
Expert Systems with Applications 36 (2009) 7581–7593
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Development of an agent-based system for manufacturing control
and coordination with ontology and RFID technology

Ruey-Shun Chen a, Mengru (Arthur) Tu b,c,*

a Institute of Information Management, China University of Technology, Taipei, Taiwan, ROC
b Institute of Information Management, National Chiao Tung University, Hsinchu, Taiwan, ROC
c Innovative Supply-Chain Application Division, Identification and Security Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC

a r t i c l e i n f o a b s t r a c t
Keywords:
Radio frequency identification (RFID)
Just in time (JIT)
Ontology
Multi-agent system
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.09.068

* Corresponding author. Address: Innovative Suppl
Identification and Security Technology Center, Ind
Institute, Hsinchu, Taiwan, ROC. Tel.: +886 3 5915800

E-mail address: tum.iim95g@nctu.edu.tw (M. (Arth
Integrating physical objects with the corresponding enterprise applications any time any where is the
essential issue for a real-time enterprise. This study proposes a multi-agent system framework called
agent-based manufacturing control and coordination (AMCC) system, a agent-based framework using
ontology and RFID technology to monitor and control dynamic production flows and also to improve
the traceability and visibility of mass customization manufacturing processes. The capabilities offered
by multi-agent systems to respond to RFID events in real-time and a broad class of agent design and coor-
dination issue regarding just in time (JIT) and just in sequence (JIS) manufacturing processes are also
exploited in this study. To validate the proposed framework, case study of a bicycle manufacturing com-
pany is used to demonstrate how the proposed framework can benefit its JIT production. Finally, an
example prototype system is implemented to demonstrate the concept of the proposed framework.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many manufacturing companies adapt new information system
to monitor manufacturing activities and take immediate action to
resolve any emergent event that could cause production disruption
or customer dissatisfaction (Byrd, Lewis, & Bryan, 2006). In other
words, they change their business operations to provide product
variety and customization through flexibility and quick respon-
siveness, and also to remove the data latency, analysis latency,
and decision latency as much as possible (Hackathorn, 2003).
Therefore, employing mass customization, JIT and lean production,
alone with real-time business intelligence enables a firm to achieve
that goal and survive in today’s hyper competition environment.

For firms manufacturing high priced and highly customized
products with large plant facilities, like automobile or bicycle plant,
a combining of good product identification technology and loosely
coupled manufacturing application architecture plays a key role to
enable flexible and agile manufacturing (Kalakota, Stallaert, &
Whinston, 1995). However, current manufacturing applications
are most developed using client–server computing technologies
that use static interfaces tightly coupled to the implementation of
ll rights reserved.

y-Chain Application Division,
ustrial Technology Research
; fax: +886 3 5826474.
ur) Tu).
functions within the application (Stojanovic, Dahanayake, & Sol,
2004).

Ubiquitous computing can be combined with existing enterprise
information system to create loosely coupled distributed systems
and invoked to accomplish a complex manufacturing task. In fact,
e-commerce solution using ubiquitous computing technology is
not anymore a dream (Gershman, 2002). For a next generation
enterprise, evolving into a ubiquitous organization becomes an
unavoidable direction (Kotorov, 2002). When an enterprise facing
technology and business change, it seeks to build new applications
upon its existing strengths and assets for competitive advantage.
This frequently entails utilizing new technologies and building
new applications by coupling existing or so called legacy ones. Even
though solutions to help implement ubiquitous computing applica-
tions have been proposed (Arregui, Fernstrom, Pacull, Rondeau, &
Willamowski, 2003; Floerkemeier & Lampe, 2004; Langheinrich,
Mattern, Romer, & Vogt, 2000), they cannot really support the inte-
gration requirements in a ubiquitous and real-time environment.

Radio frequency identification (RFID) technology now provides
an additional option – data carriers that can not only be read,
but also written (Doerr, Gates, & Mutty, 2006). Now, in addition
to recording the identity of an object, it is also possible to docu-
ment its current status and the past and future of the object
(Finkenzeller, 2003). Using modern identification techniques, pro-
duction systems can now be realized which can produce variants of
a product, or even different products, down to a batch size of one
(Finkenzeller, 2003).

mailto:tum.iim95g@nctu.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

7582 R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593
The purpose of this paper is to improve the traceability and vis-
ibility of mass customization manufacturing processes. Therefore,
by utilizing RFID and ontology we propose a new agent-based
framework for tracking and controlling dynamic manufacturing
processes so that it can help business implementing its new inte-
gration requirements. Issues with RFID usage in ubiquitous com-
puting applications have been widely studied (Floerkemeier &
Lampe, 2004). In this research, instead of only using message or
service exchanging to perform integration for an enterprise, we
use RFID to ‘‘hook” the physical objects in an enterprise and the
applications that traditionally are not easy to be integrated.

The rest of this paper is organized as follows: Section 2 de-
scribes enabling technology. Section 3 describes related problems
and scenario analysis. Section 4 outlines the system design of
agent-based framework using ontology and RFID. Section 5 de-
scribes the actual implementation and evaluation of the proposed
system. Section 6 is conclusions.

2. Enabling technology for manufacturing control and
coordination

2.1. RFID technology

RFID tags can be categorized into either active or passive types.
Active tags are powered by an internal battery and typically can be
functioned in a read/write mode (Want, Fishkin, Gujar, & Harrison,
1999). They operate with up to 1MB of memory and have longer
reading ranges because of the internal power supply. Passive tags
do not rely on an internal power source. Their operating power is
obtained from the transceiver device. However, they have shorter
reading ranges and require a higher-powered reader than active
tags (Harry, Chow, Lee, & Lau, 2006).

