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ABSTRACT

Pattern matching is-an-important technology in anti-virus/worm applications and is more
accuracy than behavior anomaly. Many famous pattern matching algorithms have been
presented in the past, and Aho-Corasick (AC) is one of the famous algorithms that can match
multiple patterns simultaneously. However, the AC algorithm was developed for plain strings

while virus/worm signatures could be specified by simple regular expressions.

Our proposed signature matching system which consists of a dynamic pre-filter and a
verification module is designed for simple regular expressions detection. The main purpose of
dynamic pre-filter is to quickly find the starting position of suspicious substrings which may
result in match of some signatures. It can avoid unnecessary information by adding a few
fragments of signature to enhance the performance. The verification module is used to verify
whether there is any virus at suspicious position found by dynamic pre-filter. We built the
state machine in advanced according to the fragments of signatures. The verification module
only traces the possible state machine to save the time.

Keywords: Aho-Corasick algorithm, pattern matching, Regular expression, Dynamic

pre-filter
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Chapter 1.

Problem definitionlNtroduction

Two major techniques are used in virus detection. One is behavior anomaly and another
Is pattern matching. Behavior anomaly can detect virus when abnormal behavior occurs. For
instance, an infected computer would have higher new connections rate than a normal
computer would have. This-abnormal behavior can be detected by observing the number of
new connections [1]. However, behavior anomaly may create false positive if normal
behavior is not well-defined in advanced. Pattern matching is another technique that is more
accuracy than behavior anomaly. There are some significant patterns derived from malicious
codes in packet. The idea of pattern matching is to find out whether there is a significant

pattern hidden in the files.

Knuth-Morris-Pratt(KMP) [2], Boyer-Moore(BM) [3], Aho-Corasick(AC) [4] and
Wu-Member(WM) [5] are famous pattern matching techniques. Bloom filter [6]-[12] is also a
technique for pattern matching that is famous for its space-efficient probabilistic data
structure. KMP and BM are efficiency only in single pattern detection. The AC and WM are
designed for multiple patterns detection. However, AC algorithm may have the disadvantage
about the huge memory requirement of constructing a two dimensional state transition table.
Thus, some methods such as band-row format, AC-bnfa and bitmap data structure proposed

for memory reduction.



The idea of pre-filter comes from shift table of WM. The purpose of pre-filter is to
exclude the impossible position in the file. In other words, it can find the suspicious position
in the file fast and verify suspicious position in verification module. In pre-filter module, it is
realized that previous query result can accelerate the next query result to achieve high
performance which is named stateful pre-filter [13]. In our paper, stateful pre-filter is applied

to find the suspicious position in the file and is described in chapter 2.

Because of virus variation, the types of significant patterns become more complicated
nowadays. Regular expressions (RES) can express significant patterns better than plain strings
can do. The significant patterns expressed in REs are often simple. For instance, the patterns

defined in Clam Anti-virus (ClamAV) [14] consist of plain strings and three operators :

B *: match any number of symbols
B ? : match any symbol

B {min, max} : match minimum of min, maximum of max symbols

We separate the RES with * operators. For convenience, we use “the first fragment of
RE” to represent the substring in front of the first * operator of RE and “the first string of

fragment” to represent the substring in front of the first {min, max} operator of fragment.

To detect RE, some algorithms like generalized AC [15], ClamAV, extend finite
automata (XFA) [16], and Snort [17]-[18] were proposed already. Although these methods
can detect RE, the performance or memory requirement may be unacceptable. Even worse is
that they may cause false positive or false negative. Our goal is to propose higher
performance with acceptable memory requirement for REs matching. It can be simply

implemented by applying stateful pre-filter and a verification engine. After we separate the *
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and {min, max} operator with appropriate method, the left substrings of REs can regard as
plain strings. The only difference is that the substrings need to be matched in the order of REs.
In our implementation, we only consider first fragments of every REs at first and consider
entire fragments of every REs after any first fragment matches. However, it is not efficiency
to consider entire fragments of every REs at the same time when the first fragment matched.
It is better to reduce the effect caused by unnecessary fragments that would lower the
performance. The proposed pattern matching system consists of a dynamic pre-filter module
and a verification module. Dynamic pre-filter can only add information of a few fragments to
accelerate the speed of search. It has CPU execution comparison with different methods in
pre-filter module. The simulation result shows that dynamic method has better performance
than the static method. The verification only verifies the possible state machine to save the

time.

In the following section, we have problem definition and related work in chapter 2. In
chapter 3, we describe the proposed methods for our pre-filter design. Then, we show the
simulation result in chapter 4 and analysis our design in chapter 5. Conclusion is in chapter 6

to end the paper.



Chapter 2.

Problem definition and related work

2.1 Problem definition

There is a given database contained every significant patterns that derived from
malicious code. We read the significant patterns from database first in order to construct a
pattern matching system that can point out the starting position of significant pattern in the
given file. Qur system is consists of pre-filter module and verification module. In verification
module, goto function, failure function, and output function processed as AC’s three functions
do. Besides, fork function is an extra function in verification module which is added to

process the {min, max} operator.

