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ABSTRACT

In this paper, we present a game-theory based strategy for protecting multiple
network systems. \We consider the interactions between the attacker and the defender
as a two-player, and non-cooperative game in both sequential and simultaneous mode.

Optimal strategies for both the attacker and the defender are derived.
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Chapter 1. Introduction

1.1 Introduction

Today we live in a world that is highly dependent on the Internet. Smart phones, personal
computers, traffic lights, etc., all rely on the network to provide their services. With these
services, our lives become much more convenient than ever. However, network suffers from
security problems. Network security has become a challenging issue because many new
network attacks have appeared increasingly sophisticated and caused vast loss to network
resources. How to protect multiple network systems with limited resources is one of the
critical issues we must face.

In this paper, we assume that there is an intruder who wants to intrude a set of systems that
are guarded by a defender. The defender can only protect one of the systems while the
intruder launches his attack. We discuss how game theory can be applied to this problem. We
have derived an optimal strategy for the intruder to maximize his benefits, and an optimal

strategy for the defender to minimize the intruder’s benefits.

1.2 Related works

Several papers concerning about network security using game theory have been
proposed.

In[1], Kong-wei Lye and Jeannette Wing model the network security problem as a
general-sum stochastic game between the intruder and the defender. They also compute the
Nash equilibrium strategies for the players.

In[2], Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya,

and Qishi Wu categorize game theory into many different groups, discuss the relationship



between network security and game theory. Our system model in this paper belongs to one of
the games mentioned in this paper.

In[4], Xiannuan Liang, and Yang Xiao provide a survey and classifications of existing
game theoretic approaches to network security. They show the short comings of traditional
solutions to network security, and that game theoretic approachs are powerful tools for

solving network security problems.




Chapter 2. Background and Problem
Formulation

2.1 An Overview of Game Theory

Game theory describes the multi-person decision scenario as games where each person
chooses the actions that results in the best rewards for himself. Here we introduce some of
the terminologies of game theory.

Game

The interaction among rational, mutually aware players, where the decisions of some
players impacts the payoffs of others. A game is described by its players, each
player's strategies, and the resulting payoffs from each outcome. Additionally, in sequential

games, the game stipulates the timing of moves.

Action

An action constitutes a move within a game.

Player
Any participant in a game who has more than one set of strategies and selects among
the strategies based on payoffs. If a player is non-strategic, selecting strategies randomly, the

player is termed a nature player.

Payoff

In any game, payoffs are positive or negative numbers which represent the motivations


http://www.gametheory.net/dictionary/Rationality.html
http://www.gametheory.net/dictionary/Player.html
http://www.gametheory.net/dictionary/Payoffs
http://www.gametheory.net/dictionary/Player.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/Payoffs.html
http://www.gametheory.net/dictionary/Outcome.html
http://www.gametheory.net/dictionary/SequentialGame.html
http://www.gametheory.net/dictionary/SequentialGame.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/Payoff.html
http://www.gametheory.net/dictionary/Strategy.html
http://www.gametheory.net/dictionary/NaturePlayer.html

of each player. Payoffs may represent profit, quantity, or rank the desirability of outcomes. In

all cases, the payoffs must reflect the motivations of the particular player.

Strategy

A strategy defines a set of moves or actions a player will follow in a game. A strategy
must be complete, defining an action in every contingency, including those that may not be
attainable in equilibrium. For example, a strategy for the game of checkers would define a

player's move at every possible position attainable during a game.

Sequential Game

A sequential game is one in'which players make decisions following a certain predefined

order, and in which at least some players can observe the moves of players who preceded

them.

Simultaneous Game

A simultaneous game is one in which all players make decisions without knowledge of
the strategies that are being chosen by other players. Even though the decisions may be made
at different points in time, the game is simultaneous because each player has no information

about the decisions of others; thus, it is as if the decisions are made simultaneously.

Static Game

This is the type of game that we discuss through out this paper. Static game is a one-shot
game where all players make decisions at the same time. Even though the decisions may be
made at different points in time, the game is simultaneous because each player has no
information about the decisions of others; thus, it is as if the decisions are made

simultaneously.


http://www.gametheory.net/dictionary/NashEquilibrium.html

[ Game Theory ]

[ Non-Cooperative Games ] [ Cooperative Games ]

[ Static Games ] [ Dynamic Games ]

Figure 1. An overview of game theory

In game theory, usually we have the following basic elements and assumptions:

1. Every decision player has two or more well-specified actions or sequences of actions.

2. Each possible combination of actions leads to a well-defined end-state (win, loss, or draw)
that terminates the game:

3. Each player’s end-state has its corresponding payoff.

4. All players are rational, which means that given two choices, each player would choose

the one that results in higher payoff.