RFID supports three types of memory: read-only memory (ROM),
read/write (R/W), or writes once/read many (WORM). A ROM tag is
similar to a traditional bar code where it comes equipped with a un-
ique identifier after the purchase. R/W tags are more complicated
than ROM tags and are more expensive because they can be written
in increments and can be erased and reused. Unlike R/W tags, each
field of WORM tags can be programmed just once. Information can
be changed in the tag only once. All the three RFID types are able
to embed context-awareness (Paret, 2005).

An RFID framework for ubiquitous computing applications usu-
ally should handle the following items (Romer, Schoch, Mattern, &
Dubendorfer, 2003):

� Location – geographic information.
� Neighborhood – physical collaboration.
� Time – current time or timing.
� Linkage of the Physical and Virtual World – a link has to be

established between tagged physical objects in the real world
and the information system.

� History – Some applications do not only react immediately to
tag objects entering and leaving the reading range, but objects
are also queried about their history later on.

� Context – Typically the application’s action when a tag enters or
leaves the reader’s range not only depends on the identity of the
tag, but also on the context such as the earlier presence or
absence of other tags.

� Name and Address – the tag must provide some information
how an application can access the virtual counterpart.

2.2. Agent technology

With the introduction of RFID technology to enterprise informa-
tion system, demand for a new kind of software system to process
the continuing large influx of RFID data will begin to rise. Agent
technology, in this particular situation, becomes a right candidate
to take on the new challenge. An agent is an active object which
possesses certain capabilities to perform tasks, and it communi-
cates with other agents based on the organizational structure to
cooperate the accomplishment of tasks (Lin, Tan, & Shaw, 1998;
Weyns, Parunak, Michel, Holvoet, & Ferber, 2005). To cope with
the dynamic changing data generated by RFID system, we consider
the agent in this paper as a software entity that continuously mon-
itors the data sources in a global computer network where the
information of interest is made available in real-time and when
certain signals are detected in the data, the software takes the
appropriate action on the user’s behalf (Kalakota et al., 1995).
Agents collectively functioning as an Agencies thus better suited
to help anticipate, adapt or predict in response to changing, real-
time data than did most current decision support systems (Ferber,
1999; Odrey & Mejia, 2003).

Based on various designs of agent-based system in the literature
(Jeng, Schiefer, & Chang, 2003; Lin et al., 1998) and our system
framework, we propose a reactive agent architecture that consists
of the following components:

� Communication Channel: It handles incoming and outgoing mes-
sages for an agent. Messages might be coming from tag readers,
web service, other enterprise systems, and other agents.

� Agent Memory: Each software agent should have its own memory
as well where various business rules/logic and current/past state
information would reside.

� Message Parser: When an agent receives an incoming message
from communication channel, its message parser will analyze
its message type and corresponding event lists, delivering them
to event processor to perform appropriate business operations.

� Event Processor: The event processor interprets the decomposed
messages delivered from message parser, consults the agent
memory for business rules/logics, and then undertakes the
appropriate action based on the message type/event lists and
their corresponding business rules/logics.

3. Problem statements and scenario analysis

3.1. Case study

The case study, XMbike (a fictitious name chosen in order to pre-
serve the anonymity of the manufacturer), is a global leading bicy-
cle manufacturing company in Taiwan. XMbike markets middle and
high-end bicycles to Asia, Europe, and North America with manu-
facturing plants across Taiwan, China, and South East Asia. A simpli-
fied sample model of the overall manufacturing process from frame
tube receipt to packing and shipping is given in Fig. 1. XMbike has
adopted the Japanese system of Just-In-Time (JIT) to produce their
various bicycle models. In addition, its shop floor control environ-
ment is loosely coupled and managed by field operators.

3.2. Problem statements

Since XMbike used paper travelers with bar code labels for
tracking and identifying the thousands of frames which are moved
around the plant facility each day, traceability was not accurate.
Therefore, the current shop floor control and tracking process were
inefficient. Without accurate real-time work-in-process informa-
tion can serious impact the effectiveness of JIT and supply chain
planning for XMbike especially if it want to move forward to mass
customized production. Analyzing this manufacturing process, po-
tential problems and inefficiencies have been identified and exam-
ined below:

Fig. 1. Overall manufacturing processes of XMbike.

R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593 7583
� The barcode system cannot be applied to processes like heat or
surface treatment due to the harsh production environment in
those processes. Therefore, the firm must employ manual track-
ing before final assembly stage.

� The Job Card systems of data tracking in XMbike contained only
the product build information needed by the production opera-
tor at a particular station. The system did not have the capacity
for real-time data tracking.

� Time-consuming finding the lost frames due to the large facility
space and manual tracking process.

� In some production process, like heat treatment or painting, job
card and frame must be separated for a while and then matched
back to the exact frame after the process finish. All these actions
are must performed by field operator, thus are prone to error.

� Rework process take place from time to time for those process in
first floor of the facility. Since frames in those areas are manually
tracked, thus rework process sometimes may lead to lost of
frames.

� Any missing frames would affect JIT and JIS (Just in sequence)
assembly processes in final assembly stage, and it could cost a
lot more for mass customization.

3.3. Scenario analysis

Most of XMbike’s plants are designed for manufacturing bicy-
cles of limited-choice mass produced model. However, some plants
are already manufacturing more high-end model in small lot size.
Facing with strong competition from other bike manufactures,
XMbike plans to allow customer to select among a variety of model
types, frame size, color, and other features. The company estimates
that customer can choose from about six million possible varia-
tions for such custom-made bike. The process employed to pro-
duce such custom-made bicycles requires not only highly trained
and skilled workers but also re-engineering of its information sys-
tem to accommodate such change. Therefore, a mass customiza-
tion manufacturing strategy naturally lead to the development of
a system that rewards attention to details and facilitates operators
to achieve ‘zero mistakes’ in every step of the production process.
In light of the strategic goal, XMbike plans to launch a mass cus-
tomization production line within one of its most advanced plant
that currently manufacturing a variety of high-end models with
small lot sizes and special orders.