ClamAV is an open source anti-virus, so we can get its database easily. Therefore, in our
paper, we use the same database in ClamAV for our simulation. The type of significant
patterns in ClamAV’s database is simple regular expression. The simple regular expression
consists of plain strings and three operators : *, ?, and {min, max}. We can only consider the
*and {min, max} operators in our design. Because consecutive ? operators can be substituted

for a {min, max} operator with min = max = number of ? operators.



2.2 Pre-filter

The information of significant patterns is stored in membership query modules (MQs). In
pre-filter module, a window is used to scan the file and a block at the end of window is used

to compare with the information of significant patterns in MQ; , 1 <i < W-k+1 , where W is

n n.n n

window size, k is block size and P = pipy...py ~ P2 = pips...pl ... P" = p/'p;...py, are first

W-byte of first string of each significant patterns where n'is the number of significant patterns.
Window size is chosen as the smallest length of first string of significant patterns because it

will ignore some information of shorter patterns if window size is larger than smallest length

of first string of significant. patterns. Substrings of significant patterns P!=pJpJ)...p] -

Bl=pipl..pls.. PP =plpl i pl oo Bl = P Piikeo- Py are stored in MQ; for
comparison, 1<1< W-k+1, 1 < j < n. MQ; reports 1 iff the substring in block is the same as
one of substrings in MQ;and reports 0, otherwise. According to the report of MQ;, we can
shift the window to appropriate position. It is complicated to compare with all substrings in

MQ; step by step. Hence, HASH table is used to store the report of MQ; previously.

2.2.1 HASH function

The report of MQ; can be calculated in advanced and store the report in hash table by

using hash function HASH. The h™ bit of MQ; reports 1 iff substring P’ = p/p/,...p}, .

exists such that h = HASH(P'), otherwise reports 0. Fig 1 is a diagram of hash table.

Each MQ; is a bit array with size 2% because the block size is k-byte = 8k-bit, there are 2%
possible entries. Hash table is a combination of these bit arrays of MQ;. Elements in MQg

are all 1 for the default value when MQ; are empty, where i >0.
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Fig. 1 Hash table

The advantage of using hash function not only can store the report previously but also
can reduce the size of hash table. The number of input bits can be reduced by hash function
easily. For instance, if input bits = 3 bytes = 24 bits, we can simply take first 16-bit and last
16-bit XOR to get 16-bit only. Although it would increase the probability of collision, it is

worth saving lots of memory space.

2.2.2 Pre-filter operation

We take an example to show the pre-filter operation. Assume P* = “abcdefghi”, P? =
“uvwxyz” and text file is “aaabcdefff”. The window size W is chosen as the smallest length of
significant patterns, i.e., W=6. Then, all of significant patterns are truncated into the same
length W. For this example, P*¢ = “abcdef”, P? = “uvwxyz”. Block exists at the end of
window and the substrings in block will compare to the information in MQ;. Therefore, block

size k is chosen to be smaller than W definitely. We assume block size k = 3, there are W-k+1



= 4 MQ; with different substrings in each. The substrings set of MQ;, MQ,, MQ3 and MQ, are
{abc, uvw}, {bcd, vwx}, {cde, wxy} and {def, xyz} respectively. Figure 2 shows the

Pre-filter operation.

MQy4

MQo def
l Xyz
}
0 1 0 0 «— HASH(bcd)
Shift 2
1 0 0 0 1 «— HASH(def)
Verification

Fig. 2 Pre-filter operation

The window with small size starts at the head of file. The content of window is “aaabcd”
and content of block with dash line is “bed”. Then we process HASH (bcd) to get the report of
MQ;. It is obviously that MQ; has substring ’bcd™, so the report is “10100”. After we get
“101007, we shift the window by 2. The window with large size is the next position. Again,
the content of window is “abcdef” and content of block with dash line is “def”. Then we
process HASH (def) to get the report of MQ;. It is obviously that MQ, has substring “’def”, so
the report is “10001”. When the MQw.k+1 reports 1, we enter the verification module and find

the virus.



2.3 Stateful Pre-filter

In previous section, window of pre-filter shift according to the query report of hash
function. Stateful pre-filter [13] was proposed to enhance the window advancement by

calculating all of previous query reports.

In section 2.2, we mentioned stateless pre-filter. To show the different of stateless
pre-filter and stateful pre-filter, we take an example to illustrate the difference. For stateless
pre-filter, if the report of round 1 is “11010”, then the window would shift by 1 and if the
report of round 2 is 10110, then the window would shift by 1 again. For stateful pre-filter,
if the same reports happened, it can have better window advancement than stateless
pre-filter. For stateful pre-filter, the report of round 1 “11010”* not only informs the window
about the shift but also excludes the impossible starting position of significant patterns. In
other words, the report “11010” shows that it is impossible to find the significant patterns
after window shift by 2. Therefore, after the window shift by 1 in round 1, 1t is unnecessary
to shift by 2-1=1 in round 2. It can be implemented by using a bitmap to memaorize the state
of pre-filter by calculating all of previous query reports. The bitmap shifts the bit as window
shift and AND the next query report to exclude the impossible position. The bitmap is
named Master Bitmap (MB) and acts as state of pre-filter. Fig. 3 shows the architecture of
stateful pre-filter. After pick up the right most 1 as shift value, the window and MB’ shift for

next round. Stateful pre-filter is adopted in the following pre-filter module of this paper.
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Fig. 3 The stateful pre-filter architecture for W =6 and k = 3.

