
國立交通大學 
 

電子工程學系 電子研究所 
 

 

碩 士 論 文 

 

 

在多核心系統中考慮動態隨機存取記憶體讀/寫特性

以降低功率消耗之排程機制 

A Read-Write Aware DRAM Scheduling for Power 

Reduction in Multi-Core Systems  

 

研 究 生： 賴之彥 

     指導教授： 周景揚 教授 

 

 

中華民國 一○二 年 八 月



 

在多核心系統中考慮動態隨機存取記憶體讀/寫特性

以降低功率消耗之排程機制 

A Read-Write Aware DRAM Scheduling for Power 

Reduction in Multi-Core Systems 

 

 

研 究 生：賴之彥          Student: Chih-Yen Lai 

 指導教授：周景揚          Advisor: Jing-Yang Jou 

 

國 立 交 通 大 學 

電子工程學系  電子研究所 

碩 士 論 文 

 

A Thesis 

Submitted to Department of Electronics Engineering and Institute of Electronics 

College of Electrical and Computer Engineering 

National Chiao Tung University 

In Partial Fulfillment of the Requirements  

for the Degree of  

Master of Science  

in  

Electronics Engineering 

 

August 2013 

Hsinchu, Taiwan, Republic of China 

 

中華民國一○二年八月



 

I 
 

在多核心系統中考慮動態隨機存取記憶體讀/寫特性以降

低功率消耗之排程機制 

 

學生：賴之彥                               指導教授：周景揚 博士 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

 

摘   要 

    近幾年來，隨著市場及業界對於高效能、低功耗系統的需求，功耗管理的重要性已

日漸增加。在現今的多核心系統當中，動態隨機存取記憶體(DRAM)的功率消耗佔了整

個系統的一大部分，因此吸引了許多人研究 DRAM 的功耗管理。而除了功率消耗之外，

DRAM同時還是目前多核心系統中的效能瓶頸，所以在設計DRAM功耗管理的方法時，

必須格外地小心以避免大幅度地降低系統效能。目前關於 DRAM 功耗管理方法的研究

中，有大量的研究是透過 DRAM 的排程機制來排序指令以降低功率消耗。在此基礎上，

本篇論文提出考慮 DRAM 讀/寫特性的指令調節技術以及指令排程機制，在不影響系統

效能的前提下，進一步降低 DRAM 功率消耗。根據實驗結果，本篇論文提出的機制平

均能夠有效降低 75%的 DRAM 功率消耗。若與現有的方法比較，本篇論文所提出的機

制能夠在相同甚至是較少的系統效能損失之下，多降低 10%的 DRAM 功率消耗。 

   



 

II 
 

A Read-Write Aware DRAM Scheduling for Power 

Reduction in Multi-Core Systems 

 

 

 

Student: Chih-Yen Lai                        Advisor: Dr. Jing-Yang Jou 

 

 

Department of Electronics Engineering 

Institute of Electronics 

National Chiao Tung University 

 

 

 

ABSTRACT 

The demand of high performance and low power has increased the importance of power 

efficiency in multi-core systems. In modern multi-core architectures, DRAM has dominated the 

power consumption. Moreover, the performance of nowadays system is limited by the memory 

wall, which implies that a careless DRAM power management policy may harm the system 

performance dramatically. Among all the DRAM power management policies, reordering 

based DRAM scheduling has been widely studied to reduce the power. To further reduce the 

power while preserving the system performance, this thesis proposes the read-write aware 

throttling and the read-write reordering techniques. The proposed techniques effectively reduce 

75% DRAM power on average. When compared to the existing work, the proposed techniques 

reduce 10% more power with comparable or less performance degradation on average.  



 

III 
 

Acknowledgements 

First and foremost, I would like to express my deepest appreciation to my advisor, Dr. 

Jing-Yang Jou for his patient guidance on my research. He also gave me many helpful 

suggestions about my career and motivated me to be a better person. I am sincerely grateful to 

my senior, Gung-Yu Pan for his kind guidance, direction and invaluable assistance. Discussions 

with him have been insightful, and I would never have been able to finish this thesis without 

his help. I would also like to thank my senior, Hsien-Kai Kuo for his useful suggestions. I 

appreciate all the members of EDA Lab, Bu-Ching Lin, Yung-Chun Lei, An-Che Cheng, and 

Chin-Fu Lu, for all your supports and for all the fun we have had together. 

I would like to offer my special thanks to all my friends, including but not limited to: 

Chuan-Chia Huang, Kuan-Ting Chen, Kuan-Chang Wang, Yi-Jing Liu, Wen-Xuan Yu, for 

making my daily life joyful. Special thanks also go to all my teammates in NCTU EE volleyball 

team for filling up my life in the past six years, especially Ping-Yuan, Tsai, who has been a great 

help in tutoring me in almost every course I took. Thank all my lovely players in NCTU EE girl 

volleyball team, it was an honor coaching you. In particularly, I would like to thank Chia-Ying 

Li for her assistance on many chores. I would also like to thank Samantha Koch, who gave me 

a lot of thoughts about my life. 

Finally, I owe my deepest gratitude to my parents and my sister. Their endless support and 

love have always been encouraging. They have provided me a carefree environment so I can 

concentrate on my study. I am so lucky to be in such a wonderful family. At last but not least, 

thank my girlfriend, Chen-Huan Yen for being a huge part in my life. She stood by me through 

the good times and bad. I would not be who I am without her love. 

 

Yoshi, Chih-Yen Lai   August, 2013  



 

IV 
 

Contents 

 

摘   要 .................................................................................................................................................... I 

ABSTRACT ............................................................................................................................................ II 

Acknowledgements ................................................................................................................................ III 

Contents.................................................................................................................................................. IV 

List of Figures ......................................................................................................................................... V 

List of Tables .......................................................................................................................................... VI 

Chapter 1 Introduction ....................................................................................................................... 1 

1.1 DRAM Architecture .............................................................................................................. 1 

1.2 Reducing the DRAM Power .................................................................................................. 5 

1.3 Related Works and Motivation .............................................................................................. 7 

1.4 Our Contributions ................................................................................................................ 11 

Chapter 2 Problem Description ........................................................................................................ 12 

2.1 System Model ...................................................................................................................... 12 

2.2 Problem Statement ............................................................................................................... 18 

Chapter 3 The Proposed Techniques ................................................................................................ 19 

3.1 Overview .............................................................................................................................. 19 

3.2 Read-Write Aware Throttling .............................................................................................. 25 

3.3 Rank Level Read-Write Reordering .................................................................................... 29 

3.4 An Example of The Proposed Policy ................................................................................... 33 

Chapter 4 Experimental Results ....................................................................................................... 36 

4.1 Simulation Environment ...................................................................................................... 36 

4.2 Analysis on Different Techniques ....................................................................................... 40 

4.3 Power and Performance Trade-Off ...................................................................................... 47 

Chapter 5 Conclusions and Future Works ....................................................................................... 56 

References ............................................................................................................................................. 57  



 

V 
 

List of Figures 

 

Fig. 1 The architecture of a DIMM, which includes ranks and banks, inside the DRAM. ........ 2 

Fig. 2 Example of how a sequence of read commands to the same row is carried out inside 

a DRAM bank. .................................................................................................................... 3 

Fig. 3 Power mode transition delays. ......................................................................................... 6 

Fig. 4 System hierarchy diagram and the architecture of queues inside the memory 

controller. .......................................................................................................................... 12 

Fig. 5 An example of how the blocked memory commands transfer from the RQ to the CQs 

when the throttle delay is reached in a throttling mechanism. ......................................... 15 

Fig. 6 Flow chart of a greedy memory controller, which employs the greedy power-down 

policy. ............................................................................................................................... 19 

Fig. 7 Flow chart of the memory controller proposed in the previous work [21]. ................... 21 

Fig. 8 Flow chart of the memory controller employing the proposed techniques. ................... 23 

Fig. 9 An example of how commands blocked in the RQ are clustered into command sets.... 26 

Fig. 10 An example of how commands in a given command set S1 are combined into 

command groups and then reordered................................................................................ 30 

Fig. 11 An example of how the read-write aware throttling clusters commands in the RQ 

and determines which ranks should be turned on when the throttle delay is reached. ..... 33 

Fig. 12 An example of how the commands in a given command set 𝑆1 are reordered by 

the rank level read-write reordering and sent to the CQ................................................... 34 

Fig. 13 Power and performance of different policies on different benchmark combinations. . 41 

Fig. 14 The background power, ACT/PRE power, and the read/write power consumptions 

of different techniques. ..................................................................................................... 45 

Fig. 15 Average power and performance trade-off characteristics on SPEC CPU2006 [31]. .. 49 

Fig. 16 Power and performance trade-off characteristics for fp1. ............................................ 50 

Fig. 17 Power and performance trade-off characteristics for fp3. ............................................ 50 

Fig. 18 Average power and performance trade-off characteristics on SPLASH-2 [32]. .......... 51 

 

  



 

VI 
 

List of Tables 

 

Table I Table of abbreviations .................................................................................................. 16 

Table II Table of notations ........................................................................................................ 17 

Table III Configuration parameters of ARM Cortex A9 [30] ................................................... 37 

Table IV Memory system parameters ....................................................................................... 38 

Table V Benchmark combinations of floating-point benchmarks in SPEC CPU2006 [31] ..... 38 

Table VI SPLASH-2 [32] benchmarks used in the evaluation ................................................. 39 

Table VII Read requests percentage of each benchmark combination ..................................... 43 

Table VIII Effect of different throttle delays ............................................................................ 48 

Table IX Main memory requests per million cycles of different benchmarks ......................... 52 

Table X Detail evaluation results on different throttle delays for SPEC CPU2006 [31] ......... 53 

Table XI Detail evaluation results on different throttle delays for SPLASH-2 [32] ................ 54 

 



 

1 
 

Chapter 1  

Introduction 

 
In the latest multi-core systems, the increasing performance comes at the cost of the higher 

power consumption [1]. Within a multi-core architecture, it has been shown that main memory 

contributes up to 40% of the system power consumption [2][3][4]. For large scale systems such 

as datacenter, this fraction increases along the growing demand of memory capacity [5][6][7]. 

As the result, reducing the power consumption of main memory has become the main issue for 

chip designers.  

