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量 子 力 學 在 動 量 空 間 的 表 象 及 其 在 鋰 原 子 的 強 場 游 離 之 應 用 

學生：鄭世達 

 

指導教授：江進福 

程思誠 
 

國立交通大學物理研究所博士班 

摘 要       

我們建立了一套準確且有效率的方法，去解原子和雷射交互作用在動量空間

的表象的薛丁格方程式。我們的方法是建立在分離運算子方法(split-operator 
method) 和有限積分範圍的蘭迪方法 (Landé subtraction method with finite 
integration limits)之上。我們測試了包含線性偏極脈衝、圓形偏極脈衝和長波長脈

衝的情況，我們的計算結果和其他計算方法得到的結果是一致的。我們也用有限

積分範圍的蘭迪方法去推廣李文斯坦模型(Lewenstein model)。接下來，我們應用

已建立的動量空間薛丁格方程式解法，去做鋰原子的強場游離的研究。在較低雷

射強度的區域，經由分析相關的束縛態被佔據的歷史和將光電子頻譜

(photoelectron spectra)分成奇數和偶數角動量部分，我們可以追溯出多光子游離

(multiphoton ionization)在光電子頻譜形成的峰點的來源。在較強雷射強度的區

域，我們指出了電子會穩定地停留在雷德堡態(Rydberg states)並解釋了為什麼游

離電子明顯集中到垂直於雷射偏極的方向。 
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ABSTRACT 

We developed an accurate as well as efficient scheme to solve time-dependent 
Schrödinger equation in momentum space of an atom interacting with a laser pulse. 
Our scheme is based on split-operator method in energy representation and Landé 
subtraction method with finite integration limits. Cases of linearly polarized pulse, 
circularly polarized pulse, and long wavelength pulses are tested. Our results agree 
well with those from coordinate space calculations. We also apply the Landé 
subtraction method with finite integration limits to generalize Lewenstein model. Next, 
we use the developed P-space TDSE to study the strong-field ionization of a lithium 
atom with a linearly polarized pulse. By analyzing the population history of relevant 
bound states and separation the photoelectron spectra into odd and even angular 
momentum parts, we can trace the origin of multiphoton ionization peaks in the lower 
intensity regime. We point out the Rydberg stabilization and explain why the fan 
structure becomes evident in the direction perpendicular to the polarization axis in the 
higher intensity regime. 
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Chapter 1

Introduction

Atomic ionization under strong laser field has been an attractive topic for decades. With

the advance of the intense and short pulse laser technology, the study of the phenomena

and corresponding applications of strong-field ionization continue to attract attention [1,

2]. Phenomena of an atom exposed to intense laser field include: multiphoton ionization

(MPI), above-threshold ionization (ATI), tunneling ionization (TI), over-barrier ionization

(OBI), and high-order harmonic generation (HHG).

MPI and ATI are associated processes. MPI is a process that a bound electron is ion-

ized by absorbing enough photons successively to exceed the ionization potential. The

ionized electron can continue to absorb more photons successively, then form evenly

spaced multipeaks in the photoelectron spectra. The space between the two adjacent

peaks is a photon energy. This is known as ATI [3, 4, 5, 6]. In a laser field, atomic po-

tential can be suppressed by the laser field and form a potential barrier. Then, an electron

ionized by tunneling through the barrier is known as TI. OBI occurs if the laser intensity

is so high that the peak of the potential barrier is lower than the ground state energy.

In the aspect of light, if an intense laser with frequency ω acts on atom samples,

the spectra of the output light will contain odd multiple of ω. This is known as HHG.

This phenomenon can be understood by the three-step model [7]: (i) an electron is ion-

ized through tunneling, (ii) the ionized electron is accelerated by the laser field, (iii) the

electron is driven back by the laser field and recombines with the ion core. Then, emits

high-order harmonic light and the cutoff is about Ip+3Up, where Ip is the ionization po-

tential of an atom and Up = I0/4ω
2 is ponderomotive energy (or average kinetic energy)

of a free electron in the laser field with intensity I0 and carrier frequency ω.

The regime of MPI and TI can be classified conveniently by Keldysh parameter [8, 9],

which is the ratio of tunneling time to the period of the laser wave. It is given by

γ =

√
Ip
2Up

(1.1)
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γ > 1, for lower laser intensity or larger frequency, is MPI regime. In this region,

photoelectron spectra are dominant by nonresonant multiphoton ionization (NRMPI) and

dynamical resonant multiphoton ionization (DRMPI) [10]. Many experimental electron

spectra, especially rare gas atoms, have been carefully studied in this regime [11, 12, 13,

14]. γ < 1, for higher intensity or smaller frequency, TI becomes dominant. This region

has been investigated experimentally and theoretically but the interpretation of the data

appears to be somewhat confusing so far [15, 16, 17, 18, 19, 20, 21]. Recent study in the

mid-infrared regime reinforce such confusion [22, 23, 24, 25, 26, 27, 28]. And, to distin-

guish the TI signature in the photoelectron spectra is still an interested topic [29, 30, 31].

By an intense laser field we mean the energy scale of laser-atom interaction is com-

parable to the atomic binding energy. Therefore, perturbation theory is no longer valid.

Nonperturbative treatment is needed. Two successful quantum mechanical theoretical

tools that usually used to study the strong-field ionization are: numerical calculation

of time-dependent Schrödinger equation (TDSE) and strong-field approximation (SFA)

[7, 8, 32, 33]. Actually, SFA is still a perturbation theory but somewhat different from

typical perturbation treatment. For initially bounded electron, laser field is treated as a

perturbation. Once the electron is ionized, atomic potential become smaller for the dis-

tant electron and thus is taken as a perturbation. SFA is a two-fold perturbation theory.

However, SFA can only give a qualitative description, but is still useful due to its clear

physical picture and easily handling. Numerical calculation of TDSE is more convincible,

but it become computationally more challenging for higher laser intensity or longer pulse

duration.

There are many methods for numerical calculation of TDSE, such as split-operator

method [34], matrix iteration method [35, 36], Arnoldi-Lanczos method [37], Kramers-

Henneberger like transform method [38, 39], using integration form [40, 41], and the time-

dependent surface flux method [42] etc. In these methods, calculations are performed in

the coordinate space (R-space). In the numerical calculation, a finite box will be set in the

space. Due to the more spreading character of the ionized wave function in the R-space,

it is easy to reach the boundary of the box and will then be reflected. To avoid reflection,

a filter function is usually used at the boundary. Wave function will be filtered out when

reaching the box boundary. In this way, some information in the wave function will be

also filtered out. Especially at higher laser intensity, a more larger box will be required

to retain more information in the wave function, so do the grid points. Hence, make the

R-space TDSE difficult to perform accurately and efficiently.

Uncertainty principle tells us the more spreading ionized wave function in the R-

space, the more it is localized in the P-space. If performing the calculation of TDSE in

the p-space, it will be free from boundary reflection and the complete information will be
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retained. Although it has such great advantage, it is difficult to obtain accurate results due

to a singularity in the P-space Coulomb kernel. Recently developed P-space TDSE uses

Landé subtraction method to remove the singularity in the Coulomb kernel [43]. However,

a larger upper bound pmax is still needed due to the typical usage of Landé subtraction

method requiring a larger upper bound pmax for accuracy. This larger upper bound pmax
makes the time propagation of P-space TDSE not efficient.

In the first part of this thesis, we modify the Landé subtraction method to be applicable

in a smaller pmax, so called ”Landé subtraction method with finite integration limits”.

Together with split-operator method in energy representation, we develop an accurate

as well as efficient scheme to perform P-space TDSE [44]. In addition, we also apply

the Landé substraction method with finite integration limits to generalize the Lewenstein

model by taking scattering process into account. Next, we apply the developed scheme to

the study of strong-field ionization of a lithium atom [45].

