LS \

5| 17 A 3 KB

BB 28 T2 3T

| A

hE

| nff

B \5EE8 3R 2 FHRIERRETNTRR
On the Feature Discovery for App Usage

Prediction

MEE . =rlE

RS

2 GE AR

PERE BT _FtH

B \f5EEs IR 2 FHIERRENTER
On the Feature Discovery for App Usage Prediction
WH9e4E « Z5FilE Student : Shou-Chung Li

FEEZYT « & Advisor : Wen-Chih Peng

A Thesis
Submitted to Institute Of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
July 2013

Hsinchu, Taiwan, Republic of China

THERE-HZE_FHEH

A FHoE 2 R 4758 TR

g4 0 3294 hERE R

EEFARRAR S DI PR DRG0 T IPE B R AP
PHEARB? o hFhe P o AP BT - B A 5K Ak E L IRR
i T BF T AR Y R B R hiR2E o ip R R AR
SIRIEZE T e B RSB B AR AR TR e R E
LR SR R e TE NN e 3 1 RS- A o) R IS T et e g A Ll
g IR fR A il SN B AR PR TR G B A G Bk
(EF) > 2 & A2 fd % B Chdd 3k cilice > L5 "B [F 4
Veid QIR S E ’ﬁ&—f@’* BAEETEFORYELRET B (FHAUG)

Al @ da g7 e TAA UGB, 2N a g # e 425 2 B enif
fhod 3% 2T N4 A IR SR 7L AP B
- BB A T PP ACGE R B o AR A PR R R KR
B (MDL) - ¥ E# 7 & > =~ ok) 7 2" iy TR end i - 3 4
PRCGEHT R 207 A PR PR P eIl RATIC R s R o
Bofs o AR KNN & ST RIpRIR® F25 chig * o 2 &3 e

FAPRY KITMAFERF AP ZREFTEERA CHACERFT

50 R P 2, [, 2.
NP F= i i T A AL

AR R AP R X A S AR AT R endd

On the Feature Discovery for App Usage Prediction

Student : Shou-Chung Li Advisor : Dr. Wen-Chih Peng

Institute Of Computer Science and Engineering,
National Chiao Tung University

ABSTRACT

With the increasing number of mobile Apps developed, they are now
closely integrated into daily life. In this paper, we develop a framework to
predict mobile Apps that are most likely to be used regarding the current
device status of a smartphone..Such an-Apps.usage prediction framework
Is a crucial prerequisite for fast App launching, intelligent user experience,
and power management of smartphones. By analyzing real App usage log
data, we discover two Kinds of features: The Explicit Feature (EF) from
sensing readings of built-in sensors, and the Implicit Feature (IF) from
App usage relations. The. IF. feature is-derived by constructing the
proposed App Usage Graph (abbreviated as AUG) that models App usage
transitions. In light of AUG, we are able to discover usage relations
among Apps. Since users may have different usage behaviors on their
smartphones, we further propose one personalized feature selection
algorithm. We explore minimum description length (MDL) from the
training data and select those features which need less length to describe
the training data. The personalized feature selection can successfully
reduce the log size and the prediction time. Finally, we adopt the kNN
classification model to predict Apps usage. Note that through the features
selected by the proposed personalized feature selection algorithm, we

only need to keep these features, which in turn reduce the prediction time

and avoid the curse of dimensionality when using the KNN classifier. We
conduct a comprehensive experimental study based on a real mobile App
usage dataset. The results demonstrate the effectiveness of the proposed

framework and show the predictive capability for App usage prediction.

3

]

F

F_&

T Areha R AR TS L E e p L HIT L B g

doimm LT S fFAFET R T i r‘uﬁ&ipﬂhﬁgﬂ IF1en
AR FIRF 5 FIERE AT e FIh Y EE A 0 o BRAKTG F
FARREFH RUEAT U AGMLEIEDERERT B R -

BPABROR M ERRE AL EF Lo A E g
LT AR T A SRR VER > 2 P T B B D
oo BALGEEY FEFER XFHER DG AANTFY

rs

g

3;

A2 chz S 7 B2 RSP £ Dimension 7% 4 fREY e F1 G GG
s R B m{ﬂ'ff T REAGY L RER 55: g 8 /15'”
MR E S BN A ST IR L - X T L
FE-fdh - @ R

ﬁﬁw%m”’?%z@%k S EBLE BN Rk T 2 R
L~ R B E D 5F S § ﬂ‘iﬁié*{p’?,??m%ﬁ*‘%&ﬂ
faehd fITR 0 R FHK ff_?% S8 s & Sl B 0 IR /%
Pef LS EaT L A BREAR T e

B#Barry £ & ~ dpdp ¥ 01 Fe i 2 RE G ohdg A g

sk A o PO g VIR R PR L VIR R o 4 RBIAF R HRakE v B
mM~mé@k§m%f’%%£W%ﬂiﬁéﬁﬁ0?%3”%°
FOE S S ThE B S B ARGE 2F e s s T BRI R 2 A Lo
/A T SRy R R AR e o

3
@ ™

Fob, ABFURBHEA E KRR e K 0§ § 4545 W
A e A A BAPOMR LR P AR B RS
GESLE N AN R & LN T e S S
ERCECD

Bl o JNL Y PR AR E ch R

Contents

1
2
3
3.1
3.2
4
5
5.1
5.2
6

6.1
6.2
6.3

Introduction

Related Works

Explicit and Implicit Features

Explicit Feature Collection . ;o o 0 0 o Sa o 0 0oL
Implicit Feature Extractionwes oo o0 oo o o0 o0 0L Lo
3.2.1 Apps Usage Graph (AUG) ..« o oo o
3.2.2 Implicit Features for Training /i

3.2.3 Implicit Features for Testing.. . ..oo

Personalized Feature Selection

Nearest-Neighbor Classifier

Weighted Voting

Nearest Neighbor Classification Algorithm

Experimental study

Dataset Description
Performance Metricso
Experimental Results
6.3.1 Overall Performance

6.3.2 Impact of Features

vi

o © N

11
12

14

17
18
18

6.3.3 Impact of Personalized Feature Selection 24

6.3.4 Comparison of Different Feature Selection Methods 25

6.4 Comparison of Different Usage Behavior 27
6.4.1 Impact of the Number of Installed Apps 28
6.4.2 Impact of the Usage Count 30
6.4.3 Impact of the Entropy of the Apps Usage 30

6.5 Impact of Different Parameters 31
6.5.1 Number of Iterations for Implicit Feature Extraction 31
6.5.2 Minimum Probability for Identifying Usage Sessions 32
6.5.3 Parameters for kNN Classification 32
6.5.4 Parameters for kNN Voting Function 34

7 Conclusion 35

vii

List of Figures

1.1

3.1

3.2
3.3
3.4

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Overview of kNN-based App Prediction framework. 3

Varied recalls of predicting Apps usage via different types of sensors for different

USETS. « o v v e e e e e e e 8
The PDF of the duration of two consecutive App launches. 10
An example of the Apps Usage Graph (AUG). ~ .« 11
Steps of obtaining the dmplicit- feature of Apps. in-the training case, --- —

Appr 5 Apps 22 Appi 2 Appse e S 12

An example of feature selection where the red data points are correctly predicted. 15

An example of nearest neighors of an instance 17
Impact of the number of prediction, k. 22
Impact of top-k frequency.o 23
Impact of Features. 24
Comparison of Different Feature Selection Methods 26
Impact of the number of Apps. 27
Impact of the usage count. 28
Impact of the App using rate. 29
Impact of the entropy of Apps. 31
Impact of training length. 0oL 33

viil

List of Tables

3.1

6.1
6.2
6.3
6.4

6.5
6.6

Hardware sensors for the explicit feature.

