

國 立 交 通 大 學

電信工程研究所

碩 士 論 文

動態過濾器應用在偵測病毒特徵碼防毒軟體

Dynamic Pre-filter Designs for Signature Based Anti-Virus/Worm

Applications

研 究 生：王廣煜

指導教授：李程輝 教授

中 華 民 國 一 零 二 年 七 月

動態過濾器應用在偵測病毒特徵碼防毒軟體

Dynamic Pre-filter Designs for Signature Based

Anti-Virus/Worm Applications

研 究 生：王廣煜 Student：Kuang-Yu Wang

指導教授：李程輝 Advisor：Tsern-Huei Lee

國 立 交 通 大 學

電信工程研究所

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science,

June 2013

Hsinchu, Taiwan, Republic of China

中華民國 一零二 年七月

i

動態過濾器應用在偵測病毒特徵碼防毒軟體

學生：王廣煜 指導教授：李程輝

國立交通大學電信工程研究所

摘 要

字串比對在病毒偵測的應用上是一門很重要的技術，因為字串比對的精確度比異常

行為偵測來的高。目前有許多有名的字串比對演算法已經被提出，其中 Aho-Corasick

(AC) 是一種可以同時比對多隻病毒的演算法。然而，AC 演算法偵測的對象是以普通字

串表示的病毒，無法偵測以正規表示式表示的病毒。

在我們提出的字串比對系統中，主要是偵測正規表示式的病毒特徵碼，包含動態過

濾器與驗證模組兩部分。動態過濾器的主要目的是快速移動到檔案可疑的病毒位置，它

透過將相對應的字串資訊逐步加入系統中，可以避免不必要的字串資訊加入，增強效

能。驗證模組是驗證動態過濾器找出來的可疑位置是否真的是病毒特徵碼的某一段，我

們事先將病毒特偵碼分段建造狀態機，驗證模組只需要針對可能的狀態機進行追蹤，減

少時間上的浪費。

關鍵字：Aho-Corasick 演算法、字串比對、正規表示式、動態過濾器

ii

Dynamic Pre-filter Designs for Signature Based

Anti-Virus/Worm Applications

Student：Kuang-Yu Wang Advisors：Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University

ABSTRACT

Pattern matching is an important technology in anti-virus/worm applications and is more

accuracy than behavior anomaly. Many famous pattern matching algorithms have been

presented in the past, and Aho-Corasick (AC) is one of the famous algorithms that can match

multiple patterns simultaneously. However, the AC algorithm was developed for plain strings

while virus/worm signatures could be specified by simple regular expressions.

Our proposed signature matching system which consists of a dynamic pre-filter and a

verification module is designed for simple regular expressions detection. The main purpose of

dynamic pre-filter is to quickly find the starting position of suspicious substrings which may

result in match of some signatures. It can avoid unnecessary information by adding a few

fragments of signature to enhance the performance. The verification module is used to verify

whether there is any virus at suspicious position found by dynamic pre-filter. We built the

state machine in advanced according to the fragments of signatures. The verification module

only traces the possible state machine to save the time.

Keywords: Aho-Corasick algorithm, pattern matching, Regular expression, Dynamic

pre-filter

iii

誌 謝

感謝我的指導教授－李程輝教授。從專題到研究，他引導我學習新的

知識、彙整資訊多方思考問題的所在，在這兩年的研究生活中，我從老師

身上學習到了研究應該有的態度與思考，獲益良多。

感謝我的父母對我的栽培，他們對我的支持與鼓勵，讓我能不顧後顧

之憂，全心學習知識。

感謝交通大學電信工程學系 NTL 實驗室的各位伙伴，學長姐們的熱心

指導；與同儕之間的互相討論；學弟妹們的意見交流，讓我的研究能順利

完成，謝謝。

感謝一路以來幫助我的所有好友，在我需要幫助時，適時地拉我一把，

成為我能努力不懈、勇往直前的動力。

2013/07 王廣煜

iv

目 錄

中文摘要 i

英文摘要 ii

誌謝 iii

目錄 iv

圖目錄 vi

表目錄 vii

Chapter1 Problem definitionIntroduction 1

Chapter2 Problem definition and related work

4

2.1 Problem definition 4

2.2 Pre-filter 5

2.2.1 HASH function 5

2.2.2 Pre-filter operation 6

2.3 Stateful Pre-filter 8

2.4 Static pre-filter with verification 9

2.4.1 Static pre-filter 10

2.4.2 Verification 11

Chapter3 Proposed Algorithm 15

3.1 Hash tables of dynamic pre-filter 15

3.2 Hash functions 18

3.3 Operation of dynamic pre-filter 19

Chapter4 Simulation 21

4.1 Performance comparisons between static pre-filter and

dynamic pre-filter

21

4.2 Time comparison 22

4.2.1 Pre-filter module 23

4.2.2 Verification module 24

v

4.3 Memory requirement 26

Chapter5 Analysis 28

5.1 Average window advancement 28

5.2 Derivation of Pj,i 30

5.3 Numerical result 30

Chapter6 Conclusion 33

References 34

vi

圖 目 錄

Fig. 1 Hash table 6

Fig. 2 Pre-filter operation 7

Fig. 3 The stateful pre-filter architecture for W = 6 and k = 3 9

Fig. 4
Example of Goto graphs for 1RE abc ,

2 * *RE ab cd e ,
3 * *RE bc ad e ,

4 *RE pqr vs , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y
12

Fig. 5
Comparison of hash table with static and dynamic methods for example RE1 =

