
國立交通大學

資訊科學與工程研究所

碩士論文

個人特徵發現之手機應用程式預測

On the Feature Discovery for App Usage

Prediction

研究生 : 李守峻

指導教授 : 彭文志 教授

中華民國一百零二年七月

個人特徵發現之手機應用程式預測

On the Feature Discovery for App Usage Prediction

研究生 : 李守峻 Student : Shou-Chung Li

指導教授 : 彭文志 Advisor : Wen-Chih Peng

國立交通大學

資訊科學與工程研究所

碩士論文

A Thesis

Submitted to Institute Of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年月七月

i

個人特徵發現之手機應用程式預測

學生 : 李守峻 指導教授 : 彭文志

國立交通大學資訊科學與工程研究所

摘要

 隨著越來越多的手機應用軟件的開發，它們正密切地融入人們的

日常生活中。在本論文中，我們發展了一個基於當前設備狀態以預測

智能手機上最有可能被使用的應用軟件的框架。這樣的應用程序使用

的預測框架對於加速應用程式發動，智能手機的用戶體驗，和電源管

理都是不可或缺的條件.透過真實的應用程序使用日誌數據的分析，

我們發現兩種特徵數值：從內置的感測器所測得讀數，稱為顯性特徵

（EF），以及從應用程序使用關係轉換的數值，稱為隱性特徵。IF特

徵數值是從建構應用程序使用轉變的應用程序使用圖（簡稱ＡＵＧ）

的模型而推衍。鑒於ＡＵＧ的圖形，我們能夠發現應用程序之間的關

係。由於用戶可能有不同的在智能手機的使用行為，我們進一步提出

一個個人化的特徵選擇演算法。從訓練數據裡，我們探索最低描述長

度（MDL），並選擇需要較少位元數來形容訓練數據資料的特徵。個人

特徵選擇演算法，可以成功地減少日誌的大小和預測所花費的時間。

最後，我們採用 KNN分類模型來預測應用程序的使用。需要注意的是

當我們使用 k近鄰分類器時，我們只需要保留通過個人化特徵選擇演

ii

算法的特徵，這不僅可以降低預測的時間又能避免多維度所帶來的缺

點。最後，我們做了在真實行動應用程式的數據集的一個完整綜合的

實驗研究。得到的結果表示，我們提出的框架是有效的並顯示其在應

用程式使用上的預測的能力。

iii

On the Feature Discovery for App Usage Prediction

Student : Shou-Chung Li Advisor : Dr. Wen-Chih Peng

Institute Of Computer Science and Engineering,

National Chiao Tung University

ABSTRACT

With the increasing number of mobile Apps developed, they are now

closely integrated into daily life. In this paper, we develop a framework to

predict mobile Apps that are most likely to be used regarding the current

device status of a smartphone. Such an Apps usage prediction framework

is a crucial prerequisite for fast App launching, intelligent user experience,

and power management of smartphones. By analyzing real App usage log

data, we discover two kinds of features: The Explicit Feature (EF) from

sensing readings of built-in sensors, and the Implicit Feature (IF) from

App usage relations. The IF feature is derived by constructing the

proposed App Usage Graph (abbreviated as AUG) that models App usage

transitions. In light of AUG, we are able to discover usage relations

among Apps. Since users may have different usage behaviors on their

smartphones, we further propose one personalized feature selection

algorithm. We explore minimum description length (MDL) from the

training data and select those features which need less length to describe

the training data. The personalized feature selection can successfully

reduce the log size and the prediction time. Finally, we adopt the kNN

classification model to predict Apps usage. Note that through the features

selected by the proposed personalized feature selection algorithm, we

only need to keep these features, which in turn reduce the prediction time

iv

and avoid the curse of dimensionality when using the kNN classifier. We

conduct a comprehensive experimental study based on a real mobile App

usage dataset. The results demonstrate the effectiveness of the proposed

framework and show the predictive capability for App usage prediction.