The storage consumption and accuracy under varied data coverage p.
The execution time of KAP with and without personalized feature selection.
The recall and nDCG values under varied numbers of iterations.
The recall and nDCG values under varied minimmum probability for session
identification.l euteamtlia P
The recall and nDCG values under varied number of neighbors for kNN.

The recall and nDCG values under varied A for recency factor.

X

Chapter 1

Introduction

With the increasing number of smartphones; mobile applications (Apps) have been developed
rapidly to satisfy users’ needs [28, 44 23, 26]. Users can easily download and install Apps on
their smartphones to facilitate their daily-lives. . For.example, users use their smartphones
for Web browsing, shopping and socializing [17, 3]. By analyzing the collected real Apps
usage log data, the average number of Apps in a user’s smartphone is around 56. For some
users, the number of Apps is up to 150. As many Apps are installed on a smartphone, users
need to spend more time swiping screens and finding the Apps they want to use. From our
observation, each user has on average 40 launches per day. In addition, the launch delay of
Apps becomes longer as their functionality becomes more complicated. In [27], the authors
investigated the launch delay of Apps. Even simple Apps (e.g., weather report) need 10
seconds, while complicated Apps (e.g., games) need more than 20 seconds to reach a playable
state. Although some Apps could load stale content first and fetch new data simultaneously,
they still need several seconds to complete loading.

To ease the inconvenience of searching for Apps [14, 24] and to reduce the delay in launching
Apps [27], one possible way is to predict which Apps will be used before the user actually
needs them. Although both the iOS and Android systems list the most recently used (MRU)
Apps to help users relaunch Apps, this method only works for those Apps which would be

immediately relaunched within a short period. Another common method is to predict the

most frequently used (MFU) Apps. However, when a user has a lot of frequently used Apps,
the MFU method has very poor accuracy. In our experiments, these two methods are the
baseline methods for comparison.

Recently, some research works have addressed the Apps usage prediction problems [27,
14, 24]. In [14], a temporal profile is built to represent the usage history of an App. The
temporal profile records the usage time and usage period of the App. Then, when a query
time is given, the usage probability of each App could be calculated through comparing the
difference between the temporal profile and the query time. However, since they only consider
the periodicity feature of Apps, some Apps with no significant periods cannot be predicted by
their temporal profiles. In [27], the authors adopted three features to predict Apps usage: time,
location, and used Apps. Based on those three features, they designed and built a system to
remedy slow App launches. However, they always use these three features to predict different
users’ usage, which is impractical as users-could have different usage behavior. For example,
the location information could beless useful for those users who have lower mobility. We claim
that the features which are able to accurately predict Apps.usage are different for different
users and different Apps. The authors in [24] collected 37 features from accelerometer, Wi-
Fi signal strength, battery level, etc., and proposed a Naive Bayes classification method to
predict Apps usage. However, a Naive Bayes classification method needs sufficient training
data to calculate the conditional probability, which does not always hold. Therefore, the
system would fail to predict Apps if there are not exactly the same instances existing in the
training dataset. In addition, they still apply all the same features to each user, instead of
selecting personalized features for different users with different usage behaviors.

In this chapter, we adopt the concept of minimum description length (MDL) to select
personalized features for different users and propose a kNN-based App Prediction framework,
called KAP, to predict Apps usage. Once we distinguish the useful and useless features, only
the useful features need to be collected. Therefore, the size of the log data could be reduced.
The overall framework is shown in Figure 1.1. KAP investigates features from both explicit

and implicit aspects. The explicit feature is a set of sensor readings from built-in hardware

Explicit Feature

Personalized

Hardware
Sensors
Selection

Feature
Apps .
Usage Log Implicit Feature
A
kNN
Classifier

AUG Graph

Figure 1.1: Overview of kNN-based App Prediction framework.

sensors, such as GPS, time, accelerometers, etc. On the other hand, the implicit feature
is referred to as the correlations of Apps usage. To capture these correlations, the implicit
feature is represented as the transition probability among Apps.

For the explicit feature, we focus on three types of hardware sensors: 1) device sensors,
such as free space, free ram, and battery level, 2) environmental sensors, such as time, GSM
signal, and Wi-Fi signal, and 3) personal sensors: acceleration, speed, heading, and location.
We claim that the usage of different_ Apps-is related to different types of sensors. Obviously,
the advantages of selecting sensors for the explicit feature is that it reduces the effect of
noisy data and also saves power and storage consumption forlogging data and performing the
prediction.

For the implicit feature, we calculate the transition probability for each App. However,
the previous works [27, 24] only take the usage order into account, and not the time duration
between Apps. We claim that the length between Apps usage means different things. For
example, users may take pictures via a camera App and upload those pictures to Facebook.
However, some users may upload pictures immediately, while others would upload them when
they have a Wi-Fi connection. Therefore, the time duration between camera and Facebook
use depends on different users and different usage behaviors. To model the usage relation
among Apps, an Apps Usage Graph (AUG), which is a weighted directed graph, is proposed.
The weight on each edge is formulated as an exponential distribution to describe the historical
usage durations. Based on AUG, the implicit feature of each training instance is derived by
traversing the AUG. Consequently, the implicit feature of each testing case is derived by an

iterative refinement process.

With both explicit and implicit features, KAP adopts a kNN classification model to predict
Apps usage which is represented as class labels. In the experimental study, the proposed KAP
framework outperforms both baseline methods and achieves accuracy of 95%. We also show
that the personalized sensor selection for the explicit feature is efficient and effective. In
addition, the implicit feature is useful for improving the prediction accuracy of KAP.

The major contributions of this research work are summarized as follows.

e We address the problem of Apps usage prediction by discovering different feature sets
to fulfill different users’ Apps usage behavior, and propose the concept of explicit and

implicit features for Apps usage prediction.

e We estimate the distribution of the transition probability among Apps and design an
Apps Usage Graph (AUG) to'model both Apps-usage order and transition intervals.
Two algorithms are proposed to extract the implicit features from the AUG graph for

training and testing purposes respectively.

e We propose a personalized feature selection algorithm.in which one could explore MDL
to determine a personalized set of features while still guaranteeing the accuracy of the

predictions.

e A comprehensive performance evaluation is conducted on real datasets, and our proposed

framework outperforms the state-of-the-art methods [24].

The rest of this chapter is organized as follows. Chapter 2 investigates the related works
which discuss the conventional prediction problem and Apps usage prediction. Chapter 3
introduces the explicit and implicit features. Chapter 4 presents the mechanism of personalized
feature selection. Chapter ?? conducts extensive and comprehensive experiments. Chapter 4

depicts the classification of data instances. Finally, this paper is concluded with Chapter 7.

Chapter 2

Related Works

To the best of our knowledge, the prediction problem of Apps usage in this chapter is quite
different from the conventional works. We focus on not.only analysing usage history to model
users’ behavior, but on personalizing varied types.of features including hardware and software
sensors attached to smartphones. The proposed algorithm selects different features for dif-
ferent users to satisfy their usage-behavior. Although there have been many research works
solving the prediction problem in different domains, such as music items or playlist predic-
tion [2], dynamic preference prediction [15, 12}, location prediction [13, 22, 19], social links
prediction [5, 16], and so on, the prediction methods are only based on analysing the usage
history. In [11], the author selected features from multiple data streams, but the goal is to
solve the communication problem in a distributed system.

