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利用賽局理論之多網路系統最佳化入侵防護策略 

 

學生：李彥良                               指導教授：李程輝 

國立交通大學電信工程研究所碩士班 

摘 要       

 隨著網際網路的發達，網路安全越來越受到重視。網路科技的來臨，為生

活帶來了高度的便利性，我們可以因此輕鬆快速地獲得資訊、完成任務，讓生活

變的更美好，但其背後的風險絕對不能忽視。因為在當今的社會中，很多資訊都

能透過網路取得，有專業知識背景的人甚至可以透過這個管道來獲得不法利益，

如果保護好這些資訊，避免它被非法取得，將會是個重要且必須面對的問題。 

在這篇論文當中，我們使用賽局理論去分析在有多個系統要保護且資源有限

的情況下，攻擊者跟系統管理者的最好策略。 

 

關鍵字：賽局理論、網路安全 
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Optimal Intrusion Protection Strategy for 

Multiple Network Systems using Game 

Theory 

Student: Yen-Liang Lee                   Advisor: Prof. Tsern-Huei Lee 

Institute of Communication Engineering 

Electrical and Computer Engineering College 

National Chiao Tung University 

 

ABSTRACT 

 

In this paper, we present a game-theory based strategy for protecting multiple 

network systems. We consider the interactions between the attacker and the defender 

as a two-player, and non-cooperative game in both sequential and simultaneous mode. 

Optimal strategies for both the attacker and the defender are derived.  

 

Keywords: Game Theory, network security 
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Chapter 1. Introduction 

 

1.1 Introduction 

Today we live in a world that is highly dependent on the Internet. Smart phones, personal 

computers, traffic lights, etc., all rely on the network to provide their services. With these 

services, our lives become much more convenient than ever. However, network suffers from 

security problems. Network security has become a challenging issue because many new 

network attacks have appeared increasingly sophisticated and caused vast loss to network 

resources. How to protect multiple network systems with limited resources is one of the 

critical issues we must face. 

In this paper, we assume that there is an intruder who wants to intrude a set of systems that 

are guarded by a defender. The defender can only protect one of the systems while the 

intruder launches his attack. We discuss how game theory can be applied to this problem. We 

have derived an optimal strategy for the intruder to maximize his benefits, and an optimal 

strategy for the defender to minimize the intruder’s benefits. 

 

1.2 Related works 

Several papers concerning about network security using game theory have been 

proposed. 

In[1], Kong-wei Lye and Jeannette Wing model the network security problem as a 

general-sum stochastic game between the intruder and the defender. They also compute the 

Nash equilibrium strategies for the players. 

In[2], Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya, 

and Qishi Wu categorize game theory into many different groups, discuss the relationship 
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between network security and game theory. Our system model in this paper belongs to one of 

the games mentioned in this paper. 

In[4], Xiannuan Liang, and Yang Xiao provide a survey and classifications of existing 

game theoretic approaches to network security. They show the short comings of traditional 

solutions to network security, and that game theoretic approachs are powerful tools for 

solving network security problems. 
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Chapter 2. Background and Problem 

Formulation 

 

2.1 An Overview of Game Theory 

Game theory describes the multi-person decision scenario as games where each person 

chooses the actions that results in the best rewards for himself. Here we introduce some of 

the terminologies of game theory.  

Game 

The interaction among rational, mutually aware players, where the decisions of some 

players impacts the payoffs of others. A game is described by its players, each 

player's strategies, and the resulting payoffs from each outcome. Additionally, in sequential 

games, the game stipulates the timing of moves. 

 

Action 

An action constitutes a move within a game. 

 

Player 

Any participant in a game who has more than one set of strategies and selects among 

the strategies based on payoffs. If a player is non-strategic, selecting strategies randomly, the 

player is termed a nature player. 

