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應用於超高效率 H.265 標準之高記憶體效率內嵌視訊解碼器 

 

 

學生：劉家麟                   指導教授：李鎮宜 教授 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

 

在現今產品裏，電路的趨勢為規模越龐大和複雜，把所有的功能整合在一顆IC

當中，便可以使產品輕薄短小甚至是可用於可攜式且具有吸引力的裝置。而當今

火紅的應用產品裏頭的視訊壓縮解碼器已從H.264/AVC演進到最新一代High 

Efficiency Video Coding/H.265，高效率的壓縮演算帶來高效能壓縮卻造成硬體實

現上的困難。這些困難，包含了硬體的成本，功率的消耗。在視訊解碼器的記憶

體裡，其中的模組包括內嵌預測器(Intra Predictor)、去區塊濾波器(De-blocking 

Filter)佔了總內部記憶體83%。因此，此作品提出了共享記憶體和記憶體階層兩

種方法，實現了低功率低記憶體的內嵌視訊解碼器，改善了記憶體空間，並且具

有架構可調整之特色，可支援最新一代影像壓縮編碼HEVC/H.265，使其能夠降

低整合的整本，及外部記憶體搬移功率消耗。以視訊解碼器細部來說，我們整合

了三個演算模組，內嵌預測器(Intra Predictor)，轉換器(Transform Coder)，去區塊

濾波器(De-blocking Filter)搭配記憶體共享，試圖降低記憶體空間，另外更以”預
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測”的方法利用記憶體階層來實現改善記憶體頻寬，更可以減少記憶體空間需求，

提高預測率，可以高達60%的記憶體節省效率，且可減少記憶體核心功率至19%，

以達到低成本低功率的需求。除此之外，內嵌視訊解碼器利用的波前平行處理，

達到最高吞吐量8Kx4K@30fps。最後此硬體在以Socle-tech Cheetah Design Kit 

(CDK)搭配外部記憶體(SDRAM)和CPU的協同合作，能夠在LCD螢幕上播放出正

確結果。 
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ABSTRACT 

 

In today’s product, the trend of the circuit is becoming large and complex, to integrate 

the functionality in an integrated circuit will make the product more portable and 

more attractive. Nowadays, the video decoder has been revolved from H.264/AVC to 

High Efficiency Video Coding (HEVC), high efficient compression algorithm brought 

the better performance but has poor impact on the hardware implementation in the 

video codec. These conflicts including the hardware cost, power consumption are 

poor to the chip performance. In the memory requirement, the intra predictor and 

deblocking filter are occupying almost 83% in the video decoder. As a result, the 

thesis has proposed line buffer sharing and memory hierarchy methods, and has 

implemented the low power and low memory requirement I frame decoder. The 
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architecture is reconfigurable, low memory cost and can support the newest video 

standard HEVC/H.265. Detail speaking, we integrate the intra predictor, transform 

coder and in-loop filter with proposed memory reduction algorithm, attempting to 

reduce the memory requirements. We also used memory hierarchy with 

prediction-based method to enhance the hit rate and lower down the power 

consumption. Both the line buffer sharing and memory hierarchy methods can achieve 

the 60% memory reduction ratio with 19% memory core power reduction for the low 

cost and low power application. Besides, the hardware has been designed using 

wavefront parallel processing to achieve super-high vision throughput 8Kx4K. Further, 

the I frame decoder is verified co-design with FPGA platform using Socle-tech 

Cheetah Design Kit (CDK) with SDRAM and CPU, and the results could be shown 

on the LCD panel. 
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Chapter 1

Introduction

1.1 HEVC Standard Overview

In the multimedia world, the technique of the compression is the core of the visual enter-

tainment. Overview of the compression standard established by the well-known institute ITU-T

and ISO/IEC is shown in Table 1.1. The ITU-T has built H.261, and H.263 standards used for

video telephony. Also, the ISO/IEC organizations had built the MPEG-1 and MPEG-4 visual.

Moreover, the two teams jointly cooperate to establish H.262/MPEG-2 which is used in digital

storage and H.264/MPEG-4 Advanced Video Coding (AVC). H.264/AVC has been developed

as well-known standard all over the world. The evolution of the incoming compression standard

focuses on the bit-rate savings at the same video quality. The video consumer products spread in

the market broadly such as digital TV, or set-top box, multimedia storage or blue-ray disk. Due

to the upcoming consumer electronics like the super-high resolution digital TV or high perfor-

mance internet video transmission, it is important to develop a new standard more efficient than

previous standard. Therefore, on June, 2012, the International Telecommunication Union (ITU)

and Motion Picture Expert Group (MPEG) have proposed the newest standard High Efficiency

Video Coding (HEVC). Moreover, the primary goal of the newest standard is to achieve 50

percent bit-rate reduction better than H.264/AVC. Its application is suitable for the super-high

resolution (8192x4320) digital TV. With the advanced algorithm and high performance coding
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tools, we believe HEVC will bring the burst contribution to the multimedia world in the future.

Table 1.1: Video Coding Standard including Market and Feature
Standard Target Market Target Feature

H.261 Video Telephony Low Delay
MPEG-1 Digital Storage Media (VCD) I-B-P Structure Reverse Play
MPEG-2 Video Broadcasting Interlaced Support
MPEG-4 Video on PC Objects

H.264 Digital Home Application Compression Efficiency > 2X
H.265 Ultra-High Resolution Bit Reduction Rate > H.264 50 percent

1.2 Profiles and Levels

Profiles and levels define restrictions on bit-streams with encoder side and also restrict on the

bit-streams with decoder side. In the HEVC standard, three profiles are defined as Main, Main

10, Main Still Picture, each supports particular coding tools respectively and also specifies what

is needed in the encoder and the decoder. In the Main Still Picture profile, only intra frames

are decoded without using any inter frames. Moreover, in the Main 10 profile, the resolution

bit is extended to 10 bits to achieve higher coding performance but with more complexities

in hardware implementation. Performance limitations for the encoder/decoder are defined by

the set of levels. Therefore, in the Table1.2, the luma pixel rate is 0.5Mpixel/s at level 1.0 to

4Gpixel/s at level 6.2, also the max luma size and bit rate are also listed.

In the HEVC, two configurations are also defined flexibly for the users to choose. One is

High Efficiency(HE), the other is Low Complexity(LC). The purpose of HE configuration is to

achieve the best performance in the bit-rate reduction at the same video quality. Therefore,

the features of the HE have the most novel coding tools compared to the LC. Contrarily, the

LC is targeted for the low-cost and low hardware implementation complexities. Therefore, it

lacks of some coding tools for achieving high performance at the same bit-rate savings. In

the Table 1.3, the coding tools for the encoder and the decoder between the H.264/AVC, High

Efficiency and Low Complexity are listed. The partition size enlarges from 16x16 to 64x64

with flexible coding unit size. Moreover, the Non Square Quad Transform (NSQT) is adopted
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Table 1.2: Decoder Level in HEVC
level Max luma pixel rate (sample/sec) Max luma pixel samples Max bit rate

1 552960 36864 128
2 3686400 122880 1000
3 13762560 458752 5000

3.1 33177600 983040 9000
4 62668800 2088960 15000

4.1 62668800 2088960 30000
4.2 133693440 2228224 30000
4.3 133693440 2228224 50000
5 267386880 8912896 50000

5.1 267386880 8912896 100000
5.2 534773760 8912896 150000
6 1002700800 33423360 300000

6.1 2005401600 33423360 500000
6.2 4010803200 33423360 8000000

for the transform size to adapt to the variable inter/intra block size. In the in-loop filter, sample

adaptive offset and adaptive loop filter which are the new-born filter machines also exist in the

High Efficiency configuration.

Table 1.3: Configurations comparison
Tools High Efficiency Low Complexity H.264

Partition Size 4x4-64x64 4x4-64x64 16x16
PU Partition Symmetric-Asymmetric Symmetric N-A
TU Partition 3-level RQT-NSQT 3-level RQT N-A

MV Prediction AMVP MRG AMVP MRG Spatial Median

Intra Prediction
Unified Directional Intra Unified Directional Intra

9 modes
(35 modes)LM Chroma (35 modes)

Transform
DCT 4x4-32x32 DCT 4x4-32x32 DCT 4x4

DST 4x4 DST 4x4 8x8
Interpolation Filter DCT-IF DCT-IF N-A

Motion Precision
1/4 pixel 7/8-tap 1/4 pixel 7/8-tap 1/2 pixel 6-tap

1/8 pixel 4-tap chroma 1/8 pixel 4-tap chroma 1/4 pixel bi-linear

In-loop Filter
De-blocking De-blocking

De-blockingSample Adaptive Offset Sample Adaptive Offset
Adaptive Loop Filter

Entropy Coding CABAC CABAC CABAC,CAVLC

Three types of situations have also been established to be used for different applications

in HEVC. All-Intra (AI), Random Access (RA), and Low Delay (LD) are defined for different
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(a)

(b)

(c)

Figure 1.1: (a). All Intra (b). Low Delay (c). Random Access

usage. All-Intra is used for all frames which are intra coded without using temporal domain

frames as shown in Figure 1.1 (a). The number on the frame of top is encoding order. Low

Delay is for the real time communication with least encoding delay, only the first frame is intra

coded, the others are P or B frames using inter prediction as shown in Figure 1.1 (b). Random

Access is used for hierarchical structure and I frame is put in the group of pictures periodi-

cally, and the encoding order follows the I frame first and then the P/B frames as shown in

Figure1.1(c).

The bit-rate saving performance compared with H.264/AVC between each configuration is

shown in Figure 1.2 . In this Figure 1.2, we can see that All Intra has little coding gain at

almost 28 percent, the most powerful case is random access in the high efficiency condition
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which can achieve almost 50 percent reduction in bit-rate savings. All the configurations can

achieve better bit-rate performance than H.264/AVC.
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Figure 1.2: Performance in AI, LD, and RA Configurations

1.3 Encoder and Decoder Block Diagram

The encoding process is shown in Figure 1.3. As the input video enters the video encoder,

the output will be the binary bit-streams. The encoder is composed of three main parts, one

is prediction stage, another is texture coding, and the other is binarization coding. In the pre-

diction stage, intra prediction and motion estimation which are the main contributions in the

compression standard are to predict the frames based on the spatial locality and the temporal

domain including back and forth. After the predicted frames are produced by one of the predict

engines, the output of the minus operation on the original frames and the predicted frames are

so called residual data. Residual data then enters into transform coding from the un-apparently

the spatial domain to the frequency domain. Due to human eyes insensitivity to high frequency,

the data can be quantized and discarded to reduce the reluctant data. Finally, the remaining data

will enter into the binarization, entropy encoding process. The purpose of the entropy encoder
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is to encode the symbols from other modules to the bit-streams. To point why the encoder has

the embedded decoder is that due to avoiding the mismatch between encoder/decoder side, the

inverse quantization and inverse transform are to reconstruct the residual data. The predicted

frames would add with residual data and become reconstructed frames. Due to the motion

compensation, reconstructed frames need to match in order to synchronize with encoder and

decoder side. Because of the block-based coding, artificial block effect produced by the in-

tra/inter prediction and discrete transform coding, will harm the video quality. Therefore, the

filter stage including deblocking filter, sample adaptive offset and adaptive loop filter are to

smooth the block edge between boundaries to improve the video quality. The decoder side is
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Figure 1.3: Video Encoder Diagram
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shown in Figure 1.4 , the main component parts are the same as the encoder. The bit-streams

enter into the entropy decoder and produce the syntax symbols and the transform coefficients.