abcdefghi*12345 and RE2 = uvwxyz*9876543210 16

Fig. 6 Procedure of updating hash table using dynamic pre-filter. 17

Fig. 7 The diagram of two hash functions 18

Fig. 8 Two hash tables for different size of window 19

Fig. 9
Performances comparison of static and dynamic methods with a virus inserted

in the file. 22

Fig. 10
Performances comparison of static and dynamic methods in pre-filter module

with a virus inserted in the file. 23

Fig. 11
Performances comparison of static and dynamic methods in verification

module with a virus inserted in the file.
25

Fig. 12
Performance comparison of static and dynamic methods with less memory

requirement in dynamic method. 27

Fig. 13
Average window advancement with various number of fragments in hash table

with N=2
20

. 31

Fig. 14
Fig. 14 Average window advancement with various number of fragments in

hash table with N=2
15

. 32

vii

表 目 錄

Table 1(a)
The failure function for the example used in Fig. 4. 13

Table 1(b) The output function for the example used in Fig. 4. 13

Table 2
Comparisons of numbers of shift in pre-filter module between static and

dynamic methods.
24

Table 3 Comparisons of verification count between static and dynamic methods. 25

Table 4 List of memory usage in pre-filter and verification module. 27

1

Chapter 1.

Problem definitionIntroduction

Two major techniques are used in virus detection. One is behavior anomaly and another

is pattern matching. Behavior anomaly can detect virus when abnormal behavior occurs. For

instance, an infected computer would have higher new connections rate than a normal

computer would have. This abnormal behavior can be detected by observing the number of

new connections [1]. However, behavior anomaly may create false positive if normal

behavior is not well-defined in advanced. Pattern matching is another technique that is more

accuracy than behavior anomaly. There are some significant patterns derived from malicious

codes in packet. The idea of pattern matching is to find out whether there is a significant

pattern hidden in the files.

Knuth-Morris-Pratt(KMP) [2], Boyer-Moore(BM) [3], Aho-Corasick(AC) [4] and

Wu-Member(WM) [5] are famous pattern matching techniques. Bloom filter [6]-[12] is also a

technique for pattern matching that is famous for its space-efficient probabilistic data

structure. KMP and BM are efficiency only in single pattern detection. The AC and WM are

designed for multiple patterns detection. However, AC algorithm may have the disadvantage

about the huge memory requirement of constructing a two dimensional state transition table.

Thus, some methods such as band-row format, AC-bnfa and bitmap data structure proposed

for memory reduction.

2

The idea of pre-filter comes from shift table of WM. The purpose of pre-filter is to

exclude the impossible position in the file. In other words, it can find the suspicious position

in the file fast and verify suspicious position in verification module. In pre-filter module, it is

realized that previous query result can accelerate the next query result to achieve high

performance which is named stateful pre-filter [13]. In our paper, stateful pre-filter is applied

to find the suspicious position in the file and is described in chapter 2.

Because of virus variation, the types of significant patterns become more complicated

nowadays. Regular expressions (REs) can express significant patterns better than plain strings

can do. The significant patterns expressed in REs are often simple. For instance, the patterns

defined in Clam Anti-virus (ClamAV) [14] consist of plain strings and three operators：

 *：match any number of symbols

 ?：match any symbol

 {min, max}：match minimum of min, maximum of max symbols

We separate the REs with * operators. For convenience, we use “the first fragment of

RE” to represent the substring in front of the first * operator of RE and “the first string of

fragment” to represent the substring in front of the first {min, max} operator of fragment.

To detect RE, some algorithms like generalized AC [15], ClamAV, extend finite

automata (XFA) [16], and Snort [17]-[18] were proposed already. Although these methods

can detect RE, the performance or memory requirement may be unacceptable. Even worse is

that they may cause false positive or false negative. Our goal is to propose higher

performance with acceptable memory requirement for REs matching. It can be simply

implemented by applying stateful pre-filter and a verification engine. After we separate the *

3

and {min, max} operator with appropriate method, the left substrings of REs can regard as

plain strings. The only difference is that the substrings need to be matched in the order of REs.

In our implementation, we only consider first fragments of every REs at first and consider

entire fragments of every REs after any first fragment matches. However, it is not efficiency

to consider entire fragments of every REs at the same time when the first fragment matched.

It is better to reduce the effect caused by unnecessary fragments that would lower the

performance. The proposed pattern matching system consists of a dynamic pre-filter module

and a verification module. Dynamic pre-filter can only add information of a few fragments to

accelerate the speed of search. It has CPU execution comparison with different methods in

pre-filter module. The simulation result shows that dynamic method has better performance

than the static method. The verification only verifies the possible state machine to save the

time.

In the following section, we have problem definition and related work in chapter 2. In

chapter 3, we describe the proposed methods for our pre-filter design. Then, we show the

simulation result in chapter 4 and analysis our design in chapter 5. Conclusion is in chapter 6

to end the paper.

4

Chapter 2.

Problem definition and related work

2.1 Problem definition

There is a given database contained every significant patterns that derived from

malicious code. We read the significant patterns from database first in order to construct a

pattern matching system that can point out the starting position of significant pattern in the

given file. Our system is consists of pre-filter module and verification module. In verification

module, goto function, failure function, and output function processed as AC’s three functions

do. Besides, fork function is an extra function in verification module which is added to

process the {min, max} operator.