 

Payoff 

In any game, payoffs are positive or negative numbers which represent the motivations 

http://www.gametheory.net/dictionary/Rationality.html
http://www.gametheory.net/dictionary/Player.html
http://www.gametheory.net/dictionary/Payoffs
http://www.gametheory.net/dictionary/Player.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/Payoffs.html
http://www.gametheory.net/dictionary/Outcome.html
http://www.gametheory.net/dictionary/SequentialGame.html
http://www.gametheory.net/dictionary/SequentialGame.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/Payoff.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/NaturePlayer.html
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of each player. Payoffs may represent profit, quantity, or rank the desirability of outcomes. In 

all cases, the payoffs must reflect the motivations of the particular player. 

 

Strategy 

A strategy defines a set of moves or actions a player will follow in a game. A strategy 

must be complete, defining an action in every contingency, including those that may not be 

attainable in equilibrium. For example, a strategy for the game of checkers would define a 

player's move at every possible position attainable during a game.  

 

Sequential Game 

A sequential game is one in which players make decisions following a certain predefined 

order, and in which at least some players can observe the moves of players who preceded 

them.  

 

Simultaneous Game 

A simultaneous game is one in which all players make decisions without knowledge of 

the strategies that are being chosen by other players. Even though the decisions may be made 

at different points in time, the game is simultaneous because each player has no information 

about the decisions of others; thus, it is as if the decisions are made simultaneously.  

 

Static Game 

This is the type of game that we discuss through out this paper. Static game is a one-shot 

game where all players make decisions at the same time. Even though the decisions may be 

made at different points in time, the game is simultaneous because each player has no 

information about the decisions of others; thus, it is as if the decisions are made 

simultaneously. 

http://www.gametheory.net/dictionary/NashEquilibrium.html
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Figure 1.  An overview of game theory 

In game theory, usually we have the following basic elements and assumptions: 

1. Every decision player has two or more well-specified actions or sequences of actions. 

2. Each possible combination of actions leads to a well-defined end-state (win, loss, or draw) 

that terminates the game. 

3. Each player’s end-state has its corresponding payoff. 

4. All players are rational, which means that given two choices, each player would choose 

the one that results in higher payoff. 

2.2 Prisoner’s Dilemma 

We exemplify the above descriptions by introducing a well-known game: the Prisoner’s 

Dilemma. The prisoner's dilemma describes the story of two criminals (player I, and player 

II) who have been arrested for a crime being interrogated separately. They are told that if 

both of them keep silence, the case against them is weak and they will be convicted and 

punished for lesser charges. If this happens, each will be sent to jail for two years. If both of 

them confess, each will be sent to jail for five years. If only one player confesses and 

testifies against the other, the one who does not cooperate with the police would get a ten-

year sentence and the one who cooperate will go free. Table 1 illustrates the structure of 

payoffs. 
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Table 1.  Payoffs of prisoner’s dilemma 

 

 

 

 

 

Meanings of the payoffs 

0: sent to jail for 10 years 

2: sent to jail for 5 years 

3: sent to jail for 2 years 

4: go free 

In table 1, each cell of the matrix shows the payoffs for the two players. Player I’s payoff 

is shown as the first number in each pair, Player II’s as the second. As the upper-left cell 

shows, if both players confess, they get a payoff of 2 (sent to jail for 5 years). If both of them 

keep silence, they each gets a of 3 (sent to jail for 2 years), which is shown in the lower-right 

cell. If player I confesses and player II remains silent, then player I gets a payoff of 4 (going 

free) and player II gets a payoff of 0 (sent to jail for 10 years). This appears in the upper-

right cell. The lower-left cell illustrates the reverse situation.  

Nash equilibrium describes the steady state where no player, given all other players’ 

choice, would prefer to change his strategy because that would decrease his payoff. In the 

case of prisoner’s dilemma, the Nash equilibrium is reached when both players confess.  