Currently, only a few studies discuss mobile Apps usage prediction. Although the authors
in [18] adopted location and time information to improve the accuracy of Apps usage predic-
tion, the total number of Apps is only 15. Concurrently, in [8], the authors stated that the
prediction accuracy could achieve 98.9%, but they still only focus on predicting 9 Apps from
a set of 15. In [27], the authors solved the prediction problem through multiple features from
1) location, 2) temporal burst, and 3) trigger /follower relation. However, they did not analyze
the importance of each feature. Therefore, for different users, they always use the same three

features to predict their Apps usage. In [24], the authors investigated all possible sensors

attached to a smartphone and adopted a Naive Bayes classification to predict the Apps usage.
However, collecting all possible sensors is inefficient and impractical. Moreover, the useful
sensors for different users could vary according to users’ usage behavior. We claim that for
different users, we need to use different sets of features to predict their usage. In this chapter,
we collect only the subset of all features which are personalized for different users.

This chapter is the first research work which discusses how to select suitable sensors and
features for different users to predict their Apps usage. Through the personalized feature se-
lection, we could perform more accurate predictions for varied types of usage bahavior, reduce
the dimensionality of the feature space, and further save energy and storage consumption. In
addition, the proposed KAP framework derives the implicit feature by modelling the usage

transition among Apps.

Chapter 3

Explicit and Implicit Features

In this chapter, we separate the features into two main categories: the explicit feature and
the implicit feature. The explicit feature represents the sensor readings which are explicitly

readable and observable. The implicit feature is the Apps usage relations.

3.1 Explicit Feature Collection

Table 3.1 shows the hardware sensors we use for the explicit feature. As different models of
smartphones could have different sets of hardware sensors, we only list the most common ones
whose readings are easy to record. It is totally free to add or remove any hardware sensors
here.

To show the prediction ability of different types of mobile sensors, we randomly select
two users from the collected dataset and perform kNN classification via the three types of
sensors respectively to predict their Apps usage. Figure 3.1 shows the prediction recall of
"Messenger”, ”Contacts”, and ”Browser” for the two users. As can be seen in Figure 3.1,
personal sensors would be a good explicit feature for predicting user;’s Apps usage, while
environmental sensors are good for usery. The reason is that users probably needs a Wi-Fi

signal to access the Internet.

Table 3.1: Hardware sensors for the explicit feature.
Sensors Contextual Information

Longitude
Latitude
Altitude
Location Cluster
Hour of day
Day of week
Battery Level

Location

Time

pattery Charging status

Avg. and std. dev. of {x, y, z}
Accelerometer Acceleration changes

speed

Heading

Wi-Fi Signal. -~ Received signal
GSM Signal Signal Strength
Free space of each drive

System
Free RAM
1 1
08 |-] S 08 |- E
= 06 g 5 06 g
(s} (s}
k7 k7
o 04 E 14 0.4 -
02 g 02 | i
0 %u e [N e N 0 L NN N
Messenger Contacts Browser Messenger Contacts Browser
Application Apllication
Device EXX= Personal 7:2% Device EXXX Personal 77277%
Environmental ©222270 Environmental £2I2213
(a) Usery (b) Usersy

Figure 3.1: Varied recalls of predicting Apps usage via different types of sensors for different
users.

3.2 Implicit Feature Extraction

The implicit feature formulates the usage transitions among Apps in a usage session. As men-
tioned in [27], users use a series of Apps, called a usage session, to complete a specific task. For
example, one user could use ”Maps” when travelling to a sightseeing spot, then use camera to
take photos, and upload those photos to Facebook. Thus, the series of using ”Maps”, ” Cam-
era” and ”Facebook” is called a usage session, denoted as ”Map” 9 Camera” 227 F acebook”,
where d; and J, represent the transition intervals.

The implicit feature of ”Facebook” in this usage session is thus < pyr(d1), por(d1 +
82), prr(00) >, where pyrr(+), por(+), and prp(-) are probability models which represent the
probability of using ”Maps”, ” Camera” and ”Facebook” respectively before using ” Facebook”
with the transition interval as the randomvariable. Notethat because there is no ” Facebook”
to "Facebook” in this usage session; the-transition interval.is thus set to oo and then the
probability would be 0.

The probability model could“be estimated from a user’s-historical usage trace. In this
section, we introduce an Apps Usage Graph (AUG) which .models the transition probability
among Apps for a single user. For training purposes, the implicit features for the training
usage sessions are derived by traversing the AUG. However, for testing purposes, since we
do not know which is the App to be invoked, the derivation of the implicit feature for the
training usage session cannot be utilized directly. Therefore, an iterative refinement algorithm
is proposed to estimate both the next App and its implicit feature simultaneously. The
following paragraphs will illustrate the details of the AUG construction and the implicit feature

derivation for both the training and testing usage sessions.

3.2.1 Apps Usage Graph (AUG)

For each user, we construct an Apps Usage Graph (AUG) to describe the transition probability
among Apps. An AUG is a directed graph where each node is an App, the direction of

an edge between two nodes represents the usage order, and the weight on each edge is a

0.4
0.35 |
0.3
0.25
0.2
0.15 H
01 |
0.05 |

Iy

0 : bbby it
0 5 10 15 20 25 30
Time(Minute)

T T T T
Transition Interval =—t=—

Probability

Figure 3.2: The PDF of the duration of two consecutive App launches.

probability distribution of the interval between two Apps. Since two consecutive launches
could be viewed as a Poisson arrival process, we can formulate the intervals between two
launches as an exponential distribution. For example, Figure 3.2 shows the probability density
function (PDF) of two consecutive launches which exactly fulfils the exponential distribution
where most transitions (e.g., 0.45%) are within-1 minute.

Here, Equation 3.1 formulates the exponential density function of the launch interval being
in [z,x+41). The parameter o = p(AO) is derived by assigning «#= 0 in Equation 3.1, and could
be calculated by p(0), the real probability derived from the training data. Then, g is solved
by minimizing the difference between the estimated probability p(z) and the real probability
p(i) as shown in Equation 3.2 for every interval i.

Empirically, we do not need to fit every interval when obtaining the exponential model.
For example, in Figure 3.2, only the first 5 intervals already cover more than 75% of the
training data. Therefore, we can iteratively add one interval until the data coverage reaches a

given threshold. We will discuss the impact of the data coverage threshold in the experiments

section.

p(z) = aexpP* (3.1)

= argmin > " 1p(0) exp™ —p(i)| (3.2)

i

10

P14
pA
12 /\1 X)=0.4e-1.1x

x)=0.45 o70-8%

-1.2x

el
_

_>

A
A P23 2
P31 Pra(X)=0.43 €

-0.5x

N>

3
x)=0.1¢e

Figure 3.3: An example of the Apps Usage Graph (AUG).

For example, Figure 3.3 shows an AUG with three Apps. From Figure 3.3, the probability
of two consecutive usages of App; with an interval of 0.3 minutes (i.e., App; 93, Appy) is 0.4,
and App, RN Appo is 0.2. Although AUG only takes two consecutive Apps into account, such

as pi and po3, the probability of pi3, could be calculated by pia X pos.

