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A Study on Mining Apps Usage Behavior in Smartphones

Student: Zhung-Xun Liao Advisor: Dr. Wen-Chih Peng
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National Chiao Tung University

ABSTRACT

Smartphones have played an'important role nowadays. There are more and more mobile applications
(Apps) designed for smartphones:=Users ¢ould download-and execute different Apps for different purposes,
such as camera, maps, browser, mp3‘player; and so on. Furthermore, users could buy (download), launch,
close and remove Apps in any location/and any-time due to the powerful mobility of smartphones.
Therefore, the usage behavior of smartphone obviously could be seen as a complex spatio-temporal data.
In this thesis, we will focus on 1) identifying users personal features for predicting their mobile Apps usage,
2) predicting the Apps to be launched regarding the usage trace, 3) modelling the dynamic preference
of Apps usage, and 4) discovering users mobile usage patterns which are represented as multi-domain
sequential patterns.

In the first work, we predict Apps usage for users according to their personalized features which
are collected from sensors attached on smartphones. We claim that the Apps usage behavior would be
affected by the hardware sensors, such as time, GPS, Accelerometer, etc. and the software sensors, such
as the Apps usage sessions. Thus, we could predict user’s Apps usage in advance through collecting those
sensor readings. However, to collect all of the sensors readings is impractical and inefficient. Here, we
only select a set of most useful sensors for every individual user. Therefore, the training data size and
the sensing energy could be reduced.

In the second work, the temporal profiles is discovered for mobile Apps. We identify the periodicity
of Apps via Fourier transform and consequently, the temporal profiles are thus constructed according to
the usage periods of Apps. Furthermore, due to the temporal information is eliminated after we perform

the Fourier transform, we have to identify the different sub-patterns which share the same period. Thus,

il



a hierarchical clustering is adopted to group similar sub-patterns and different groups are considered as
different usage behaviors. Finally, we propose a scoring system based on Chebychev inequality which
calculate the usage probability without performing integral on the usage density probability function.

In the third work, we observe that a user’s preference to the mobile Apps (s)he has installed is dynamic.
However, users seldom rate their Apps and even re-rate them when their reference is changed. In this
work, we collect the mobile Apps usage trace of a user and model the current preference according to
previous preference and the current usage counts. However, the usage count does not reflect the preference
directly. For example, for some users, the usage count of an IM App is definitely higher than that of a
productive App. Therefore, we model the usage trend by linear regression and thus the preference change
is based on the slope of the regression line.

In the forth work, we design a novel sequential pattern across multiple sequence databases to model
the mobile Apps usage behavior and proposed an efficient algorithm, called PropagatedMine. The pro-
posed PropagatedMine performs sequential pattern mining in one starting sequence database, and then
propagate the discovered sequential patterns to other sequence databases. Furthermore, to reducing the
amount of propagated patterns, arlattice structure is propesed to organize and composes multi-domain

sequential patterns.

iv
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Chapter 1

Introduction

With the increasing number of mobile Apps developed, they are now closely integrated into daily life.
Users install more and more Apps on their.smartphones: Therefore, predicting Apps usage is a prerequisite
for helping users 1) find the Apps they. want to use and improve the user experiences; 2) pre-load complex
resources, such as the graphics and'GPS pesitioning, and launch Apps faster; 3) remove the useless Apps
from memory to save energy consumption. Furthermore, the Apps usage reflects the activity users are
doing. We can better capture the users behavior via discovering their Apps usage. Many research works
indicated that the Apps usage highly depends on the context information, such as time, location, mobile
sensor readings, and the Apps usage:

Figure 1.1 depicts the overview of this dissertation, where the first and second works focus on predict-
ing Apps usage by considering feature selection and temporal information respectively. The third work
models the dynamic preferences of users, and the forth work discovers the sequential patterns across
multiple categories of Apps. In the future, work 3 and work 4 could be utilized to enhance the accuracy

of Apps usage prediction. The brief introduction of each chapter in this dissertation is given as follows:

App Usage Prediction
1. Personalized

Features <

GP,S’ / 2. Temporal :

GSM Signal, Feature '

WiFi Signal, | ]
Time, ]
App Usage,

=1

\I 3. Dynamic Preferences |>-:

4. Multi-domain
Sequential Pattern

Figure 1.1: Overview of this dissertation.



1.1 On the Feature Discovery for App Usage Prediction in Smart-
phones

We develop a framework to predict mobile Apps that are most likely to be used regarding the current
device status of a smartphone. Such an Apps usage prediction framework is a crucial prerequisite for fast
App launching, intelligent user experience, and power management of smartphones. By analyzing real
App usage log data, we discover two kinds of features: The Explicit Feature (EF) from sensing readings
of built-in sensors, and the Implicit Feature (IF) from App usage relations. The IF feature is derived by
constructing the proposed App Usage Graph (abbreviated as AUG) that models App usage transitions.
In light of AUG, we are able to discover usage relations among Apps. Since users may have different
usage behaviors on their smartphones, we further propose one personalized feature selection algorithm.
We explore minimum description length (MDL) from the training data and select those features which
need less length to describe the training data. The personalized feature selection can successfully reduce
the log size and the prediction time: Finally, we adopt the kNN classification model to predict Apps
usage. Note that through the features selected by the propesed personalized feature selection algorithm,
we only need to keep these features, which in turn reduces the prediction time and avoids the curse of
dimensionality when using the kNN classifier. We conduct a comprehensive experimental study based on
a real mobile App usage dataset.«The results demonstrate the effectiveness of the proposed framework

and show the predictive capability for App usage prediction:

1.2 Mining Temporal Profiles of Mobile Applications for Usage
Prediction

As many research works indicate the prediction ability of temporal information, we take only the temporal
information into account and see how is the performance. Due to the proliferation of mobile applications
(abbreviated as Apps) on smart phones, users can install many Apps to facilitate their life. Usually,
users browse their Apps by swiping touch screen on smart phones, and are likely to spend much time on
browsing Apps. We design an AppNow widget that is able to predict users’ Apps usage. Therefore, users
could simply execute Apps from the widget. The main theme of this chapter is to construct the temporal
profiles which identify the relation between Apps and their usage times. In light of the temporal profiles
of Apps, the AppNow widget predicts a list of Apps which are most likely to be used at the current time.
AppNow consists of three components, the usage logger, the temporal profile constructor and the Apps
predictor. First, the usage logger records every App start time. Then, the temporal profiles are built by
applying Discrete Fourier Transform and exploring usage periods and specific times. Finally, the system

calculates the usage probability at current time for each App and shows a list of Apps with highest



probability. In our experiments, we collected real usage traces to show that the accuracy of AppNow

could reach 86% for identifying temporal profiles and 90% for predicting App usage.

1.3 Mining Usage Traces of Mobile Apps for Dynamic Prefer-
ence Prediction

Due to a huge amount of mobile applications (abbreviated as Apps), for Apps providers, the usage
preferences of Apps are important in recommending Apps, downloading Apps and promoting Apps. We
predict and quantize users’ dynamic preferences by exploring their usage traces of Apps. To address the
dynamic preference prediction problem, we propose Mode-based Prediction (abbreviated as MBP) and
Reference-based Prediction (abbreviated as RBP) algorithms. Both MBP and RBP consist of two phases:
the trend detection phase and the change estimation phase. In the trend detection phase, both algorithms
determine whether the preference of an.App is increasing or. decreasing. Then, in the change estimation
phase, the amount of preference change is calculated. In particular, MBP adopts users’ current usage
mode (active or inactive), and then estimates the amount of change via our proposed utility model. On
the other hand, RBP calculates an expected number of usage as a reference, and then builds a probabilistic
model to estimate the change ofipreference by comparing the realusage and the reference. We conduct
comprehensive experiments using two App usage traces-and one music listening log, the Last.fm dataset,
to validate our proposed algorithms. The experimental results show that both MBP and RBP outperform

the usage-based method that is based solely on 'the number of usages.

1.4 Mining Sequential Patterns Across Multiple Sequence Databases

Given a set of sequence databases across multiple domains, we aim at mining multi-domain sequential
patterns, where a multi-domain sequential pattern is a sequence of events whose occurrence time is within
a pre-defined time window. We first propose algorithm Naive in which multiple sequence databases are
joined as one sequence database for utilizing traditional sequential pattern mining algorithms (e.g., Pre-
fixSpan). Due to the nature of join operations, algorithm Naive is costly and is developed for comparison
purposes. Thus, we propose two algorithms without any join operations for mining multi-domain se-
quential patterns. Explicitly, algorithm IndividualMine derives sequential patterns in each domain and
then iteratively combines sequential patterns among sequence databases of multiple domains to derive
candidate multi-domain sequential patterns. However, not all sequential patterns mined in the sequence
database of each domain are able to form multi-domain sequential patterns. To avoid the mining cost in-
curred in algorithm IndividualMine, algorithm PropagatedMine is developed. Algorithm PropagatedMine

first performs one sequential pattern mining from one sequence database. In light of sequential patterns



mined, algorithm PropagatedMine propagates sequential patterns mined to other sequence databases.
Furthermore, sequential patterns mined are represented as a lattice structure for further reducing the
number of sequential patterns to be propagated. In addition, we develop some mechanisms to allow
some empty sets in multi-domain sequential patterns. Performance of the proposed algorithms is com-
paratively analyzed and sensitivity analysis is conducted. Experimental results show that by exploring
propagation and lattice structures, algorithm PropagatedMine outperforms algorithm IndividualMine in
terms of efficiency (i.e., the execution time).

The rest of the paper is organized as follows. Chapter 2 discusses the explicit and implicit features
and personalized feature selection algorithm. Chapter 3 reduces the Apps usage problem to only consider
the temporal information. Chapter 4 proposes two dynamic preferences prediction algorithms. Chapter 5
states the individualMine and propagatedMine algorithms to discover sequential patterns across multiple

domains. Finally, this dissertation is concluded in Chapter 6.



Chapter 2

On the Feature Discovery for App

Usage Prediction in Smartphones

2.1 Introduction

With the increasing number of smartphones, mobile applications (Apps) have been developed rapidly to
satisfy users’ needs [76, 15, 63, 72].. Users can easily download ‘and install Apps on their smartphones
to facilitate their daily lives. For example,users use their smartphones for Web browsing, shopping and
socializing [46, 4]. By analyzing the collected real-Appsusage log data, the average number of Apps in
a user’s smartphone is around 56. For some users, the number of Apps is up to 150. As many Apps
are installed on a smartphone, users need to spend more time swiping screens and finding the Apps they
want to use. From our observation, each user has on average 40 launches per day. In addition, the launch
delay of Apps becomes longer as their functionality becomes more complicated. In [73], the authors
investigated the launch delay of Apps. Even simple Apps (e.g., weather report) need 10 seconds, while
complicated Apps (e.g., games) need more than 20 seconds to reach a playable state. Although some
Apps could load stale content first and fetch new data simultaneously, they still need several seconds to
complete loading.

To ease the inconvenience of searching for Apps [41, 64] and to reduce the delay in launching Apps [73],
one possible way is to predict which Apps will be used before the user actually needs them. Although
both the iOS and Android systems list the most recently used (MRU) Apps to help users relaunch Apps,
this method only works for those Apps which would be immediately relaunched within a short period.
Another common method is to predict the most frequently used (MFU) Apps. However, when a user has
a lot of frequently used Apps, the MFU method has very poor accuracy. In our experiments, these two
methods are the baseline methods for comparison.

Recently, some research works have addressed the Apps usage prediction problems [73, 41, 64]. In [41],
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Figure 2.1: Overview of kNN-based App Prediction framework.

a temporal profile is built to represent the usage history of an App. The temporal profile records the
usage time and usage period of the App. Then, when a query time is given, the usage probability of each
App could be calculated through comparing the difference between the temporal profile and the query
time. However, since they only consider the periodicity feature of Apps, some Apps with no significant
periods cannot be predicted by their temporal profiles. In [73], the authors adopted three features to
predict Apps usage: time, location, and«used Apps: Based on those three features, they designed and
built a system to remedy slow App. launches. Howevers they always use these three features to predict
different users’ usage, which is impractical-as users. could have different usage behavior. For example,
the location information could be'less useful for those users who have lower mobility. We claim that the
features which are able to accurately predict-Apps usage are different for different users and different
Apps. The authors in [64] collected 37 features from- accelerometer, Wi-Fi signal strength, battery level,
etc., and proposed a Naive Bayes classification method to predict Apps usage. However, a Naive Bayes
classification method needs sufficient training data to calculate the conditional probability, which does
not always hold. Therefore, the system would fail to predict Apps if there are not exactly the same
instances existing in the training dataset. In addition, they still apply all the same features to each user,
instead of selecting personalized features for different users with different usage behaviors.

In this chapter, we adopt the concept of minimum description length (MDL) to select personalized
features for different users and propose a kNN-based App Prediction framework, called KAP, to predict
Apps usage. Once we distinguish the useful and useless features, only the useful features need to be
collected. Therefore, the size of the log data could be reduced. The overall framework is shown in
Figure 2.1. KAP investigates features from both explicit and implicit aspects. The explicit feature is
a set of sensor readings from built-in hardware sensors, such as GPS, time, accelerometers, etc. On
the other hand, the implicit feature is referred to as the correlations of Apps usage. To capture these
correlations, the implicit feature is represented as the transition probability among Apps.

For the explicit feature, we focus on three types of hardware sensors: 1) device sensors, such as free
space, free ram, and battery level, 2) environmental sensors, such as time, GSM signal, and Wi-Fi signal,
and 3) personal sensors: acceleration, speed, heading, and location. We claim that the usage of different

Apps is related to different types of sensors. Obviously, the advantages of selecting sensors for the explicit



feature is that it reduces the effect of noisy data and also saves power and storage consumption for logging
data and performing the prediction.

For the implicit feature, we calculate the transition probability for each App. However, the previous
works [73, 64] only take the usage order into account, and not the time duration between Apps. We
claim that the length between Apps usage means different things. For example, users may take pictures
via a camera App and upload those pictures to Facebook. However, some users may upload pictures
immediately, while others would upload them when they have a Wi-Fi connection. Therefore, the time
duration between camera and Facebook use depends on different users and different usage behaviors.
To model the usage relation among Apps, an Apps Usage Graph (AUG), which is a weighted directed
graph, is proposed. The weight on each edge is formulated as an exponential distribution to describe
the historical usage durations. Based on AUG, the implicit feature of each training instance is derived
by traversing the AUG. Consequently, the implicit feature of each testing case is derived by an iterative
refinement process.

With both explicit and implicit features, KAP adopts.a KNN classification model to predict Apps
usage which is represented as class labels.—In the experimental'study, the proposed KAP framework
outperforms both baseline methods and achieves accuracy of 95%.. We also show that the personalized
sensor selection for the explicit feature is efficient and effective. In addition, the implicit feature is useful
for improving the prediction accuracy of KAP.

The major contributions of this research work are summarized as follows.

e We address the problem of Apps usage prediction by discovering different feature sets to fulfill
different users’” Apps usage behavior, and propose the concept of explicit and implicit features for

Apps usage prediction.

e We estimate the distribution of the transition probability among Apps and design an Apps Us-
age Graph (AUG) to model both Apps usage order and transition intervals. Two algorithms are
proposed to extract the implicit features from the AUG graph for training and testing purposes

respectively.

e We propose a personalized feature selection algorithm in which one could explore MDL to determine

a personalized set of features while still guaranteeing the accuracy of the predictions.

e A comprehensive performance evaluation is conducted on real datasets, and our proposed framework

outperforms the state-of-the-art methods [64].

The rest of this chapter is organized as follows. Section 2.2 investigates the related works which discuss
the conventional prediction problem and Apps usage prediction. Section 2.3 introduces the explicit and
implicit features. Section 2.4 presents the mechanism of personalized feature selection. Section 2.5

conducts extensive and comprehensive experiments. Finally, this chapter is concluded with Section 4.6.



2.2 Related Works

To the best of our knowledge, the prediction problem of Apps usage in this chapter is quite different
from the conventional works. We focus on not only analysing usage history to model users’ behav-
ior, but on personalizing varied types of features including hardware and software sensors attached to
smartphones. The proposed algorithm selects different features for different users to satisfy their usage
behavior. Although there have been many research works solving the prediction problem in different
domains, such as music items or playlist prediction [10], dynamic preference prediction [44, 37], location
prediction [38, 62, 50], social links prediction [17, 45], and so on, the prediction methods are only based
on analysing the usage history. In [33], the author selected features from multiple data streams, but the
goal is to solve the communication problem in a distributed system.

Currently, only a few studies discuss mobile Apps usage prediction. Although the authors in [49]
adopted location and time information to improve the accuracy of Apps usage prediction, the total
number of Apps is only 15. Concurrently, in-[31], the-authors stated that the prediction accuracy could
achieve 98.9%, but they still only. focus on_predicting 9 Apps from a set of 15. In [73], the authors
solved the prediction problem through multiple features from 1) location, 2) temporal burst, and 3)
trigger /follower relation. However, they did not analyze the importance of each feature. Therefore, for
different users, they always use the same'three features to predict.their Apps usage. In [64], the authors
investigated all possible sensors attached to a smartphone and adopted a Naive Bayes classification to
predict the Apps usage. However, collecting all.possible sensors is inefficient and impractical. Moreover,
the useful sensors for different users could vary according to users’ usage behavior. We claim that for
different users, we need to use different sets of features to predict their usage. In this chapter, we collect
only the subset of all features which are personalized for different users.

This chapter is the first research work which discusses how to select suitable sensors and features for
different users to predict their Apps usage. Through the personalized feature selection, we could perform
more accurate predictions for varied types of usage bahavior, reduce the dimensionality of the feature
space, and further save energy and storage consumption. In addition, the proposed KAP framework

derives the implicit feature by modelling the usage transition among Apps.

2.3 Explicit and Implicit Features

In this chapter, we separate the features into two main categories: the explicit feature and the implicit
feature. The explicit feature represents the sensor readings which are explicitly readable and observable.

The implicit feature is the Apps usage relations.



Table 2.1: Hardware sensors for the explicit feature.
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Figure 2.2: Varied recalls of predicting Apps.usage-via-different types of sensors for different users.

2.3.1 Explicit Feature Collection

Table 2.1 shows the hardware sensors we use for the explicit feature. As different models of smartphones
could have different sets of hardware sensors, we only list the most common ones whose readings are easy
to record. It is totally free to add or remove any hardware sensors here.