4. System analysis and design of agent-based manufacturing
control and coordination (AMCC) system framework

Based on nature of manufacturing process we propose an agent-
based manufacturing supply chain coordination framework by uti-
lizing RFID tags as the physical connectors that integrate the bolts
and nuts for the physical objects and the enterprise applications
and ontology for effective communication between agents.

4.1. Proposed AMCC system analysis

In light of the aforementioned business scenario of XMbike, we
intent to design an agent-based manufacturing control and coordi-
nation (AMCC) system for this bicycle manufacturer. The RFID sys-
tem infrastructure in XMbike’s plant should include RFID reader
positioned at strategic points and RFID tags attached to appropri-
ate position at bicycle frame. In XMbike’s case, the RFID Tag is
mounted onto one of bicycle’s frame’s tubes. A RFID tag must sur-
vive in harsh manufacturing environment, so a more expensive
heat resist passive read/write tag was purchased and then encap-
sulated by customized designed material to allow the tag to be
hook onto the lower part of the frame tube. Local control PC must
also be deployed to control RFID readers and provide client side
shop floor control service. A suggested multi-agent system deploy-
ment layout is illustrated in Fig. 2 and Fig. 3.

4.2. Multi-agent system architecture and agent communication model
for AMCC

The goal of this research is to provide a multi-agent framework,
which is designed to perform intelligent collaborative supports for
JIT (Just in Time) and JIS (Just in Sequence) production strategies in
a dynamic manufacturing supply chain within a factory. We define
eight types of agent and their agent models are explained below.
Their interactions and relationship diagrams are illustrated in
Fig. 4. Except for RFID Event Processing Agent (REA) where each in-
stance of REA is resides in a local control PC, the other types of
agent is deployed on a centralized server.

Fig. 2. The proposed AMCC system layout for XM bike – first floor.

Fig. 3. The proposed AMCC system layout for XM bike – second floor.

7584 R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593

Fig. 4. Agent relationship and interaction diagram for the AMCC system framework.

R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593 7585
� Order Management Agent (OMA): An order management agent
takes cares of order processing related issue.

� Production Monitoring Agent (PMA): A production monitoring
agent constantly monitors the production situation from each
RFID Event Processing Agent.

� Warehouse Management Agent (WMA): A warehouse manage-
ment agent is responsible for calculating available components
for bicycle frame in production.

� Kitting Management Agent (KMA): A kitting management agent
informs operators to prepare and label manufacturing parts for
bicycle frame expected to come to bike assembly area.

� Product Agent (PA): A product agent can generate many
instances each corresponds to a RFID tag ID, representing a
tagged workpiece, in this case, a bicycle frame in production.
Each instance may contains part of RFID tag event data structure
like build instruction sector, routing instruction sector, and
dynamic event sector, shown in Fig. 6, which we will discuss
in later section. Thus, we call the product agent that can initiate
new instances a master product agent and those initiated
instances of this master agent are called child product agents.
The master product agent serves as an interface to other agents
or systems that would like to contact with any product agent
instances.

� RFID Event Processing Agent (REA): Each RFID Event Processing
Agent may represent a manufacturing zone/area or a worksta-
tion. This agent is deployed in local control PC. Combing RFID
reader, middleware, and event processing logic in one unit
makes the REA somewhat like a smart reader or more formally,
an intelligent end point that can work on its own even if the cen-
tralized server breaks down. Besides, it is easy to configure and
deploy for flexible manufacturing environment.

� ERP Interface Agent (ERP-IA): This agent serves as an interface to
ERP system.
� SCM Interface Agent (SCM-IA): This agent serves as interface to
SCM system.

We use BRIC (block-like representation of interactive compo-
nents) formalism (Ferber, 1999; Ordey & Mejia, 2003; Weyns
et al., 2005) to model above agent’s internal state and its interac-
tion with other agents within the agent environment. In this paper,
we will show detailed agent modeling using BRIC modeling for-
malism only for Order Management Agent (OMA) and RFID Event
Processing Agent (REA), since their internal structure are more
complex than other agent types. We first discuss the OMA in this
section and leave the discussion of REA in later section since the
REA involves RFID event processing that need to be further ex-
plored and analyzed. BRIC model for OMA is illustrated in Fig. 5,
while descriptions of place symbols of OMA are given in Table 1.
Place symbols are categorized in two types, denoting either a con-
ventional Petri Net place or a input/output communication place;
The former representing agent’s internal methods and actions
while the later representing communication linkage between
agents as well as between agents and their environment.

4.3. Agent ontology model for AMCC system

Ontology is a concept borrowed from philosophy and according
to the Oxford English Dictionary it is defined as the ‘‘science or
study of being”. In computer and information science, we attribute
the ontology to the specification of a conceptualized domain and
express it in terms of computer interpretable format, such as the
XML. Ontology is used for agent’s knowledge sharing and is becom-
ing a crucial element for building a multi-agent system. Only what
can be represented using ontologies can be represented in agent’s
knowledge bases (Obitko, 2002). Recent work by (Chen & Chen,
2008) describes a multi-agent system that applied ontology and

Table 1
Description of places of a BRIC model for an order management agent.

