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動態過濾器應用在偵測病毒特徵碼防毒軟體 

學生：王廣煜 指導教授：李程輝 

國立交通大學電信工程研究所 

摘 要       

字串比對在病毒偵測的應用上是一門很重要的技術，因為字串比對的精確度比異常

行為偵測來的高。目前有許多有名的字串比對演算法已經被提出，其中 Aho-Corasick 

(AC) 是一種可以同時比對多隻病毒的演算法。然而，AC 演算法偵測的對象是以普通字

串表示的病毒，無法偵測以正規表示式表示的病毒。 

在我們提出的字串比對系統中，主要是偵測正規表示式的病毒特徵碼，包含動態過

濾器與驗證模組兩部分。動態過濾器的主要目的是快速移動到檔案可疑的病毒位置，它

透過將相對應的字串資訊逐步加入系統中，可以避免不必要的字串資訊加入，增強效

能。驗證模組是驗證動態過濾器找出來的可疑位置是否真的是病毒特徵碼的某一段，我

們事先將病毒特偵碼分段建造狀態機，驗證模組只需要針對可能的狀態機進行追蹤，減

少時間上的浪費。 

關鍵字：Aho-Corasick 演算法、字串比對、正規表示式、動態過濾器 
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Dynamic Pre-filter Designs for Signature Based 

Anti-Virus/Worm Applications 

Student：Kuang-Yu Wang Advisors：Prof. Tsern-Huei Lee 

Institute of Communication Engineering 

National Chiao Tung University 

ABSTRACT 

Pattern matching is an important technology in anti-virus/worm applications and is more 

accuracy than behavior anomaly. Many famous pattern matching algorithms have been 

presented in the past, and Aho-Corasick (AC) is one of the famous algorithms that can match 

multiple patterns simultaneously. However, the AC algorithm was developed for plain strings 

while virus/worm signatures could be specified by simple regular expressions.  

Our proposed signature matching system which consists of a dynamic pre-filter and a 

verification module is designed for simple regular expressions detection. The main purpose of 

dynamic pre-filter is to quickly find the starting position of suspicious substrings which may 

result in match of some signatures. It can avoid unnecessary information by adding a few 

fragments of signature to enhance the performance. The verification module is used to verify 

whether there is any virus at suspicious position found by dynamic pre-filter. We built the 

state machine in advanced according to the fragments of signatures. The verification module 

only traces the possible state machine to save the time. 

Keywords: Aho-Corasick algorithm, pattern matching, Regular expression, Dynamic 

pre-filter 
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Chapter 1.  
 

Problem definitionIntroduction 

 

Two major techniques are used in virus detection. One is behavior anomaly and another 

is pattern matching. Behavior anomaly can detect virus when abnormal behavior occurs. For 

instance, an infected computer would have higher new connections rate than a normal 

computer would have. This abnormal behavior can be detected by observing the number of 

new connections [1]. However, behavior anomaly may create false positive if normal 

behavior is not well-defined in advanced. Pattern matching is another technique that is more 

accuracy than behavior anomaly. There are some significant patterns derived from malicious 

codes in packet. The idea of pattern matching is to find out whether there is a significant 

pattern hidden in the files. 

Knuth-Morris-Pratt(KMP) [2], Boyer-Moore(BM) [3], Aho-Corasick(AC) [4] and 

Wu-Member(WM) [5] are famous pattern matching techniques. Bloom filter [6]-[12] is also a 

technique for pattern matching that is famous for its space-efficient probabilistic data 

structure. KMP and BM are efficiency only in single pattern detection. The AC and WM are 

designed for multiple patterns detection. However, AC algorithm may have the disadvantage 

about the huge memory requirement of constructing a two dimensional state transition table. 

Thus, some methods such as band-row format, AC-bnfa and bitmap data structure proposed 

for memory reduction. 
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The idea of pre-filter comes from shift table of WM. The purpose of pre-filter is to 

exclude the impossible position in the file. In other words, it can find the suspicious position 

in the file fast and verify suspicious position in verification module. In pre-filter module, it is 

realized that previous query result can accelerate the next query result to achieve high 

performance which is named stateful pre-filter [13]. In our paper, stateful pre-filter is applied 

to find the suspicious position in the file and is described in chapter 2. 

Because of virus variation, the types of significant patterns become more complicated 

nowadays. Regular expressions (REs) can express significant patterns better than plain strings 

can do. The significant patterns expressed in REs are often simple. For instance, the patterns 

defined in Clam Anti-virus (ClamAV) [14] consist of plain strings and three operators： 

 *：match any number of symbols 

 ?：match any symbol 

 {min, max}：match minimum of min, maximum of max symbols 

We separate the REs with * operators. For convenience, we use “the first fragment of 

RE” to represent the substring in front of the first * operator of RE and “the first string of 

fragment” to represent the substring in front of the first {min, max} operator of fragment. 