The prediction stage and transform coding will be reconstructed by utilizing the synchronous

adders. Due to the block edge effect, the in-loop filters are used to improve the video quality in

order to smooth the visual badness.
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Figure 1.4: Video Decoder Diagram

1.4 Coding Features

HEVC has fruitful novel coding tools different from H.264/AVC described in last section.

In entropy coder, the Context Adaptive Binary Arithmetic Coding (CABAC) is still contained

in HEVC while the CAVLC is displaced. Due to the high data dependency, the throughput

of the entropy coder is limited insufficiently for hardware implementation due to the running

frequency. Therefore, the HEVC has adopted a novel technique wavefront parallel processing

(WPP) which can break out the strong data dependency to improve the system throughput. In

the prediction stage, due to the flexible block size partition, the inter prediction has adopted

advanced motion vector (MV) prediction not only from the neighboring blocks. Moreover, the

DCT-based interpolated filter and motion merge group (MRG) sharing all motion parameters in

the adjacent blocks are the main features in inter prediction. In the intra prediction, its angular

prediction and adaptive pre-filtering also enhance the prediction accuracy in order to remove
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more the redundancy. Furthermore, the transform coding structure contains the discrete cosine

transform and discrete sine transform to efficiently transform the residuals in to frequency do-

main. Because of the multiple block-based partition in HEVC, after the reconstruction between

transform coding and prediction stage, the artificial defect will be more apparently shown be-

tween the block edges. As a result, to further improve quality, the loop filter adds two coding

tools sample adaptive offset (SAO) and adaptive loop filter (ALF). The novel filters contain

adding offsets and adopting adaptive filter coefficients. The coding tool features will be de-

scribed in detail in next sections.

1.4.1 Coding Tree Unit Structure

The emerging HEVC standard has adopted flexible block partitions, the coding tree ap-

proach in HEVC has brought coding efficiency better than previous standard. In addition, the

block size not only supports 16x16 but also enlarges 64x64 with more efficient flexibility. A

slice contains multiple coding tree units (CTU) like macroblock in prior standard H.264/AVC.

It follows the double z scan order from left to right and top to down in the quad-tree based

partitions as shown in Figure 1.5 (a). The CTU has been further split into multiple coding units

(CU) recursively. The prediction unit (PU) is contained in the CU, the PU is adopted for in-

ter/intra prediction with more efficient prediction and also can improve the coding accuracy as

shown in Figure 1.5 (b). The main part for having better bit-rate reduction is adopted quad-tree

PU partitions. Transform unit is for discrete cosine transform, it includes which will decide

whether to further split or not.

1.4.2 High Level Parallelism

In the HEVC, the picture is split into many independent tiles which consist of multiple

Largest Coding Units (LCU). The shape of tiles can be rectangular or square, or the number of

tiles can be only on or several LCUs. The coding order of the tile is adopted as raster scan order,

also the internal tiles of LCUs are raster scan order too. The concept of tile is like the slice in

8



PU
CU

2Nx2N 2NxN Nx2N NxN 2NxnN 2NxnD nRx2N nLx2N

Symmetric type Asymmetric type

TU size flag=0

TU size flag=1

TU size flag=0

TU size flag=1

TU TU

(a) (b)

Figure 1.5: CU,PU and TU Partition

the pictures. Each tile could not share the motion parameters such as motion vectors produced

by the motion estimation. However, the deblocking filter can filter edge boundaries between

the different indepedent tiles for sharing the filter information such as boundary strength. As

a result of the broken dependencies between each tiles, the bit-stream encoding/decoding of

CABAC can be parallelism to achieve higher throughput without pulling up the frequency in

hardware. The coding efficiencies by utilizing parallel CPUs can be apparently gained to adapt

to the ultra-high resolution as shown in Figure 1.7. Moreover, the HEVC also has invented

a new parallelism technique called wavefront parallel processing. The processing is built at

the entropy coding part. As shown in Figure 1.6, in the original entropy part that as the final

LCU has finished the coding, the next line of the first LCU can start to encode. Therefore, the

strong data dependency tied the throughput of the entropy part. But in the HEVC, the Figure 1.6

points that the entropy coder at the next new line can begin when the top line of 2 LCUs have

already been finished. The data dependency would not be followed at the end of the line LCU.

Therefore, the multi-thread could enhance the degree of parallelism to improve the throughput

and frame rate.
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Figure 1.7: Tiles Processing in Multi-Core

1.5 Motivation and Design Challenges

Intra prediction uses spatial correlation to remove the pixel redundancy. At the same time,

intra prediction need to utilize the neighboring pixels including upper side and left side. In

terms of the video decoder, the neighboring pixels used for intra prediction must be un-filtered

before deblocking filter. As a result, with block-based coding in intra prediction, the bottom

line of predicted pixels after the reconstruction with IQ/IT needs to be saved due to the lower

boundary blocks unavailable. Therefore, the upper line pixels which the line buffer with size

of frame width should be stored in the hardware design. Consequently, the intra prediction

requires 1 line buffer. Also, deblocking filter’s processing order is the same as H.264/AVC, that

means vertical edge first and then horizontal edge to gurantee the block boundary is smoothed.
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However, in the HM-7.0 reference software design, deblocking filter uses frame-based level

coding while it requires large frame buffers storage without concerning the hardware cost and

implementation difficulties. This is inefficient in the architecture design, so the macroblock-

based coding is likewise adopted in deblocking filter. Therefore, with block-based design, the

upper 4 lines filtered pixels which are the neighboring pixels for the deblocking filter should be

loaded from the line buffers. After finishing vertical edge filtering, the bottom 4 lines of output

filtered pixels would be written back to the 4-line buffers with size still depends on the frame

width. Certainly, in the video decoder system, 5 line buffers all depending on the frame width

occupy a great portion of the internal memory in the chip area. In spite of achieving lower bit

rate compared with H.264 standard with same video quality in HEVC, the coding tools still

require the higher hardware cost including memory size, power consumption and chip area. In

the mean time, the analysis of the memory requirement for each resolutions shown in Figure

1.8 illustrates that although the storage for deblocking filter dominates the great amount of

memory size in the video decoder, intra prediction still occupies almost 15% to 20% percent

parts in the higher resolution. Also, in the Ultra-HD resolution, up to 15.36K byte memory is

required. Consequently, the equation 1.1 depicts that the whole memory requirements in the

video decoder system for the YCbCr (4:2:0). The memory profiling shown in Figure 1.9 is

also described that the decoder memory is dominated by the intra predictor and the deblocking

filter. Due to the line buffers for intra prediction and deblocking filter are dependent on the

frame width, total memory requirement is dominated by intra prediction and deblocking filter.

Naturally, how to reduce the line buffers of intra prediction for almost 20 percent memory

reduction in the video decoder is an important issue and motivation. Moreover, the memory

reduction of the deblocking filter is also important issue in the hardware design.

Total = Width(Intra) + 4×Width(DF ) +Others(Fixed : indepedent) (1.1)
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Figure 1.9: Intra and De-blocking occupies 5-line buffer in video decoder

1.6 Thesis Organization

This thesis is organized as follows. In Chapter 2, we study of the I-Frame decoding flow

including entropy coding, intra prediction, inverse transform and in-loop filter for the newest

standard HEVC and the previous work of the memory reduction will also be stated. Chapter 3

will first introduce the proposed algorithm and compares performance with previous designs.

Chapter 4 gives the hardware architecture of the I-Frame decoder system with wavefront parallel

processing. Chapter 5 presents implementation results, verification and performance evaluation

to verify the hardware design. Finally, conclusions and future works are given in Chapter 6.
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Chapter 2

Study of the I Frame Decoding Flow

The study of the I frame decoder will be detail described in this chapter. The I frame decoder

of our work shown in Figure 2.1 consists of intra prediction, inverse transform coder, and in-loop

filter. The algorithm of each components toward HEVC will be explained later. However, in the

low resolution long time ago such as MPEG-1 or MPEG-2, the memory requirement problem

is not apparent in the hardware design. However, the applications of HEVC is toward the Quad

Full-HD TV, therefore, the memory requirements of the intra prediction and deblocking filter

will rise up inefficiently to waste power consumption and area efficiency. In the approaches

of [1] and [2], their designs use the external memory and exploit memory hierarchy to decrease

the internal memories. The summary would talk about the deficiencies of their designs. The

sections below would describe the video component of each functionalities detaily as shown in

Figure 2.1.
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Figure 2.1: Decoder component
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2.1 Entropy Decoder

The purpose of the entropy coding is to encode the syntax elements of the video streams

in a compressed binary sequence for easily transmittion over the internet or any cable. The

elements include the transform coefficients after the DCT and zig-zag scan order, motion vectors

which are defined as the difference coordinate of the candidate block and current block, and

some picture, slice and block level headers. The elements will be encoded as fixed or variable

length binary codes or context-adaptive binary codes based on the element types. When the

entropy coding mode equals 0, the transform coefficients will be encoded as context-adaptive

variable length coding (CAVLC) by using run-level coding to represent continuous zeros. If

the previous elements after zig-zag scan order are numerous 1 or negative 1, the CAVLC will

use compact ways to represent 1 or negative 1. Moreover, the non-zero coefficients have strong

correlation in the neighboring blocks and the coefficients will be encoded by utilizing look-up

table.If the encode coding mode equals 1, the CABAC has better compression performance

by adaptively choosing the element probability model. The probability models will adaptively

change based on the element contexts. As shown in Figure 2.2, the binary bitstreams will firstly

binary arithmetic decode and output the non-binary information bin. Secondly, the context

model will update the probability depending on the bins which will be binarized into binary

code. If the binary codes are numerous 1s, then the probability will be higher. In the HEVC, the

throughput is higher than H.264/AVC due to the following improvements, breaking the model

dependencies, grouping the bypass bins and reducing coded bins.
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Figure 2.2: Entropy decoder
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2.2 Intra Prediction