P01 Receiving orders from EPR Interface Agent
P02 Processing orders
P03 Creating product agent based on order information
P04 Initiating product agent with manufacturing and log information
P05 Dispatching product agent to agent environment
P06 Receiving request from SCM Interface Agent (SCM-IA)
P07 Evaluating request from Si M-IA
P08 Sending request to production monitoring agent (PMA)
P09 Receiving feedback information from PMA
P10 Consolidating feedback information from PMA
P11 Sending consolidated feedback to SCM-IA
P12 Receiving request form RFID Event Processing Agent (REA)
P13 Evaluating order priority
P14 Evaluating component availability
P15 Sending request to warehouse management agent (WMA)
P16 Receiving feedback informal ion from WMA
P17 Evaluating and component information from all source
P18 Ranking production priority for workpiece?
P19 Sending ranking results to REA

Transitions represent the start or the end of activities

Fig. 5. A BRIC model of an order management agent.

7586 R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593
agent technology to construct virtual observatory is a good exam-
ple of this trend. According to the FIPA Ontology Service Specifica-
tion (FIPA, 2008), the ontology is used for agents who want to
converse, share a common knowledge for the domain of discourse.
JADE (2008) provides the Content Reference Mode (CRM) which is
a definition of all information elements in the discourse domain.

Designing the RFID tag event data structure is part of ontology
implementation. The design of Mobile Data Carrier (an RFID tag at-
tached to a bicycle frame) data structure is based on XMbike’s spe-
cific requirements and the overall RFID tag event data structure
design is illustrated in Fig. 6. The tag event data structure is divided
Fig. 6. The RFID tag data structure for the
into ID sector, reserved sector, build instruction sector, routing
instruction sector, and dynamic event sector. Expect for the dy-
namic event sector, the rest of sectors are pre-allocated in tag
memory. The information stored in the build, routing, and event
sector can be in interpreted by a Dual Tag Data Parser in Tag Han-
dler that is installed in each locally distributed production line con-
trol PC.

4.4. Design of RFID tag data structure and its virtual counterpart

Due to the memory capacity constrain of most UHF tag, we may
not be able to store that much information into a single tag mem-
proposed AMCC system framework.

R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593 7587
ory at this moment. Thus, we suggest an alternative implementa-
tion call Virtual Counterpart (VC) (Romer, Schoch, & Mattern,
2004). In our framework, each instance of Product Agent corre-
sponding to a tag id (which relates to a bicycle frame in produc-
tion) will manage most of the information of data structure,
leaving only ID sector actually reside in the RFID tag memory.
The other parts of the data structure of the tag can be stored as
XML format and be exchanged between various agents. The exam-
ple XML format for event sector data structure is shown in Fig. 7.
An internal tag ontology parser to parse XML data can be imple-
mented within RFID Event Processing Agent.

4.5. RFID event processing model

For the RFID Event Processing Agent (REA) to manage RFID
information well, we proposed a RFID event processing model
and later implement it in our AMCC prototype system. RFID event
processing model includes RFID tags with specially designed data
structure named event lists and software modules to process those
events. The memory data structure of an RFID tag mainly com-
prises three main areas. They are Tag ID, Tag object type and attri-
bute, and event identifier. The details of these data types are
explained below:

� Tag ID (tid): Tag id is a unique code of the RFID tag for represent-
ing a physical object, and the coding manner can follow an
industry standard (e.g. EPC Global or ISO standards) or defined
by the company.

� Tag object type and attribute (id_type): An object type and attri-
bute is used for recording a class of the product and associated
information of a product combination to facilitate a quick classi-
fication of tagged physical objects.

� Event identifier (Eid): Each Eid can contain either a pointer or
encoded information to represent actual routing or service
instructions, for example, a recipe ID or encoded production rec-
ipe for a specific work station. These Eid lists can form a kind of
product pedigree which record the history about what events
has been taken place for a tagged product until now and can
be updated as well as the tagged workpiece travels through each
workstation alone the production line.

To cope with large influx of RFID signals, a RFID middleware be-
comes an indispensable part of any RFID application. The middle-
ware is mainly responsible for managing physical RFID readers
and filtering raw RFID data, thus providing a logical interface for
Fig. 7. Partial list of event sector information output in XML format.
application users to physical RFID reader management and low le-
vel raw RFID data handling (Chokshi, Thorne, & MaFarlane, 2004).
In building REA we not only implement a micro version of RFID
middleware in this agent, but also extend functionalities that go
beyond a middleware. The REA is made capable of processing RFID
events and of interpreting the proposed ontology model. The use of
software components and other constitutes in REA are shown in
Fig. 8, and their roles and responsibilities are described in detail
below:

� RFID Middleware Control Module: This module in REA is respon-
sible for managing physical RFID reader and pre-processing of
RFID data. It is implemented with some filtering algorithms to
handle the redundant or erroneous reads of RFID signals from
physical reader. Additionally, a sub-module called pure tag log-
ging is also included here. The purpose for adding this sub-mod-
ule in the RFID Middleware Control Module is to process two
types of RFID event separately. Basically, in a manufacturing
environment, RFID event can be categorized in two groups.
One type deals with complex event processing which usually
involves machining processes or assembly operations, the other
type handles much simpler event processes like enter/exit an
input/output buffer in a workstation or queuing area. For some
workstations that are not dealing with machining and assembly
processes but with batch chemical processing type of jobs, such
as bathe and soak cleaning processes of XMbike shown in Fig. 2,
we consider them as simple event type and apply pure tag log-
ging to those processes. To simplify the management of multiple
RFID readers by REA, we may pre-configure the readers to their
appropriate types mentioned above. Finally, some exception
handling mechanism for RFID writing operation must also be
considered in actual implemented of this module.

� Tag Handler (Ontology Parser): The tag handler is responsible for
tag read/write process and parsing and analyzing the incoming
tag event information. It also facilitates tag handling process
based on location specific tag processing logic. It usually
requires a RFID Middleware to facilitate its tag read/write
processes.