3.2.2 Implicit Features for Training

For each training case, the implicit features are derived by looking up the AUG. Suppose the
currently used App (i.e., class label) is Appy, the implicit feature is thus, < pi,, pby, ..., Pl >,
where pl, represents the probability of transiting from App; to any random Apps and then to
App;. The probability of p;ff) is defined-as in Equation 3.3 which is the summation of every
probability from App; to App;. Note that we use a superscript, s, to indicate how many Apps
are between App; and App,, and App,,, is the k-th App after App,. Once we derive the implicit
feature in a reverse time order, the sub-problem of estimating p;(nsk_’tk) is already solved. The
calculation of the implicit feature for App; stops when the transition probability falls below a
given threshold, miny,. In our collected dataset, the transition probability falls to 0.1% when

we look backward to more than 5 Apps, which is the default parameter for min,,. Algorithm 1

depicts the derivation of the implicit feature for a training case with App; as its class label.

s ~ ~ s—k
P =T+ i X D) (3.3)
!

For example, suppose we have an AUG as shown in Figure 3.3 and a usage trace as
<o = Appy 5 Apps 25, Appy 95, Apps — Figure 3.4 shows the process of obtaining

the implicit feature of Apps. We first estimate p'l(go) from App, 95, Apps, then p'z(gl) from

11

Algorithm 1: Deriving the implicit feature of App, for training.
Input: App;: a training App
Output: [F;: the implicit feature of App;

foreach App; prior than App; do
foreach App,, between App; and App; do
| IE[i] IE[i] + pim(0m) x IFn[t] ;
end
end
return [F;

: App4 App, Appg
05, 10)_ A
,,,,,,,,,,,, APPiAPPgy Peie®
[} 1) A A 1(0)
0.5 . =
App2—'App10—'5App3 :: P23 -2213;,921 Pi3

””” 177705, 05, My A A WD) A wor T
APD1 AP ~ADD1 *APDg | p1k 011 +p1P 5P 1P'S
I =0+0.09x0.13+0
=0.01

0.01 0.13 0

Figure 3.4: Steps of obtaining the-implicit feature of Apps.in the training case, --- — App, N
0.5 0.5
Apps — Appr — Apps.

Apps 22 Appr 2 Apps, and finally. update pll(g) from /Appl = Apps 2> Appr 2> Apps.
Note that pll(??) is reused for calculating plg(é) , and p'2(31 Jand p'l(??) are reused for updating ;49'1(32).

The implicit feature of Apps is < 0.01,0.13,0 >.

3.2.3 Implicit Features for Testing

Since the App to be predicted for current invocation, App;, is unknown for testing, the deriva-
tion process of implicit features for training does not work. We propose an iterative refinement
algorithm to estimate both App; and its implicit feature, I F}, for testing. Suppose 6; is the
probability of App; = App;, the implicit feature [F}; is calculated as in Equation 3.4 which is
a linear combination of the IF of each App;. In addition, M = [IFL IF],...] represents the
transition matrix among Apps, where IF[, IF¥, ... are column vectors. Then, the value of
0; could be updated by Equation 3.5, which is the probability of staying in App; after one-step

walking along the transition matrix M. We keep updating #; and [F; iteratively, until App,

12

is fixed to one specific App. In our experiments, the iterative refinement process converges in

about 3 iterations. Algorithm 2 depicts the derivation of the implicit feature for testing.

IF, =) 6; xIF (3.4)
Appi
0: = Y IF,m] x M[m][i] (3.5)
Appm

Algorithm 2: Deriving the implicit feature for testing.
Input: ¢: a testing case
Output: [F;: the implicit feature at ¢

while iter < threshold do
foreach 0; do
| IF, < IF,+0; x IF; ;
end
foreach App; prior than timet-do
0; < 0; + I F,Jm] x Mim][i] ;
Normalize 6; ;

end

iter < iter + 1 ;
end

return [F;

For example, suppose the testing case is - - - — App; N Appo 95, Appq 95, App;. First, we

initialize 0; as < 1/3,1/3,1/3 >, which gives equal probability to each App, and the transition

0.49 0.6 0.01
matrix M = 0 0 0.13 |, which is derived by calculating the IF of each App shown
0 0 0

in Equation 3.3. Note that the last row is all zero because there is no Apps transiting to any
other Apps. Then, the implicit feature is < 0.37,0.04,0 > in the first iteration. Next, 6; is
updated to < 0.18,0.22,0.01 >, and normalized as < 0.44,0.54,0.02 > according to one-step
walk in M with the calculated implicit feature as the prior probability. Then, we can obtain

the implicit feature as < 0.53,0.01,0 > in the second iteration.

13

Chapter 4

Personalized Feature Selection

The goal of the personalized feature selectiondis touse as fewer features as possible to guarantee
an acceptable accuracy. Due to the energy and storage'consumption of collecting sensors
readings and Apps transition relations, we-should select useful features for different users in
advance. Furthermore, through the personalized feature selection, we could avoid the curse
of dimensionality on performing.the kNN. We first apply the personalized feature selection
on the training data, and then only the selected features are required to be collected in the
future.

Here, we propose a greedy algorithm to select the best feature iteratively. We adopt
the concept of Minimum Description Length (MDL) [20, 21] to evaluate the goodness of the
features. For different features, we can have varied projections of the training data. We claim
that if a feature needs fewer bits to describe its data distribution, it is good for predicting the
data. Therefore, in each iteration, the feature with the minimum description length is selected.
Then, those data points which are correctly predicted are logically eliminated from the training
data, and the next feature is selected by the same process repeatedly. We define the description
length of the hypothesis, which is shown in Equation 4.1, as the length of representing the
training data. NG(App;) is the number of groups of App;. The description length of Data
given the hypothesis is the total number of miss-classified data which is formulated as in

Equation 4.2.

14

0]
) 0] 0]
00 O [OXOREN®)
o0 O o0 O 00]0]0l00]00)
0—|—|—|—>1 O—I—l_|—>1 g (1
Time Battery Wi-Fi Signal
* L(H)=log,(2+2+1) e L(H)=log,(2+2+1) * L(H)=log,(4+3+1)

* LD|H)=log,(0+1+1+1) « L(D|H)=log,(0+2+1+1) « L(D|H)=log,(0+0+0+1)
* MDL=log, 5+ log, 3 © MDL=log,5+log,4 + MDL=log, 8

Q

(©) @ 0
YL a— At
0 1 0 1
Next round Battery Wi-Fi Signal
* L(H)=log,(1+1) * L(H)=log,(1+1)

* L(D|H)=log,(0+1+1) ¢ L(D|H)=log,(0+0+1)
* MDL=log, 2 +log, 2 * MDL=log, 2

Figure 4.1: An example of feature selection where the red data points are correctly predicted.
L(H) = log, NG(App;) (4.1)

L(D|H) = Z logs(missClassified(App;) + 1) (4.2)

For example, given 8 data points in the training data and three features as shown in
Figure 4.1. In the first round, Time is the feature with minimum description length. Those
data points marked as red are correctly predicted and will be removed. Therefore, in the
second round, only two data points are left, and the feature of Wi-Fi signal is selected due to
its minimum description length.