Lithium atom is the third element in the periodic table. It has three electrons. The

simplest atoms, hydrogen and helium, have been studied for long time, but the double

ionization and correlation effect of the two electrons of a helium atom can be carefully

studied only recently [46, 47, 48] due to the advance of GPU parallel calculation. And,

the dynamics of a lithium atom under strong laser field become the next challenge and

start to attract attention [49, 50, 51]. A recent paper reported experimental results to-

gether with numerical TDSE calculations on the strong- field ionization of a lithium atom

[51]. Two new techniques are used in the experiment: (1) experiment was performed in a

magnetic-optical trap (MOT) and the thermal effect is small. (2) the reaction microscope

technique was used to measure photoelectron spectra and the resolution is improved to

∼meV. In the experiment, a laser pulse with full width at half maximum (FWHM) 30fs

wavelength 785 nm and peak intensity in 1011 ∼ 1014 were used. The classical estimation

by DC field, the laser intensity for OBI is I4P/16Z
2, where Z is atomic number and IP

is ionization potential. The OBI intensity for Li is 3.4 × 1014W/cm2 hence γ = 3.7 for

wavelength 785 nm used in the experiment. This is in the MPI regime not in the TI regime

as inert gas atoms. Therefore, with the lithium target under the laser parameters used in

the experiment, MPI, OBI and TI regimes are all covered.

The two-dimensional momentum distributions and the photoelectron spectra were

shown in the experimental paper. At lower intensity, the photoelectron spectra is orig-

inated simply through nonresonant multiphoton ionization (NRMPI). At a little higher

intensity, the intermediate bound states might be populated largely due to ac-Stark shift

during pulse time and lead to a dynamical resonant multiphoton ionization (DRMPI) [10].

Complex peaks thus appear. For intensity higher than 8 × 1012W/cm2, fanlike structure

appears. The long-range Coulomb interaction between the electron and its parent ion ,and

3



ponderomotive shift induced subpeaks explain this structure [52, 53, 54]. We also ob-

served electron is distributed in the direction perpendicular to the polarization axis in the

higher laser intensity regime. We perform calculations to examine the above mechanisms

further.
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Chapter 2

Methods

In the section 2.1, the scheme of the split-operator method in the energy representa-

tion that we employ to solve the P-space time-dependent Schrödinger equation (P-space

TDSE) will be introduced. The most troublesome issue in this scheme is that there exist a

singularity in the P-space Coulomb potential. In the section 2.2, we will introduce Landé

subtraction method which is a useful technique to remove such singularity. However,

typical usage of this technique needs a larger upper bound in momentum pmax to guaran-

tee the accuracy. This limitation make the application to the P-space TDSE not efficient.

We modify the Landé subtraction method to be applicable to a smaller momentum upper

bound. Accuracy as well as efficiency in time propagation are thus improved. Results

of P-space TDSE will be presented in the section 2.3. In the section 2.4, we first intro-

duce two versions of strong field approximation which are very useful theoretical models

to investigate the laser-atoms interaction under strong field. One is Keldysh-Faisal-Reiss

(KFR) theory and the other is Lewenstein model. Then, we generalize the Lewenstein

model to include scattering process by using Landé subtraction method with finite inte-

gration limits introduced in the section 2.2.
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2.1 Time-dependent Schrödinger equation in momentum

space

(P-space TDSE)

The R-space TDSE of an atom interacting with laser field in the velocity gauge is given

by

i
∂

∂t
Ψ(r, t) = [H0 +Hi(t)] Ψ(r, t) (2.1)

H0 =
p2

2
+ U(r) (2.2)

Hi(t) = A(t) · p (2.3)

A(t) = −
∫ t

−∞
E(t)dt (2.4)

where H0 is atomic Hamiltonian, U(r) is the atomic potential which only the motion of

the outer most electron is considered (called single-active-electron approximation), Hi is

the laser-electron interaction in the velocity gauge and dipole approximation [Appendix],

and E(t) and A(t) are electric field and its corresponding vector potential of the laser

field. Atomic units (a.u.) are used throughout this thesis unless indicated otherwise. The

P-space TDSE can be obtained by Fourier transformation [57, 58]:

i
∂

∂t
Ψ(p, t) = [H0 +Hi(t)] Ψ(p, t) (2.5)

H0Ψ(p, t) =
p2

2
Ψ(p, t) +

∫
V (p, q)Ψ(q, t)dq (2.6)

Hi(t) = A(t) · p (2.7)

where

Ψ(p, t) =
1

(2π)3/2

∫
Ψ(r, t) exp(−ip · r)dr (2.8)

V (p,q) =
1

(2π)3

∫
U(r) exp[i(q − p) · r]dr (2.9)

We use second-order split-operator method to approach the time propagation of wave

function.

Ψ(p, t+∆t) ≈ e−iH0∆t/2e−iHi(t+∆t/2)∆te−iH0∆t/2Ψ(p, t) +O(∆t3) (2.10)

6



The time propagation of the wave function from t to t+∆t can be divide into three steps:

(i) free propagate for a half-time step ∆t/2

Ψ1(p, t+∆t/2) ≡ e−iH0∆t/2Ψ(p, t) (2.11)

(ii) propagate under the influence of the laser field

Ψ2(p, t+∆t/2) ≡ e−iHi(t+∆t/2)∆tΨ1(p, t+∆t/2) (2.12)

(iii) free propagate for another half-time step ∆t/2

Ψ(p, t+∆t) ≡ e−iH0∆t/2Ψ2(p, t+∆t/2) (2.13)

In step (i), we first expand Ψ(p, t) and V (p, p′) in spherical harmonics Ylm(θ, ϕ). In

the following, we will only present linear polarized case, and can be generalized to any

polarization easily under the same framework. For a linear polarized light, the system is

azimuthal symmetric by assigning the polarization direction as the z axis. Therefore, only

m = 0 components will be involved.

Ψ(p, t) =
lmax∑
l=0

gl(p, t)Yl0(θ, ϕ) (2.14)

V (p,q) =
1

pq

lmax∑
l=0

vl(p, q)Yl0(θ, ϕ)Y
∗
l0(θ

′, ϕ′) (2.15)

where lmax is the maximum number of partial wave and vl(p, q) will be expressed later in

Eq. (2.37). Then, Eq. (2.11) can be rewritten as:

exp(−iH0∆t/2)Ψ(pi, θj, t) =
lmax∑
l=0

[exp(−iH l
0∆t/2)gl(pi, t)]Yl0(cosθj) (2.16)

where

H l
0Ψ(p, t) =

p2

2
+
∫
vl(p, q)Ψ(q, t)q2dq (2.17)

is the radial part of the atomic Hamiltonian. Next, we represent the time evolution oper-

ator Sl ≡ exp(−iH l
0∆t/2) in complete eigensets χkl(p) of the atomic Hamiltonian H l

0.