v

致謝

 在研究所的兩年裡我學到很多專業的知識與報告技巧,也學會了

如何面對、思考、解決研究上的問題，即使這兩年來在就讀碩士班的

過程遇到許多困難與挫折，但也因此從中獲益不少。這一路走來有許

多人要感謝，使得我可以在這碩士生涯的最後寫下這篇致謝文。

首先誠摯的感謝指導教授彭文志博士，老師悉心的教導使我得以領悟

手機應用程式使用行為辨識領域的深奧，不時的討論並指點我正確的

方向，使我在這些年中獲益匪淺。老師對學問的嚴謹更是我輩學習的

典範。

本論文的完成亦得非常感謝學長 Dimension的大力協助。因為有您的

細心的教導及熱心的幫忙，使得本論文能夠更完整而嚴謹，讓我得以

順利畢業，這份恩情我會永久銘記在心，並期許我自己有一天可以像

學長一樣成為一位值得信賴的領導者。

兩年裡的日子，實驗室裡共同的生活點滴，學術上的討論、言不及義

的閒扯、實驗室的出遊、霸佔研討室玩桌遊或是看電影的蠻橫、趕投

稿的革命情感，感謝眾位學長姐、同學、學弟妹的共同砥礪，你/妳

們的陪伴讓兩年的研究生活變得絢麗多彩。

感謝 Barry學長、拍拍、許雅婷、01學姐們不厭其煩的指出我研究

中的缺失，且總能在我迷惘時為我解惑，也感謝徐宗豪、林詠翔、周

凡凱、陳建志同學的幫忙，恭喜我們順利走過這兩年。實驗室的彭淯

湘學弟、孫星星、溫郁婷、許宛婷、阮曉雯學妹們當然也不能忘記，

你/妳們在口試當天的協助我銘感在心。

 另外，我要特別感謝這兩年來家人的包容，爸爸、媽媽、姊姊，

你們是我最大的精神支柱，在我忙於碩士論文研究之餘，給予我很多

的支持與鼓勵，不管是精神上或是物質上的支助，讓我得以無憂地專

注做好研究。

最後，謹以此文獻給我摯愛的大家。

Contents

1 Introduction 1

2 Related Works 5

3 Explicit and Implicit Features 7

3.1 Explicit Feature Collection . 7

3.2 Implicit Feature Extraction . 9

3.2.1 Apps Usage Graph (AUG) . 9

3.2.2 Implicit Features for Training . 11

3.2.3 Implicit Features for Testing . 12

4 Personalized Feature Selection 14

5 Nearest-Neighbor Classifier 17

5.1 Weighted Voting . 18

5.2 Nearest Neighbor Classification Algorithm . 18

6 Experimental study 20

6.1 Dataset Description . 20

6.2 Performance Metrics . 21

6.3 Experimental Results . 21

6.3.1 Overall Performance . 21

6.3.2 Impact of Features . 23

vi

6.3.3 Impact of Personalized Feature Selection 24

6.3.4 Comparison of Different Feature Selection Methods 25

6.4 Comparison of Different Usage Behavior . 27

6.4.1 Impact of the Number of Installed Apps 28

6.4.2 Impact of the Usage Count . 30

6.4.3 Impact of the Entropy of the Apps Usage 30

6.5 Impact of Different Parameters . 31

6.5.1 Number of Iterations for Implicit Feature Extraction 31

6.5.2 Minimum Probability for Identifying Usage Sessions 32

6.5.3 Parameters for kNN Classification . 32

6.5.4 Parameters for kNN Voting Function 34

7 Conclusion 35

vii

List of Figures

1.1 Overview of kNN-based App Prediction framework. 3

3.1 Varied recalls of predicting Apps usage via different types of sensors for different

users. 8

3.2 The PDF of the duration of two consecutive App launches. 10

3.3 An example of the Apps Usage Graph (AUG). 11

3.4 Steps of obtaining the implicit feature of App3 in the training case, · · · →

App1
1
−→ App2

0.5
−→ App1

0.5
−→ App3. 12

4.1 An example of feature selection where the red data points are correctly predicted. 15

5.1 An example of nearest neighors of an instance 17

6.1 Impact of the number of prediction, k. 22

6.2 Impact of top-k frequency. 23

6.3 Impact of Features. 24

6.4 Comparison of Different Feature Selection Methods 26

6.5 Impact of the number of Apps. 27

6.6 Impact of the usage count. 28

6.7 Impact of the App using rate. 29

6.8 Impact of the entropy of Apps. 31

6.9 Impact of training length. 33

viii

List of Tables

3.1 Hardware sensors for the explicit feature. 8

6.1 The storage consumption and accuracy under varied data coverage ρ. 25

6.2 The execution time of KAP with and without personalized feature selection. . 25

6.3 The recall and nDCG values under varied numbers of iterations. 32

6.4 The recall and nDCG values under varied minimum probability for session

identification. 32

6.5 The recall and nDCG values under varied number of neighbors for kNN. . . . 34

6.6 The recall and nDCG values under varied λ for recency factor. 34

ix

Chapter 1

Introduction

With the increasing number of smartphones, mobile applications (Apps) have been developed

rapidly to satisfy users’ needs [28, 4, 23, 26]. Users can easily download and install Apps on

their smartphones to facilitate their daily lives. For example, users use their smartphones

for Web browsing, shopping and socializing [17, 3]. By analyzing the collected real Apps

usage log data, the average number of Apps in a user’s smartphone is around 56. For some

users, the number of Apps is up to 150. As many Apps are installed on a smartphone, users

need to spend more time swiping screens and finding the Apps they want to use. From our

observation, each user has on average 40 launches per day. In addition, the launch delay of

Apps becomes longer as their functionality becomes more complicated. In [27], the authors

investigated the launch delay of Apps. Even simple Apps (e.g., weather report) need 10

seconds, while complicated Apps (e.g., games) need more than 20 seconds to reach a playable

state. Although some Apps could load stale content first and fetch new data simultaneously,

they still need several seconds to complete loading.

To ease the inconvenience of searching for Apps [14, 24] and to reduce the delay in launching

Apps [27], one possible way is to predict which Apps will be used before the user actually

needs them. Although both the iOS and Android systems list the most recently used (MRU)

Apps to help users relaunch Apps, this method only works for those Apps which would be

immediately relaunched within a short period. Another common method is to predict the

1

most frequently used (MFU) Apps. However, when a user has a lot of frequently used Apps,

the MFU method has very poor accuracy. In our experiments, these two methods are the

baseline methods for comparison.

Recently, some research works have addressed the Apps usage prediction problems [27,

14, 24]. In [14], a temporal profile is built to represent the usage history of an App. The

temporal profile records the usage time and usage period of the App. Then, when a query

time is given, the usage probability of each App could be calculated through comparing the

difference between the temporal profile and the query time. However, since they only consider

the periodicity feature of Apps, some Apps with no significant periods cannot be predicted by

their temporal profiles. In [27], the authors adopted three features to predict Apps usage: time,

location, and used Apps. Based on those three features, they designed and built a system to

remedy slow App launches. However, they always use these three features to predict different

users’ usage, which is impractical as users could have different usage behavior. For example,

the location information could be less useful for those users who have lower mobility. We claim

that the features which are able to accurately predict Apps usage are different for different

users and different Apps. The authors in [24] collected 37 features from accelerometer, Wi-

Fi signal strength, battery level, etc., and proposed a Naive Bayes classification method to

predict Apps usage. However, a Naive Bayes classification method needs sufficient training

data to calculate the conditional probability, which does not always hold. Therefore, the

system would fail to predict Apps if there are not exactly the same instances existing in the

training dataset. In addition, they still apply all the same features to each user, instead of

selecting personalized features for different users with different usage behaviors.

In this chapter, we adopt the concept of minimum description length (MDL) to select

personalized features for different users and propose a kNN-based App Prediction framework,

called KAP, to predict Apps usage. Once we distinguish the useful and useless features, only

the useful features need to be collected. Therefore, the size of the log data could be reduced.

The overall framework is shown in Figure 1.1. KAP investigates features from both explicit

and implicit aspects. The explicit feature is a set of sensor readings from built-in hardware

2

Hardware

Sensors

Apps

Usage Log

Explicit Feature

Implicit Feature

kNN

Classifier

Personalized

Feature

Selection

AUG Graph

Figure 1.1: Overview of kNN-based App Prediction framework.

sensors, such as GPS, time, accelerometers, etc. On the other hand, the implicit feature

is referred to as the correlations of Apps usage. To capture these correlations, the implicit

feature is represented as the transition probability among Apps.

For the explicit feature, we focus on three types of hardware sensors: 1) device sensors,

such as free space, free ram, and battery level, 2) environmental sensors, such as time, GSM

signal, and Wi-Fi signal, and 3) personal sensors: acceleration, speed, heading, and location.

We claim that the usage of different Apps is related to different types of sensors. Obviously,

the advantages of selecting sensors for the explicit feature is that it reduces the effect of

noisy data and also saves power and storage consumption for logging data and performing the

prediction.

For the implicit feature, we calculate the transition probability for each App. However,

the previous works [27, 24] only take the usage order into account, and not the time duration

between Apps. We claim that the length between Apps usage means different things. For

example, users may take pictures via a camera App and upload those pictures to Facebook.

However, some users may upload pictures immediately, while others would upload them when

they have a Wi-Fi connection. Therefore, the time duration between camera and Facebook

use depends on different users and different usage behaviors. To model the usage relation

among Apps, an Apps Usage Graph (AUG), which is a weighted directed graph, is proposed.

The weight on each edge is formulated as an exponential distribution to describe the historical

usage durations. Based on AUG, the implicit feature of each training instance is derived by

traversing the AUG. Consequently, the implicit feature of each testing case is derived by an

iterative refinement process.

3

With both explicit and implicit features, KAP adopts a kNN classification model to predict

Apps usage which is represented as class labels. In the experimental study, the proposed KAP

framework outperforms both baseline methods and achieves accuracy of 95%. We also show

that the personalized sensor selection for the explicit feature is efficient and effective. In

addition, the implicit feature is useful for improving the prediction accuracy of KAP.