To detect RE, some algorithms like generalized AC [15], ClamAV, extend finite 

automata (XFA) [16], and Snort [17]-[18] were proposed already. Although these methods 

can detect RE, the performance or memory requirement may be unacceptable. Even worse is 

that they may cause false positive or false negative. Our goal is to propose higher 

performance with acceptable memory requirement for REs matching. It can be simply 

implemented by applying stateful pre-filter and a verification engine. After we separate the * 
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and {min, max} operator with appropriate method, the left substrings of REs can regard as 

plain strings. The only difference is that the substrings need to be matched in the order of REs. 

In our implementation, we only consider first fragments of every REs at first and consider 

entire fragments of every REs after any first fragment matches. However, it is not efficiency 

to consider entire fragments of every REs at the same time when the first fragment matched. 

It is better to reduce the effect caused by unnecessary fragments that would lower the 

performance. The proposed pattern matching system consists of a dynamic pre-filter module 

and a verification module. Dynamic pre-filter can only add information of a few fragments to 

accelerate the speed of search. It has CPU execution comparison with different methods in 

pre-filter module. The simulation result shows that dynamic method has better performance 

than the static method. The verification only verifies the possible state machine to save the 

time. 

In the following section, we have problem definition and related work in chapter 2. In 

chapter 3, we describe the proposed methods for our pre-filter design. Then, we show the 

simulation result in chapter 4 and analysis our design in chapter 5. Conclusion is in chapter 6 

to end the paper. 
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Chapter 2.  
 

Problem definition and related work 

 

2.1 Problem definition 

There is a given database contained every significant patterns that derived from 

malicious code. We read the significant patterns from database first in order to construct a 

pattern matching system that can point out the starting position of significant pattern in the 

given file. Our system is consists of pre-filter module and verification module. In verification 

module, goto function, failure function, and output function processed as AC’s three functions 

do. Besides, fork function is an extra function in verification module which is added to 

process the {min, max} operator. 

ClamAV is an open source anti-virus, so we can get its database easily. Therefore, in our 

paper, we use the same database in ClamAV for our simulation. The type of significant 

patterns in ClamAV’s database is simple regular expression. The simple regular expression 

consists of plain strings and three operators : *, ?, and {min, max}. We can only consider the 

* and {min, max} operators in our design. Because consecutive ? operators can be substituted 

for a {min, max} operator with min = max = number of ? operators. 
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2.2 Pre-filter 

The information of significant patterns is stored in membership query modules (MQs). In 

pre-filter module, a window is used to scan the file and a block at the end of window is used 

to compare with the information of significant patterns in MQi , 1 ≤ i ≤ W-k+1 , where W is 

window size, k is block size and 1 1 1 1

1 2... WP p p p 、 2 2 2 2

1 2 ... WP p p p … 1 2 ...n n n n

WP p p p  are first 

W-byte of first string of each significant patterns where n is the number of significant patterns. 

Window size is chosen as the smallest length of first string of significant patterns because it 

will ignore some information of shorter patterns if window size is larger than smallest length 

of first string of significant patterns. Substrings of significant patterns 1 1 2 ...j j j j

kP p p p 、

2 2 3 1...j j j j

kP p p p  … 1 1...j j j j

i i i i kP p p p   … 1 1 2...
j j j j

W k W k W k WP p p p       are stored in MQi for 

comparison, 1≤ i≤ W-k+1, 1 ≤ j ≤ n. MQi reports 1 iff the substring in block is the same as 

one of substrings in MQi and reports 0, otherwise. According to the report of MQi, we can 

shift the window to appropriate position. It is complicated to compare with all substrings in 

MQi step by step. Hence, HASH table is used to store the report of MQi previously. 

2.2.1 HASH function 

The report of MQi can be calculated in advanced and store the report in hash table by 

using hash function HASH. The thh  bit of MQi reports 1 iff substring 1 1...j j j j

i i i i kP p p p    

exists such that h  = ( )j

iHASH P , otherwise reports 0. Fig 1 is a diagram of hash table. 

Each MQi is a bit array with size 2
8k

 because the block size is k-byte = 8k-bit, there are 2
8k

 

possible entries. Hash table is a combination of these bit arrays of MQi. Elements in MQ0 

are all 1 for the default value when MQi are empty, where i >0. 
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Fig. 1  Hash table 

The advantage of using hash function not only can store the report previously but also 

can reduce the size of hash table. The number of input bits can be reduced by hash function 

easily. For instance, if input bits = 3 bytes = 24 bits, we can simply take first 16-bit and last 

16-bit XOR to get 16-bit only. Although it would increase the probability of collision, it is 

worth saving lots of memory space. 