To show the prediction ability of different types of mobile sensors, we randomly select two users from
the collected dataset and perform kNN classification via the three types of sensors respectively to predict
their Apps usage. Figure 2.2 shows the prediction recall of ”Messenger”, ” Contacts”, and ”Browser”
for the two users. As can be seen in Figure 2.2, personal sensors would be a good explicit feature for
predicting user;’s Apps usage, while environmental sensors are good for users. The reason is that users

probably needs a Wi-Fi signal to access the Internet.

2.3.2 Implicit Feature Extraction

The implicit feature formulates the usage transitions among Apps in a usage session. As mentioned
in [73], users use a series of Apps, called a usage session, to complete a specific task. For example, one

user could use ”Maps” when travelling to a sightseeing spot, then use camera to take photos, and upload
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Figure 2.3: The PDF of the duration of two consecutive App launches.

those photos to Facebook. Thus, the series of using "Maps”, ”Camera” and ”Facebook” is called a usage
session, denoted as " Map” 91,7 Camera” 2237 Facebook”, where §; and 65 represent the transition intervals.

The implicit feature of ”Facebook” in this usage session is thus < parr(81), per (61 + 82), prr(c0) >,
where pprr(+), por(+), and ppr(-) are probability models which represent the probability of using ” Maps”,
”Camera” and ”Facebook” respectively before using ”Facebook” with the transition interval as the ran-
dom variable. Note that because there is no ?Facebook” to ?Eacebook” in this usage session, the transition
interval is thus set to oo and then the probability-would be 0.

The probability model could:be estimated from.a user’s historical usage trace. In this section, we
introduce an Apps Usage Graph (AUG) which models the transition probability among Apps for a single
user. For training purposes, the implicit featuresfor the training usage sessions are derived by traversing
the AUG. However, for testing purposes, since we do-not know which is the App to be invoked, the
derivation of the implicit feature for 4¢he training usage-Session cannot be utilized directly. Therefore,
an iterative refinement algorithm is proposed to estimate both the next App and its implicit feature
simultaneously. The following paragraphs will illustrate the details of the AUG construction and the

implicit feature derivation for both the training and testing usage sessions.

Apps Usage Graph (AUG)

For each user, we construct an Apps Usage Graph (AUG) to describe the transition probability among
Apps. An AUG is a directed graph where each node is an App, the direction of an edge between two nodes
represents the usage order, and the weight on each edge is a probability distribution of the interval between
two Apps. Since two consecutive launches could be viewed as a Poisson arrival process, we can formulate
the intervals between two launches as an exponential distribution. For example, Figure 2.3 shows the
probability density function (PDF) of two consecutive launches which exactly fulfils the exponential
distribution where most transitions (e.g., 0.45%) are within 1 minute.

Here, Equation 2.1 formulates the exponential density function of the launch interval being in [z, x+1).
The parameter o = p(AO) is derived by assigning x = 0 in Equation 2.1, and could be calculated by p(0),
the real probability derived from the training data. Then, B is solved by minimizing the difference

between the estimated probability p(i) and the real probability p(i) as shown in Equation 2.2 for every
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Figure 2.4: An example of the Apps Usage Graph (AUG).

interval i.

Empirically, we do not need to fit every interval when obtaining the exponential model. For example,
in Figure 2.3, only the first 5 intervals already cover more than 75% of the training data. Therefore, we
can iteratively add one interval until the data coverage reaches a given threshold. We will discuss the
impact of the data coverage threshold in the experiments section.

A

p(z) = cvexpP? (2.1)

A\ = e gle,- ()

2 argéninz Ip(0)yexp7 =p(i)| (2:2)

For example, Figure 2.4 shows an AUG with three Apps. From Figure 2.4, the probability of two
consecutive usages of App; with an interval of 0.3 minutes (i.e., Appy 23, App) is 0.4, and App, 15, Appo
is 0.2. Although AUG only takes two consecutive Apps into account, such as p12 and ps3, the probability

of p13, could be calculated by p12 X pa3.

Implicit Features for Training

For each training case, the implicit features are derived by looking up the AUG. Suppose the currently
used App (i.e., class label) is App,, the implicit feature is thus, < p},, ph;, ..., Pl >, where p}, represents
the probability of transiting from App; to any random Apps and then to App;. The probability of pgis) is
defined as in Equation 2.3 which is the summation of every probability from App; to App;. Note that we
use a superscript, s, to indicate how many Apps are between App; and App:, and App,, is the k-th App
after App;. Once we derive the implicit feature in a reverse time order, the sub-problem of estimating
p;gskjtk) is already solved. The calculation of the implicit feature for App; stops when the transition
probability falls below a given threshold, min,. In our collected dataset, the transition probability

falls to 0.1% when we look backward to more than 5 Apps, which is the default parameter for miny,.

Algorithm 1 depicts the derivation of the implicit feature for a training case with App; as its class label.

11
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Algorithm 1: Deriving the implicit feature_ of App; for training.

Input: App;: a training App
Output: [F;: the implicit feature of App;
foreach App; prior than App,‘do
foreach App,, between App; and App:; do
| IRi] < IF[i] + pim Em) x TFnlt] ;
end
end
return [ F}

For example, suppose we have an AUG as shown in Figure 2.4 and a usage trace as --- — Appy L

Appa 95, App1 25, Apps — . ... Figure 2.5 shows the process of obtaining the implicit feature of Apps.

We first estimate pll(?? ) from Appy 05, Apps, then p/2(31 ) from Apps 25, Appy 03, Apps, and finally update
pll(?? ) from Appl EN Apps 25, Appy 05, Apps. Note that pll(?? ) is reused for calculating p;(gl ), and p;(gl ) and

pll(:?) are reused for updating p/1(32). The implicit feature of Apps is < 0.01,0.13,0 >.

Implicit Features for Testing

Since the App to be predicted for current invocation, App;, is unknown for testing, the derivation process
of implicit features for training does not work. We propose an iterative refinement algorithm to estimate
both App; and its implicit feature, [ F}, for testing. Suppose 6; is the probability of App; = App;, the
implicit feature I F; is calculated as in Equation 2.4 which is a linear combination of the IF of each App;.
In addition, M = [[F{ IF],...] represents the transition matrix among Apps, where IF{, IF], ...
are column vectors. Then, the value of 6; could be updated by Equation 2.5, which is the probability
of staying in App; after one-step walking along the transition matrix M. We keep updating 6; and IF;
iteratively, until App; is fixed to one specific App. In our experiments, the iterative refinement process

converges in about 3 iterations. Algorithm 2 depicts the derivation of the implicit feature for testing.

12



IF, =Y 0;x IF, (2.4)

App;

0; = Y IFi[m] x M[m][i (2.5)

Appm

Algorithm 2: Deriving the implicit feature for testing.

Input: t: a testing case
Output: IF;: the implicit feature at ¢

while iter < threshold do

foreach 6; do

end

foreach App; prior than time t do
0; < 0; + IFy[m] x M[m][i] ;
Normalize 6; ;

end
iter < iter + 1 ;
end
return [ F}
For example, suppose the testing case is -+ —= App; .Y Apps 25, Appy 25, App;.  First, we

initialize 6; as < 1/3,1/3,1/3 > which gives-equal-probability to'each App, and the transition matrix

0.49 0.6 0.01
M = 0 0 0.13 |, which is derived by.calculating the IF of each App shown in Equation 2.3.
0 0 0

Note that the last row is all zero because there is no Apps transiting to any other Apps. Then, the
implicit feature is < 0.37,0.04,0 > in the first iteration. Next, 6; is updated to < 0.18,0.22,0.01 >, and
normalized as < 0.44,0.54,0.02 > according to one-step walk in M with the calculated implicit feature as

the prior probability. Then, we can obtain the implicit feature as < 0.53,0.01,0 > in the second iteration.

2.4 Personalized Feature Selection

The goal of the personalized feature selection is to use as fewer features as possible to guarantee an
acceptable accuracy. Due to the energy and storage consumption of collecting sensors readings and Apps
transition relations, we should select useful features for different users in advance. Furthermore, through
the personalized feature selection, we could avoid the curse of dimensionality on performing the kNN.
We first apply the personalized feature selection on the training data, and then only the selected features
are required to be collected in the future.

Here, we propose a greedy algorithm to select the best feature iteratively. We adopt the concept

of Minimum Description Length (MDL) [59, 60] to evaluate the goodness of the features. For different
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Figure 2.6: An example of feature selection where the red data points are correctly predicted.

features, we can have varied projections of the training data. We claim that if a feature needs fewer
bits to describe its data distribution, it is good for predicting the data. Therefore, in each iteration, the
feature with the minimum description length is selected. Then, those data points which are correctly
predicted are logically eliminated from«the training-data; and the next feature is selected by the same
process repeatedly. We define the description lengthrof the hypoethesis, which is shown in Equation 2.6, as
the length of representing the training data.—NG (App;) is the number of groups of App;. The description
length of Data given the hypothesis is the total number of miss-classified data which is formulated as in

Equation 2.7.

D)< logo NG(App:) (2.6)

v

L(D|H) = Z10g2(missClassified(Appi) +1) (2.7)

For example, given 8 data points in the training data and three features as shown in Figure 2.6. In
the first round, Time is the feature with minimum description length. Those data points marked as red
are correctly predicted and will be removed. Therefore, in the second round, only two data points are
left, and the feature of Wi-Fi signal is selected due to its minimum description length.

The selection process stops when a percentage of p of the training data is covered. We also discuss
the impact of p in the experimental section. Note that the number of features affects the energy and
storage consumption and is set according to the capability of the smartphones. Algorithm 3 depicts the
process of personalized feature selection. After the selection, only the readings of the sensors which are
selected will be collected as the explicit feature in the future. In addition, only the selected Apps will be

used to construct AUG.
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Algorithm 3: Personalized feature selection.
Input: D,: the training data
Output: PF: the personalized features

Let N, <+ |D,| ;
while |D.| < pN, do
foreach feature f do
| Calculate DL¢: description length for feature f ;
end
PF + PFU{argmax DLy} ;
I

Let D, be the set of accurately predicted data points ;
D, D,—-D,;

end

return PF

2.5 Experimental study

In this section, we conduct a comprehensive set of experiments to compare the performance of the
proposed KAP framework with other existing methods including 1) most frequently used (MFU) method,
2) most recently used (MRU) method which is the built-in prediction method in most mobile OS, such as
Android and 108, 3) SVM, 4) App:Naive Bayes [64], 5) Decision Tree, and 6) AdaBoost. In the following,
we first discuss the collected dataset, then introduce the metrics employed to evaluate the performance,

and finally deliver the experimental results.

2.5.1 Dataset Description

In this chapter, we use a real world dataset collected by a mobile phone company which installed a
monitoring program on every volunteer’s smartphone. In this dataset, we have totally 50 volunteers
including college students and faculty from June 2010 to January 2011. For each user, we separate the
dataset into three parts, where each part consists of three months, and we use the first two months as
training data, and the last one month as testing data. Totally, there are more than 300 different Apps

installed on their smartphones, and the average number of Apps on one smartphone is 56.

2.5.2 Performance Metrics

In this chapter, we use two performance metrics: 1) average recall and 2) nDCG [29] score.
Average Recall: Since there is only one App being launched in each testing case, recall score is thus
adopted as one performance metric which evaluates whether the used App is in the prediction list. The

recall score of one user is defined as %, where C' is the set of testing cases, App,, is the

c, eC
ground-truth, and L¢; is the prediction list at the i-th testing case. I(-) is an indicator function which
equals 1, when App., € L.,, and equals 0, otherwise. Finally, the average recall is the average of the

recall values of all users.
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Figure 2.7: Impact of the number of prediction, k.

nDCG Score: To evaluate the accuracy of the order of the prediction list, we also test the nDCG

score of the prediction results. The IDCG score is fixed to 1 because there is only one used App in the

ground-truth. The DCG score is m when the used App is predicted at position i of the prediction

list. Then, nDCG is the average of I%%% for all testing cases.

2.5.3 Experimental Results

To evaluate the performance of predicting-Apps usage by the propesed KAP framework, we first evaluate
the overall performance when predicting different numbers of Apps. Then, we test the performance of
the personalized feature selectionralgorithm. The impact of different parameters for the KAP framework
and kNN classification is also included. Note that we use top-k =4, kNN=40%, and the minimum data
coverage of personalized feature selection as 70% to be the default parameter settings throughout the

experiment.

Overall Performance

First, we evaluate the performance KAP and other different methods under various numbers of prediction,
k. As can be seen in Figure 2.7, when the number of prediction k increases, both the recall and nDCG
values also increase. However, KAP, MRU, MFU, and SVM perform better than others. In Figure 2.7(a),
when k = 9 (the number of predictions shown in the latest Android system), the recall of KAP could be
more than 95%, while it is only about 90% for MFU, MRU, and SVM. On the other hand, the nDCG
value of KAP shown in Figure 2.7(b) is always higher than that of the other methods, which means the
prediction order of KAP is better.

Second, we test the accuracy of varied top-k frequency. The top-k frequency is defined as the ratio

of the usage of the most frequent & Apps. For example, if a user has 5 Apps and the usage counts

543 _ 8

are 3, 1, 2, 5, and 2, the top-2 frequency is thus 3T 5T3 = 13-

Figure 2.8 shows the results when
top-k = 4. Intuitively, when the top-k frequency increases, the accuracy of the MFU method could be
better. However, in Figure 2.8(a), even when the ratio is 0.9, the MFU method performs just slightly

better than the MRU method, but worse than both KAP and SVM. In Figure 2.8(b), the prediction
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Figure 2.8: Impact of top-k frequency.

Table 2.2: The storage consumption and accuracy under varied data coverage p.
Coverage(%) 30 40 50 60 70 80 90 100
Storage(KB) 28 31 34 37 43 52 82 94
Recall 0.78 078 0.80 0.80 0.82 0.82 0.82 0.83
nDCG 0.50 0.51 0.52 0.53 0.55 0.57 0.57 0.58

order of KAP is also better than the results.of the other. methods.

Impact of Personalized Feature Selection

For the proposed KAP method, we evaluate the performance-of the personalized feature selection to see
if the proposed MDL-based selection algorithm could reduce the used storage when maintaining a good
prediction accuracy. For one user, the average used storage and prediction accuracy is shown in Table 2.2
under different data coverage p. As‘can be seen in Table2.2.the personalized feature selection could
reduce 55% of training data size and ouly lose 1% of tecall and 3% of nDCG when the data coverage
is 70%. In addition, Table 2.3 compares the execution time of KAP with and without the personalized

feature selection, where the training time is reduced dramatically under p = 70%.

2.5.4 Comparison of Different Usage Behavior

Since different users have different usage behaivor, which could extremely affect the prediction accuracy.
In this section, we separate users into different groups according to 1) number of installed Apps, 2) usage
frequency, and 3) usage entropy. Then, we test the performance of applying different methods on different

groups.

Table 2.3: The execution time of KAP with and without personalized feature selection.

Execution time (ms) Training Testing Total
KAP 86 160 246
KAP without selection 185 160 345
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Figure 2.10: Impact of the usage count.

Impact of the Number of Installed Apps

When users launch more Apps, it becomes more difficult to accurately predict Apps usage. Figure 2.9
shows the recall and ndcg results for a,varying number of used Apps. As can be seen in Figure 2.9, both
the recall and ndcg values decrease when the number ofused "Apps increases for all methods. However,
the decreasing rate of the proposed KAP method is much smoother than that of the others. The recall
of KAP is around 85% while that of the others is below 40% when the number of used Apps is 30.

Impact of the Usage Count

Now, we test the impact of the usage count. A higher usage count means we could have more training
data to learn the classification model for App prediction. Concurrently, it provides more complicated
information of users’ usage behavior, and could make noisy data. Figure 2.10 shows the recall and
ndcg values. The performance of KAP, Naive Bayes, and SVM goes up when the usage count increases.
However, AdaBoost and Decision Tree have worse performance as the usage count goes up. The result

shows that the KAP algorithm can handle more complicated and noisy data.

Impact of the Entropy of the Apps Usage

We evaluate the impact of the entropy of the Apps usage. Intuitively, as the entropy of the Apps usage
becomes larger, the Apps usage is almost random, and the performance of Apps usage prediction would
become worse. Figure 2.11 depicts that the proposed KAP could have around 50% accuracy when the

entropy goes to 3 where the other methods only have accuracy of less than 40%.
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Figure 2.11: Impact of the entropy of Apps.

Table 2.4: The recall and nDCG values under varied numbers of iterations.
#Iterations 1 2 3 4 )

Recall 0.67 079 0.79 080 0.81
nDCG 0.43 059 0.59 0.60 0.61

2.5.5 Impact of Different Parameters
Number of Iterations for Implicit Feature Extraction

First, we test the number of iterations of deriving the implicit feature for each testing case. As shown in
Table 2.4, the accuracy stays almost the same after the second iteration. This indicates that the iterative

refinement algorithm could converge within 2 iteration which is sufficient to estimate the implicit feature.

Minimum Probability for Identifying Usage Sessions

As users usage sessions could be varied ‘according-to different tasks, we only need the useful length of
the usage sessions to perform accurate Apps usage prediction, instead of calculate the full usage sessions.
Therefore, we conduct this experiment to evaluate the impact of the length of usage sessions. Ac can be
seen in Table 2.5, the results are not affected by the minimum transition probability, mins,, too much.
From our collected data, the session length is around 2 when miny, is 0.5, and the best case is under

ming, = 0.1, which has the session length as around 5.

Parameters for kNN Classification

There are two main parameters affecting the accuracy of kNN classification: 1) the length of the training
period, and 2) the number of neighbors of kNN. Here, we fix the number of predictions to 4 Apps and
compare the recall and nDCG values of KAP and the other methods. Figures 2.12(a) and 2.12(b) show
the results, where the recall and nDCG values of the KAP, MFU, MRU, and SVM methods almost keep

Table 2.5: The recall and nDCG values under varied minimum probability for session identification.
ming 05 025 0.1 0.075 0.05 0.025 0.001
Recall 0.73 0.77 083 0.81 080 0.75 0.74
nDCG 0.53 057 061 0.58 055 0.53 0.52
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Figure 2.12: Impact of training length.

Table 2.6: The recall and nDCG values under varied number of neighbors for KNN.
kNN(%) 20 40 60 80 100
Recall 0.74 0.79 0.80 0.80 0.81
nDCG 0.55 0.61 0.63 0.63 0.64

the same performance under varied training lengths. Therefore, we suggest that we just need to collect
a short period as training data to predictiusers” Apps usage, since users’ behavior is considered as stable
over a short period.