In the intra prediction, it is one of the important prediction engines in the video coding stan-

dard. Since in the H.264/AVC standard, the intra prediction is adopted to improve the spatial

redundancy. When the previous frame changed abruptly, like scene change, therefore, the tem-

poral domain prediction will not guarantee the prediction accuracy. Unfortuntely, it may cause

the bit-rate higher and would transmit the prediction error. The purpose of the intra prediction is

to help the temporal domain prediction to compromise the scene change. Normally, the period

of the intra prediction in the group of pictures is the first one every IPPBIPPB or randomly in-

sert an I frame to shut down the error propagation induced by the temporal prediction. With the

help of the intra prediction, the H.264/AVC can achieve the hottest video applications during

the last decade. In HEVC, the call for proposal during the meeting aims to enhance the bit-rate

savings. Therefore, the intra prediction is urgently to further improve the prediction accuracy

than previous standard in H.264/AVC. The mode of intra prediction is an important issue to

be discussed. In H.264/AVC, the specification defines 9 modes for the 4x4 block, intra 4x4, 4

modes for 16x16 block, intra 16x16 as shown in Figure 2.3. The concept of the intra prediction

is to use neighboring pixels to predict the current block. Therefore, the modes in H.264/AVC

are sufficiently to predict frames from top, left, to right top corners. However, if the required

resolution is Ultra-HD or more, the prediction accuracy for the intra prediction apparently is in-

sufficient. Accordingly, the MPEG team aims to add more modes to further improve the coding

efficiency and gain more bit-rate savings. In the specification of HEVC, the modes are defined

as 35 more than previous standard as shown in Figure 2.4. Certainly, the results of the predicted

frames are more precisely than before. The basic concept of the spatial domain prediction is to

utilize the neighboring pixels including top and left reference pixels. The Table 2.1 shows that

intra mode number corresponding to the associated names.

In the mode number 1, Intra DC is to average the top row and left column reference pixels

same as the H.264/AVC. In addition, the HEVC standard defines the DC post filtering in order to

smooth the blocky effect as shown in Figure 2.5(d). In the direct mapping mode such as vertical,
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Figure 2.4: Direction of intra prediction in H.265

horizontal, diagonal from top right, bottom left and top left are the same as H.264/AVC. In the

horizontal-8 mode, if the pixels are unavailable, the pixels are the padding. Also, in order to

reduce the blocky effect, after the vertical and horizontal prediction, the post filter between

boundary is filtered with predicted pixels and neighboring pixels.In the mode range of 2-34, is
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Table 2.1: Intra Mode in HEVC
Intra Prediction Mode Associate Names

0 Intra Planar
1 Intra DC

Others Intra Angular
35 Intra from Luma (chroma)

(a) Vertical Mode (b) Horizontal Mode (c) Vertical+8 Mode

Average

(d) DC Mode

(e) Vertical-8 Mode

P
A
D
D
IN
G

(f) Horizontal-8 Mode

Figure 2.5: Intra Mode

named as Angular Directional Intra (ADI). In the ADI, directions can be classified into two

groups. As shown in Figure2.4, the group A uses positive angles while group B uses negative

angles. The positive prediction angles have the range from [2, 5, 9, 13, 1, 7, 21, 26], 0 and

32 angles are the direct mapping in the vertical+8, vertical-8 and horizontak-8. The angle is

defined as the displacement of the current pixel and top reference pixel in the vertical prediction.

Also, it is defined as the right current pixel and left column pixel in the horizontal prediction.

We first describe the group A of intra prediction in detail. In Figure 2.6, take mode 27 for

example, the current 4x4 block only needs top reference pixels. Different with H.264/AVC,

the current predicted pixel needs two inputs to do the linear interpolation. According to the

specification, the choice of the two pixels is adopted the angle calculation. As shown in Figure

2.6, the parameter POS0 will be added with angles which would be achieved by the look-up
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table to get POS1, then POS1 will next to be added with the same angles to get the POS2.

After finishing angle operations, the output of the intra prediction pixel is calculated in 32-tap

filtering. If the angles are negative, then the Table2.2 shows the negative angels corresponding

to the inverse angles. The processing step to do the intra prediction in negative angles is to first

flip the pixels from the side to the main as shown in Figure 2.7(a). Also, the pixel decision is

through the look-up table and then do the interpolation as the same as Figure 2.6.
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Figure 2.6: 4x4 block interpolation of intra prediction

Table 2.2: Intra Inverse Angles in HEVC
Intra Prediction Mode 2 3 4 5 6 7 8 9

inv Angle -256 -315 -390 -482 -630 -910 -1638 4096
Intra Prediction Mode 19 20 21 22 23 24 25 26

inv Angle -315 -390 -482 -630 -910 -1638 4096

(a) flip the pixels (b) inverse angle filtering

Figure 2.7: Inverse Angle

To gain the benefit of the homogeneous region in the I frame, HEVC proposed the new

planar mode interpolation. As shown in Figure 2.8, the planar operation requires two steps. In

the left filtering, pixel a is copied to the rightmost of the current pixel, the leftmost of the pixel
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is linear operation with pixel a. In the right filtering, the pixel b is also put in the bottommost

of the current pixel, the topmost pixel is linear operation with the pixel b. Finally, the bilinear

filtering will get the planar output. In concept of the intra prediction algorithm, it requires top

row and left column pixels for the input filtering. Further, in the hardware-based design, the

coding order follows the raster scan order. Because the next line of LCUs are not available

when decoding the first line of LCUs. Accordingly, the intra predicted pixels after the recon-

struction with transform data should be stored into the line memory. As the next line of LCUs

are ready to decode, the LCU would access the line buffer for the filtering. For not harming the

external memory bandwidth, the conventional design requires 1-line internal buffer for storing

the temporal pixels. However, the line buffer depends on the frame width would be higher if

the H.265 is targeted for the high resolution. How to reduce the line buffer is a big issue in the

decoder design discussed in next chapter.

Figure 2.8: Planar Prediction in H.265

Current block

Reconstructed block

Width

Pixels need to be 

stored 

Figure 2.9: Line pixels should be stored into libe buffer
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2.3 Transform Coding

Transform coding is widely adopted in video coding to compress the redundant data. As

the predicted pixels minus with original pixels in the encoder side, the residual data will be

transformed from the spatial domain into frequency domain. Due to the human eyes sensitive

in the low frequency, the data in the high frequency can be quantized to discard information so

as to compress video data. The transform in H.264/AVC adopts 3 types depending on the intra

mode and size. Hadamard transform for 4x4 array of luma DC coefficients in intra macroblock

predicted in 16x16 mode. Hadamard transform for 2x2 chroma block and DCT-based transform

in 4x4 block. The advantage of the DCT/IDCT in H.264/AVC is that it adopts integer transform

which can possibly no mismatch happened in encoder/decoder side. In addition, the core of the

transform can be implemented using only shift and additions. While the transform in HEVC has

increased up to 32-point transform matrix. Here, the 4-point and 8-point are shown in equation

2.1 and 2.2. The properties of HEVC transform are that the odd rows are even symmetric and

even rows are odd symmetric. Moreover, the elements in the smaller transform matrix are also

the elements of larger transform. The bold words are also the elements of 4-point transform

matrix. The properties make hardware easily implement.

H =



64 64 64 64

83 36 −36 −83

64 −64 −64 64

36 −83 83 −36


(2.1)
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H =



64 64 64 64 64 64 64 64

89 75 50 18 −18 −50 −75 −89

83 36 −36 −83 −83 −36 36 83

75 −18 −86 −50 50 86 18 −75

64 −64 −64 64 64 −64 −64 64

50 −89 18 75 −75 −18 89 −50

36 −83 83 −36 −36 83 −83 36

18 −50 75 −89 89 −75 50 −18



(2.2)

2.4 In-Loop Filter

Due to the block-based coding structure adopted in the video compression standard, the dis-

continuities between the block edge cause the blocking effect. The major source of the blocking

effect comes from the prediction stage, transform coding and quantization step. Due to the mul-

tiple shapes inter blocks adopted during the H.264/AVC and HEVC, the block discontinuities

exist followed by the predicted block. Also, the transform coding adopted block-based split

structure, the inverse discrete cosine transform cannot recover back the transform coefficient

completely in the decoder side. Moreover, in the quantization process, the step of the transform

coefficient aims to reduce the high frequency redundancy. However, in the reverse quantization

which is also called the scaling process cannot scale back completely. Above the reasons, the

MPEG team proposed filters which can smooth the blocking effect between block boundaries.

Three types of the filters, one is traditional deblocking filter, another is sample adaptive offset

which would add offset to the deblocked pixels, the other is adaptive loop filter which utilize

the adaptive filter coefficients in the encoder side, they are adopted in the HEVC which already

improved the video quality better than previous standard H.264/AVC.
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2.4.1 Deblocking Filter

The differences of H.264/AVC and HEVC in deblocking filter are shown in Table 2.3. In the

filter size, H.264/AVC adopted 4x4 filter size to guarantee that every edge would be smoothed.

In contrast to the H.264/AVC, being suitable for the high resolution, if the filter edge is still

4x4 size then the complexity and coding time will be sufficiently large than H.264/AVC. Ac-

cordingly, the HEVC decided to filter in 8x8 size not only to support larger resolution but also

enhances the coding efficiency. Moreover, to reduce the complexity in software/hardware im-

plementations, the boundary strength of the deblocking filter decreases to 0∼2. 0 means to skip

the deblocking filter, 1 means normal edge effect, 2 means strongest edge effect. In the filtering

order, it is the same as H.264/AVC from vertical edge first and then horizontal edge in the LCU.

The coding feature of the HEVC comes from the highly parallelism, wavefront processing and

tiles. In the deblocking filter stage, the parallelism is also adopted to improve the coding effi-

ciency. It still keeps the data dependency which is caused in the filtering order, vertical edge

first and then horizontal edge. In the software-based implementation, the deblocking filter op-

erates vertical edge filtering in the frame-level and then horizontal edge filtering will start after

the frame finished vertical edge filtering. This frame-level parallelism makes deblocking filter

more efficient and more fast while the strong data dependency has been broken down. The

main differences about the in-loop filter in H.264/AVC is that HEVC creates two coding mod-

ules to further improve the video quality, the sample adaptive offset which will first classify the

deblocked signals and add the specified offsets to the group signals, the other is adaptive loop

filter, it uses wiener filter to decrease the mean sum error between the original data and filtered

data, the multiple shapes of the filter are its advantage to flexibly merge into each region. The

details of the algorithm will be discussed later.