The selection process stops when a percentage of p of the training data is covered. We also
discuss the impact of p in the experimental section. Note that the number of features affects
the energy and storage consumption and is set according to the capability of the smartphones.
Algorithm 3 depicts the process of personalized feature selection. After the selection, only
the readings of the sensors which are selected will be collected as the explicit feature in the

future. In addition, only the selected Apps will be used to construct AUG.

15

Algorithm 3: Personalized feature selection:

Input: D,: the training data
Output: PF: the personalized.features

Let N, < |D,| ;
while |D.| < pN, do
foreach feature f do
‘ Calculate DLy: description lengthfor feature f ;
end
PF + PF U {argmax DL} ;
f

Let D, be the set of accurately predicted data points ;
Dz <~ Dz - Da 3

end

return PF

16

Chapter 5

Nearest-Neighbor Classifier

Nearest-neighbor classification is part of a more general technique known as instance-based
learning, which uses specific training«dnstances to make predictions without having to maintain
a model derived from data. Instance-based learning algorithms requires a proximity measure
to determine the similarity or distance between instances and a classification functions that
returns the predicted class of test-instance based its proximity to other instances.

A nearest-neighbor classifier represents each App usage trace as a data point in a n-
dimensional space, where n is the number of features. Given a test point t, we compute its
proximity to the rest of data points in the training set, using the proximity measures described
in Equation(5.1). The k-nearest neighbors of a given test point t refer to the k points that

are closest to t.

App Recent Used Time
©Angry Birds 2013/7/26 11:30 PM
e Calendar 2013/7/26 08:30 AM

° Gmail 2013/7/26 11:00 PM
® Alarm 2013/7/26 01:10 AM
° @Unknown 2013/7/26 11:55 PM
o
%@

Figure 5.1: An example of nearest neighors of an instance

17

5.1 Weighted Voting

Once the nearest-neighbor list is obtained, the test point is classified based on the majority

class of its nearest neighbors:

flv) = Z w; x I(v= App;) X r, (5.1)

(xi,App;) €Dy
where v is a class label, App; is the class label for one of nearest neighbors, I(-) is an
indicator function that returns 1 if its argument is true and 0 other wise, w; is a distance

factor to reduce the impact of k : w; = i and r; is a recency factor to reflect the

1
d(x’,x;

tnow —tv
A

1

importance of reusing Apps in a short period : r, = 3

For example, Figure 5.1 illustrates. the 4-nearest neighbors of a test point located at the
center of the circle and the recently-used time table of ‘Apps. In the case where the neigh-
borhood contains three Angry Bird and one Gmail usages and the distances between the test
point and neighbors are 1. Therefore the test point is assigned to the Angry Bird by the

voting scheme formed in Equation(5.1).

5.2 Nearest Neighbor Classification Algorithm

A brief schema of the nearest-neighbor classification method is given in Algorithm ?7. The
algorithm computes the distance between the test point ¢ = (x’, App’) and all the training
data (x, App) € D, to determine its nearest-neighbor list, D, where x’ is the feature vector of
t, App’ is the ground-true, x is a feature vector of a training point, and App is a class label
of a training point. Such computation can be costly if the number of training examples is
large. However, efficient indexing techniques can be found in [10, 9, 25] to reduce the amount

of computation costs to search the nearest neighbors of a test case.

18

Algorithm 4: K-nearest Neighbor Classification Algorithm

Input: t: a test point
Output: L: a top-k prediction list

Compute d(x’,x), the distance between t-and-every example, (x, App) € D,.
Select Dy C D, the set of k closest training data to ¢

L <+ the top-k App list ranked by Equation(5.1)

return L

19

Chapter 6

Experimental study

In this section, we conduct a comprehensive setrof experiments to compare the performance of
the proposed KAP framework with ether existing methods including 1) most frequently used
(MFU) method, 2) most recently used (MRU) method which'is the built-in prediction method
in most mobile OS, such as Android and iOS, 3) SVM, 4) App Naive Bayes [24], 5) Decision
Tree, and 6) AdaBoost. In the following, we first discuss the eollected dataset, then introduce

the metrics employed to evaluate the performance, and finally deliver the experimental results.

6.1 Dataset Description

In this paper, we use a real world dataset collected by a mobile phone company which installed
a monitoring program on every volunteer’s smartphone. In this dataset, we have totally 50
volunteers including college students and faculty from June 2010 to January 2011. For each
user, we separate the dataset into three parts, where each part consists of three months, and
we use the first two months as training data, and the last one month as testing data. Totally,
there are more than 300 different Apps installed on their smartphones, and the average number

of Apps on one smartphone is 56.

20

6.2 Performance Metrics

In this paper, we use two performance metrics: 1) average recall and 2) nDCG [6] score.
Average Recall: Since there is only one App being launched in each testing case, recall

score is thus adopted as one performance metric which evaluates whether the used App is in

the prediction list. The recall score of one user is defined as)’ %, where C' is the
c;eC

set of testing cases, App,, is the ground-truth, and Lc; is the prediction list at the i-th testing
case. I(-) is an indicator function which equals 1, when App,., € L.,, and equals 0, otherwise.
Finally, the average recall is the average of the recall values of all users.

nDCG Score: To evaluate the accuracy of the order of the prediction list, we also test
the nDCG score of the prediction results. The IDCG score is fixed to 1 because there is only

one used App in the ground-truth. The DCG score is N when the used App is predicted

(+1

at position ¢ of the prediction list.. Then; nDCG is the average of I%CCGG for all testing cases.

6.3 Experimental Results

To evaluate the performance of predicting-Apps usage by the proposed KAP framework, we
first evaluate the overall performance when predicting different numbers of Apps. Then, we
test the performance of the personalized feature selection algorithm. The impact of different
parameters for the KAP framework and kNN classification is also included. Note that we use
top-k = 4, kNN=40%, and the minimum data coverage of personalized feature selection as

70% to be the default parameter settings throughout the experiment.

6.3.1 Overall Performance

First, we evaluate the performance KAP and other different methods under various numbers
of prediction, k. As can be seen in Figure 6.1, when the number of prediction k increases,
both the recall and nDCG values also increase. However, KAP , App-NB and SVM perform
better than others. In Figure 6.1(a), when & = 9 (the number of predictions shown in the
latest Android system), the recall of KAP and SVM could be more than 90%, while it is below

21

0.9 r IR PP
0.8 B
FPTELY L
0.7 ‘ S RS »
= 0.6 | .‘. ---- ou
m o =
g 05 - ; llllllllllllllll S — a S—
T 04¢" "_““.“-‘;“‘f‘fuﬂ """""""]
03 | 1
0.2]
0.1 i
0 : : ! L L 1 1
1 2 3 4 5 6 7 g 5
Top-k
C45 —— MEU o _ AP e
AdaBoost MRU
App-NB s SVM
(a) Recall
0-7 I i T T T T .
P ELELLE L 1 [] -
0.6 Lo e
.
05 ~’]
T Y :.:.:.:.:,:.:.:‘:g.:.::.:.:.:.::.a:.::.:,-‘.:.::-n
3 0.4 ¢ M!,,r,h.-.r.r\r.r.:!-?\f-w"-""“ i
U __________ utt
Q o3l @7 _
0.2 & _
0.1 r 1
0 : : - L L 1 1
1 2 3 4 5 6 7 g 5
Top-k
C45 —— MEU-# e AP -
AdaBoost MRU
App-NB s SUM
(b) nDCG

Figure 6.1: Impact of the number of prediction, k.