The major contributions of this research work are summarized as follows.

• We address the problem of Apps usage prediction by discovering different feature sets

to fulfill different users’ Apps usage behavior, and propose the concept of explicit and

implicit features for Apps usage prediction.

• We estimate the distribution of the transition probability among Apps and design an

Apps Usage Graph (AUG) to model both Apps usage order and transition intervals.

Two algorithms are proposed to extract the implicit features from the AUG graph for

training and testing purposes respectively.

• We propose a personalized feature selection algorithm in which one could explore MDL

to determine a personalized set of features while still guaranteeing the accuracy of the

predictions.

• A comprehensive performance evaluation is conducted on real datasets, and our proposed

framework outperforms the state-of-the-art methods [24].

The rest of this chapter is organized as follows. Chapter 2 investigates the related works

which discuss the conventional prediction problem and Apps usage prediction. Chapter 3

introduces the explicit and implicit features. Chapter 4 presents the mechanism of personalized

feature selection. Chapter ?? conducts extensive and comprehensive experiments. Chapter 4

depicts the classification of data instances. Finally, this paper is concluded with Chapter 7.

4

Chapter 2

Related Works

To the best of our knowledge, the prediction problem of Apps usage in this chapter is quite

different from the conventional works. We focus on not only analysing usage history to model

users’ behavior, but on personalizing varied types of features including hardware and software

sensors attached to smartphones. The proposed algorithm selects different features for dif-

ferent users to satisfy their usage behavior. Although there have been many research works

solving the prediction problem in different domains, such as music items or playlist predic-

tion [2], dynamic preference prediction [15, 12], location prediction [13, 22, 19], social links

prediction [5, 16], and so on, the prediction methods are only based on analysing the usage

history. In [11], the author selected features from multiple data streams, but the goal is to

solve the communication problem in a distributed system.

Currently, only a few studies discuss mobile Apps usage prediction. Although the authors

in [18] adopted location and time information to improve the accuracy of Apps usage predic-

tion, the total number of Apps is only 15. Concurrently, in [8], the authors stated that the

prediction accuracy could achieve 98.9%, but they still only focus on predicting 9 Apps from

a set of 15. In [27], the authors solved the prediction problem through multiple features from

1) location, 2) temporal burst, and 3) trigger/follower relation. However, they did not analyze

the importance of each feature. Therefore, for different users, they always use the same three

features to predict their Apps usage. In [24], the authors investigated all possible sensors

5

attached to a smartphone and adopted a Naive Bayes classification to predict the Apps usage.

However, collecting all possible sensors is inefficient and impractical. Moreover, the useful

sensors for different users could vary according to users’ usage behavior. We claim that for

different users, we need to use different sets of features to predict their usage. In this chapter,

we collect only the subset of all features which are personalized for different users.

This chapter is the first research work which discusses how to select suitable sensors and

features for different users to predict their Apps usage. Through the personalized feature se-

lection, we could perform more accurate predictions for varied types of usage bahavior, reduce

the dimensionality of the feature space, and further save energy and storage consumption. In

addition, the proposed KAP framework derives the implicit feature by modelling the usage

transition among Apps.

6

Chapter 3

Explicit and Implicit Features

In this chapter, we separate the features into two main categories: the explicit feature and

the implicit feature. The explicit feature represents the sensor readings which are explicitly

readable and observable. The implicit feature is the Apps usage relations.

3.1 Explicit Feature Collection

Table 3.1 shows the hardware sensors we use for the explicit feature. As different models of

smartphones could have different sets of hardware sensors, we only list the most common ones

whose readings are easy to record. It is totally free to add or remove any hardware sensors

here.

To show the prediction ability of different types of mobile sensors, we randomly select

two users from the collected dataset and perform kNN classification via the three types of

sensors respectively to predict their Apps usage. Figure 3.1 shows the prediction recall of

”Messenger”, ”Contacts”, and ”Browser” for the two users. As can be seen in Figure 3.1,

personal sensors would be a good explicit feature for predicting user1’s Apps usage, while

environmental sensors are good for user2. The reason is that user2 probably needs a Wi-Fi

signal to access the Internet.

7

Table 3.1: Hardware sensors for the explicit feature.
Sensors Contextual Information

Location

Longitude
Latitude
Altitude
Location Cluster

Time
Hour of day
Day of week

Battery
Battery Level
Charging status

Accelerometer

Avg. and std. dev. of {x, y, z}
Acceleration changes
speed
Heading

Wi-Fi Signal Received signal
GSM Signal Signal Strength

System
Free space of each drive
Free RAM

 0

 0.2

 0.4

 0.6

 0.8

 1

Messenger Contacts Browser

R
ec

al
l

Application

Device
Environmental

Personal

(a) User1

 0

 0.2

 0.4

 0.6

 0.8

 1

Messenger Contacts Browser

R
ec

al
l

Apllication

Device
Environmental

Personal

(b) User2

Figure 3.1: Varied recalls of predicting Apps usage via different types of sensors for different
users.

8

3.2 Implicit Feature Extraction

The implicit feature formulates the usage transitions among Apps in a usage session. As men-

tioned in [27], users use a series of Apps, called a usage session, to complete a specific task. For

example, one user could use ”Maps” when travelling to a sightseeing spot, then use camera to

take photos, and upload those photos to Facebook. Thus, the series of using ”Maps”, ”Cam-

era” and ”Facebook” is called a usage session, denoted as ”Map”
δ1−→”Camera”

δ2−→”Facebook”,

where δ1 and δ2 represent the transition intervals.

The implicit feature of ”Facebook” in this usage session is thus < pMF (δ1), pCF (δ1 +

δ2), pFF (∞) >, where pMF (·), pCF (·), and pFF (·) are probability models which represent the

probability of using ”Maps”, ”Camera” and ”Facebook” respectively before using ”Facebook”

with the transition interval as the random variable. Note that because there is no ”Facebook”

to ”Facebook” in this usage session, the transition interval is thus set to ∞ and then the

probability would be 0.

The probability model could be estimated from a user’s historical usage trace. In this

section, we introduce an Apps Usage Graph (AUG) which models the transition probability

among Apps for a single user. For training purposes, the implicit features for the training

usage sessions are derived by traversing the AUG. However, for testing purposes, since we

do not know which is the App to be invoked, the derivation of the implicit feature for the

training usage session cannot be utilized directly. Therefore, an iterative refinement algorithm

is proposed to estimate both the next App and its implicit feature simultaneously. The

following paragraphs will illustrate the details of the AUG construction and the implicit feature

derivation for both the training and testing usage sessions.