2.2 Prisoner’s Dilemma

We exemplify the above descriptions by introducing a well-known game: the Prisoner’s
Dilemma. The prisoner's dilemma describes the story of two criminals (player I, and player
I1) who have been arrested for a crime being interrogated separately. They are told that if
both of them keep silence, the case against them is weak and they will be convicted and
punished for lesser charges. If this happens, each will be sent to jail for two years. If both of
them confess, each will be sent to jail for five years. If only one player confesses and
testifies against the other, the one who does not cooperate with the police would get a ten-
year sentence and the one who cooperate will go free. Table 1 illustrates the structure of

payoffs.



Table 1. Payoffs of prisoner’s dilemma

Player Il
Confess Silence
Player | Confess 2,2 4,0
Silence 0,4 3,3

Meanings of the payoffs
0: sent to jail for 10 years
2: sent to jail for 5 years
3: sent to jail for 2 years
4: go free
In table 1, each cell of the matrix shows the payoffs for the two players. Player I’s payoff
IS shown as the first number in each pair, Player II’s as the second. As the upper-left cell
shows, if both players confess, they get a payoff of 2 (sent to jail for 5 years). If both of them
keep silence, they each gets a of 3 (sent to jail for 2 years), which is shown in the lower-right
cell. If player I confesses and player Il remains silent, then player | gets a payoff of 4 (going
free) and player |1 gets a payoff of O (sent to jail for 10 years). This appears. in the upper-
right cell. The lower-left cell illustrates the reverse situation.
Nash equilibrium describes the steady state where no player, given all other players’
choice, would prefer to change his strategy because that would decrease his payoff. In the

case of prisoner’s dilemma, the Nash equilibrium is reached when both players confess.



Chapter 3. System Model

Intruder, H Guard, G
Aq(ry) 31
P1 > J,
A,(rp) S5
P> » 0>
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An(rn) 5

Px An

v

Figure 2. System model
Figure 2 illustrates the system model in this paper. The meanings of the characters are

listed below.

p,: the probability that the intruder attacks system i

q; : the probability that the defender appears at system i

A : reward for intruder

r.: the probability for intruding system i successfully

si: the i system

In this paper, we assume there is an intruder, H, who wants intrude n systems, S = {s1,

S2, ..., Sn}, that are guarded by a defender, G, who can only protect one system while H is
intruding. H can only intrude one system at a time. The probabilities for H to intrude systems
S1, S2, ..., snare P ={p1, p2, ..., pn}, respectively. The probability that H successfully enters
system i is ri. The reward for intruding these systems are A={Az1, Ao, ..., An}, respectively,

which means that if H successfully intrude s;, then he will get a reward of Aj, 1<i<n.G
7



chooses to protect s, Sz, Ss..., sn With probabilities Q={q1, 02, ..., qn}, respectively. If H
chooses to intrude sj, and G chooses to protect s;, then H would be caught and punished for
k*Aj, where k is a constant k > 0, 1< j <n. Two questions then arise, “How does the
intruder, H, decide his strategy, P, so that his expected reward can be maximized?” and
“How does the defender, G, decide his strategy, Q, so that H’s expected reward can be
minimized?” We will discuss the above two questions under two scenarios throughout this
paper. Whenever the attacker chooses a system, three situations will occur with

corresponding probabilities.

Vs

H chooses = . o1 gets caught: punished for kA,

system | \

1-r; fail: nothing happens

ri(1-q;) success: H gets a reward A,

Figure 3. Results of the attacker



Chapter 4. Analysis

The two questions, “How does the intruder, H, decide his strategy, P, so that his expected
reward can be maximized?” and “How does the defender, G, decide his strategy, Q, so that
H’s expected reward can be minimized?”” will be analyzed in the following analyses.

Analysis 1

First we consider the question about how G can minimize H’s expected reward by

deciding the probabilitiy distribution of Q. In order to do this, we first list some important

parameters.

E[X] :z p;Ar, : Expected reward of H when G does not exist 4.2)

i=1
E[R] :Z pALL-) _kz PiAKQ; :z pAL— (K "‘1)2 PiAKG; : Expected reward of
i=1 i=1 i=1 i=1
H when G appears (4.2)
Assume intruder’s strategy, P, IS given, our goal is to minimize E[R] by setting defender’s

strategy, Q. We can have the following derivation.