2.4 Static pre-filter with verification

The method of using static pre-filters and verification are related to our work. The
purpose of its pre-filters is to quickly find out where the suspicious substrings are. The type of
virus is also simple regular expression. Regular expression (RE) is fragmented into substrings
every * operator. Two pre-filters are used in pre-filter module, but only one of them process at
a time. Each of pre-filters is responsible to the viruses of their database. Pre-filter 1 is
responsible to the first string of first fragments of viruses so that the system can only use
pre-filter 1 at beginning in order to save the resource. Because it is unnecessary to find the
second, third or higher order fragment of viruses when there isn’t any first fragment of virus
matched before. Pre-filter 2 is responsible to the first string of every fragment of viruses.
After any first fragment of viruses was found, pre-filter 2 begins processing. The verification
module (verification engine) of this system is an extension of the AC algorithm that verifies
the existence of virus at suspicious position. Several levels are created for fragments of REs

with different order. The static pre-filter and verification are review separately below.



2.4.1 Static pre-filter

The pre-filter module is an extension of a bitmap-based stateful design [13]. Fragments
are extracted from significant patterns in database to build two pre-filters. Regular expression
is fragmented into substrings every * operator. Let M denote the maximum number of *

operator in any REs. As a result, there are at most M +1 fragments for each RE. Let Y,

0<i<M, be the set that contains the i" fragments of all REs in database. All plain strings

only contain exactly one fragment and are included in Y, . Pre-filter 1 is prepared to detect
first string In Y, and Pre-filter 2 is prepared to detect first string in Y, LY, LY, U...LY,, .
The first string of fragments means the substring in front of first {min, max} operator if {min,

max} operator exist, otherwise the fragment itself is the first string.

The W;-byte prefix of every pre-filter 1 first string is used to construct Pre-Filter 1 where

my is chosen to be the shortest length of the first strings in Y, . A parameter ki (=W,), called

block size, is selected to build membership query modules. There are m;-k;+1 membership

query modules, denoted by MQ;, MQ;, ..., and MQ, , ;- According to the method

mentioned in chapter 2.2, we can calculate the hash table 1 for pre-filter 1.

The parameters for pre-filter 2 are denoted by W, and k..  Given these two parameters,
there are Wo-k,+1 membership query modules, denoted by MQ?, MQ;, ...,and MQ; , ;.

for pre-filter 2. For proper operation, it is required that ko =<W,. Again, according to the

method mentioned in chapter 2.2, we can calculate the hash table 2 for pre-filter 2.

For the example RE, =abc, RE,=ab*cd*e, RE;=bc*ad*e, RE,=pgr*vs, and
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RE; = pa{2, 43qrgs{3, 5}tu*vw* x{2, 6}y , the sets of pre-filter 1 and pre-filter 2 first string of
fragments are {abc, ab, bc, pgr, pg} and {abc, ab, bc, par, pg,cd, ad, vs, vw, e, x} ,
respectively. The parameter values can be chosen as W1=2, W,=1, and ki=k,=1. Given the
chosen parameter values, the strings {ab, bc, pg} are used to construct pre-filter 1 and the

strings {a, b, p, c, v, e, x} are used to construct pre-filter 2.

2.4.2 Verification

The verification module is a modification of the generalized AC algorithm [15]. To
process the simple REs, the generalized AC algorithm has a fork function for a {min, max}
operator. The verification module also uses a fork function to handle the {min, max} operator
as generalized AC dose. The difference is that in verification module, multiple goto graphs
are constructed for * operator. So that the information of processing pattern matching is
remembered by traversing different goto graphs. There are four functions: goto, failure,

output and fork that are described below.

The goto function

A regular expression is fragmented into substrings every * operator. If M denote the

maximum number of * operators in any RE, thereare M +1 G graphs for each Y,. The G
graph constructed for Y, is called the Level i G graph and denoted by G,. Similarly, if
N denote the number of {min, max} operators in Y;, there are N T graphsin Y,. T

graphs constructed for Y, are called the Level i T graphs.

A goto graph, denoted by G,, is constructed with algorithm ACL1 [4] for all of the first

strings in Y,. Note that self-loop is removed from starting state, is called G, graph. More

11



goto graphs are constructed for the remains parts in Y,, are called Level O T graphs. The
difference is that self-loop exists at starting state. Goto graphs of other levels can be

constructed similarly. Figure 4 shows the goto graphs of previous example.