  

 Player II 

Confess Silence 

Player I Confess 2, 2 4, 0 

Silence 0, 4 3, 3 
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Chapter 3. System Model 

 

 

Figure 2. System model 

Figure 2 illustrates the system model in this paper. The meanings of the characters are 

listed below.  

ip : the probability that the intruder attacks system i 

iq : the probability that the defender appears at system i 

iA : reward for intruder 

ir : the probability for intruding system i successfully 

si: the ith system 

In this paper, we assume there is an intruder, H, who wants intrude n systems, S = {s1, 

s2, …, sn}, that are guarded by a defender, G, who can only protect one system while H is 

intruding. H can only intrude one system at a time. The probabilities for H to intrude systems 

s1, s2, …, sn are P = {p1, p2, …, pn}, respectively. The probability that H successfully enters 

system i is ri. The reward for intruding these systems are A={A1, A2, …, An}, respectively, 

which means that if H successfully intrude si, then he will get a reward of Ai, 1 i n  . G 
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chooses to protect s1, s2, s3…, sn with probabilities Q={q1, q2, …, qn}, respectively. If H 

chooses to intrude sj, and G chooses to protect sj, then H would be caught and punished for 

k*Aj, where k is a constant k > 0, 1 j n  . Two questions then arise, “How does the 

intruder, H, decide his strategy, P, so that his expected reward can be maximized?” and 

“How does the defender, G, decide his strategy, Q, so that H’s expected reward can be 

minimized?” We will discuss the above two questions under two scenarios throughout this 

paper. Whenever the attacker chooses a system, three situations will occur with 

corresponding probabilities. 

 

Figure 3. Results of the attacker 
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Chapter 4. Analysis 

 

The two questions, “How does the intruder, H, decide his strategy, P, so that his expected 

reward can be maximized?” and “How does the defender, G, decide his strategy, Q, so that 

H’s expected reward can be minimized?” will be analyzed in the following analyses. 

Analysis 1 

First we consider the question about how G can minimize H’s expected reward by 

deciding the probabilitiy distribution of Q. In order to do this, we first list some important 

parameters.  

E[X] =
1

n

i i i

i

p Ar


 : Expected reward of H when G does not exist        (4.1) 

E[R] =
1 1

(1 )
n n

i i i i i i i i

i i

p Ar q k p Arq
 

   =
1 1

( 1)
n n

i i i i i i i

i i

p Ar k p Arq
 

   : Expected reward of 

H when G appears                 (4.2) 

Assume intruder’s strategy, P, is given, our goal is to minimize E[R] by setting defender’s 

strategy, Q. We can have the following derivation.  

1 2, ,...,
min { [ ]}

nq q q
E R =

1 2, ,...,
1

min { [ ] ( 1) }
n

n

i i i i
q q q

i

E X k p Arq


   =
1

[ ] ( 1)max{ }i i i
i n

E X k p Ar
 

      (4.3) 

Define j j j jV p A r . From the above derivation, we know that G can minimize E[R] by 

picking up the maximum Vj, and set it to 1, no matter how H set P. This means that the 

defender will always defend the system that has the maximum reward for the attacker. 

Next we consider how H can maximize his reward by selecting P if he knows G’s strategy. 

1 21 2 , ,...,, ,...,
max { min { [ ]}}

nn q q qp p p
E R =

1 2, ,..., 1
1

max { ( 1)max{ }}
n

n

i i i i i i
p p p i n

i

p Ar k p Ar
 



         (4.4) 

Suppose 
x x xp A r  is the maximum term, which means x x x y y yp A r p A r  for 

,1 ,1x y x n y n     . We can increase
1 2, ,...,
min { [ ]}

nq q q
E R  by an amount of 
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1 ,

(A ) (1 )
n

y y y x x

y n y x

r k A r 
  

    if we decrease 
xp  by an amount of   and increase yp  by 

 . This can be represented as the following, ' , 'x x y yp p p p     . We can keep doing 

this process until every 
i i ip Ar  becomes the same, which means 

i i ip Ar C  for 1 i n  , 

where C is a constant. The optimal strategy for the attacker is then derived as  

1

1 1

1i n

i i

j j j

p
Ar

A r

 


 for 1 i n             (4.5) 

P can be solved by using the fact that 
1

1
n

i

i

p


  and 
i i ip Ar C  for 1 i n  . 

Analysis 2 

We now consider the situation where H knows G’s strategy, Q. The problem to be solved 

is how H can maximize his reward by selecting P? The process of the maximization,

1, 2,...,
max { [ ]}

p p pn
E R  can be derived as follows. 