Finally, we evaluate the impact of selecting different numbers of neighbors to perform kNN classifica-
tion. Because the training data of different users could vary from several hundreds to thousands. we use
a relative value for the number of neighbors. Table 2.6 shows the results of the recall and nDCG values
for different number of neighbors. As'can be seen in Table 2.6, even only select 40% of training data as
the neighbors, the recall value is almost 80%. Therefore; we set the default number of neighbor as 40%

throughout the experiments.

2.6 Conclusion

In this chapter, we propose an Apps usage prediction framework, KAP, which predicts Apps usage
regarding both the explicit readings of mobile sensors and the implicit transition relation among Apps. For
the explicit feature, we consider three different types of mobile sensors: 1) device sensors, 2) environmental
sensors, and 3) personal sensors. For the implicit features, we construct an Apps Usage Graph (AUG)
to model the transition probability among Apps. Then, for each training datum, we could represent the
next used App as the implicit feature which describes the probability of transition from other Apps. Note
that, since the next App in the testing data is unknown, we propose an iterative refinement algorithm
to estimate both the probability of the App to be invoked next and its implicit feature. We claim that
different usage behaviors are correlated to different types of features. Therefore, a personalized feature
selection algorithm is proposed, where for each user, only the most relative features are selected. Through
the feature selection, we can reduce the dimensionality of the feature space and the energy/storage

consumption.
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We integrate the explicit and implicit features as the feature space and the next used App as the
class label to perform kNN classification. In the experimental results, our method outperforms the state-
or-the-art methods and the currently used methods in most mobile devices. In addition, the proposed
personalized feature selection algorithm could maintain better performance than using all features. We
also evaluate the performance of KAP for different types of users, and the results show that KAP is both

adaptive and flexible.
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Chapter 3

Mining Temporal Profiles of Mobile

Applications for Usage Prediction

3.1 Introduction

Smart phones have became an important smart device in people’s daily life. We use them to communicate
with friends, check emails, take pictures, and play games. Concurrently, we can install many kinds of
mobile applications (abbreviated as”Apps)n our smart phone and invoke them for individual purposes.
However, according to our observation,‘the average-number of Apps of each device is about 70 to 80 and
that of some devices which even exceed 150. We realize that as the number of Apps in a user’s smart
phone increases, users will spend an increasing amount of time looking for and launching the Apps they
want to use.

To deal with this problem, we have designed an AppNow widget which can dynamically predict users’
App usage through mining temporal profiles from the users’ previous usage behavior. For example,
Figure 3.1 shows different prediction results at different times in one day. In Figure 3.1(a), the time is
9:00 a.m. and AppNow shows that the user is intending to start work by checking calender, emails, and
so on. In Figure 3.1(b), the time goes to 12:30 p.m. and AppNow indicates that the user is about to
communicate with friends using social network services. In Figure 3.1(c), the user is likely to play games
at home when the time is 8:30 p.m. However, there are two challenges when designing the AppNow
widget: 1) connecting the relation between Apps and their launched times, and 2) calculating the usage
probability through comparing the App launched times and current time. First, Apps are not always
launched at the same time. For example, if a user checks Facebook approximately once every one and
a half hours, the usage time could be around 9:00, 10:30, 12:00, and so on. Therefore, to connect the
relation between time and Apps usage, we proposed a temporal profile to summarize the usage history of

each App. Second, since the launched times of an App may not exactly match the current time, we have
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Figure 3.1: An example of the AppNow widget on a smart phone.
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Figure 3.2: The system flow of AppNow.

to model the usage probability over-the time different between the launched times and current time.

To the best of the authors’ knowledge; although-there are many research works focusing on smart
phones [66, 32, 53, 67, 77, 57, 58, 81], there are no existing works that explore predicting usage behavior,
let alone developing a widget on smart phones. On the other hand, current prediction algorithms on
location, purchasing, and co-authoring [28, 30, 51, 12] do not create the relation with the aspect of time,

such that they cannot be applied to solve the novel problem of predicting the App usages.

3.1.1 System Framework

The system flow of the AppNow widget is shown in Figure 3.2, where AppNow possesses three main
components, a usage logger, a temporal profile constructor and an App usage predictor. The usage
logger records the launched time and App ID on every App launch. The temporal profile constructor
builds a temporal profile for each App. We summarize and investigate the usage history for each App into
a set of (period, {specific time}) tuples which is, therefore, called a temporal profile for that App. The
usage predictor calculates the probability of using each App at the current time. The AppNow widget

then shows the 4 Apps with the highest probability.
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3.1.2 Demonstration of the System

The AppNow widget is developed on Android based smart phones. Users do not need to set any param-
eters. The system automatically logs the App usage behavior and updates the temporal profiles. When
the widget becomes active (i.e. shown on the screen), the predictor updates the displayed four Apps
regarding current time. Users can execute the Apps by directly touching the App icon in the AppNow
widget. However, we neither move nor re-organize the placement of Apps in users’ smart devices, so when

the AppNow widget cannot provide the correct Apps, the user can still find them in their original place.

3.2 Design and Implementation

3.2.1 Mining Temporal Profiles

A temporal profile is a set of (p,T) tuples, where p is the period of usage and T is the set of usage
specific times in the periodicity p. The discovery of temporal profiles consists of three steps: periodicity
detection, behavior identification and specific.time discovery.

First, we detect the periodicities of Apps by the idea proposed in [69]. For each App, we adopt
Discrete Fourier Transform (DFT) to find the power spectral density (PSD). The App usage history is
represented as AH (app) =< a1, ag, ..., an > where a; represents the number of launches at time unit i.
For example, Figure 3.3(a) plots theusage chart of one App usage history for 4 weeks, where the length of
one time unit is 1 hour, and therefore, N is672-In-addition, Figure 3.3(b) depicts the periodogram after
applying DFT to Figure 3.3(a). In Figure 3.3(b), the dashed line is an automatically adjusted threshold
which is obtained by using the dynamic cut approach [69]. The main concept of dynamic cut is that
the power of a significant frequency should be higher than the maximum power derived from a random
sequence. The random sequence is generated by shuffling the original AH (app) and we claim that there
should be no significant frequency in the random sequence. Finally, autocorrelation is adopted to verify
the periodicities by a more accurate estimation. In Figure 3.3(c), we map the frequency to period, and
we can see that the mapped period P» corresponds to 24 hours in this case.

Second, after the periodicity detection step, for an App with its periodicity set {p1, po, ... }, we further
identify multiple behaviors for an individual periodicity, p;. Since different behaviors may share the same
periodicity, we separate them in this step. Here, we perform a hierarchical clustering to identify the user’s
multiple behaviors. Figure 3.4 shows an example of behavior identification, where we first decompose
the App-history into several pieces according to the derived periodicity, and then we utilize EDR [9] to
calculate the distance of two pieces. A hierarchical clustering would separate the pieces into different
groups which are viewed as the user’s multiple behaviors. In Figure 3.4, we observed that the two groups
belong to weekday behavior and weekend behavior respectively.

Since the exact usage time would be slightly shifted, in the third step, the specific times of each
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group identified in the previous step is composed by the mean and variance of previous usages. In
Figure 3.5(a), we take an example by plotting the accumulated usage in 24 hours which is the periodicity
P; in periodicity detection. We first separate the temporal space into partitions such that the variance of
usage in each part could be minimized. Intuitively, the partitions could be derived by a greedy algorithm.
In Figure 3.5(b), the partitions are [0,8], [8,11], [11,21], and [21,24]. Then, we calculate the usage of
each part and derive their local maximums to be the usage times. As shown in Figure 3.5(c), [8,11] and
[21,24] are local maximums. Finally, the specific times are the means of usage in the local maximums as
depicted in Figure 3.5(d). We use a tuple of (mean, variance) to represent each specific time. Eventually,

(24,{(09 : 23,0.95), (22 : 08,0.64)}) is added to the App’s temporal profile.

3.2.2 Apps Usage Prediction

By deriving the App temporal profile which consists of the usage periods and the corresponding specific
times, we can predict the possible App usage by calculating the usage probability of each App. We propose

a probability-based scoring model, which is based on Chebyshev’s inequality from probability theory [52],
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to formulate the usage probability of each App. Equation 3.1 shows the Chebyshey’s inequality. It shows
the probability of that the time difference between the current time and the specific time is not less than
A. Therefore, we can use Equation 3.2 to calculate the score, where CTime is current time, STime is the
specific time, and Var[STime] is the variance of STime.

Var|z]

Flle=Blolf > X<

Finally, the probability of launching an-App is the maximum score from all specific times in its
temporal profile, which is formulated as M AX (Seore(CurrentTime, SpecificTime;)), for each specific

time in the temporal profile.

Score(CTime, STime).= |CT‘;7?LZ[S—TSZ';n;]ne|2 (3.2)

3.3 Experimental Evaluation

We installed a monitoring logger in 10 smart phones to collect the usage traces from July to December
2012. The dataset was separated into three parts: July to August, September to October, and November
to December. For each part, the first month is the training date while the second month is the testing
data. The overall performance is, therefore, the average performances of the three parts.

Based on the collected traces, we first evaluate the correctness of the discovered temporal profiles.
We check if Apps are launched at the specific times indicated in their temporal profile. Figure 3.6 shows
the precision and recall results for each user. As can be seen in Figure 3.6, the average precision is 86.4%
and the average recall is 55.9% when the AppNow widget shows 4 Apps.

Then, we compare the accuracy of usage prediction among AppNow and three frequency-based base-
line methods, WD, HD, and ED. Figures 3.7(a) and 3.7(b) depict the precision and nDCG score with
different k (the number of Apps shown in AppNow). The baseline methods select the top-k most fre-

quently used Apps in different time intervals. The interval of WD is a whole day (24 hours), HD is half
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a day (12 hours) and ED is 8 hours. As can be seen in Figure 3.7, our proposed AppNow outperforms

the three frequency-based methods in terms of both precision and nDCG score.

3.4 Conclusions and Future Work

We develop an AppNow widget to predict App usage from mining the App temporal profile. The temporal
profile summarizes and investigates the usage-history of an App. When the AppNow widget is activated,
it calculates the usage probability for each-App through a proposed probability-based scoring model. We
collected real usage traces from 10 smart phones for6 months. We evaluated the accuracy of both the
temporal profiles and the App prediction. The Tesults show that AppNow outperforms three frequency-
based methods. In addition to predicting App usage, AppNow:can also help recommend new Apps for
users, since the predicted Apps can reflect the-user’s-semantic activity. For example, when the predicted
Apps are composed of the Apps related to games, we can infer that the semantic activity of the user is

gaming and can recommend other games for that user.
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Chapter 4

Mining Usage Traces of Mobile Apps

for Dynamic Preference Prediction

4.1 Introduction

As mobile devices become more ‘and more popular; atremendous amount of mobile applications (abbre-
viated as Apps) are designed for.varied functions and purposes. Users can download and execute Apps
in their mobile devices to satisfy their needs and affinities. For App providers, to understand users’ pref-
erences is quite important to recommend new Apps;and to decide their marketing strategies for selling
Apps [16, 47, 23]. Although users can rate the Apps they have experienced, only a small percentage of
users rate their Apps. For example, the famous App, Angry Birds, only received 4% ratings from 1.3
million of downloads [72]. Besides, users may not be willing to consistently rate the Apps when they
change their preferences. On the other hand, although [63] states an Apps recommendation problem, it
does not show the dynamic preferences of users. By contrast, through the dynamic preferences, we can
not only recommend Apps but investigate more tasks on Apps.

In this chapter, we aim to predict users’ dynamic preferences of each App and further quantize
the preferences to real numbers such that we can compare the preferences among different users. As
users repeatedly invoke these Apps, their preferences are dynamic over time based on what they have
experienced. Here, we claim that a user’s dynamic preference is related to the usage trace (i.e., series
of usage counts). For example, Fig. 4.1 shows three usage traces of Calender, Browser, and Messenger,
for a certain user. As can be seen in Fig. 4.1, the number of usages on ”Messenger” apparently drops
down after 14 days (two weeks). Therefore, we can infer that the user decline his/her preference on
”Messenger” in 14 days by either implicit or explicit reasons.

Nevertheless, usage counts of Apps are not directly related to the preferences of Apps. For example,

in Fig. 4.1, although the usage count of Messenger is higher than the other two Apps, the preference of
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Figure 4.1: The number of usages of different mobile applications.

Messenger is not necessarily higher than the other two Apps. Probably, Messenger is a communication
tool, which is designed to be used frequently. As for Calendar, users will not frequently check their
calendar all the time. In our experimental results, we also show that the usage-based algorithm cannot
predict anything, where its accuracy is often close to zero. To correctly predict preferences of Apps from
the usage traces, we propose two methods, Mode-based Prediction (abbreviated as MBP) and Reference-
based Prediction (abbreviated as RBP). Both methods utilize different strategies to avoid the impact of
the inherent magnitude bias of the the usage counts. MBP adopts only the usage mode of Apps: active
mode for using the App while inactive mode for not using the App. RBP refers to the previous usage
counts of each App as a reference history-and thus, the usage-count becomes a relative value of the
reference history.

Both MBP and RBP consist of two phases: the trend detection phase and the change estimation
phase. The first phase determines'whether the preference is decreasing or increasing. The second phase
estimates the absolute value on thepreference change. For“MBP, we increase the preferences of those
Apps which are used at current time unit; but decreases the preferences of others. Then, we propose a
utility model: when a user uses more Apps at the same time unit, each App would receive less preference
increment. According to the utility model, we can calculate the increment and decrement of each App.
For RBP, it calculates an expected number of usage for each App at current time unit by solving an
optimization problem where the expected number of usage can keep the trend of preference change
staying static. If the actual number of usage is larger (smaller, respectively) than the expectation, the
preference will increase (decrease, respectively). Then, RBP uses a probabilistic model to estimate the
change of preferences.

The contributions of this study are:
1. We explore usage traces of Apps for dynamically predicting the perferences of Apps.

2. We analyze the characteristics of Apps, and propose two algorithms, MBP and RBP, to predict

preferences of Apps.

3. In the MBP method, we derive the dynamic preferences according to only the usage mode and

propose a utility model to calculate the change of users’ preferences.

4. In the RBP method, by solving an optimization problem, the expected number of usage is derived
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as a reference, and a probabilistic model is constructed to estimate the users’ preferences.

5. We conduct a comprehensive performance evaluation. The experimental results show that the

predicted dynamic preferences of both MBP and RBP can better reflect users’ behavior

4.2 Related Work

To the best of our knowledge, this chapter is the first work discussing dynamic preferences prediction
problem. Although there are many research works discussing the problem of predicting users’ preference,
they only focused on a static environment. In a static circumstance, such as renting movies and purchasing
books, users generally only act on them once and the preference remain static. Therefore, they can use
the existing user preferences to predict the unknown preferences through the attributes of items [18].
The attributes could be the metadata, such as artist, genre, etc., or the ratings the item already had.
Although [18] focused on predicting the ratings of musics; they still treated the music ratings as static
preferences. This is because their focus is on purchasingssongs or CDs, not on the preference to listening
to a song from a user collection at a particular.moment. ‘Only the authors in [34, 40, 20] recognized
the temporal dynamics of users’spreferences. Nevertheless, [34] still need to obtain at least a portion of
static ratings as training data. [40, 20] only consider the evolution.of users’ behavior, instead of quantize
their preferences. For predicting” preferences of Apps; users can use Apps repeatedly; therefore, their
preference changes over time, and even be impacted by.new,Apps [37]. Consequently, the traditional
preference prediction methods cannot be adopted for the dynamic preference problem, because 1) the
traditional methods all need to obtain at least a portion of static preferences as training data, and 2) the

static preferences are out-of-date when we perform the prediction in a dynamic environment.

4.3 Preliminary

In this section, we first describe the symbols used in this chapter. Explicitly, we use 7p,n and rmaee to

represent the minimum and maximum value of users’ preference. Thus, the preference at time unit ¢ is
(t)

a real number T € [Fmin, Pmaz], Which represents the preference of user ¢ on App j. To facilitate the
presentation of this chapter, U is the set of users and I is the set of Apps. A dynamic preference matrix
is used to represent the preferences of Apps at a certain time unit. Here, we divide time space into time
units, and use [, an application dependent parameter, to represent the length of a time unit. The formal

definition is below:

Definition 1. (Dynamic Preference Matrixz) A dynamic preference matriz at time unit t, R, is a

|U| x |I| matriz, where rg-) € [Pmins "maz), for each TE;)

A usage count matrix constructed from users’ traces is defined in Definition 2
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Definition 2. (Usage Count Matriz) A usage count matriz at time unit t, C®), is a |U| x |I| matriz,

()

where each element c;;’ represents how many times user i used App j at time unit t.

We use a change matrix to record the preference change of each user-App pair. When the value
is positive (negative, respectively), the preference is increasing (decreasing, respectively). Definition 3
shows the detail of change matrix. In this chapter, the change matrix is derived from both usage count

matrix and dynamic preference matrix.

Definition 3. (Change Matrix) A change matriz at time unit t, denoted as A®) | is a |U| x |I| matriz,
where the value of each element 5§;) is in either [0,7max —7‘%71)] for positive value, or in [rg;fl) — T'min, 0]

for negative value.

We claim that the preference of an App would not change dramatically. Even when users do not use
an App for a long time, the preference of it would decay smoothly over time. Therefore, we derive users’

preferences according to the previous preferences and eurrent usage behavior as described in Definition 4.

Definition 4. (Dynamic Preferences—Prediction Problem) Let RY=1 be the dynamic preference
matriz at time unit t — 1, and C) be the usage count matriz. at time unit t, the dynamic preference

prediction problem is 1) calculating the change matriz, AD | and 2) deriving R®) according to Eq. 4.1.

R® = RO~ L X@® (4.1)

For example, suppose we have two users and three Apps, and the system parameters are rp;, = 0 and

1 2
Fmaz = 5. Let R~ = be the dynamic preference matrix derived at time unit ¢ — 1, and
2 3 4
100 2 30
c = be the usage count matrix. First, we calculate the change matrix according to
2 300 40

C® and R*—Y | such tha_t, in this example, the values of the change matrix are related to the usage counts

and will be in the defined range to avoid the values in R(*) being out of range. Assume that we can obtain

4 -1 1 5 1 4
A = . Then, the new dynamic preference could be derived as R*) =

-2 2 1 0 5 5

4.4 Dynamic Preference Prediction

As described in Definition 4, to obtain the dynamic preference matrix, R®), we need to know the change
matrix, A® in advance. Here, we use 6fj to represent the elements in AW, Empirically, we can calculate
6f; by Eq. 4.2 which consists of two parts: 1) m € {0, 1} which indicates whether d; is positive (m = 0)

or negative (m = 1), and 2) US-) > 0 which is the absolute value of 5%. Through this equation, we can
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calculate the change matrix, A®), by finding a proper pair of m and vfj for each 61(;).

