropy coded, before forming the output codestream (bitstream). The decoder 

is the reverse of the encoder. The codestream is first entropy decoded, dequantizedand inverse 

discrete transformed, thus resulting in the reconstructed image data. 
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Figure 5.2 Tiling, DC level shifting and DWT of each image tile component 

The processing method of JPEG2000 is based on the standard of image tiles,‘Tiling’. 

The term ‘tiling’ refers to the partition of the original (source) image into rectangular 

nonoverlapping blocks (tiles), which are compressed independently, as though they were 

entirely distinct images. All operations, including component mixing, wavelet transform, 

quantization and entropy coding are performed independently on the image tiles. Tiling 

reduces memory requirements and since they are also reconstructed independently, they can 

be used for decoding specific parts of the image instead of the whole image. All tiles have 

exactly the same dimensions, except maybe those at the right and lower boundary of the 

image. Arbitrary tile sizes are allowed, up to and including the entire image (i.e. the whole 

image is regarded as one tile). Components with different sub-sampling factors are tiled with 

respect to a high-resolution grid, which ensures spatial consistency on the resulting tile 

components. As the overview of JPEG2000 encoding and decoding mentioned above, the 

most important component of the standard is the specification of bitstream syntax, which is 

addressed comprehensively in the standard documentation. The core structure of the 

JPEG2000 encoder which is considered under the flow-of-bit view can be presented as a 

typical sequence as below 
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Figure 5.3 flow-of-bit viewof JPEG2000 encoder 

 The input image is decomposed into components. 

 The image and its components are divided into non-overlapping rectangular tiles.  

 The wavelet transform is applied on individual tile. Each tile is decomposed in 

different resolution levels. 

 These decomposition levels are decided by the coefficients that describe the 

frequency characteristics of local areas of the tile-component. 

 The subbands of coefficients are quantized and formed into arrays of “code-

blocks”. 

 The bit-planes of the coefficients in a “code-block” are entropy coded. 

 Markers are added in the bitstream to allow error reconstruct. 

It should be noted here that the basic encoding engineof JPEG2000 is based on EBCOT 

(Embedded BlockCoding with Optimized Truncation of the embeddedbitstreams) algorithm, 

which is described in more details in[15-16]. 
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Figure 5.4 Results obtained by progressive JPEG (P-JPEG), progressive JPEG2000 (both 

embedded lossless, R, and lossy, NR, versions) and MPEG-4 VTC baseline.[17] 

Fig5.4 depicts the rate-distortion behavior obtained by applying various progressive 

compression schemes on a natural image. It is clearly seen that progressive lossy JPEG2000 

outperforms all other schemes, including the non-progressive (i.e. baseline) variant of 

MPEG-4 visual texture coding (VTC), although the difference is notsignificant. The 

progressive lossless JPEG2000 does not perform as well as the former two, mainly due to the 

use of the reversible wavelet filters. However, a lossless version of the image remains 

available after compression, which can be of significant value to many applications 

(archiving, medical, etc.). As for the progressive JPEG, it is outperformed by far by all other 

algorithms, as expected for a relatively old standard. 

5.2  JPEG2000for ECG compression 

The dependencies in ECG signals can be broadly classified into two types: The 

dependencies in a single ECG cycle and the dependencies across ECG cycles. These 

dependencies are sometimes referred to as intrabeat and interbeat dependencies, respectively. 

An efficient compression scheme needs to exploit both dependencies to achieve maximum 

data compression.  
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Figure 5.5 Block diagram of ECG encoder using JPEG2000 
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Figure 5.6 Block diagram of aECG decoder using JPEG2000 

 

The block diagram of the proposed method is presented in Fig5.5 and 5.6. To compress 

the ECG data through a JPEG2000 codec, the one-dimensional ECG sequence needs to be 

processed to produce a two-dimensional matrix. Since it is desirable to exploit both the 

intrabeat and interbeat dependencies, the segmentation of the ECG sequence should be 

performed in such a fashion that the resulting matrix allows exploitation of both types of 

dependencies by the JPEG2000 codec. Thus, the first step in the proposed algorithm is to 

separate each “period” of the ECG as illustrated in Fig5.7. Each such period is then stored as 

one row of a matrix. It can be seen that the intrabeat dependencies are in the horizontal 

direction of the matrix and the interbeat dependencies are in the vertical direction. A matrix 

created using this approach is shown in Fig5.8 and Fig 5.9. Since each ECG period can have 

a different duration, the matrix generated using the above approach will have a different 

number of data points in each row. In order to exploit the interbeat dependencies using 