80% for the others. On the other hand, the nDCG value of KAP shown in Figure 6.1(b) is
always higher than that of the other methods, which means the prediction order of KAP is
better.

Second, we test the accuracy of varied top-k frequency. The top-k frequency is defined as

the ratio of the usage of the most frequent & Apps. For example, if a user has 5 Apps and the

5+3

usage counts are 3, 1, 2, 5, and 2, the top-2 frequency is thus —5772=—

_ 8 ;

= 13. Figure 6.2 shows
the results when top-k = 4. Intuitively, when the top-k frequency increases, the accuracy of
the MFU method could be better. However, in Figure 6.2(a), even when the ratio is 0.9,

the MFU method performs just closed to MRU and App-NB, but worse than both KAP and

22

nDCG

O 1 1 1
0.5 0.6 0.7 0.8 0.9
Top-k Frequency
C45 —— MFU Bl KAP - e .
AdaBoost MRU
(a) Recall
1 T T T
09 r
08 B o o hd
071 A% ool L
T 0of S EEERE NG e
x 05 L Nl... P=|E| SALT e
0.4 oY g et L L
03
0.2 i
0.1 . . :
0.5 0.6 0.7 0.8
Top-k Frequency
C4.5 —— MEU- B KAP - e .
AdaBoost MRU
(b) nDCG

Figure 6.2: Impact of top-k frequency.

SVM. In Figure 6.2(b), the prediction order of KAP is also better than the results of the other

methods.

6.3.2 Impact of Features

Here, we evaluate the performances of using different sets of features for kNN classification.
Five kNN-based methods are considered: 1) ALL: use all sensors readings with implicit fea-
tures, 2) EF: use only the EF feature, 3) IF: use only the IF feature, and 4) Time: use only

the temporal features. 5) Location: use only the spatial features. Figure 6.3 shows the results

23

E 2
£ 3
: .
=
6
Top-k
Location — IF @ians ALL
Time 3R EF s
(a) Recall
0.7 T T T T T T T T T
0.65
0.6
0.55
8 0.5
a 045
S 04
0.35
0.3
0.25
0.2
Top-k
Location —— IF s ALL
Time L3XXin EF mosmi
(b) nDCG

Figure 6.3: Impact of Features.

of the impact of using different features. Time, IF, EF and ALL have better performances as
the top-k candidates are more. The performances are similar when KAP uses certain set of

features to predict Apps usage. As a result, the experimental result displays the scalability of

KAP that performs well under varied sets of features.

6.3.3 Impact of Personalized Feature Selection

For the proposed KAP method, we evaluate the performance of the personalized feature

selection to see if the proposed MDL-based selection algorithm could reduce the used storage

24

Table 6.1: The storage consumption and accuracy under varied data coverage p.
Coverage(%) 30 40 50 60 70 8 90 100

Storage(KB) 28 31 34 37 43 52 82 94
Recall 0.78 0.78 0.80 0.80 0.82 0.82 0.82 0.83
nDCG 0.50 0.51 0.52 0.53 0.55 0.57 0.57 0.58

Table 6.2: The execution time of KAP with and without personalized feature selection.

Execution time (ms) Training Testing Total
KAP 86 160 246
KAP without selection 185 160 345

when maintaining a good prediction accuracy. For one user, the average used storage and
prediction accuracy is shown in Table 6.1 under different data coverage p. As can be seen in
Table 6.1 the personalized feature selection could, reduce 55% of training data size and only
lose 1% of recall and 3% of nDCG.when the data coverage is 70%. In addition, Table 6.2
compares the execution time of KAP with and without the personalized feature selection,

where the training time is reduced dramatically under p = 70%.

6.3.4 Comparison of Different Feature Selection Methods

To exhibit the capability of the proposed MDI-based selection algorithm, we compare the
performances with another two mathematical procedures called SVD [1] and PCA [7] in dif-
ferent number of dimensions . In Figure 6.4, the evaluation result of MDL is better than the
others when the number of dimension is less than about 6 and turns into stable after 6. The
performance of MDL is worse than PCA when the number of dimension is high, but the MDL
is the only one that can fit the advantages of storage and power consumption by choosing
the useful subset of features. Because SVD and PCA are needed to collect all sensor data
in their analysis when the intrinsic feature spaces are transformed into lower feature spaces

while preserving as much information as possible.

25

0-9 T T T T T T T T T T T

_____ JOp
0.85 | e]
T
R
0.8 | '*..--x-----x-----).(-‘-‘:_-.-m‘-'-'--u....*----x ----- = mmm mmm W= m
— A w
S o7y F i
x
0.7 B
0.65 []
O.6 1 1 1 1 1 1 1 | 1 1 1
1 2 4 6 8 10 12 14.16-18 20 22 24
Number Of Dimension
SVD —— MDL [543 PCA |- ..
(a) Recall
0-75 T T T T T T T T T T T
IR T
0.7 1 S of T
-
065 F T e N
RV &L Come s R Rl R e SRl e
o o6 L=]
@) 0 -
2 os5f]

0.5

0.45 L/

O.4 | IS (S I (N N I S I I E—
1 2 4 6 8 10 12 14 16 18 20 22 24

Number Of Dimension

Figure 6.4: Comparison of Different Feature Selection Methods

26

Recall

C45 —— MFU B KAP e
AdaBoost MRU
(a) Recall
07 TS ‘ T T T T T T T
0 6 “_ o @ L ° o i ".
05 i ."‘.. -, .
-
8 04 Y (= s e w"""'"-"-"il,
2 0.3“'\(.
0.2
0.1
O 1 1 1 1 1 1] 1
5 10 15, 20 25 -30:35..40 45
Number Of App.
C45 —— MEU-sggi. KAP e
AdaBoost MRU
(b) nDCG

Figure 6.5: Impact of the number of Apps.

6.4 Comparison of Different Usage Behavior

Since different users have different usage behavior, which could extremely affect the prediction
accuracy. In this section, we separate users into different groups according to 1) number of

installed Apps, 2) usage frequency, and 3) usage entropy. Then, we test the performance of

applying different methods on different groups.

27

0-9 T T T T T

o PURRPEL SR @ @ @ - 1
07 | “d.“..““:“‘“‘“““n
| e _
= 0.6 L T .. _,.--.--!-l----.....'',".\Ef:.:.v.v.m..,_m“la‘nn vvvvvvv
m 0-5 i l'-.d-“- m.‘“““"“. |
8 \\\\\\\\\\\ g
g oaf -
03 F |
02 |
01 + |
0 . I | I

300 600 900 1200 1500 1800 2400
Number Of Usage

C45 —— MFEU o KAP e
AdaBoost MRU

(a) Recall

0.8 : : : : :
0.7 | e
06 " TT NN Sr a a@en ae s aslee migua sn B8R ARCE@EE a8 as we e PR L *

0.5
0.4 ».
0.3
02 F i
0.1 -

O 1 1 1 1 "
300 600 900 1200- | ©=1500 + 1800 2400

Number Of Usage

nDCG

C45 —— MEU-sggi. KAP e
AdaBoost MRU
(b) nDCG

Figure 6.6: Impact of the usage count.