ClamAV is an open source anti-virus, so we can get its database easily. Therefore, in our

paper, we use the same database in ClamAV for our simulation. The type of significant

patterns in ClamAV’s database is simple regular expression. The simple regular expression

consists of plain strings and three operators : *, ?, and {min, max}. We can only consider the

* and {min, max} operators in our design. Because consecutive ? operators can be substituted

for a {min, max} operator with min = max = number of ? operators.

5

2.2 Pre-filter

The information of significant patterns is stored in membership query modules (MQs). In

pre-filter module, a window is used to scan the file and a block at the end of window is used

to compare with the information of significant patterns in MQi , 1 ≤ i ≤ W-k+1 , where W is

window size, k is block size and 1 1 1 1

1 2... WP p p p 、 2 2 2 2

1 2 ... WP p p p … 1 2 ...n n n n

WP p p p are first

W-byte of first string of each significant patterns where n is the number of significant patterns.

Window size is chosen as the smallest length of first string of significant patterns because it

will ignore some information of shorter patterns if window size is larger than smallest length

of first string of significant patterns. Substrings of significant patterns 1 1 2 ...j j j j

kP p p p 、

2 2 3 1...j j j j

kP p p p  … 1 1...j j j j

i i i i kP p p p   … 1 1 2...
j j j j

W k W k W k WP p p p      are stored in MQi for

comparison, 1≤ i≤ W-k+1, 1 ≤ j ≤ n. MQi reports 1 iff the substring in block is the same as

one of substrings in MQi and reports 0, otherwise. According to the report of MQi, we can

shift the window to appropriate position. It is complicated to compare with all substrings in

MQi step by step. Hence, HASH table is used to store the report of MQi previously.

2.2.1 HASH function

The report of MQi can be calculated in advanced and store the report in hash table by

using hash function HASH. The thh bit of MQi reports 1 iff substring 1 1...j j j j

i i i i kP p p p  

exists such that h = ()j

iHASH P , otherwise reports 0. Fig 1 is a diagram of hash table.

Each MQi is a bit array with size 2
8k

 because the block size is k-byte = 8k-bit, there are 2
8k

possible entries. Hash table is a combination of these bit arrays of MQi. Elements in MQ0

are all 1 for the default value when MQi are empty, where i >0.

6

Fig. 1 Hash table

The advantage of using hash function not only can store the report previously but also

can reduce the size of hash table. The number of input bits can be reduced by hash function

easily. For instance, if input bits = 3 bytes = 24 bits, we can simply take first 16-bit and last

16-bit XOR to get 16-bit only. Although it would increase the probability of collision, it is

worth saving lots of memory space.

2.2.2 Pre-filter operation

We take an example to show the pre-filter operation. Assume P
1
 = “abcdefghi”, P

2
 =

“uvwxyz” and text file is “aaabcdefff”. The window size W is chosen as the smallest length of

significant patterns, i.e., W=6. Then, all of significant patterns are truncated into the same

length W. For this example, P
1
‘ = “abcdef”, P

2
‘ = “uvwxyz”. Block exists at the end of

window and the substrings in block will compare to the information in MQi. Therefore, block

size k is chosen to be smaller than W definitely. We assume block size k = 3, there are W-k+1

7

= 4 MQi with different substrings in each. The substrings set of MQ1, MQ2, MQ3 and MQ4 are

{abc, uvw}, {bcd, vwx}, {cde, wxy} and {def, xyz} respectively. Figure 2 shows the

Pre-filter operation.

Fig. 2 Pre-filter operation

 The window with small size starts at the head of file. The content of window is “aaabcd”

and content of block with dash line is “bcd”. Then we process HASH (bcd) to get the report of

MQi. It is obviously that MQ2 has substring ”bcd”, so the report is “10100”. After we get

“10100”, we shift the window by 2. The window with large size is the next position. Again,

the content of window is “abcdef” and content of block with dash line is “def”. Then we

process HASH (def) to get the report of MQi. It is obviously that MQ4 has substring ”def”, so

the report is “10001”. When the MQW-k+1 reports 1, we enter the verification module and find

the virus.

8

2.3 Stateful Pre-filter

In previous section, window of pre-filter shift according to the query report of hash

function. Stateful pre-filter [13] was proposed to enhance the window advancement by

calculating all of previous query reports.

In section 2.2, we mentioned stateless pre-filter. To show the different of stateless

pre-filter and stateful pre-filter, we take an example to illustrate the difference. For stateless

pre-filter, if the report of round 1 is “11010”, then the window would shift by 1 and if the

report of round 2 is “10110”, then the window would shift by 1 again. For stateful pre-filter,

if the same reports happened, it can have better window advancement than stateless

pre-filter. For stateful pre-filter, the report of round 1 “11010” not only informs the window

about the shift but also excludes the impossible starting position of significant patterns. In

other words, the report “11010” shows that it is impossible to find the significant patterns

after window shift by 2. Therefore, after the window shift by 1 in round 1, it is unnecessary

to shift by 2-1=1 in round 2. It can be implemented by using a bitmap to memorize the state

of pre-filter by calculating all of previous query reports. The bitmap shifts the bit as window

shift and AND the next query report to exclude the impossible position. The bitmap is

named Master Bitmap (MB) and acts as state of pre-filter. Fig. 3 shows the architecture of

stateful pre-filter. After pick up the right most 1 as shift value, the window and MB’ shift for

next round. Stateful pre-filter is adopted in the following pre-filter module of this paper.

9

Fig. 3 The stateful pre-filter architecture for W = 6 and k = 3.