3.2.1 Apps Usage Graph (AUG)

For each user, we construct an Apps Usage Graph (AUG) to describe the transition probability

among Apps. An AUG is a directed graph where each node is an App, the direction of

an edge between two nodes represents the usage order, and the weight on each edge is a

9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time(Minute)

Transition Interval

Figure 3.2: The PDF of the duration of two consecutive App launches.

probability distribution of the interval between two Apps. Since two consecutive launches

could be viewed as a Poisson arrival process, we can formulate the intervals between two

launches as an exponential distribution. For example, Figure 3.2 shows the probability density

function (PDF) of two consecutive launches which exactly fulfils the exponential distribution

where most transitions (e.g., 0.45%) are within 1 minute.

Here, Equation 3.1 formulates the exponential density function of the launch interval being

in [x, x+1). The parameter α = ˆp(0) is derived by assigning x = 0 in Equation 3.1, and could

be calculated by p(0), the real probability derived from the training data. Then, β is solved

by minimizing the difference between the estimated probability ˆp(i) and the real probability

p(i) as shown in Equation 3.2 for every interval i.

Empirically, we do not need to fit every interval when obtaining the exponential model.

For example, in Figure 3.2, only the first 5 intervals already cover more than 75% of the

training data. Therefore, we can iteratively add one interval until the data coverage reaches a

given threshold. We will discuss the impact of the data coverage threshold in the experiments

section.

ˆp(x) = α exp−βx (3.1)

β = argmin
β

∑

i

| ˆp(i)− p(i)|

= argmin
β

∑

i

|p(0) exp−βi−p(i)| (3.2)

10

1

3

2

p11

p12

p31

p23

p11(x)=0.4 e
-1.1x

p31(x)=0.1 e
-0.5x

p23(x)=0.43 e
-1.2x

p12(x)=0.45 e
-0.8x

^

^

^

^

^

^

^

^

Figure 3.3: An example of the Apps Usage Graph (AUG).

For example, Figure 3.3 shows an AUG with three Apps. From Figure 3.3, the probability

of two consecutive usages of App1 with an interval of 0.3 minutes (i.e., App1
0.3
−→ App1) is 0.4,

and App1
1.5
−→ App2 is 0.2. Although AUG only takes two consecutive Apps into account, such

as p12 and p23, the probability of p13, could be calculated by p12 × p23.

3.2.2 Implicit Features for Training

For each training case, the implicit features are derived by looking up the AUG. Suppose the

currently used App (i.e., class label) is Appt, the implicit feature is thus, < p′1t, p
′
2t, ..., p

′
nt >,

where p′it represents the probability of transiting from Appi to any random Apps and then to

Appt. The probability of p
′(s)
it is defined as in Equation 3.3 which is the summation of every

probability from Appi to Appt. Note that we use a superscript, s, to indicate how many Apps

are between Appi and Appt, and Appmk
is the k-th App after Appi. Once we derive the implicit

feature in a reverse time order, the sub-problem of estimating p
′(s−k)
mk,t

is already solved. The

calculation of the implicit feature for Appi stops when the transition probability falls below a

given threshold, mintp. In our collected dataset, the transition probability falls to 0.1% when

we look backward to more than 5 Apps, which is the default parameter for mintp. Algorithm 1

depicts the derivation of the implicit feature for a training case with Appt as its class label.

p
′(s)
it = p̂it +

∑

k

ˆpi,mk
× p

′(s−k)
mk ,t

(3.3)

For example, suppose we have an AUG as shown in Figure 3.3 and a usage trace as

· · · → App1
1
−→ App2

0.5
−→ App1

0.5
−→ App3 → Figure 3.4 shows the process of obtaining

the implicit feature of App3. We first estimate p
′(0)
13 from App1

0.5
−→ App3, then p

′(1)
23 from

11

Algorithm 1: Deriving the implicit feature of Appt for training.

Input: Appt: a training App
Output: IFt: the implicit feature of Appt

foreach Appi prior than Appt do

IFt[i]← IFt[i] + ˆpit(δit) ;
foreach Appm between Appi and Appt do

IFt[i]← IFt[i] + ˆpim(δjm)× IFm[t] ;
end

end
return IFt

App1 App2 App3

p13=p13+p12p23+p11p13
^ ^ ^

00.130.01

=0+0.09x0.13+0

App1→App3

App2→App1→App3

App1→App2→App1→App3

=0.13

0.5

0.5

0.50.5

0.5

1

=0.01

p13=p13=0^'(0)

p23 =p23+p21p13
^ ^'(1) '(0)

'(2) '(1) '(0)

Figure 3.4: Steps of obtaining the implicit feature of App3 in the training case, · · · → App1
1
−→

App2
0.5
−→ App1

0.5
−→ App3.

App2
0.5
−→ App1

0.5
−→ App3, and finally update p

′(2)
13 from App1

1
−→ App2

0.5
−→ App1

0.5
−→ App3.

Note that p
′(0)
13 is reused for calculating p

′(1)
23 , and p

′(1)
23 and p

′(0)
13 are reused for updating p

′(2)
13 .

The implicit feature of App3 is < 0.01, 0.13, 0 >.

3.2.3 Implicit Features for Testing

Since the App to be predicted for current invocation, Appt, is unknown for testing, the deriva-

tion process of implicit features for training does not work. We propose an iterative refinement

algorithm to estimate both Appt and its implicit feature, IFt, for testing. Suppose θi is the

probability of Appt = Appi, the implicit feature IFt is calculated as in Equation 3.4 which is

a linear combination of the IF of each Appi. In addition, M = [IF T
1 , IF

T
2 , . . .] represents the

transition matrix among Apps, where IF T
1 , IF

T
2 , . . . are column vectors. Then, the value of

θi could be updated by Equation 3.5, which is the probability of staying in Appi after one-step

walking along the transition matrix M . We keep updating θi and IFt iteratively, until Appt

12

is fixed to one specific App. In our experiments, the iterative refinement process converges in

about 3 iterations. Algorithm 2 depicts the derivation of the implicit feature for testing.

IFt =
∑

Appi

θi × IFi (3.4)

θi =
∑

Appm

IFt[m]×M [m][i] (3.5)

Algorithm 2: Deriving the implicit feature for testing.

Input: t: a testing case
Output: IFt: the implicit feature at t

while iter < threshold do
foreach θj do

IFt ← IFt + θi × IFi ;
end
foreach Appi prior than time t do

θi ← θi + IFt[m]×M [m][i] ;
Normalize θi ;

end
iter ← iter + 1 ;

end
return IFt

For example, suppose the testing case is · · · → App1
1
−→ App2

0.5
−→ App1

0.5
−→ Appt. First, we

initialize θi as < 1/3, 1/3, 1/3 >, which gives equal probability to each App, and the transition

matrix M =

0.49 0.6 0.01

0 0 0.13

0 0 0

, which is derived by calculating the IF of each App shown

in Equation 3.3. Note that the last row is all zero because there is no App3 transiting to any

other Apps. Then, the implicit feature is < 0.37, 0.04, 0 > in the first iteration. Next, θi is

updated to < 0.18, 0.22, 0.01 >, and normalized as < 0.44, 0.54, 0.02 > according to one-step

walk in M with the calculated implicit feature as the prior probability. Then, we can obtain

the implicit feature as < 0.53, 0.01, 0 > in the second iteration.