JPEG2000, we normalize each ECG period to the same length.Let 

     1   2   ...  m m m m mx x x x N     denote the m-th ECG cycle. Then the period-normalized 
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ECG cycle      1   2   ...  m m m m my y y y N    is computed by using.  mx t is an interpolated 

version of the samples,  mx n , and 

 
   

 

1 1
1

1

mn N
t

N

 
  


 (4.1) 

 

 

Figure 5.7 Detection of ECG cycles 

where mN is the period of the m-th ECG cycle, and N is the normalized period. We utilize 

cubic-spline interpolation to determine  mx t The period-normalized matrix corresponding to 

the data in Fig5.8 is shown in Fig5.9. 
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Figure 5.8 Before period normalization 

 

Figure 5.9 After period normalization 

Besidescompression efficiency, the proposed method benefits fromdesirable 

characteristics of the JPEG2000 codec, such asprecise rate control and progressive 

quality.Note that the original periods ( mN ,m= 1,2,K) must be stored and sent to the decoder 

as side information. Once the decoder recovers the period-normalized ECG cycles, the 

original ECG cycles can be used to reconstruct ECG signal. 
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Chapter 6  Experimental Results 

In the previous chapters we have described two new ECG compression algorithms. In 

this chapter, simulations are conducted to verify the proposed ECG compression algorithm. 

QRS complex detection and period normalization are applied for preprocessing. Algorithm I 

refers to the combined use of MSVQ and GSVQ.Algorithm IIrepresents the ECG 

compression based on JPEG2000.Also included is the application of HHT to ECG signal 

denoising. In these algorithms, several MIT-BIH recordings are used as our ECG sources, and 

each is sampled at 360 sample/second and quantized with 11 bits. They are usedfor ECG 

compression as well as for signaldenoising. 

6.1  Preprocessing Data 

Two preprocesses are applied to a dataset including MIT-100, MIT-108, MIT-119, MIT-

122. We first have QRS detected for records MIT-100, MIT-119, MIT-122, and then perform 

period normalization to make each cycle of length 288 points. These period-normalized 

signals are used as ECG sources for Algorithm I and Algorithm II. MIT-108 is used as the 

source for the HHT-based signal denoising.For ECG compression experiments, we choose the 

first 1,500 ECG cycles as training sequences, and the latter 200 ECG cycles as testing 

sequences.  

Percent root mean square difference (PRD) and compression ratio (CR)are used to 

evaluate the performance. PRD is a measure of the fidelity of the compressed signal and is 

given by 
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where L  is the number of ECG samples, x  is the original signal, and x̂  is the reconstructed 

signal. The CR is defined as 
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n n n
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 
 (6.2) 

where 
xn denotes the number of bits per sample in the original signal, sn denotes the number 

of bits per sampleto code the index of shape, gn  denotes the number of bits per sample used 

to code the index of gain, and dn  denotes the number of bits per sample used to code the 

difference signal of the second stage.  

6.2  Experimental results of Algorithm I 

Following the preprocessing steps described in 5.1, gain-shape VQ is applied. Gains of 

period-normalized signals are calculated by using (4.6), wherek = 8. Through gain 

normalization, we have the shape signals. Both gains and shapes are vector quantized, where 

a (8,8) vector quantizeris used for the shapes, (36,6) vector quantizer for the gains, and (8,3) 

vector quantizers for the difference signals in second stage. With this arrangement, we have 

xn = 11bps, sn = 1bps,
gn = 0.02083bps, and dn = 0.375bps. When k = 15, vector quantizer 

for the shapes will be (15,8), vector quantizers for the difference signals in second stage will 

be (15,3). We have xn  = 11 bps, sn  = 0.5333 bps, and dn  = 0.2 bps. 

Table 6.1 and Table 6.2summarize the performance results of Algorithm I with k = 8 and 

k = 15. Original and reconstructed waveforms of MIT-100,MIT-119, MIT-122 are shown in 

Fig 6.1to Fig 6.6. 
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Table 6.1 Performance results of Algorithm I 

k ECG sources PRD(%) CR 

8 

MIT-100 3.6636 7.88 

MIT-119 3.7763 7.88 

MIT-122 1.3248 7.88 

15 

MIT-100 6.3692 14.78 

MIT-119 6.2131 14.78 

MIT-122 2.3121 14.78 

 

 

 

 (a) (b) (c) 

Figure 6.1 Results of Algorithm I (k = 8) in MIT-BIH 100: (a) original 

signal,(b)reconstructed ECG waveforms, and (c)error signals. 