Go Le\lxjel 0 G1 Level 1d G2 Level 2

0 =01 2 (3 17 (18 19 25 —=-L26

I_b4_c_5 |L20_dn I_x27_)
fork
6 == 7 ——3 ~—(222-423)) T2 [~y
fork
T0[~q] ’l' I—W24 C;—Y—zg
fork 12,65

2,4™ 9 =10 =11 =122~ 13 =>
T1 [~t]

£3,57 14 =15~ 16

Fig. 4 Example of Goto graphs for RE, =abc, RE,=ab*cd*e, RE,=bc*ad*e,

RE, = pgr*vs, and RE; = pa{2, 4}qrgs{3, 5Hu*vw* x{2,6}y .

The failure function

Consider every G graphs, we assign f(P)=END for every state P on G graphs.
Because pre-filters are used previously, failure function is unnecessary in every G graph.
However, the T graphs need failure function because the {min, max} operator would not
fail if counter < max. The failure function of states on T graphs is computed with algorithm
AC2 [4]. Table 1(a) shows the failure function for the example used in Fig. 4. In this table, the
state number of the (i, j)™ entry is 10*i+j and value O for f(P)represents the END.

The symbol - means failure never occurs in this state.

12



f(R) |0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 -
1 9 9 10 9 - 14 14 0 0 0
2 0 0 0 0 0 0 0 0 - 28

(a)
State S 3 23 26 29
output(S) RE, RE, RE,, RE, RE,
(b)

Table 1(a) The failure function and (b) the output function for the example used in Fig. 4.

The output function

Consider G and T graphs, we assign output(P)=< for every state P on G and
T graphs. If state P is the end of some R. in one of RES, then state P is a final state and
output (P) = output(P) U{i}. On goto graphs, a final state is represented by a double circle.
Table 1(b) shows the final states and the matched patterns for the example used in Fig. 4. The
output of other state is empty. Similar to the information of final states, if state R is the end
of _some = fragments, then state R is a fragment-end state and

Leveloutput(R) = Leveloutput(R) U{i}.

The fork function

The fork function is adopted to solve the {min, max} operator. Consider every G graph,
we assign F(P)=< for every state P on G graphs. If state P is the first string of
some fragments with {min, max} operator, then F(P) stores min=min, max=max, and
forked _state= the start state of the T graph constructed with the second string. Here,

min and max are, respectively, the minimum and maximum values of the {min, max}

13



operator which separates the first and the second strings in a same fragment. To complete a
fragment, there would be some T graphs that have created one after another to solve all of

{min, max} operators in a fragment. For convenience, a state with non-empty fork function is

called a fork state.




Chapter 3.

Proposed Algorithm

In related work, we introduce a method consists of a static pre-filter module and a
verification module. It is inefficient that pre-filter 2 of static pre-filter contains first string of
all fragments in Y, UY, LY, U..UY,, once first fragment of any regular expressions
matched. Therefore, we figure out dynamic pre-filter method to solve this problem and
achieve higher performance. Before first fragment of any REs matched, we only use pre-filter
1 to save the resource. The hash table of pre-filter 1 is a little different in dynamic method and

is described below.

3.1 Hash tables of dynamic pre-filter

The length of RES in Fig. 4 is short, so we use another example in this chapter, RE; =
abcdefghi*12345 and RE; = uvwxyz*9876543210. In static pre-filter method, the sets of
pre-filter 1 and pre-filter 2 first string of fragments are {abcdefghi, uvwxyz} and {abcdefghi,
uvwxyz, 12345, 9876543210}, respectively. The parameter values can be chosen as W;=6,
W,=5, and k=k;=k,=3. Given the chosen parameter values, the strings {abcdef, uvwxyz} are
used to construct hash table 1 of pre-filter 1 and the strings {abcde, uvwxy, 12345, 98765} are
used to construct hash table 2 of pre-filter 2. Once any fragments in pre-filter 1 matched,
pre-filter 2 is being substitute for pre-filter 1 in pre-filter module. However it’s inefficiency to
contain first string of all fragments at the same time in pre-filter 2 once the first fragment of
any REs matched. Hence, we proposed the idea of dynamic pre-filter that can only add

information of the next fragment according to what fragment matched before. For this

15



example, if “abcedfghi” matched, strings in hash table 2 of pre-filter 2 are only {abcde,
uvwxy, 12345} that is less than static pre-filter method. Fig 5 is the comparison of hash table

with static and dynamic methods, where H() represents the hash function.