Among existing memory circuits, dynamic random access memory (DRAM) is by far the 

mainstream of main memory used in modern multi-core systems. Hence, this thesis focuses on 

reducing the DRAM power consumption. To generalize the discussion, this thesis chooses to 

work on the widely used JEDEC standard DRAM architectures [8]. 

 

1.1 DRAM Architecture 

Fig. 1 illustrates the architecture of a JEDEC standard DRAM. The JEDEC standard 

DRAM is composed of multiple dual-in-line memory modules (DIMMs), in which multiple 

DRAM chips are put together to provide a wide data interface. Sets of DRAM chips lie in a 

DIMM. Each set of these DRAM chips is called a rank. Each rank can be further partitioned 

into banks, which spread across all DRAM chips within a rank. Each bank is organized as a 

two-dimensional array and its size is defined as 𝑟𝑜𝑤𝑠 × 𝑐𝑜𝑙𝑢𝑚𝑛𝑠. Only a single row of data 

can be accessed at any given time. Each bank has its own row buffer to store the row of data 

that is ready to be accessed [9]. Since the DRAM is a volatile memory, the data stored in the 

array need to be periodically refreshed to prevent data loss.  



 

2 
 

 

Fig. 1 The architecture of a DIMM, which includes ranks and banks, inside the DRAM. 

 

The DRAM is operated by two types of commands, the internal commands and the request 

commands. The internal commands includes refresh, activate (ACT), precharge (PRE), power-

down and power-up. All the internal commands are generated inside the DRAM. On the other 

hand, the request commands are the commands sent to the DRAM by the processor. A request 

command contains its access type and a target address indicating its target rank and target bank. 

Write request commands further contain the data to be written into the DIMMs. For simplicity, 

in the remainder of this thesis, the term memory command refers to the memory request 

command if not specified. 

For a memory command to access a location in the DIMMs, several internal commands 

are triggered to carry out the read or write request. First, all the DRAM chips in the target rank 

of the memory command need to be activated. The DRAM generates an ACT command and 

sends it to the target bank of the memory command. The ACT command activates all the DRAM 

chips in the bank and reads out an entire row of data. This row of data is stored in the row buffer. 



 

3 
 

The data can either be read from or written to a column, which is indicated by the memory 

command, inside the fetched row. After the request completes, the DRAM send a PRE 

command to the open bank. The PRE command restores the data from the row buffer to the 

memory array inside the bank [10]. Fig. 2 shows an example of how a sequence of continuous 

read commands to the same row are carried out inside a DRAM bank. 

 

 

Fig. 2 Example of how a sequence of read commands to the same row is carried out 

inside a DRAM bank. 

 

The DIMMs communicates with the processors through the memory controller, which is 

planted in the DRAM. The memory controller sits in between the last level cache and the 

DIMMs. It receives memory commands from the processor, and maps the addresses in the 

received commands to their target ranks and target banks inside the DIMMs. The memory 

controller then issues the received memory commands to the DIMMs. The memory controller 

is able to reorder the memory commands while preventing data hazards. The memory controller 

is also in charge of generating the internal commands such as ACT, PRE, and refresh. The 

memory controller can switch the power mode of a rank by generating power-down or power-

up commands. 

The master operation of a DRAM chip is controlled by the corresponding clock enable 

(CKE) signal. When CKE is low, all inputs, including DRAM clocks, are disabled [11]. If the 



 

4 
 

CKE for a DRAM chip is low, that DRAM chip is considered to be in the off mode. None of 

the request commands or the internal commands can be processed by a DRAM chip when it is 

in the off mode. The only exception is the refresh command. Even when a DRAM chip is in the 

off mode, it has to be periodically refreshed in order to retain data integrity in itself. The DRAM 

clocks start propagating through a DRAM chip when the CKE is risen to high. The DRAM chip 

begins taking inputs and processes the received memory commands. The DRAM chip is 

considered to be in the on mode when the CKE is high. 

  



 

5 
 

1.2  Reducing the DRAM Power 

The power consumption of the DRAM consists of several different components. First of 

all, the DRAM continuously consumes a background power. The value of the background 

differs from the mode of the DRAM chip. When the DRAM chip is in the off mode, the 

background power is defined to be 𝑃𝑃𝐷𝑁. The background power is defined to be 𝑃𝐴𝐶𝑇_𝑆𝑇𝐵𝑌 

when the DRAM chip is in the on mode. It is natural that 𝑃𝐴𝐶𝑇_𝑆𝑇𝐵𝑌 is larger than 𝑃𝑃𝐷𝑁; for 

modern DRAM circuits, 𝑃𝑃𝐷𝑁  is just 6.67%~15.38% of 𝑃𝐴𝐶𝑇_𝑆𝑇𝐵𝑌  [10][11]. The periodic 

refresh operation consumes the refresh power (𝑃𝑅𝐸𝐹). Finally, active power (𝑃𝐴𝐶𝑇), precharge 

power (𝑃𝑃𝑅𝐸), and the read or write power (𝑃𝑅𝐷 or 𝑃𝑊𝑅) are average power needed for all 

memory accesses. To sum up, the power consumptions of the DRAM can be written as:  

 

𝑃𝑜𝑓𝑓 = 𝑃𝑃𝐷𝑁 + 𝑃𝑅𝐸𝐹                                           (1) 

𝑃𝑜𝑛  = 𝑃𝐴𝐶𝑇_𝑆𝑇𝐵𝑌 + 𝑃𝑅𝐸𝐹 + 𝑃𝐴𝐶𝑇 + 𝑃𝑅𝐷 + 𝑃𝑊𝑅 + 𝑃𝑃𝑅𝐸,               (2) 

 

where 𝑃𝑜𝑓𝑓 and 𝑃𝑜𝑛 represent the power consumption of DRAM chips in the off mode and 

on mode respectively. The power consumption of DRAM chips in the off mode is the lowest 

power in which DRAM chips may keep the data integrity, and the off mode is therefore known 

as the low power mode. 

Since the DRAM chips consume less power when they are in the low power mode, the 

DRAM chips that are idle should be turned off in order to reduce the DRAM power. Due to the 

fact that all the DRAM chips inside a rank need to be activated for a memory access, it is 

impossible to turn off a single DRAM chip alone. Therefore, a rank is the smallest set of DRAM 

chips that can be turned off. The JEDEC standard DRAM supports rank level power mode 

control and allows users to turn on or turn off each rank separately [8][12].  



 

6 
 

Although turning off idle ranks reduces the DRAM power, switching power mode of a 

rank takes a transition delay of time. Fig. 3 illustrates the power mode transition delays between 

two memory accesses, which can either be read or write (R/W). In Fig. 3, the memory accesses 

are depicted as rectangles, whereas 𝑡𝑃𝐷𝑁  and 𝑡𝑃𝑈𝑃  represent power-down transition delay 

and power-up transition delay respectively. The delays of switching power mode of ranks bring 

extra latencies to the system performance. Therefore, one of the main goals for designing 

DRAM power reduction techniques is to design a policy that determines when to turn on and 

off DRAM ranks. An immature policy leads to loss of power saving or serious degradation to 

the system performance. 

 

 

Fig. 3 Power mode transition delays. 

  



 

7 
 

1.3  Related Works and Motivation 

Many different types of approaches toward DRAM power reduction have been studied in 

recent years. These approaches include designing a hybrid main memory, re-designing the 

physical structure of the DRAM, adding hardware component to the DRAM and designing 

power management policy for the memory controller in the modern DRAM. 

Designing a hybrid main memory aims to reduce the DRAM power consumption by 

cutting down the refresh energy consumed by the DRAM. Phase change random access memory 

(PCRAM) is used in the hybrid memory as a large background main memory since it consumes 

low standby power. The DRAM serves as a cache above PCRAM [13][14]. The data in DRAM 

decay over time and are written back to the PCRAM if they are dirty. The DRAM refresh energy 

is thus reduced. Besides integrating PCRAM with DRAM, some proposed to use the cached 

DRAM, which adds a cache directly into the memory device [15]. Adding cache to the DRAM 

reduces the access to DRAM chips and thus increases the idle period. Therefore, the DRAM 

chips can be put to the low power mode to save more power. 

Re-designing the physical structure of DRAM targets to improve the granularity of DRAM 

power mode control, which increases the potential of turning off idle DRAM chips. Some 

proposed to separate ranks into mini-ranks by adding mini-rank buffers inside each rank [16]; 

others proposed to change the arrangement of arrays in each bank [2]. These approaches allow 

the memory controller to switch the power mode of a set of DRAM chips, which the number of 

chip is smaller than that contained in a rank. It is more likely for DRAM chips in a smaller chip 

set to be all idle. Therefore, the memory controller has more chance to turn off idle chips and 

thus reduces the DRAM power consumption. 

Both designing hybrid main memories and re-designing the physical structure of the 

DRAM have the potential to achieve good performance. Nevertheless, they both require big 

modifications to the modern DRAM architecture. Since this thesis aims to design power 



 

8 
 

reduction techniques for DRAMs that are commonly used in nowadays multi-core systems, 

these approaches are not suitable.  

A different type of approaches reduce the DRAM power by adding some extra hardware 

to the existing DRAM circuit and extend its capability. For example, retention-aware intelligent 

DRAM refresh mechanism identifies and skips unnecessary refreshes for the DRAM [17]. By 

only refreshing necessary rows in DRAM banks, the refresh power is cut down. Another 

example is automatic data migration, which migrates data from ranks to ranks and tries to make 

the memory access concentrate on certain ranks [18]. This creates more empty ranks, which do 

not need to be periodically refreshed and can be completely shut off for a period of time. 

However, these approaches require a large hardware overhead to implement. 

In order to reduce the DRAM power consumption without a big modification to the 

modern DRAM circuits, many approaches design power management policies for the memory 

controllers. The policies can be categorized into power-down policies, which determine when 

to turn an idle rank off; scheduling policies, which schedule the commands in the memory 

controller; throttling-based policies, which block command in the buffer to prolong the idle 

period of a rank.  