2.4 Static pre-filter with verification

The method of using static pre-filters and verification are related to our work. The

purpose of its pre-filters is to quickly find out where the suspicious substrings are. The type of

virus is also simple regular expression. Regular expression (RE) is fragmented into substrings

every * operator. Two pre-filters are used in pre-filter module, but only one of them process at

a time. Each of pre-filters is responsible to the viruses of their database. Pre-filter 1 is

responsible to the first string of first fragments of viruses so that the system can only use

pre-filter 1 at beginning in order to save the resource. Because it is unnecessary to find the

second, third or higher order fragment of viruses when there isn’t any first fragment of virus

matched before. Pre-filter 2 is responsible to the first string of every fragment of viruses.

After any first fragment of viruses was found, pre-filter 2 begins processing. The verification

module (verification engine) of this system is an extension of the AC algorithm that verifies

the existence of virus at suspicious position. Several levels are created for fragments of REs

with different order. The static pre-filter and verification are review separately below.

10

2.4.1 Static pre-filter

The pre-filter module is an extension of a bitmap-based stateful design [13]. Fragments

are extracted from significant patterns in database to build two pre-filters. Regular expression

is fragmented into substrings every * operator. Let M denote the maximum number of *

operator in any REs. As a result, there are at most 1M  fragments for each RE. Let iY ,

0 i M  , be the set that contains the thi fragments of all REs in database. All plain strings

only contain exactly one fragment and are included in 0Y . Pre-filter 1 is prepared to detect

first string in 0Y and Pre-filter 2 is prepared to detect first string in 0 1 2 ... MY Y Y Y    .

The first string of fragments means the substring in front of first {min, max} operator if {min,

max} operator exist, otherwise the fragment itself is the first string.

The W1-byte prefix of every pre-filter 1 first string is used to construct Pre-Filter 1 where

m1 is chosen to be the shortest length of the first strings in 0Y . A parameter k1 (≦W1), called

block size, is selected to build membership query modules. There are m1-k1+1 membership

query modules, denoted by 1

1MQ , 1

2MQ , …, and
1 1

1

1W kMQ   . According to the method

mentioned in chapter 2.2, we can calculate the hash table 1 for pre-filter 1.

The parameters for pre-filter 2 are denoted by W2 and k2. Given these two parameters,

there are W2-k2+1 membership query modules, denoted by 2

1MQ , 2

2MQ , …, and
2 2

2

1W kMQ   ,

for pre-filter 2. For proper operation, it is required that k2≦W2. Again, according to the

method mentioned in chapter 2.2, we can calculate the hash table 2 for pre-filter 2.

For the example 1RE abc , 2 * *RE ab cd e , 3 * *RE bc ad e , 4 *RE pqr vs , and

11

5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y , the sets of pre-filter 1 and pre-filter 2 first string of

fragments are { , , , , }abc ab bc pqr pq and { , , , , , , , , , , }abc ab bc pqr pq cd ad vs vw e x ,

respectively. The parameter values can be chosen as W1=2, W2=1, and k1=k2=1. Given the

chosen parameter values, the strings { , , }ab bc pq are used to construct pre-filter 1 and the

strings { , b, p, , , , }a c v e x are used to construct pre-filter 2.

2.4.2 Verification

The verification module is a modification of the generalized AC algorithm [15]. To

process the simple REs, the generalized AC algorithm has a fork function for a {min, max}

operator. The verification module also uses a fork function to handle the {min, max} operator

as generalized AC dose. The difference is that in verification module, multiple goto graphs

are constructed for * operator. So that the information of processing pattern matching is

remembered by traversing different goto graphs. There are four functions: goto, failure,

output and fork that are described below.

The goto function

A regular expression is fragmented into substrings every * operator. If M denote the

maximum number of * operators in any RE, there are 1M  G graphs for each iY . The G

graph constructed for iY is called the Level i G graph and denoted by i
G . Similarly, if

N denote the number of {min, max} operators in iY , there are N T graphs in iY . T

graphs constructed for iY are called the Level i T graphs.

A goto graph, denoted by 0
G , is constructed with algorithm AC1 [4] for all of the first

strings in 0Y . Note that self-loop is removed from starting state, is called 0
G graph. More

12

goto graphs are constructed for the remains parts in
0Y , are called Level 0 T graphs. The

difference is that self-loop exists at starting state. Goto graphs of other levels can be

constructed similarly. Figure 4 shows the goto graphs of previous example.

Fig. 4 Example of Goto graphs for 1RE abc , 2 * *RE ab cd e , 3 * *RE bc ad e ,

4 *RE pqr vs , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y .

The failure function

Consider every G graphs, we assign ()f P END for every state P on G graphs.

Because pre-filters are used previously, failure function is unnecessary in every G graph.

However, the T graphs need failure function because the {min, max} operator would not

fail if counter  max. The failure function of states on T graphs is computed with algorithm

AC2 [4]. Table 1(a) shows the failure function for the example used in Fig. 4. In this table, the

state number of the (,)thi j entry is 10*i j and value 0 for ()f P represents the END .

The symbol ”-” means failure never occurs in this state.

13

()f R 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 -

1 9 9 10 9 - 14 14 0 0 0

2 0 0 0 0 0 0 0 0 - 28

(a)

State S 3 23 26 29

()output S
1RE 4RE 2RE , 3RE 5RE

(b)

Table 1(a) The failure function and (b) the output function for the example used in Fig. 4.