13

Chapter 4

Personalized Feature Selection

The goal of the personalized feature selection is to use as fewer features as possible to guarantee

an acceptable accuracy. Due to the energy and storage consumption of collecting sensors

readings and Apps transition relations, we should select useful features for different users in

advance. Furthermore, through the personalized feature selection, we could avoid the curse

of dimensionality on performing the kNN. We first apply the personalized feature selection

on the training data, and then only the selected features are required to be collected in the

future.

Here, we propose a greedy algorithm to select the best feature iteratively. We adopt

the concept of Minimum Description Length (MDL) [20, 21] to evaluate the goodness of the

features. For different features, we can have varied projections of the training data. We claim

that if a feature needs fewer bits to describe its data distribution, it is good for predicting the

data. Therefore, in each iteration, the feature with the minimum description length is selected.

Then, those data points which are correctly predicted are logically eliminated from the training

data, and the next feature is selected by the same process repeatedly. We define the description

length of the hypothesis, which is shown in Equation 4.1, as the length of representing the

training data. NG(Appi) is the number of groups of Appi. The description length of Data

given the hypothesis is the total number of miss-classified data which is formulated as in

Equation 4.2.

14

selection

• L(H)=log2(2+2+1)

• L(D|H)=log2(0+1+1+1)

• MDL=log2 5 + log2 3

1

1

1

1

2

2

2 3

1

1

1

1

22

2 3 1111 222 3

0 001 11

Time Battery Wi Fi Signal

• L(H)=log2(2+2+1)

• L(D|H)=log2(0+2+1+1)

• MDL=log2 5 + log2 4

• L(H)=log2(4+3+1)

• L(D|H)=log2(0+0+0+1)

• MDL=log2 8

2
3 2 3

00 11

Battery Wi Fi SignalNext round

• L(H)=log2(1+1)

• L(D|H)=log2(0+1+1)

• MDL=log2 2 + log2 2

• L(H)=log2(1+1)

• L(D|H)=log2(0+0+1)

• MDL=log2 2

Figure 4.1: An example of feature selection where the red data points are correctly predicted.

L(H) =
∑

i

log2NG(Appi) (4.1)

L(D|H) =
∑

i

log2(missClassified(Appi) + 1) (4.2)

For example, given 8 data points in the training data and three features as shown in

Figure 4.1. In the first round, Time is the feature with minimum description length. Those

data points marked as red are correctly predicted and will be removed. Therefore, in the

second round, only two data points are left, and the feature of Wi-Fi signal is selected due to

its minimum description length.

The selection process stops when a percentage of ρ of the training data is covered. We also

discuss the impact of ρ in the experimental section. Note that the number of features affects

the energy and storage consumption and is set according to the capability of the smartphones.

Algorithm 3 depicts the process of personalized feature selection. After the selection, only

the readings of the sensors which are selected will be collected as the explicit feature in the

future. In addition, only the selected Apps will be used to construct AUG.

15

Algorithm 3: Personalized feature selection.

Input: Dz: the training data
Output: PF : the personalized features

Let Nz ← |Dz| ;
while |Dz| < ρNz do

foreach feature f do
Calculate DLf : description length for feature f ;

end
PF ← PF ∪ {argmax

f

DLf} ;

Let Da be the set of accurately predicted data points ;
Dz ← Dz −Da ;

end
return PF

16

Chapter 5

Nearest-Neighbor Classifier

Nearest-neighbor classification is part of a more general technique known as instance-based

learning, which uses specific training instances to make predictions without having to maintain

a model derived from data. Instance-based learning algorithms requires a proximity measure

to determine the similarity or distance between instances and a classification functions that

returns the predicted class of test instance based its proximity to other instances.

A nearest-neighbor classifier represents each App usage trace as a data point in a n-

dimensional space, where n is the number of features. Given a test point t, we compute its

proximity to the rest of data points in the training set, using the proximity measures described

in Equation(5.1). The k-nearest neighbors of a given test point t refer to the k points that

are closest to t.

App Recent Used Time

Angry Birds 2013/7/26 11:30 PM

Calendar 2013/7/26 08:30 AM

Gmail 2013/7/26 11:00 PM

Alarm 2013/7/26 01:10 AM

Unknown 2013/7/26 11:55 PM

?

?

t

Figure 5.1: An example of nearest neighors of an instance

17

5.1 Weighted Voting

Once the nearest-neighbor list is obtained, the test point is classified based on the majority

class of its nearest neighbors:

f(v) =
∑

(xi,Appi)∈Dt

wi × I(v = Appi)× rv (5.1)

where v is a class label, Appi is the class label for one of nearest neighbors, I(·) is an

indicator function that returns 1 if its argument is true and 0 other wise, wi is a distance

factor to reduce the impact of k : wi = 1
d(x’,xi)2

, and ri is a recency factor to reflect the

importance of reusing Apps in a short period : rv =
1
2

tnow−tv

λ .

For example, Figure 5.1 illustrates the 4-nearest neighbors of a test point located at the

center of the circle and the recently-used time table of Apps. In the case where the neigh-

borhood contains three Angry Bird and one Gmail usages and the distances between the test

point and neighbors are 1. Therefore the test point is assigned to the Angry Bird by the

voting scheme formed in Equation(5.1).

5.2 Nearest Neighbor Classification Algorithm

A brief schema of the nearest-neighbor classification method is given in Algorithm ??. The

algorithm computes the distance between the test point t = (x’, App′) and all the training

data (x, App) ∈ Dz to determine its nearest-neighbor list, Dt where x’ is the feature vector of

t, App′ is the ground-true, x is a feature vector of a training point, and App is a class label

of a training point. Such computation can be costly if the number of training examples is

large. However, efficient indexing techniques can be found in [10, 9, 25] to reduce the amount

of computation costs to search the nearest neighbors of a test case.

18

Algorithm 4: K-nearest Neighbor Classification Algorithm

Input: t: a test point
Output: L: a top-k prediction list

Compute d(x’,x), the distance between t and every example, (x, App) ∈ Dz.
Select Dt ⊆ Dz, the set of k closest training data to t
L← the top-k App list ranked by Equation(5.1)
return L

19

Chapter 6

Experimental study

In this section, we conduct a comprehensive set of experiments to compare the performance of

the proposed KAP framework with other existing methods including 1) most frequently used

(MFU) method, 2) most recently used (MRU) method which is the built-in prediction method

in most mobile OS, such as Android and iOS, 3) SVM, 4) App Naive Bayes [24], 5) Decision

Tree, and 6) AdaBoost. In the following, we first discuss the collected dataset, then introduce

the metrics employed to evaluate the performance, and finally deliver the experimental results.