2.2.2 Pre-filter operation 

We take an example to show the pre-filter operation. Assume P
1
 = “abcdefghi”, P

2
 = 

“uvwxyz” and text file is “aaabcdefff”. The window size W is chosen as the smallest length of 

significant patterns, i.e., W=6. Then, all of significant patterns are truncated into the same 

length W. For this example, P
1
‘ = “abcdef”, P

2
‘ = “uvwxyz”. Block exists at the end of 

window and the substrings in block will compare to the information in MQi. Therefore, block 

size k is chosen to be smaller than W definitely. We assume block size k = 3, there are W-k+1 



 

7 

 

= 4 MQi with different substrings in each. The substrings set of MQ1, MQ2, MQ3 and MQ4 are 

{abc, uvw}, {bcd, vwx}, {cde, wxy} and {def, xyz} respectively. Figure 2 shows the 

Pre-filter operation. 

 

Fig. 2  Pre-filter operation 

 The window with small size starts at the head of file. The content of window is “aaabcd” 

and content of block with dash line is “bcd”. Then we process HASH (bcd) to get the report of 

MQi. It is obviously that MQ2 has substring ”bcd”, so the report is “10100”. After we get 

“10100”, we shift the window by 2. The window with large size is the next position. Again, 

the content of window is “abcdef” and content of block with dash line is “def”. Then we 

process HASH (def) to get the report of MQi. It is obviously that MQ4 has substring ”def”, so 

the report is “10001”. When the MQW-k+1 reports 1, we enter the verification module and find 

the virus. 



 

8 

 

2.3 Stateful Pre-filter 

In previous section, window of pre-filter shift according to the query report of hash 

function. Stateful pre-filter [13] was proposed to enhance the window advancement by 

calculating all of previous query reports. 

In section 2.2, we mentioned stateless pre-filter. To show the different of stateless 

pre-filter and stateful pre-filter, we take an example to illustrate the difference. For stateless 

pre-filter, if the report of round 1 is “11010”, then the window would shift by 1 and if the 

report of round 2 is “10110”, then the window would shift by 1 again. For stateful pre-filter, 

if the same reports happened, it can have better window advancement than stateless 

pre-filter. For stateful pre-filter, the report of round 1 “11010” not only informs the window 

about the shift but also excludes the impossible starting position of significant patterns. In 

other words, the report “11010” shows that it is impossible to find the significant patterns 

after window shift by 2. Therefore, after the window shift by 1 in round 1, it is unnecessary 

to shift by 2-1=1 in round 2. It can be implemented by using a bitmap to memorize the state 

of pre-filter by calculating all of previous query reports. The bitmap shifts the bit as window 

shift and AND the next query report to exclude the impossible position. The bitmap is 

named Master Bitmap (MB) and acts as state of pre-filter. Fig. 3 shows the architecture of 

stateful pre-filter. After pick up the right most 1 as shift value, the window and MB’ shift for 

next round. Stateful pre-filter is adopted in the following pre-filter module of this paper. 
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Fig. 3  The stateful pre-filter architecture for W = 6 and k = 3. 

2.4 Static pre-filter with verification 

The method of using static pre-filters and verification are related to our work. The 

purpose of its pre-filters is to quickly find out where the suspicious substrings are. The type of 

virus is also simple regular expression. Regular expression (RE) is fragmented into substrings 

every * operator. Two pre-filters are used in pre-filter module, but only one of them process at 

a time. Each of pre-filters is responsible to the viruses of their database. Pre-filter 1 is 

responsible to the first string of first fragments of viruses so that the system can only use 

pre-filter 1 at beginning in order to save the resource. Because it is unnecessary to find the 

second, third or higher order fragment of viruses when there isn’t any first fragment of virus 

matched before. Pre-filter 2 is responsible to the first string of every fragment of viruses. 

After any first fragment of viruses was found, pre-filter 2 begins processing. The verification 

module (verification engine) of this system is an extension of the AC algorithm that verifies 

the existence of virus at suspicious position. Several levels are created for fragments of REs 

with different order. The static pre-filter and verification are review separately below. 
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2.4.1 Static pre-filter 

The pre-filter module is an extension of a bitmap-based stateful design [13]. Fragments 

are extracted from significant patterns in database to build two pre-filters. Regular expression 

is fragmented into substrings every * operator. Let M  denote the maximum number of * 

operator in any REs. As a result, there are at most 1M   fragments for each RE. Let iY , 

0 i M  , be the set that contains the thi  fragments of all REs in database. All plain strings 

only contain exactly one fragment and are included in 0Y . Pre-filter 1 is prepared to detect 

first string in 0Y  and Pre-filter 2 is prepared to detect first string in 0 1 2 ... MY Y Y Y    . 

The first string of fragments means the substring in front of first {min, max} operator if {min, 

max} operator exist, otherwise the fragment itself is the first string. 