An intuitive power-down policy is the time-out power-down policy [19]. The time-out 

power-down policy turns off a rank once it is idle for a pre-defined, fixed period of cycles, 

regardless of the upcoming command pattern. This results in inflexible power mode transitions, 

which may turn off the DRAM ranks even during a short idle period or waste active standby 

power waiting for the timer to expire. Therefore, the time-out power-down policy does not 

guarantee an acceptable power reduction and may harm the system performance dramatically 

[20]. Besides the time-out power-down policy, queue-aware power-down policy is proposed 

[21]. In the queue-aware power-down policy, if a rank is idle, commands in the memory 

controller are checked to see if any of the pending commands is destined for the idle rank. If 

there is no pending commands heading to the idle rank, it is turned off. The aggressive 



 

9 
 

bandwidth-neutral strategy proposed in [22] is a policy derived from the queue-aware power-

down policy with an additional snooping mechanism that turns the idle ranks back on upon 

receiving a memory command in the memory controller. The queue-aware power-down policy 

and the aggressive bandwidth-neutral strategy do not affect the system performance as much as 

the time-out power-down policy does, but their effect on reduction DRAM power is limited 

because they do not maximize the ability of the memory controller. 

The scheduling policies are also known as schedulers. Some schedulers stress on 

scheduling both request commands and internal commands [9][23][24]. These schedulers 

require extra hardware to allow the memory controller arranges all the commands more 

sophisticatedly to reduce the DRAM power. Other schedulers focus on scheduling only the 

request commands. Since the memory controller reorders request commands while preventing 

data hazards even when no power management policy is employed, scheduling request 

commands does not add extra hardware to the memory controller. Among this type of 

schedulers, the power-aware memory scheduler is proposed in [21]. The power-aware memory 

scheduler clusters memory commands destined for the same rank together. While the memory 

concentrates on accessing one rank, other ranks can be switched to the low power mode to save 

power. Since only a single rank is activated at a time, other ranks stay in the low power mode 

for longer periods. 

The throttling-based policies restricts memory access commands to be issued to the 

DIMMs to reduce the DRAM power [21][25]. The memory throttling mechanism proposed in 

[21] increases the power saving by blocking memory commands in the memory controller and 

force the DRAM chips to stay idle. No command is issued by the memory controller before it 

has blocked commands for a fixed period of cycles. This fixed period of cycles is called the 

throttle delay (𝑡𝑇𝐷).  

With the queue-aware power-down policy, power-aware scheduler and the memory 

throttling mechanism, the previous work [21] achieves a power saving closed to time-out 



 

10 
 

power-down policy with a moderate system performance degradation. However, the previous 

work [21] does not take into consideration that read requests are more critical for the system 

performance than write requests [26]. In modern multi-core systems, a higher write latency can 

be tolerated using buffers [27]. Therefore, slowing down the write accesses does not impact the 

system performance much. Utilizing this fact, one can further reduce DRAM power 

consumption with a slight system performance overhead. 

This thesis chooses to add new techniques based on the power-aware scheduler and the 

memory throttling mechanism proposed in the previous work [21]. However, all of the related 

works mentioned above are orthogonal to each other and can be integrated with the proposed 

techniques.  



 

11 
 

1.4  Our Contributions 

To reduce DRAM power consumption, this thesis proposes the read-write aware DRAM 

scheduling, which utilizes the different criticalities between read accesses and write accesses. 

The DRAM scheduling mentioned in the remainder of this thesis refers to reordering the 

sequence of all the memory commands inside the memory controller. In this thesis, the internal 

DRAM commands such as ACT and PRE…etc. remain their default order and are not taken 

into consideration in the proposed techniques. 

This thesis proposes two techniques, the read-write aware throttling mechanism and the 

rank level read-write reordering technique. The read-write aware throttling mechanism 

effectively cuts down DRAM power consumption. The rank level read-write reordering is 

employed to significantly reduces the system performance degradation caused by DRAM 

power management while maintaining the power saving. Our work reduces 75.34% of the 

DRAM power from the DRAM with no power management. When compared to the existing 

work, the proposed techniques reduce 10% more DRAM power with less performance 

degradation. Moreover, by evaluating and comparing with an oracle policy, the experimental 

results have shown that our work can reduce more power at the expense of a slight system 

performance degradation. 

The remainder of this thesis is organized as follows. The next chapter describes the 

problem formulation. Chapter 3 places the proposed techniques. The experiment results are 

presented in Chapter 4. Finally, this thesis is concluded in Chapter 5.



 

12 
 

Chapter 2  

Problem Description 

 

2.1  System Model 

As shown in Fig. 4, the system has one or more processor cores. These cores are connected 

to a multi-level cache and are equipped with write buffers. A JEDEC standard DRAM is used 

as a shared main memory for all cores. The DRAM main memory is connected to the last level 

cache. The DRAM communicates with the processors through a memory controller, which lies 

between the last level cache and the DRAM circuit. The memory controller receives memory 

commands from the processors and issues these commands to the DIMMs inside the DRAM. 

Each memory command contains information including its target address and access type. The 

memory controller keeps track of the time it receives each command. 

 

Fig. 4 System hierarchy diagram and the architecture of queues inside the memory controller. 



 

13 
 

Within the memory controller, there are two queues: the reorder queue (RQ) and the 

command queues (CQs). Memory access commands from the last level cache are first stored in 

the RQ. These commands are mapped to certain DRAM ranks and banks according to their 

target addresses. A scheduler inside the RQ is able to reorder the commands in the RQ while 

keeping the data hazard-free. After mapping and reordering, the memory controller sends the 

memory commands from the RQ to the CQs one at a cycle. Each CQ corresponds to a certain 

rank. Therefore, for a DRAM with n ranks, there are n CQs inside the memory controller. 

Memory commands destined for rank 1, rank 2… rank n are sent to CQ1, CQ2… and CQn, 

respectively. A CQ handles all kinds of commands destined for its corresponding rank. These 

commands not only include access commands from the RQ, but also include other internal 

commands such as ACT, PRE, refresh, power-up, and power-down commands generated by the 

memory controller. The CQs do not change the order of the memory access commands since 

they are already reordered by the scheduler inside the RQ. Hence, the CQs issue the commands 

to the DRAM ranks in a first-in-first-out (FIFO) order. 

Normally, the memory controller sends the commands from the RQ to the CQs whenever 

there are commands in the RQ. When a throttling mechanism is employed, instead of sending 

the memory access commands from the RQ to the CQs whenever the RQ is not empty, the 

memory controller blocks commands in the RQ for 𝑡𝑇𝐷. No command is sent to the CQs before 

the throttle delay is reached. When the throttle delay is reached, the memory controller starts 

sending the blocked commands to the CQs one at a cycle until the RQ is empty. The memory 

controller repeatedly blocks and releases the commands to realize the throttling mechanism. 

Fig. 5 gives an example of how the memory commands are transferred from the RQ to the 

CQs when the throttling mechanism is employed. In Fig. 5, each rectangle represents a memory 

command. The access type of each command is denoted by R (read) or W (write), followed by 

an index number and the target rank of the command. The index numbers are assigned to each 

memory command according to the time they entered the RQ. The command that enters the RQ 



 

14 
 

earlier is represented by a smaller index number. For the example shown in Fig. 5, the DRAM 

is assumed to have four ranks, which are denoted as r1, r2, r3, and r4. Correspondingly, there are 

four CQs in the memory controller. Suppose that the throttle delay is reached at cycle k. For 

simplicity, we denote the ith rank as ri in Fig. 5 as well as in the remainder of this thesis. 

As shown in Fig. 5, three commands W1, R2, and W3 are blocked in the RQ during cycle 

k − 𝑡𝑇𝐷 to cycle k. When the throttle delay is reached, the RQ starts sending commands from 

its front to its end. Each memory command is sent to the CQ according to its target rank. Hence, 

W1 is first sent to the CQ1, then R2 is sent to the CQ3, W3 is sent to the CQ3 at last. Each 

command in the CQ is issued to the corresponding DRAM rank. CQ1 issues W1 to r1 after 

receiving W1 from the RQ. Since the CQ issues commands in FIFO order, CQ3 issues R2 to r3 

in advance of W3. 

 

 

 

 

 

 

 

 

 



 

15 
 

  

  

  

Fig. 5 An example of how the blocked memory commands transfer from the RQ to the CQs 

when the throttle delay is reached in a throttling mechanism. 

  



 

16 
 

The DRAM supports rank level power-mode control. That is, each rank has two different 

power mode, the active mode and the low power mode. A rank has to be turned on to the active 

mode before it is able to process the received commands. When a rank is idle, it can be turned 

off to the low power mode by the memory controller. The memory controller puts power-up 

and power-down commands into the CQ to switch the power mode of its corresponding DRAM 

rank. Switching the power mode of a rank is at the cost of transition delays. 

The abbreviations and notations used throughout this thesis are listed in the following 

Table I and Table II. 

 

Table I 

Table of abbreviations 

Abbreviation Definition 

DRAM dynamic random access memory 

DIMM dual-in-line memory module 

ACT activate 

PRE precharge 

CKE clock enable 

PCRAM phase change random access memory 

RQ reorder queue 

CQ command queue 

CQi the command queue assigned to rank i 

FIFO first-in-first-out 

ri rank i 

RAW read after write 

MIPS million instructions per second 

 



 

17 
 

 

 

Table II 

Table of notations 

  

Notation Definition 

𝑃𝑃𝐷𝑁 background power of a DRAM chip in the off mode 

𝑃𝐴𝐶𝑇_𝑆𝑇𝐵𝑌 background power of a DRAM chip in the on mode 

𝑃𝑅𝐸𝐹 power consumption of refresh operation 

𝑃𝐴𝐶𝑇 power consumption of an ACT command 

𝑃𝑃𝑅𝐸 power consumption of a precharge command 

𝑃𝑅𝐷 average power consumption of read accesses 

𝑃𝑊𝑅 average power consumption of write accesses 

𝑃𝑜𝑓𝑓 total power consumption of a DRAM chip in the off mode 

𝑃𝑜𝑛 total power consumption of a DRAM chip in the on mode 

𝑡𝑃𝐷𝑁 power down transition delay 

𝑡𝑃𝑈𝑃 power up transition delay 

𝑡𝑇𝐷 throttle delay 

n number of ranks in the DRAM 

𝐶𝑅𝑄 number of commands in the RQ 

𝑆𝑖 the ith command set 

𝐶𝑆𝑖  number of commands in the ith command set 

𝑅𝑖 number of read commands in the ith command set 

𝑊𝑖 number of write commands in the ith command set 



 

18 
 

2.2  Problem Statement 

With the system model described in the previous section, the goal of this thesis is to find 

a delicate DRAM scheduling scheme that reduces the DRAM power with small system 

performance degradation for the memory controller. The scheduling scheme includes a 

throttling mechanism, which controls when the RQ starts sending commands to the CQs. The 

scheme also contains a scheduling policy for the scheduler inside the RQ, which is able to 

reorder the sequence of memory request commands in the RQ. The internal commands such as 

ACT and PRE are not taken into consideration by the scheduler inside the RQ since they are 

generated and put to the CQs directly by the memory controller. The scheduling policy should 

guarantee that the reordered sequence of memory commands are hazard-free. Finally, the 

scheme is in charge of determining when to turn on and off the DRAM ranks.  