1, 2,..., 1, 2,...,
1 1

max { [ ]} max { ( 1) }
n n

i i i i i i i
p p pn p p pn

i i

E R p Ar k p Arq
 

    =       

1, 2,..., 1
1

max { [ ( 1) ]} max{ (1 ( 1) )}
n

i i i i i i i i i
p p pn i n

i

p Ar k Arq Ar k q
 



          (4.6) 

According to the above equations, we know that H can maximize his reward by setting jp =1 

for (1 ( 1) ) (1 ( 1) )j j j i i iA r k q Ar k q     , 1 i n  , and i j . This means that no matter 

what the defender’s strategy is, the intruder would always intrude the system whose 

expected reward, (1 ( 1) )i i iAr k q  , is the maximal. 

Next, we consider how G can minimize H’s reward by selecting Q if G knows H’s strategy. 

Suppose there exists an optimal solution, Q*, for G, which can minimize H’s reward. We 

will prove that that the following statements are satisfied if G applies Q*. 

I. For any two of the systems, if G guards them with a probability > 0, then their expected 

rewards are equal and would be 
1
max{ }i

i n
V

 
. 

II. If G guards system h with probability 0, then the expected reward of h   the expected 
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reward of the systems that are guarded with probability > 0. 

For the convenience of analysis and reading, we define the following parameters. 

(1 ( 1) )i i i iW Ar k q   : expected reward of system i         (4.7) 

F: the set of systems such that j F  if and only if 
1

, max{ }j f f i
i n

W W W W
 

  . 

|F|: number of elements in F 

Proof of statement I:  

We want to prove that if * 0hq  , and qi*>0, then h jW W . This can be proved by 

contradiction. Suppose that if * 0hq  , and qi*>0, then j hW W . Let ' *j jq q   , and 

' *+h hq q  such that ' (1 ( 1) ') (1 ( 1) ') W 'j j j j h h h hW A r k q A r k q       . In this way, we 

find that 
1
max{ }i

i n
W

 
 can be further reduced, meaning that the intruder’s reward can be 

reduced, which implies that Q is not an optimal solution for G to minimize H’s reward. 

Therefore a contradiction occurs. Statement I is proved. 

Proof of statement II: 

We want to prove that if * 0hq  , then (1 ( 1) *)h h h j j j jW A r A r k q W     , where 

qj*>0. This can also be proved by contradiction. First we suppose that if * 0hq  , then 

h jW W . Let ' *h hq q   , and ' *j jq q   such that 

(1 ( 1) ')>A (1 ( 1) '),h h h j j jA r k q r k q j F      . In this way we find that 
1
max{ }i

i n
W

 
 can be 

further reduced, meaing the intruder’s reward can be reduced, which implies that Q is not an 

optimal solution for G to minimize H’s reward. Therefore a contradiction occurs. Statement 

II is proved. 

After proving the above two facts, we can calculate Q* as follows. 

Let iV=A (1 ( 1) )i i ir k q C     i, where C is a constant    (4.8) 

We can derive  
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1

1 1
(1 )

11
i n

i i

j j j

n k
q

k
Ar

A r

 
 




              (4.9) 

by using the fact that 
1

=1
n

i

i

q


 .    

Note that in order to satisfy equation (), some of the qi may be smaller than 0, which is 

undefined. This situation can be avoided by setting 1k n  . Thus we have proved that Q* 

is the optimal solution by proving statement I and II to be true.  
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Chapter 5. Simulation 

 

From previous discussions, we know that when k=n-1, then the expected reward of the 

intruder would be  

1 1

( 1)
n n

i i i i i i i

i i

p Ar k p Arq
 

   = 1 1 1

1

n

i i i i

i

np A r n p Arq


  1 1 1 1 1 1

1

n

i

i

np Ar np Ar q


  =0.  (5.1) 

This is a fair scenario for both the attacker and the intruder. Because no one can get 

reward in this game. In this paper, we present our simulation results to verify that our 

strategies are optimal.  