The blocking effect which is caused by the block-based coding unit is easily noticed by the

human eyes. However, not every block edge should be smoothed by the deblocking filter. Re-

dundant smoothing will cause the frame fuzzing, also cause the coding inefficiently. Therefore,
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Table 2.3: Deblocking filter in H.264 and H.265
HEVC H.264

Filter Size 8x8 4x4
Filter Order Vertical to Horizontal Vertical to Horizontal

Boundary Strength 0,1,2 0,1,2,3,4
Parallelization Yes No

Boundary 

Strength 

Constraint

Local Edge 

Detection

BS=2BS=1

BS=0

Not Edge

FalseTrue

Strong

/Normal 

Filter 

Detection

Strong FilterNormal Filter

Filter Unit Tree 

Figure 2.10: De-blocking filter in the filtering flow

the decision stage before filtering is vital to the deblocking filter. The filtering stage is classi-

fied for 3 steps, one is boundary strength calculation, another is local edge detection and the

other is normal/strong filter decision as shown in Figure 2.10. In the boundary strength classi-

fication, the strength number means how strong the blocking effect arise on the block edge. In

H.264/AVC, the strength number counts for 0∼4. In HEVC, in order to achieve low complexity,

the strength number is reduced to 0∼2. In Table 2.4, the filter condition is that if the samples

in the block meet the condition, then it corresponds to the boundary strength. In 2, if the sam-

ples in the block are intra coded, then the block effect is the strongest which means the edge is

over-sharped. In 1, if the samples of block p or q in a block unit has non-zero transform coef-

ficient and boundary is transform unit or use different reference pictures or different number of
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Table 2.4: Deblocking filter boundary strength in H.265
Filter Condition Boundary Strength

The sampls p or q in a coding unit
2

is intra prediction
The sampls p or q in a coding unit

1
non-zero tranform coefficients and
boundary is transform unit or use

different reference pictures or different
number of motion vectors

Others 0

motion vectors, then the edge is normal effect often seen in the P or B frames. Otherwise, the

deblocking filter is skipped for maintaining the edge contents. After the boundary strength is

decided, if it is greater than 0, the following local edge detection is performed. In the local edge

detection, its purpose is to guarantee whether the edge is exactly existed or not. In the Figure

2.11, the P block and Q block is 4x4 block size, and the equations of (1)∼(3) are the detection

process. The dp0 is following the sobel operation to achieve the operation results. After the sum

16

d

c

b

a

P block

Q block

dp0 dp3

dq3dq0

a b c d

e

f

g

h

Current

Available

dp0=a-2*b+c  (1)

Sum=dp0+dp3+dq0+dq3  (2)

If(Sum<beta(QP))  (3)

Filter On

Figure 2.11: Operation in deciding the filter on

of the dp0, dp3, dq0, dq3 in the P or Q block, the comparison with the beta and sum will decide

whether the edge would be filtered or not. The parameter beta is dependent on the quantization

step Q. The listed Q and beta are shown in the HM-7.1 reference software. As the sum is less
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than beta, then the filter is actually on. Summarily speaking, the deblocking filter is almost the

same function of the previous standard with less hardware complexity.

2.4.2 Sample Adaptive Offset

In the sample adaptive offset, the main point is to further reduce the distortion of the de-

blocked pixels. The concept of the sample adaptive offset is to classify the reconstructed pixels

into multiple categories. Each category corresponds to different offset. After the specified

classification, the offset finally adds with the deblocked pixels. The offset of each region and

classification type will be coded into the bitstreams. The HM-7.1 reference software reported

that SAO achieves 3.5 percent bit-rate reduction and up to 23.5 percent bit-rate reduction with

less than 1 percent encoding time increase. The followings are going to describe the algorithm

of classifications in the SAO. The offset may differ sample by sample in the same region. In

the low complexity configuration, two types of classifications are adopted in HEVC. The first

is Edge Offset, the other is Band Offset. In the Band Offset, the main method of classification

is to separate the pixels by the gray-level intensity into multiple regions as shown in Figure

2.12. In the 8 bits of gray-level, it ranges from 0 to 255, each sample will be classified into one

Minimum sample 

value

Maximum sample 

value

sample intensity

Figure 2.12: Sample Classification in HEVC

region. Therefore, the region of width is 8, totally 32 regions will separate the signals from low

intensity to high intensity. In the Figure2.13, the dotted line is original curve, the dash line is

the distortion curve which has to be added with offset to pull back the curve. In the bank k and

k+2, the positive offset is to pull up the distortion curves to the almost original curves, and in the

bank k+1, the negative offset is to pull down the over-intensity signals to the appropriate curves.

Besides, the region of index and offset will be signaled to the decoder to lessen the burden of
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Figure 2.13: Sample Classification in HEVC

the coding complexity. In the Edge Offset, the purpose is to compare with neighboring pixels

as shown in Figure 2.14. There are 5 categories which are listed in Table 2.5. In the category 1,

Figure 2.14: SAO Edge Offset Type in 4 mode

Table 2.5: Edge Offset Category
Category Condition

1 c<2 neighbors
2 c<1 neighbor and c==1 neighbor
3 c>1 neighbor and c==1 neighbor
4 c>2 neighbors
0 None of the above

if two neighbors are larger than current pixel c, then positive offset will be added to pull up the

intensity level. In the category 2, if the condition is true, then the positive offset is also added.

In the category 3 and 4, the negative offset are going to pull down the current pixel to smooth

the pixel value. As shown in Figure 2.15, the positive offset in the 1, 2 and 3 are shown to pull
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up the over-low intensity between the left and right pixels. In addition, the negative offset in the

3, 4 and 5 are to pull down the over-high intensity signals.

n1 c n2

Sample value

Category 1

n1 c n2

Sample value

Category 2

n1 c n2

Sample value

Category 2

n1 c n2

Sample value

Category 4

n1 c n2

Sample value

Category 3

n1 c n2

Sample value

Category 3

POSITIVE OFFSET

NEGATIVE OFFSET

Figure 2.15: SAO Offset type

2.4.3 Adaptive Loop Filter

The Adaptive Loop Filter of the incoming video standard HEVC is adopted in the in-loop

filter of the final stage. It is applied after the deblocking filter and sample adaptive offset in order

to further reduce distortion compared with original frame. Its innovation is to use Wiener filter

to reduce Mean Square Error related to the reconstructed frames. The algorithm of the Wiener

filter filter out the signals which are already polluted. Based on the communication theory, the

MMSE estimator is built on the wiener filter coefficient construction. The coefficients generated

by the Wiener filter are adaptive to the pixel content region. It means that in the encoder, the loop

of the producing filter coefficients is the time consuming due to the pixel content variable. In

the encoder, over 40% of the time is on the statistic data gathering. Therefore, the reduced time

complexity is a big issue in the implementation. The Figure 2.16 shown below is to describe the

differences between the original frame and the reconstructed frame should be the least during

the recursively wiener filter coding loop. The filter shape has multiple 2 dimensional filters

with cross diagonal. In the encoder side, the filter unit splitting is complete with recursive

structure. The Figure2.17 shown below is that the filter on/off is encoded recursively with

quad-tree structure. Also, the encoded parameters including filter on/off and filter coefficients
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e(n)SAO 
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Figure 2.16: ALF Concept

will be signaled to the decoder to lessen the decoder complexity. In the cross filter shape, as

shown in Figure 2.18. The number in the block means the same coefficient index which means

that as the product of the coefficient and the pixel value, the sum of the products would finally

clip to the appropriate value. The ALF in the decoder side is as described follows. First, parse

Figure 2.17: ALFOn or Off

the syntax element from the entropy decoder from the bitstream to decode the partition diagram

which is filter on/off and also construct the filter coefficients and the filter type. Second, map

the filter parameters into pixel regions to reconstruct the filter outputs. Thirdly, store the filtered

pixels to the temporary buffers because the filtered pixels would not be the filter input.
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Figure 2.18: ALF filter shape

2.5 Related Works of the Low Memory Architecture

The intra predictor and in-loop filter are the memory dominated coding tools in the video

decoder system. There are total 5 line buffers all depending on the frame width which occupies

a great portion of the internal memory in the chip area. In spite of high coding efficiency in

HEVC, the coding modules still require the higher hardware cost including memory size, power

consumption and chip area. In the meantime, the memory requirement for the video decoder

hurts the performance of the I frame decoder. In the intra prediction, it originally occupies

almost 15∼20 percent parts in the higher resolution. Also, in the Ultra-HD resolution, up to 8

Kbytes memory are required. For the deblocking filter, the macroblock-based coding results the

bottom 4 line of pixels not horizontal filtered. Therefore, the 4 line of pixels should be stored for

the next new line of LCU is ready. Consequently, in the next section, the traditional approaches

are aimed at discussing the intra prediction and deblocking filter memory usage. Due to the

line buffers for intra prediction and deblocking filter are dependent on the frame width, total

memory requirement is dominated by intra prediction and deblocking filter. Naturally, how to

reduce the line buffer of intra prediction for almost 20 percent memory reduction and also the

75% deblocking filter memory in the video decoder are important issue and motivation.
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2.5.1 Traditional Approaches

The memory in the design [3] is aimed at HD real-time decoding which the intra predictor

uses size of frame width with BRAM cache to store the data. The main contribution of the [4] is

to enhance the maximum throughput, which can reach 1991Mpixles/s for 7680x4320p. How-

ever, the memory for the intra predictor requires almost 15Kbytes which occupies the core chip

area 20 percent. In the traditional approaches of the intra predictor, almost all designs use 1-line

buffer to store the data.

For the deblocking filter approach, the design of the [5] has declared two SRAMs, the one is

144x32 bits single-port SRAM, the other is 16x32 bits two-port SRAM, also they exploit group-

of-pixel in the memory store instead of column-of-pixel or row-of-pixel. Also the other work of

the [6] has required two-port 160x32 bits SRAM to store the current macroblock and adjacent

temporary filtered pixels. The design utilizes bus-interleaved [7] to improve 7x performance

throughput while they exploit the emulated ARM cpu and embedded SRAM with size 96x32.

The work also utilizes three on-chip SRAM modules to store the luma, cb and cr data in the [8].

Also, the architecture uses two-port SRAMs with size 16x32 in [9]. However, the external

memory bandwidth problem did not make point to solve. Therefore, make all the pixels out of

the chip memory is not a good solution for the deblocking filter. Above designs although did

not use 4-line buffers to store the temporary data, the external memory bandwidth is a serious

problem happened in the system. External memory bandwidth causes power consumption and

also reduce the system throughput. In [10], the design requires frame size data buffer for storing

the Line-of-Pixel(LOP). Therefore, the 4-line data buffer is huge compared with above designs

which take on-chip SRAMs off the chip, but it does not need any external memory bandwidth.

In most designs in intra predictor and deblocking filter, they did not analyze the trade-off with

the external memory bandwidth and the internal memory requirement. Some of designs target

for the content buffer only using external memory, while others use frame-dependent size mem-

ory to neglect the SRAM size wasting. The next section will describe the methods to reduce

internal memory with the system viewpoint considering the power consumption and also the
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memory bandwidth.