The W1-byte prefix of every pre-filter 1 first string is used to construct Pre-Filter 1 where 

m1 is chosen to be the shortest length of the first strings in 0Y . A parameter k1 (≦W1), called 

block size, is selected to build membership query modules. There are m1-k1+1 membership 

query modules, denoted by 1

1MQ , 1

2MQ , …, and 
1 1

1

1W kMQ   . According to the method 

mentioned in chapter 2.2, we can calculate the hash table 1 for pre-filter 1. 

The parameters for pre-filter 2 are denoted by W2 and k2.  Given these two parameters, 

there are W2-k2+1 membership query modules, denoted by 2

1MQ , 2

2MQ , …, and 
2 2

2

1W kMQ   , 

for pre-filter 2.  For proper operation, it is required that k2≦W2. Again, according to the 

method mentioned in chapter 2.2, we can calculate the hash table 2 for pre-filter 2. 

For the example 1RE abc , 2 * *RE ab cd e , 3 * *RE bc ad e , 4 *RE pqr vs , and 
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5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y , the sets of pre-filter 1 and pre-filter 2 first string of 

fragments are { ,  ,  ,  ,  }abc ab bc pqr pq  and { ,  ,  ,  ,  , ,  ,  ,  , ,  }abc ab bc pqr pq cd ad vs vw e x , 

respectively.  The parameter values can be chosen as W1=2, W2=1, and k1=k2=1. Given the 

chosen parameter values, the strings { ,  ,  }ab bc pq  are used to construct pre-filter 1 and the 

strings { ,  b,  p,  ,  ,  ,  }a c v e x  are used to construct pre-filter 2. 

2.4.2 Verification 

The verification module is a modification of the generalized AC algorithm [15]. To 

process the simple REs, the generalized AC algorithm has a fork function for a {min, max} 

operator. The verification module also uses a fork function to handle the {min, max} operator 

as generalized AC dose. The difference is that in verification module, multiple goto graphs 

are constructed for * operator. So that the information of processing pattern matching is 

remembered by traversing different goto graphs. There are four functions: goto, failure, 

output and fork that are described below. 

The goto function 

A regular expression is fragmented into substrings every * operator. If M  denote the 

maximum number of * operators in any RE, there are 1M   G  graphs for each iY . The G  

graph constructed for iY  is called the Level i  G  graph and denoted by i
G . Similarly, if 

N  denote the number of {min, max} operators in iY , there are N  T  graphs in iY . T  

graphs constructed for iY  are called the Level i  T  graphs. 

A goto graph, denoted by 0
G , is constructed with algorithm AC1 [4] for all of the first 

strings in 0Y . Note that self-loop is removed from starting state, is called 0
G  graph. More 
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goto graphs are constructed for the remains parts in 
0Y , are called Level 0 T graphs. The 

difference is that self-loop exists at starting state. Goto graphs of other levels can be 

constructed similarly. Figure 4 shows the goto graphs of previous example. 

 

Fig. 4  Example of Goto graphs for 1RE abc , 2 * *RE ab cd e , 3 * *RE bc ad e , 

4 *RE pqr vs , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y . 

The failure function 

Consider every G  graphs, we assign ( )f P END  for every state P  on G  graphs. 

Because pre-filters are used previously, failure function is unnecessary in every G  graph. 

However, the T  graphs need failure function because the {min, max} operator would not 

fail if counter   max. The failure function of states on T graphs is computed with algorithm 

AC2 [4]. Table 1(a) shows the failure function for the example used in Fig. 4. In this table, the 

state number of the ( , )thi j  entry is 10*i j  and value 0 for ( )f P represents the END . 

The symbol ”-” means failure never occurs in this state. 
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( )f R  0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 - 

1 9 9 10 9 - 14 14 0 0 0 

2 0 0 0 0 0 0 0 0 - 28 

(a) 

State S  3 23 26 29 

( )output S  
1RE  4RE  2RE , 3RE  5RE  

(b) 

Table 1(a) The failure function and (b) the output function for the example used in Fig. 4. 

The output function 

Consider G  and T  graphs, we assign ( )output P   for every state P  on G  and 

T  graphs. If state P  is the end of some iR  in one of REs, then state P  is a final state and 

( ) ( ) { }output P output P i  . On goto graphs, a final state is represented by a double circle. 

Table 1(b) shows the final states and the matched patterns for the example used in Fig. 4. The 

output of other state is empty. Similar to the information of final states, if state R  is the end 

of some fragments, then state R  is a fragment-end state and 

( ) ( ) { }Leveloutput R Leveloutput R i  . 

The fork function 

The fork function is adopted to solve the {min, max} operator. Consider every G  graph, 

we assign ( )F P   for every state P  on G  graphs. If state P  is the first string of 

some fragments with {min, max} operator, then ( )F P  stores min min , max max , and 

_forked state = the start state of the T  graph constructed with the second string. Here, 

min  and max  are, respectively, the minimum and maximum values of the {min, max} 
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operator which separates the first and the second strings in a same fragment. To complete a 

fragment, there would be some T  graphs that have created one after another to solve all of 

{min, max} operators in a fragment. For convenience, a state with non-empty fork function is 

called a fork state. 
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Chapter 3.  
 