This scheme is the so called split-operator method in the energy representation [34]. And,

χkl(p) satisfies the following eigenvalue equation:

H0
l χkl(p) =

p2

2
χkl(p) +

∫
vl(p, q)χkl(q)q

2dq = εklχkl(p) (2.18)

where εkl is the eigen energy corresponding to χkl(p). The time evolution of the radial

part of Eq. (2.16) can thus be expressed as:

[exp(−iH l
0∆t/2)gl(p)]i =

N∑
j=1

Slijgl(pj) ≡ g
(1)
l (pi) (2.19)

7



where

Slij =
∑
k

χkl(pi)χkl(pj) exp(−iεkl∆t/2) (2.20)

Combining with angular part we get Ψ1(p, t):

Ψ1(p, t+∆t/2) =
lmax∑
l=0

g
(1)
l (p, t)Yl0(θ, ϕ) (2.21)

In step (ii), see Eq. (2.12), Hi(t + ∆t/2) = A(t + ∆t/2)p cos θ for linear polarized

light. Rather than coupling in p-subspace for each independent l through the convolution

integration of the atomic potential in step (i), the cos θ in Hi couple the l-subspace for

each p independently here. We change the character of p and l and rewriting Eq. (2.21)

as follow [43]:

Ψ1(p, t+∆t/2) =
lmax∑
l=0

g(1)p (l, t)Yl0(θ, ϕ) (2.22)

And, we represent the time evolution operator exp[−iHi(t + ∆t/2)∆t] in the complete

sets χ(1)
ℓp (l) of the operator K̂ = cos θ in the {Yl0(θ, ϕ)} basis which satisfies

K̂χ
(1)
ℓp (l) = λℓpχ

(1)
ℓp (l) (2.23)

where λℓp is the eigenvalue corresponding to χ(1)
kl (p). Then, together with Eq. (2.22), Eq.

(2.12) can be rewritten as:

Ψ2(p, t+∆t/2) =
lmax∑
l=0

lmax∑
j=1

Spijg
(1)
p (lj, t)Yl0(θ, ϕ) (2.24)

where

Spij =
∑
ℓ

χ
(1)
ℓp (li)χ

(1)
ℓp (lj) exp(−iA(t+∆t/2)pλℓp∆t) (2.25)

Step (iii) is just the same as step (i). After repeating step (i) again, the wave function

Ψ(p, t+∆t) is obtained.

After propagating to the end of the laser field at tf , we get a final time wave function

Ψ(tf ). To extract the information of the ionized electron, we introduce a continuous state

projection operator:

P̂C =
∑
Ei≥0

|χi⟩⟨χi| (2.26)

which is a summation of the outer product of eigenstates with positive eigen energy. Then,

we can isolate the continuous part ΨC by operating P̂C to the final time wave function

Ψ(tf ).

ΨC = P̂CΨ(tf ) (2.27)

The momentum differential probability P distribution of the an ionized electron of

energy E = p2/2 in the direction p̂ is given by

∂3P

∂3p
= |ΨC |2 (2.28)
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For a linear polarized light, the system is symmetric about the polarization axis. Two-

dimensional momentum distribution can be obtained by integrated over the azimuthal

angle ϕ about the polarization axis.

∂2P

∂E∂θ
=
∂3P

∂3p
2πpsinθ (2.29)

or
∂2P

∂Esinθ∂θ
=
∂3P

∂3p
2πp (2.30)

where θ is the angle between the polarization axis and the direction of the ionized photo-

electron. The former form usually use to emphasize multiphoton ionization pattern [59]

while latter one usually use to emphasize the electron distribution along the polarization

direction [39, 43]. By integrating over θ in Eq. (2.29) and (2.30), we obtain the photo-

electron spectra.
∂P

∂E
=
∫

∂2P

∂E∂θ
dθ (2.31)

or
∂P

∂E
=
∫ ∂2P

∂Esinθ∂θ
sinθdθ (2.32)

9



2.2 Landé subtraction method with finite integration lim-

its

Since we represent the time evolution operator Sl ≡ exp(−iH l
0∆t/2) in complete eigensets

of atomic Hamiltonian H l
0, solving the eigenvalue equation Eq. (2.18) is the central part

of the P-space TDSE. Before proceeding, let’s examine the atomic potential first. In the

single-active-electron approximation, only the motion of the outer most electron is con-

sidered. The interaction between this electron and other inner shell electrons and atomic

core can be modeled as a model potential [14, 60, 61]. The form of a model potential is

not unique. We list one for example [61]:

V (r) = −1

r
− a1e

−a2r + a3re
−a4r + a5e

−a6r

r
(2.33)

When r → ∞, V (r) → −1/r which is the long-range Coulomb potential between the

outer most electron and the ion core. The second short-range potential term account for

the screened effect caused by other inner shell electrons where a′is are variation parame-

ters to be optimized by fitting the energy levels from experiment data. This can be done

by, for example, density functional calculations. Fourier transformation of this model

potential is

V (k) = − 1

2π2k2
− 1

2π2

{
a21

a22 + k2
+

2a3a4
a24 + k2

+
a25

a26 + k2

}
(2.34)

where k = |p− q|. Except the first long-range Coulomb potential term have a singularity

at k = 0, others are well-behaved functions in the p-space and are easy to handle. The

singularity in long-range Coulomb potential make it difficult to calculate eigenstates as

well as eigenvalues accurately. To remove this singularity, Landé subtraction technique

has been proposed and the potential part of Eq. (2.18) is rewritten as [55]:∫
vl(p, q)ψl(q, t)q

2dq

= Slψl(p, t) +
∫
vl(p, q)

[
ψ(q, t)q2 − ψ(p, t)

Pl(z)
p2
]
dq (2.35)

where z = (p2 + q2)/2pq, Pl(z) is the Legendre polynomial, Sl is defined as:

Sl ≡ p2
∫ vl(p, q)

Pl(z)
dq (2.36)

,and vl(p, q) is the expansion of p-space Coulomb potential (−1/2π2k2) in {Ylm(θ, ϕ)}
basis, see Eq. (2.15), and has the following form:

vl(p, q) = − 1

πpq
Ql(

p2 + q2

2pq
) (2.37)
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Ql is Legendre function of the second kind and is defined as:

Ql(z) =
1

2

∫ 1

−1

1

z − x
Pl(x)dx (2.38)

when p = q, hence z = 1, vl(p, q) diverge because Ql(z) is divergent.

In Eq. (2.35), we just subtract the potential part of Eq. (2.18) by p2
∫
vl(p, q)

ψ(p,t)
Pl(z)

dq

and add it back. By this trick, the terms in the square bracket tend to zero faster than the

Coulomb potential vl(p, q) tends to infinity when q → p and singularity is thus removed.

Hence we can redefine vl(p, q) for convenience [43]

vl(p, q) =

 0 p = q

Vl(p, q) p ̸= q
(2.39)

Then, the eigenvalue equation Eq. (2.18) can be rewritten as:[
p2

2
+ Sl − ql(p)

]
χkl(p) +

∫
Vl(p, q)χkl(q)q

2dq = εklχkl(p) (2.40)

where

ql(p) = p2
∫ Vl(p, q)

Pl(z)
dq (2.41)

Now, we need to calculate Sl and ql(p) in the Eq. (2.40). We rewrite Sl as following:

Sl = p2
∫ vl(p, q)

Pl(z)
dq =

−p
π

∫ Ql(z)

qPl(z)
dq = −pJl(p) (2.42)

where Jl(p) is defined as

Jl(p) ≡
1

π

∫ Ql(z)

qPl(z)
dq (2.43)

and the Legendre function of the second kind can be expressed alternatively as [62]

Ql(z) =
1

2
Pl(z)ln

z + 1

z − 1
−Wl−1(z) (2.44)

where

Wl−1(z) =
l∑

k=1

1

k
Pk−1(z)Pl−k(z) (2.45)

Finally, Jl(p) has the form

Jl(p) =
1

2π

∫
ln
z + 1

z − 1

dq

q
− 1

π

∫ Wl−1(z)

Pl(z)

dq

q
(2.46)

We should integral the two terms on the right hand side of Eq. (2.46) from 0 to ∞ and

these two terms can be calculated analytically. The first term is

1

2π

∫ ∞

0
ln
z + 1

z − 1

dq

q
=
π

2
(2.47)
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l Il l Il

0 0 10 1.487904713975699

1 1 11 1.495107943133761

2 1.224744871391589 12 1.501159656551487

3 1.322854905602328 13 1.506315483232877

4 1.377702237793946 14 1.510760615105643

5 1.412705039729489 15 1.514632500321632

6 1.436975208969198 16 1.518035295340011

7 1.454789864925959 17 1.521049367745399

8 1.468421032379340 18 1.523737720224722

9 1.479186912585977 19 1.526150439737141

Table 2.1: Numerical values of Il for l=0-19. [56].