By using the throttling mechanism, reordering the memory commands and controlling the 

power mode of ranks, the goal of the proposed scheme is to reduce the power consumption of 

the DRAM with minor system performance degradation. 

 



 

19 
 

Chapter 3  

The Proposed Techniques 

 

3.1  Overview 

The proposed DRAM power reduction techniques address on lowering DRAM power 

consumption with slight system performance degradation. Since the proposed techniques are 

based on the existing policies, this section starts off with the basic and shows the flow chart of 

the greedy memory controller in Fig. 6.  

 

 

Fig. 6 Flow chart of a greedy memory controller, which employs the greedy power-down policy. 

 

 



 

20 
 

The greedy memory controller employs the greedy power-down policy, which turns off a 

DRAM rank whenever it is idle. In the greedy power-down policy, an idle rank is turned off 

even when there are pending commands destine for it in the RQ. The greedy memory controller 

does not employ the throttling mechanism. Therefore, whenever the RQ is not empty, a single 

memory command is sent from the RQ to the corresponding CQ every cycle.  

As shown in Fig. 6, at any given cycle, the memory commands from the last level cache 

are pushed to the end of the RQ. The memory controller checks the state of each rank and turns 

off the ranks that are idle. After turning off idle ranks, the memory controller send the command 

at the front of the RQ to its corresponding CQ. Finally, the memory control checks each CQ to 

see if they are empty. If CQi is not empty, the memory controller turns on ri and issues the 

commands to it.  

Since the greedy memory controller turns off an idle rank regardless of the upcoming 

memory commands in the RQ, the idle rank is turned off even during a short idle period. This 

results in frequent power mode transition and leads to dramatic system performance degradation 

caused by the power mode transition delays [20].  

To improve the power reduction and the system performance of the greedy memory 

controller, the previous work [21] adds the throttling mechanism, the queue-aware power-down 

policy, and the power-aware memory scheduler to the greedy memory controller. The flow chart 

of the previous work [21] is shown in Fig. 7. 



 

21 
 

 
Fig. 7 Flow chart of the memory controller proposed in the previous work [21]. 

 

The light-gray rectangles and decision boxes in Fig. 7 are power reduction techniques 

added by the previous work [21]. The throttling mechanism, which is shown as the first light-

gray decision box in the flow chart, blocks memory commands after they are pushed to the RQ 

until the throttle delay is reached. The blocked commands are not allowed to be sent to the CQ. 

When the throttle delay is reached, the memory controller clusters the blocked commands into 

command sets by their target ranks. Commands destined for ri are clustered into command set 



 

22 
 

𝑆𝑖. The set of commands destined for the same rank as the command that first entered the RQ 

are moved to the front of the RQ, and so on. The memory controller then checks each command 

set, if there is command in 𝑆𝑖, all the commands in 𝑆𝑖 are allowed to be sent to the CQ. The 

memory controller then sends command at the front of the RQ to the corresponding CQ. At the 

end of each cycle, the memory checks each CQ to see if there is commands in it. If CQi is empty, 

the memory controller sends a power-down command to ri, which turns ri off.  

To sum up, the techniques proposed in the previous work [21] improves both power 

reduction and system performance from the greedy memory controller. The power-aware 

memory scheduler in the previous work clusters commands according to their target ranks. This 

forces the DRAM to concentrate on accessing a certain rank for a period of time, allowing other 

ranks to be turned off. The queue-aware power-down policy checks the upcoming commands 

in the CQ before turning off a rank, which prevents a rank to be turned off during a short idle 

period. When a rank is turned off, the throttling mechanism assures that the rank stays in the 

low power mode for a long period of time. 

However, the previous work [21] does not maximize the capability of the memory 

controller. Moreover, it does now take into consideration that the read request are more critical 

to the system performance than the write requests. Utilizing this fact, this thesis proposes the 

read-write aware throttling and the rank level read-write reordering techniques to modify the 

previous work [21]. The flow chart of the memory controller that employs the proposed 

techniques is shown in Fig. 8. 



 

23 
 

 
Fig. 8 Flow chart of the memory controller employing the proposed techniques. 

 

Based on the previous work [21], the dark-gray rectangle and box in Fig. 8 are the 

techniques proposed in this thesis, where the decision box is the read-write aware throttling 

and the rectangle is the rank level read-write reordering. 

The read-write aware throttling mechanism, which is depicted by the dark-gray decision 

box, checks for the existence of read commands in each command set. Instead of allowing all 

the nonempty command sets to be sent to the CQs, only the command sets containing read 



 

24 
 

requests are allowed to be sent to the CQs and only their target ranks are turned on. The other 

ranks, including ranks with write requests pending in the RQ, stay in the low power mode for 

another throttle delay to reduce the DRAM power consumption. 

The dark-gray rectangle shows that the command sets are reordered by the rank level read-

write reordering before they are sent to the CQs. The read requests in each command set get 

higher priorities than the write requests. The commands with higher priorities enter the CQs 

earlier. Since the CQ issues commands to the DIMM in a FIFO order, the read requests reach 

their target rank as soon as possible. This makes read requests, which are critical to system 

performance, to be served by the DIMMs earlier and thus the system performance degradation 

caused by the throttling mechanism is relieved. 

For simplicity, the following notations are used in this thesis. Suppose that there are n 

ranks in the DRAM. There is one RQ and n CQs, 𝐶𝑄1, 𝐶𝑄2⋯𝑎𝑛𝑑 𝐶𝑄𝑛, inside the memory 

controller. The number of commands blocked inside the RQ is denoted as 𝐶𝑅𝑄. Inside the RQ, 

commands destined for r1, r2… and rn are clustered into command sets 𝑆1, 𝑆2, ⋯ , 𝑎𝑛𝑑 𝑆𝑛 

respectively. The notation 𝐶𝑆𝑖 represents the number of commands in the command set 𝑆𝑖. For 

each command set 𝑆𝑖 , 𝑅𝑖  denotes the number of read commands, while 𝑊𝑖  denotes the 

number of write commands in it. Therefore, it is clear that we can write the relation between 

these notations as: 

𝐶𝑅𝑄 =∑𝐶𝑆𝑖

𝑛

𝑖=1

=∑(𝑅𝑖 +𝑊𝑖)

𝑛

𝑖=1

                                              (3) 

Using these notations, the detail of the read-write aware throttling mechanism and the rank 

level read-write reordering are described in the following sections. 

  



 

25 
 

3.2  Read-Write Aware Throttling 

The read-write aware throttling mechanism determines if a rank should be turned on 

whenever the throttle delay is reached. It checks on each command set 𝑆𝑖, which is composed 

of memory commands destined for ri in the RQ, to see whether the condition 𝑅𝑖 = 0 is true. If 

the condition is satisfied, ri is turned off and all the commands in 𝑆𝑖 remain in the RQ for 

another throttle delay. On the other hand, if the condition is not satisfied, ri is turned on and all 

the commands in 𝑆𝑖 are allowed to be sent to CQi. 

The read-write aware throttling utilizes the fact that read requests affect system 

performance more than write requests [26]. It is performed on rank level and checks the 

existence of critical read requests in every command set whenever the throttle delay is reached. 

If a read request appears in a command set, the memory controller sets the target rank of this 

command set to urgent. Ranks with no pending read requests are set to trivial. All the commands 

destined for an urgent rank are allowed to be sent to the corresponding CQ, while other 

commands remain in the RQ for another throttle delay. This allows the memory controller to 

only turn on the urgent ranks and keep the trivial ranks in the low power mode, contributing to 

a large DRAM power saving. 

To better understand how the read-write aware throttling mechanism works, we give a 

simple example. Suppose that there are four ranks in the DRAM. At a certain point, the throttle 

delay is reached and the memory commands are blocked inside the RQ, as shown in the left 

part of Fig. 9. Before sending the commands to the CQs, the commands are first clustered into 

command sets according to their target ranks. The set of commands destined for the same rank 

as the command enters the RQ first are reordered to the front. The set of commands destined 

for the same rank as the command that sits right after the command set at the front is reordered 

to second to the front, and so on. The order of the commands within the same command set 

remains the same, the command that enters the RQ earlier is closer to the front of the command 



 

26 
 

set. The request command sequence after clustering is shown in the right part of Fig. 9, and the 

pseudo code of clustering command sets is given below Fig. 9. In the pseudo code, the DRAM 

is assumed to have n ranks and 𝑐𝑚𝑑𝑗 represents the command in the jth slot in the RQ. The 

action insert in line 8 reorders a command to the 𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑖]th slot and pushes all the 

commands behind it one slot towards the end of the RQ.  

 

Fig. 9 An example of how commands blocked in the RQ are clustered into command sets. 