6.1 Dataset Description

In this paper, we use a real world dataset collected by a mobile phone company which installed

a monitoring program on every volunteer’s smartphone. In this dataset, we have totally 50

volunteers including college students and faculty from June 2010 to January 2011. For each

user, we separate the dataset into three parts, where each part consists of three months, and

we use the first two months as training data, and the last one month as testing data. Totally,

there are more than 300 different Apps installed on their smartphones, and the average number

of Apps on one smartphone is 56.

20

6.2 Performance Metrics

In this paper, we use two performance metrics: 1) average recall and 2) nDCG [6] score.

Average Recall: Since there is only one App being launched in each testing case, recall

score is thus adopted as one performance metric which evaluates whether the used App is in

the prediction list. The recall score of one user is defined as
∑

ci∈C

I(Appci ,Lci
)

|C|
, where C is the

set of testing cases, Appci is the ground-truth, and Lci is the prediction list at the i-th testing

case. I(·) is an indicator function which equals 1, when Appci ∈ Lci , and equals 0, otherwise.

Finally, the average recall is the average of the recall values of all users.

nDCG Score: To evaluate the accuracy of the order of the prediction list, we also test

the nDCG score of the prediction results. The IDCG score is fixed to 1 because there is only

one used App in the ground-truth. The DCG score is 1
log

2
(i+1)

when the used App is predicted

at position i of the prediction list. Then, nDCG is the average of DCG
IDCG

for all testing cases.

6.3 Experimental Results

To evaluate the performance of predicting Apps usage by the proposed KAP framework, we

first evaluate the overall performance when predicting different numbers of Apps. Then, we

test the performance of the personalized feature selection algorithm. The impact of different

parameters for the KAP framework and kNN classification is also included. Note that we use

top-k = 4, kNN=40%, and the minimum data coverage of personalized feature selection as

70% to be the default parameter settings throughout the experiment.

6.3.1 Overall Performance

First, we evaluate the performance KAP and other different methods under various numbers

of prediction, k. As can be seen in Figure 6.1, when the number of prediction k increases,

both the recall and nDCG values also increase. However, KAP , App-NB and SVM perform

better than others. In Figure 6.1(a), when k = 9 (the number of predictions shown in the

latest Android system), the recall of KAP and SVM could be more than 90%, while it is below

21

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 7 8 9

R
ec

al
l

Top-k

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(a) Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5 6 7 8 9

nD
C

G

Top-k

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(b) nDCG

Figure 6.1: Impact of the number of prediction, k.

80% for the others. On the other hand, the nDCG value of KAP shown in Figure 6.1(b) is

always higher than that of the other methods, which means the prediction order of KAP is

better.

Second, we test the accuracy of varied top-k frequency. The top-k frequency is defined as

the ratio of the usage of the most frequent k Apps. For example, if a user has 5 Apps and the

usage counts are 3, 1, 2, 5, and 2, the top-2 frequency is thus 5+3
3+1+2+5+2

= 8
13
. Figure 6.2 shows

the results when top-k = 4. Intuitively, when the top-k frequency increases, the accuracy of

the MFU method could be better. However, in Figure 6.2(a), even when the ratio is 0.9,

the MFU method performs just closed to MRU and App-NB, but worse than both KAP and

22

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.5 0.6 0.7 0.8 0.9

nD
C

G

Top-k Frequency

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(a) Recall

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Top-k Frequency

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(b) nDCG

Figure 6.2: Impact of top-k frequency.

SVM. In Figure 6.2(b), the prediction order of KAP is also better than the results of the other

methods.

6.3.2 Impact of Features

Here, we evaluate the performances of using different sets of features for kNN classification.

Five kNN-based methods are considered: 1) ALL: use all sensors readings with implicit fea-

tures, 2) EF: use only the EF feature, 3) IF: use only the IF feature, and 4) Time: use only

the temporal features. 5) Location: use only the spatial features. Figure 6.3 shows the results

23

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9

R
ca

ll

Top-k

Location
Time

IF
EF

ALL

(a) Recall

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

1 2 3 4 5 6 7 8 9

nD
C

G

Top-k

Location
Time

IF
EF

ALL

(b) nDCG

Figure 6.3: Impact of Features.

of the impact of using different features. Time, IF, EF and ALL have better performances as

the top-k candidates are more. The performances are similar when KAP uses certain set of

features to predict Apps usage. As a result, the experimental result displays the scalability of

KAP that performs well under varied sets of features.

6.3.3 Impact of Personalized Feature Selection

For the proposed KAP method, we evaluate the performance of the personalized feature

selection to see if the proposed MDL-based selection algorithm could reduce the used storage

24

Table 6.1: The storage consumption and accuracy under varied data coverage ρ.
Coverage(%) 30 40 50 60 70 80 90 100

Storage(KB) 28 31 34 37 43 52 82 94
Recall 0.78 0.78 0.80 0.80 0.82 0.82 0.82 0.83
nDCG 0.50 0.51 0.52 0.53 0.55 0.57 0.57 0.58

Table 6.2: The execution time of KAP with and without personalized feature selection.
Execution time (ms) Training Testing Total

KAP 86 160 246
KAP without selection 185 160 345

when maintaining a good prediction accuracy. For one user, the average used storage and

prediction accuracy is shown in Table 6.1 under different data coverage ρ. As can be seen in

Table 6.1 the personalized feature selection could reduce 55% of training data size and only

lose 1% of recall and 3% of nDCG when the data coverage is 70%. In addition, Table 6.2

compares the execution time of KAP with and without the personalized feature selection,

where the training time is reduced dramatically under ρ = 70%.

6.3.4 Comparison of Different Feature Selection Methods

To exhibit the capability of the proposed MDL-based selection algorithm, we compare the

performances with another two mathematical procedures called SVD [1] and PCA [7] in dif-

ferent number of dimensions . In Figure 6.4, the evaluation result of MDL is better than the

others when the number of dimension is less than about 6 and turns into stable after 6. The

performance of MDL is worse than PCA when the number of dimension is high, but the MDL

is the only one that can fit the advantages of storage and power consumption by choosing

the useful subset of features. Because SVD and PCA are needed to collect all sensor data

in their analysis when the intrinsic feature spaces are transformed into lower feature spaces

while preserving as much information as possible.

25

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

1 2 4 6 8 10 12 14 16 18 20 22 24

R
ca

ll

Number Of Dimension

SVD MDL PCA

(a) Recall

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

1 2 4 6 8 10 12 14 16 18 20 22 24

nD
C

G

Number Of Dimension

SVD MDL PCA

(b) nDCG

Figure 6.4: Comparison of Different Feature Selection Methods

26

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5 10 15 20 25 30 35 40 45 50

R
ec

al
l

Number Of App.

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(a) Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

5 10 15 20 25 30 35 40 45 50

nD
C

G

Number Of App.

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(b) nDCG

Figure 6.5: Impact of the number of Apps.

6.4 Comparison of Different Usage Behavior

Since different users have different usage behavior, which could extremely affect the prediction

accuracy. In this section, we separate users into different groups according to 1) number of

installed Apps, 2) usage frequency, and 3) usage entropy. Then, we test the performance of

applying different methods on different groups.