8 = (1™ x v (4.2)

iJ

In this chapter, we design a two-phase framework: the trend detection phase for the value of m and the

change estimation phase to calculate v, In order to smooth the preference change, the value of vl(;)

ij
Ej-) but the previous preference, rl(t-_l). In addition, when

J
the preference is increasing (respectively, decreasing), the value of US-) is in the range of [0, 7mas — r(tfl)]

ij
® ()

ij ij

depends on not only the current usage count, ¢

(respectively, [O,rgt-fl) —Tmin]). Thus, we can formulate v

y as in Eq. 4.3, where u

()

ij

is a utility parameter
determined by user’s preference change. Explicitly, when w;.’ is larger (i.e. user’s preference change is
large), vg) would be larger.

In order to address the challenge related to the number of usages of Apps, we propose two algorithms
based on different points of view. The first oneis:Mode-based Prediction (MBP) which takes into account

of the binary usage mode of active and inactive. The second one is called Reference-based Prediction

(RBP) which adopts the previous usage counts as a reference history to examine the A® matrix.

(t) —
“ 4.3
) B (4.3)

)

(rgt._l)

i~ i) X U

e | B
i (t-1)
=l < T ) X u

4.4.1 Mode-based Prediction (MBP)

The Mode-based Prediction (MBP) ignores the magnitude of usage counts by only considering two usage
mode: one is active mode for using the App and another is inactive mode for not using the App. Then, a
utility model is proposed to measure the usage change of a user, and the A®) matrix could be estimated

through this model.

Trend Detection Phase.

In this phase, we decide the value of m in Eq. 4.2. If user ¢ executed App j at time unit ¢ (i.e. cl(-;) > 0),
we would set m as 0 (increase the preference). By contrast, if cl(-;) = 0, we set m to 1 (decrease the

preference).

S ulf - ulf =0 m

keP keN
1 (t)
™ ,Ci >0
o= 17 I (4.5)
K 1 t) _ 0
R
(t-1)
Tmaz =T, (t)
' —pr— ¢y >0
vz(j) - r(f*lt—‘rmm (i) (4.6)
JT 701,], = O

33



- ] Calendar
40 1 Browser
35 \ 1 Messenger

15 & o [
10 " SN R

Number of Usage

Preference
T,

max
B MBP
| | | | | |
min T T T T T T
5 10 15 20 25 30 Days

Figure 4.2: The preferences derived by MBP comparing with the Ideal preferences.

Change Estimation Phase.

The second phase is to estimate the absolute value of the preference change. In other words, we need to
@

derive the value of vg) according to utility parameter, uij). Since we only have the information of usage
mode of each App, we propose a utility model to. derive the utility parameter based only on the usage
mode. Intuitively, when a user spends more-time on some. Apps, (s)he should spend less time on others.
Thus, we claim that the overall usage change among Apps should be equal to 0. Eq. 4.4 formulates the
utility model, where P (respectively, N) is the set of Apps with-active (respectively, inactive) mode.
Suppose that the importance of each App is the same, the utility parameter is derived by Eq. 4.5. As a
(t)

result, we can obtain 5§;) from w;;’, as’shown in Eq. 4.6.

4.4.2 Reference-based Prediction (RBP)

Although MBP successfully avoids the magnitude of usage counts by adopting the usage mode and the
utility model, ignoring the magnitude of the usage counts makes the estimated preferences not be able to
reflect users’ actual preferences. For example, in Fig. 4.2, the preference of Messenger predicted by MBP
becomes higher and higher over time, since MBP increases the user’s preference once the user invokes
the Apps. However, we believe that the curve representing the preference of Messenger should be like the
Ideal one. To obtain the ideal result, we propose a Reference-based Prediction (RBP) algorithm which
compares the usage counts within an App instead of with other Apps.

RBP uses the previous usage counts of each App as a reference history, and derives a reference value
from the reference history. In this chapter, the size of reference history is decided by a tunable parameter,
h, which means how many historical data points are included into the reference history. The concept
is that only when the actual usage count of an App is higher than the reference value, its preference is

increasing. Similarly, the preference decreases only when the number of usage is less than the reference
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Trend Detection Phase.

In this phase, we decide whether the value of 52) is_negative or positive. Here, we use the previous
usage counts as the reference history and derive an expected number of usage as the reference value
from the reference history. We adopt:the linear regression to'model the trend of reference history, and
thus, the expected number of usage count.should make-the slope of the regression line be zero. Since
the slope of a regression line represents the ‘trend of the data points, the expected number of usage
count which makes the regression line stay horizontal means that it makes the preference stay static.
Then, if the actual number of usage is larger (smaller, respectively) than the expected number of usage,
the preference is considered as increasing (decreasing, respectively). We use Fig. 4.3(a) to illustrate the
concept of obtaining the expected number of usage by linear regression model. In Fig. 4.3(a), the three
black points are the reference history (i.e. h = 3) and the reference value is the expected usage at time
unit 10 (marked as a star point) which makes the regression line, L1, be horizontal. Therefore, the goal
of this phase is to find the value of star point by satisfying Eq. 4.7 which can be simplified into Eq. 4.8.

Since we only consider the slope of the regression line, we can shift the regression line left such that
hf:l xr = 0, where xj represents the shifted position in x-axis of the k-th point of reference history and
Itcgtlm, Zp+1 is the shifted x-axis of the star point. As shown in Fig. 4.3(b), we can shift the regression line
to the positions of x-axis as < —1.5,—0.5,0.5,1.5 >. Eq. 4.9 shows how to calculate the shifted x-axis
positions. Now, we can simplify Eq. 4.8 into Eq. 4.10, where the index of time units of cgf) is also shifted
to(k+t—h—-1)fork=12,...,h+1.

2%k — (h+2)

T = 5
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h+1
(h+1) Zxk x cF Tt = g (4.10)

Therefore, we can extract cg;) from Eq. 4.10, and it is the expected number of usage EX P(cz(-;)), which
could be derived from Eq. 4.11. For example, the value of the star point in Fig. 4.3(a) is EXP(CE;O)) =
[(B4+2)(12+11+5)—2(1 x 124+ 2 x 11+ 3 x 5)]/3 =42/3 = 14.

Xh: _ c(k+t h—1)
EXP()) = = ?
! Th+1
B 2(1)— (h+2) g h)+ + 2(h);h72cg_—1)
- 2(h11)—(ht2)
2
h
(h+2) 3 cbtth=b 2Zk><c<’““ h=1)
= = - (4.11)

Change Estimation Phase.

As we have EXP(c (t)) to be the weference-value, we need to formulate the utility parameter, uEJ), by

calculating the distance between c ) and EXP(c; i )) denoted as dist(EX P(c (t)) (t)) When c( is far

) ZJ

from EX P(cl(-j))7 it means thatthe user is considered more likely to change his/her preference. Since

we need a distance measure between 0/ and 1, directly subtracting FX P( ) 7) from c() or the other
(t)

way around will not work. We devise, the following distance measure. Here, dist(EX P(c (é)), ;i) is

()

estimated by evaluating how many possible cases-are between EX P(c U) and ¢;;’. Therefore, when the

preference is increasing (m = 0), we use p(EX P(c; 5 )) < z < ¢};) representing the probability of obtaining

a number of usage in-between EX P(cgj)) and cgj), where z is a random variable. On the other hand,

when the preference is decreasing (m = 1), the distance between EX P(cz(-;)) and cg) is formulated as

(cg) <z < EXP(c (t))). In this chapter, we approximate the probability, p(cz(-;)), of using an App j
by cz(-j) times in a given time duration ! (a parameter for the length of each time unit) by assuming a
Poisson distribution shown in Eq. 4.12, where A = EXP(CZ(-;)) Now, the utility parameter, uz(]), could be
formulated as in Eq. 4.13 and the absolute amount of preference change, vfj), as in Eq. 4.14. We also list
algorithm 4 to describe the flow of RBP in detail. In the first iteration, we set rl(j) to an initial preference,
Tinit, which is a tunable parameter. The preference will stay the same when the actual number of usage

equals to the expected number of usage.

pleij) = T; (4.12)
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Algorithm 4: Algorithm of Reference-based Prediction

Input: Input: RtV C®
Output: Output: R®

foreach cz(-;) do
‘ Let TS) — Tinit
end

foreach initialled rgi_l) do

. (h+2) ﬁ; C—230kxc®
EXP(c{) + L

if ¢! > EXP(c{)) then
| m+ 0P« PUApp;
else
| m<+< 1N << NUApp;
end
A+ EXP(c!Y)
if App; € P then

(®) (t=1) A xe
Vi (Tmaz — Ty ) X Z OF

else

end
return R « RG-D 4 A®)

4.5 Experimental Results

To evaluate the accuracy of the derived dynamic preferences, we examine the accuracy by testing the
performance of using those derived preferences to make recommendation. We adopt the All-But-One
evaluation methods [71] which, for each user, we iteratively skip one App from a user’s preference list,
and then make recommendation for this user. If the skipped App is recommended, we treat it as a hit.
The hit ratio of user u at time unit ¢ is calculated by Eq. 4.15, where k is the number of recommended

Apps, I(-) is an indicator function defined in Eq. 4.16, Appy(u, t) is the top-k Apps with highest preference
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score for user u at time unit ¢, and Ry (u,t) is the list of k& recommended Apps for user w at time unit
t. The length of one time unit, I, is 1 day for both App traces, and 7 days for the Last.fm dataset.
Eventually, the overall accuracy is the average hit ratio of every user at every time unit, which is shown

in Eq. 4.17.
ZiGAppk (u,t) IRk(th) (Z)

HitRatioy(u,t) = [Appre(u, t)]

(4.15)

] 1 ,i€ Ri(u,t)
Ty, () (2) (4.16)
0 ,id Ru(ut)

> >, HitRatiog (u, t)
U] > |T|

Accuracy, = Overall HitRatio,, = (4.17)

4.5.1 Environment

The range of users’ preferences is set to [0,5]. The adopted recommendation algorithm is Collaborative
Filtering (CF) provided by Apache project, Mahout; with its similarity function as Pearson correlation

function.

Dataset Description.

We have three real-world datasets: two are App usage traces and one is music listening log from
Last.fm [7]. For the two traces of App usage, one is a smallerstrace which consists of 30 users and
226 Apps, while the other one has 80 users and 650 Apps.~Through the two different scales of datasets,
we can ensure whether our methods are scalable or not. For the music listening dataset, we have a
relatively huge amount of users in the Last.fm 1K-users dataset. The music listening dataset consists of
1000 users and 48,361 music albums which is a very sparse dataset we have to deal with. The total time
duration for two App traces is half a year and for the music listening log is one and half years.

¢ty — mincly

= (4.18)

t H t
Tmaz — Tmin Hl]?X Cip — Hl]jn Cik

t
rij — 'min

(Czj - m}jn ka) X (Tmaz — T'min)

sz - + Tmin (419)

t : t
Hl]?XCZk — Hl]jn Cik

Compared Methods.

To compare the accuracy of our proposed algorithms, we adopt a usage-based method as the baseline.
The usage-based method calculates the users’ preferences only by the usage count. The item with largest
number of usage will be assigned the preference of 7,4, While the one with smallest number of usage
will be assigned the preference of r,,;,. Besides, the preferences of other items are calculated by an

interpolation method shown in Eq. 4.18.
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Figure 4.4: Accuracy evaluation with different k.

4.5.2 Performance Evaluation

In this study, we evaluate the accuracy under various number of recommended Apps, k, and different
length of a time unit, [ over two proposed algorithms and one baseline method. Then, we focus on the
proposed Reference-based Prediction (RBP) algorithm to see the accuracy when changing the parameter

h which is used to control how many historical data are used.

Accuracy Changed by k.

Since k would affect the hit ratio, we calculate the hitratio by different & from 5 to 25. However, although
larger k could derive a better performance on hit ratio, fewer recommended items is more meaningful for
users. Figs. 4.4(a) and 4.4(b) show the results of two.App-traces under different numbers of recommended
items, k. Obviously, the accuracy increases as k grows up. Specifically, when k£ = 5, both RBP and MBP
can achieve the accuracy of more than 80%. wenote-thatin Fig. 4.4(b), the baseline remains close to zero
even for k = 25, while in Fig. 4.4(a), the baseline achieves relatively low accuracy compared with RBP
for k = 5. This is because the App-large dataset consists of more Apps and makes the dataset become
sparser than App-small. Fig 4.4(c) depicts the results of Last.fm dataset. Since the music listening
dataset is much sparser than the App traces, the performance on accuracy is not as good as the accuracy
of the App traces. However, RBP is always the best method, while the baseline is close to zero. Here,
for the two App traces, the length of one time unit is one day and the size of reference history, h, of RBP
is set to 4 time units; for music listening dataset, the length of time unit is 1 week and the parameter h

of RBP is 6 time units.

Impact of Parameter /.

Here, we evaluate the accuracy change of various length of a time unit. As can be seen in Figs. 4.5(a)
and 4.5(b), both RBP and MBP slightly decrease their accuracy when the amount of training data
increases. The best length of a time unit is one day which matches the human behavior. By contrast,
the baseline method increases the accuracy when the number of training data becomes larger. Because
the baseline method does not consider the temporal information, more training data could provide more

information to overcome this drawback. However, when d > 6, the accuracy of baseline method also
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Figure 4.5: Accuracy evaluation with the length of a time unit varied.
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Figure 4.6: Accuracy evaluation with the size of reference history varied.

declines. On the other hand, as shown in Fig. 4.5(c); the best length of a time unit for Last.fm dataset is
7 days (one week) since music listening behavior is sparse and users may repeat the songs they listened

in one week. Here, the referenceshistory parameter, h, is'set to 6 time units.

Impact of Parameter h for RBP:

Since the amount of reference history is a critical parameter for RBP algorithm, we evaluate the accuracy
of recommendations under various reference histories. Figs. 4.6(a) and 4.6(b) depict the results of the
App-small and App-large traces, and they reach the best accuracy on h = 4 and h = 5 respectively.
Furthermore, the results of h > 2 are much better than the result of A = 1, because when h = 1, the
number of reference points is too few to reflect the trend of users’ usage. In addition, Fig. 4.6(c) shows
the results of the Last.fm dataset, and the best accuracy falls on h = 6 and | = 7. Because the Last.fm
is a sparse dataset, RBP algorithm needs more reference points and training data to achieve a better
performance. Empirically, the setting of A does highly depend on different applications. In this chapter,
we suggest choosing a proper h larger than 4, since the regression line constructed in the first phase of

RBP is more meaningful to reflect the trend of users’ usage.

4.6 Conclusion

We proposed a novel dynamic preference prediction problem which is to dynamically quantize a user’s
preferences on Apps they have used from their usage traces. Two effective algorithms are designed to

solve this problem. One is named Mode-base Prediction (MBP) which adopts a user’s binary usage
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mode (active and inactive) and a proposed utility model to predict the preference value on an App. The
other one is named Reference-base Prediction (RBP) which discovers a reference value by solving an
optimization problem in a linear regression model and constructs a probabilistic model to check if the
current behavior satisfies the reference model. RBP estimates the users’ preferences by measuring the
difference between actual usage and the derived reference value. In the experiments section, we evaluate
the derived dynamic preferences by applying Collaborative Filtering. When the derived preferences can
provide more accurate recommendation, the preferences are considered closer to users’ actual affinities. As
the experimental results show, the derived preferences of both MBP and RBP are effective. In addition,
the RBP method can reach the accuracy of more than 80% for App traces. We suggest that the proposed
dynamic preferences are valuable for many applications, such as providing recommendation of mobile

applications, predicting and analysing users behavior, and make marketing decision.
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Chapter 5

Mining Sequential Patterns Across

Multiple Sequence Databases

5.1 Introduction

Sequential pattern mining has attracted a considerable amount of research effort recently [3][5][14] [54][55].
Given a sequence database that contains a set of sequences and a user-specified threshold (the minimum
support), the main task of sequential pattern mining is to_diseover frequent subsequences that appear
in a sufficient number of sequences. Since sequential pattern mining is able to discover temporal rela-
tionship (i.e., order of events), a significant amount of research works has elaborated on developing novel
approaches to discover sequential patterns for a variety of applications [11][19][39][48][56][61].

Note that prior works only mine sequential patterns in one sequence database. This sequence database
consists of sequences of events in one domain. For example, given a sequence database of purchasing in
a supermarket, frequent purchasing behavior is discovered. In many real world applications, we may
have events in multiple domains. Consider payment lists of credit cards, where a user uses a credit card
for a variety of services, such as payments in restaurants, food, books and movies. These payments are
referred to as events in different domains. For each domain, we could extract these events and build the
corresponding sequence database. Then, one could utilize sequential pattern mining to discover frequent
sequences. For example, in the movie domain, one sequential pattern is that users watch a series of movies
related to Harry Potter. On the other hand, in the book domain, one sequential pattern is that users
buy a series of novels related to Harry Potter. From these two sequential patterns of two domains, one
could derive a composite sequential pattern across two domains (referred to as a multi-domain sequential
pattern) if events in these two sequential patterns closely occur together (i.e., events occur within the
same time window). For the above example, Figure 1 shows that these two sequences are sequential

patterns in the movie domain and the book domain, respectively. Moreover, the corresponding time of
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Figure 5.1: An example of multi-domain sequential pattern.

events in these two sequences are within the same time window. In this chapter, we claim that discovering
sequential patterns from multiple domains will provide a unique way to reveal complex relationships across
multiple domains. In Figure 1, one could infer that users are likely to buy novels of Harry Potter, which
is motivated by movies. Furthermore, this multi-domain sequential pattern also implies that users who
go to watch movies are likely to be triggered by books bought. To reveal more information from sequence
databases across multiple domains, ‘multi-domain sequential ‘patterns are very useful. Depending on
requirements of applications, one could decide which-domains should be involved in mining multi-domain
sequential patterns. In our above example, if a user wants to know the cross-relationship between book
and movie domains, sequence databases of these two domains are given. Consequently, such a multi-
domain sequential pattern captures the, cross-relationship amongrmultiple domains, which in turn can
yield significant information and reveal more knowledge.