� Session Controller: The session controller primary performs data
access, data cache, and discovery role in the framework. It pro-
vides data cache service for sets of parameter data accepted
from a Tag Handler instance and location and/or operation spe-
cific information retrieved from Session Data. When an RFID
event processing cycle is completed, it synchronizes the process-
ing information with Session Data and releases memory
resource in a computer server. This caching and RFID event ses-
sion cycle management service provided by Session Controller
help improve the overall RFID event processing speed and data
integrity.

� Service Dispatcher: The service dispatcher is responsible for
receiving an event processing notification from the tag handler
agent, communicating with session controller, and directing an
event to corresponding services. It serves as an interface
between the framework and external services.

� Event Manager: The event manager is responsible for preparing
new events and making a write or clear instruction for the data
of the RFID tag through the tag handler. It retrieves new event
information from Session Data or receives overwriting event
handling instructions from various services and then correctly
preparing the information required by the new event and pro-
ducing a new event code, and requesting the RFID tag handler
to write the correct associated event information into the corre-
sponding RFID tag. Additionally, Event Manager might be cus-
tomized to include some decision making logic in computing
optimized production route or be customized to perform prod-
uct quality checking.

Fig. 8. The proposed AMCC system prototype architecture.

7588 R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593
� Agent Coordinator: The agent coordinator facilitates interaction
among REAs as well as REA to other server side agents. The agent
coordination mechanism is devised as a multi-agent decision
model in AMCC illustrated in the section of multi-agent decision
model.

� Shop Floor Interface Module: Serves as a communication channel
that relays information from REA to its external environment
such as machines or user interface and accepts information from
external sources as well.

� Client Side shop floor control console: A user interface to facilitate
shop floor operation and monitoring.

� Local Database: Stored in the local database are two types of
dataset described below:
(a) Session Data: In manufacturing environment, this data repos-

itory usually resides in line control PC for a workstation or a
local production line and stores following types of
information:
� Mapping information for RFID reader/antenna and their

covering area/location.
� Master data regarding each specific workstation in a work

area or production line.
� Recipe related information of local machine/tools in a

workstation or production line.
� System parameters and other data specific to the local

workstation or production line.

(b) Tag Activity Log: An operational data store that keeps not only

all the tag transaction data as a tagged item goes from one
location to another but also some historical information for
passing tags. This data repository can be located in central
system that monitors all distributed line control PCs. It can
also reside in local line control PCs and then periodically sink
its information with central system.
The key components involves in RFID event processing and
ontology interpretation are Embedded in RFID Middleware
Control Programs, Tag Handle, Session Controller, Service
Dispatcher, and Event Manager. Their processing steps and
information flows are labeled accordingly and represented as a
BRIC model of a RFID Event Processing Agent shown in Fig. 9.
A detailed presentation of RFID event processing interaction
model can also reference (Tu, Jwo, & Kuo, 2006). We map RFID
event processing interaction steps to place symbols illustrated
in Table 2. Detailed description of each place symbol is pre-
sented below:

� P01: A tagged workpiece transmits its signals to RFID reader
whenever it enters the reading range of a reader’s antenna.
RFID reader then passed that signal to the RFID Middleware
Control Module. Based on our implemented filtering algo-
rithms, the RFID Middleware Control Module performs data
pre-processing by filtering redundant reads and generating a
single set of tag data for the Tag Handler.

� P02: After receiving tag data, the Tag Handler immediately
parses the data string to obtain tag ID, product type, attribute,
and event content. Tag Handler then passes on those parame-
ters to the Session Controller.

� P03: Based on receiving parameter, like product type variable,
the Session Controller can retrieve REA’s internal parameter
information from local the Session Data, for example recipe
information of local machine/tools and their corresponding
operating procedure.

� P04: The Session Controller then send request, with tag ID and
relevant parameters, to Product Agent (PA) to acquire specific
production information (like build instruction) of that tagged
workpiece.

Fig. 9. A BRIC model of a RFID Event Processing Agent.

R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593 7589
� P05: The Product Agent (Master) retrieves relevant product
information regarding the requested workpiece from its
instances (Children) upon request. Product Agent then delivers
that information to the Session Controller of the requesting
REA. At this juncture, both product information and relevant
internal parameters are cached in the Session Controller.

� P06: The Session Controller sends its cached internal parame-
ter and product information to Tag Handler. Tag Handler then
evaluates the information to determine whether it is appropri-
ate to process the tagged workpiece by the REA. For example
checking whether the tagged workpiece is entering the right
station at the right sequence. If there is any error, error han-
dling mechanism will be invoked and operator will be
informed immediately.

� P07: If the tagged workpiece is allowed to be processed, the
Tag Handler selects appropriate service event for that work-
piece and informs the Service Dispatcher.

� P08: The Service Dispatcher prepares service request and
operation parameters (event process logic or recipe informa-
tion) for that service event.

� P09: The Service Dispatcher sends service request and opera-
tion parameter to servicing program (a processing machine
or operation console) through shop floor interface module
and handover the control of workpiece to servicing program.
Table 2
Description of places of a BRIC model for a RFID Event Processing Agent.

P01 Receiving RFID tag data string
P02 Parsing tag string
P03 Loading internal parameter information
P04 Sending request to product Agent (PA)
P05 Receiving information from PA
F06 Evaluating information from internal parameter and
P07 Selecting appropriate service event
P08 Preparing service request for service event
P09 Sending service request and parameter information

control to servicing program
P10 Receiving feedback information from servicing prog
P11 Inform and relaying information to event manager
PI2 Determining next operation procedure and working
P13 Initiating event update process
P14 Preparing tag update information
P15 Updating information to physical tag
P16 Preparing session update information
PI7 Storing workpiece processing information in tag act
P18 Sending update information to product agent

Transitions represent the start or the end of activitie
� P10: The Service Dispatcher receives feedback information
from servicing program (completion of servicing task) and
then relays the information to the Session Controller.