Proposed Algorithm 

 

In related work, we introduce a method consists of a static pre-filter module and a 

verification module. It is inefficient that pre-filter 2 of static pre-filter contains first string of 

all fragments in 0 1 2 ... MY Y Y Y     once first fragment of any regular expressions 

matched. Therefore, we figure out dynamic pre-filter method to solve this problem and 

achieve higher performance. Before first fragment of any REs matched, we only use pre-filter 

1 to save the resource. The hash table of pre-filter 1 is a little different in dynamic method and 

is described below. 

3.1  Hash tables of dynamic pre-filter 

The length of REs in Fig. 4 is short, so we use another example in this chapter, RE1 = 

abcdefghi*12345 and RE2 = uvwxyz*9876543210. In static pre-filter method, the sets of 

pre-filter 1 and pre-filter 2 first string of fragments are {abcdefghi, uvwxyz} and {abcdefghi, 

uvwxyz, 12345, 9876543210}, respectively. The parameter values can be chosen as W1=6, 

W2=5, and k=k1=k2=3. Given the chosen parameter values, the strings {abcdef, uvwxyz} are 

used to construct hash table 1 of pre-filter 1 and the strings {abcde, uvwxy, 12345, 98765} are 

used to construct hash table 2 of pre-filter 2. Once any fragments in pre-filter 1 matched, 

pre-filter 2 is being substitute for pre-filter 1 in pre-filter module. However it’s inefficiency to 

contain first string of all fragments at the same time in pre-filter 2 once the first fragment of 

any REs matched. Hence, we proposed the idea of dynamic pre-filter that can only add 

information of the next fragment according to what fragment matched before. For this 
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example, if “abcedfghi” matched, strings in hash table 2 of pre-filter 2 are only {abcde, 

uvwxy, 12345} that is less than static pre-filter method. Fig 5 is the comparison of hash table 

with static and dynamic methods, where H() represents the hash function. 

 

Fig. 5  Comparison of hash table with static and dynamic methods for example RE1 = 

abcdefghi*12345 and RE2 = uvwxyz*9876543210. 

As mentioned in related work, we stored the result of membership query modules in hash 

table. Therefore, we need to add information of the next fragment into hash table. However, 

the process of adding information needs to cut the m2-byte prefix of the next fragment and 

stored the information into hash table W2-k2+1 times. Both processes are burdensome. 

Fortunately, we can store the information into hash table first and only stored the hash value 

(index of table) at the state in verification module where previous fragment ends. Which result 

stored in hash table is valuable is the only thing we need to know. Hence, we use the first bit 

of hash table as our controlling bit. The first bit reports 1 when the result is valuable and 

reports 0 otherwise. 
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Fig. 6  Procedure of updating hash table using dynamic pre-filter. 

 Fig. 6 shows the procedure of updating hash table using dynamic pre-filter. In 

verification module, it is a state machine. Once we find the previous fragment of any REs, we 

must enter a fragment-end state with hash values in it. We use these hash values as index of 

hash table to update the information of the next fragment. The work of updating the hash table 

is simply OR the first bit. 

Because the hash table 2 of static pre-filter contains all remaining fragments, the first bit 

of query result is always 1. It is obviously that dynamic pre-filter can decrease the burden of 

pre-filter 2. Although the information of fragments already exist in pre-filter 2, it is valuable 

only in the situation that the first bit of query report is 1. In other words, if first bit of query 

report is 0, the window of pre-filter 2 can shift maximum shift W2-k2+1 which is faster than 

static pre-filter does. 



 

18 

 

3.2  Hash functions 

Collision may be happened if two different substrings get the same hash value. To avoid 

the effect of collision, we use two hash functions in our pre-filter module, hash function A 

and hash function B.  

For example, if substrings “bcd”、“uvw” get the same hash value in hash function A, and 

substrings “cde”、“uvw” get the same hash value in hash function B. If we only use hash 

function A, HA(uvw) has information of two substrings that would decrease the shift of 

window. If two hash functions are used, we can AND the reports of two hash functions to get 

rid of the effect of collision. Fig. 7 is the diagram of two hash functions. 

 

Fig. 7  The diagram of two hash functions. 
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3.3  Operation of dynamic pre-filter 

 The size of pre-filter 1 and pre-filter 2 would not be the same so we need two hash tables 

shown in Fig. 8. After first fragment of any REs is matched, we used hash table 2 for 

pre-filter 2 and add information of the next fragment using dynamic pre-filter method. The 

first bit is also used as controlling bit. The information of first strings of first fragments is also 

in hash table 2 and the controlling bit is initialized to 1. The difference is that the first strings 

of first fragments are truncated into length W2. Hence, the reports of first strings of first 

fragments in hash table 2 are equal to the reports in hash table 1 shift right W1-W2 position. 