The output function

Consider G and T graphs, we assign ()output P  for every state P on G and

T graphs. If state P is the end of some iR in one of REs, then state P is a final state and

() () { }output P output P i  . On goto graphs, a final state is represented by a double circle.

Table 1(b) shows the final states and the matched patterns for the example used in Fig. 4. The

output of other state is empty. Similar to the information of final states, if state R is the end

of some fragments, then state R is a fragment-end state and

() () { }Leveloutput R Leveloutput R i  .

The fork function

The fork function is adopted to solve the {min, max} operator. Consider every G graph,

we assign ()F P  for every state P on G graphs. If state P is the first string of

some fragments with {min, max} operator, then ()F P stores min min , max max , and

_forked state = the start state of the T graph constructed with the second string. Here,

min and max are, respectively, the minimum and maximum values of the {min, max}

14

operator which separates the first and the second strings in a same fragment. To complete a

fragment, there would be some T graphs that have created one after another to solve all of

{min, max} operators in a fragment. For convenience, a state with non-empty fork function is

called a fork state.

15

Chapter 3.

Proposed Algorithm

In related work, we introduce a method consists of a static pre-filter module and a

verification module. It is inefficient that pre-filter 2 of static pre-filter contains first string of

all fragments in 0 1 2 ... MY Y Y Y    once first fragment of any regular expressions

matched. Therefore, we figure out dynamic pre-filter method to solve this problem and

achieve higher performance. Before first fragment of any REs matched, we only use pre-filter

1 to save the resource. The hash table of pre-filter 1 is a little different in dynamic method and

is described below.

3.1 Hash tables of dynamic pre-filter

The length of REs in Fig. 4 is short, so we use another example in this chapter, RE1 =

abcdefghi*12345 and RE2 = uvwxyz*9876543210. In static pre-filter method, the sets of

pre-filter 1 and pre-filter 2 first string of fragments are {abcdefghi, uvwxyz} and {abcdefghi,

uvwxyz, 12345, 9876543210}, respectively. The parameter values can be chosen as W1=6,

W2=5, and k=k1=k2=3. Given the chosen parameter values, the strings {abcdef, uvwxyz} are

used to construct hash table 1 of pre-filter 1 and the strings {abcde, uvwxy, 12345, 98765} are

used to construct hash table 2 of pre-filter 2. Once any fragments in pre-filter 1 matched,

pre-filter 2 is being substitute for pre-filter 1 in pre-filter module. However it’s inefficiency to

contain first string of all fragments at the same time in pre-filter 2 once the first fragment of

any REs matched. Hence, we proposed the idea of dynamic pre-filter that can only add

information of the next fragment according to what fragment matched before. For this

16

example, if “abcedfghi” matched, strings in hash table 2 of pre-filter 2 are only {abcde,

uvwxy, 12345} that is less than static pre-filter method. Fig 5 is the comparison of hash table

with static and dynamic methods, where H() represents the hash function.

Fig. 5 Comparison of hash table with static and dynamic methods for example RE1 =

abcdefghi*12345 and RE2 = uvwxyz*9876543210.

As mentioned in related work, we stored the result of membership query modules in hash

table. Therefore, we need to add information of the next fragment into hash table. However,

the process of adding information needs to cut the m2-byte prefix of the next fragment and

stored the information into hash table W2-k2+1 times. Both processes are burdensome.

Fortunately, we can store the information into hash table first and only stored the hash value

(index of table) at the state in verification module where previous fragment ends. Which result

stored in hash table is valuable is the only thing we need to know. Hence, we use the first bit

of hash table as our controlling bit. The first bit reports 1 when the result is valuable and

reports 0 otherwise.

17

Fig. 6 Procedure of updating hash table using dynamic pre-filter.

 Fig. 6 shows the procedure of updating hash table using dynamic pre-filter. In

verification module, it is a state machine. Once we find the previous fragment of any REs, we

must enter a fragment-end state with hash values in it. We use these hash values as index of

hash table to update the information of the next fragment. The work of updating the hash table

is simply OR the first bit.

Because the hash table 2 of static pre-filter contains all remaining fragments, the first bit

of query result is always 1. It is obviously that dynamic pre-filter can decrease the burden of

pre-filter 2. Although the information of fragments already exist in pre-filter 2, it is valuable

only in the situation that the first bit of query report is 1. In other words, if first bit of query

report is 0, the window of pre-filter 2 can shift maximum shift W2-k2+1 which is faster than

static pre-filter does.

18

3.2 Hash functions

Collision may be happened if two different substrings get the same hash value. To avoid

the effect of collision, we use two hash functions in our pre-filter module, hash function A

and hash function B.

For example, if substrings “bcd”、“uvw” get the same hash value in hash function A, and

substrings “cde”、“uvw” get the same hash value in hash function B. If we only use hash

function A, HA(uvw) has information of two substrings that would decrease the shift of

window. If two hash functions are used, we can AND the reports of two hash functions to get

rid of the effect of collision. Fig. 7 is the diagram of two hash functions.

Fig. 7 The diagram of two hash functions.

19

3.3 Operation of dynamic pre-filter

 The size of pre-filter 1 and pre-filter 2 would not be the same so we need two hash tables

shown in Fig. 8. After first fragment of any REs is matched, we used hash table 2 for

pre-filter 2 and add information of the next fragment using dynamic pre-filter method. The

first bit is also used as controlling bit. The information of first strings of first fragments is also

in hash table 2 and the controlling bit is initialized to 1. The difference is that the first strings

of first fragments are truncated into length W2. Hence, the reports of first strings of first

fragments in hash table 2 are equal to the reports in hash table 1 shift right W1-W2 position.