� P11: The Session Controller sends a completion notice and
associated parameters to the Event Manager.

� P12: Based on the parameters of the workpiece, the Event
Manager determines the next operation procedure and work-
ing area for that workpiece.

� P13: Finally, the Event Manager initiates event update process
� P14: The Event Manager contacts Tag Handler for any informa-

tion need to be written to physical RFID tag. Since we are using
C1G2 UHF RFID tag in our proposed AMCC prototype system,
we only put the part of ID sector (as shown in Fig. 6) in the
tag due to its limited tag memory space. The rest of RFID tag
event data structure is kept in an instance of product agent.

� P15: The Tag Handler writes new event into RFID tag through
the RFID Middleware Control Module and RFID reader, usually
the information need to be updated to either physical tag or
virtual tag like product agent in our case are routing and event
information. Thus for our proposed AMCC model this step is
skipped.

� P16: The Event Manager informs the Session Controller to pre-
pare writing the associated data registered in its cache mem-
ory respectively to the Tag Activity Log in REA’s local database
and to product agent in central server, thus releasing the cor-
responding cached event data of the working piece from the
memory of Session Controller during this event handling
session.

� P17: Session Controller stores workpiece processing informa-
tion in tag activity log (local database). A server side program
will retrieve that logging information from multiple REAs and
consolidate them into central database.

� P18: Session Controller sends update information to the corre-
sponding product agent of workpiece residing in central
server.

4.6. The multi-agent decision model

As mentioned in Section 3, the Just-In-Time (JIT) production sys-
tem has been adopted by XMbike so that kanban mechanism is also
imbedded in its manufacturing process control. The most important
feature of kanban mechanism is that using kanban cards as pull sig-
nal the downstream workstation order only what has been con-
sumed (workpieces) from upstream workstation, resulting in the
elimination of waste and greater agility of production floor in re-
product informal ion

to servicing program (a processing machine or operation console) and handover

ram (completion of servicing task)

area for workpiece

ivity log (local database)

s

Fig. 10. Multi-agent cooperation and decision processes using pull strategy.

7590 R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593
sponse to changing customer demand. In our proposed AMCC, the
multi-agent decision model is manifested as a cooperation mecha-
nism among REAs and other agents. This cooperation mechanism in
large part simulates the kanban mechanism just described. A sim-
plified scenario of cooperation mechanism among AMCC agents is
illustrated in this section. Fig. 10 shows the multi-agent coopera-
tion and decision processes using pull strategy for shop floor con-
trol between queuing area 2 and bike assembly area. In XMbike’s
case the queuing area 2 usually holds a pre-defined optimal quan-
tity of painted fames to serve any request from bike assembly area.
After a proportion of painted frames being pulled by assembly area,
queuing area 2 would signal to pull new bike frames from frame
painting area. Upon receiving the pull signal from downstream
stage would trigger the painting processes for the frame painting
workstation. To simplified the analysis we only focus on analyzing
the dynamics of shop floor control process between queuing area 2
and bike assembly. Five agents are involved in the decision process
after the Agent Coordinator of REA at bike assembly area trigger the
pull signal. The decision ends at Agent Coordinator or REA at queu-
ing area 2 accepts the processing priority for bike frames residing in
its output buffer. The whole process is shown in Fig 10.

5. The prototyping of the proposed AMCC system framework

To validate the proposed framework and prove the applicability
and usefulness of the proposed framework to XMbike’s operation,
we implemented a prototype system, including software compo-
nents and hardware devices, to demonstrate the aforementioned
purposes.

5.1. Development environment

The development environment for the prototype system is de-
scribed below:
� OS: server: WinXP, client: Linux workstation.
� Database: SQL Server.
� Application program: J2EE technology stack (JSP, JDBC, Java

Beans, etc.).
� Application Server: Tomcat.
� RFID Tag: EPCglobal Gen 1 or Gen 2 RFID Tag.
� RFID Reader: AWID UHF RFID Reader.
5.2. System implementation

The prototyping of AMCC presents an integrated information
system (Fig. 8) used in shop floor control environment to provide
real-time tracking and tracing and adaptive controlling of dynamic
mass customization manufacturing process. The agent-based sys-
tem of this research is build upon Java Agent Development (JADE)
platform. JADE architecture enables agent communication through
message exchange based on FIPA specifications of agent communi-
cation language (ACL). Agents in the JADE environment can work
collectively to achieve common objectives by coordination toward
a better process. Thus, JADE simplifies the implementation of mul-
ti-agent systems (Bellifemine, Caire, Trucco, & Rimassa, 2006). The
prototype system is divided into two parts, the real-time enter-
prise management system on backend central server and the RFID
Event Processing Agent (REA) system residing on local control PC.

� RFID Event Processing Agent (REA): This part of system imple-
ments RFID Middleware Control Module, Tag Handler (includ-
ing Tag Ontology Parser), Session Controller, Event Manager,
Service Dispatcher, Agent Coordinator, Shop Floor Interface
Module, and Client Side Shop Floor Control Console. All these
components alone with a database are resided in a local control
PC and constitute an intelligent end point. A standard REA usu-
ally manage more than one set of RFID readers. For example, in
a working area both input and output buffers are equipped

R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593 7591
with a RFID reader or a reader antenna and if there are any
machining or assembly stations, a RFID reader with antenna
may be assigned to one or a set of stations, as shown in
Fig. 8. The RFID readings from machining or assembly stations
would trigger RFID event processing steps as described in Sec-
tion 4.5 and Fig. 11, whereas the RFID readings from other
places mainly deals with simple event processing and the pure
tag logging will be invoked to perform just tag information
logging without further propagating information to Tag Han-
dler and triggering a series of complex RFID event processing
logic. Pure tag logging usually only records the tag id, work-
station id, process id, and the timestamp when tagged work-
pieces enter/leave a working or queuing area.