Shift 43210 Shift 43210 Shift 43210
H(abc) —)}1 1l1f1]1]o]o]o 1|rf1]1]21|1]o|o tfefift]1]1]ofo
H(uvw) |

H(bcd) 1l1|1fafal1]ofo tfifrfafa]|a]fzfo o]t fa]if1]o
1{1fal1l0]of0f0 H(123) —t 1|11 |1]1|1|o|0o) H@23) ——x1|1|1|1|1]1]ofo0
Hivwx) => 1| 1|1[1]|of1]0]0 H(987) —f 1|11 |1f1]|1]1]0 ifififi]1]ol1]o
H(cde) hl tfif1folo|1]o0 ifafi]a]1]olof: 1foifi|1fa]olo]:
H(def) =2 1| 1{1]1]0]0]0o]1 H(876) —{1[1|1|1]|1|0]1]0 Lfrfafr]fo]o|o
H(xvz) 1 1 1 1 O O O 1 e EETE EERE LD B B e e
_>[ H(234) =i lil1]1]1lel1|o H(234) > |1|1l1l1lol1]o
H(765) —{ 1 fa|1|1fafo]0]1 11111 ]olo]o
Hash table 1 H(@E345) — 1|1 |1|1|i1]ofo|1| HEas) ——1|1|1|1|1[0]0]1

After “abcdefghi” Match Static Hash table 2 Dynamic Hash table 2

W, W,

Fig. 5 Comparison of hash table with static and dynamic methods for example RE; =

abcdefghi*12345 and RE; = uvwxyz*9876543210.

As mentioned in related work, we stored the result of membership query modules in hash
table. Therefore, we need to add information of the next fragment into hash table. However,
the process of adding information needs to cut the m,-byte prefix of the next fragment and
stored the information into hash table Wa,-k,+1 times. Both processes are burdensome.
Fortunately, we can store the information into hash table first and only stored the hash value
(index of table) at the state in verification module where previous fragment ends. Which result
stored in hash table is valuable is the only thing we need to know. Hence, we use the first bit
of hash table as our controlling bit. The first bit reports 1 when the result is valuable and

reports O otherwise.
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W,-k+1 bits

W,-k+1 times of update A
11111 I[1|1]1 0
ol1{1/1]1]0l0]0| Match pattern Ol 1{1|1{1[0]0]0
O[1|1|1]1]0[1|0 If1|1{1[1[{0|1]0

I|1|1}1]0 1 Iy1]1{1[0[0]|1
O) 1|11 /TjTjo)t Store hash value [0 TJ R T{1/1}0]1
oltbililitalolo at.corresponding fd 1 | 1[1hi 1] 00

state

Hash table 2 Hash table 2

Fig. 6 Procedure of updating hash table using dynamic pre-filter.

Fig. 6 shows the procedure of updating hash table using dynamic pre-filter. In
verification module, it is a state machine. Once we find the previous fragment of any RES, we
must enter a fragment-end state with hash values in it. We use these hash values as index of
hash table to update the information of the next fragment. The work of updating the hash table

is simply OR the first bit.

Because the hash table 2 of static pre-filter contains all remaining fragments, the first bit
of query result is always 1. It is obviously that dynamic pre-filter can decrease the burden of
pre-filter 2. Although the information of fragments already exist in pre-filter 2, it is valuable
only in the situation that the first bit of query report is 1. In other words, if first bit of query
report is O, the window of pre-filter 2 can shift maximum shift W,-k,+1 which is faster than

static pre-filter does.
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3.2 Hash functions

Collision may be happened if two different substrings get the same hash value. To avoid
the effect of collision, we use two hash functions in our pre-filter module, hash function A

and hash function B.

For example, if substrings “bcd” - “uvw” get the same hash value in hash function A, and
substrings “cde” ~ “uvw” get the same hash value in hash function B. If we only use hash
function A, Ha(uvw) has information of two substrings that would decrease the shift of
window. If two hash functions are used, we can AND the reports of two hash functions to get

rid of the effect of collision. Fig. 7 is the diagram of two hash functions.

* Hash functionA  Hash functionB
111 1)1 11)1]1]1
H. (uvw dhE T =
Ha(bed) 1| 121 HB(WW)Sl L1 1]1]1]0]L
: 11| ya
L1111 1111}
I11{111}1 Hg(bed) —>{ 1| 1] 1[{1|1]0(1]|0
Ha(cde) —>| 1| 1] 1|1 1]0f0]1 PR | M

Fig. 7 The diagram of two hash functions.
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3.3 Operation of dynamic pre-filter

The size of pre-filter 1 and pre-filter 2 would not be the same so we need two hash tables
shown in Fig. 8. After first fragment of any REs is matched, we used hash table 2 for
pre-filter 2 and add information of the next fragment using dynamic pre-filter method. The
first bit is also used as controlling bit. The information of first strings of first fragments is also
in hash table 2 and the controlling bit is initialized to 1. The difference is that the first strings
of first fragments are truncated into length W,. Hence, the reports of first strings of first

fragments in hash table 2 are equal to the reports in hash table 1 shift right W;-W, position.

W,-k+1 bits W,-k+1 bits
1l1l1f1]1f{o]olo 1l1f1]1|1]1|o]o
Match first fragment
1t f1l1f1]o L1t f1]1]a
if1f1l1|ofo]lo SR ERERER R 0
I4al1f1lof1]o0 Tpif1]1]1 !
1|1l f1lofo|1]0 1111 f1]oflo]!1
1{1|1]r]ofotol1 Ljtefifrlajololo
Hash table 1 Hash table 2

Fig. 8 Two hash tables for different size of window

The main idea of dynamic pre-filter is not only decreasing the effect of other fragments
that is unnecessary but also shifting the maximum position with large window size. However,

if we change the table once we encounter the first fragment of virus, the performance would
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become worse tempestuously. Fortunately, we can use the length of next fragment which is

going to be added in the hash table to distinguish whether we should change the table or not.