Fig. 8 Two hash tables for different size of window

The main idea of dynamic pre-filter is not only decreasing the effect of other fragments

that is unnecessary but also shifting the maximum position with large window size. However,

if we change the table once we encounter the first fragment of virus, the performance would

20

become worse tempestuously. Fortunately, we can use the length of next fragment which is

going to be added in the hash table to distinguish whether we should change the table or not.

 In our example, the large window size is 6, the small window size is 5 and block size is 3.

According to the stateful pre-filter, the maximum shift of large window size is 4 and the

maximum shift of small window size is 3. If the length of next fragment which is going to be

added in the hash table is greater than 6, substitution of hash table is unnecessary. In other

word, we can still shift the maximum shift with large window size. It can be implemented by

adding the information of next fragment step by step which is the characteristic of dynamic

pre-filter. If the length of next fragment which is going to be added in the hash table is smaller

than 6, we use the hash table 2 of pre-filter 2 in pre-filter module.

 There are two hash tables for two pre-filters and two hash functions for each pre-filter to

decrease the effect of collision, so there are totally four hash tables to build. In dynamic

method, we can calculate the first strings of first fragments and enable the first controlling bit.

Also, we need to calculate the first strings of other fragments whose length are greater than or

equal to W1 in advanced with controlling bit = 0. Once we need to add the fragment whose

first string is greater than or equal to W1, we need to update the controlling bit of both hash

table 1 and hash table 2. If the length of first string of the next fragment is smaller than W1,

pre-filter module needs to change from hash table 1 to hash table 2, so we need to update both

hash tables. The controlling bits of other entries that is never used are initialized with zero.

21

Chapter 4.

Simulation

4.1 Performance comparisons between static pre-filter and

dynamic pre-filter

In this section, we compare the performance of our proposed signature matching system

with static and dynamic methods in terms of throughput performances. Programs are coded in

C++ and the experiments are conducted on a PC with an Intel Core2 Quad CPU operated at

2.83GHz with 4.00GB of RAM.

As mentioned in problem definition of chapter 2, we use the same database as ClamAV

does. There are 30008 simple regular expressions. 1019 REs of them are REs with * operator

and 407 REs of them are REs with {min, max} operator. In database, the maximum number

of * operators in one simple RE is five which means there are six levels created for

verification module. The maximum number of max and minimum number of min are 122 and

1 respectively. The minimum length of first string of level 0 is 10 which is also the window

size of pre-filter 1. The window size of pre-filter 2 is 8. The block size is 4 and the size of

hash table is 2
20

*1byte. We use two different hash functions and AND their query reports to

avoid the false positive collision. One is to pick up the right 20 bits and left 20 bits XOR, the

other is to pick up the right 20 bit only as reference of hash table.

22

We use pre-filter module to find the suspicious position. Figure 9 shows the comparison

of CPU execution time for randomly generated files of various sizes with a virus in it. It can

be seen that the CPU execution time is proportional to file size. The speed of dynamic

pre-filter is about 32 % faster than the speed of static pre-filter. Therefore, dynamic pre-filter

is better than static pre-filter.

Fig. 9 Performances comparison of static and dynamic methods with a virus inserted in the

file.

4.2 Time comparison

In this section, we compare the time in pre-filter module and in verification module. We

do not take the time of reading the file into consideration because whatever algorithms need

23

to read the file first. Saving the time of reading the file may be the other topic that is out of

our research.

4.2.1 Pre-filter module

 The procedure in pre-filter module is as following. First, get the substrings from block.

Second, put the substrings into hash function to get the report in hash table and AND with the

master bitmap which acts as the state of pre-filter. Final, if MQW-k+1 reports 1, then enters the

verification module to verify, otherwise, shift the window according to the master bitmap. In

above procedure, numbers of shift and usage amount of hash function are two major

components that affect the time in pre-filter module the most. Fig. 10 shows the performance

comparison of static and dynamic methods in pre-filter module only.

Fig. 10 Performances comparison of static and dynamic methods in pre-filter module with a

virus inserted in the file.

24

Table 2 shows the comparisons of numbers of shift between static and dynamic methods.

The dynamic pre-filter is better than static pre-filter because dynamic pre-filter can not only

decrease the effect of other fragments that is unnecessary but also shift the maximum shift

with large window size that lower the numbers of shift.

 1MB 10MB 100MB 500MB 1GB

Static 209,889 2,098,673 20,986,607 104,933,008 214,902,796

Dynamic 150,008 1,499,769 14,997,607 74,988,008 153,575,435

Table 2 Comparisons of numbers of shift in pre-filter module between static and dynamic

methods.

4.2.2 Verification module

Fig. 11 shows the performance comparison of static and dynamic methods in verification

module only. It is obviously that CPU execution time in pre-filter module is the major part of

search time, because our hash table is large enough to decrease the verification count. If hash

table is small, the effect of collision increases. Hence, the probability of MQW-k+1=1 increases

and verification count increases.

25

Fig. 11 Performances comparison of static and dynamic methods in verification module

with a virus inserted in the file.

Table 3 shows the comparisons of verification count between all methods mentioned in

chapter 3. The method using dynamic pre-filter have the fewer verification counts because

dynamic pre-filter can decrease the effect of other fragments that is unnecessary. Therefore,

the window of dynamic pre-filter would not stop for the fragments that are excluded from

dynamic pre-filter. For example, some query reports whose MQW-k+1 is 1 but first bit is 0 are

excluded. The result of smaller verification count can save the time.