We neglect the detail calculation of the second term and just define its as Il, so

Jl(p) =
π

2
− Il (2.48)

Numerical values of Il for l = 0−19 are listed in Table 1 [56]. However, in the numerical

calculation, we can only set a finite upper bound pmax rather than ∞. Since Jl(p) is

obtained by integrating momentum q from 0 to ∞, setting a larger upper bound pmax as

well as a large number of grid points for obtaining accurate eigenstates and eigenvalues

is expected. As a result, the calculation is inefficient.

This problem can be cured by setting the integration upper bound of Jl(p) to a finite

value pmax. We denote the modified Jl by Jfinitel (p). That is

Jfinitel (p) =
1

2π

∫ pmax

0
ln
z + 1

z − 1

dq

q
− 1

π

∫ pmax

0

Wl−1(z)

Pl(z)

dq

q
(2.49)

and the first term becomes

1

2π

∫ pmax

0
ln
z + 1

z − 1

dq

q
=
π

2
− 2

π

[
s+

s3

32
+
s5

52
+
s7

72
+ ...

]
(2.50)

where s = p/pmax. The second term of Jfinitel (p) can be calculated numerically. Together

with the numerical integration of ql(p) from 0 to pmax, the eigenvalue equation Eq. (2.40)

is ready to solve [63].

We map the P-space domain p ∈ [0, pmax] to a new domain x ∈ [−1, 1] by the follow-

ing mapping function:

p(x) = L
1 + x

1− x+ xm
(2.51)

where L is mapping parameter and xm = 2L/pmax. The grid points are denser at small p

for smaller L. x is discretized by using Gauss-Lobatto quadrature where the N grid points

{xi} are the roots of the derivative of Legendre polynomial P ′
N+1(x) [64].
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State E(nl)− exact ∆Φ

(nl) Present Ordinary Present Ordinary

1s

2s

3s

2p

3p

3d

1.76(-6) -6.45(-3)

2.75(-7) -1.61(-3)

1.24(-7) 7.16(-4)

-1.56(-10) -4.14(-8)

-8.75(-10) 1.83(-8)

2.38(-10) 2.38(-10)

6.90(-8) 2.45(-4)

6.88(-8) 4.25(-4)

6.88(-8) 6.17(-4)

1.01(-10) 1.34(-8)

6.46(-10) 1.84(-8)

4.21(-10) 4.22(-10)

Table 2.2: Comparison of eigenvalues and wave functions of a hydrogen atom between

”Present” Landé substraction method method with finite limits and the ”Ordinary” Landé

substraction method. [E(nl)-exact] is the deviation of energy levels for the first few low-

lying states. ∆Φ is the root-mean-square deviation of the wave function. 2048 grid points

and pmax = 100 a.u. are used. 1.76(−6) ≡ 1.76× 10−6 [44].

State E(nl)− exact ∆Φ

(nl) Present Ordinary Present Ordinary

1s

2s

3s

2p

3p

3d

7.77(-8) -3.18(-4)

6.55(-8) -7.96(-5)

6.25(-8) -3.53(-5)

-1.78(-10) -4.95(-10)

-9.45(-10) -1.06(-9)

3.86(-10) 2.70(-10)

5.99(-10) 1.22(-5)

1.01(-9) 2.11(-5)

1.41(-9) 3.07(-5)

4.39(-9) 1.90(-10)

6.85(-8) 7.69(-10)

7.66(-8) 5.58(-10)

Table 2.3: The same as Table 2.3, but 2048 grid points and pmax = 2000 a.u. are used

[44].

In the Table 2.2 and 2.3, we present the energy deviation and root-mean-square de-

viation of the radial wave functions between our numerical results and exact ones of a

hydrogen atom. Root-mean-square deviation of the wave functions is defined as:

∆Φ =

√
1

N

∫
p2dp|Φ(p)− Φexact(p)|2 (2.52)

Φexact is the exact wave function of a hydrogen atom in the P-space. and first few low-

lying states are listed in the following [57, 58]:

F10(p) =
25/2

π

1

(p2 + 1)2
(2.53)

F20(p) =
32√
π

4p2 − 1

(4p2 + 1)3
(2.54)
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F21(p) =
128√
3π

p

(4p2 + 1)3
(2.55)

”Ordinary” means the results of using typical Landé subtraction method while ”Present”

means the results of using Landé subtraction method with finite integration limits. In

Table 2.2, 2048 grid points and pmax = 100 a.u. are used. In Table 2.3, 2048 grid

points and pmax = 2000 a.u. are used. As mentioned above, typical Landé subtraction

method needs a larger pmax to ensure the accuracy. Therefore, the ”Ordinary” results

for pmax = 2000 a.u. are more accurate than those for pmax = 100 a.u.. We can find

the ”Present” results improve the accuracy to several order than ”Ordinary” results at

pmax = 2000 a.u. as well as pmax = 100 a.u.. The results are more accurate at lager pmax
for both methods, especially for the s states. This is because P-space radial wave function

tends to 1/pl+4 when p → ∞. So, s states (l = 0) are the most diffusive states, a larger

pmax is needed to reach higher accuracy. The improvement of the results to an acceptable

accuracy at small pmax by the ”Present” method will make the time propagation of TDSE

more efficient, as we will see in the next section.

In Fig. 2.1, we compare the numerical wave function for the ”Present” Landé sub-

straction method method with finite limits to exact ones for the first few low-lying states

of a hydrogen atom. 2048 grid points are used and left column for pmax = 100 a.u. while

right column for pmax = 2000 a.u.
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Figure 2.1: Comparison of the numerical wave functions of ”Present” Landé substraction

method method with finite limits with the exact ones for the first few low-lying states of

a hydrogen atom. 2048 grid points are used and left column for pmax = 100 a.u. while

right column for pmax = 2000 a.u..
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2.3 Results of P-space TDSE

In this section, we will present our P-space TDSE results and the emphasis will be put on

the convergent test and calibration. The physics underlying laser-atom interaction under

strong field will be discussed on the subject of the strong-field ionization of a lithium

atom in the next chapter.

2.3.1 Linear polarization case

The linear polarized electric field E(t) of a laser pulse along the z axis can be described

by

E(t) = E0f(t) cos(ωt+ ϕ)ẑ (2.56)

where E0 is the peak electric field, ω is the carrier frequency, ϕ is the carrier-envelope

phase (CEP). We choose a cosine-square pulse which the envelope function is

f(t) = cos2
(
πt

T

)
(2.57)

for the time interval (−T/2, T/2) and zero elsewhere. T is the full width of the laser

pulse, which is 2.75 times of full width at half maximum (FWHM). Vector potential of

the laser field can be obtained by

A(t) = −
∫ t

−∞
E(t)dt (2.58)

In Fig. 2.2, we present E(t) and A(t) of a five-cycle pulse. Amplitudes are both normal-

ized to unity.

−1

−0.5

0

0.5

1

time
 

 

E(t)
A(t)

Figure 2.2: Electric field E(t) and vector potential A(t) of a five-cycles pulse. Amplitudes

are both normalized to unity.
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Figure 2.3: Comparison of the photoelectron spectra for pmax = 100 (left column) and

pmax = 10 (right column) of a hydrogen atom with a linear polarized laser pulse with

T=20 cycles, wavelength 800 nm, peak intensity 5 × 1013 W/cm2, and ϕ = 0. The up

row is in logarithm scale while the bottom row are in linear scale.