Table 2. Parameters of the simulations  

Number of systems 4 

Number of rounds 10000 

Reward for each system {23, 24, 3, 14} 

Success probability of each system {50%, 50%, 50%, 50%} 

Table 2 shows the parameters used in our simulation. Assume there are a total of four 

systems. The rewards for each of them are 23, 24, 3, and 14 respectively. Every system has a 

intruding success probability of 50%. We simulate the attacker’s reward in a 10000 round 

sequential game.  

Firstly, we show the simulation results where k=n-1, and the defender chooses the 

intruding system first in each round of the game. In the first simulation, the defender chooses 

systems with randomly determined probabilities, and the attacker chooses the system that has 

the maximum expected reward. 
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Figure 4. For k=n-1, defender chooses systems with randomly determined probabilities 

In figure 4, the defender chooses systems 1, 2, 3, and 4 with probabilities 41.09%, 

34.73%, 15.83%, and 8.35%. The average reward for the attacker during the 10,000 round 

game is 4.63. Apparently, the attacker’s strategy works for him, meaning that he can get a 

positive reward by using this strategy. Next, let us see what happens if the defender applies 

our optimal strategy. 

For k=n-1, defender chooses systems with randomly determined probabilities 
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Figure 5. For k=n-1, defender applies optimal strategy 

The average reward in figure 5 is 0.17. Because the defender applies the optimal strategy, 

the expected rewards of all systems become the same, making the atttacker impossible to pick 

up the system that has the maximum expeced reward. As a result, the attacker will always get 

an average reward that is less than that of figure 4. This shows that our strategy for the 

defender is effective for the defender for reducing the attacker’s reward.  

Next, we consider the scenario where the attacker makes his decision first in each round 

of the game. In this simulation, the attacker chooses systems with randomly determined 

probabilities, the defender will always choose the system that has the maximum pjAjrj term, 

where 1 j n  .  

For k=n-1, defender applies optimal strategy 
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Figure 6. For k=n-1, attacker chooses systems with randomly determined probabilities 

In figure 6, the attacker chooses systems 1, 2, 3, and 4 with probabilities of 13.48%, 

2.90%, 41.80%, and 41.82% respectively. The average reward in figure 6 is -2.84. Next, we 

see how the results change if the attacker applies the optimal strategy we derived in this paper.  

For k=n-1, attacker chooses systems with randomly determined probabilities 
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Figure 7. For k=n-1, attacker applies optimal strategy 

In the above figure, the average reward for the attacker is 0.01. Compare figure 7 with 

figure 6, we can see clearly that the average reward has increased. This is because when the 

attacker applies the optimal strategy, the defender has no informatin about which system the 

attacker may intrude.  

 We next show the simulation scenario where k>n-1 (here we set k=n+1). This is the case 

that is beneficial for the defender. Again, in the first simulation, the defender chooses systems 

with randomly determined probability, while the attacker chooses the system that has the 

maximum expected reward.  

For k=n-1, attacker chooses systems with randomly determined probabilities 
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Figure 8. For k=n+1, defender chooses systems with randomly determined probabilities 

In figure 8, the defender protects systems 1, 2, 3, and 4 with probabilities 1.65%, 

40.03%, 19.29%, 39.03%. The average reward in the 10,000 round game in figure 8 is 10.42. 

Compare figure 8 with figure 4, we can clearly see that the average score is decreased. This is 

because the penalty multiplier is set to a value that is beneficial for the defender. Next we see 

how the average score changes when the defender applies the optimal strategy we derived 

previously.  

For k=n+1, defender chooses systems with randomly determined probabilities 
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Figure 9. Defender applies optimal strategy 

The average score in figure 9 is -2.54. Compare figure 9 with figure 5, we see that the 

average score is decreased. We next show the simulation results where k=n+1 and attacker 

makes decision first in each round of the game. Attacker chooses systems with randomly 

determined probabilites in this scenario. 

For k=n+1, defender applies optimal strategy 
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Figure 10. Attacker chooses systems with randomly determined probabilities 

The average reward in figure 10 is -9.85. Compare this result with that of figure 6, we 

find that the average reward is decreased. This is due to the change of value in penalty 

multiplier, k. Next we see what happens if the attacker uses the optimal strategy.  