 1MB 10MB 100MB 500MB 1GB

Static 91 663 6,604 33,004 67,586

Dynamic 70 522 5,203 26,003 53,251

Table 3 Comparisons of verification count between static and dynamic methods.

26

 The method of using dynamic pre-filter needs update in verification module. When we

find a fragment, we enter a state. There are W-k+1 hash values at this state. We update the

hash table according to the hash value to add the information of next fragment into the

dynamic pre-filter. Fortunately, the time of update is about 180ms/per 10^6 hash function

which is less than the time we enhance.

4.3 Memory requirement

Dynamic Pre-filter needs update, so hash values are stored at corresponding states as

extra memory compared with static method. In verification, it also needs some extra memory

to store the index of REs to get the length of next fragment and maximum shift value or extra

hash tables. Therefore, we list the memory usage of different parts as Table 4.

variable size static dynamic purpose

Pre-filter

PreFilter1A 1,048,576

hash_tableA of prefilter1

PreFilter2A 1,048,576

hash_tableA of prefilter2

PreFilter1B 1,048,576

hash_tableB of prefilter1

(avoid collision)

PreFilter2B 1,048,576

hash_tableB of prefilter2

(avoid collision)

verification

State 1,266,653

information of each state

such as type or table index

S_leaf 403,871

155,335
information of leaf state

like ID and table index of hash_table

Hash_value 70,840 X

hash_value of next fragment

Store 652,407

store ID and endposition

during scanning

FSCTable 272,192

 B2Table 61,750

 B3Table 21,510

 B4Table 12,620

 B5Table 7,550

 B256Table 1,010,688

 CompactedFile 2,020,509

all strings of Regular Expression

27

Len 20,380 X

length of next fragment

Total

9,748,339 9,994,894

 extra

246,555

Table 4 List of memory usage in pre-filter and verification module.

It is possible that dynamic method has better performance because of the extra memory

usage. Hence, we have the simulation with the memory usage of static method is greater than

the memory usage of dynamic method. We can decrease the size of hash table to make the

memory usage of dynamic method lower than memory usage of static method. The difference

of memory usage between dynamic and static is less than 256k bytes. Therefore, we decrease

the size of hash table in pre-filter module to 2^19 for dynamic method to have less memory in

dynamic method. The simulation result shows in Fig. 12. The dynamic method is still better.

Fig. 12 Performance comparison of static and dynamic methods with less memory

requirement in dynamic method.

28

Chapter 5.

Analysis

In analysis, we calculate the average window advancement with different number of

fragments in hash table. Although in pre-filter module, we put the information of fragments

into hash table in advanced, it does not work if the controlling bit is disabled. Thus, in

dynamic method, we can regard number of fragments whose controlling bit is enabled as

number of fragments in hash table.

5.1 Average window advancement

Before we calculate average window advancement, we need to define some variables

that will use in the following. Let L be the number of hash functions used in a pre-filter, y

represents number of fragments in hash table and N is the entries of hash table. We AND

every query report from hash tables with different hash functions to get QB, so QB = QB1 &

QB2 & QB3 & …& QBL = qb1qb2qb3…qbW-k+1. The parameter ρ represents the probability

of qbi =1, 1≤ i ≤ W-k+1, and ρ =can be calculated by

ρ = [1-(1-1/N)
y
]

L
 (1)

Markov chain is adopted to analyze the average window advancement. In pre-filter

module master bitmap needs to bitwise-AND with QB and window advances according to the

result of MB&QB. Let MB&QB = mb1mb2…mbW-k+1, then mbW-k+1 is used to determine

whether the system needs to enter verification module or not that is irrelative to window

29

advancement. Therefore, states of Markov chain correspond to the value of mb1mb2…mbW-k,

i.e., there are 2
W-k

 states on the Markov chain.

If Xl be the state after the l
th

 iteration of queries, then state transition probabilities from

state i to state j can be defined as , 1(|)j i l lp P X j X i   that will compute in next section.

Once ,j ip is given, we can calculate the stationary probability distribution Π = (π0, π

1, …,
2 1W k  

) as following equation.

0,0 0, 0,2 1 0 0

,0 , ,2 1

2 1 2 12 1,0 2 1, 2 1,2 1

W k

W k

W k W k
W k W k W k W k

i

j j i i ij

i

p p p

p p p

p p p

 

 

 





 
   





    

     
     
     
     
     
     
     

     

 (2)

Note that summation of probability of every state equals to 1, i.e., π0 + π1 + … +

2 1W k  
=1. Therefore, eq. (2) can turn into the following format.

0,0 0, 0,2 1
0

,0 , ,2 1

2 12 1,0 2 1, 2 1,2 1

1 1 0

1 1 0

01 1

0 11 1 1 0

W k

W k

W kW k W k W k W k

i

j j i j i

i

p p p

p p p

p p p











   





   

     
     
     
     
     
     
          
      

 (3)

In eq. (3), Π can be computed by matrices operation. Let G denote the average

30

window advancement and gi represents the corresponding shift value for every state. Then

LG can be calculated by

2 1

0

W k

L i i

i

G g

 



  (4)

5.2 Derivation of Pj,i

As mentioned above, state transition probabilities , 1(|)j i l lp P X j X i   . Let

1 2 0W k W ki i i i     , 1 2 0W k W kj j j j     and window advancement = g in state i. Let

1 2 0' ' ' 'W k W ki i i i     be the right-shifted master bitmap in state i. Then, there are two cases

discuss below.