� Real-time Enterprise (RTE) management system: The backend
part of the system consists of server side agents and three
sub-modules to take care of specific system operations. The
data mapping and synchronization programs are responsible
for most data intensive operations like data extraction, consol-
idation, and synchronization. The other sub-module consists of
RTE system web application programs, which support most of
front-end, user interface operations of the Web Portal
(Fig. 12). It also receives requests from Service Manager Agent
and performs certain tasks accordingly. The last sub-module,
Process Control Module, updates and maintains manufacturing
process and routing information that allows supervisor or
manager to access accurate and real-time processing informa-
tion. As for server side agents, we only implement the product
agent at this stage of prototyping and further implementation
of other agents proposed by AMCC framework are left for
future work.

5.3. System operations

The prototype system simulates the shop floor operation for
XMbike manufacturing environment. The facility layout consists
Fig. 11. RFID event p
of two facility items: queuing area and production control area.
When the MES system transforms the job order into working or-
ders (WOs) and notifies our prototype system for the arriving of
new working orders, the prototype system then extracts relevant
information regarding that WO from MES database and consoli-
dates that information into the central database. A production
supervisor can releases the WO, and the RFID tags attached to bicy-
cle frames are written to in this stage with item id and product
type, other information are initiated in a product agent instance,
such as build and routing instruction. As a frame move into a work-
station a series of events in a processing lifecycle are described in
Fig. 11. To simulate the JIT pull production process we design the
system to allow a shop floor operator to initiate pull command
from client side shop floor control console of workstation 2.
The pull signal will be forward to REA of workstation 1 and the
agent coordinator of workstation 1 would notify the operator
(displayed on control console of workstation 1) to move a finished
workpiece to input buffer of its next operation at workstation 2.
Fig. 8 shows such scenario. While the manufacturing operation is
ongoing, the senior manager can always access the real-time
information regarding the where-about of all workpieces as well
as current status of workstations through real-time enterprise
management system portal as shown in Fig. 12. Our RFID
enabled prototype system can virtually eliminate manual barcode
scanning and run card (paper travellers) tracking currently used by
XMbike.

5.4. Evaluation and benefits

The surveyed company currently uses paper travelers (run
cards) with bar code labels for tracking and identifying the thou-
sands of workpieces (bicycle frames) moving around its production
facility each day. Tracking and tracing its manufacturing process
information involves human intervention that often causes errors
and information delay. These problems further affect its process
quality control.
rocessing steps.

Fig. 12. RTE management system portal.

Table 3
Comparison of manufacturing process tracking between two information systems.

Criteria Barcode and Run Card (paper travelers) based tracking system RJTD based multi-agent system

Convenience Requires line of Tight scan Automatic scan without line of sight
Efficiency Cannot support batch reading Can read multiple tags at once
Accuracy Susceptible to misreades and human error Reduced human error and misreads improves data accuracy
Traceability Limited traceability Some harsh manufacturing process (like baking)

make barcode tacking impossible
Allows detailed tracking and tracking of process status, input/outputs, and the time
that each processing step was performed

Speed Process information not in real-time Real-time process information
Reliability Barcode are easily dirtied or scraped m Karsh manufacturing

environment
RFID tag can survived harsh environment like dirty or high temperature

Automation Need more human labor to collect and track process data Replace or reduce human labor in data collection and tracking
Information Limited process information Vast amount of detailed process information
Storage (data) Allows only centralized data storage Mixed of centralized and decentralized

7592 R.-S. Chen, M. (Arthur) Tu / Expert Systems with Applications 36 (2009) 7581–7593
In our proof of concept pilot research, we found that the overall
manufacturing process monitoring and control was improved by
the application of RFID technology and our prototype system.
Table 3 presents the comparison of information tracking capability
between that company’s current tracking technology and our pro-
posed one. It seems obvious that RFID technology can significant
close the gaps between product flow and information flow. In addi-
tion to improved tracking and tracing capability, the prototype
system also greatly enhanced the company’s quality control of its
manufacturing process as our system’s real-time validation mech-
anism help shop floor operators detect quality problems immedi-
ately and can resolve these problems before they propagated to
the next manufacturing process.

6. Concluding remarks

Manufacturing enterprise transferring into mass customization
production and ubiquitous and real-time organization is one of the
major trends for enterprise information system. However, to be-
come a real-time and agile enterprise without information tech-
nology to help integrating related information and physical
objects at different time and different location is quite impossible.
In summary, this research makes following contributions to im-
prove the traceability and visibility of mass customization manu-
facturing processes.

� Proposed a RFID and agent-based manufacturing control
and coordination framework for tracking and controlling
dynamic manufacturing process flow.

� Based on the framework, we implemented an integrated pro-
totype system to demonstrate the concept.

� The findings of this research reveal that the prototype system
can provide both shop floor operator and production
supervisor with real-time production process information, help-
ing them to respond to the status of the production line in real-
time and make better decisions in handling production events.

ms with Applications 36 (2009) 7581–7593 7593
� The proposed framework can indeed improve manufacturing
process and quality control.
References

Arregui, D., Fernstrom, C., Pacull, F., Rondeau, G., & Willamowski, J. (2003). STITCH:
Middleware for ubiquitous applications. In SOC’2003 – European smart objects
conference (pp. 15–17).