----------

min {E[R]}= min {E[X]-(k+1)>" p;Arg}=E[X]-(k+1) max{p,Ar} (4.3)
[SIRI PR O, 92 1+l i=1 1<i<n
Define V, =p;Ar; . From the above derivation, we know that G can minimize E[R] by

picking up the maximum V;j, and set it to 1, no matter how H set P. This means that the
defender will always defend the system that has the maximum reward for the attacker.

Next we consider how H can maximize his reward by selecting P if he knows G’s strategy.

max { min {E[RT}= max {3° p AR - (k+DmaxpAr} (4.4

PL P2 P Gz A )

Suppose p, Afr, isthe maximum term, which means p,Ar, > p Ar, for



Z (A,rA,)+(Q+k)Are if we decrease p, by anamountof ¢ and increase p, by

1<y<n,y#X

€. This can be represented as the following, p‘, =p,—¢,p’, =p, +&. We can keep doing

this process until every p,Ar, becomes the same, which means p. Ar, =C for 1<i<n,
where C is a constant. The optimal strategy for the attacker is then derived as
1 ><i for 1<i<n (4.5)

P YA
7 A

P can be solved by using the fact that > p, =1 and pAr=C for 1<i<n.
i=1

Analysis 2
We now consider the situation where H knows G’s strategy, Q. The problem to be solved
is how H can maximize his reward by selecting P? The process of the maximization,

1mzax {E[R]} can be derived as follows.
pLp2,. n

max {E[R]}= mzaﬁfpn{i PA —(k+1)_i PAKG )=

pL,p2,...,pn

max {z LAY, - (k + D Ang T =max{Ar - (k+1)q,)} (4.6)

pL,p2,...pn

According to the above equations, we know that H.can maximize his reward by setting p;=1

for Air,(1-(k+2)qg;) > Ar(1—(k+1)q), 1<i<n,and i# j. This means that no matter

what the defender’s strategy is, the intruder would always intrude the system whose
expected reward, Ar.(1-(k+2)g;), Is the maximal.

Next, we consider how G can minimize H’s reward by selecting Q if G knows H’s strategy.
Suppose there exists an optimal solution, Q*, for G, which can minimize H’s reward. We
will prove that that the following statements are satisfied if G applies Q*.

I. For any two of the systems, if G guards them with a probability > 0, then their expected

rewards are equal and would be rﬂax{\/ }.
<i<n

I1. If G guards system h with probability O, then the expected reward of h < the expected
10



reward of the systems that are guarded with probability > 0.
For the convenience of analysis and reading, we define the following parameters.

= Ar.(1-(k+1)q,): expected reward of system i 4.7)

F: the set of systems such that jeF ifand only if W, =W, ,W; =max{W.}.

I<i<n
|F|: number of elements in F

Proof of statement I:

We want to prove that if g,*> 0, and gi*>0, then W, =W,. This can be proved by
contradiction. Suppose that if g,*>0, and gi*>0, then W, >W, . Let g;'=q;*+¢ , and
, =0, *+e suchthat W,"'=Ar,(1-(k+1)q; ) > A, Q- (k+1)g,) =W, ". Inthis way, we

find that max{W} can be further reduced, meaning that the intruder’s reward can be

1<i<n
reduced, which implies that Q is not an optimal solution for G to minimize H’s reward.
Therefore a contradiction occurs. Statement | is proved.
Proof of statement 11:
We want to prove that if g,*=0, then W, = A, <A, (1=(k +1)q;*)=W;, where
q;*>0. This can also be proved by contradiction. First we suppose that if g,*=0, then

W, >W;. Let q,'=0,*+&,and g;'=q;*—¢ such that

AL Q-(k+Dq, )>A;r;1-(k+1q; "), Vj € F .In this way we find that max{\N} can be

1<i<n
further reduced, meaing the intruder’s reward can be reduced, which implies that Q is not an
optimal solution for G to minimize H’s reward. Therefore a contradiction occurs. Statement
Il is proved.

After proving the above two facts, we can calculate Q* as follows.