6.4.1 Impact of the Number of Installed Apps

When users launch more Apps, it becomes more difficult to accurately predict Apps usage.
Figure 6.5 shows the recall and ndcg results for a varying number of used Apps. As can be
seen in Figure 6.5, both the recall and ndcg values decrease when the number of used Apps
increases for all methods. However, the decreasing rate of the proposed KAP method is much
smoother than that of the others. The recall of KAP is around 85% while that of the others

is below 40% when the number of used Apps is 30.

28

nDCG

Rcall

C4.5 —— MEU Bl
AdaBoost. - MRU

App. Using Rate

C45 —— MFEU o KAP -
AdaBoost ---#t--- MRU
(b) nDCG

Figure 6.7: Impact of the App using rate.

29

6.4.2 Impact of the Usage Count

Now, we test the impact of the usage count. A higher usage count means we could have more
training data to learn the classification model for App prediction. Concurrently, it provides
more complicated information of users’ usage behavior, and could make noisy data. Figure 6.6
shows the recall and ndcg values. The performance of KAP, Naive Bayes, Decision Tree, and
SVM goes up when the usage count increases. However, AdaBoost has worse performance
as the usage count goes up. The result shows that the KAP algorithm can handle more
complicated and noisy data.

In addition, we also test the impact of the using rate of an App. For example, if a user

3 1 2

has 5 Apps and the usage counts are 3, 1, 2, 5, and 2, the App using rates are 13, 13, 13

5

13, and 1—23 respectively. A higher using rate means-that the App was often used in the past,

which also means the App is very used to-the user. On the contrary, a lower using rate means
we have less clues to suggest user launching the App in advance. However, those infrequently
used Apps are still useful to users such as game, map, productivity, etc. In Figure 6.7, KAP
is slightly better than MRU when the App using rate is/0.1, but significantly overwhelming
the others. In short, the performances are-better-as the App using rate is high, while KAP

outperforms the others in most cases.

6.4.3 Impact of the Entropy of the Apps Usage

We evaluate the impact of the entropy of the Apps usage. Intuitively, as the entropy of the
Apps usage becomes larger, the Apps usage is almost random, and the performance of Apps
usage prediction would become worse. Figure 6.8 depicts that the proposed KAP could have
around 80% accuracy when the entropy goes to 3 where the other methods except for SVM

only have accuracy of less than 50%.

30

09 YRTICURTICLICL T .., -,]
08 | e e .
R frree,,
07 } ----- .., e e
L R T 1
3 0.6 T .
o
(0]
a4
C45 —— MFU B KAP e
AdaBoost MRU
(a) Recall
O]
(@]
[a)]
<
O 1 1 1 1 1
15 2 25 3 35 4 45
Entropy
C45 —— MEU-sggi. KAP e
AdaBoost MRU
(b) nDCG

Figure 6.8: Impact of the entropy of Apps.

6.5 Impact of Different Parameters

6.5.1 Number of Iterations for Implicit Feature Extraction

First, we test the number of iterations of deriving the implicit feature for each testing case.
As shown in Table 6.3, the accuracy stays almost the same after the second iteration. This
indicates that the iterative refinement algorithm could converge within 2 iteration which is

sufficient to estimate the implicit feature.

31

Table 6.3: The recall and nDCG values under varied numbers of iterations.
#lterations 1 2 3 4)

Recall 0.67 0.79 0.79 0.80 0.81
nDCG 043 059 0.59 0.60 0.61

Table 6.4: The recall and nDCG values under varied minimum probability for session identi-
fication.

ming, 05 025 0.1 0.075 0.05 0.025 0.001

Recall 0.73 0.77 0.83 0.81 0.80 0.75 0.74
nDCG 0.53 0.57 0.61 0.58 0.55 0.53 0.52

6.5.2 Minimum Probability for Identifying Usage Sessions

As users usage sessions could be varied according to different tasks, we only need the useful
length of the usage sessions to perform accurate Apps usage prediction, instead of calculate
the full usage sessions. Therefore, we conduct this experiment to evaluate the impact of the
length of usage sessions. Ac can be seen-in Table 6.4, the results are not affected by the
minimum transition probability, min,,, too much. From our collected data, the session length
is around 2 when miny, is 0.5, and the best case.is-under min,, = 0.1, which has the session

length as around 5.

6.5.3 Parameters for kNN Classification

There are two main parameters affecting the accuracy of kNN classification: 1) the length
of the training period, and 2) the number of neighbors of kNN. Here, we fix the number
of predictions to 4 Apps and compare the recall and nDCG values of KAP and the other
methods. Figures 6.9(a) and 6.9(b) show the results, where the recall and nDCG values of
the KAP, MFU, MRU, and SVM methods almost keep the same performance under varied
training lengths. Therefore, we suggest that we just need to collect a short period as training
data to predict users’ Apps usage, since users’ behavior is considered as stable over a short
period.

Then, we evaluate the impact of selecting different numbers of neighbors to perform kNN

classification. Because the training data of different users could vary from several hundreds

32

Rcall

nDCG

09 T T T T
08 R R LR IR X1 ° * 3
0.7 i
0.6 -
0 5 """""""""""""""" [CCRETTERRTE R P CCERREETEEL Werrrnnnnnnas [CETTT T *
0'4 [—" 8 2} B -
0.3 R
0.2 |
01f s W-cemacneas L S P—— SR +
O 1 1 1 1 1
1 4 8 12 16 20 24
Training Length(Week)
C45 —— MFU o KAP e
AdaBoost. 4= MRU
(a) Recall
07 T T T T T
O 6 ST YEYTEATRY SRR AR ST . - 1
05 | i
04 "w---‘---:-v--m.-.r,!r.r.rvr.nr.r.r,r.m.r... E ! _n
0.3 R
0.2
01 L SRCELTEE [LT SV . PO s mmmmmmnns Kommmmmmnns ; L
O 1 1 1 1 1
1 4 8 12 16 20 24
Training Length(Week)
C45 —— MFU g KAP e
AdaBoost ---#t--- MRU
(b) nDCG

Figure 6.9: Impact of training length.

33

Table 6.5: The recall and nDCG values under varied number of neighbors for kNN.
kKNN(%) 20 40 60 80 100
Recall 0.74 0.79 0.80 0.80 0.81
nDCG 0.55 0.61 0.63 0.63 0.64

Table 6.6: The recall and nDCG values under varied X for recency factor.
A(hour) 1 12 24 48 72 96 120
Recall 0.80 0.78 0.76 0.73 0.72 0.71 0.71
nDCG 0.62 0.58 0.56 0.54 0.53 0.53 0.52

to thousands. we use a relative value for the number of neighbors. Table 6.5 shows the
results of the recall and nDCG values for different number of neighbors. As can be seen in
Table 6.5, even only select 40% of training data as the neighbors, the recall value is almost

80%. Therefore, we set the default number of neighbor as 40% throughout the experiments.

6.5.4 Parameters for kNN Voting Function

Finally, we test the impact of the decaying parameter A in the voting function expressed
in Equation(5.1). The A affects the importance-of Apps according to their last used time.
Namely, every interaction decays exponentiation.over time with a half life A. As shown in
Figure 6.6, the best value occurs at 1 hour, and then the performances are worse when the A

is higher.