In our example, the large window size is 6, the small window size is 5 and block size is 3.
According to the stateful pre-filter, the maximum shift of large window size is 4 and the
maximum shift of small window size is 3. If the length of next fragment which is going to be
added in the hash table is greater than 6, substitution of hash table is unnecessary. In other
word, we can still shift the maximum shift with large window size. It can be implemented by
adding the information of next fragment step by step which is the characteristic of dynamic
pre-filter. If the length of next fragment which is going to be added in the hash table is smaller

than 6, we use the hash table 2 of pre-filter 2 in pre-filter module.

There are two hash tables for two pre-filters and two hash functions for each pre-filter to
decrease the effect of collision, so there are totally four hash tables to build. In dynamic
method, we can calculate the first strings of first fragments and enable the first controlling bit.
Also, we need to calculate the first strings of other fragments whose length are greater than or
equal to Wy in advanced with controlling bit = 0. Once we need to add the fragment whose
first string Is greater than or equal to W1, we need to update the controlling bit of both hash
table 1 and hash table 2. If the length of first string of the next fragment is smaller than Wy,
pre-filter module needs to change from hash table 1 to hash table 2, so we need to update both

hash tables. The controlling bits of other entries that is never used are initialized with zero.
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Chapter 4.

Simulation

4.1 Performance comparisons between static. pre-filter and

dynamic pre-filter

In this section, we compare the performance of our proposed signature matching system
with static and dynamic methods in terms of throughput performances. Programs are coded in
C++ and the experiments are conducted on a PC with an Intel Core2 Quad CPU operated at

2.83GHz with 4.00GB of RAM.

As mentioned in problem definition of chapter 2, we use the same database as ClamAV
does. There are 30008 simple regular expressions. 1019 REs of them are REs with * operator
and 407 REs of them are REs with {min, max} operator. In database, the maximum number
of * operators in one simple RE is five which means there are six levels created for
verification module. The maximum number of max and minimum number of min are 122 and
1 respectively. The minimum length of first string of level 0 is 10 which is also the window
size of pre-filter 1. The window size of pre-filter 2'is 8. The block size is 4 and the size of
hash table is 22%*1byte. We use two different hash functions and AND their query reports to
avoid the false positive collision. One is to pick up the right 20 bits and left 20 bits XOR, the

other is to pick up the right 20 bit only as reference of hash table.
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We use pre-filter module to find the suspicious position. Figure 9 shows the comparison

of CPU execution time for randomly generated files of various sizes with a virus in it. It can
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Fig. 9 Performances comparison of static and dynamic methods with a virus inserted in the

file.

4.2 Time comparison

In this section, we compare the time in pre-filter module and in verification module. We

do not take the time of reading the file into consideration because whatever algorithms need
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to read the file first. Saving the time of reading the file may be the other topic that is out of

our research.

4.2.1 Pre-filter module

The procedure in pre-filter module is as following. First, get the substrings from block.
Second, put the substrings into hash function to get the report in hash table and AND with the
master bitmap which acts as the state of pre-filter. Final, if MQw.x+; reports 1, then enters the
verification module to verify, otherwise, shift the window according to the master bitmap. In
above procedure, numbers of shift and usage amount of hash function are two major
components that affect the time in pre-filter module the most. Fig. 10 shows the performance

comparison of static and dynamic methods in pre-filter module only.

x 10° Simulation of search time in pre-filter module
‘4 AL H i e Y IR 72 8 )

Static I A
3.5 |{ —%— Dynamic R

il ' o [N ' ] Yt R N A VA Il ' oo A
3.___..._A-._J..J_.L-I_J-I_I.L-._...J--.J--J..L.LJ.LLL ______ P PR R Sy s T S
T ' (VSR T P ] ' 4 [ AR 1 ' 0=V, [
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Fig. 10 Performances comparison of static and dynamic methods in pre-filter module with a
virus inserted in the file.
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Table 2 shows the comparisons of numbers of shift between static and dynamic methods.

The dynamic pre-filter is better than static pre-filter because dynamic pre-filter can not only

decrease the effect of other fragments that is unnecessary but also shift the maximum shift

with large window size that lower the numbers of shift.

1MB 10MB 100MB 500MB 1GB
Static 209,889 2,098,673 20,986,607 | 104,933,008 | 214,902,796
Dynamic 150,008 1,499,769 14,997,607 74,988,008 | 153,575,435

Table 2 Comparisons of numbers of shift in pre-filter module between static and dynamic
methods.

4.2.2 Verification module

Fig. 11 shows the performance comparison of static and dynamic methods in verification

module only. It is obviously that CPU execution time in pre-filter module is the major part of

search time, because our hash table is large enough to decrease the verification count. If hash

table is small, the effect of collision increases. Hence, the probability of MQ.x+1=1 increases

and verification count increases.
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Simulation of search time in verification module
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Fig. 11 Performances comparison of static and dynamic methods in verification module

with a virus inserted in the file.