 

Fig. 8  Two hash tables for different size of window 

The main idea of dynamic pre-filter is not only decreasing the effect of other fragments 

that is unnecessary but also shifting the maximum position with large window size. However, 

if we change the table once we encounter the first fragment of virus, the performance would 
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become worse tempestuously. Fortunately, we can use the length of next fragment which is 

going to be added in the hash table to distinguish whether we should change the table or not. 

 In our example, the large window size is 6, the small window size is 5 and block size is 3. 

According to the stateful pre-filter, the maximum shift of large window size is 4 and the 

maximum shift of small window size is 3. If the length of next fragment which is going to be 

added in the hash table is greater than 6, substitution of hash table is unnecessary. In other 

word, we can still shift the maximum shift with large window size. It can be implemented by 

adding the information of next fragment step by step which is the characteristic of dynamic 

pre-filter. If the length of next fragment which is going to be added in the hash table is smaller 

than 6, we use the hash table 2 of pre-filter 2 in pre-filter module. 

 There are two hash tables for two pre-filters and two hash functions for each pre-filter to 

decrease the effect of collision, so there are totally four hash tables to build. In dynamic 

method, we can calculate the first strings of first fragments and enable the first controlling bit. 

Also, we need to calculate the first strings of other fragments whose length are greater than or 

equal to W1 in advanced with controlling bit = 0. Once we need to add the fragment whose 

first string is greater than or equal to W1, we need to update the controlling bit of both hash 

table 1 and hash table 2. If the length of first string of the next fragment is smaller than W1, 

pre-filter module needs to change from hash table 1 to hash table 2, so we need to update both 

hash tables. The controlling bits of other entries that is never used are initialized with zero. 
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Chapter 4. 

 

Simulation 

4.1  Performance comparisons between static pre-filter and 

dynamic pre-filter 

In this section, we compare the performance of our proposed signature matching system 

with static and dynamic methods in terms of throughput performances. Programs are coded in 

C++ and the experiments are conducted on a PC with an Intel Core2 Quad CPU operated at 

2.83GHz with 4.00GB of RAM. 

As mentioned in problem definition of chapter 2, we use the same database as ClamAV 

does. There are 30008 simple regular expressions. 1019 REs of them are REs with * operator 

and 407 REs of them are REs with {min, max} operator. In database, the maximum number 

of * operators in one simple RE is five which means there are six levels created for 

verification module. The maximum number of max and minimum number of min are 122 and 

1 respectively. The minimum length of first string of level 0 is 10 which is also the window 

size of pre-filter 1. The window size of pre-filter 2 is 8. The block size is 4 and the size of 

hash table is 2
20

*1byte. We use two different hash functions and AND their query reports to 

avoid the false positive collision. One is to pick up the right 20 bits and left 20 bits XOR, the 

other is to pick up the right 20 bit only as reference of hash table. 



 

22 

 

We use pre-filter module to find the suspicious position. Figure 9 shows the comparison 

of CPU execution time for randomly generated files of various sizes with a virus in it. It can 

be seen that the CPU execution time is proportional to file size. The speed of dynamic 

pre-filter is about 32 % faster than the speed of static pre-filter. Therefore, dynamic pre-filter 

is better than static pre-filter. 

 

Fig. 9  Performances comparison of static and dynamic methods with a virus inserted in the 

file. 

4.2  Time comparison 

In this section, we compare the time in pre-filter module and in verification module. We 

do not take the time of reading the file into consideration because whatever algorithms need 
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to read the file first. Saving the time of reading the file may be the other topic that is out of 

our research. 

4.2.1  Pre-filter module 

 The procedure in pre-filter module is as following. First, get the substrings from block. 

Second, put the substrings into hash function to get the report in hash table and AND with the 

master bitmap which acts as the state of pre-filter. Final, if MQW-k+1 reports 1, then enters the 

verification module to verify, otherwise, shift the window according to the master bitmap. In 

above procedure, numbers of shift and usage amount of hash function are two major 

components that affect the time in pre-filter module the most. Fig. 10 shows the performance 

comparison of static and dynamic methods in pre-filter module only. 

 

Fig. 10  Performances comparison of static and dynamic methods in pre-filter module with a 

virus inserted in the file. 
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Table 2 shows the comparisons of numbers of shift between static and dynamic methods. 

The dynamic pre-filter is better than static pre-filter because dynamic pre-filter can not only 

decrease the effect of other fragments that is unnecessary but also shift the maximum shift 

with large window size that lower the numbers of shift. 