Given a set of sequence databases across multiple domains, we aim at mining multi-domain sequential
patterns, where a multi-domain sequential pattern is a sequence of events whose occurrence time is
within a pre-defined time window. With a set of sequence databases, these sequence databases could
be joined into one sequence database according to time information of sequences. Then, by exploring
traditional sequential pattern mining algorithms, we could obtain multi-domain sequential patterns as
well. This method is referred to as algorithm Naive in the chapter and the details of this algorithm are
presented later. However, there are three drawbacks in this algorithm: (1) integrating sequence databases
of multiple domains into a single sequence database incurs a considerable cost due to the nature of joining
operations, (2) the length of each sequence becomes longer and the number of items becomes huge after
joining operations, and (3) sequential patterns mined should be further verified whether these sequential
patterns satisfy multi-domain sequential patterns or not. Hence, the above algorithm unavoidably exhibits
poor efficiency and scalability performance, which calls for the design of efficient mining algorithms for
multi-domain sequential patterns.

To avoid the above poor performance issues, in this chapter, we first propose algorithm IndividualMine
in which sequential patterns in each sequence database should be mined first and then the sequential

patterns in each domain are integrated as candidate multi-domain sequential patterns. Clearly, algorithm
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IndividualMine is able to avoid join operations among sequence databases. In Figure 1, it can be seen that
in the movie domain (respectively, book domain), we could have one sequential pattern, a series of movies
(respectively, books) related to Harry Potter. By checking the corresponding time of events in these two
sequential patterns, we could combine these two sequential patterns into one multi-domain sequential
pattern since each event in these two sequential patterns has close occurrence time. It is possible that
sequential patterns from each sequence database cannot be formed as multi-domain sequential patterns
since events’ occurrence time is not close. Though avoiding join operations, algorithm IndividualMine is
likely to suffer from mining cost since sequential patterns in each sequence database should be discovered.
Consequently, we propose algorithm PropagatedMine to further reduce the mining cost in each sequence
database. Algorithm PropagatedMine first performs one sequential pattern mining from one sequence
database. In light of sequential patterns mined, algorithm PropagatedMine propagates time information
(referred to as the time-instance set) of sequential patterns mined to other sequence databases. By
utilizing time-instance sets, we are able to extract a subset of sequences from sequence databases, where
the subset of sequences has the same time information. As such, only a limited number of sequences
that are likely to form multi-domain sequential patterns are extracted. Furthermore, sequential patterns
mined are represented as a lattice structure for further reducing the.number of time-instance sets to other
sequence databases. In addition, we develop some mechanisms to allow some empty sets in multi-domain
sequential patterns. Performanceof the proposed algorithms is comparatively analyzed and sensitivity
analysis is conducted. It is shown by our simulation results that both algorithms IndividualMine and
PropagatedMine perform better than algorithm Naive. By exploring propagation and lattice structures,
algorithm PropagatedMine outperforms algorithms IndividualMine and Naive in terms of efficiency (i.e.,
the execution time).

The remainder of the chapter is organized as follows. In Section 5.2, we present existing research
works of mining sequential patterns. In Section 5.3, some notations and the problem definition are given.
Our proposed algorithms are described in Section 5.4. Performance study and experimental results are

shown in Section 5.5. Section 5.6 concludes with this chapter.

5.2 Related Works

A significant amount of research efforts has been devoted to sequential pattern mining [8, 21, 27, 68, 70,
74, 75]. The problem of sequential pattern mining is first formulated in [3] and the authors in [3] pro-
posed mining algorithms based on the Apriori algorithm. Algorithm GSP [65] was developed for mining
sequential patterns using a breadth first search and button-up method, whereas algorithm SPADE [79]
employed a depth first search and button-up method with an ID-list. The authors in [24][54][55] exploited

the projection concept to reduce the amount of data for sequential pattern mining. To prevent candidate
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cid | cust-grp city age-grp | sequence

10 | business Boston middle | < (bd)(c )(b)(a) >
20 | professional | Chicago young | < (

30 | business Chicago middle | < (ah)(a)(d ( ) >
40 | education New York | retired | < (

Table 5.1: Multi-dimensional sequence database [56].

generation, DISC-all [13] used a novel sequence comparison strategy. A progressive concept has been
explored in mining sequential patterns to capture the dynamic nature of data addition and deletion [26].
The above research works are focused on improving the performance of traditional sequential pattern
mining.

Some variations and applications on sequential patterns are proposed recently. We mention in passing
that the authors in [56] developed to mine multi-dimensional sequential patterns, in which sequential
patterns indicate not only frequent sequences but: also,some attributes in the category dimensions. In [56],
the sequence database consists of category attributes and sequence attributes, and Table 5.1 shows
an example of a multi-dimensional sequence;database. Clearly; the problem of mining multi-domain
sequential patterns is very different from the problem in[56] in terms of the input and output of problem
definitions. In this chapter, the input is the set of sequence databases and the output is the set of
multi-domain sequential patterns-that consist sequences-of co-occurred events across sequence databases.
However, [78] is another study that mentioned multidimensional sequence. In [78], sequence data are
divided into different dimensions according to user’s specification. However, there is no time information
amount different dimensions. In other words, each event in different dimensions is not co-occurred.
Therefore, it is quite different with our study. Furthermore, the problem in [6] is to discover events that
are occurred together. In contrast, our problem is that given a set of sequence databases, we intend to
discover sequences consisting of co-occurred events. Moreover, the authors in [22] proposed the problem
of distributed sequential pattern mining, where each set of co-occurred events is complete and sequences
are separated into different databases. Similarly, the problem in [35] is indeed a distributed sequential
pattern mining problem and the authors in [35] exploited the concepts of approximate patterns and local
clustering to avoid noise and a large number of local patterns. As pointed early, given a payment list of
credit cards, we could divide payments into several domains according to payment services. Thus, our
problem of mining multi-domain sequential patterns is not the same as distributed mining of sequential
patterns.

To the best of our knowledge, previous studies have not adequately explored multi-domain sequential
patterns, let alone proposing efficient algorithms for mining such sequential patterns. The contributions of
this chapter are twofold: (1) exploiting novel and useful sequential patterns (i.e., multi-domain sequential

patterns), and (2) devising algorithms IndividualMine and PropagatedMine to efficiently mine multi-
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Domain Database D,

ID | Time sequences Sequences

s1 | < (T)(T2)(Ts)(Ty) > < (a)(b,c)(b, c,d)(e) >
S2 ( )( )( ) < (avb)(b’c)(cv e) >

s3 | < (Tuo)(Th2)(Th3) > < (a,e)(h)(g, ) >

a4 | < (To1)(T22)(T23)(Toa) > | <(a,b, f)(d)(b,c)(e, f) >

Domain Database Do
ID | Time sequences Sequences

L | < (T21)(To2)(Tos)(Toa) > | < (1,2,5)(7)(2,3)(4,5,6)
ly | < (Two)(Th2)(Th3) > < (1,6)(5)(9,10) >

Iy | < (T5)(Ts)(T7) > < (1,3)(2,4)(8) >

Ly | <(T)(T2)(T5)(Ty) > <(1,2)(2,3)(6)(4,5) >

Table 5.2: Example of sequence databases in two domains.

domain sequential patterns. Our preliminary works were presented in [42] and [43]. In this chapter, more
detailed complexity and theoretical analysis are.conducted. Also, we develop some mechanisms in each
proposed algorithm to allow multi-domain sequential patterns with some empty sets in some domains.
In particular, by exploring latticesstructures; algorithm PropagatedMine is able to further reduce the
number of candidate multi-domain sequential patterns. Furthermore, an extensive performance study is

conducted and sensitivity analysis is investigated on several parameters for each algorithm.

5.3 Preliminaries

Assume that each domain has its own set of items and a sequence database. The problem of mining multi-
domain sequential patterns is that given a set of sequence databases, we aim at discovering sequential
patterns that consist of co-occurred events across multiple domains. Table 5.2 shows two domains with its
own sequence database, where in each sequence of sequence databases, the corresponding time sequence
indicates the occurrence time of events. For example, in sequence s; in D1, it can be seen that event
a occurs at T7 and both b and ¢ occur at 7. By joining these two sequence databases via their time
sequences, we could have one Multi-Domain sequence dataBase (referred to as MDB). As such, Table 5.3
is an example of multi-domain sequence database.

To facilitate the presentation of multi-domain sequences, one sequence s; in domain D; is expressed by
< Xi1, Xi2, ..., Xy >, where X;; is the jth element of sequence s;, and [ is the number of elements of s;.

Therefore, a multi-domain sequence across k domains (abbreviated as k-domain sequence) is represented

T . Xo1 Xoo ... Xy
as M = [s1,82,...,8k]" and is further denoted as M = , where each column
X1 X2 .0 Xp

is a set of itemsets that occur within the same time winc_low, denoted as T;. A time sequence T'S(M)
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1D Time sequences Multi-domain sequences

a b,c b,c,d €
S1 | < (T)(T2)(Ts)(Th) > (i,%) ((2,3)) ((6)) (i)5>

Sy < (T5)(Te)(Ty) > E‘fj?) 5333 (f’i)
Ss | < (Tw)(Th2)(Ths) > E?:g% Egg (g?fg)
Sa | < (To1)(To2)(To3)(T4) > chjg’,‘g Egg ((g:?s)) (4(1?,5{()5)

Table 5.3: An example of a multi-domain sequence database.

is represented as T'S(M) =< T1,Ts,...,T; > to indicate the occurrence time of M. Actually, the time
window, a time interval, is determined in accordance with application requirements.

With the above representation of multi-domain sequences, we further define the length and the number
of elements for multi-domain sequential patterns. Since a multi-domain sequence consists of multiple
sequences from various domains, the length of a multi-domain sequence across k domains can be defined

as follows:

Definition 5. (Length and number of elements) Let M = [s1,82,...,5:]7 be a k-domain sequence.
The length of M, denoted as |M]|, is the length of the longest sequence in multi-domain sequence M.
Furthermore, the number of elements in a' multizdomain sequencey-expressed by e(M), is the number of

itemsets in the multi-domain sequence.

(@) (byc)  (b)

For example, given a 2-domain sequence M= , the length of M is 5 due to
1 @ (1,23
that the longest sequence < (1)(2)(1,2,3) > in M, and the number of elements is 3 (i.e., e(M) = 3).

Once we have the definition of the length and the number of elements for a multi-domain sequences,

the containing relation among multi-domain sequences is thus defined as follows:

X1 Xi2
o . . . . . . X21 X22
Definition 6. (Containing relation) Suppose that we have two multi-domain sequences M =
Xal Xa2
Yii. Yi2 ... Yy
Yor Yoo ... Yo ) ‘ ‘
and N = ) ' ) , where e(M) < e(N). M is contained by N, denoted as M T N, if
Yo Yao ... Y

and only Z]_C there exists an intege;’ list L(M,N), denoted as < ly,la,...,lp >, such that 1 < 11 < s <

<y <V and X5 C Yy, where 1<i<aand 1<j5<b.

(@) (b¢) (@ (be) (bed)  (e)

For example, assume that M = and N = . It

(2)  (6) (1,2) (23)  (6) (4,5
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can be verified that M is contained by N since there exist integer list L(M,N) =< 1,3 > such that
1<1<3<4and (a) C (a), (2) C(1,2), (b,c) C (b,c,d) and (6) C (6).

Based on the above definitions, a multi-domain sequence database is a set of multi-domain sequences.
Consider an example of a multi-domain sequence database in Table 5.3, where the number of 2-domain
sequences is 4. Given a multi-domain sequence database M DB, the support value of a multi-domain
sequence M is the number of multi-domain sequences in M DB that contain the multi-domain sequence
M.

Multi-domain Sequential Pattern Mining: Given a set of sequence databases across multiple
domains, one could join these sequence databases as one multi-domain sequence database. Then, the
task of mining multi-domain sequential patterns is to derive multi-domain sequences with their supports
larger than a user-specified minimum support threshold § in MDB. For example, for the multi-domain
sequence database M DB in Table 5.3 and a minimum support § = 3, multi-domain sequential patterns

(a) (0) | (0) | (c) . (b, ¢) : (a) (b) 7 (a) () and (@) (bc)
(1) (2) (3) (2) (2) (1) (2) 1) () 1) (@)

Notice that joining these multiple sequence databases is costly due to the nature of join operations.

It can be verified that multi-domain sequential patterns contain sequential patterns in each domain. For

(@) (bc)

example, is a multi-domain sequential pattern, where (a)(b, ¢) (respectively, (1)(2)) is a
SO

sequential pattern in domain D; (respectively, Ds) and events in (a)(b, ¢) and (1)(2) has the same time
sequences. Thus, in this chapter, we‘propose algorithms to discover multi-domain sequential patterns

without joining.

5.4 Algorithms of Mining Multi-domain Sequential Patterns

In this section, we first describe one Naive method in which multiple sequence databases are joined as
one sequence database, and multi-domain sequential patterns are derived by using traditional sequen-
tial pattern mining algorithms (e.g., PrefixSpan [54][55]). As pointed out early, to avoid the overheads
of joining multiple sequence databases, we then propose algorithm IndividualMine in which sequential
patterns in each sequence database should be mined and further merged for possible multi-domain se-
quential patterns. Furthermore, to further reduce the cost of mining sequential patterns in each sequence
database, algorithm PropogatedMine is proposed. By propagation of sequential patterns to other se-
quence databases, the number of sequences in other sequence databases is reduced. In addition, the
above three algorithms could be extended to discover multi-domain sequential patterns with some empty

sets in some domains.
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S1 < (a,1,2)(b,c,2,3)(b,c,d,6)(e, 4,5) >
Sa < (a,b,1,3)(b,¢,2,4)(c,e,8) >
Ss < (a,e, 1,6)(h,5)(g,4,9,10) >

S4 <(a’b7f71’275)(d77)(b’c7273)( ’f7475’6)>

Table 5.4: An example of a transformed sequence database.

5.4.1 Naive Algorithm with One Multi-domain Sequence Database

As mentioned early, to mine multi-domain sequential patterns, one naive method is joining sequence
databases into one multi-domain sequence database. Then, this multi-domain sequence database is
transformed such that the naive algorithm could utilize existing sequential pattern mining algorithms.
Consequently, in the naive algorithm, there are two steps: the joining step and the mining step. In the
joining step, multiple sequence databases are first joined together by the time sequences and then the
multiple sequence databases are thus transformed into a'sequence database. In the mining step, one could
utilize existing sequential pattern mining algorithms to derivessequential patterns. In light of sequential
patterns mined, we have to separate the items from different domains and derive multi-domain sequential
patterns. The detailed steps are described as follows:

Step 1: Joining Step: In the beginning, sequence databases are joined by their time sequences to form
one multi-domain sequence database. For example, -Table 5.3 is derived by performing the join process
among two sequence databases in Table'b.2. It can be verified that s; in D; sequence database and I4
in Dy sequence database are joined as one sequence S7 in Table 5.3. With the multi-domain sequence
database derived, one should transform this multi-domain sequence database into one sequence database.
Explicitly, in Table 5.3, for each sequence, time sequences are deleted and multi-domain sequences could
be viewed as one sequence. Table 5.4 is an example of a sequence database transformed from Table 5.3.

It can be seen that in sequence Sy in Table 5.4, co-occurred events from multiple domains are viewed as

a
one event. For example, (a, 1, 2) comes from (@) in sequence S7 of Table 5.3.

(1,2)

Step 2: Mining Step

According to the sequence database derived in Step 1, by exploiting traditional sequential pattern
mining algorithms, we could derive sequential patterns. The second column of Table 5.5 shows some ex-
amples of sequential patterns mined from the sequence database in Table 5.4 with the minimum support
as 3. However, even if a sequence database is obtained, traditional sequential pattern mining algorithms
are not directly able to mine multi-domain sequential patterns. This is due to that several sequential
patterns mined do not contain events from all domains. Thus, each sequential pattern should be repre-
sented as multi-domain sequential patterns. Then, we could first verify whether multi-domain sequential
patterns consists of events from all domains or not. For example, the third column of Table 5.5 shows

multi-domain sequential patterns from the second column of Table 5.5. Since we have all events of all
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Pattern ID | Sequential patterns | multi-domain sequential patterns

P, < (1)(b,2)(e) > " Eg% (e)

P < (a,1)(5) > E?g )
(a) (c)

P3 < (a,1)(c,2) > D @

P, < (b,3) > Eg%

P; < (bye,2) > (?(?7 ;)

Ps < (be,2)(e) > (l()’g;) (e)

Table 5.5: An example of a transformed sequence database.

domains, it is very straightforward to represent sequential patterns as multi-domain sequential patterns.
It can be seen in Table 5.5, P, P, and FPs have some empty sets and these patterns are referred to as
multi-domain sequential patterns with €mpty-sets (abbreviated as relazed multi-domain sequential pat-
terns). On the other hands, Ps, Py and Ps are called strong multi-domain sequential patterns since all
co-occurred events are from all domains required.

Algorithm Naive needs to perform join operations among multiple sequence databases. Due to join
operations, the performance of algorithm INaive is not efficient. Furthermore, in order to utilize traditional
sequential pattern mining algorithms, ene sequence database/is derived by transforming from one multi-
domain sequence database joined from/sequence databases. Clearly, with events from all domains, the
sequence database contains long sequences, which is not efficient in mining sequential patterns. With the
above two drawbacks of algorithm Naive, we develop two efficient algorithms for mining multi-domain

sequential patterns without joining sequence databases.

5.4.2 Algorithm IndividualMine: Mining Patterns in Each Domain

In this section, we develop algorithm IndividualMine. Figure 5.2 shows the overview of algorithm Indi-
vidualMine, where algorithm IndividualMine consists of two phases: the mining phase and the checking
phase. In the mining phase, sequential patterns in each sequence database are first mined by utilizing se-
quential pattern mining algorithms (e.g., PrefixSpan [54][55]). In the checking phase, sequential patterns
from all domains are combined to generate candidate multi-domain sequential patterns. If a candidate
multi-domain sequential pattern has its support value larger than the minimum support threshold, this
candidate multi-domain sequential pattern is a multi-domain sequential pattern. The support counts of
candidate multi-domain sequential patterns will be described later.

Without loss of generality, given k sequence databases, we intend to derive multi-domain sequen-
tial patterns across k domains. Furthermore, we denote the set of k sequence databases as {Dj,

Ds,...,Dy}, and SP; as the set of i-domain sequential patterns across a set of i sequence databases
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Figure 5.2: Overview of algorithm IndividualMine.