 

 

 (a) (b) (c) 

Figure 6.2 Results of Algorithm I (k = 8) in MIT-BIH 119: (a) original 

signal,(b)reconstructed ECG waveforms, and (c)error signals. 
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 (a) (b) (c) 

Figure 6.3 Results of Algorithm I (k = 8) in MIT-BIH 122: (a) original 

signal,(b)reconstructed ECG waveforms, and (c)error signals. 

 

 

 (a) (b) (c) 

Figure 6.4 Results of Algorithm I (k = 15) in MIT-BIH 100: (a) original 

signal,(b)reconstructed ECG waveforms, and (c)error signals. 

 

 

 (a) (b) (c) 

Figure 6.5 Results of Algorithm I (k = 15) in MIT-BIH 119: (a) original 

signal,(b)reconstructed ECG waveforms, and (c)error signals. 
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 (a) (b) (c) 

Figure 6.6 Results of Algorithm I (k = 15) in MIT-BIH 122: (a) original 

signal,(b)reconstructed ECG waveforms, and (c)error signals. 

 

The results show that most reconstruction errors occur near the QRS complex. The 

reason is that most of the gain-normalized signals have low amplitude, implying that many 

low-amplitude vectors may exist in the shape codebook. However, the vectors representing 

the QRS complex are of high amplitude. When vector quantizing, these vectors are prone to 

being assigned indexes corresponding to low-amplitude signals. These errors cannot be well 

compensated even if gains are multiplied back. 

6.3  Experimental results of Algorithm II 

For this Algorithm, QRS complex detection and period normalization are applied for 

preprocessing as mentioned in 6.1. We used four datasets formed by taking the four records 

(MIT-100, MIT-108, MIT-119, MIT-122) from the MIT-BIH arrhythmia database. These 

datasets were chosen because they were used in earlier studies, and allow us to compare the 

performance of the proposed method with the Algorithm I. The four datasets areindividual 10 

min of data from the four records. PRD was used to evaluate the error between the original 

and the reconstructed ECG signals.The reported CRare from actual compressed files and 

include all side information required by the decoder. Modification of the proposed scheme is 

to achieve lossless decompression by utilizing the lossless compression capability of 

JPEG2000. 
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Table 6.3 summarizes the performance results of Algorithm II with PRD and CR 

evaluation. Original and after period-normalization matrixes are shown in Fig 6.7 – Fig 

6.10.Fig 6.11- Fig 6.14show original, reconstructed waveforms and error signals of the four 

datasets, respectively. 

   

Table 6.2 Performance results of Algorithm II 

ECG sources PRD(%) CR 

MIT-100 3.0523 13.9534 

MIT-108 6.4794 18.8851 

MIT-119 2.6751 16.0050 

MIT-122 1.6115 12.7506 

 

 

 

   

 (a) (b) 

Figure 6.7 MIT-100:(a)Original matrixes, (b) After period-normalization matrixes 
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 (a) (b) 

Figure 6.8 MIT-108: (a)Original matrixes, (b) After period-normalization matrixes 

   

 (a) (b) 

Figure 6.9 MIT-119: (a)Original matrixes, (b) After period-normalization matrixes 
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 (a) (b) 

Figure 6.10 MIT-122: (a)Original matrixes, (b) After period-normalization matrixes 

 

 

 (a) (b) (c) 

Figure 6.11 Results of Algorithm II in MIT-BIH 100:(a) Original signal,(b) Reconstructed 

ECG waveforms, and (c) Error signals. 
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 (a) (b) (c) 

Figure 6.12 Results of Algorithm II in MIT-BIH 108: (a) Original signal,(b) Reconstructed 

ECG waveforms, and (c) Error signals. 

 

 

 (a) (b) (c) 

Figure 6.13 Results of Algorithm II in MIT-BIH 119: (a) Original signal,(b) Reconstructed 

ECG waveforms, and (c) Error signals. 