Bellifemine, F., Caire, G., Trucco, T., & Rimassa, G. (2006). JADE programmer’s guide.
<http://jade.tilab.com/doc/programmersguide.-pdf>.

Byrd, T. A., Lewis, B. R., & Bryan, R. W. (2006). The leveraging influence of strategic
alignment on IT investment: An empirical examination. Information &
Management, 43(3), 308–321.

Chen, R., & Chen, D. (2008). Apply ontology and agent technology to construct
virtual observatory. Expert Systems with Applications, 34, 2019–2028.

Chokshi, N., Thorne, A., & MaFarlane, D. (2004). Routes for integration auto-ID systems
into manufacturing control middleware environments. White Paper, Auto-ID
Center.

Doerr, K. H., Gates, W. R., & Mutty, J. E. (2006). A hybrid approach to the valuation of
RFID/MEMS technology applied to ordnance inventory. International Journal of
Production Economics, 103(2), 726–741.

Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial
intelligence. New York: Addison-Wesley.

Finkenzeller, K. (2003). RFID handbook: Fundamentals and applications in contactless
smart cards and identification. Wiley.

FIPA, The Foundation for Intelligent Physical Agents, <http://www.fipa.org/>, 2008.
Floerkemeier, C., & Lampe, M. (2004). Issues with RFID usage in ubiquitous

computing applications. Lecture Notes in Computer Science, 3001, 188–193.
Gershman, A. (2002). Ubiquitous commernce-always on, always aware, always pro-

active. In Proceedings of the 2002 symposium on applications and the internet
(SAINT 02) (pp. 37–38).

Hackathorn, R. (2003). Minimizing action distance. The Data Administration
Newsletter, 25.

Harry, K. H., Chow, K. L. C., Lee, W. B., & Lau, K. C. (2006). Design of a RFID case-based
resource management system for warehouse operations. Expert Systems with
Applications, 30(4), 561–576.

JADE, Java Agent Development framework, <http://jade.tilab.com/>, 2008.

R.-S. Chen, M. (Arthur) Tu / Expert Syste
Jeng, J. J., Schiefer, J., & Chang, H. (2003). An agent-based architecture for analyzing
business processes of real-time enterprises. In IEEE proceedings enterprise
distributed object computing conference (pp. 86–97).

Kalakota, R., Stallaert, J., & Whinston, A. B. (1995). Implementing real-time supply
chain optimization systems. In Proceedings of the conference on supply chain
management.

Kotorov, R. (2002). Ubiquitous organization: Organizational design for e-CRM.
Business Process Management Journal, 8(3), 218–232.

Langheinrich, M., Mattern, R., Romer, K., & Vogt, H. (2000). First steps towards an
event-based infrastructure for smart things. In Ubiquitous computing workshop
at PACT (pp. 1–13).

Lin, F. R., Tan, G. W., & Shaw, M. J. (1998). Modeling supply-chain networks by a
multi-agent system. In IEEE proceedings of the thirty-first annual Hawaii
international conference on system science (pp. 5–114).

Obitko, M., & Marik, V. (2002). Ontologies for multi-agent systems in manufacturing
domain. In Proceedings of IEEE 13th international workshop on database and
expert systems applications, DEXA’02.

Odrey, N. G., & Mejia, G. (2003). A re-configurable multi-agent system architecture
for error recovery in production systems. Robotics and Computer Integrated
Manufacturing, 19(1–2), 35–43.

Paret, D. (2005). RFID and Contactless Smart Card Applications. Wiley.
Romer, K., Schoch, T., Mattern, F., & Dubendorfer, T. (2003). Smart identification

frameworks for ubiquitous computing applications. In Proceedings of the IEEE
international conference on pervasive computing and communications (pp. 253–262).

Romer, K., Schoch, T., & Mattern, F. (2004). Smart identification framework for
ubiquitous computing applications. Wireless Networks, 10(6), 689–700.

Stojanovic, Z., Dahanayake, A., & Sol, H. (2004). Modeling and design of service-
oriented architecture. IEEE international conference on systems, man and
cybernetics (pp. 4147–4152).

Tu, A., Jwo, J. S., & Kuo, J. Y. (2006). An enterprise application integration framework
using RFID. In Proceedings of the 36th CIE conference on computers & industrial
engineering (pp. 2750–2760).

Want, R., Fishkin, K., Gujar, A., & Harrison, B. (1999). Bridging physical and virtual
worlds with electronic tags. In Proceedings of ACM CHI ‘99 (pp. 15–20).

Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., & Ferber, J. (2005). Environments
for multi agent systems state-of-the-art and research challenges. In: Lecture
notes in artificial intelligence (vol. 3477). Berlin, Heidelberg, New York:
Springer.

http://jade.tilab.com/doc/programmersguide.-pdf
http://www.fipa.org/
http://jade.tilab.com/

	Development of an agent-based system for manufacturing control and coordination with ontology and RFID technology
	Introduction
	Enabling technology for manufacturing control and coordination
	RFID technology
	Agent technology

	Problem statements and scenario analysis
	Case study
	Problem statements
	Scenario analysis

	System analysis and design of agent-based manufacturing control and coordination (AMCC) system framework
	Proposed AMCC system analysis
	Multi-agent system architecture and agent communication model for AMCC
	Agent ontology model for AMCC system
	Design of RFID tag data structure and its virtual counterpart
	RFID event processing model
	The multi-agent decision model

	The prototyping of the proposed AMCC system framework
	Development environment
	System implementation
	System operations
	Evaluation and benefits

	Concluding remarks
	References