In case 1, if g=W-k+1, then i=0
W-k

 and i’=1
W-k

. The state transition probabilities

, (1)x W k x

j ip      , where x is number of 1’s in j. In case 2, if g<W-k+1, then

1

1 10g

W k gi i i 

   and 1' 1g

W k gi i i   . The state transition probabilities , 0j ip  if there

exist r, 0≤r≤W-k-1 such that i’r=0 and jr=1, otherwise, 1 1 2

, (1)
x W k x x

j ip     
  , where x1 is

number of 1’s in j and x2 is number of 0’s in i’.

5.3 Numerical result

We adopt the value of parameters used in chapter 4 to evaluate the average window

advancement. Because the window size is different in two pre-filter, we have W=10 and W=8.

The other parameters are k=4, N=2
20

, L=2 and y is the number of fragments in hash table. Fig.

13 shows the average window advancement with different number of fragments in hash table.

31

Fig. 13 Average window advancement with various number of fragments in hash table with

N=2
20

.

It is obviously that average window advancement is close to the maximum window

advancement. It’s because our hash table is large enough to handle the fragments up to 40000.

Once a first fragment of RE was found, dynamic pre-filter can still perform the average

window advancement with the better situation W=10 if length of the next fragment is larger

than or equal to 10.

If hash table is full of fragments, the average window advancement decrease as shown in

Fig. 14. In Fig. 14, we decrease the size of hash table to make it full of fragments. However,

even with the same window size in situation of Fig. 14, number of fragments in hash table of

dynamic method is less than number of fragments in hash table of static method. The average

window advancement is bigger with fewer fragments in hash table. In consequence, dynamic

32

method can perform better average window advancement than static method.

Fig. 14 Average window advancement with various number of fragments in hash table with

N=2
15

.

33

Chapter 6.

Conclusion

In this thesis, we have proposed a pattern matching system that consists of a dynamic

pre-filter module and a verification module for both plain strings and simple REs. The

purpose of dynamic pre-filter module is to quickly find the starting positions of suspicious

substrings which may result in match of some signatures. It is implemented by adding

substrings information step by step to accelerate the speed of search. Moreover, we can still

use window with large size if length of the next fragment is larger than or equal to W1, so the

window can shift more due to the large window size.

We have discussed static and dynamic methods in pre-filter module and have compared

two methods in simulation result in time complexity and memory complexity. Even with less

memory requirement, dynamic pre-filter can perform better. The advantage of dynamic

pre-filter is to decrease the effect of the additional information. As a result, the dynamic

pre-filter achieves high performance in pre-filter module. It is interesting to detect the patterns

in different expressions.

34

References

[1] S. E. Schechter, J. Jung, and A. W. Berger, "Fast detection of scanning worm

infections," 7
th

 International Symposium on Recent Advances in Intrusion Detection

(RAID), French Riviera, September 2004.

[2] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,” TR

CS-74-440, Stanford University, Stanford, California, 1974.

[3] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of

the ACM, Vol. 20, October 1977, pp. 762-772.

[4] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic

search,” Communications of the ACM, Vol. 18, June 1975, pp. 333-340.

[5] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” TR-94-17, 1994.

[6] B Bloom, “Space/time trade-offs in hash coding with allowable errors,” ACM, 13(7):

422–426, May 1970.

[7] A. Broder and M. Mitzenmacher, “Network applications of Bloom filters:a survey,”

Internet Mathematics, vol. 1, no. 4, pp. 485–509.

[8] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,“Deep packet

inspection using parallel Bloom filters,” IEEE Micro, vol. 24, no. 1, pp. 52–61, Jan./Feb.

2004.

[9] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation results of Bloom filters

for string matching,” Field-Programmable Custom Computing Machines, pp. 322–323,

Apr. 2004.

[10] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix matching using

Bloom filters,” IEEE/ACM Transactions on Networking, vol. 14, pp. 397–409, Apr.

2006.

35

[11] N. S. Artan and H. J. Chao, “Multi-packet signature detection using prefix Bloom

filters,” IEEE GLOBECOM, vol. 3, pp. 1811–1816, 2005.

[12] N. S. Artan, K. Sinkar, J. Patel, and H. J. Chao, “Aggregated Bloom filters for intrusion

detection and prevention hardware,” IEEE GLOBECOM, pp. 349–354, Nov. 2007.

[13] T. H. Lee and N. L. Huang, “A Pattern Matching Scheme with High Throughput

Performance and Low Memory Requirement,” IEEE/ACM Transactions on

Networking.

[14] Clam anti virus signature database, www.clamav.net.

[15] T. H. Lee, “Generalized Aho-Corasick algorithm for signature based anti-virus

applications,” IEEE ICCCN 2007.

[16] R. Smith, C. Estan, and S. Jha, “XFA: Fast signature matching with extended

automata,” In IEEE Symposium on Security and Privacy, May 2008.

[17] Snort website http://www.snort.org/.

[18] M. Roesch, “Snort – lightweight intrusion detection for networks,” Proceedings of

LISA’99: 13th Systems Administration Conference, pp.s229–238, Nov. 1999.

http://www.clamav.net/
http://www.snort.org/

101

碩

士

論

文

動
態
過
濾
器
應
用
在
偵
測
病
毒
特
徵
碼
防
毒
軟
體

交
通
大
學

電

信

工

程

研

究

所

碩

士

班

電

機

學

院

王

廣

煜