Table 3 shows the comparisons of verification count between all methods mentioned in

chapter 3. The method using dynamic pre-filter have the fewer verification counts because

dynamic pre-filter can decrease the effect of other fragments that is unnecessary. Therefore,

the window of dynamic pre-filter would not stop for the fragments that are excluded from

dynamic pre-filter. For example, some query reports whose MQw-k+1 is 1 but first bit is O are

excluded. The result of smaller verification count can save the time.
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Table 3 Comparisons of verification count between static and dynamic methods.
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The method of using dynamic pre-filter needs update in verification module. When we

find a fragment, we enter a state. There are W-k+1 hash values at this state. We update the

hash table according to the hash value to add the information of next fragment into the

dynamic pre-filter. Fortunately, the time of update is about 180ms/per 106 hash function

which is less than the time we enhance.

4.3 Memory requirement

Dynamic Pre-filter needs update, so hash values are stored at corresponding states as

extra memory compared with static method. In verification, it also needs some extra memory

to store the index of REs to get the length of next fragment and maximum shift value or extra

hash tables. Therefore, we list the memory usage of different parts as Table 4.

variable

size

static

dynamic |purpose
PreFilterlA 11,048,576 hash_tableA of prefilterl
PreFilter2A 1,048,576 hash_tableA of prefilter2
Pre-filter | prerilter1B {1,048,576 St B o pragiiges
(avoid collision)
PreFilter2B 1,048,576 hash_tableB of prefilter2
(avoid collision)

State 1,266,653 information of each s_tate
such as type or table index
information of leaf state

L o iy 155,335 Ljike ID and table index of hash_table
Hash_value | 70,840 X hash_value of next fragment
Store 652,407 stor_e ID and _endposmon
during scanning

verification| FSCTable | 272,192

B2Table 61,750

B3Table 21,510

B4Table 12,620

B5Table 7,550

B256Table |1,010,688
CompactedFile|2,020,509 all strings of Regular Expression
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Len

20,380

X

length of next fragment

Total

9,748,339

9,994,894

extra

246,555

Table 4 List of memory usage in pre-filter and verification module.

It is possible that dynamic method has better performance because of the extra memory

usage. Hence, we have the simulation with the memory usage of static method is greater than

the memory usage of dynamic method. We can decrease the size of hash table to make the

memory usage of dynamic method lower than memory usage of static method. The difference

of memory usage between dynamic and static is less than 256k bytes. Therefore, we decrease

the size of hash table in-pre-filter-module to 2219 for dynamic method to have less memory in

dynamic method. The simulation. result shows in Fig. 12. The dynamic method is still better.

x10°

Simulation of search time with less memory

35H %

H H HOSGHES Y - |
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Dynamic:|icitlerscds
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1 1 1 ' L)
'
T VA e T
1 L} ' L)
1 1 ' L)
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'

Fig. 12 Performance comparison of static and dynamic methods with less memory
requirement in dynamic method.
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Chapter 5.

Analysis

In analysis, we calculate the average window advancement with different number of
fragments in hash table. Although in pre-filter module, we put the information of fragments
into hash table in advanced, it does not work if the controlling bit is disabled. Thus, in
dynamic method, we can regard number of fragments whose controlling bit is enabled as

number of fragments in hash table.

5.1 Average window advancement

Before we calculate average window advancement, we need to define some variables
that will use in the following. Let L be the number of hash functions used in a pre-filter, y
represents number of fragments in hash table and N is the entries of hash table. \WWe AND
every query report from hash tables with different hash functions to get QB, so QB = QB; &
QB; & QB3 & ...& QB = gb:gb,qbs...gbwk+1. The parameter o represents the probability

of gbi=1, 1<i<W-k+1,and o =can be calculated by

o =[1-(1-UNYT- (1)

Markov chain is adopted to analyze the average window advancement. In pre-filter
module master bitmap needs to bitwise-AND with QB and window advances according to the
result of MB&QB. Let MB&QB = mbimb;...mbw.ks+1, then mbw.y+1 is used to determine

whether the system needs to enter verification module or not that is irrelative to window
28



advancement. Therefore, states of Markov chain correspond to the value of mbymb,...mby.,

i.e., there are 2WK states on the Markov chain.

If X, be the state after the I" iteration of queries, then state transition probabilities from

state i to state j can be defined hat will compute in next section.

Once p;; is gi tion II = (7o, 7

©)

Pposyg = Py o pz""-k—1,2‘”-k—1_1 1

1 1 1 0 0 1

In eq. (3), II can be computed by matrices operation. Let G denote the average
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window advancement and g; represents the corresponding shift value for every state. Then

G, can be calculated by

Wk

G_L: Z 79 (4)

i=0

5.2 Derivation of Pj,i

As mentioned above, state transition probabilities p,;=P(X,,=]|X, =i) . Let

P =l ks oy J=Jwsadwio---Jo and window advancement = g in state i. Let
1'=1yq '\ o---1'g betheright-shifted master bitmap in state i. Then, there are two cases

discuss below.