 

 

function ClusterCommandSets( ): 

1. for 𝑙 ← 1 to 𝑛 do 

2.  𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑙] ← −1 

3. for 𝑗 ← 1 to 𝐶𝑅𝑄 do 

4.  // Let the target rank of 𝑐𝑚𝑑𝑗 be 𝑖 

5.  if 𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑖] = −1 then 

6.   𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑖] ← 𝑗 + 1 

7.  else 

8.   insert 𝑐𝑚𝑑𝑗 to 𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑖] 

9.   for 𝑘 ← 1 to 𝑛 do 

10.    if 𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑘] > 𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑖] then 

11.     𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑘] ← 𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑘] + 1 

12.   𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑖] ← 𝑐𝑚𝑑𝑆𝑒𝑡𝑀𝑎𝑟𝑘[𝑖] + 1 



 

27 
 

From Fig. 9, we can see that: 

 

{
  
 

  
 
𝐶𝑆1 = 5,  𝑅1 = 1,  𝑊1 = 4

 
𝐶𝑆2 = 1,  𝑅2 = 0,  𝑊2 = 1

 
𝐶𝑆3 = 2,  𝑅3 = 1,  𝑊3 = 1

 
𝐶𝑆4 = 0,  𝑅4 = 0,  𝑊4 = 0

 

 

The read-write aware throttling then checks for the command sets containing no read 

request commands. Since the command set 𝑆4 has no commands in it, its target rank r4 is 

considered to be trivial and is turned off to save power. The command set 𝑆2 contains no read 

requests and thus its target rank r2 is also considered trivial and is turned off. All the commands 

inside 𝑆2  are kept blocked in the RQ for another throttle delay. The ranks r1 and r3 are 

considered urgent because there are read requests in 𝑆1 and 𝑆3. Therefore, commands in 𝑆1 

and 𝑆3 are allowed to be sent to 𝐶𝑄1 and 𝐶𝑄3, respectively. The memory controller turns on 

r1 and r3 to process the commands in 𝑆1 and 𝑆3. 

The pseudo code of the read-write aware throttling, is given as below. The function 

ReadWriteReorder in line 8 will be explained in the next section. 



 

28 
 

 

 

In implementation, a one-bit register is used for each command set to detect the existence 

of read commands whenever a new command enters the RQ. Therefore, the complexity of this 

procedure is lower than the pseudo code since the if condition in line 5 in the pseudo code is 

replaced by the registers.  

  

1. if 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑𝐶𝑦𝑐𝑙𝑒𝑠 = 𝑡𝑇𝐷 then 

2.  ClusterCommandSets( ) 

3.  for each command set 𝑆𝑖 do 

4.   𝑢𝑟𝑔𝑒𝑛𝑡𝑅𝑎𝑛𝑘 ← 𝑓𝑎𝑙𝑠𝑒 

5.   if 𝑅𝑖 ≠ 0 then 

6.    𝑢𝑟𝑔𝑒𝑛𝑡𝑅𝑎𝑛𝑘 ← 𝑡𝑟𝑢𝑒 

7.   if urgentRank is true then 

8.    ReadWriteReorder(𝑆𝑖) 

9.    allow all the commands in 𝑆𝑖 to be sent to 𝐶𝑄𝑖 

10.  𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑𝐶𝑦𝑐𝑙𝑒𝑠 ← 0 

11. else  

12.  𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑𝐶𝑦𝑐𝑙𝑒𝑠 ← 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑𝐶𝑦𝑐𝑙𝑒𝑠 + 1 

10. send the command at the front of the RQ to the corresponding CQ if it is 

allowed to be sent 

11. for each command queue 𝐶𝑄𝑖 do 

12.  if 𝐶𝑄𝑖 is not empty then 

13.   turn on ri 

14.  else 

15.   turn off ri 



 

29 
 

3.3  Rank Level Read-Write Reordering 

The rank level read-write reordering is a scheduling policy for the command sets 

containing read requests in the RQ. It gives read requests higher priority than write requests. 

The commands in a command set are sent to the CQ in descending order of priority. Since the 

CQ issues commands to the DIMM in FIFO order, read requests are issued to the DIMM prior 

to write requests. This forces the DIMM inside the DRAM to process read requests, which are 

critical to system performance, as soon as possible. The rank level read-write reordering 

effectively relieves the system performance degradation caused by the DRAM power 

management policy.  

The system performance degradation is greatly relieved if the read requests are sent to the 

CQ prior to all the write requests. However, reordering memory commands blindly can lead to 

a data hazard issue since the memory commands are no longer handled by the DIMM in the 

same order as the processors sent out. If a read request enters the RQ after a write request and 

they are both destined for a same address, a read-after-write (RAW) data hazard occurs if the 

DIMM returns data for this read request prior to the write request. To avoid RAW hazard, the 

rank level read-write reordering performs a check before reordering. For each read request in 

the a command set, the rank level read-write reordering checks all the write requests in the same 

command set that entered the RQ earlier than this read request. If one or more write requests 

target to the same address as the read request does, they are combined in their original order to 

form a command group. All the command groups are then reordered to preserve the FIFO order 

of the read request in each command group.  

An example is given in Fig. 10, where each rectangle represents a memory command with 

its access type denoted by W (Write) or R (Read) followed by an index number and the target 

address of the command. The index numbers are assigned to each memory command according 

the time they entered the RQ. The command that enters the RQ earlier gets a smaller index 



 

30 
 

number. Fig. 10 illustrates how the commands in a command set 𝑆1 is combined into command 

groups and reordered. 

 

 

Fig. 10 An example of how commands in a given command set S1 are combined into 

command groups and then reordered. 

 

As shown in Fig. 10, the rank level read-write reordering checks 𝑆1 for read requests. 

Command R5 is first found, and the rank level read-write reordering search through W1 to W4 

to find that W2 and W4 have the same target address as R5. Therefore W2, W4, and R5 and 

combined into a command group, and the order of these three commands are preserved inside 

the command group. The rank level read-write reordering then find R6 and W3, which has the 

same target address as R6. W3 and R6 are thus combined into a command group. Since R5 

enters the 𝑆1 before R6, the command group containing R5 is placed in front of the command 

group containing R6. Commands that are not in any command group are placed in FIFO order 

behind the last command group. 

After combining command groups and reordering, the reordered command sets are sent to 

the CQs. The target ranks of these command sets are turned on to process these command. It is 

switched back to the low power mode once all the commands are finished and is kept in the low 

power mode until the throttle delay is once again reached.  



 

31 
 

The pseudo code of the rank level read-write reordering is given below. In the pseudo code, 

the command set 𝑆𝑖  is assumed to have 𝐶𝑆𝑖  commands and notations 𝑐𝑚𝑑𝑗  and 𝑐𝑚𝑑𝑘 

represent the jth and kth command in the command set, respectively. Notice that in line 6 and 

line 9, the action insert reorders the command to the markth slot in the command set. For 

instance, line 6 moves 𝑐𝑚𝑑𝑘 to the markth slot and all the commands originally sitting in the 

markth slot to the (𝑘 − 1)th slot are shifted to (𝑚𝑎𝑟𝑘 + 1)th slot to kth slot in order. 

 

 

As shown in the pseudo code, the rank level read-write reordering checks for read requests 

among all the commands in a command set from the front to the end of the command set. For 

each read request found, the rank level read-write reordering search through commands that are 

in front of the read request and do not belong to any command group. All the commands with 

the same target address as the read request are combined into a command group. 

In implementation, the action insert is provided by the modern memory controller and no 

extra hardware is required. The address comparing action in line 5 uses a comparator, whose 

size differs from 1-bit to the length of the memory address. When a small comparator is used, 

the rank level read-write reordering is more conservative and tends to insert more write requests 

function ReadWriteReorder(𝑆𝑖): 

input: A command set 𝑆𝑖 

1. 𝑚𝑎𝑟𝑘 ← 1 

2. for 𝑗 ← 1 to 𝐶𝑆𝑖 do 

3.  if 𝑐𝑚𝑑𝑗 is a read request then 

4.   for 𝑘 ← 𝑚𝑎𝑟𝑘 to 𝑗 − 1 do 

5.    if target address of 𝑐𝑚𝑑𝑘  = target address of 𝑐𝑚𝑑𝑗 then 

6.     insert 𝑐𝑚𝑑𝑘 to 𝑚𝑎𝑟𝑘 

7.     𝑚𝑎𝑟𝑘 ← 𝑚𝑎𝑟𝑘 + 1 

8.   insert 𝑐𝑚𝑑𝑗 to 𝑚𝑎𝑟𝑘 

9.   𝑚𝑎𝑟𝑘 ← 𝑚𝑎𝑟𝑘 + 1 



 

32 
 

in front of the read requests. The effect on relieving system performance degradation may be 

slightly weaken if a small comparator is used.  

  



 

33 
 

3.4  An Example of The Proposed Policy 

In the proposed scheduling policy, the rank level read-write reordering is combined with 

the read-write aware throttling. To understand how the proposed policy works, a complete 

example is given as follows. Assume that there are four ranks in the DRAM and the throttle 

delay is reached at cycle k. Suppose that at cycle k, the command pattern in the RQ is as shown 

in the left part of Fig. 11. The commands are clustered into command sets according to their 

target ranks, the result is as shown in the right part of Fig. 11. Notice that the command set 𝑆4 

contains no commands and is therefore omitted in Fig. 11. 

 

 

Fig. 11 An example of how the read-write aware throttling clusters commands in the RQ and 

determines which ranks should be turned on when the throttle delay is reached. 

 

When the throttle delay is reached at cycle k, the read-write aware throttling is first 

performed to check on each command set for the existence of read commands. As the result, r1 

and r3 are considered urgent, while r2 and r4 are considered trivial. After the read-write aware 

throttling, the rank level read-write reordering is performed on command sets 𝑆1  and 𝑆3 

before they are sent to CQ1 and CQ3. Using 𝑆1  as an example, Fig. 12 shows how the 



 

34 
 

commands in 𝑆1 are reordered and sent to the CQ. The command at the front of the command 

set has the highest priority while the command at the end has the lowest priority. The commands 

are sent to the CQ in descending order of priority one at a cycle.  

 

Fig. 12 An example of how the commands in a given command set 𝑆1 are reordered by the 

rank level read-write reordering and sent to the CQ. 

 

As shown in Fig. 12, rank 1 was originally in the low power mode after all the commands 

from last throttle period are completed. .When the throttle delay is reached and the command 

set is formed, the rank level read-write reordering checks through the command set and found 

that W4 and W7 target to the same address as R8. These three commands are then combined to 

form a command group and reordered to the front of 𝑆1. Once the reordering completes, the 

commands are sent to 𝐶𝑄1 and rank 1 is turned on. Rank 1 is turned off again when all the 

command finishes. The example shows that the rank level read-write reordering forces the 

DRAM to process read requests as early as possible.  