(i.e., {D1,Ds,...,D;}). To derive k-domain sequential patterns, we should start with one sequential
patterns from one domain and progressivelycompositersequential patterns from other domains until the
number of domains is k. Hence, sequential patterns mined in D, is first in the set of SP;. Then, for
each pattern in SPj, candidate 2-domain-sequential patterns (across two domains {D; and D,}) are
generated by combining sequential patterns in domain Ds. For example, given a minimum support as
3, in our above example in Table 5.2, < (a)(h) >-is a sequential pattern and is put in the set of SP;.
Also, < (1),(2) > is one sequential patterndn Ds. Consequently; we could have a candidate 2-domain

(a) (b)

1) (2

After generating candidate multi-domain sequential patterns, their support values should be deter-

sequential pattern

mined. As can be seen in Table 5.2, each sequence is associated with its own time sequence. Thus, one
could use time sequences to derive support values. Explicitly, the time-instance set of sequence M is

defined as follows:

Definition 7. (Time-instance set) Let M DB be a k-domain sequence database® and M be a k-domain
sequence. The time-instance set of M is defined as TIS(M) = {<TS(N): L(M,N)>|N € MDB and
M C N}.

Based on the above definition, for a candidate multi-domain sequential pattern, we could determine

its support value by evaluating the intersections in time-instance sets of each sequential pattern. For

(a) (b)

example, to determine the support of , we should check both time-instance set of < (a)(b) >
1) 2

and < (1)(2) > in Table 5.2. It can be seen that in Table 5.2, the time-instance set of < (a)(b) > is
{< (Tl)(Tg)(Tg)(T4) :1,2>,< (Tl)(Tg)(Tg)(T4) 1,3 >, < (T5)(T6)(T7) :1,2>.< (Tgl)(ng)(ng)(Tg4) :
1,3 >}. Moreover, we could have TIS(< (1)(2) >) as {< (T1)(T2)(T5)(T4) : 1,2 >, < (T5)(Ts)(T7) :

1,2 >, < (T21)(T22)(T23)(T24) : 1,3 >}. Thus, the support of a candidate 2-domain sequential pattern

1To facilitate our presentation, one could image that M DB are virtually joined by multiple sequence databases.
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is represented as TIS( ) = {< (T)(Te)(T3)(Ty) : 1,2 >, < (T5)(T6)(T7) :
1 (2 1) (2
1,2 >, < (T91)(Ta22)(T23)(T24) : 1,3 >}. Therefore, Support( (a) () ) = |TIS( (@) ) )| = 3.
1) (2 1 @)

(a) (b)

Given a minimum support threshold of 3, is a 2-domain sequential pattern, since its support
1) (2)

value is not less than the minimum support. Consequently, through the time-instance sets, support values
for candidate multi-domain sequence patterns are derived.

Once we have 2-domain sequential patterns, these 2-domain sequential patterns are in the set of SPs.
Then, for each pattern in SP,, candidate 3-domain sequential patterns and their corresponding supports
will be generated by the above same procedure. Given sequential patterns in k domains, k-domain
sequential patterns are derived by iteratively expanding one domain in each round until the number of

rounds is k.

Algorithm: IndividualMine
Input: Sequence databases across n domains Dy, D5, .. ., Dy, "and minimum support §.
Output: Multi-domain sequential patterns acrossn domains.
Begin

Let Cx be the set of candidate patterns across k domainsywhere k = 1,2,...,n.

Apply sequential pattern mining on.each domain-D;, 4 =1,2,...,n.

Let SP; be the set of sequential.patterns mined in.Dj.

For each domain D;41,¢=1,2;...;n.—1

For each P € SP;
For each sequential pattern @ of D,

If ¢(Q) = e(P) Then append [ ] to Ciy1.

P
Q
For each candidate ¢ € C;y1
If Support(c) = § Then append c to SP;41.
Output=SP,.
End

Without joining, algorithm IndividualMine could still discover multi-domain sequential patterns. It
can be seen that in algorithm IndividualMine, each domain should individually perform sequential pattern
mining algorithms, which incurs a considerable amount of mining cost. Furthermore, those sequential
patterns mined from each domain are not necessarily able to become multi-domain sequential patterns.
Thus, to further reduce the cost of mining sequential patterns in each domain and the number of candidate
multi-domain sequential patterns, we develop algorithm PropagatedMine in which those sequences that

are likely to form multi-domain sequential patterns are extracted from their sequence databases.
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Figure 5.3: Overview of algorithm PropagatedMine.

5.4.3 Algorithm PropagatedMine: Propagating Sequential Patterns among

Domains

Algorithm PropagatedMine is designed t0 reduce the mining cost in each sequence database. Explic-
itly, algorithm PropagatedMine first ‘performs sequential patternsmining in one domain (referred to as
the starting domain) and then propagates time-instance sets of the mined sequential patterns to other
domains. By propagating time-instance sets, only those sequences that have the same time sequences
with the time-instance sets are extracted, thereby reducing the mining space in each sequence database.
Algorithm PropagatedMine iteratively propagates time-instance sets of multi-domain sequential patterns
to the next domain until all domains have been mined. Figure 5.3 shows an overview of algorithm Propa-
gatedMine, where there are two phases in algorithm PropagatedMine: the mining phase and the deriving
phase.

In the mining phase, PropagatedMine utilizes existing sequential pattern mining algorithms to dis-
cover sequential patterns in a starting domain (i.e., D7) and then propagates these patterns to other
domains. Note that the mined sequential patterns in the starting domain provide a guideline to extract
multi-domain sequential patterns from other domains, and hence for mining multi-domain sequential
patterns in sequence databases across multiple domains, the length and the number of elements of multi-
domain sequences are constrained by sequential patterns mined in the starting domain. Consequently,
sequential patterns mined in the starting domain could be represented as a lattice structure to facilitate
the generation of candidate multi-domain sequential patterns across other domains.

For example, assume that the starting domain is set to D; in Table 5.2 and that sequential patterns
are then found using existing sequential pattern mining algorithms with the same minimum support
3. The mined sequential patterns are represented as a lattice structure in Figure 5.4, where each node
represents a sequential pattern, the linkages of nodes (or intradomain links) represent containing relation,

and nodes are ordered by the number of elements. In Figure 5.4, those nodes having the same number
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Figure 5.4: An example of lattice structures for sequential patterns in a starting domain (i.e., Dy in
Table 2).

of elements are further arranged level by level according to their sequence lengths and nodes with one
element are placed level by level in increasingrorder of sequence length. For example, < (b,¢) > in
Figure 5.4 is below the nodes whose sequence length is 1°(e:gs; < (b) >). As mentioned above, the lattice
structure is used as a guideline for propagating time-instance sets of sequential patterns to other domains.
In the deriving phase, algorithm-PropagatedMine extracts those sequences with occurrence times equal
to those of the time-instance sets.propagated. Thus; for each propagated time-instance set, we can build

the corresponding propagated table as defined in Definition 8.

Definition 8. (Propagated table) Let M. be a k-domain sequential pattern. The propagated table of
M in sequence database Dyi1 is denoted ‘as Dgiallar = {< Si[la], Si[ll2], ..., Sills] > | < TS(S;) :

l1,la, ..., lp >€ TIS(M), where S; € Dyi1} which is consisted of sequences that co-occurred with M.

Furthermore, Dpy1||am is also a sequence database, and is a (k4 1)-domain sequential pattern

S

if and only if S is a sequential pattern of Diy1||m and e(S) = e(M) with the same minimum support

threshold.

For example, in domain D; of Table 5.2, we have TIS(< (a)(c) >) = {< (T1)(T2)(T3)(Ts) : 1,2 >,
< (T)(T2)(T3)(Ty) = 1,3 >, < (T5)(T6)(T7) = 1,2 >, < (T5)(T6)(T7) = 1,3 >, < (T21)(T22)(T23)(T24) :
1,3 >}, and propagating T1S(< (a)(c) >) to domain D yields propagated table Da||<(q)(c)>- Table 5.6
is the propagated table Ds||<(q)(c)>, Where each sequence is very likely to form multi-domain sequential
patterns with < (a)(¢) > mined from domain D;. From propagated tables, one could mine sequential
patterns having the same number of elements as the propagated sequential pattern and these sequential
patterns could be formed as multi-domain sequential patterns. Consider the above example, where the

minimum support is set to 3. We can easily find that < (1)(2) > is the sequential pattern of Da||(q)(c)>

(@) (c)

and thus is a 2-domain sequential pattern by compositing < (a)(c) > and < (1)(2) >.

1) 2
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< (1) (T2)(T5)(Ty) > (1,2)(2,3)
< (T0)(T2)(T5)(T4) > (1,2)(6)

< (T5)(T6)(T7) > (1,3)(2,4)
< (T5)(Te)(T7) > (1,3)(8)

< (T1)(To2) (To3) (Toa) > | (1,2,5)(2,3)

Table 5.6: Example of propagated table Dal|<(q)(c)>-

Note that even though PropagatedMine successfully prevents mining sequential patterns in each do-
main, however, the cost of some redundant mining of propagated tables can be further reduced. For
example, some patterns mined in propagated tables Ds|<(q)> and Ds||<()> are the same as patterns
mined in propagated table Ds||<(4)(c)>- This is due to that the time-instance set of < (a)(c) > is
contained in both time-instance sets of < (a) > and < (¢) >. Consequently, sequences in propagated
table Ds||<(a)(c)> also include some sequences in propagated table Ds||(q)> and Ds||<()>. Therefore,
only sequential patterns with their length being-one should be propagated to other domains. In other
words, only time-instance sets of the.top-level nodes (referred to'as atomic patterns) in lattice structures
are propagated. After obtained, propagated -tables are viewed as-transaction databases. Consequently,
given a propagated table, by utilizing frequent itemset algorithms in [1][2][80][25], we could generate
the corresponding multi-domain‘sequential patterns. We now analyze some important properties of the
propagated table. With these properties of propagated tables,the'lattice structure in the starting domain
is used to determine multi-domain sequential patterns-whose length is larger than one. The details of
generating multi-domain sequential patterns are described later.

Property of the propagated table of atomic patterns: Suppose that P is a k-domain sequential

P
pattern (i.e., P € SP; ) with |P| = 1. is a multi-domain sequential pattern across (k + 1)-domain
B

sequence databases (i.e., D1, Da, ..., and Dgy1) with a minimum support of ¢ if and only if 3 is a frequent
itemset in propagated table Dy11]|p with the same minimum support 4.
Property of antimonotone with multiple domains: If M is a k-domain sequential pattern (i.e.,
across D1, Da, ..., and D), k-domain sequences contained by M are also k-domain sequential patterns.
Based on the antimonotone property, algorithm PropagatedMine generates candidate multi-domain
sequential patterns in a level-by-level manner. However, in the propagated domain, sequential patterns
are also generated level by level according to the number of sequence elements. The detailed steps for
deriving multi-domain sequential patterns are described below.
Step 1: Derive atomic patterns across (k + 1) domains
Let SPy be the set of multi-domain sequential patterns across k domains. When deriving atomic
patterns across (k + 1) domains, the corresponding frequent itemsets can be derived from the propagated

tables of each atomic pattern in S P;. Through the property of propagated table of atomic patterns, those
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Figure 5.5: Example of generating atomic patterns in domain Ds.

frequent items mined from propagated tables are merged with atomic patterns in SPy to derive atomic
patterns across (k + 1) domains. Consider the sequence databases across two domains in Table 5.2 as an
example, where sequential patterns of domain D; are represented as a lattice structure. We could derive
atomic patterns in domain Ds and thus generate their corresponding multi-domain sequential patterns by
propagating the time-instance sets of atomic patterns in demain D; (i.e., the top-level nodes) to domain

D,. Specifically, in Figure 5.5, for each atomic patternin Dy, thereare interdomain links representing that

a
these two patterns are able to form multi-domain sequential patterns. Consequently, we have (a) ,
(1)
(0) (b) © . : :
, , and in' the above example, and they are obviously also atomic patterns.

(2) (3) (2)

Step 2: Derive (k + 1)-domain sequential patterns with one element

This step involves deriving (k + 1)-domain sequential patterns with one element. Assume that k-
domain sequential pattern P across k-domain sequence databases (i.e., D1, Da,..., and Dy) and that
there is only one element in P (i.e., e(P) = 1). The intradomain links in the lattice structure for domain
k can be followed to find two multi-domain sequential patterns (e.g., X and Y, which are the components
of P). The corresponding multi-domain sequential patterns in domain k + 1 are found by traversing
interdomain links of X and Y. According to the antimonotone property, if there exists any corresponding
sequential patterns of X or Y in domain k4 1, they must have been discovered due to X C Pand Y C P.
Hence, the corresponding sequential patterns of P in domain k+ 1 are generated from the union of all the
multi-domain sequential patterns found in domain k 4 1. For example, let P =< (b, ¢) > be a sequential
pattern with e(P) = 1 in D of Table 5.2. The components of P (i.e., < (b) > and < (c) >) can be found

from the intradomain links. Following interdomain links of < (b) > and < (¢) > in Figure 5.6, yields

(b) (0) (©)

the multi-domain sequential patterns in domain Dy (i.e., and for < (b) >, and

(2) (3) (2)

for < (¢) >). Consequently, two candidates are generated by union operation: U =
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Figure 5.6: An Example of generating sequential patterns with one element in domain Ds.

(b;¢) 4 ® U (©) (b;¢)

@) @ o] | e

nce the candidate multi-domain sequential patterns are obtained, support values of these patterns

(@)

a
are examined by checking their time-instance sets-(i.ex, Support( (@) ) =|TIS( ) =TIS(<
(8) (8)

b, c
() >)NTIS(< (B) >)|). Givenra minimum support of 3, since“the support values of (b:c) and
(2)
(b, c) (b.c)
are 3 and 2, respectively, only is frequent: “Thus, the lattice structure in domain
(2,3) @)

Dy contains node < (2) >, and interdomain links are built between lattice structures in domains D; and
Ds.
Step 3: Derive (k + 1)-domain sequential patterns with more than one element

After generating atomic patterns and the (k + 1)-domain sequential patterns with one element in
stepl and step 2 respectively, algorithm PropagatedMine can further generate remaining (k + 1)-domain
sequential patterns in a level-by-level manner by referring to the lattice structure in the last domain
propagated (i.e., domain Dy). In this step, PropagatedMine starts deriving from those patterns with two
elements due to the antimonotone property. The frequent patterns in the upper levels are found from the
intradomain links in the lattice structure of Dy, and the corresponding upper level patterns in the lattice
structure of domain Dy are identified from their interdomain links. Now, the interdomain links of upper
level patterns must been established due to the antimonotone property. Before deriving (k + 1)-domain
sequential patterns, it should be determined whether or not to merge the sequential patterns identified

in the lattice structure based on their time order. This leads to Definition 9.

Definition 9. (Concatenate operation of TIS) Let M and N be two multi-domain sequences, where
TIS(M) = {< TS, : l11,l12,. .. 7lle(M) >, < TS, : lo1,190,. .. ,ZQe(M) >0, < TSy, : Y e S 7lme(M) >
}, TIS(N) = {< TTy : ki1, ki, - - kle(N) > < TTs: koy, koa, - . ., k2e(N) >, <TTy ckpy,kna, ...y kne(N) >

, and T'S; is the time sequence fori = 1,2,...,m while TT; is also time sequence for j =1,2,...,n. The
J
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Algorithm: PropagatedMine

Input: Sequence databases across n domains Dy, Do, ..., D,, and minimum support §.
Output: Multi-domain sequential patterns across n domains.
Begin

Apply sequential pattern mining on D;.
Let SP; be the set of sequential patterns mined in D;.
For each domain D;, 1 =2,3,...,n
For each P € SP;_4
//Step 1
If |P| =1 Then Begin
Construct propagation table D;||p.
Find frequent items in D;||p with minimum support 4.
Let FI be the set of frequent items in D;||p.
For each Q € FI

Append { g ] to SP;.

P

Let TI5( [ o

]) = TUS(P) NTIS(Q):

End
//Step 2
If e(P) =1 Then Begin
Let X and ¥ be two patterns-pointed to by intradomain links of P.
For each pattern a pointed to by interdomain links of X
For each pattern 8 pointed to by interdomain links of Y’

If Support([ g ]) >0 'Then Begin

Construct interdomain links from P to [ @

B

Construct intradomain links from { g } to a and f3.

Append { g } to SP;.

End
//Step 3
If e(P) > 1 Then Begin
Let X and Y be two patterns pointed to by intradomain links of P.
For each pattern « pointed to by interdomain links of X
For each pattern 8 pointed to by interdomain links of Y’
If Support([(@)(5)]) = § Then Begin
Construct interdomain links from P to [(«)(8)].
Construct intradomain links from [(«)(5)] to a and S.
Append [(«)(8)] to SP;.
End
Output=SP,.
End
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Figure 5.7: Example of generating sequential patterns with more than one element in domain Ds.

concatenation of TIS(M) and T1S(N yisdenoted as TIS(M)NTIS(N) = {<TS; : L, lia, . . ., Lie(ar) s Kj1, ko, - o

}, such that T'S; = TT; and lie(ry < kj1—In-other words, TIS(M) N« TIS(N) is the time-instance set
of the multi-domain sequence [MyN|, TLIS([M, N]).

(@) (bs€)

For example, given M = ML B, i 1 Jf ucnce database across two domains
in Table 5.2, where TIS(M) _(1{)< (Tl)(Tg)(Tg()z()TQ 1A (T)(To)(Th) : 1 >, < (Tho)(Tha)(Ths) -
1>, < (To1)(Toa) (Tas) (Taa) = 1 >}, and TISQNY=A< @) (To)(T3)(T) - 2 >, < (T3)(To)(T7) : 2 >, <
(To1)(Ta)(Ts3) (Toa) : 3 >}. Tt can be verified that TTS( (Z) (b’;) ) = TIS(M) n< TIS(N) = {<
(T1)(T2)(T5)(Ts) = 1,2 >, < (T5)(To)(17) : 1,2 >, < (Tzl)(Tm()()Tzs)ET)M) 11,3 >}

Assume that pattern P € SPy and e(P) > 1. Similar to Step 2, we can obtain the components of P, X
and Y, by traversing intradomain links among lattice structures across k£ domains, and the multi-domain
sequential patterns pointed to by their interdomain links can be determined. In light of Definition 9,
a concatenate operation is considered rather than generating their union as in Step 2. For example,

(a)
(1)

assume pattern P =< (a)(b,c) > in Figure 5.7. The intradomain and interdomain links yield

(b,¢) (a) (b,0)

and . Therefore, candidate multi-domain sequential pattern is generated, as
(2) 1 @)
: (a) (b,¢) (a) (b, c)
its support value, Support( )= |TIS( )Ne TIS( )] = 3.
1 @) (1) (2)

The above steps allow multi-domain sequential patterns across (k 4+ 1)-domain sequence databases to
be derived from k-domain sequential patterns. Algorithm PropagatedMine iteratively repeats the above

three steps until all sequence databases are propagated.
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Theorem 1. Algorithm PropagatedMine is able to mine all multi-domain sequential patterns via lattice

structures.