Let V.=Ar(1-(k+Dq)=C Wi, where C is a constant (4.8)

We can derive
11



_ 1 (- n—nk—l) 4.9
k+1 Ar 1
HAr

o

by using the fact that )" q;=1.
i=1

Note that in order to satisfy equation (), some of the gi may be smaller than 0, which is
undefined. This situation can be avoided by setting k >n—1. Thus we have proved that Q*

0 be true.

is the optimal solution by proving statement | and |




Chapter 5. Simulation

From previous discussions, we know that when k=n-1, then the expected reward of the

intruder would be
2 PAL=(k+DY pARG =np AR —nY P ARG =np AL -Np ALY ¢ =0 (5.1)
i=1 i=1 i=1 i=1
This is a fair scenario for both the attacker and the intruder. Because no one can get

reward in this game. In this paper, we present our simulation results to verify that our

strategies are optimal.

Table 2. Parameters of the simulations

Number of systems 4
Number of rounds 10000
Reward for each system {23, 24, 3, 14}
Success probability of each system {50%, 50%, 50%, 50%}

Table 2 shows the parameters used in our simulation. Assume there are a total of four
systems. The rewards for each of them are 23, 24, 3, and-14 respectively. Every system has a
intruding success probability of 50%. We simulate the attacker’s reward in a 10000 round
sequential game.

Firstly, we show the simulation results where k=n-1, and the defender chooses the
intruding system first in each round of the game. In the first simulation, the defender chooses
systems with randomly determined probabilities, and the attacker chooses the system that has

the maximum expected reward.

13



For k=n-1, defender chooses systems with randomly determined probabilities

2 T T T T T T T T

i \ i i 1 | \ 4 i
-850
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Round

Figure 4. For k=n-1, defender chooses systems with randomly determined probabilities

In figure 4, the defender chooses systems 1, 2, 3, and 4 with probabilities 41.09%,
34.73%, 15.83%, and 8.35%. The average reward for the attacker during the 10,000 round
game is 4.63. Apparently, the attacker’s strategy works for him, meaning that he can get a
positive reward by using this strategy. Next, let us see what happens if the defender applies

our optimal strategy.

14



For k=n-1, defender applies optimal strategy
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Figure 5. For k=n-1, defender applies optimal strategy

The average reward in figure 5 is 0.17. Because the defender applies the optimal strategy,
the expected rewards of all systems become the same, making the atttacker impassible to pick
up the system that has the maximum expeced reward. As a result, the attacker will always get
an average reward that is less than that of figure 4. This shows that our strategy for the
defender is effective for the defender for reducing the attacker’s reward.

Next, we consider the scenario where the attacker makes his decision first in each round
of the game. In this simulation, the attacker chooses systems with randomly determined

probabilities, the defender will always choose the system that has the maximum pjArj term,

where 1< j<n.

15



For k=n-1, attacker chooses systems with randomly determined probabilities
20 ! T I T

I [

I I I

Reward

0 |
0

|
6000 7000 8000
Round

9000

10000

Figure 6. For k=n-1, attacker chooses systems with randomly determined probabilities

In figure 6, the attacker chooses systems 1, 2, 3, and 4 with probabilities of 13.48%,

2.90%, 41.80%, and 41.82% respectively. The average reward in figure 6 is -2.84. Next, we

see how the results change if the attacker applies the optimal strategy we derived in this paper

16



For k=n-1, attacker chooses systems with randomly determined probabilities

e T T T T T T T T T
| “ ‘ ‘
T T 1

| ’ |
2000 3000 4000

7000 8000
Round

Figure 7. For k=n-1, attacker applies optimal strategy

In the above figure, the average reward for the attacker is 0.01. Compare figure 7 with
figure 6, we can see clearly that the average reward has increased. This iIs because when the
attacker applies the optimal strategy, the defender has no informatin about which system the
attacker may intrude.

We next show the simulation scenario where k>n-1 (here we set k=n+1). This is the case
that is beneficial for the defender. Again, in the first simulation, the defender chooses systems
with randomly determined probability, while the attacker chooses the system that has the

maximum expected reward.

17



For k=n+1, defender chooses systems with randomly determined probabilities
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Figure 8. For k=n+1, defender chooses systems with randomly determined probabilities

In figure 8, the defender protects systems 1, 2, 3, and 4 with probabilities 1.65%,
40.03%, 19.29%, 39.03%. The average reward in the 10,000 round game in figure 8is 10.42,
Compare figure 8 with figure 4, we can clearly see that the average score is decreased. This is
because the penalty multiplier is set to a value that is beneficial for the defender. Next we see
how the average score changes when the defender applies the optimal strategy we derived

previously.