 1MB 10MB 100MB 500MB 1GB 

Static 209,889 2,098,673  20,986,607  104,933,008 214,902,796 

Dynamic 150,008 1,499,769  14,997,607   74,988,008 153,575,435  

Table 2  Comparisons of numbers of shift in pre-filter module between static and dynamic 

methods. 

4.2.2  Verification module 

Fig. 11 shows the performance comparison of static and dynamic methods in verification 

module only. It is obviously that CPU execution time in pre-filter module is the major part of 

search time, because our hash table is large enough to decrease the verification count. If hash 

table is small, the effect of collision increases. Hence, the probability of MQW-k+1=1 increases 

and verification count increases. 
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Fig. 11  Performances comparison of static and dynamic methods in verification module 

with a virus inserted in the file. 

Table 3 shows the comparisons of verification count between all methods mentioned in 

chapter 3. The method using dynamic pre-filter have the fewer verification counts because 

dynamic pre-filter can decrease the effect of other fragments that is unnecessary. Therefore, 

the window of dynamic pre-filter would not stop for the fragments that are excluded from 

dynamic pre-filter. For example, some query reports whose MQW-k+1 is 1 but first bit is 0 are 

excluded. The result of smaller verification count can save the time. 

 1MB 10MB 100MB 500MB 1GB 

Static 91  663  6,604  33,004  67,586  

Dynamic 70  522  5,203  26,003   53,251  

Table 3  Comparisons of verification count between static and dynamic methods. 
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 The method of using dynamic pre-filter needs update in verification module. When we 

find a fragment, we enter a state. There are W-k+1 hash values at this state. We update the 

hash table according to the hash value to add the information of next fragment into the 

dynamic pre-filter. Fortunately, the time of update is about 180ms/per 10^6 hash function 

which is less than the time we enhance. 

4.3  Memory requirement 

Dynamic Pre-filter needs update, so hash values are stored at corresponding states as 

extra memory compared with static method. In verification, it also needs some extra memory 

to store the index of REs to get the length of next fragment and maximum shift value or extra 

hash tables. Therefore, we list the memory usage of different parts as Table 4. 

 
variable size static dynamic purpose 

Pre-filter 

PreFilter1A 1,048,576  
  

hash_tableA of prefilter1 

PreFilter2A 1,048,576  
  

hash_tableA of prefilter2 

PreFilter1B 1,048,576  
  

hash_tableB of prefilter1  

(avoid collision) 

PreFilter2B 1,048,576  
  

hash_tableB of prefilter2  

(avoid collision) 

verification 

State 1,266,653  
  

information of each state  

such as type or table index 

S_leaf 403,871  
 

155,335  
information of leaf state  

like ID and table index of hash_table 

Hash_value 70,840  X 
 

hash_value of next fragment 

Store 652,407  
  

store ID and endposition  

during scanning 

FSCTable 272,192  
  

 B2Table 61,750  
  

 B3Table 21,510  
  

 B4Table 12,620  
  

 B5Table 7,550  
  

 B256Table 1,010,688  
  

 CompactedFile 2,020,509  
  

all strings of Regular Expression 
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Len 20,380  X 
 

length of next fragment 

Total 
  

9,748,339  9,994,894  

 extra 

   

246,555  

 

Table 4  List of memory usage in pre-filter and verification module. 

It is possible that dynamic method has better performance because of the extra memory 

usage. Hence, we have the simulation with the memory usage of static method is greater than 

the memory usage of dynamic method. We can decrease the size of hash table to make the 

memory usage of dynamic method lower than memory usage of static method. The difference 

of memory usage between dynamic and static is less than 256k bytes. Therefore, we decrease 

the size of hash table in pre-filter module to 2^19 for dynamic method to have less memory in 

dynamic method. The simulation result shows in Fig. 12. The dynamic method is still better. 

 

Fig. 12  Performance comparison of static and dynamic methods with less memory 

requirement in dynamic method. 
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Chapter 5. 

 

Analysis 

 

In analysis, we calculate the average window advancement with different number of 

fragments in hash table. Although in pre-filter module, we put the information of fragments 

into hash table in advanced, it does not work if the controlling bit is disabled. Thus, in 

dynamic method, we can regard number of fragments whose controlling bit is enabled as 

number of fragments in hash table. 

5.1  Average window advancement 

Before we calculate average window advancement, we need to define some variables 

that will use in the following. Let L be the number of hash functions used in a pre-filter, y 

represents number of fragments in hash table and N is the entries of hash table. We AND 

every query report from hash tables with different hash functions to get QB, so QB = QB1 & 

QB2 & QB3 & …& QBL = qb1qb2qb3…qbW-k+1. The parameter ρ represents the probability 

of qbi =1, 1≤ i ≤ W-k+1, and ρ =can be calculated by 

ρ = [1-(1-1/N)
y
]

L
                                                      (1) 

Markov chain is adopted to analyze the average window advancement. In pre-filter 

module master bitmap needs to bitwise-AND with QB and window advances according to the 

result of MB&QB. Let MB&QB = mb1mb2…mbW-k+1, then mbW-k+1 is used to determine 

whether the system needs to enter verification module or not that is irrelative to window 
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advancement. Therefore, states of Markov chain correspond to the value of mb1mb2…mbW-k, 

i.e., there are 2
W-k

 states on the Markov chain.  