2.5.2 Line-Pixel Lookahead

The design improves the memory hierarchy and reduce the embedded SRAMs for the intra

prediction, deblocking filter for achieving low power consumption in the [1]. The design aims at

copying the correlated data from larger memories which has high data-correlation to the smaller

memories. This concept enhances the access time latency and the embedded SRAM could be

set smaller with appropriate hit rate. The memory hierarchy adopts three-level including the

content, slice and DRAM. The slice memory allocates the all row reconstructed pixels for the

intra prediction and vertical filtered pixels for the deblocking filter. Further, they also proposed

the line-pixel-lookahead to eliminate the un-used pixels. The main idea of LPL scheme is to

Figure 2.19: Line pixel lookahead [1]

utilize spatial locality in the vertical direction, and looks ahead before decoding the next line

of pixels [1]. Not all the neighboring pixels should be kept in the internal memory for vertical

direction locality, most pixels are following the vertical mode similarity. A reduced embedded

SRAM stores the pixels in the above LCUs and the LPL scheme is to predict whether the pixels

would be stored in to the SRAM or not. Most pixels are determined as a horizontal-related

prediction in intra prediction of SKIP mode in deblocking filter. Two 2W-bit TAG buffers are
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required to record each prediction tag and perceive the contrast between Neighboring TAG

and Decoding TAG. The deblocking filter and intra predictor generates corresponding TAG

information to forecast whether the next line of pixel should be kept or not. To reduce the size

of memory, the Figure2.19 is exploited to reduce the miss rate. One OR gate, five comparators,

two multiplexers and inverter are used to implement [1]

2.5.3 DMA-like Buffer

The purpose of the DMA-like buffer is to store the correlated data in a MB in the external

memory if they are not used immediately [2]. Using the DMA-like buffer, the internal memory

can be reduced from 26K in 1080p resolution to only 0.5K bytes, which results in 98 percent

reduction in memory size. For the dual external memories adopted in the design to reduce the

required clock rate for memory access operations. With less than 10 percent increase in external

memory bandwidth, the trade-off between internal memory and external memory bandwidth

provides flexibility for system designers. However, in the Figure 2.20, about 83.4MB/s of

external memory bandwidth occupies the 9.5 percent in total 878MB/s by using this technique.

If the power consumption is calculated utilizing Micron Power Calculator, the result is 33.9mW,

which is larger than [1]. As a result, it is not good to put the almost internal data off the chip.

Figure 2.20: Memory reduction based on the DMA buffer [2]
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2.6 Summary

Therefore, in the proposed algorithm, the memory would not totally cut into the off-chip

memory. Also, the proposed I frame decoder is composed of the inverse discrete transform,

intra predictor and in-loop filter which will be prototyped in FPGA platform and demo the video

in the verification mechanism. Besides, in the next proposed algorithm, the proposed method

can further achieve lower memory size with higher hit rate based on the memory hierarchy

architecture compared with [1]. With the system pointview, the proposed method has better

performance including memory access power consumption, external memory bandwidth and

miss rate. The next chapter will describe the algorithm in detail.
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Chapter 3

Proposed Algorithm

Due to the algorithm of HEVC, the on chip memory is required for the hardware to use.

The huge on chip memory will cause the power consumption and waste the chip area efficiency.

According to the conclusion summarized in section 2.6, that the traditional approaches are com-

monly using internal line buffers to store the un-filtered pixels for intra prediction and filtered

pixels for in-loop filters.

3.1 Above Line Buffer Sharing

For system viewpoint, the intra predictor and deblocking filter in video codec are the mem-

ory dominated modules. In the hardware design concept, the correlated pixels need to be stored

into the line buffers for waiting the next line of LCUs are available. For intra prediction, the

reconstructed pixels stored into line buffer should be in the previous in-loop filter stage. The

deblocking filter utilizes 4-line buffers to store the pixels which are filtered in vertical edge only

as shown in Figure 3.1. The pixels would be used since the horizontal edge is started for the

next new line LCUs are available. Therefore, the notification of the memory accesses would be

impact to the hardware design. The concept of reducing internal memory in above line buffer

sharing is to schedule the data path between intra prediction and deblocking filter. In Figure

3.2, the 4-line buffer is composed of two parts, one is original line buffer which saves the re-
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constructed pixels for the intra predictor to use, and the other parts 3-line buffer is saving the

vertical edge filtered pixels for the deblocking filter to use. The details of data scheduling will

be described in the Algorithm 1 below.

Frame Width
1-Line Buffer

4

Load from memory

(a)

Un-filtered 

Pixel

Frame Width
4-Line Buffer

4
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Filtered Pixel

Load from memory

Figure 3.1: Intra and De-blocking Line Buffers
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Figure 3.2: Intra and De-blocking Line Buffers Sharing

Assume the block 0 is firstly in intra prediction stage, it loads the reconstructed pixels which

are un-filtered from the *B line buffer as shown in Figure 3.3. The pixels should be stored into

registers in order for the deblocking filter to use. After finishing the intra prediction process,

the predicted pixels will be added with transform residuals to become the reconstructed pixels

and then will be stored into the same address in the *B line buffer as shown in Figure 3.4. In

the Figure3.5, the block 1 will do the same intra prediction process, the block 0 will begin to
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Algorithm 1: Shared Above Line Buffer
Input: Intra Info and Deblocking Info
Output: Deblocked P ixels

1 forall the MBNo such that j ≤ Width/16 do
2 Intra Prediction:
3 step 1: Store bottom reconstruced pixels to 1-line bufferintra
4 Deblocking Filter:
5 step 1: Store bottom 3 line of vertical filtered pixels to 3-line bufferdf
6 end
7 Next Line P ixels Available
8 forall the MBNo such that j ≤ Width/16 do
9 Intra Prediction:

10 step 1: Load reconstruced pixels from 1-line bufferintra
11 step 2: Store bottom reconstruced pixels to 1-line bufferintra
12 Deblocking Filter:
13 step 1: Load 3 line of vertical filtered pixels from 3-line bufferdf
14 step 2: Load reconstruced pixels from 1-line bufferintra
15 step 3: Data recovery for the reconstructed pixels
16 step 4: Store bottom 3 line of vertical filtered pixels to 3-line bufferdf
17 end

4

Filtered

From *B

Intra

*B

*A

Block 0 Block 1
Un-Filtered

Intra/DF will use 

Figure 3.3: Intra and De-blocking Line Buffers Sharing

deblock. The above line pixels which are being loaded from the 3-line buffer *A and registers

are the input for the deblocking filter. After finishing the deblocking filter, the 12 pixels with

red dotted-circle in 4x4 block would be stored back into 3-line buffer *A as shown in Figure

3.6. The advantage of the line buffer sharing is that original 5-line buffers will be decreased to

the 4-line buffer about nearly 20% reduction.
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Figure 3.6: Intra and De-blocking Line Buffers Sharing
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3.2 Data Recovery

In the deblocking filter process in the HM-7.1 reference software, the filtering order is fol-

lowing the vertical edge first in the frame-level, and then horizontal edge is the last as shown in

Figure 3.7. However, in the hardware design, the frame-level is not possibly to be implemented

for the silicon area concern. As a result, the 16x16 macroblock based filtering is the hardware

trend. In the 16x16 macroblock-level, the right-most 4 4x4 blocks need to be stored into regis-

ters in order for the next right 16x16 macroblock, while the bottom 4 4x4 blocks need to store

into 3-line buffers for the next boundary 16x16 macrblock as shown in Figure 3.8.

As a result, in the line buffer sharing, the 12 pixels loaded from the 3-line buffer *A plus the

4 pixels loaded from the 1-line buffer *B which are not through the vertical edge filter should

be filtered again to make sure the data are valid. As shown in Figure 3.9, the pixels should be

in vertical edge filtering in order to guarantee the value correctness. The disadvantage of line

buffer is that before doing de-blocking filter, the data recovery should be done first, this will

cause some clock cycles waste. In the table,

8 Vertical Edge 8

H
o
r
iz

o
n

ta
l E

d
g
e

Figure 3.7: Deblocking filter in vertical edge and horizontal edge
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Figure 3.8: Memory sharing in deblocking filter
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3.3 Prediction-base with Memory Hierarchy

The in-loop filter is the most memory-dominated in the video decoder. Therefore, the effort

to reduce the internal memory for in-loop filter is worth doing it. To adopt the memory hierarchy

shown in Figure 3.10, the purpose is to reduce the deblocking filter 3-line buffer SRAM size for

saving the power consumption. The second level memory hierarchy is to exploit the high data

correlation which would be used often in the decoding process. With the support of the smaller

SRAMs with size decides by the designer, the pixels could be first stored and would reduce the

accessing from the external memory. In the proposed method, we exploit the memory hierarchy

by utilizing the spatial locality of neighboring pixels to reduce the line buffer size and the

access of the external memory. In the reference software HM-7.1, the deblocking filter adopts

the frame-level coding order. Therefore, in Figure 3.11, the edge detection process which is

described in the previous section is available due to the pixels below the boundary edge in

the Q block are available. However, in the hardware design, the frame-level coding is not the

perfect choice to follow due to the huge hardware buffer cost. As a result, if we adopt the 16x16

macroblock pipeline, the pixels below the boundary edge are un-available in the Q block. With

the unknown pixels below the boundary, the filter edge detection could not accurately judge the

edge whether it is over-sharp or smoothed.
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Figure 3.11: Deblocking filter in detection mode

To pre-judge whether the filter edge open or not, we proposed Prediction − based Judge

Engine to foresee the detection results. In Figure 3.12(a), although the pixels are un-available,

the equation 2 in the Figure 3.12(a) can only get two parameters dp0 and dp3. We can still

acquire the sum of dp0 and dp3. Assume that the spatial locality in the neighboring blocks, the

dp0 will be highly similarly to the dq0. Therefore, the prediction of the filter detection can be
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implemented as equation 3 as shown in Figure 3.12(b), that we assume if the sum of dp0 and

dp3 is smaller than the delta divided by 2, then the filter is opened. Further, to reduce the SRAM

size, the judge engine can be exploited to detect whether the vertical filtered pixels would be

used for the next new line of LCUs or just un-used. The judge engine will forecast the line

pixels would be used for the deblocking filter to decide whether the pixels should be stored into

the limited SRAM or just leave them in to the external memory.
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Figure 3.12: Deblocking Filter in Detection Mode with Prediction
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3.4 Summary

In the conclusion of the proposed algorithm including the shared above line buffer and the

memory hierarchy, the SRAM distribution of the total in the video decoder is highlighted in

Figure 3.13. In the Full HD resolution, the frame width is 1920-pixel long. As a result, in the

traditional approaches, the decoder requires 9.5 Kbytes. With the shared above line buffer, 20%

reduction could be achieved. Furthermore, with the reduction factor is set as 8. The reduction

could further achieve totally 85% in the system.
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Figure 3.13: Memory Comparison
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Chapter 4

Proposed Architecture

This chapter describes the proposed architecture with the line buffer sharing and memory

hierarchy. Besides, the main component of the proposed I frame decoder containing the inverse

transform, intra prediction, and de-blocking filter and adaptive loop filter will also be further

described. Meanwhile, to meet the super-vision TV standard 8Kx4K, instead of speeding up

the running frequency because of high power consumption, the wavefront parallel processing

architecture will also be mensioned.