It is noticeable that for an urgent rank ri, all the commands in the command set 𝑆𝑖 are 

allowed to be sent to 𝐶𝑄𝑖. Even the write requests whose target addresses are not identical to 

any read requests are allowed to be sent to the corresponding CQ instead of kept blocked in the 

RQ. For example, the target addresses of W1 and W6 in Fig. 12 are not the same as R8, and 



 

35 
 

they are still sent to 𝐶𝑄1. The reason is that once a rank is activated, keeping these write 

requests in the RQ does not contribute to more DRAM power reduction because they will 

eventually be processed and consumes the same amount of power. Moreover, if these write 

requests are kept blocked in the RQ until a read requests with the same target address enters the 

command set, the read request has to wait for these write requests to be completed. This 

lengthens the latency of the critical read request and has chance to worsen the system 

performance degradation. 

 



 

36 
 

Chapter 4  

Experimental Results 

 
This chapter demonstrates and analyzes the experimental results to examine the proposed 

techniques. First, the simulation environment is described. Second, the evaluation results of 

how each techniques proposed in this thesis work at certain throttle delay are shown and 

analyzed. Finally, the evaluation on the power and performance trade-off is carried out and the 

results are analyzed and compared with other works. 

 

4.1  Simulation Environment 

The performance of our work is evaluated with Multi2Sim [28], a widely used cycle-

accurate system simulator. Multi2Sim provides detailed simulation of single core or multicore 

processors and gives us the statistics of the system performance. Our evaluation integrates 

DRAMSim2 [29] into Multi2Sim to obtain more accurate statistics of DRAM, such as the 

latency of each memory command, DRAM power consumption and power mode transition 

delays. DRAMSim2 is a cycle-accurate, JEDEC DDRx memory system simulator, which 

models the memory controller, memory channels, DRAM ranks, and banks. In an evaluation, 

Multi2Sim runs the benchmark and generates memory commands accordingly. The memory 

commands are sent to DRAMSim2 and processed by the DRAM that DRAMSim2 models. The 

evaluation results of Multi2Sim provide the system throughput statistics, while the evaluation 

results of DRAMSim2 provide the DRAM power consumption. 

The baseline system in the simulations uses the ARM Coretex-A9 MPCore [30]. The 

configuration parameters of ARM Coretex-A9 MPCore are listed in Table III. The baseline 

system has two-level caches. In order to evaluate our work by comparing to the previous work 



 

37 
 

[21], our simulations use the same cache sizes as in the previous work. The detail parameters 

of the memory system are presented in Table IV. The main memory used in the evaluation is a 

DDR2 SDRAM, which is one of the JEDEC standard memory available on market [12]. 

 

 

Table III 

Configuration parameters of ARM Cortex A9 [30] 

Parameter Value 

Number of cores 4 

Number of threads per core 1 

Technology node 40 nm 

Operating frequency 2.132 GHz 

Supply voltage 0.66 V 

Threshold voltage 0.23 V 

Decode width 2 

Issue width 4 

Commit width 4 

Number of arithmetic logic units per core 3 

Number of multipliers per core 1 

Number of floating-point units per core 1 

Branch predictor 2 level, 1024-set 2-way BTB 

 

 

 

 

 

 

 

 



 

38 
 

Table IV 

Memory system parameters 

Parameter Value 

Size of level 1 data cache per core 32 KB 

Set associativity of level 1 data cache per core 4-way 

Size of level 1 instruction cache 64 KB 

Set associativity of level 1 instruction cache per core 2-way 

Size of level 2 cache 2 MB 

Set associativity of level 2 cache 8-way 

DRAM frequency 533 MHz 

Number of DRAM ports 2 

DRAM device width 8 

Number of DRAM ranks 4 

Number of DRAM banks per rank 4 

Number of DRAM rows per bank 8192 

Number of DRAM columns per bank 4096 

 

 

Table V 

Benchmark combinations of floating-point benchmarks in SPEC CPU2006 [31]  

Combination Benchmarks 

fp1 410.bwaves 416.gamess 433.milc 434.zeusmp 

fp2 435.gromacs 436.cactusADM 437.leslie3d 444.namd 

fp3 447.dealII 450.soplex 453.povray 454.calculix 

fp4 459.GemsFDTD 465.tonto 470.lbm 481.wrf 

 

The workload for our simulations is the SPEC CPU2006 [31] benchmark suite. The 

benchmarks in the SPEC CPU2006 suite can be separated into integer benchmarks and floating 

point benchmarks. The floating point benchmarks have higher memory pressure than integer 

benchmarks and need more sophisticated power management policies [1][21]. Therefore, the 

benchmarks used in our simulations are randomly chosen from the floating point benchmarks. 



 

39 
 

For each simulation, a benchmark combination containing four benchmarks is used. Every 

benchmark in the benchmark combination is assigned to a certain core. The benchmark 

combinations are listed in Table V. Each benchmark combination is run for five million CPU 

cycles in our evaluation.  

Another workload used in the evaluation is the SPLASH-2 benchmarks [32], which are 

collected from real applications. Using the dynamic context scheduler provided by Multi2Sim 

[28], each program in the SPLASH-2 benchmarks forks at most four parallel contexts during 

runtime. The benchmarks in SPLASH-2 used in the evaluation are listed in Table VI.  

 

Table VI 

SPLASH-2 [32] benchmarks used in the evaluation 

Benchmark Problem size 

Barnes 2048 particles 

Cholesky tk14.O 

FFT 65536 points 

FMM 2048 particles 

Radix 256k keys, max-value 524288, radix 4096 

 

The SPEC CPU2006 benchmarks are used in section 4.2 and 4.3, and the SPLASH-2 

benchmarks are used in section 4.3. In the evaluation, the power consumption is measured in 

Watts. The system performance is measured in million instructions per second (MIPS), which 

represents the throughput of the system. All the results are normalized to the native DRAM, 

which refers to the DRAM with no power management policy. 

  



 

40 
 

4.2  Analysis on Different Techniques 

Although our work employs both the read-write aware throttling and the rank level read-

write reordering, these two techniques can be employed individually. Therefore, the techniques 

proposed in this thesis are not only evaluated jointly but also separately to see how they affect 

the DRAM power consumption and the system performance.  

In the evaluation, our work is compared to the previous work and an oracle policy. In the 

oracle policy, the order of the memory accesses is transparent so that the DRAM ranks can be 

ideally turned on and off when needed. Furthermore, there is no transition delay and transition 

power in the oracle policy. The power reduction of the oracle policy is the maximum power 

reduction possible at zero system performance degradation. The oracle policy does not employ 

any throttling-based mechanism nor reordering. Therefore, the oracle policy can be viewed as 

a time-out-zero policy, which turns off a rank at the instant it becomes idle, with perfect pre-

wakeup capability that turns a rank back on whenever it receives a command. 

The benchmark combinations listed in Table V are used in this evaluation. The throttle 

delay for our work and the previous work is set to 400 CPU cycles, at which both our work and 

the previous work achieve good power reduction with acceptable system performance 

degradation. The effect of different throttle delays is analyzed later. The evaluation results of 

all four benchmark combinations are shown in Fig. 13.  

 



 

41 
 

 

(a) DRAM power reduction percentage 

 

(b) Normalized system performance 

Fig. 13 Power and performance of different policies on different benchmark combinations. 



 

42 
 

The evaluation results show that when the read-write aware throttling is employed alone, 

it reduces the DRAM power consumption 10%~15% more than the previous work but causes 

around 1% more system performance degradation. The reason is that the read-write aware 

throttling puts a rank into the low power mode until it receives read requests. However, when 

the rank is turned back on to handle the read requests, there are many write requests waiting to 

be processed. Without the rank level read-write reordering, the read requests have to wait until 

all the write requests that enters the queue before them are completed. The system performance 

is degraded since the critical read requests have to wait for a long time. 

On the other hand, when the read-write reordering is used alone with the basic throttling 

mechanism as in the previous work [21], it improves the system performance by around 1% but 

the DRAM power consumption remains the same as the previous work [21]. This is because 

that the rank level read-write reordering only forces the DRAM to process read requests as early 

as possible and does not create extra power down opportunity.  

By combining these two techniques, our work saves 10%~15% more power than the 

previous work with the same, or even slighter, system performance degradation. More 

importantly, our work reduces DRAM power consumption to below the oracle solution with 

2% of the system performance degradation on average.  

The evaluation results show that each technique reacts differently to different benchmark 

combinations. Since the proposed techniques take into consideration that read requests and 

write requests are not equally critical to the system performance, the number of requests 

contained in a benchmark is essential to the effect of the proposed techniques. Therefore, the 

read requests percentage of each benchmark combination are listed in Table VII. The read 

requests percentage is obtained by evaluating each benchmark combination with the native 

DRAM and is calculated by dividing the number of read requests into the total number of 

memory requests commands.  

 



 

43 
 

 

Table VII 

Read requests percentage of each benchmark combination 

Benchmark combination Read requests percentage 

fp1 6.76% 

fp2 17.74% 

fp3 55.27% 

fp4 20.14% 

 

Table VII shows that most of the read requests are completed in the cache, and the read 

requests that send down to the DRAM is less than write requests. It is obvious that fp3 is the 

most read intensive benchmark combination, while the fp1 is the least read intensive one. The 

read intensity of different benchmark combination reflects on the power reduction in the 

evaluation results. The read-write aware throttling works very well on fp1, which has a weak 

read intensity, due to the fact that most of the time there are only write requests blocked in the 

RQ and DRAM ranks can be turned off. On the other hand, the strong read intensity of fp3 

limits the effect of the read-write aware throttling since it is less likely for a rank to only receive 

write request in a throttle period and thus cannot be turned off. Nevertheless, our work still 

manages to save 5% more DRAM power consumption with slightly better system performance 

than the previous work [21]. 

As mentioned in section 1.2, the DRAM power can be partitioned into several parts, 

including background power, active power, precharge power, read power, write power, and the 

refresh power. To further analyze the evaluation results, Fig. 14 shows these detail power 

consumptions obtained from the evaluation and compare them to the power consumption of the 

native DRAM. In Fig. 14, the ACT/PRE power consumption represents the sum of active power 

and precharge power, while the Read/write burst power represents the sumation of read power 

and write power. Notice that the refresh power is omitted because the DRAM is refreshed 



 

44 
 

periodically and the evaluation runs the benchmark for a fixed CPU cycle period, the refresh 

power consumptions for different techniques are the same. 