We consider a hydrogen atom under the laser pulse with T=20 cycles, wavelength 800

nm, peak intensity 5 × 1013 W/cm2, and ϕ = 0. In the calculation, we use 2048 grid

points, lmax = 14. In Fig. 2.3, we compare the P-space TDSE results for pmax = 100

a.u. (left column) and 10 a.u. (right column). The x-axis is plotted to 50 (a.u.) [1355

(e.v.)] in the up row while that is only plotted to 15 (e.v.) in the bottom row. At lower

energy (bottom row), results are consistent between two different pmax. However, we

find that photoelectron spectra are not convergent yet after about 5 (a.u.) for the case of

pmax = 100 a.u. and time step ∆t = 0.01 a.u. (left top), since the probability of ionized

electron should be decay gradually toward high energy. But, for pmax = 10 a.u., the

photoelectron spectra is convergent very well even ∆t = 0.1 a.u. (right top). The case of

∆t = 0.1 a.u. only take 1/10 computation time than that of ∆t = 0.01 a.u.. As a result,

the the Landé subtraction method with finite integration limits improves the accuracy of

the eigensets for a small pmax and thus make the P-space TDSE more efficiency.

In Fig. 2.4, we present the two dimension momentum distribution of the ionized

electron of the same system. Left sub-figure is from Ref. [43] and right sub-figure is our

17



Figure 2.4: Comparison of the two-dimensional momentum distribution of the same sys-

tem as Fig. 2.3. Left sub-figure is from Ref. [43] and Right sub-figure is our result.

results. Two results are consistent. We can find distinct ATI rings clearly.

Figure 2.5: Comparison of the two-dimensional momentum distribution of a hydrogen

atom with a linear polarized laser pulse with T=10 cycles, wavelength 2000 nm, peak

intensity 1 × 1014 W/cm2, and ϕ = 0. Left sub-figure is from Ref. [39] and right sub-

figure is our result.

As another test, we consider a hydrogen atom under the laser pulse with T=10 cycles,

wavelength 2000 nm, peak intensity 1 × 1014 W/cm2, and ϕ = 0. For a pulse in such

mid-infrared regime, the amplitude of free quiver motion of a electron in the laser field

α = E0/ω
2 become larger. Therefore, a larger boundary box is expected in the R-space

TDSE calculation and the computation time increases exponentially. However, there is no

such problem in the P-space TDSE. In Fig. 2.5, we present the two dimension momentum

distribution of the ionized electron. Left sub-figure is from Ref. [39] and right sub-figure

is our results. In the calculation, we use 1024 grid points, lmax = 40, pmax = 10 a.u.,and

∆t = 0.05 a.u. Our result agree with theirs in the polarization direction (x axis) but lock

of small node structures in their result. We comment that their angular resolution is not

18



good enough since only 32 angular grid points are used in their result, but we use 401

angular grid points.

2.3.2 Elliptical polarization case

The elliptically polarized vector potential A(t) of a laser pulse in the x-y plane is given

by

A = A0f(t)


cos(ωt+ ϕ) cos(ϵ/2)

sin(ωt+ ϕ) sin(ϵ/2)

0

 (2.59)

where A0 is the peak amplitude, ω is the carrier frequency, ϕ is the carrier-envelope phase

(CEP) and ϵ is the light ellipticity [ϵ = π/2 (0) for circular polarization (linear polarization

along x̂)]. We choose a cosine-square pulse the same as Eq. (2.53).

We consider a hydrogen atom under the laser pulse with T=3 cycles, wavelength 800

nm, peak intensity 1.06×1014 W/cm2, ϕ = −π/2, and ϵ = π/2 (circular polarization). In

the calculation, we use 256 grid points, lmax = 40, pmax = 100(a.u.), and ∆t = 0.1(a.u.).

In Fig. 2.6, we show the two-dimensional momentum distribution of ionized electron in

the x-y plane (or θ = 0 plane). The left sub-figure is from Ref. [65]. Our result agree well

with theirs.

For elliptical polarization case, all magnetic quantum number m will be involved.

Given a lmax, the total angular subspace is (lmax + 1)2 which is an order greater than the

linear polarized case. Therefore, the calculation is much more expansive than the linear

polarization case. In this case, we have used GPU parallel calculation (Tesla), but it still

take about 29 hours.
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Figure 2.6: Comparison of the two-dimensional momentum distribution in the x-y plane

of a hydrogen atom with a circular polarized laser pulse with T=3 cycles, wavelength 800

nm, peak intensity 1.06× 1014 W/cm2, and ϕ = −π/2. Left sub-figure is from Ref. [65]

and right sub-figure is our result.

-
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2.4 Strong-field Approximation

Two versions of strong-field approximation will be introduced in this section. One is

based on S-matrix theory which is named Keldysh-Faisal-Reiss (KFR) theory [8, 32, 33].

The other is based on an ansatz wave function which only the atomic ground state and

continuous states are considered and first proposed by M. Lewenstein et al. [7].

2.4.1 Keldysh-Faisal-Reiss (KFR) theory

An exact expression for the probability amplitude of detecting an ionized electron with

momentum p can be written as [59, 66]:

f(p) = −i
∫ ∞

−∞
⟨Ψp|U(t, t′)Hi(t

′)|Ψ0(t
′)⟩ (2.60)

where U(t, t′) is the time-evolution operator corresponding to total Hamiltonian H(t) =

H0 + Hi(t), H0 = p2/2 + V (r) is the atomic Hamiltonian, Hi = E(t) · r is the laser-

atom interaction in the length gauge, and Ψp(t) and Ψ0(t) are exact continuous state with

moment p and ground state. U(t, t′) can be expansion as following:

U(t, t′) = UF (t, t
′)− i

∫ t

t′
dt′′UF (t, t

′′)V U(t′′, t′) (2.61)

where UF (t, t′) is the time-evolution operator corresponding to Hamiltonian HF of a free

electron in the laser field, and

HF =
p2

2
+ r · E (2.62)

We use length gauge form here. The eigenstates of HF can be solved exactly and called

the Volkov states [Appendix]:

|χp⟩ = |p + A(t)⟩ exp[−iSp(t)] (2.63)

where

Sp(t) =
1

2

∫ ∞

−∞
dt′[p + A(t′)]2 (2.64)

and |k⟩ is plane wave:

⟨r|k⟩ = 1

(2π)3/2
exp(ik · r) (2.65)

so

⟨r|k + A(t)⟩ =
1

(2π)3/2
exp[i(k + A(t)) · r]

=
1

(2π)3/2
exp(iA(t) · r) exp(ik · r) (2.66)

where exp(iA(t) · r) is gauge factor in the length gauge. UF (t, t′) can be expanded with

the Volkov states:

UF (t, t
′) =

∫
dk|χk(t)⟩⟨χk(t

′)| (2.67)
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The key point of the SFA is to approximate the final exact continue state ⟨Ψp(t)| by

the Volkov state ⟨χp(t)| where the effect of atomic potential is considered small for an

ionized electron in the strong field limit. Then, the ionization amplitude can be expressed

as:

f = f (1) + f (2) + ... (2.68)

f (1) = −i
∫ ∞

−∞
dt⟨χp(t)|Hi(t)|Ψ0(t)⟩ (2.69)

f (2) = −
∫ ∞

−∞
dt
∫ ∞

−∞
dt′
∫
dk⟨χp(t)|V |χk(t)⟩⟨χk(t

′)|Hi(t
′)|Ψ0(t

′)⟩ (2.70)

f (1) is the first-order SFA (SFA1) and describe a direct ionization process induced by

laser field. f (2) is the second-order SFA (SFA2), and describe rescattering of an ionized

electron by the ion core.

We can find that (i) KRF theory is a two-fold perturbation theory. In writing down

the exact expression Eq. (2.60), laser-atom interaction Hi is served as a perturbation.