Proof. Mining frequent itemsets in propagated tables reveals multi-domain atomic patterns across other
sequence databases. To prove the correctness of Steps 2 and 3, first let P be a k-domain sequential

pattern and P’ be a (k + 1)-domain sequential pattern derived from P, where e(P’) = ¢(P) = 1 and

P
|P'| = |P| > 1. In other words, P’ = , where Z is a frequent itemset in the propagated table
Z

Dk+1||<(P)>. Assume that X and Y are parts of P, and X UY = P. Hence, in the lattice structure,
we have intradomain links from P to X and Y. In addition, there are interdomain links from X and Y

to Z’, where Z’ is the power set of Z and Z’ # (). Due to the antimonotone property, all multi-domain
Y
sequences contained by P’ must also be frequent. In other words, both o and Z/ are frequent.
Therefore, the lattice structures can be used t0 derive all pairs of P and P’ while e(P’) = e(P) = 1.
Similarly, when e(P’) = e(P) > 1, X and ¥ are parts of Pand TIS(X)NTIS(Y) = TIS(P). Moreover,
assume that Z is a frequent itemset in propagated table Dy (q||<(p)>. Clearly, interdomain links exist
from X and Y to Z’ in domain Dy 35 where Z’ is the power set'of Z and Z’ # (). The antimonotone
property means that all multi-domain sequences contained by P’ must also be frequent. This results in

both [(X, Z’)] and [(Y, Z')] being frequent: This proof indicates that algorithm PropagatedMine is able

to mine all multi-domain sequential patterns. O

5.4.4 Mining Relaxed Multi-domain Sequential Patterns

The above three algorithms are utilized in mining strong multi-domain sequential patterns, where all
co-occurred events are from all domains required. Strong multi-domain sequential patterns are very
restricted since users may have their minds on analyzing the behavior across domains interested by
users. In this chapter, we further develop some mechanisms for mining relaxed multi-domain sequential
patterns in which in some time slots, some empty sets are allowed. Note that both the naive algorithm
and algorithm IndividualMine could be extended for mining relaxed multi-domain sequential patterns.
However, due to the feature of propagation, algorithm PropagatedMine is not able to discover relaxed
patterns. In the following, we will discuss how to mine relaxed multi-domaon sequential patterns.
Naive algorithm:

As pointed out early, given a set of sequence databases, algorithm Naive will join these sequence
databases into one multi-domain sequence database. With the proper transformed of multi-domain
sequence databases, one could generate a sequence database whose events are from all domains. Thus,
existing sequential pattern mining algorithms could be utilized to discover sequential patterns. Note that

sequential patterns mined are then represented as the form of multi-domain sequential patterns. Hence,
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those multi-domain sequential patterns that have some empty sets are directly viewed as relaxed patterns.
Algorithm IndividualMine:

Algorithm IndividualMine performs sequential pattern mining algorithms in each sequence database.
After generating all sequential patterns in all domains, in the checking phase, algorithm IndividualMine
will check and composite candidate multi-domain sequential patterns with the same number of elements.
In order to mine relaxed patterns, all possible compositions of multi-domain sequential patterns from
sequential patterns of each domain should be enumerated. For example, assume that one i-domain
sequential pattern P =< Py, P,,..., P, >, is selected SP; and @ =< q1,¢2,...,q- > is a sequential

pattern of domain D;;;. Candidate (i + 1)-domain sequential patterns generated from P and @ are

P P, ... P P P ... P,
Y e and so on. Note

@ 92 ... 4Gr ARNYP) cee dr
that the number of candidate patterns is denoted as f(r,l) which is formulated as follows:

1, ifr=20
flrl) = (5.1)
f, =1+ 22::_01 (i, = 1), otherwise.

Obviously, it could be very large when r and [ increase. As expected, we could have a large number
of candidate multi-domain sequential patterns, degrading the performance of algorithm IndividualMine.
Algorithm PropagatedMine:

By exploring propagation and lattice structures, algorithm PropagatedMine is able to reduce the
mining cost. However, algorithm PropagatedMine cannot mine relaxed patterns since propagation needs
to obtain time-instance sets of sequential patterns. Empty sets mean that events don’t occur and thus
there are no any available time information for the empty sets. Thus, it is impossible to derive time-
instance sets of empty sets. Consequently, for mining relaxed patterns, algorithm Naive and algorithm

IndividualMine should be used.

5.5 Performance Evaluation

To evaluate the performance of our proposed algorithms, we implement a simulation model and conduct
extensive experiments. In Section 5.5.1, the simulation model and synthetic datasets are described.

Section 5.5.2 is devoted to experimental results.

5.5.1 Simulation Model

We modify the well-known data generator in [3] to generate datasets that include multiple domains.
The data generator is broadly used in many studies for evaluating the performance of their proposed

methods [36]. The detailed generation process could be referred to [36]. Some parameters are summarized
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in Table 5.7 . Explicitly, M denotes the number of domains, D is the number of sequences, C is the
average number of elements in a sequence, T is the average number of events in an element and I is
the total number of distinct events. The modeling of these parameters are almost the same in [3]. For
example, dataset M5D10kC10T5I100 represents that there are 5 domains , each of which contains 10k of
sequences, where the average number of elements in a sequence is 10, the average number of items in an
element is 5, and the total number of distinct items is 100. For the traditional sequential pattern mining,
we use algorithm PrefixSpan which is obtained from the IlliMine project (http://illimine.cs.uiuc.edu/).
Algorithm PrefixSpan is used in algorithm Naive and the mining phases of both algorithms IndividualMine
and PropagatedMine. Our programs are executed in the platform with the hardware as an Intel 2.4-
GHz XEON CPU and 3.5 GB of RAM, and the software as FreeBSD 5.0 and GCC 3.2. We use three
performance metrics: the execution time, memory consumption and the number of mined patterns to

compare the proposed algorithms.

5.5.2 Experimental Results

Several experiments were conducted to evaluate the performance and memory consumption of the three
algorithms. Sensitivity analysis on some important parameters, such as the minimum support, the number

of sequences, and the number of.domains, is conducted.

Impact of the Minimum Support Threshold

We first investigated the performances of three algorithms with the minimum support varied. For the
dataset M2D2kC3T41200, Figure 5.8 shows the execution time and the memory consumption of three
algorithms. It can be seen in Figure 5.8 that the execution time of algorithm IndivudualMine and Prop-
agatedMine is reduced as the minimum support increases. This is due to that with a larger minimum
support, the number of sequential patterns in sequence databases is smaller. Furthermore, algorithm
PropagatedMine significantly outperforms the other two algorithms in terms of execution time, which
demonstrates the advantage of exploring propagation and lattice structures in mining multi-domain se-
quential patterns. On the other hand, when the minimum support was smaller than 1.5%, algorithm
IndividualMine was worse than algorithm Naive. The reason is that with a smaller minimum support, a

larger number of sequential patterns are mined in each domain. Thus, algorithm IndividualMine needs

Parameter | Description

number of domains

number of sequences

average number of elements within a sequence
average number of items within an element
total number of different items

~NAQus

Table 5.7: Parameters used for the data generator.
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Figure 5.8: Execution times of the three algorithms with various minimum support thresholds.

Number of domains | 2 3 4 5

Naive 5.3 206.7 | 2513.9 | 21769.7
IndividualMine 1263, 163.9 | 180.2 181.1
PropagatedMine 0.4 0.6 0.7 0.7

Table 5.8: Execution times of algerithms Naive, IndividualMine, and PropagatedMine with the number
of domains varied on D1kC2T31100:

more time to composite candidate multi-domain sequential patterns and determine their supports. In
Naive algorithm, joining operations among sequence databases are:costly, which dominates the execution
time. As for the memory consumption, algorithm Naive use’less' memory than algorithms IndividualMine
and PropagatedMine. This is due to that both algorithms IndividualMine and PropagatedMine use more
memory spaces for storing sequential patterns mined. Algorithm PropagatedMine also needs to store
lattice structures, which incurs more memory space than algorithm IndividualMine. On the other hand,
algorithm IndividualMine does not need any more memory space for storing sequential patterns. Though
algorithm PropagatedMine needs more memory spaces, algorithm PropagatedMine is able to quickly
derive multi-domain sequential patterns, which strikes a compromise between memory space and the

execution time.

Impact of the Number of Domains

We next examine the impact of domains on the performance of three proposed algorithms. The exper-

iments were conducted on D1kC2T3I100 (referred to as a smaller dataset) and D1kC3T4I200 (referred

Number of domains | 2 3 4 5

Naive 57.1 3065.3 | 53164.9 | 379118.5
IndividualMine 1052.1 | 1192.9 | 1213.9 | 12144
PropagatedMine 2.1 24 2.5 2.5

Table 5.9: Execution times of algorithms Naive, IndividualMine, and PropagatedMine with the number
of domains varied on D1kC2T41200.
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Figure 5.9: Performance of Naive, IndividualMine, and PropagatedMine with the number of sequences
varied.

to as a larger dataset). With the minimum support as 0.3%, the execution time with its unit as sec-
onds for these proposed algorithms is shown-in"Table 5.8 and Table 5.9. From both tables, it can be
seen that all three algorithms have a larger execution time when the number of domains increases. In
particular, the execution of algorithm Naive-drastically increasesthe execution time. Both algorithms
IndividualMine and PropagatedMine have smaller execution time-than algorithm Naive. Furthermore,
algorithm PropagatedMine outperforms other -algorithms in terms of the execution time, showing the
advantage of utilizing propagation to reduce the mining cost.  In addition, given a larger dataset with
more number of events and larger sequence lengths, the execution time of algorithm Naive is worse. On
the other hands, algorithm PropagatedMine incurs ‘a smaller execution time than algorithms Naive and

IndividualMine, showing the good scalability of algorithm PropagatedMine.

Impact of the Number of Sequences

Experiments with the number of sequences varied are examined, where the number of sequences is from
1000 to 6000 and other parameters are M2C3T3I1200. With a given minimum support was 1%, Figure 5.9
shows the execution time of all algorithms. As can be seen in Figure 5.9, the execution of all three
algorithms increases as the number of sequences increases. Notice that the execution time of algorithm
Naive is significantly increasing when the number of sequences is lager than 2000. Thus, to compare
algorithms IndividualMine and PropagatedMine, we only put the execution time of algorithms Individ-
ualMine and PropagatedMine. By exploring lattice structures, PropagatedMine should mine only atomic
patterns, from which other patterns are derived accordingly. As a result, the execution time of Propa-
gatedMine slightly increases with the number of sequences. Note that the execution time of algorithm
PropagatedMine is very smaller compared with algorithms IndividualMine and Naive. However, both
algorithms IndividualMine and PropagatedMine need more memory space for storing sequential patterns

mined. Thus, it can be seen in Figure 5.9 that both algorithms IndividualMine and PropagatedMine have
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Figure 5.10: Performance of Naive, IndividualMine, and PropagatedMine with the average number of
elements within a sequence varied.

a larger memory consumption than algorithm Naive. This also agrees that algorithm Naive is bounded

by execution time, and algorithms IndividualMine and PropagatedMine are bounded by memory spaces.

Impact of the Average Number of Elements within a Sequence

In this section, we investigate the performance of Naive, IndividualMine, and PropagatedMine with
the average number of elements-withina sequence varied. Without loss of generality, the minimum
support threshold is set to 1% and.the.other parameters in.the dataset are M2D1kT31200. Figure 5.10
shows experimental results of Naive, IndividualMines;-and PropagatedMine. Clearly, the execution time of
mining multi-domain sequential patterns increases with the average number of elements within a sequence.
Note that algorithm IndividualMine even performs worse than algorithm Naive when the average number
of elements in a sequence is larger than 4.7. The reason is that IndividualMine mines a large number of
sequential patterns in each domain and spends more costs to composite candidate multi-domain sequential
patterns. The above observation is also proved in Figure 5.11, where algorithm IndividualMine generates a
larger number of sequential patterns propagated than algorithm PropagatedMine. Note that, the number
of patterns propagated in algorithm IndividualMine is the number of patterns discovered in the starting
domain. Figure 5.10 (b) also indicates that though algorithm PropagatedMine has a smaller execution

time, algorithm PropagatedMine needs more memory spaces to store lattice structure.

Impact of the Average Number of Items within an Itemset

The average number of items within an itemset generally impacts on the performance of sequential pattern
mining. Thus, we investigate the effect of varying the average number of items within an itemset. The
minimum support was set to 1% and we used the dataset M2D1kC31200. The execution time and memory
consumption with the average number of items in an itemset varied are shown in Figure 5.12. As can be

seen that in Figure 5.12, PropagatedMine performs the best in terms of the execution time. When the
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Figure 5.12: Performance of Naive, IndividualMine, and PropagatedMine with the average number of
items within an itemset varied.
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Figure 5.14: Performance of Naive, IndividualMine, and PropagatedMine with the number of different
items varied.

average number of items in an itemset is smaller, the execution time of IndividualMine is smaller than
that of Naive. However, if there is a large number of items within an itemset, IndividualMine performs
worse than Native since algorithm IndividualMine has a larger number of patterns mined, which incurs
a considerable cost in the checking phase. Figure 5.13 demonstrates that PropagatedMine is better than
IndividualMine because sequential patterns mined in the starting domain are much smaller than that of
algorithm IndividualMine. In algorithm PropagatedMine, only atomic patterns are mined and thus the
number of patterns mined in the starting domain is equal to the number of atomic patterns. Consequently,
by exploring lattice structures, algorithm PropagatedMine outperforms the other algorithms in terms of

the execution time.

Impact of the Number of Items

We next investigate the impact of the total number of items, where a minimum support is set to 1%
and other parameters are set as M2D1kC3T4. Figure 5.14 shows the execution times and memory

consumption of Naive, IndividualMine, and PropagatedMine. It can be seen in Figure 5.14 that both
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Figure 5.15: Number of patterns propagated in IndividualMine and PropagatedMine with the number of
different items varied.

IndividualMine and PropagatedMine have a smaller execution time than Naive as the number of items
increases. When the number of items is larger, the probability of being frequent for each item is smaller
with the same setting in D1kC3T4. Figure 5.15 depicts the number of patterns with the number of items
varied. As can be seen in Figure 5.15, PropagatedMine has a smaller number of patterns derived, which

demonstrates the advantage of using lattice structures for'discovering multi-domain sequential patterns.

Impact of the Propagation Order for PropagatedMine

Since algorithm PropagatedMine explores propagation on mining multi-domain sequential patterns, we
now get insight into the impact of propagation orders on performance of algorithm PropagatedMine. As
pointed out early, algorithm PropagatedMine first'selects a starting domain and then performs sequential
pattern mining. Based on the mining results, a lattice structure is built. Clearly, one should judiciously
determine the starting domain in algorithm PropagatedMine. Intuitively, selecting a domain with a
smaller number of sequential patterns is good to reduce the size of lattice structures, thereby improving
the performance of algorithm PropagatedMine. In this experiment, we conduct experiments on different
propagation orders.. Figure 5.16 shows the execution time of algorithm PropagatedMine with various
propagation orders, where the value in the x-axle is the propagation order used. For example, 12435
indicates that the algorithm PropagatedMine starts with D;, and then propagates to D2, Dy, D3 and
Ds. As can be seen in Figure 5.16, selecting domain D; as a starting domain is better since algorithm
PropagatedMine has a smaller execution time and memory consumption. This implies that sequential
patterns in D; has the minimal number of sequential patterns. Table 5.10 depicts the number of sequential
patterns in each domain and the number of sequential patterns in D is the smallest among other domains.
Furthermore, in Figure 5.16, propagation order 12435 incurs the smallest execution time of algorithm
PropagatedMine. This observation gives a guideline in which a good propagation order is determined as
an ascending order of the number of sequential patterns in sequence databases. Note that there are many

ways (e.g., sampling) to approximate the number of sequential patterns in each domain. Thus, according
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Figure 5.16: Performance of PropagatedMine with varied propagation order.

Domains D1 D2 D3 D4 D5
Number of Sequential patterns | 24982 | 25507 | 28204 | 27654 | 28560

Table 5.10: Number of sequential patterns mined in each domain.

to the guideline above, one could.determine-a good propagation order for algorithm PropagatedMine.

5.6 Conclusions

This chapter addresses a novel mining task: the multi-domain sequential pattern mining problem. Multi-
domain sequential patterns are of practical interest and use since they clearly reflect the relations of
domains hidden in user’s behavior. We designed algorithm Naive as a baseline algorithm and two effi-
cient algorithms, IndividualMine and PropagatedMine, to solve this problem. Specifically, in algorithm
IndividualMine, each domain individually performs sequential pattern mining and then candidate multi-
domain sequential patterns are generated by combining all mined sequential patterns in each domain.
Finally, by checking the time-instance sets of candidate multi-domain sequential patterns, the multi-
domain sequential patterns are discovered without scanning databases. In order to reduce the mining
cost of discovering sequential patterns in each domain, algorithm PropagatedMine first mines sequen-
tial patterns in a starting domain. Propagated tables are then constructed to discover the candidate
multi-domain sequential patterns. Note that by using propagated tables, only sequential patterns that
are likely to form multi-domain sequential patterns are extracted. Algorithm PropagatedMine further
explores lattice structures to reduce the number of patterns propagated. A comprehensive experimental
study is conducted and experimental results show that both algorithms IndividualMine and Propagat-
edMine are able to quickly mine multi-domain sequential patterns compared with algorithm Naive. By
exploring propagation and lattice structures, algorithm PropagatedMine outperforms other algorithms in

terms of execution times.
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Chapter 6

Conclusion

In this dissertation, we develop a series of research works for Apps usage behavior mining and explore
patterns mined from multiple categories of Apps: We select useful features from all sensor readings and
Apps usage relations to perform Apps usage prediction.. Then, two algorithms are proposed to estimate
users dynamic preferences of Apps.’ Finally, the multi-domain sequential patterns are discovered to
formulate the Apps usage pattern:in the category level. In the first-work, we focus on collecting all sensor
readings and Apps usage transitions, and performing kNN classification to predict Apps usage. Two main
type of features are proposed. The explicit feature consists of 1)/device sensors, 2) environmental sensors,
and 3) personalized sensors. The implicit feature models the Apps usage transitions. Two implicit feature
discovery algorithms are proposed to explore the implicit features for training and test purposes. Then, a
personalized feature selection algorithm is proposed to measure which features are useful for different users
usage behavior. In the second work, we implement an AppNow widget on Android based smartphones.
We further reduce the used features into only the temporal information, and build a temporal profile
for each App. As the observation of Apps usage behavior, we realized that the Apps usage could have
a specific usage period. We adopt Fourier transform to discover the usage periods for each App. The
temporal profile is thus modelled by the discovered usage periods. The AppNow widget will predict the
Apps usage by comparing the temporal profile of every App and current time to see which Apps have
higher probability to be launched. In the third work, we propose a novel dynamic preference prediction
problem which is to quantize and predict users preference according to their Apps usage counts. Two
algorithms are proposed. The mode-based prediction (MBP) considers the usage status of each App to
calculate its preference. The reference-based prediction (RBP) calculate a reference point for each App.
The preference of an App is thus estimated by comparing the reference point and the real usage counts. In
the forth work, a novel data mining task: mining multi-domain sequential patterns is proposed. The multi-
domain sequential pattern represents the usage transition of Apps in the category level. Two algorithms

are proposed to solve this problem. The individualMine algorithm discovers sequential patterns in each
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domain and combines those sequential patterns into one single domain. The propagatedMine algorithm
only performs sequential pattern mining in one starting domain and propagates the discovered sequential

patterns to the next domains. We design several operations when propagating patterns.