 

(a) Background power consumptions of different techniques

 

(b) ACT/PRE power consumptions of different techniques 



 

45 
 

 

(c) Read/write burst power consumptions of different techniques 

Fig. 14 The background power, ACT/PRE power, and the read/write power consumptions of 

different techniques. 

 

The results in Fig. 14 show that the DRAM power consumption is dominated by the 

background power since the main memory accesses are sparse in the evaluation. Therefore, the 

throttling-based mechanism is used to turn off idle ranks, and the background power 

consumption of DRAM is greatly reduced. In addition, the read-write aware throttling creates 

longer idle period for a rank to be turned off and thus reduces 10%~45% more of the 

background power against the previous work [21]. The ACT/PRE power consumptions and the 

read/write burst power consumptions show that the read-write aware throttling cuts down the 

number of returned commands because the DRAM ranks are in the low power mode for a long 

period. However, when the read-write aware throttling releases the blocked commands from 

the RQ to the CQ, it forces the DRAM to focus on accessing the active rank.  

It is noticeable that the read/write burst power consumption of our work on fp1 is low. It 

is because that fp1 has a weak read intensity. When the memory controller finally receives a 



 

46 
 

read request and turns on a rank, there are many pending write requests targeting that rank, 

which are blocked by the read-write aware throttling. As the result, in a command group formed 

by rank level read-write reordering, there are many write requests in front of the read request. 

Once the rank is activated, it takes a long time processing the pending write requests before it 

becomes available to process the critical read request. The system performance is thus harmed 

and fewer main memory commands are completed within the same simulation period. 

Therefore, the read/write burst power consumption is lower than other techniques. 

  



 

47 
 

4.3  Power and Performance Trade-Off   

In the proposed techniques, the read-write aware throttling mechanism is the main 

contributor to the DRAM power reduction. For throttling based power reduction mechanisms, 

the throttle delay is critical to both the DRAM power consumption and the system performance. 

Long throttle delay leads to better power reduction since the DRAM ranks stay in the low power 

mode for a long period. However, long throttle delay also leads to worse impact on the system 

performance because all the commands have to wait for a long period before they are processed 

by the DRAM. On the other hand, short throttle delay allows the DRAM to process memory 

commands more frequently but it also limits the effectiveness on the power reduction. 

In order to see how different throttle delays affect the performance of our work, an 

evaluation on different throttle delays is carried out. The evaluation uses all benchmark 

combinations fp1, fp2, fp3 and fp4. Since every benchmark combination has a different memory 

command pattern, we averaged the evaluation results of all four benchmark combinations. The 

average simulation results are shown in Table VIII. All the throttle delays are in CPU cycles. 

The improvements are the differences between our work and the previous work [21]. 

 

 

 

 

 

 

 

 



 

48 
 

Table VIII 

Effect of different throttle delays 

Throttle 

Delay 

Power reduction percentage System performance overhead 

Previous 

work [21] 
Our work Improvement 

Previous 

work [21] 
Our work Improvement 

100 64.67% 75.46% 10.79% 1.03% 0.61% 0.42% 

200 64.54% 75.26% 10.72% 0.87% 0.72% 0.15% 

400 64.58% 75.10% 10.52% 1.98% 1.73% 0.25% 

800 65.32% 75.14% 9.82% 5.03% 4.88% 0.15% 

1600 65.49% 74.96% 9.47% 6.46% 6.39% 0.07% 

3200 68.24% 75.17% 6.93% 7.63% 7.46% 0.17% 

6400 71.02% 75.42% 4.40% 7.92% 7.88% 0.04% 

 

The evaluation results show that our work is stable with different throttle delays. It steadily 

reduces around 75% of DRAM power consumption, which is an upper bound of power 

reduction, and is around 10% better than the previous work. Moreover, the system performance 

degradation of our work is slightly better than the previous work. This shows that the read-write 

aware reordering mechanism effectively relieves the impact on the system performance. The 

evaluation results also shows as the throttle delay increases, the difference in power reduction 

between our work and the previous work gets smaller. It is because that when the throttle delay 

is too large, all the DRAM ranks are in the low power mode for most of the time. Therefore the 

power consumption is low and the performance degradation is dramatic. 

With the results in Table VIII, we can further illustrates the trade-off characteristic between 

power and performance. By varying the throttle delay, the evaluation shows how our work 

reacts to different system performance degradations. The average results of all benchmark 

combinations are shown in Fig. 15, where both the power and performance are normalized to 

the DRAM with no power management policy. The result shows that our work has a better 



 

49 
 

power and performance trade-off characteristic. Under the same system performance 

degradation, our work reduces around 10% more of DRAM power than the previous work. 

 

 

Fig. 15 Average power and performance trade-off characteristics on SPEC CPU2006 [31]. 

 

It is noticeable that our work, unlike the previous work [21], is sensitive to the memory 

command patterns of benchmarks. To show the difference, the evaluation results of benchmark 

combinations fp1 and fp3 are shown in Fig. 16 and Fig. 17 respectively. The number of read 

requests is much larger than write requests in fp3, while write requests dominates over read 

requests in fp1. 



 

50 
 

 

Fig. 16 Power and performance trade-off characteristics for fp1. 

 

 

Fig. 17 Power and performance trade-off characteristics for fp3. 

 

The trade-off curves of the previous work [21] in Fig. 16 and Fig. 17 have similar slopes. 

On the other hand, the slope of trade-off curves of our work are different for fp1 and fp3. The 

results show that when the application is more read intensive, our work is able to effectively 

reduce more power when with a slight more system performance degradation. The reason is 



 

51 
 

that, the read-write aware throttling accumulates write accesses in the RQ until a read access 

appears. For read intensive applications, only a few write accesses are kept in the RQ by the 

read-write aware throttling. Therefore, a slight increment in system performance degradation 

indicates that the throttle delay is greatly lengthened, which also leads to a much better power 

reduction. 

In order to evaluate how our work performs when the context dynamically forks out, the 

evaluation on the SPLASH-2 benchmarks [32] is carried out and the resulting trade-off curves 

are shown in Fig. 18. Both the power reduction and the system performance degradation are 

normalized to the native DRAM. The system performance here is measured by the number of 

cycles used to complete a benchmark. 

 

 
Fig. 18 Average power and performance trade-off characteristics on SPLASH-2 [32]. 

 

The trade-off curves in Fig. 18 show that the difference between our work and the previous 

work [21] is smaller than the results obtained from running SPEC CPU2006 benchmarks. The 

reason is that the SPLASH-2 benchmarks are not memory intensive comparing to the SPEC 

CPU2006 benchmarks. As the result, the DRAM is turned off most of the time during evaluation 



 

52 
 

for both the previous work [21] and our work. However, our work still achieves higher power 

reduction under the same system performance. The statistics of main memory requests per 

million cycles of different benchmark combinations and benchmarks are listed in Table IX to 

show the memory intenseness.  

 

Table IX 

Main memory requests per million cycles of different benchmarks 

 Benchmark combinations/ 

benchmarks 

Main memory requests  

per million cycles 

SPEC CPU2006 [31] 

fp1 511391.80 

fp2 818090.00 

fp3  31697.60 

fp4 442664.80 

SPLASH-2 [32] 

cholesky    894.36 

fft   2196.41 

fmm    271.93 

radix    801.45 

barnes     38.60 

 

 

The detail evaluation results of each benchmark combination are shown in Table X. The 

improvement section shown in Table X is normalized to the previous work. The detail 

evaluation results show that for a variety of applications, our work provides a superior power 

reduction at the cost of a minor system performance degradation. 

  



 

53 
 

Table X 

Detail evaluation results on different throttle delays for SPEC CPU2006 [31] 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) MIPS Power (Watts) MIPS Power MIPS 

100 1.5194 1751.8644 0.7952 1748.6664 47.67% -0.18% 

200 1.5186 1742.9100 0.8070 1745.0420 46.86% 0.12% 

400 1.5060 1725.0012 0.8230 1730.9708 45.36% 0.35% 

800 1.4654 1707.0924 0.8282 1705.3868 43.48% -0.10% 

1600 1.3687 1664.2392 0.8648 1690.6760 36.81% 1.59% 

3200 1.2401 1662.5336 0.8692 1671.0616 29.91% 0.51% 

6400 1.1081 1658.2696 0.8749 1659.9752 21.04% 0.10% 

(a) fp1 

 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) MIPS Power (Watts) MIPS Power MIPS 

100 1.1158 2094.9032 0.7973 2134.1320 28.54% 1.87% 

200 1.1250 2125.1776 0.8050 2131.3604 28.44% 0.29% 

400 1.1288 2107.0556 0.8048 2106.2028 28.71% -0.04% 

800 1.0938 2010.9024 0.7961 2049.7048 27.21% 1.93% 

1600 1.0828 2025.6132 0.7952 2029.0244 26.56% 0.17% 

3200 1.0446 1998.9632 0.7856 2010.4760 24.80% 0.58% 

6400 0.9436 1995.3388 0.7775 1988.9428 17.60% -0.32% 

(b) fp2 

 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) MIPS Power (Watts) MIPS Power MIPS 

100 0.8920 2464.5920 0.8091 2409.1600 9.30% -2.25% 

200 0.8905 2462.4600 0.8101 2451.8000 9.03% -0.43% 

400 0.8922 2417.6880 0.8113 2424.0840 9.07% 0.26% 

800 0.8861 2332.4080 0.8105 2328.1440 8.53% -0.18% 

1600 0.8626 2281.2400 0.8018 2276.9760 7.05% -0.19% 

3200 0.8318 2244.9960 0.7903 2240.7320 4.98% -0.19% 

6400 0.7977 2221.5440 0.7732 2230.0720 3.08% 0.38% 

(c) fp3 

 

 

 

 



 

54 
 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) MIPS Power (Watts) MIPS Power MIPS 

100 1.1234 2067.4004 0.8088 2048.0300 28.01% -0.94% 

200 1.1332 2076.3548 0.8153 2083.6036 28.05% 0.35% 

400 1.1350 2041.8164 0.8194 2035.5424 27.80% -0.31% 

800 1.1177 1989.7956 0.8204 1980.8412 26.59% -0.45% 

1600 1.0923 1948.2216 0.8177 1940.5464 25.14% -0.39% 

3200 1.0551 1917.3076 0.8079 1910.2720 23.42% -0.37% 

6400 0.9556 1914.5360 0.7955 1914.5360 16.75% 0.00% 

(d) fp4 

 