18



For k=n+1, defender applies optimal strategy

Y ! 1 | | I

0 1000 2000 3000 4000 5000 5000 7000 8000 9000 10000

Figure 9. Defender applies optimal strategy

The average score in figure 9 is -2.54. Compare figure 9 with figure 5, we see that the
average score is decreased. We next show the simulation results where k=n+1 and attacker
makes decision first in each round of the game. Attacker chooses systems with randomly

determined probabilites in this scenario.

19



For k=n+1, attacker chooses systems with randomly determined probabilities
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Figure 10. Attacker chooses systems with randomly determined probabilities

The average reward in figure 10 is -9.85. Compare this result with that of figure 6, we
find that the average reward is decreased. This is due to the change of value in penalty

multiplier, k. Next we see what happens if the attacker uses the optimal strategy.

20
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For k=n+1, attacker applies optimal strategy

) T T T I \
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Figure 11. Attacker spplies optimal strategy

The average score in the 1000 round game in figure Figure 11. Attacker spplies optimal
strategy IS -1.62. Compare this result with figure 10, we find that the average score is
increased. This shows that the optimal strategy is effective for increasing the attacker’s
average reward.

Next, we analyze the scenario where k=n-3. This is the scenario that is beneficial for the
attacker. We first show the simulation results where the defender chooses systems with
randomly determined probability and the attacker always chooses the system that has the

maximum reward.

21



For k=n-3, defender chooses systems with randomly determined probabilities

25
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Figure 12. Defender chooses systems with randomly determined probabilities

In figure 12, the defender guards systems 1, 2, 3, and 4 with probabilities 24.45%,
39.53%, 5.78%, and 30.24% respectively. The average score of this 1000 round game is 6.39.
Compare figure 11 with figure 4, we find that the average reward is increased. This Is because

the penalty multiplier has decreased, making the scenario beneficial to the attacker. Next, we

see what happens if the defender applies the optimal strategy.

22



For k=n-3, defender applies optimal strategy

Reward

3000
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4000 5000 6000 7000 8000
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Figure 13. Defender applies optimal strategies

The average reward in figure 12 is 2.16. Obviously, the average reward is decreased

when comparing figure 13 with figure 12. This means that the optimal strategy is effective for
the defender to protect himself.

23



For k=n-3, attacker chooses systems with randomly determined probabilities

1000 2000 3000 4000 5000 6000 7000 8000 9000
Round

Figure 14. Attacker chooses system with randomly determined probabilities

In figure 14, the attacker intrudes systems with probabilities 5.73%, 37.37%, 46.17%,
and 10.74% respectively. The average reward of figure 14 is -1.67. Compare the above figure
with figure 6, we find that the average reward is increased from -8.48 to -4.40. This Is caused

by the decrease in the penalty multiplier, k.

24



For k=n-3, attacker applies optimal strategy
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Figure 15. Attacker applies optimal strategy

The average reward of figure 15 is 1.93. Compare this figure with figure 14, we can

10000

clearly see that the average reward is increased, which is beneficial for the attacker. This

means that the optimal strategy is effective for the attacker.

For the convenience of reading, we list the above average rewards in the following
tables.

Table 3.  Average scores when of k=n-1
k=n-1
defender defender attacker attacker applies
chooses applies optimal chooses optimal strategy
systems with strategy systems with
randomly randomly
determined determined
probability probability
Average Score 4.63 0.17 -2.84 0.01
Theoretical 4.66 0 -2.91 0
Score
25




Table 4. Average scores when of k=n+1

k=n+1
defender defender attacker attacker applies
chooses applies optimal chooses optimal strategy
systems with strategy systems with
randomly randomly
determined determined
probability probability
Average Score 10.42 -2.54 -9.85 -1.62
Theoretical 10.36 -2.04 -9.61 -2.04
Score

Table 5. Average scores when of k=n-3

k=n-3
defender defender attacker attacker applies
chooses applies optimal chooses optimal strategy
systems with strategy systems with
randomly randomly
determined determined
probability probability
Average Score 6.39 2.16 -1.67 1.93
Theoretical 6.13 2.04 -1.67 2.04
Score

26




Chapter 6. Conclusion

In this paper, we derived the optimal strategies for the attacker and the defender in both
simultaneous game and sequential game. From our previous analysis, we conclude that the

best strategy for the attacker is
1

1 .
= — for 1<i 6.1
PTET ¢4
A
and the best strateg the defender is
qi :—( 0 i ] (62)

27
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