4.1 Design Target

In Figure 4.1 shown, that the video decoder target is aimed at higher resolution, for the real-

time decode Full-HD [11], the architecture adopts pixel-level parallelism in each component

to meet the Full-HD specification. Moreover, in recent years, the video decoder is targeted at

multiview decoding, 3D-TV resolution, and super-vision TV applications. There is no doubt

that only appling the pixel-level parallelism could not support the above applications. Therefore,

the module-level parallelism is popular nowadays to meet the real-time decode in Ultra-HD

resolution. In [12]and [13], they apply double entropy decoders and four entropy decoders

respectively to further process more pixels in each pipeline stage.

For the beginning, the throughput of the I-Frame decoder is targeted at the super-high vision

TV standard 8Kx4K at 30fps.
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Figure 4.1: Higher throughput requires higher parallelism

Table 4.1: Pipeline stages vs throughput/frequency
ISCAS ISCAS ISSCC VLSI ISSCC JSSC ISSCC ISSCC
’05 [11] ’05 [14] ’07 [2] ’09 [15] ’10 [16] ’11 [12] ’12 [13] ’13 [17]

Throu- 2048x 1920x 1920x 1920x 4320x 4320x 7680x 3840x
ghput 1024 1080 1080 1080 2160 2160 4320 2160

@30fps @30fps @30fps @30fps @24fps @60fps @60fps @30fps
Frequ-

120MHz 100MHz 120MHz 200MHz 210MHz 175MHz 400MHz 200MHz
ency

Cycles
488 411 494 411 240 80 102 205

/16x16

The operation cycles for each stage should be enough to meet the 8Kx4K resolution. In

Table 4.1, the list are the video decoders throughput versus frequency and stage cycles for

each 16x16 block. In the [11], [14], [2], [15], the processing cycles in pipeline stage are about

400 500 cycles. However, if the frequency is fixed, the cycles would be divided by 16 for target-

ing 8Kx4K resolution. Limited cycles would be hard enough for the hardware implementation.

Consequently, the technique of the parallelism is utilized in the [12], [13] to support the higher

resolution.

In the system design of the I-Frame decoder, the target of architecture is to achieve real-time
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decode in 8Kx4K efficiently. Certainly, the wavefront parallel processing (WPP) in HEVC is

used to further enhance the coding throughput by utlizing parallel hardware architecture. In

the mean time, the hardware pipeline stages are decided as input buffer, inverse transform,

intra prediction, de-blocking filter, adaptive loop filter and finally the write out stage as shown

in Figure 4.2. With the support of the WPP, the decoder adopts the 4-parallel hardware to

achieve 1Gpixels/sec as shown in Figure 4.3. As a result, the I-frame decoder with 4-parallelism

wavefront parallel processing is proposed to enhance our decoder throughput.
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Figure 4.2: 6 pipeline stages
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Figure 4.3: 4 parallelism decoder to enhance throughput

4.2 Inverse Transform Coder

The high data rate 2-Dimensional inverse transform coder is proposed to accelerate the pixel

throughput for HEVC system. Certainly, the hardware can suitably arrange the data scheduling
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with up to 16 pixels/cycle with parallel processing engines in each 4x4 or 8x8 inverse discrete

cosine transform coder. The sections below will describe details of the transform core.

4.2.1 Hardware Sharing

The proposed inverse discrete cosine and sine transform hardware is based on the HEVC

algorithm. As shown in Figure 4.4 and Figure 4.5, the core of processing engine contains 8

multipliers and adders/subtractors in discrete cosine transform, while the core of discrete sine

transform contains 9 multipliers and 7 adders/subtractors. The rounding is implemented easily

by using wire shifting. Moreover, each processing engine can process 4 residuals in two cycles.
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Figure 4.4: 4x4 inverse discrete cosine transform coder

Therefore, the 4 numbers of processing engine can fluently process a 16x16 coefficient block

with 4x4 mode given by the entropy decoderin 16 cycles.

In Figure 4.6, the processing engine of the 8x8 transform coder can share the 4x4 processing

engine to reduce the hardware cost with about

Finally, the 4x4 and 8x8 inverse discrete cosine and sine transform coders would be integrated in

the I-Frame decoder. With 90nm CMOS technology, the system running frequency is 320MHz

which can achieve 5G pixels/sec pixel throughput with the gates. As shown in Table 4.2, the

throughput of the transform coder are listed the [18], [19], [20], [21] and [22] below. As the

frequency is normalized, the proposed transform coder can achieve high throughput 2x 15x

times higher.
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Figure 4.6: 8x8 inverse discrete sine transform coder

Table 4.2: Pixel throughput in different designs
CSVT TVLSI ISCAS ISOCC TVLSI

Proposed
’06 [18] ’08 [19] ’09 [20] ’10 [21] ’12 [22]

Throughput
800M 100M 149M 800M 167M 5G

(pixels/sec)
Frequency 100MHz 100MHz 149MHz 100MHz 167MHz 320MHz
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4.2.2 Time Scheduling for WPP

When it comes to the 4 parallelism of decoder, the high data throughput of the tranform

coder can output enough residual data in 1 pipeline stage for the 4 intra predictors and in-loop

filters as shown in Figure 4.7. Therefore, the hardware cost can be reduced from the original 4

numbers of transform coders to the 1 as shown in Figure 4.8.

INPUT BUF Transform INTRA DF ALF OUTPUT

Decoder #1 Decoder #2 Decoder #3 Decoder #4
Buffer 

Read
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Figure 4.7: Transform scheduling in WPP
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Figure 4.8: System design of the WPP architecture
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4.3 Intra Prediction

This section is talking about the architecture design of the intra predictor for HEVC stan-

dard. Figure 4.9 shown in here is intra predictor architecture with 1-line buffer for Ultra-HD

resolution. We partition 3 parts, one is reference sample selection, another is intra filter pro-

cessing, the other is write to buffer.
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Figure 4.9: Architecture design of the intra prediction

4.3.1 Reference Sample Selection

In the intra prediction, due to the limited external memory bandwidth, the required upper

reference buffer is used to temporily store the un-filtered pixels after the reconstruction with

residual data. As shown in Figure 4.10 , the unfiltered pixels stored in the upper reference

buffer which are fetched by the 16x16 block are used for the top 4 4x4 blocks, and the left

reference buffer is storing the previous block of the right-most pixels. When the mode ans size

information are coming , the reference sample selection will choose what pixels in the upper

and left reference buffer would be used based on the intra mode ans intra size. As shown in

Figure 4.11, if the mode belongs to the upper direction, then the samples would choose the A.

Similarly, the mode is DC or upper-left-corner direction, then B is chosen as the samples. Last,
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the range of C are chosen for the left mode directions.
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Figure 4.10: Reference sample read of the intra prediction
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Figure 4.11: Reference sample range of the intra prediction

4.3.2 Angular Intra Mode

As for the angular intra prediction, the angle is defined as the displacement of the current

pixel and top reference pixel in the vertical prediction. Also, it is defined as the right current
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pixel and left column pixel in the horizontal prediction. By using linear interpolation filter, the

predicted pixels can be generated by choosing appropriate reference samples. The hardware

challenge is the long operation cycles and how to design a reconfigurable intra predictor to

handle all of the angular intra mode. As shown in Figure 4.12, the reconfigurable hardware

design is proposed. In the first part, the intra mode would first convert into angles and then

calculate the position (POSn, n=03̃)between two input reference samples. During the positive
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Figure 4.12: Filter engine of the intra prediction

angles or negative angles, the reference samples are divided by main and side array. As the

vertical mode is chosen, the postive angle will demand the top reference samples as the main

array for prediction. Similarly, the horizontal mode in the positive angle will also demand the

left references as the same. Instead, for the negative angle, the projection of the side array into

the main array is the first step. In addition, the lookup table and add operation are to select

the needed samples for the prediction. For enhancing the prediction throughput to meet the

8Kx4K resolution requirement , we adopt 4-pixel parallelism to achieve 4 predicted pixels each

cycle. The Filter engine which consists of 3 adder/subtractor and 1 multiplier is to interpolate
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32-tap filter with 2 reference samples. The position (POSn, n=03̃)between two input reference

samples is the displacement calculated in the addition and shift step. Finally, the clip step is

implemented only by wire-shifting.

4.3.3 Planar Mode

When the block is coded as planar mode, Figure 4.13(a) depicts that the right column values

are produced by eliminating the left column and top right pixels. Also, the bot row values

are produced by eliminating the top row and bottom left pixels. Moreover, Figure 4.13(b), the

linear interpolation is implemented by the 3 subtractors with bottom row and the shifted top

row pixels, the left column and the top right are the same, respectively. This approach in the
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52



intra prediction makes the pixel values continuous at the block edges. Therefore, the chances

that applying the de-blocking filter to smooth the block effect are unusual. The technique of the

planar mode improves the smooth surfaces, while the transform residuals added with predicted

pixels would generate apparent blocking effect.

4.3.4 Write to Buffer

As the 16x16 block is coded 16 4x4 intra coded, the intra coding order is adopted doublez

scan order. Therefore, as shown in Figure 4.14, after the block 0 has been finished prediction

and has been reconstructed with the residual data. The rightmost pixels are to be used for the
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Figure 4.14: Write back operation of the intra prediction

right block 1, also, the bottommost pixels are to be stored for the below block 2. If the block

1 has finished, the rightmost pixels would need to store into the left reference buffer for the

righ block 4, again, the bottommost pixels would be written to the upper reference buffer for

the block 3 to use. When the block 2 begins, the left reference buffer are the previous block

reconstructed pixels as usual. Due to the raster order, the reconstructed pixels should be saved

on the block boundary in order for the incoming block to use. As a result, the blocks 10, 11, 14

and 15 should save the bottommost pixels to the internal SRAM.
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4.4 De-blocking Filter

This section is talking about the architecture design of the de-blocking filter. As shown in

Figure4.15, the de-blocking filter is partitioned into 4 parts, the edge detection unit, cache and

left reference buffer, double transpose buffers, and filter unit. Due to the proposed algorithm,
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Weak Filter

Skip 
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BS Rec Info Intra Info

Cache (1KB)

Left Reference 

Buffer

Weak FilterWeak FilterWeak Filter

Strong FilterStrong FilterStrong Filter

BS Decodea tableb table

Edge Detection Unit

Left Transpose Buffer

Right Transpose Buffer

WRITE

CONTROLLER

Figure 4.15: Architecture of the de-blocking filter

the 2nd memory hierarchy and line buffer sharing will be implemented in this section. Besides,

the block filtering order is different from the previous standard H.264. The proposed order will

also be described here.