Table XI 

Detail evaluation results on different throttle delays for SPLASH-2 [32] 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) Cycles Power (Watts) Cycles Power Cycles 

100 0.86591 386216401 0.80595 383973995 6.92% 0.58% 

200 0.86641 386747351 0.80678 382694644 6.88% 1.05% 

400 0.86339 390881890 0.80490 384898787 6.77% 1.53% 

800 0.85677 394132765 0.80304 390673931 6.27% 0.88% 

1600 0.84823 398198400 0.79715 396053325 6.02% 0.54% 

3200 0.82893 398909581 0.78876 398746298 4.85% 0.04% 

6400 0.80316 400814358 0.77917 399440076 2.99% 0.34% 

(a) cholesky 

 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) Cycles Power (Watts) Cycles Power Cycles 

100 1.18733 1626732828 1.06719 1599358623 10.12% 1.68% 

200 1.18243 1646152322 1.06244 1613998522 10.15% 1.95% 

400 1.17409 1680569237 1.06071 1630723965 9.66% 2.97% 

800 1.15385 1728206075 1.05251 1677411431 8.78% 2.94% 

1600 1.11851 1783437872 1.03031 1740400454 7.89% 2.41% 

3200 1.03481 1785862617 0.97675 1769778925 5.61% 0.90% 

6400 0.97555 1793418974 0.94211 1781048450 3.43% 0.69% 

(b) fft 



 

55 
 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) Cycles Power (Watts) Cycles Power Cycles 

100 0.70985 1140576902 0.69463 1138116645 2.14% 0.22% 

200 0.70761 1144003008 0.69385 1139193870 1.94% 0.42% 

400 0.70981 1149568000 0.69341 1141876406 2.31% 0.67% 

800 0.70855 1151543397 0.69405 1150034077 2.05% 0.13% 

1600 0.70548 1159231177 0.69312 1154615545 1.75% 0.40% 

3200 0.70202 1158699823 0.68899 1160365744 1.86% -0.14% 

6400 0.6924 1161981653 0.68676 1159341940 0.81% 0.23% 

(c) fmm 

 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) Cycles Power (Watts) Cycles Power Cycles 

100 0.83416 567929757 0.79279 561936504 4.96% 1.06% 

200 0.83118 569758770 0.79116 563959080 4.81% 1.02% 

400 0.82504 575787691 0.78821 568383335 4.46% 1.29% 

800 0.82154 591603316 0.78341 584040811 4.64% 1.28% 

1600 0.81879 592267385 0.77909 581449146 4.85% 1.83% 

3200 0.80244 596695273 0.76463 595039745 4.71% 0.28% 

6400 0.77625 592663748 0.75247 597326751 3.06% -0.79% 

(d) radix 

 

Throttle 

delay 

Previous work [21] Our work Improvement 

Power (Watts) Cycles Power (Watts) Cycles Power Cycles 

100 0.65358 1146352684 0.65019 1146958803 0.52% -0.05% 

200 0.65372 1146377562 0.65036 1145273539 0.51% 0.10% 

400 0.65382 1146687597 0.6501 1143846545 0.57% 0.25% 

800 0.65412 1146328710 0.64973 1145234276 0.67% 0.10% 

1600 0.65343 1145896274 0.64998 1147168394 0.53% -0.11% 

3200 0.65286 1146058867 0.64953 1148778795 0.51% -0.24% 

6400 0.65252 1147747030 0.64993 1146213644 0.40% 0.13% 

(e) barnes 

 



 

56 
 

Chapter 5  

Conclusions and Future Works 

 
This thesis proposes a DRAM scheduling policy to magnificently reduce the power 

consumption of DRAM. The read-write aware throttling mechanism allows the DRAM ranks 

to stay in the low power mode for a longer period of cycles. It improves the power saving by 

10%~15% on average. The rank level read-write reordering forces DRAM to handle read 

requests, which are critical to the system performance, as soon as it can. It reduces the system 

performance degradation caused by the power management without sacrificing much power 

saving. From the experiments, our work reduces the DRAM power consumption by around 

75%, which is better than the previous work and the oracle solution. Meanwhile, it causes only 

1%~3% system performance degradation, which is smaller than the existing power 

management policy. 

As for the future, we will add a controller that dynamically adjust the throttle delay in run-

time to relieve the system performance degradation. We will also explore the potential of 

combining the techniques proposed in this thesis with other related works such as the automatic 

data migration, which creates empty ranks that can be shut off until the throttle delay is reached. 

It is possible to implement our work on the hybrid main memories such as the cached DRAM, 

which decreases DRAM access and therefore reduces more power. Our work can also be 

improved by working with the write combining technique, which combines write requests at 

the last level cache. Furthermore, we will extend this work by utilizing the multiple low power 

modes provided by the most recent DRAM circuits.



 

57 
 

References 

 
[1] G. Zhang, H. Wang, X. Chen, S. Huang, and P. Li, “Heterogeneous multi-channel: Fine-

grained DRAM control for both system performance and power efficiency,” in Proceedings 

of the 49th Design Automation Conference, 2012. 

[2] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N. P. 

Jouppi, “Rethinking DRAM design and organization for energy-constrained multi-cores,” 

in Proceedings of the 37th International Symposium on Computer Architecture, 2010. 

[3] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin, “DRAM 

energy management using software and hardware directed power mode control,” in 

Proceedings of the 7th International Symposium on High-Performance Computer 

Architecture, 2001. 

[4] K. Chandrasekar, B. Akesson, and K. G. W. Goossens, “Run-time power-down strategies 

for real-time SDRAM memory controllers.” in Proceedings of the 49th Design Automation 

Conference, 2012. 

[5] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch. 

“Disaggregated memory for expansion and sharing in blade servers,” in Proceedings of the 

36th International Symposium on Computer Architecture, 2009. 

[6] D. Meisner, B. Gold, and T. Wensich, “PowerNap: Eliminating server idle power,” in 

Proceedings of the 36th International Symposium on Computer Architecture, 2009. 

[7] K. T. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo, B. C. Lee, and M. Horowitz, 

“Rethinking DRAM power modes for energy proportionality,” in Proceedings of the 45th 

International Symposium on Microarchitecture, 2012. 

[8] JEDEC Standard: DDR2 SDRAM Specification, JEDEC Solid State Technology 

Association, 2009. 

[9] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Self-optimizing memory controllers: A 

reinforcement learning approach,” in Proceedings of the 35th International Symposium on 

Computer Architecture, 2008. 

[10] J. Janzen, “Calculating memory system power for DDR SDRAM,” Designline, vol. 10, no. 

2, 2001. 

[11] Calculating memory system power for DDR3, Micron Technology, Inc, 2007. 

[12] 512Mb: x4, x8, x16 DDR2 SDRAM, Micron Technology, Inc., 2012. 

[13] H. Park, S. Yoo, and S. Lee, “Power management of hybrid DRAM/PRAM-based main 

memory,” in Proceedings of the 48th Design Automation Conference, 2011. 



 

58 
 

[14] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and DRAM main 

memory system,” in Proceedings of the 46th Design Automation Conference, 2009. 

[15] N. AbouGhazaleh, B. Childers, D. Mosse, and R. Melhem, “Energy conservation in 

memory hierarchies using power-aware cached-DRAM,” in Proceedings of the 23rd 

International Conference on Computer Design, 2005. 

[16] H. Zheng, Z. Zhang, E. Gorbatov, and Z. Zhu, “Mini-rank: Adaptive DRAM architecture 

for improving memory power efficiency,” in Proceedings of the 40th International 

Symposium on Microarchitecture, 2008. 

[17] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware intelligent DRAM 

refresh,” in Proceedings of the 39th International Symposium on Computer Architecture, 

2012. 

[18] V. D. L. Luz, M. Kandemir, and I. Kolcu, “Automatic data migration for reducing energy 

consumption in multi-bank memory systems,” in Proceedings of the 39th Design 

Automation Conference, 2002. 

[19] M. Pedram, “Power optimization and management in embedded systems,” in Proceedings 

of the Asia and South Pacific Design Automation Conference, 2001. 

[20] G. Thomas, K. Chandrasekar, B. Akesson, B. Juurlink, and K. Goossens, “A predictor-

based power-saving policy for DRAM memories,” in Proceedings of the 15th Conference 

on Digital System Design, 2012. 

[21] I. Hur and C. Lin, “A comprehensive approach to DRAM power management,” in 

Proceedings of the 14th International Symposium on High-Performance Computer 

Architecture, 2008. 

[22] K. Chandrasekar, B. Akesson, and K. Goossens, “Run-time power-down strategies for real-

time SDRAM memory controllers,” in Proceedings of the 49th Design Automation 

Conference, 2012. 

[23] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access 

scheduling,” in Proceedings of the 27th International Symposium on Computer 

Architecture, 2000. 

[24] J. Mukundan and J. F. Martinez, “MORSE: Multi-objective reconfigurable self-optimizing 

memory scheduler,” in Proceedings of the 18th International Symposium on High-

Performance Computer Architecture, 2012. 

[25] H. Hanson and K. Rajamani, “What computer architects need to know about memory 

throttling,” in Workshop on Energy-Efficient Design, 2010. 

[26] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt,“DRAM-aware last-level 

cache writeback: Reducing write-caused interference in memory system,” Tech. Rep., Apr. 

2010. 

[27] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montano, “Improving read 

performance of phase change memories via write cancellation and write pausing,” in 



 

59 
 

Proceedings of the 16th International Symposium on High-Performance Computer 

Architecture, 2010. 

[28] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A simulation framework 

for CPU-GPU computing,” in Proceedings of the 21st International Conference on 

Parallel Architectures and Compilation Techniques, 2012. 

[29] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle accurate memory 

system simulator,” Computer Architecture Letters, vol. 10, no. 1, pp. 16 –19, Jan.–Jun. 

2011. 

[30] Cortex-A9 MPCore technical reference manual, ARM, 2012. 

[31] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH Computer 

Architecture News, vol. 34, no. 4, pp. 1–17, Sep. 2006. 

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 programs: 

Characterization and methodological considerations,” in Proceedings of the 22nd 

International Symposium on Computer Architecture, 1995. 