34

Chapter 7

Conclusion

In this chapter, we propose an Apps usage. prediction framework, KAP, which predicts Apps
usage regarding both the explicit readings of mobile sensors and the implicit transition relation
among Apps. For the explicit feature, we consider three different types of mobile sensors: 1)
device sensors, 2) environmental sensors, and 3) personal sensors. For the implicit features,
we construct an Apps Usage Graph (AUG) to.model the tramsition probability among Apps.
Then, for each training datum, we‘could represent the next used App as the implicit feature
which describes the probability of transition from other Apps. Note that, since the next App
in the testing data is unknown, we propose an iterative refinement algorithm to estimate
both the probability of the App to be invoked next and its implicit feature. We claim that
different usage behaviors are correlated to different types of features. Therefore, a personalized
feature selection algorithm is proposed, where for each user, only the most relative features
are selected. Through the feature selection, we can reduce the dimensionality of the feature
space and the energy/storage consumption.

We integrate the explicit and implicit features as the feature space and the next used App
as the class label to perform kNN classification. In the experimental results, our method
outperforms the state-or-the-art methods and the currently used methods in most mobile
devices. In addition, the proposed personalized feature selection algorithm could maintain

better performance than using all features. We also evaluate the performance of KAP for

35

different types of users, and the results show that KAP is both adaptive and flexible.

36

Bibliography

1]

Peter A. Businger and Gene H. Golub. Algorithm 358: singular value decomposition of
a complex matrix [f1, 4, 5]. Commun. ACM, 12(10):564-565, 1969.

Shuo Chen, Joshua L. Moore, Douglas Turnbull, and Thorsten Joachims. Playlist pre-
diction via metric embedding. In.The 18th-ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 12, Beijging, China, August 12-16, 2012,
pages 714-722, 2012.

Driss Choujaa and Naranker Dulay.” Predicting - human behaviour from selected mobile
phone data points. In UbiComp 2010: Ubiquitous Computing, 12th International Confer-
ence, UbiComp 2010, Copenhagen,: Denmark, September 26-29, 2010, Proceedings, pages
105-108, 2010.

Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. Smartphone usage in the wild:
a large-scale analysis of applications and context. In Proceedings of the 15th Interna-
tional Conference on Multimodal Interfaces, ICMI 2011, Alicante, Spain, November 14-
18, 2011, pages 353-360, 2011.

Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V. Chawla, Jinghai Rao, and Huan-
huan Cao. Link prediction and recommendation across heterogeneous social networks. In
12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium,
December 10-13, 2012, pages 181-190, 2012.

Kalervo Jarvelin and Jaana Kekalainen. Cumulated gain-based evaluation of ir tech-

niques. ACM Trans. Inf. Syst., 20(4):422-446, 2002.

37

[7]

8]

[10]

[11]

[12]

[13]

[14]

lan Jolliffe. Principal component analysis. Wiley Online Library, 2005.

Daisuke Kamisaka, Shigeki Muramatsu, Hiroyuki Yokoyama, and Takeshi Iwamoto. Op-
eration prediction for context-aware user interfaces of mobile phones. In 2009 Ninth

Annual International Symposium on Applications and the Internet, pages 16-22, 2009.

Ashraf M Kibriya and Eibe Frank. An empirical comparison of exact nearest neighbour
algorithms. In Knowledge Discovery in Databases: PKDD 2007, pages 140-151. Springer,
2007.

Ashraf Masood Kibriya. Fast algorithms for nearest neighbour search. PhD thesis, The

University of Waikato, 2007.

Jacob Kogan. Feature selection.over distributed data streams through convex optimiza-
tion. In Proceedings of the Twelfth-SIAM Anternational Conference on Data Mining,
Anaheim, California, USA, April 26-28, 2012, pages 475484, 2012.

Neal Lathia, Stephen Hailes; Licia. Capra, and: Xavier Amatriain. Temporal diversity in
recommender systems. In Proceeding-of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2010, Geneva, Switzerland,
July 19-23, 2010, pages 210-217, 2010.

Po-Ruey Lei, Tsu-Jou Shen, Wen-Chih Peng, and Ing-Jiunn Su. Exploring spatial-
temporal trajectory model for location prediction. In 12th IEEE International Confer-
ence on Mobile Data Management, MDM 2011, Lulea, Sweden, June 6-9, 2011, Volume
1, pages H8-67, 2011.

Zhung-Xun Liao, Po-Ruey Lei, Tsu-Jou Shen, Shou-Chung Li, and Wen-Chih Peng.
Mining temporal profiles of mobile applications for usage prediction. In 12th IEEFE Inter-
national Conference on Data Mining Workshops, ICDM Workshops, Brussels, Belgium,
December 10, 2012, pages 890-893, 2012.

38

[15]

[16]

[17]

[19]

Zhung-Xun Liao, Wen-Chih Peng, and Philip S. Yu. Mining usage traces of mobile appli-
cations for dynamic preference prediction. In 17th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, PAKDD 2013, Gold Coast, Australia, April 13-17, 2013,
2013.

David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for social net-
works. In Proceedings of the 2003 ACM CIKM International Conference on Information
and Knowledge Management, New Orleans, Louisiana, USA, November 2-8, 2003, pages
556-559, 2003.

Eric Hsueh-Chan Lu, Wang-Chien Lee, and Vincent Shin-Mu Tseng. A framework for
personal mobile commerce pattern mining ‘and.prediction. [EEE Trans. Knowl. Data

Eng., 24(5):769-782, 2012.

M. Matsumoto, R. Kiyohara; H:Fukui; and M..Numao. Proposition of the context-aware
interface for cellular phone operations. ‘In 5th International Conference on Networked

Sensing Systems, June 17-19,-2008, pages 233-233, 2008.

Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. Wherenext: a
location predictor on trajectory pattern mining. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Paris, France, June

28 - July 1, 2009, pages 637-646, 2009.
J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.

J. Rissanen. Hypothesis selection and testing by the mdl principle. The Computer
Journal, 42:260-269, 1999.

Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T. Camp-
bell. Nextplace: A spatio-temporal prediction framework for pervasive systems. In Per-
vasiwe Computing - 9th International Conference, Pervasive 2011, San Francisco, CA,

USA, June 12-15, 2011. Proceedings, pages 152-169, 2011.

39

[23]

[24]

[25]

[26]

[27]

28]

Kent Shi and Kamal Ali. Getjar mobile application recommendations with very sparse
datasets. In The 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, pages 204212, 2012.

Choonsung Shin, Jin-Hyuk Hong, and Anind K. Dey. Understanding and prediction of
mobile application usage for smart phones. In The 2012 ACM Conference on Ubiquitous
Computing, Ubicomp 12, Pittsburgh, PA, USA, September 5-8, 2012, pages 173-182,
2012.

Xing Wu, Geoffrey Holmes, and Bernhard Pfahringer. Mining arbitrarily large datasets
using heuristic k-nearest neighbour search. In AT 2008: Advances in Artificial Intelligence,

pages 355—361. Springer, 2008.

Bo Yan and Guanling Chens. Appjoy: personalized mobile application discovery. In
Proceedings of the 9th International Conference on Mobile Systems, Applications, and
Services (MobiSys 2011), Bethesda, MD; USA, June 28 - July 01, 2011, pages 113-126,
2011.

Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app launching
for mobile devices using predictive user context. In The 10th International Conference
on Mobile Systems, Applications, and Services, MobiSys’12, Ambleside, United Kingdom
- June 25 - 29, 2012, pages 113-126, 2012.

Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. App recommendation: a contest
between satisfaction and temptation. In Sixth ACM International Conference on Web
Search and Data Mining, WSDM 2013, Rome, Italy, February 4-8, 2013, pages 395-404,
2013.

40