4.4.1 Hybrid Filter Order

Deblocking filter should be considered in the memory access in terms of the filtering order.

The architecture [6] which follows the specification’s filtering order would produce repeated

memory accesses, that the intermediate pixels have to be stored and fetched many times for the

vertical and horizontal edge. Therefore, the memory accesses would be carefully considered for

the operation cycle issue. Generally, the deblocking filter occupies 1/3 computational complex-

ity at the H.264 video decoder [23] Differentiate with H.264 standard, the filter operates 8x8

54



1

2

3

4 5 6

7

8

9

10

12 13 14

11

15 16

19

17

18

20

21

22 23

24

16 Luma

Cb Cr
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boundaries instead of 4x4. In this sub section, we present the hybrid filter order still meeting

the HEVC standard to reduce the internal SRAM access to further improve the access efficiency

as shown in Figure 4.16. The vertical edges are filtered first, and then horizontal edges. The

block is sized to 4x4 large. The numbers in the circle represents the processing order in the

4x4 filter unit. To solve the problem of the repeated memory accesses, the proposed hybrid

scheduling could still meet the vertical edge first and then horizontal edge for following the

pixel dependency.
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4.4.2 Edge Detection Unit

Applying the hybrid filter order, the edge detection unit is proposed to guarantee the edge

whether over-sharped or not. As Figure 4.17 shows, the two parameters beta and Tc, which are

generated by utilizing the loopup table, quantization parameter, and also the boundary strength.

The sobel operators are usually used in the edge detection of the image processing [24]. How-

ever, in the HEVC standard, the sobel operation is little different than other normal sobel oper-

ators. In the sobel operator (4.1), the coefficients of the x directions are applying the bilinear

filter [1,−2, 1] instead. Therefore, if the edge would be correctly checked using sobel operators,

the double P and Q 4x4 block pixels should be send into the matrix multiplications. If the values

are smaller than the beta, which means that the boundary is actually existed ans not need to be

smoothed by appyling deblocking filter. However, if the values are bigger than the beta, the

boundary is over-sharped, therefore, applying the deblocking filter to improve the video quality

is important.
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(4.1)

4.4.3 Memory Hierarchy and Buffer Sharing

1. Line Buffer Sharing

As shown in Figure 3.5, the unfiltered pixels could be loaded for the deblocking filter to

use. While the intra coded block also could load the unfiltered pixels for intra prediction

in the pipeline stage. To be considered for the SRAM usage, since the deblocking filter

and intra prediction all need to load the SRAM at the same time, the un-avoided struc-

ture hazard would produce the problem as shown in Figure 4.18(a) Therefore, the data

scheduling of the single port SRAM would be issued to solve the memory conflict.
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Figure 4.18: Structure Hazard of the Line Buffer Sharing
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2. Memory Hierarchy

The proposed memory hierarchy reduces the internal SRAM for deblocking filter is very

effective for achieving low power consumption. In [1], the power of the internal memory

occupies about 70% of the video decoder. Due to the unnecessary storing all width of the

pixels in the internal SRAMs for deblocking filter horizontal edge filtering, the proposed

prediction-based cache mechanism is to eliminate the unusually-used pixels. Therefore,

the prediction-based mechanism could contribute to the smaller cache size. The mem-

ory hierarchy will decide the high data-relation from the intermediate filtered pixels from

the deblocking filter to the smaller cache.Therefore, with trade-off the external mem-

ory power consumption and the internal memory power, the analysis would be shown to

present the approapriate cache size.

3. Prediction-based Mechanism

The prediction-based mechanism is proposed to utilize the edge detection unit in vertical

direction and judge whether the boundary is to be filtered or not. It will decide whether

the vertical filtered pixels would be saved into the cache in order to improve the access

efficiency. The related pseudo code in 2 is shown that in the bottom edge of the 16x16

block, due to the unavailable pixels for the vertical direction Q block, the pre-edge de-

tection could be operated to forsee the edge filter on or off. Currently, the sobel results

may be half of the complete sobel results because of the spatial pixel locality. As the next

line of pixels are available, the edge detection for the top edge and also can check the tag

array to make sure hit or miss. In the next item, the miss rate analysis would be present

to prove the proposed method would out-perform the previous design [1]. Besides, the

architecture design of the prediction-based cache is shown in Figure 4.19.

4. Performance Evaluation

The proposed prediction-based mechanism with second memory hierarchy are applied

to forsee whether the pixels would be stored into the internal SRAM or not. Increasing

the internal memory size to store the intermediate pixels achieves lower external memory
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Algorithm 2: Prediction-based Judgement
Input: Sobel Results and beta
Output: TAG

1 forall the j such that j ≤ Width/4 do
2 Check Edge Detection Unit:
3 if Sobel Results<beta/2 then
4 Store to SRAM
5 TAG[j]← 1

6 end
7 end
8 Next Line P ixels Available
9 forall the j such that j ≤ Width/4 do

10 Check TAG[j]:
11 if TAG[j] = 1 and Sobel Results<beta/2 then
12 HIT L99
13 end

14 end
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Figure 4.19: Prediction-based with memory hierarchy

bandwidth. However, the high hardware cost and full-speed SRAM power consumption

will be a challenge for the video decoder. Therefore, to set the appropriate size of the

SRAM, the analysis of the internal SRAM power and external memory bandwidth power

consumption is important for the desicion. In [1], their work shows that in the factor

of 8 is the compromisation with consideration of external SDRAM bandwidth, SDRAM

power consumption and internal memory size. Due to the reduction factor of the internal

SRAM, the penality of the miss rate would increase coming with external memory power

consumption. As shown in Figure 4.20, the situation how the miss happens is that if the

guess filter on or off array is 1, which means the pixels are stored in the SRAM if the

size is still enough. However, if the the truth of the edge is on, but the top reference
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Figure 4.21: Miss rate analysis with memory reduction

sample pixels did not save in the internal SRAM, then the miss happens. Therefore, the

signal will send into the external memory and load the pixels. In addition to comparing

with [1], the proposed method can achieve better miss rate performance shown in Figure

4.21. With reduction factor of 2, the miss rate is reduded up to 36% average. As the factor

doubles higher, the reduction is not apparently shown due to the limited memory size.

4.4.4 Strong/Weak Filter

In the last part of the deblocking filter is the filtering operation. It smoothes the over-sharp

with discontinous edge. In this section, the proposed architecture of the strong and weak filter

design would be present. In the deblocking filter, the filter engine would take 4 pixels on left

and right side called P block and Q block. If the edge is strongly over-sharped, then the strong
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Table 4.3: Deblocking filter cycle count
ICME ISCAS ISSOC

Proposed
’03 [6] ’05 [25] ’10 [26]

Cycle/MB 504 250 243 231
Gate 18.91K 19.64 N/A 54K

filter is chosen. The 3 modified output on each side would be changed during several adders

interpolation, While, the weak filter is chosen, the modified 2 output on each side would be

changed respectively shown in Figure 4.22. In the modified deblocking filter architecture, we

adopt 4-filter parallelism respectively for strong and weak filter to enhance the coding speed. As

shown in Figure 4.23, as the P and Q block all enter into the filter engine including strong and

weak filter, the modified output would finally be chosen between the edge strength constraint. In

the architecture of the strong filter, due the common items could be shared during the hardware

resource, the area of the strong filter could be saved xx%. Also, the weak filter design composed

of the delta generation depending on the 4 pixels on each side.

P3 P2 P1 P0 Q0 Q1 Q2 Q3

Weak Filter Output

Strong Filter Output

Block EdgeP Block Q Block 

Filter Input

Figure 4.22: Input and output of the filter engine

4.4.5 Cycle Analysis

To sum up, the operational cycles during the deblocking stage is important to the pipeline

stage decision. Therefore, in the Table 4.3, the comparisons with the operation cycles are listed

below.
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4.5 Adaptive Loop Filter

Adaptive loop filter is the novel coding tools in the HEVC which does not exist in H.264.

ALF not only further improves video quality but also the bit rate reduction. However, the

computational complexity is very huge in the encoder and decoder due to the repeated internal

memory accesses. Therefore, in the proposed ALF architecture, the memory accesses need to

be reduced further in spite of the long cycle latency.

4.5.1 Merge Filter

In the original adaptive filter type shown in Figure 4.24(a), the 1-pixel output needs 19

number of memory accesses. The repeated memory access times would cost huge power con-

sumption and also would waste cycle count to become a system throughput bottleneck. As a

result, if the 16x16 macroblock finished filtering, it needs at most 19× 256 memory accesses at

the worst case. Therefore, in the proposed filter type, the concept is to make use of the repeated

pixels. To reduce the memory accesses times, we adopt 16-pixel filter which needs 76 pixels

accesses each 4x4 block. The total memory accesses after finishing the 16x16 macroblock are

76× 16 which reduces to 75% totally. Figure 4.24(b) is the 1-pixel filter type merge to the 4x4

filter type. The merger filter not only reduces memory accesses times but also reduce the cycle

count for the pipeline limitation.
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(b) Merge the filter to the 4x4 block

Figure 4.24: Adaptive Filter Merge to the 4x4 Block
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4.5.2 Architecture of the ALF

In the proposed architecture of the alf, we first describe the block ordering. We adopt raster

scan order rather than double z scan as shown in Figure 4.25(a). The reasons why we did not

follow the z scan order is that following the raster scan, the internal memory accesses would be

reduced due to reusing the pixels. As shown in Figure 4.25(b), the intermediate pixels from the

internal SRAM would be stored into the registers for the temporary used. We depart three types

of registers, the left, current, and right registers. During the filtering operation, the pixels in the

right registers would be shifted to the current register and also the current would move to the

left respectively as shown in Figure 4.25(c). In the interpolation filter in alf, the equation 4.2

is shown that the coefficients are already reconstructed by the entropy decoder. From Figure

4.24(a), the right-bottom number means the pixel index, and the middle number means the

coefficient number.

ALFFiltered = coef0× (I0 + I18) + coef1× (I1 + I17)

+coef2× (I2 + I16) + coef3× (I3 + I15)

+coef4× (I4 + I14) + coef5× (I5 + I13)

+coef6× (I6 + I12) + coef7× (I7 + I11)

+coef8× (I8 + I10) + coef9× (I9)

(4.2)

4.6 System Design of the I-Frame Decoder with Wavefront

Parallel Processing

In the system design of the I-Frame decoder with WPP, the Figure 4.26 is shown that the

inverse transform coder is adopted 1 set, while the intra predictor, deblocking filter and adaptive

loop filter are adopted 4 sets to enhance the video throughput for super-high vision 8K × 4K.