Then, the total time evolution operator in Eq. (2.60) is expanded in atomic potential V(r),

Eq. (2.61). This is because in the strong field regime, the laser-atom interaction energy

becomes comparable to atomic potential energy. Therefore, one can’t just take laser-atom

interaction as a perturbation as we usually do in the weak field regime. The physical idea

underlying SFA is: For initially bounded electron, laser field is treated as a perturbation.

Once the electron is ionized, atomic potential V(r) become smaller for the distant electron

and thus is taken as a perturbation. (ii) After doing the expansion Eq. (2.61) and from Eq.

(2.67), (and assuming the expansion is convergent), KRF theory only include the ground

state and Volkov states, neglecting all other bound states. (iii) Depletion of the ground

state is not consider in this theory.

2.4.2 Lewenstein model

Another version of SFA first proposed by M. Lewenstein et al. begins by making the

following ansatz [7, 67]:

|Ψ(r, t)⟩ = eiIP t
[
a(t)|0⟩+

∫
dp · b(p, t)|p + A(t)⟩

]
(2.71)

where IP is ionization potential, |0⟩ and |p+A(t)⟩ are ground state and continuous states

with momentum p, similar to Eq. (2.66), A(t) is gauge factor, and a(t) and b(p, t) are

occupation amplitudes to be determined. In this ansatz, only ground state and continuous

states are considered. Further, continue states are approximated by plane wave

⟨r|k⟩ = 1

(2π)3/2
exp(ik · r) (2.72)
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and the depletion of the ground state is neglected, which means a(t) ≈ 1. So far, all the

approximations are similar to KFR theory. After substituting this ansatz into Schrödinger

equation in length gauge:

i
∂

∂t
Ψ(r, t) =

p2

2
+ V (r) + E(t) · r (2.73)

and multiply ⟨p′′ + A(t)| from left hand side and integrate, we can obtain differential

equation for b(p,t):

i
∂b(p, t)
∂t

=

[
(p + A(t))2

2
+ Ip

]
b(p, t) + ⟨p + A(t)|Hi(t)|0⟩

+
∫
dp′b(p′, t)⟨p|V (r)|p′⟩ (2.74)

In the lowest order approximation of Lewenstein model, scattering term ⟨p|V (r)|p′⟩
is neglected, and the differential equation can be integrated to give Eq. (2.69). Therefore,

the lowest order approximation of Lewenstein model corresponds to the SFA1 of the KFR

theory. Now, we recover scattering term by using the Landé subtraction method with

finite integration limits described in the section 2.2. Once the singularity in long range

Coulomb potential is removed, the coupled-differential equation (coupling among all ps)

can be solved using standard ODE solver. How does this result relate to KFR theory?

If we expand KFR theory to the Nth-order in equation Eq. (2.61), together with Eq.

(2.67) and Eq. (2.68), and assume the result has been convergent. Therefore, the terms

after the Nth-order can be neglected. We can find that all these N terms we keep only

include ground state and Volkov states (other bound states only exist in U(t, t′) which

appears after the Nth-order in KFR theory and has been neglected due to convergent

assumption.), just similar to the ansatz wave function proposed in the Lewenstein model

Eq. (2.71) which only ground state and Volkov states are considered. So, the result of

Lewenstein model with scattering term corresponds to summation of all N order of KFR

theory since we didn’t do such an expansion as Eq. (2.61). Therefore, the Lewenstein

model is a nonperturbative model.

2.4.3 Results

In Fig. 2.7, we show the photoelectron spectra of the TDSE as well as two versions of

SFA results of hydrogen atom under a laser pulse with 5 cycles, wavelength 800 nm, peak

intensity 1 × 1014 W/cm2, and ϕ = 0. Left sub-figure is from Ref. [59] using R-space

TDSE and KFR theory, while right sub-figure is our results using P-space TDSE and

Lewenstein model. ”SFA1” and ”SFA2” in the left sub-figure means the first and second-

order KFR theory respectively. ”SUM” means the summation of ”SFA1” and ”SFA2”.

”SFA1” in the right sub-figure means the results of solving Eq. (2.74) of Lewenstein
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Figure 2.7: Photoelectron spectra of the TDSE as well as two versions of SFA results of a

hydrogen atom with a linear polarized laser pulse with 5 cycles, wavelength 800 nm, peak

intensity 1 × 1014 W/cm2, and ϕ = 0. Left sub-figure is from Ref. [59] using R-space

TDSE and KFR theory, ”SFA1” and ”SFA2” mean the first and second order of the KFR

theory, and ”SUM” is the summation of ”SFA1” and ”SFA2”. Right sub-figure is our

results using P-space TDSE and Lewenstein model, ”SFA1” is the result of Eq. (2.70)

without scattering term and corresponding to ”SFA1” of the KFR theory, and ”SFA all

order” contain Coulomb scattering term and corresponding to the summation of all order

of the KFR theory.

model without the scattering term ⟨p|V (r)|p′⟩ which is just the SFA1 in the KFR theory.

”SFA all order” is the result of solving Eq. (2.74). Since we don’t do any expansion, this

results is corresponding the summation of all order of KFR theory. ”SUM” (blue-dotted

line) in the left sub-figure is consistent with ”SFA all order” (blue-dotted line) in the right

sub-figure except after electron energy greater then 12Up. The probability drop rapidly in

”SUM” while there exist another plateau in ”SFA all order”. Just as ”SFA2” contributes

a plateau at 3-9Up, the plateau from 13Up in ”SFA all order” can be understood as the

contribution from the third and higher order terms corresponding to the KFR theory. After

the third-order terms in the KFR theory, it is very difficult to evaluate due to at least 9-fold

integration. Our P-space TDSE result consistent with ”SFA all order” (right sub-figure)

but the R-space TDSE result exhibit a rapidly drop as ”SUM” after 12Up (left sub-figure).

We have known that the drop in ”SUM” is because only the first two orders of KFR theory
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are carried out. How about the drop in the R-space TDSE result? In the R-space TDSE

calculation, a finite box in the coordinate space will be set. And the wave function will

be filtered out when it reaches the box edge. More higher energy the electron possesses,

more larger distant it can travel and hence be filtered out at the box edge. This should be

the reason why the photoelectron spectra from R-space TDSE drop rapidly after 13Up.

We note that SFA only give a qualitative agreement of photoelectron spectra. ”SFA1”

describe the tunneling process and contribute to the low energy part of photoelectron spec-

tra (below 2Up). Coulomb scattering of the ionized electron and ion core contribute to the

higher energy plateau. However, the magnitude is smaller than the TDSE result by about 2

orders. The magnitude can be improved by forcing the final state to be orthonormal to the

initial state which is called orthonormalized strong-field approximation (OSFA) [52, 68].

In Fig. 2.8, we present the two-dimensional momentum distribution of TDSE and SFA1

(Since Coulomb scattering wouldn’t affect low energy distribution in SFA, we only com-

pare SFA1 to TDSE.). Up row are plotted according to Eq. (2.29) which emphasize

electron distribution in the direction perpendicular to polarization axis while bottom row

plotted according to Eq. (2.30) which emphasize that along the polarization axis. p|| and

pperp denote the momentum parallel and perpendicular to polarization axis respectively.

In Fig. 2.9, we present the energy-angular momentum distribution of TDSE and SFA1

which shows each angular momentum contribution to the photoelectron spectra. From

Fig. 2.8 and 2.9, we find SFA give a totally different prediction from TDSE at low energy.