For k=n+1, attacker chooses systems with randomly determined probabilities 
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Figure 11. Attacker spplies optimal strategy 

The average score in the 1000 round game in figure Figure 11. Attacker spplies optimal 

strategy is -1.62. Compare this result with figure 10, we find that the average score is 

increased. This shows that the optimal strategy is effective for increasing the attacker’s 

average reward.  

Next, we analyze the scenario where k=n-3. This is the scenario that is beneficial for the 

attacker. We first show the simulation results where the defender chooses systems with 

randomly determined probability and the attacker always chooses the system that has the 

maximum reward. 

For k=n+1, attacker applies optimal strategy 
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Figure 12. Defender chooses systems with randomly determined probabilities 

In figure 12, the defender guards systems 1, 2, 3, and 4 with probabilities 24.45%, 

39.53%, 5.78%, and 30.24% respectively. The average score of this 1000 round game is 6.39. 

Compare figure 11 with figure 4, we find that the average reward is increased. This is because 

the penalty multiplier has decreased, making the scenario beneficial to the attacker. Next, we 

see what happens if the defender applies the optimal strategy.  

For k=n-3, defender chooses systems with randomly determined probabilities 
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Figure 13. Defender applies optimal strategies 

The average reward in figure 12 is 2.16. Obviously, the average reward is decreased 

when comparing figure 13 with figure 12. This means that the optimal strategy is effective for 

the defender to protect himself.  

For k=n-3, defender applies optimal strategy 
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Figure 14. Attacker chooses system with randomly determined probabilities 

In figure 14, the attacker intrudes systems with probabilities 5.73%, 37.37%, 46.17%, 

and 10.74% respectively. The average reward of figure 14 is -1.67. Compare the above figure 

with figure 6, we find that the average reward is increased from -8.48 to -4.40. This is caused 

by the decrease in the penalty multiplier, k. 

For k=n-3, attacker chooses systems with randomly determined probabilities 
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Figure 15. Attacker applies optimal strategy 

The average reward of figure 15 is 1.93. Compare this figure with figure 14, we can 

clearly see that the average reward is increased, which is beneficial for the attacker. This 

means that the optimal strategy is effective for the attacker. 

For the convenience of reading, we list the above average rewards in the following 

tables. 

Table 3. Average scores when of k=n-1 

k=n-1 

 defender 

chooses 

systems with 

randomly 

determined 

probability 

defender 

applies optimal 

strategy 

attacker 

chooses 

systems with 

randomly 

determined 

probability 

attacker applies 

optimal strategy 

Average Score  4.63 0.17 -2.84 0.01 

Theoretical 

Score 

4.66 0 -2.91 0 

For k=n-3, attacker applies optimal strategy 
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Table 4. Average scores when of k=n+1 

k=n+1 

 defender 

chooses 

systems with 

randomly 

determined 

probability 

defender 

applies optimal 

strategy 

attacker 

chooses 

systems with 

randomly 

determined 

probability 

attacker applies 

optimal strategy 

Average Score 10.42 -2.54 -9.85 -1.62 

Theoretical 

Score 

10.36 -2.04 -9.61 -2.04 

 

Table 5. Average scores when of k=n-3 

k=n-3 

 defender 

chooses 

systems with 

randomly 

determined 

probability 

defender 

applies optimal 

strategy 

attacker 

chooses 

systems with 

randomly 

determined 

probability 

attacker applies 

optimal strategy 

Average Score 6.39 2.16 -1.67 1.93 

Theoretical 

Score 

6.13 2.04 -1.67 2.04 
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Chapter 6. Conclusion 

 

In this paper, we derived the optimal strategies for the attacker and the defender in both 

simultaneous game and sequential game. From our previous analysis, we conclude that the 

best strategy for the attacker is  

1

1 1

1i n

i i

j j j

p
Ar

A r

 


 for 1 i n                 (6.1) 

and the best strategy for the defender is  

1

1 1
(1 )

11
i n

i i

j j j

n k
q

k
Ar

A r

 
 




 for 1 i n               (6.2) 

The above results applies in both simultaneous game and sequential game. 
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