In case 1, if g=W-k+1, then i=0"™* and i"=1"* The state transition probabilities

W where x is number of 1’s in j. In case 2, if g<W-k+1, then

Pji = P (1-p)
i=iy_4...i,20°" and i*=1%, ,,...i,. The state transition probabilities p,;=0 if there

exist r, 0<r<W-k-1 such that i’=0 and j=1, otherwise, p;; =p* (1~ p) K% “where x; is

number of 1’s in j.and X, is number of 0’s in i’.

5.3 Numerical result

We adopt the value of parameters used in chapter 4 to evaluate the average window
advancement. Because the window size is different in two pre-filter, we have W=10 and W=8.
The other parameters are k=4, N=2?°, L=2 and y is the number of fragments in hash table. Fig.

13 shows the average window advancement with different number of fragments in hash table.
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Average window advancement for various number of fragments with N=220
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Fig. 13 Average window advancement with various number of fragments in hash table with
N=2%,

It is obviously that average window advancement is close to the maximum window
advancement. It’s because our hash table is large enough to handle the fragments up to 40000.
Once a first fragment of RE was found, dynamic pre-filter can still perform the average
window advancement with the better situation W=10 if length of the next fragment is larger

than or equal to 10.

If hash table is full of fragments, the average window advancement decrease as shown in
Fig. 14. In Fig. 14, we decrease the size of hash table to make it full of fragments. However,
even with the same window size in situation of Fig. 14, number of fragments in hash table of
dynamic method is less than number of fragments in hash table of static method. The average

window advancement is bigger with fewer fragments in hash table. In consequence, dynamic
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Chapter 6.

Conclusion

In this thesis, we have proposed a pattern matching system that consists of a dynamic
pre-filter module and a verification module for both plain strings and simple REs. The
purpose of dynamic pre-filter module is to quickly find the starting positions of suspicious
substrings which may result in match of some signatures. It is implemented by adding
substrings information step by step to accelerate the speed of search. Moreover, we can still
use window with large size if length of the next fragment is larger than or equal to Wy, so the

window can shift more due to the large window size.

We have discussed static and dynamic methods in pre-filter module and have compared
two methods in simulation result in time complexity and memory complexity. Even with less
memory requirement, dynamic pre-filter can perform better. The advantage of dynamic
pre-filter is to decrease the effect of the additional information. As a result, the dynamic
pre-filter achieves high performance in pre-filter module. Itis interesting to detect the patterns

in different expressions.

33



References

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

S. E. Schechter, J. Jung, and A. W. Berger, "Fast detection of scanning worm
infections,” 7" International Symposium on Recent Advances in Intrusion Detection
(RAID), French Riviera, September 2004.

D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,” TR
CS-74-440, Stanford University, Stanford, California, 1974.

R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of
the ACM, Vol. 20, October 1977, pp. 762-772.

A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic
search,” Communications of the ACM, Vol. 18, June 1975, pp. 333-340.

S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” TR-94-17, 1994.
B Bloom, “Space/time trade-offs in hash coding with allowable errors,” ACM, 13(7):
422426, May 1970.

A. Broder and M. Mitzenmacher, ‘“Network applications of Bloom filters:a survey,”
Internet Mathematics, vol. 1, no. 4, pp. 485-509.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep packet
inspection using parallel Bloom filters,” IEEE Micro, vol. 24, no. 1, pp. 52-61, Jan./Feb.
2004.

M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation results of Bloom filters
for string matching,” Field-Programmable Custom Computing Machines, pp. 322-323,
Apr. 2004.

S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix matching using
Bloom filters,” IEEE/ACM Transactions on Networking, vol. 14, pp. 397-409, Apr.

2006.

34



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

N. S. Artan and H. J. Chao, “Multi-packet signature detection using prefix Bloom
filters,” IEEE GLOBECOM, vol. 3, pp. 1811-1816, 2005.

N. S. Artan, K. Sinkar, J. Patel, and H. J. Chao, “Aggregated Bloom filters for intrusion
detection and prevention hardware,” IEEE GLOBECOM, pp. 349-354, Nov. 2007.

T. H. Lee and N. L. Huang, “A Pattern Matching Scheme with High Throughput
Performance and Low Memory Requirement,” IEEE/ACM Transactions on
Networking.

Clam anti virus signature database, www.clamav.net.

T. H. Lee, “Generalized Aho-Corasick algorithm for signature based anti-virus
applications,” IEEE ICCCN 2007.

R. Smith, C. Estan, and S. Jha, “XFA:. Fast signature matching with extended
automata,” In IEEE Symposium on Security and Privacy, May 2008.

Snort website http://www.snort.org/.

M. Roesch, “Snort — lightweight intrusion detection for networks,” Proceedings of

LISA’99: 13th Systems Administration Conference, pp.s229—-238, Nov. 1999.

35


http://www.clamav.net/
http://www.snort.org/