Further, the breakdown of SFA is also pointed out in the recent interested mid-infrared

regime [22, 23]. It is believed that the low energy electron would be affected by atomic

potential significantly. The SFA can be improved by adding the Coulomb correction to

Volkov wave function called Coulomb-Volkov wave function [69, 70].
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Figure 2.8: Two-dimensional momentum distribution of TDSE and SFA1 of the same

system as Fig. 2.7. Up row are plotted according to Eq. (2.29) which emphasize electron

distribution in the direction perpendicular to polarization axis while bottom row plotted

according to Eq. (2.30)which emphasize that along the polarization axis. p|| and p⊥

denote the momentum parallel and perpendicular to polarization axis, respectively.

Figure 2.9: Energy-angular momentum distribution of TDSE and SFA1 of the same sys-

tem as Fig. 2.7 which shows each angular momentum contribution to the photoelectron

spectra.
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Chapter 3

Strong-field Ionization of a Lithium
Atom

In the section 3.1, we compare our calculation results to experimental results for cali-

bration. To compare to experimental results, we need to average the signals of ionized

electron from different atoms in the different region of the laser-focal volume (hence feel

different laser intensity). Since the volume-averaged results contain so many signals, it is

not convenient to analyze the underlying mechanism inside. In the section 3.2, we present

the results at a single peak intensity (or without laser-focal volume average). In the sec-

tion 3.3, we will discuss the multiphoton ionization (MPI) at relatively small intensities,

including nonresonant multiphoton ionization (NRMPI), dynamical resonant multipho-

ton ionization (DRMPI), and ponderomotive shift. In the section 3.4, we will discuss the

generation of Rydberg states in the lithium atom. In the section 3.5, we will discuss the

fan structure in the direction perpendicular to polarization axis.
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3.1 Compare with experimental results

Before comparing to experimental results [51], we need to discuss laser-focal volume av-

erage first. The focus of a actual laser beam is not a spot but has a volume. When we talk

about the laser peak intensity I0 of a laser beam, we always mean the value at the cental of

the laser-focal volume. And, laser intensity decays gradually outward. The spatial distri-

bution of the laser intensity can be formulated as Lorentzian in the propagation direction

(z) and Gaussian in the transverse direction (ρ) [71, 72]:

I(r, z) =
I0w

2
0

w2(z)
e−2r2/w2(z) (3.1)

w(z) = w0

√
1 + (

z

zR
)2 (3.2)

where w0 is the radius of the focal spot and zR is the Rayleigh range of the focus. In Fig.

3.1, we show the Iso-intensity surface plot of a laser-focal volume. We assume the gas

Figure 3.1: Iso-intensity surface plot of a laser-focal volume, z is the propagation direc-

tion. This figure is from Ref. [72].

volume is filled over the laser-focal volume, then the ejected electron signals are the sum

of electrons ionized from atom at different intensity region of the laser-focal volume. For

a peak intensity I0, the ejected electron signals with momentum p is given by [71]:

S(P, I0) = D
∫ I0

0
PI(P)

(
−∂V
∂I

)
dI (3.3)

where D is the density of the target atoms, PI(P) is the ionization probability for a par-

ticular intensity I, and
(
−∂V

∂I

)
dI is the volume element between I and I+dI iso-intensity

surface. The volume element for the laser beam of Eq. (3.1) is given as

−∂V
∂I

dI =
πw3

0z0
3

1

I

(
I0
I
+ 2

)√
I0
I
− 1dI (3.4)
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The trapezoidal rule are used for the integration over intensity.

Now, we return to compare with experiment results. The experiment was carried out

with a linear polarized laser pulse of wavelength 785nm, FWHM 30fs, and peak intensity

I0 ranging form 4× 1011W/cm2 (γ = 11.6) to 7× 1013W/cm2 (γ = 0.8) which is from

multiphoton ionization regime (γ > 1) to tunneling ionization regime (γ < 1).

We adopt the following model potential for a lithium atom [73].

V (r) = −1

r
− a1e

−a2r + a3re
−a4r

r
(3.5)

where a1 = 2, a2 = 3.395, a3 = 3.212, and a3 = 3.207. In our calculation, we use 1024

grid points, lmax = 14, ∆t = 0.2 (a.u.) and the laser-focal volume average is carried out

as: For peak intensity I0 = 4× 1011W/cm2 and I0 = 8× 1111W/cm2, we integrate from

5% × I0 to I0 and ∆I = 0.2 × 1011W/cm2. For peak intensity I0 = 7 × 1013W/cm2,

we integrate from 2.8%× I0 to I0 and ∆I = 0.1× 1013W/cm2. All others are integrated

from 5%× I0 to I0 and ∆I = 0.1× 1012W/cm2.

In Fig. 3.2 and 3.3, we show the two-dimensional momentum distribution of our

results (left column) and experiment results (left column) for seven different peak inten-

sity ranging from multiphoton ionization regime (γ > 1) to tunneling ionization regime

(γ < 1). In Fig. 3.4 and 3.5, we show the photoelectron spectra with laser parameters

corresponding to Fig. 3.2 and 3.3. Our results agree well with experiment results.
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Figure 3.2: Two-dimensional momentum distribution of a lithium atom with a lin-

ear polarized laser pulse with FWHM 30fs, wavelength 785nm, and peak intensity

4 × 1011W/cm2, 8 × 1011W/cm2, 2 × 1012W/cm2, and 4 × 1012W/cm2 (from up to

bottom). Left column is our results and right column is experimental results from Ref.

[51]. p|| and p⊥ denote the momentum parallel and perpendicular to polarization axis,

respectively.
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Figure 3.3: The same as Fig. 3.2 but now laser peak intensity 8 × 1012W/cm2, 2 ×
1013W/cm2,and 7 × 1013W/cm2 (from up to bottom). Left column is our results and

right column is experimental results from Ref. [51]. p|| and p⊥ denote the momentum

parallel and perpendicular to polarization axis, respectively.
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Figure 3.4: Photoelectron spectra of a lithium atom with a linear polarized laser pulse with

FWHM 30fs, wavelength 785nm, and peak intensity 4 × 1011W/cm2, 8 × 1011W/cm2,

2× 1012W/cm2, and 4× 1012W/cm2 (from up to bottom). Left column is our results and

right column is experimental results from Ref. [51].
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Figure 3.5: The same as Fig. 3.4 but now laser peak intensity 8 × 1012W/cm2, 2 ×
1013W/cm2,and 7 × 1013W/cm2 (from up to bottom). Left column is our results and

right column is experimental results from Ref. [51].
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3.2 Features of strong-field ionization of a lithium atom

Since the volume-averaged results contain so many signals from different atoms which

feel different laser intensity, it is not convenient to analyze the underlying mechanism

inside. In this section and after, we will discuss the results at a single peak intensity with

the same laser parameters as the experiment where wavelength 785nm, FWHM 30fs ,and

intensity ranging form 4 × 1011W/cm2 (γ = 11.6) to 7 × 1013W/cm2 (γ = 0.8). In

addition, we also study the short pulse cases with FWHM 10fs and 6fs.

Figure 3.6: Energy levels of a lithium atom and the possible transition pathways from

ground state 2s induced by a laser pulse of wavelength 785nm (correspond to photon

energy 1.57 eV). The length of a arrow represents a photon energy. This figure is from

Ref. [51].

In Fig. 3.6, we show the energy level of a lithium atom and the possible transition path-

ways from ground state 2s induced by a laser pulse of wavelength 785nm (corresponds

to photon energy 1.57 eV). The length of a arrow means a photon energy. According

to selection rule, only those transitions satisfying ∆l = ±1 are allowed for absorbing a

photon. In this figure, we find that the electron cab be ionized by absorbing 4 photons.

The first peak of ionized electron should be at ∼0.9 eV in energy (or 0.26 a.u. in mo-

mentum |p|) and composed of l = 0, 2, and 4 partial waves. The most probably involved

intermediate bound states are 2p, 3s, 4p, 4f, 5p, and 5f.