71



Bibliography

1]

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining Association Rules between Sets of
Items in Large Databases. In Proceedings of the 1993 ACM International Conference on Management
of Data (SIGMOD), pages 207-216, 1993.

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the 1994 International Conference on Very Large Data Bases (VLDB),
pages 487-499, 1994.

Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In Proceedings of the 1995
IEEF International Conference on Data Engineering (ICDE)ypages 3-14, 1995.

Driss Choujaa andC Naranker Dulay. . Predicting Human Behaviour from Selected Mobile Phone
Data Points. In Proc. of UbiComp, pages 105-108,.2010.

Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential Pattern Mining Using A
Bitmap Representation. In Proceedings of the 2002 ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pages 429-435, 2002.

Mete Celik, Shashi Shekhar, James P. Rogers, James A. Shine, and Jin Soung Yoo. Mixed-Drove
Spatio-Temporal Co-occurence Pattern Mining: A Summary of Results. In Proceedings of the 2006
IEEE International Conference on Data Mining (ICDM), pages 119-128, 2006.

O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

Gong Chen, Xindong Wu, and Xingquan Zhu. Sequential Pattern Mining in Multiple Streams. In
Proceedings of the 2005 IEEE International Conference on Data Mining (ICDM), pages 585588,
2005.

Lei Chen, M. Tamer zsu, and Vincent Oria. Robust and fast similarity search for moving object

trajectories. In Proc. of SIGMOD, pages 491-502, 2005.

72



[10]

[15]

[16]

Shuo Chen, Joshua L. Moore, Douglas Turnbull, and Thorsten Joachims. Playlist prediction via
metric embedding. In The 18th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, pages 714-722, 2012.

Hong Cheng, Xifeng Yan, and Jiawei Han. IncSpan: Incremental Mining of Sequential Patterns in
Large Database. In Proceedings of the 2004 ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), pages 527-532, 2004.

Ding-An Chiang, Yi-Hsin Wang, and Shao-Ping Chen. Analysis on repeat-buying patterns. Knowl.-
Based Syst., 23(8):757-768, 2010.

Ding-Ying Chiu, Yi-Hung Wu, and Arbee L. P. Chen. An Efficient Algorithm for Mining Fre-
quent Sequences by A New Strategy without Support Counting. In Proceedings of the 2004 IEEE
International Conference on Data Engineering (ICDE), pages 375-386, 2004.

Chung-Wen Cho, Yi-Hung Wu, and Arbee L. P. Chen. Effective Database Transformation and Effi-
cient Support Computation for. Mining-Sequential Patterns. In Proceedings of the 2005 International
Conference Database Systems for Advanced-Applications (DASFAA), pages 163-174, 2005.

Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. Smartphone usage in the wild: a large-
scale analysis of applications‘and context. In Proceedings of the 13th International Conference on

Multimodal Interfaces, ICMI 2011, Alicante, Spain, November 14-18, 2011, pages 353360, 2011.

Yuxiao Dong, Qing Ke, Jun Rao, Bai Wang,'and Bin Wu. Random walk based resource allocation:
Predicting and recommending links in cross-operator mobile communication networks. In Data Min-
ing Workshops (ICDMW), 2011 IEEFE 11th International Conference on, Vancouver, BC, Canada,
December 11, 2011, pages 358-365, 2011.

Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V. Chawla, Jinghai Rao, and Huanhuan Cao. Link
prediction and recommendation across heterogeneous social networks. In 12th IEEE International
Conference on Data Mining, ICDM 2012, Brussels, Belgium, December 10-13, 2012, pages 181-190,

2012.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The yahoo! music dataset

and kdd-cup’ll. In KDD-Cup Workshop, 2011.

Themis P. Exarchos, Markos G. Tsipouras, Costas Papaloukas, and Dimitrios I. Fotiadis. A Two-
Stage Methodology for Sequence Classification Based on Sequential Pattern Mining and Optimiza-

tion. Data and Knowledge Engineering, 66(3):467—-487, 2008.

73



[20]

21]

[22]

23]

[25]

[26]

[29]

[30]

Hongliang Fei, Ruoyi Jiang, Yuhao Yang, Bo Luo, and Jun Huan. Content based social behavior
prediction: a multi-task learning approach. In Proceedings of the 20th ACM Conference on Infor-
mation and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011,
pages 995-1000, 2011.

Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. SPIRIT: Sequential Pattern Mining with
Regular Expression Constraints. In Proceedings of the 1999 International Conference on Very Large

Data Bases (VLDB), pages 223-234, 1999.

Valerie Guralnik and George Karypis. Parallel Tree-Projection-Based Sequence Mining Algorithms.
Parallel Computing, 30(4):443-472, 2004.

Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. Social media recommenda-
tion based on people and tags. In Proceeding of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval; SIGIR 2010, Geneva, Switzerland, July 19-23,

2010, pages 194-201, 2010.

Jiawei Han, Jian Pei, Behzad Mortazavi- Asl, Qiming Chen; Umeshwar Dayal, and Meichun Hsu.
FreeSpan: Frequent Pattern=Projected Sequential Pattern Mining. In Proceedings of the 2000 ACM
International Conference on-Knowledge Discovery and Data Mining (SIGKDD), pages 355-359,
2000.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without Candidate Generation. In
Proceedings of the 2000 ACM International Conference on Management of Data (SIGMOD), pages
1-12, 2000.

Jen-Wei Huang, Chi-Yao Tseng, Jian-Chih Ou, and Ming-Syan Chen. Pisa: Progressive Mining of
Sequential Patterns. In Proceedings of the ACM 2006 International Conference on Information and
Knowledge Management (CIKM), pages 850851, 2006.

Kuo-Yu Huang, Chia-Hui Chang, Jiun-Hung Tung, and Cheng-Tao Ho. COBRA: Closed Sequen-
tial Pattern Mining Using Bi-phase Reduction Approach. In Proceedings of the 2006 International
Conference on Data Warehousing and Knowledge Discovery (DaWakK), pages 280-291, 2006.

Shi-Ming Huang, Chih-Fong Tsai, David C. Yen, and Yin-Lin Cheng. A hybrid financial analysis
model for business failure prediction. Ezpert Syst. Appl., 35(3):1034-1040, 2008.

Kalervo Jarvelin and Jaana Kekéldinen. Cumulated gain-based evaluation of ir techniques. ACM

Trans. Inf. Syst., 20(4):422-446, 2002.

Hoyoung Jeung, Qing Liu, Heng Tao Shen, and Xiaofang Zhou. A hybrid prediction model for
moving objects. In Proc. of ICDE, pages 70-79, 2008.

74



31]

[34]

[35]

[36]

37]

[39]

Daisuke Kamisaka, Shigeki Muramatsu, Hiroyuki Yokoyama, and Takeshi Iwamoto. Operation pre-
diction for context-aware user interfaces of mobile phones. In 2009 Ninth Annual International

Symposium on Applications and the Internet, pages 16-22, 2009.

Eiman Kanjo, Jean Bacon, David Roberts, and Peter Landshoff. MobSens: Making Smart Phones
Smarter. IEEE Pervasive Computing, 8(4):50-57, 2009.

Jacob Kogan. Feature selection over distributed data streams through convex optimization. In
Proceedings of the Twelfth SIAM International Conference on Data Mining, Anaheim, California,
USA, April 26-28, 2012, pages 475-484, 2012.

Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June
28 - July 1, 2009, pages 447-456, 2009.

Hye-Chung Kum, Joong Hyuk Chang, and Wei Wang. Sequential Pattern Mining in Multi-Databases
via Multiple Alignment. Data.Mining-and Knowledge Discovery, 12(2-3):151-180, 2006.

Hye-Chung Kum, Joong Hyuk Chang, and Wei Wang. Benchmarking the Effectiveness of Sequential
Pattern Mining Methods. Data and Knowledge Engineering, 60(1):30-50, 2007.

Neal Lathia, Stephen Hailes,”Licia Capra, and Xavier /AAmatriain. Temporal diversity in recom-
mender systems. In Proceeding of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2010, Geneva, Switzerland, July 19-23, 2010, pages
210-217, 2010.

Po-Ruey Lei, Tsu-Jou Shen, Wen-Chih Peng, and Ing-Jiunn Su. Exploring spatial-temporal trajec-
tory model for location prediction. In 12th IEEFE International Conference on Mobile Data Manage-
ment, MDM 2011, Lulea, Sweden, June 6-9, 2011, Volume 1, pages 58-67, 2011.

Neal Lesh, Mohammed Javeed Zaki, and Mitsunori Ogihara. Mining Features for Sequence Clas-
sification. In Proceedings of the 1999 ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD), pages 342-346, 1999.

Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie S. Glance, and Matthew Hurst. Pat-
terns of cascading behavior in large blog graphs. In Proceedings of the Seventh SIAM International

Conference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota, USA, 2007.

Zhung-Xun Liao, Po-Ruey Lei, Tsu-Jou Shen, Shou-Chung Li, and Wen-Chih Peng. Mining temporal
profiles of mobile applications for usage prediction. In 12th IEEFE International Conference on Data

Mining Workshops, ICDM Workshops, Brussels, Belgium, December 10, 2012, pages 890-893, 2012.

75



[42]

[46]

Zhung-Xun Liao and Wen-Chih Peng. Exploring Lattice Structures in Mining Multi-domain Sequen-
tial Patterns. In Proceedings of the 2007 International Conference on Scalable Information Systems

(InfoScale), pages 334-339, 2007.

Zhung-Xun Liao, Wen-Chih Peng, and Xing-Yuan Hu. Mining Multi-domain Sequential Patterns. In
Workshop on Software Engineering, Databases, and Knowledge Discovery, International Computer

Symposium (ICS), pages 334-339, 2006.

Zhung-Xun Liao, Wen-Chih Peng, and Philip S. Yu. Mining usage traces of mobile applications for
dynamic preference prediction. In 17th Pacific-Asia Conference on Knowledge Discovery and Data

Mining, PAKDD 2013, Gold Coast, Australia, April 13-17, 2013, 2013.

David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for social networks. In
Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Man-
agement, New Orleans, Louisiana, USA, November/2-8, 2003, pages 556559, 2003.

Eric Hsueh-Chan Lu, Wang-Chien Lee, and Vincent Shin-Mu Tseng. A framework for personal
mobile commerce pattern mining and-prediction. [EEE Trans. Knowl. Data Eng., 24(5):769-782,
2012.

Dimitrios Lymberopoulos, Peixiang Zhao, Arnd Christian Konig, Klaus Berberich, and Jie Liu.
Location-aware click prediction in.mobile local search.<In Proceedings of the 20th ACM Conference
on Information and Knowledge Management, -CIKM 2011, Glasgow, United Kingdom, October 24-

28, 2011, pages 413-422, 2011.

Florent Masseglia, Pascal Poncelet, and Maguelonne Teisseire. Incremental Mining of Sequential

Patterns in Large Databases. Data and Knowledge Engineering, 46(1):97-121, 2003.

M. Matsumoto, R. Kiyohara, H. Fukui, and M. Numao. Proposition of the context-aware interface
for cellular phone operations. In 5th International Conference on Networked Sensing Systems, June

17-19, 2008, pages 233233, 2008.

Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. Wherenext: a location predic-
tor on trajectory pattern mining. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages 637-646,
20009.

Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. Wherenext: a location pre-

dictor on trajectory pattern mining. In Proc. of KDD, pages 637-646, 2009.

Bernard Ostle and Linda Catron Malone. Statistics in research: basic concepts and techniques for

research workers, 1988.

76



[53]

[54]

[55]

Nick Pears, Daniel Jackson, and Patrick Olivier. Smart Phone Interaction with Registered Displays.

IEEE Pervasive Computing, 8(2):14-21, 2009.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, and
Meichun Hsu. PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In Proceedings
of the 2001 IEEE International Conference on Data Engineering (ICDE), pages 215-224, 2001.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen, Umeshwar
Dayal, and Meichun Hsu. Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach.
IEEFE Transactions on Knowledge and Data Engineering, 16(11):1424-1440, 2004.

Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, and Umeshwar Dayal. Multi-Dimensional
Sequential Pattern Mining. In Proceedings of the 2001 ACM International Conference on Information
and Knowledge Management (CIKM), pages 81-88, 2001.

Bodhi Priyantha, Dimitrios Lymberopoulos, and Jie Liu: Littlerock: Enabling energy-efficient con-

tinuous sensing on mobile phones: IEEE Pervasive Computing, 10(2):12-15, 2011.

Daniele Quercia, Giusy Di, Lorenzo, Francesco Calabrese, and Carlo Ratti. Mobile phones and

outdoor advertising: Measurable advertising. IEEE Pervasive Computing, 10(2):28-36, 2011.
J. Rissanen. Modeling by shortest, data description.“Automatica, 14:465-471, 1978.

J. Rissanen. Hypothesis selection and testing by the mdl principle. The Computer Journal, 42:260-
269, 1999.

Pierre-Yves Rolland. FlExPat: Flexible Extraction of Sequential Patterns. In Proceedings of the
2001 IEEE International Conference on Data Mining (ICDM), pages 481-488, 2001.

Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T. Campbell.
Nextplace: A spatio-temporal prediction framework for pervasive systems. In Pervasive Comput-
ing - 9th International Conference, Pervasive 2011, San Francisco, CA, USA, June 12-15, 2011.
Proceedings, pages 152—-169, 2011.

Kent Shi and Kamal Ali. Getjar mobile application recommendations with very sparse datasets. In
The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’12, Beijing, China, August 12-16, 2012, pages 204-212, 2012.

Choonsung Shin, Jin-Hyuk Hong, and Anind K. Dey. Understanding and prediction of mobile appli-
cation usage for smart phones. In The 2012 ACM Conference on Ubiquitous Computing, Ubicomp
’12, Pittsburgh, PA, USA, September 5-8, 2012, pages 173-182, 2012.

7



[65]

[66]

[67]

Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In Proceedings of the 1996 International Conference on Extending Database

Technology (EDBT), pages 3-17, 1996.

Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. Cooperative transit

tracking using smart-phones. In Proc. of SenSys, pages 85-98, 2010.

Alessandra Toninelli, Rebecca Montanari, Ora Lassila, and Deepali Khushraj. What’s on Users’
Minds? Toward a Usable Smart Phone Security Model. IEEE Pervasive Computing, 8(2):32-39,
2009.

Petre Tzvetkov, Xifeng Yan, and Jiawei Han. TSP: Mining Top-K Closed Sequential Patterns.
Knowledge Information System, 7(4):438-457, 2005.

Michail Vlachos, Philip Yu, and Vittorio Castelli. On periodicity detection and structural periodic
similarity. In Proc. of SDM, 2005.

Jianyong Wang and Jiawei Han. BIDE: Efficient Mining of Frequent Closed Sequences. In Proceedings
of the 2004 IEEE International Conference on Data Engineering (ICDE), pages 79-90, 2004.

Liang Xiang, Quan Yuan, Shiwan Zhao, I.i Chen, Xiatian Zhang, Qing Yang, and Jimeng Sun.
Temporal recommendation on graphs via long="and short-term preference fusion. In Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010, pages 723-732, 2010.

Bo Yan and Guanling Chen. Appjoy: personalized mobile application discovery. In Proceedings of
the 9th International Conference on Mobile Systems, Applications, and Services (MobiSys 2011),

Bethesda, MD, USA, June 28 - July 01, 2011, pages 113-126, 2011.

Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app launching for mobile
devices using predictive user context. In The 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys’12, Ambleside, United Kingdom - June 25 - 29, 2012, pages
113-126, 2012.

Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining Closed Sequential Patterns in Large
Databases. In Proceedings of the 2003 SIAM International Conference on Data Mining (SDM), 2003.

Jiong Yang, Wei Wang, Philip S. Yu, and Jiawei Han. Mining Long Sequential Patterns in A Noisy
Environment. In Proceedings of the 2002 ACM International Conference on Management of Data
(SIGMOD), pages 406-417, 2002.

78



[76]

Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. App recommendation: a contest between
satisfaction and temptation. In Sizth ACM International Conference on Web Search and Data

Mining, WSDM 2013, Rome, Italy, February 4-8, 2013, pages 395-404, 2013.

Chuang-Wen You, Chih-Chiang Wei, Yi-Ling Chen, Hao-Hua Chu, and Ming-Syan Chen. Using
mobile phones to monitor shopping time at physical stores. IEEE Pervasive Computing, 10(2):37—
43, 2011.

Chung-Ching Yu and Yen-Liang Chen. Mining Sequential Patterns from Multidimensional Sequence
Data. IEEE Transactions on Knowledge and Data Engineering, 17(1):136-140, 2005.

Mohammed Javeed Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning, 42(1/2):31-60, 2001.

Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. New Algorithms
for Fast Discovery of Association:Rules:"In Proceedings of the 1997 ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), pages 283-286, 1997.

Chun Zhu and Weihua Sheng. Motion- and location-based online human daily activity recognition.

Pervasive and Mobile Computing, 7(2):256<269, 2011.

79



	cover
	book
	thesis