27

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

300 600 900 1200 1500 1800 2400

R
ec

al
l

Number Of Usage

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(a) Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

300 600 900 1200 1500 1800 2400

nD
C

G

Number Of Usage

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(b) nDCG

Figure 6.6: Impact of the usage count.

6.4.1 Impact of the Number of Installed Apps

When users launch more Apps, it becomes more difficult to accurately predict Apps usage.

Figure 6.5 shows the recall and ndcg results for a varying number of used Apps. As can be

seen in Figure 6.5, both the recall and ndcg values decrease when the number of used Apps

increases for all methods. However, the decreasing rate of the proposed KAP method is much

smoother than that of the others. The recall of KAP is around 85% while that of the others

is below 40% when the number of used Apps is 30.

28

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6

R
ca

ll

App. Using Rate

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(a) Recall

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6

nD
C

G

App. Using Rate

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(b) nDCG

Figure 6.7: Impact of the App using rate.

29

6.4.2 Impact of the Usage Count

Now, we test the impact of the usage count. A higher usage count means we could have more

training data to learn the classification model for App prediction. Concurrently, it provides

more complicated information of users’ usage behavior, and could make noisy data. Figure 6.6

shows the recall and ndcg values. The performance of KAP, Naive Bayes, Decision Tree, and

SVM goes up when the usage count increases. However, AdaBoost has worse performance

as the usage count goes up. The result shows that the KAP algorithm can handle more

complicated and noisy data.

In addition, we also test the impact of the using rate of an App. For example, if a user

has 5 Apps and the usage counts are 3, 1, 2, 5, and 2, the App using rates are 3
13
, 1

13
, 2

13
,

5
13
, and 2

13
respectively. A higher using rate means that the App was often used in the past,

which also means the App is very used to the user. On the contrary, a lower using rate means

we have less clues to suggest user launching the App in advance. However, those infrequently

used Apps are still useful to users such as game, map, productivity, etc. In Figure 6.7, KAP

is slightly better than MRU when the App using rate is 0.1, but significantly overwhelming

the others. In short, the performances are better as the App using rate is high, while KAP

outperforms the others in most cases.

6.4.3 Impact of the Entropy of the Apps Usage

We evaluate the impact of the entropy of the Apps usage. Intuitively, as the entropy of the

Apps usage becomes larger, the Apps usage is almost random, and the performance of Apps

usage prediction would become worse. Figure 6.8 depicts that the proposed KAP could have

around 80% accuracy when the entropy goes to 3 where the other methods except for SVM

only have accuracy of less than 50%.

30

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1.5 2 2.5 3 3.5 4 4.5

R
ec

al
l

Entropy

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(a) Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1.5 2 2.5 3 3.5 4 4.5

nD
C

G

Entropy

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(b) nDCG

Figure 6.8: Impact of the entropy of Apps.

6.5 Impact of Different Parameters

6.5.1 Number of Iterations for Implicit Feature Extraction

First, we test the number of iterations of deriving the implicit feature for each testing case.

As shown in Table 6.3, the accuracy stays almost the same after the second iteration. This

indicates that the iterative refinement algorithm could converge within 2 iteration which is

sufficient to estimate the implicit feature.

31

Table 6.3: The recall and nDCG values under varied numbers of iterations.
#Iterations 1 2 3 4 5

Recall 0.67 0.79 0.79 0.80 0.81
nDCG 0.43 0.59 0.59 0.60 0.61

Table 6.4: The recall and nDCG values under varied minimum probability for session identi-
fication.

mintp 0.5 0.25 0.1 0.075 0.05 0.025 0.001

Recall 0.73 0.77 0.83 0.81 0.80 0.75 0.74
nDCG 0.53 0.57 0.61 0.58 0.55 0.53 0.52

6.5.2 Minimum Probability for Identifying Usage Sessions

As users usage sessions could be varied according to different tasks, we only need the useful

length of the usage sessions to perform accurate Apps usage prediction, instead of calculate

the full usage sessions. Therefore, we conduct this experiment to evaluate the impact of the

length of usage sessions. Ac can be seen in Table 6.4, the results are not affected by the

minimum transition probability, mintp, too much. From our collected data, the session length

is around 2 when mintp is 0.5, and the best case is under mintp = 0.1, which has the session

length as around 5.

6.5.3 Parameters for kNN Classification

There are two main parameters affecting the accuracy of kNN classification: 1) the length

of the training period, and 2) the number of neighbors of kNN. Here, we fix the number

of predictions to 4 Apps and compare the recall and nDCG values of KAP and the other

methods. Figures 6.9(a) and 6.9(b) show the results, where the recall and nDCG values of

the KAP, MFU, MRU, and SVM methods almost keep the same performance under varied

training lengths. Therefore, we suggest that we just need to collect a short period as training

data to predict users’ Apps usage, since users’ behavior is considered as stable over a short

period.

Then, we evaluate the impact of selecting different numbers of neighbors to perform kNN

classification. Because the training data of different users could vary from several hundreds

32

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

1 4 8 12 16 20 24

R
ca

ll

Training Length(Week)

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(a) Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 4 8 12 16 20 24

nD
C

G

Training Length(Week)

C4.5
AdaBoost

App-NB

MFU
MRU
SVM

KAP

(b) nDCG

Figure 6.9: Impact of training length.

33

Table 6.5: The recall and nDCG values under varied number of neighbors for kNN.
kNN(%) 20 40 60 80 100

Recall 0.74 0.79 0.80 0.80 0.81
nDCG 0.55 0.61 0.63 0.63 0.64

Table 6.6: The recall and nDCG values under varied λ for recency factor.
λ(hour) 1 12 24 48 72 96 120

Recall 0.80 0.78 0.76 0.73 0.72 0.71 0.71
nDCG 0.62 0.58 0.56 0.54 0.53 0.53 0.52

to thousands. we use a relative value for the number of neighbors. Table 6.5 shows the

results of the recall and nDCG values for different number of neighbors. As can be seen in

Table 6.5, even only select 40% of training data as the neighbors, the recall value is almost

80%. Therefore, we set the default number of neighbor as 40% throughout the experiments.

6.5.4 Parameters for kNN Voting Function

Finally, we test the impact of the decaying parameter λ in the voting function expressed

in Equation(5.1). The λ affects the importance of Apps according to their last used time.

Namely, every interaction decays exponentiation over time with a half life λ. As shown in

Figure 6.6, the best value occurs at 1 hour, and then the performances are worse when the λ

is higher.

34

Chapter 7

Conclusion

In this chapter, we propose an Apps usage prediction framework, KAP, which predicts Apps

usage regarding both the explicit readings of mobile sensors and the implicit transition relation

among Apps. For the explicit feature, we consider three different types of mobile sensors: 1)

device sensors, 2) environmental sensors, and 3) personal sensors. For the implicit features,

we construct an Apps Usage Graph (AUG) to model the transition probability among Apps.