 

 

 (a) (b) (c) 

Figure 6.14 Results of Algorithm II in MIT-BIH 122: (a) Original signal,(b) Reconstructed 

ECG waveforms, and (c) Error signals. 
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6.4  Experimental results of ECG denoising 

Signal de-noising in one dimension can be divided into three steps,including 

decomposition, threshold and signal reconstruction. When applying the HHT to ECG de-

noising, the key step is the empirical mode decomposition (EMD). A new filtering form 

(time-scale filtering) is constructed by using multi-revolution analysis and multi-scale 

filtering of EMD [24]. The advantage of the time-scale filtering is its ability to retain the 

inherent characteristics of the nonlinear and nonstationary signals. We use the EMD to break 

down the ECG signals into different time scales; which show different information of signal 

and noise. For ECG signal, noise and valuable information are mixed in IMF. Hard or soft 

threshold can be used in a similar way as wavelet transform threshold de-nosing[25, 26]. 

Adaptive threshold values are given to each IMF. We add up all the new IMFs which remain 

after the threshold processing, and reconstruct the ECG signal. MIT-BIH 108 recordis chosen 

for this experiment,since the signal is contaminated with high-frequency noise and baseline 

drift. Firstly, we perform EMD on the MIT-BIH 108 signal and obtaineight IMFs ranging 

from fine to coarse scale.They areIMF1 – IMF8 and its residue (RES) as shown in Fig 6.15. 

After the decomposition, we analyze each IMF according to the original data. It can be found 

that baseline drift is reflected in higher-standards scale, like IMF7 and IMF8. On the other 

handhigh-frequency noise is mainly in the lower scale of intrinsic mode function. The noise 

with 50HZ is also reflected in the lower scale. After that threshold process is carried out with 

the following steps: 

1) The original ECG signal is decomposed with the EMD method; 

2) A total of8 IMFs scales are processed with soft thresholds in oderto eliminate both 

high-frequency noise and noise with 50HZ; 

3) Reconstruct the ECG-dominated signal with eight new IMFs. 
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Figure 6.15 Eight intrinsic mode functions after empirical mode decomposition 

 

Figure 6.16 Eight intrinsic mode functions after applying soft threshold 
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(a) 

 

(b) 

Figure 6.17 MIT-BIH 108:(a) Original signal, (b) Denoised signal 

 

Fig6.17shows the de-noisingeffect by using the HHT method. The results show that the 

HHT method can remain more valuabledetail of signal. That is mainly because HHTmethod 

can make prevention of energy leak and the energy ismore centralized in spectrum. The EMD 

is multi-scale filteringwhich can effectively remove noise. Finally we have the 

followingconclusions by comparison: 

1) Both HHT and wavelet transform can be used toanalyze nonstationary signal and thus 

achieve the desired effectof de-noising. 

2) The EMD is adaptive, since the basic functions extracted fromoriginal data are based 

on residue of the last filtering, which arealterable in HHT. 

3) Alterable amplitude and instantaneous frequency canimprove the efficiency of 

decomposition. Amplitude andfrequency are distinct during EMD and therefore the fitting for 

amplitude andfrequency are not required. 
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Chapter 7  Conclusions 

Goal of this thesis is to develop noise-resilient ECG signal compressionmethods. We 

first introduce the basic ofHHT theorem and its application to signal denoising. JPEG2000 is 

used for its two-dimensional of ECG signals. To implement this, one-dimensional ECG 

signals are transformed to two-dimensional representations by two preprocess,including QRS 

complex detection and period normalization. The two preprocessesare used to maximize the 

inter-beat correlation.In oder to reduce the computation of VQ codebook search,we also 

investigate a multiple stage scheme (MSVQ). Experimental result shows that the proposed 

algorithmsachieve good reconstruction quality with high compression ratio. 

Some possible future directions in this research are listed as follows. 

1. Backward gain-adaptive VQ is an attractive way to model the ECG correlation 

without extra cost of gain-related side information. Other gain estimators may also be 

investigated to achieve better performance when GSVQ and MSVQis applied. 

2. In this work, because of the inconsistency of heartbeat lengths, a period normalization 

process is needed. Continuing our research, we will address ourselves to the study of 

designing a better ECG compression algorithm utilizing the inter-beat correlation without 

miscellaneous preprocessing 

3. The proposed scheme achieves lossless decompression by utilizing JPEG2000 on 

single signal.How to use the multi-component capabilities of JPEG2000 to compress 

multichannel ECG data are also topics for future research. 
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