If Xl be the state after the l
th

 iteration of queries, then state transition probabilities from 

state i to state j can be defined as , 1( | )j i l lp P X j X i    that will compute in next section. 

Once ,j ip  is given, we can calculate the stationary probability distribution Π = (π0, π

1, …, 
2 1W k  

) as following equation. 

0,0 0, 0,2 1 0 0

,0 , ,2 1

2 1 2 12 1,0 2 1, 2 1,2 1

W k

W k

W k W k
W k W k W k W k

i

j j i i ij

i

p p p

p p p

p p p

 

 

 





 
   





    

     
     
     
     
     
     
     

     

                   (2)  

Note that summation of probability of every state equals to 1, i.e., π0 + π1 + … + 

2 1W k  
=1. Therefore, eq. (2) can turn into the following format. 

0,0 0, 0,2 1
0

,0 , ,2 1

2 12 1,0 2 1, 2 1,2 1

1 1 0

1 1 0

01 1

0 11 1 1 0

W k

W k

W kW k W k W k W k

i

j j i j i

i

p p p

p p p

p p p











   





   

     
     
     
     
     
     
          
      

                  (3)  

In eq. (3), Π can be computed by matrices operation. Let G  denote the average 
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window advancement and gi represents the corresponding shift value for every state. Then 

LG  can be calculated by 

2 1

0

W k

L i i

i

G g

 



                                                           (4) 

5.2  Derivation of Pj,i 

As mentioned above, state transition probabilities , 1( | )j i l lp P X j X i   . Let 

1 2 0W k W ki i i i     , 1 2 0W k W kj j j j      and window advancement = g in state i. Let 

1 2 0' ' ' 'W k W ki i i i      be the right-shifted master bitmap in state i. Then, there are two cases 

discuss below. 

In case 1, if g=W-k+1, then i=0
W-k

 and i’=1
W-k

. The state transition probabilities 

, (1 )x W k x

j ip      , where x is number of 1’s in j. In case 2, if g<W-k+1, then 

1

1 10g

W k gi i i 

    and 1' 1g

W k gi i i   . The state transition probabilities , 0j ip   if  there 

exist r, 0≤r≤W-k-1 such that i’r=0 and jr=1, otherwise, 1 1 2

, (1 )
x W k x x

j ip     
   , where x1 is 

number of 1’s in j and x2 is number of 0’s in i’. 

5.3  Numerical result 

We adopt the value of parameters used in chapter 4 to evaluate the average window 

advancement. Because the window size is different in two pre-filter, we have W=10 and W=8. 

The other parameters are k=4, N=2
20

, L=2 and y is the number of fragments in hash table. Fig. 

13 shows the average window advancement with different number of fragments in hash table. 
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Fig. 13  Average window advancement with various number of fragments in hash table with 

N=2
20

. 

It is obviously that average window advancement is close to the maximum window 

advancement. It’s because our hash table is large enough to handle the fragments up to 40000. 

Once a first fragment of RE was found, dynamic pre-filter can still perform the average 

window advancement with the better situation W=10 if length of the next fragment is larger 

than or equal to 10. 

If hash table is full of fragments, the average window advancement decrease as shown in 

Fig. 14. In Fig. 14, we decrease the size of hash table to make it full of fragments. However, 

even with the same window size in situation of Fig. 14, number of fragments in hash table of 

dynamic method is less than number of fragments in hash table of static method. The average 

window advancement is bigger with fewer fragments in hash table. In consequence, dynamic 
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method can perform better average window advancement than static method. 

 

Fig. 14  Average window advancement with various number of fragments in hash table with 

N=2
15

. 
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Chapter 6.  

 

Conclusion 

 

In this thesis, we have proposed a pattern matching system that consists of a dynamic 

pre-filter module and a verification module for both plain strings and simple REs. The 

purpose of dynamic pre-filter module is to quickly find the starting positions of suspicious 

substrings which may result in match of some signatures. It is implemented by adding 

substrings information step by step to accelerate the speed of search. Moreover, we can still 

use window with large size if length of the next fragment is larger than or equal to W1, so the 

window can shift more due to the large window size. 

We have discussed static and dynamic methods in pre-filter module and have compared 

two methods in simulation result in time complexity and memory complexity. Even with less 

memory requirement, dynamic pre-filter can perform better. The advantage of dynamic 

pre-filter is to decrease the effect of the additional information. As a result, the dynamic 

pre-filter achieves high performance in pre-filter module. It is interesting to detect the patterns 

in different expressions. 
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