The section below would describe the pipeline stage how to write and the data scheduling of
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Figure 4.26: System architecture of the WPP

how to use 1-line buffer for intra predictor instead of 4 sets 1-line buffers.

4.6.1 Ping-Pong Buffer

The pipeline would synchronously write the intermediate output to the SRAM which is 256-

byte large. With the support of the ping-pong buffer writing and reading, the cycle count could

be efficiently used in order to meet the pipeline stage limitation. Each pipeline stage occupies

double 256-byte SRAMs and due to the 4-parallel processing, the totally amount of the pipeline

buffers are 40-KBytes.

4.6.2 Data Scheduling

Due to the wavefront parallel processing technique in the HEVC, the 4-parallelism of the

intra predictor does not requie 4 sets of the 1-line buffer. As shown in Figure 4.27(a), as the

top-most macroblock number 2 is started, the next line macroblock N + 0 is going to start.
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Therefore, the arrow which means the data dependency could still be maintained to meet the

HEVC specification. In the proposed hardware, we apply 4-parallel architecture to enhance the

throughput. In the memory of the intra predictor, because of the data dependency is still main-

tained, the reconstruced pixels for the first intra predictor did not need to store into the internal

line buffer. Moreover, in Figure 4.27(b), the intra predictor and deblocking filter, adaptive loop

filter, all of them can share the data for the next line. Therefore, the memory is applied 1 for the

intra predictor.
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Figure 4.27: Data scheduling of the WPP

4.7 Summary

In conclusion, the I-Frame decoder with 4-parallelism is proposed to achieve 4x throughput

for meeting the super-high vision 8K×4K. The next chapter would talk about the implementa-
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tion results of the proposed architecture and the verification platform would also be described.
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Chapter 5

Implementation Results and Performance

Evaluation

In this chapter, the hardware implementation results would be displayed the chip layout,

and the performance including power consumption contribution would also be displayed. We

have 3 sections, one is implementation results, another is platform introduction, the other is

performance comparison.

5.1 Implementation Results

In the hardware of the implementation, the circuit is used in hardware description lan-

guage, verilog. Moreover, the final implemention is synthesized using UMC-90nm 1P9M. Our

I-Framed decoder can run at highest frequency 320MHz with each stage 350 cycles.

Table 5.1: Chip details
Configuration Specification
Technology UMC90nm

Standard H.265
Throughput 7680x4320 @30fps
Gate Count 832K

Max Frequency 320MHz
Internal SRAM 2.6KB
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5.2 Verification Platform

The hardware and software integration would help the hardware verification in real case. As

the hardware component is synthesized using Xilinx ISE with place and route, the bit file would

finally upload into the Field Programmable Gate Array (FPGA). Besides, the software part is

utilizing the high performance ARM CPU to deal with handling efficiently. When the hardware

and software is successfully cowork to verify the hardware resource, the output of the results

would be displayed on the LCD panel.

5.2.1 Platform Introduction

For integrating the hardware and software resource to co-verify the proposed hardware, we

apply the CDK development platform to support the requirement. As shown in Figure 5.1,

the CDK board composed of the high performance CPU which is ARM926EJ − S processor

running at 266MHz. Moreover, the hardware test chip is also provided by the CDK, the Spartan-

3 XC3S4000 could provide 430K gates. Besides, the bus connecting the hardware component

and the ARM processor is important for the integration. Therefore, the CDK offers the AMBA

2.0 protocol utlizing Advanced High performance Bus (AHB) to communicate with slave and

master part as shown in Table 5.2.

Table 5.2: Hardware CDK peripherals
Item Peripherals
CPU AMR926EJ-S

SDRAM 64M-Byte
TFT-LCD 320x240 (RGB)
AHB Freq 50M Hz

FPGA xc3s4000
Protocol AMBA 2.0

5.2.2 Demo Results

1. Input Transfering

In the input transfering of the video decoder, the CPU processor is the main character to

70



Figure 5.1: Platform overview

handle it. In the software script, we use C programming which is highly portable to the

target machine, CDK. Also, the SDRAM controller and LCD panel display controller are

also controlled by the CPU processor. The system bus connecting with FPGA which is

composed of the hardware gate count is following the AMBA 2.0 protocol.

2. Video Decoder

In the demo architecture,the purpose of the CPU is to process all input controll informa-

tion and deal with the output results from the FPGA by the AHB. The external memory

would store the predicted frames and the filtered frames to prepare for displaying the

video sequences. In the hardware part, the AHB slave interface is to receive the input

information from the external memory. Moreover, the I-Frame video decoder system is

applied 1 set due to the limited FPGA gate counts. As the video decoder pipeline uses

16x16 macroblock, the output results would be stored into the external SDRAM using

the connecting AHB. Due to the YUV 4 : 2 : 0, the final results need to be changed to the
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Figure 5.2: Demo architecture

RGB(32bits) type in order for the TFT-LCD to display.

3. Display LCD

After the final results are the RGB(32bits), the CPU processor would controll the the

results from accessing external SDRAM to the framebuffer.

4. Design Flow

In Figure 5.3, the proposed demo design flow is shown here. In the beginning, we depart

hardware and software type for the function spliting from the HM reference software

model. After the hardware modules are verified by the testbench, the verilog code would

finally synthesize and place/route by using Xilinx. As the software and hardware are all

ready, the bitstream file would be loaded into the FPGA and the software excutable file

would check whether the LCD results right or not.
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5. Demo Pattern

In the pattern case, we test 3 patterns which are foreman, carphone, and mother/daughter.

As shown in Figure5.4, the demo platform is shown that our excutable file is transfered

by the USB. The data in the terminal are coming from the RS-232. Figure 5.5 is shown

the final LCD results for the intra predicted and loop filtered.

5.3 Performance Comparison

This section of the performance comparison contains power consumption, miss rate analysis

comparison and the hardware comparison which are all compared with the state-of-the-arts [27]

and [2].
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5.3.1 Power Consumption

In our first tape-out of the HEVC video decoder, the power profiling of the video decoder

components are shown here in Figure 5.6. The internal memory used in the HEVC decoder
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consumes about 36% of all in 97.4mW running at 294MHz, and in the memory power of 83%

occupies the deblocking filter and intra predictor memory power consumption. Therefore, if
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Figure 5.6: Power profile of the HEVC decoder

we apply our proposed method including shared above line buffer and exploit prediction-based

memory hierarchy to the completely HEVC video decoder, the total core power reduction could

achieve about 19.4% of all with 60% memory reduction for the full-HD resolution as shown in

Figure 5.7. For the fixed memory reduction factor set as 8, the miss penalty for the full-HD is
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Figure 5.7: Memory and power distribution of the proposed algorithm

shown in next section.
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5.3.2 Hit Rate Comparison

In the hit rate comparison with [1], the sequence name are list below with the memory

reduction factor 2 to 8. In the Figure 5.8, the hit rate could be improved from the 57.2% to 6.6%

range. Further, in the external memory bandwidth comparison, Figure 5.9 shows that the the
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Figure 5.8: Hit rate analysis comparison

reduction ratio of the external memory bandwidth is from 70.2% to the 32%.

5.3.3 Hardware Comparison

In the hardware comparison Table 5.3 shown, we list 2 state-of-the-arts compared our pro-

posed work. In the [27], the memory reduction factor is set 8 and its hit rate could achieve

19.2% while our work could achieve better than his design for the 22.4%. Therefore, the miss

penalty of the external memory bandwidth access is less than 9.5MB/sec for the 6.09MB/sec.
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In [2], although the SRAM is the least of all designs, but external memory bandwidth is the

largest and also the SDRAM power consumption.

5.4 Summary

In the summary of the implementation results, the proposed work could reduce internal

memory of the deblocking filter and intra predictor for about 85% reduction ratio in the Full-HD

resolution and the core power could be reduced to the 50% with only 3.6mW SDRAM power in

the miss penalty. Also, the proposed hardware design could process 8K × 4K resolution with

high throughput by utilizing the wavefront parallel processing.
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Table 5.3: Hardware comparison
ISSCC ISSCC

Proposed
’07 [27] ’07 [2]

Target Video 1920x1080 1920x1080 7680x4320
Resolution 30fps 30fps 30fps

Max Frequency 100MHz 120MHz 320MHz
Normalized

62.2M 51.8M 312.5M
Throughput
@100MHz pixels/sec pixels/sec pixels/sec
Gate Count

400K 115K 832K(Intra+In-loop
+Idct)

Algorithm
Line-Pixel

DMA Buffer
Share Line Buffer

Lookahead +Prediction-based
Memory (5×Width)

N/A
1-line buffer

Reduction ×12.5% (3×Width)
(Factor 8) ×12.5%(Factor 8)

SRAM
1.2KB 0.38KB 2.6KB

(Intra+In-loop)
Hit Rate 19.2% N/A 22.4%

External BW
9.5MB/sec 83.4MB/sec 6.09MB/sec

(Miss Penalty)
SDRAM Power

5.7mW 33.9mW 3.6mW
(Miss Penalty)
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we implemented an I-Frame decoder with parallelism technique and memory

reduction method to achieve low memory, high throughput HEVC video decoder.

From the system point of view, first considering the memory requirement in the total video

decoder, the intra predictor and deblocking filter occupy almost 83% totally and the power con-

sumption occupy about 15.3% of all. Therefore, with higher resolution, the memory require-

ments and power consumption would harm the hardware processing. By the proposed shared

above line buffer for the deleting 1-line buffer for deblocking filter, it could save the internal

memory to the 20% reduction ratio of all. Further, the prediction-based memory hierarchy for

containing 1/8 frame size of internal SRAM for the deblocking filter is limited for the system

point considering the external memory bandwidth and SDRAM power consumption. Compared

with the [27], the hit rate could achieve better performance in the SRAM reduction factor set

as 8. In Figure 5.8, the hit rate is improved about 14% in the Full-HD sequence. While the

external memory bandwidth in the miss penalty is reduced about the 36.1% in the Full-HD se-

quence. For accessing the external memory, the power consumes in the SDRAM would also

be considered to the system. In Table 5.3, the SDRAM power could also be reduced 36% for

only 3.6mW. In the proposed architecture, the I-frame decoder consists of the transform coder,
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intra predictor and in-loop filter which are improved the throughput which can be enhanced to

decode 8Kx4K super-high vision by using the wavefront parallel processing and the internal

memories could be reduced using the shared above line buffer and the second level memory

hierarchy, as a result, the proposed work could be applied to the super-high vision mulimedia

application and the low power portable devices.

6.2 Future Work

In the future work, the application of the multimedia video codec could be applied to the

intelligent video surveillance (IVS). The engine camera could track and record the motion of

the objects and also identify the information of the objects. Moreover, as the information of the

video could appeal to the viewers, the decoder must combine with the detection engine used

to specify the human’s gestures and also the cloud computing is the important technique to

complete this application.
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