Then, for each training datum, we could represent the next used App as the implicit feature

which describes the probability of transition from other Apps. Note that, since the next App

in the testing data is unknown, we propose an iterative refinement algorithm to estimate

both the probability of the App to be invoked next and its implicit feature. We claim that

different usage behaviors are correlated to different types of features. Therefore, a personalized

feature selection algorithm is proposed, where for each user, only the most relative features

are selected. Through the feature selection, we can reduce the dimensionality of the feature

space and the energy/storage consumption.

We integrate the explicit and implicit features as the feature space and the next used App

as the class label to perform kNN classification. In the experimental results, our method

outperforms the state-or-the-art methods and the currently used methods in most mobile

devices. In addition, the proposed personalized feature selection algorithm could maintain

better performance than using all features. We also evaluate the performance of KAP for

35

different types of users, and the results show that KAP is both adaptive and flexible.

36

Bibliography

[1] Peter A. Businger and Gene H. Golub. Algorithm 358: singular value decomposition of

a complex matrix [f1, 4, 5]. Commun. ACM, 12(10):564–565, 1969.

[2] Shuo Chen, Joshua L. Moore, Douglas Turnbull, and Thorsten Joachims. Playlist pre-

diction via metric embedding. In The 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012,

pages 714–722, 2012.

[3] Driss Choujaa and Naranker Dulay. Predicting human behaviour from selected mobile

phone data points. In UbiComp 2010: Ubiquitous Computing, 12th International Confer-

ence, UbiComp 2010, Copenhagen, Denmark, September 26-29, 2010, Proceedings, pages

105–108, 2010.

[4] Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. Smartphone usage in the wild:

a large-scale analysis of applications and context. In Proceedings of the 13th Interna-

tional Conference on Multimodal Interfaces, ICMI 2011, Alicante, Spain, November 14-

18, 2011, pages 353–360, 2011.

[5] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V. Chawla, Jinghai Rao, and Huan-

huan Cao. Link prediction and recommendation across heterogeneous social networks. In

12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium,

December 10-13, 2012, pages 181–190, 2012.

[6] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-

niques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

37

[7] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[8] Daisuke Kamisaka, Shigeki Muramatsu, Hiroyuki Yokoyama, and Takeshi Iwamoto. Op-

eration prediction for context-aware user interfaces of mobile phones. In 2009 Ninth

Annual International Symposium on Applications and the Internet, pages 16–22, 2009.

[9] Ashraf M Kibriya and Eibe Frank. An empirical comparison of exact nearest neighbour

algorithms. In Knowledge Discovery in Databases: PKDD 2007, pages 140–151. Springer,

2007.

[10] Ashraf Masood Kibriya. Fast algorithms for nearest neighbour search. PhD thesis, The

University of Waikato, 2007.

[11] Jacob Kogan. Feature selection over distributed data streams through convex optimiza-

tion. In Proceedings of the Twelfth SIAM International Conference on Data Mining,

Anaheim, California, USA, April 26-28, 2012, pages 475–484, 2012.

[12] Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. Temporal diversity in

recommender systems. In Proceeding of the 33rd International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR 2010, Geneva, Switzerland,

July 19-23, 2010, pages 210–217, 2010.

[13] Po-Ruey Lei, Tsu-Jou Shen, Wen-Chih Peng, and Ing-Jiunn Su. Exploring spatial-

temporal trajectory model for location prediction. In 12th IEEE International Confer-

ence on Mobile Data Management, MDM 2011, Lule̊a, Sweden, June 6-9, 2011, Volume

1, pages 58–67, 2011.

[14] Zhung-Xun Liao, Po-Ruey Lei, Tsu-Jou Shen, Shou-Chung Li, and Wen-Chih Peng.

Mining temporal profiles of mobile applications for usage prediction. In 12th IEEE Inter-

national Conference on Data Mining Workshops, ICDM Workshops, Brussels, Belgium,

December 10, 2012, pages 890–893, 2012.

38

[15] Zhung-Xun Liao, Wen-Chih Peng, and Philip S. Yu. Mining usage traces of mobile appli-

cations for dynamic preference prediction. In 17th Pacific-Asia Conference on Knowledge

Discovery and Data Mining, PAKDD 2013, Gold Coast, Australia, April 13-17, 2013,

2013.

[16] David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for social net-

works. In Proceedings of the 2003 ACM CIKM International Conference on Information

and Knowledge Management, New Orleans, Louisiana, USA, November 2-8, 2003, pages

556–559, 2003.

[17] Eric Hsueh-Chan Lu, Wang-Chien Lee, and Vincent Shin-Mu Tseng. A framework for

personal mobile commerce pattern mining and prediction. IEEE Trans. Knowl. Data

Eng., 24(5):769–782, 2012.

[18] M. Matsumoto, R. Kiyohara, H. Fukui, and M. Numao. Proposition of the context-aware

interface for cellular phone operations. In 5th International Conference on Networked

Sensing Systems, June 17-19, 2008, pages 233–233, 2008.

[19] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. Wherenext: a

location predictor on trajectory pattern mining. In Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Paris, France, June

28 - July 1, 2009, pages 637–646, 2009.

[20] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

[21] J. Rissanen. Hypothesis selection and testing by the mdl principle. The Computer

Journal, 42:260–269, 1999.

[22] Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T. Camp-

bell. Nextplace: A spatio-temporal prediction framework for pervasive systems. In Per-

vasive Computing - 9th International Conference, Pervasive 2011, San Francisco, CA,

USA, June 12-15, 2011. Proceedings, pages 152–169, 2011.

39

[23] Kent Shi and Kamal Ali. Getjar mobile application recommendations with very sparse

datasets. In The 18th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, pages 204–212, 2012.

[24] Choonsung Shin, Jin-Hyuk Hong, and Anind K. Dey. Understanding and prediction of

mobile application usage for smart phones. In The 2012 ACM Conference on Ubiquitous

Computing, Ubicomp ’12, Pittsburgh, PA, USA, September 5-8, 2012, pages 173–182,

2012.

[25] Xing Wu, Geoffrey Holmes, and Bernhard Pfahringer. Mining arbitrarily large datasets

using heuristic k-nearest neighbour search. In AI 2008: Advances in Artificial Intelligence,

pages 355–361. Springer, 2008.

[26] Bo Yan and Guanling Chen. Appjoy: personalized mobile application discovery. In

Proceedings of the 9th International Conference on Mobile Systems, Applications, and

Services (MobiSys 2011), Bethesda, MD, USA, June 28 - July 01, 2011, pages 113–126,

2011.

[27] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app launching

for mobile devices using predictive user context. In The 10th International Conference

on Mobile Systems, Applications, and Services, MobiSys’12, Ambleside, United Kingdom

- June 25 - 29, 2012, pages 113–126, 2012.

[28] Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. App recommendation: a contest

between satisfaction and temptation. In Sixth ACM International Conference on Web

Search and Data Mining, WSDM 2013, Rome, Italy, February 4-8, 2013, pages 395–404,

2013.

40