In Fig. 3.7, we present the two-dimensional momentum distribution without volume

average for 30fs pulse. Let’s make some observation first. At smaller intensities, (a) and

(b), we observe a 4-photon ionization ring. The number of nodes in the ring (except the

two near x-axis) result from the zeros of Legendre polynomial Pl(cosθ) and thus indicate
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Figure 3.7: Two-dimensional momentum distribution of a lithium atom with a lin-

ear polarized laser pulse FWHM 30fs, wavelength 785nm, and peak intensity:(a)4 ×
1011W/cm2, (b)8 × 1011W/cm2, (c)2 × 1012W/cm2, (d)4 × 1012W/cm2, (e)8 ×
1012W/cm2, (f)2×1013W/cm2, and (g)7×1013W/cm2. p|| and p⊥ denote the momentum

parallel and perpendicular to polarization axis, respectively.
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Figure 3.8: Photoelectron spectra of a lithium atom with a linear polarized laser

pulse FWHM 30fs, wavelength 785nm, and peak intensity:(a)4 × 1011W/cm2, (b)8 ×
1011W/cm2, (c)2 × 1012W/cm2, (d)4 × 1012W/cm2, (e)8 × 1012W/cm2, (f)2 ×
1013W/cm2, and (g)7× 1013W/cm2.
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Figure 3.9: Two-dimensional momentum distribution of a lithium atom with a lin-

ear polarized laser pulse FWHM 10fs, wavelength 785nm, and peak intensity:(a)4 ×
1011W/cm2, (b)8 × 1011W/cm2, (c)2 × 1012W/cm2, (d)4 × 1012W/cm2, (e)8 ×
1012W/cm2, (f)2×1013W/cm2, and (g)7×1013W/cm2. p|| and p⊥ denote the momentum

parallel and perpendicular to polarization axis, respectively.
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Figure 3.10: Photoelectron spectra of a lithium atom with a linear polarized laser

pulse FWHM 10fs, wavelength 785nm, and peak intensity:(a)4 × 1011W/cm2, (b)8 ×
1011W/cm2, (c)2 × 1012W/cm2, (d)4 × 1012W/cm2, (e)8 × 1012W/cm2, (f)2 ×
1013W/cm2, and (g)7× 1013W/cm2.
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which partial wave is dominant. In (a) and (b), the l = 2 partial wave is dominant, since

there are two nodes in the ring. For (c), still a 4-photon ionization ring but l = 4 is

dominant now. In addition, we find that the radius of the ring become smaller than (a)

and (b). For (d), another ring appears inside the original one. From (e) to (g), the inner

ring extend radially inward and resulting a fanlike structure. And, we find the electron is

distributed to the direction perpendicular to the polarization axis gradually. This is strange

since the motion of the electron will be driven by the laser field and there should be a more

probability along the polarization axis.

In Fig. 3.8, we present the corresponding photoelectron spectra of Fig. 3.7. The first

peak corresponds to the evident ring in Fig. 3.7. The following peak in (a), (b), and (c) is

the associated 5-photon peak by absorbing one more photon from the former one hence

differ by about a photon energy (1.57 eV). After (d), more peaks appear, where are they

coming from?

In Fig. 3.9, we present the two-dimensional momentum distribution without volume

average for 10fs pulse. At first glance, the features are similar to 30fs cases for (a) to

(e) with a broader band, which is due to the uncertainty principle ∆E∆t > 1. The

shorter (longer) the time duration of a pulse, the broader (narrower) the energy spectra.

Inspection further, we find that the position of the double peaks in (d) is different from

that in 30fs case. For (f) and (g), we find that two-dimensional momentum distribution is

no loner symmetric. This can be understood as the contribution from tunneling ionization

which is believed to be dominant at higher intensity (or smaller γ). Tunneling ionization

is directional with the oscillation of a laser field and thus resulting asymmetric in the

two-dimensional momentum distribution, especially for shorter pulse.

In Fig. 3.10, we present the corresponding photoelectron spectra of Fig. 3.9. The

same as Fig. 3.8, the first peak corresponds to the evident ring in Fig. 3.9. and the two

peaks in (a), (b), and (c) are associated 4-photon and 5-photon peaks. After (d), more

peaks appear, but somewhat different from that in Fig. 3.8. Where are they coming from?

In Fig. 3.11, we present the ionization probability vs Keldysh parameter (γ) for 6 fs,

10fs, and 30fs pulse. The vertical line at γ = 3.7 is the critical value of the classical OBI.

It seems there is no dramatic behavior happening near this point. At γ = 2.5 and lower,

the behavior of the ionization probability curves have significant changes for all three

cases: For 30fs pulse, with the decrease of γ, we observe the ionization trapping and then

suppression. For 10fs pulse, similar to 30fs initially, but the ionization probability recover

and exhibits an oscillation in the end. For 6fs pulse, the ionization rate trends to smooth

and also exhibit an oscillation in the end. Besides we also observe a ionization trapping

around γ = 4.5 for 30fs pulse.
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Figure 3.11: Ionization probability vs Keldysh parameter γ for 30fs, 10fs, and 6fs pulse.

The vertical line at γ = 3.7 is the critical value of the classical OBI

In this section, we make an observation on the strong-field ionization of a lithium

atom and leave several questions. In the following sections, we devote to answer these

questions.
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3.3 Multiphoton ionization (MPI)

Figure 3.12: Schematic plot of the NRMPI and DRMPI processes. |0⟩ is the ground state,

|b⟩ is any intermediate bound state, IP is ionization potential, I0 is laser intensity, and Up

is ponderomotive shift.

In this section, we devote to trace the peaks in the photoelectron spectra. We begin by

introducing two multiphoton ionization processes: nonresonant multiphoton ionization

(NRMPI) and dynamical resonant multiphoton ionization (DRMPI). In Fig. 3.12, we

show the schematic plot of these two processes.

Nonresonant multiphoton ionization (NRMPI) : NRMPI means the electron in the

ground state absorbs enough photons to exceed the ionization potential and doesn’t hit

any intermediate bound state. Directly follow the idea of photoelectric effect, then the

photoelectron energy εk should be:

εk = nh̄ω − IP (3.6)

where IP is ionization potential, n is a number greater or equal to the minimum number

of photons needed to exceed the ionization potential, and h̄ω is a photon energy. How-

ever, Eq. (3.6) work only at smaller laser intensity. This is because ionization threshold

will increase by an amount of Up effectively in the laser field [74, 75]. Up = E2
0/4ω

2 is

ponderomotive energy which is the average kinetic energy of an electron in the laser field.

Up increase with laser intensity and can be neglected at smaller intensity. This effectively

upshift of ionization threshold can be understood as: After overcome the ionization poten-

tial, the electron can still not be regarded as ionized until it possesses the average kinetic
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energy Up in the field. And, Eq. (3.6) should be modified as:

εk = nh̄ω − IP − Up (3.7)

Dynamical resonance multiphoton ionization (DRMPI) [10] : In the schematic plot

of the NRMPI, except the ground state, other bound states are neglected. In the right

sub-figure of Fig. 3.12, we add a bound state and there is nothing change if we carefully

control the laser frequency to avoid hitting the bound state. However, as the ionization

threshold would be changed effectively in a laser field, the atomic energy levels would also

be changed in the laser field which is known as ac-Stark shift. At lower intensity, |b⟩ is not

coupled. With the increase of laser intensity, energy level |b⟩ would shift during the pulse

time and is possible to be hit during the laser pulse time. Strong coupling or resonance

between ground state and bound state may cause a considerable amount of occupation to

the bound state, and further ionized from that bound state. Such process is called DRMPI.

For low lying states, the energy shift depends on the dynamics polarizability of the states

[76]. For higher atomic levels, the energy shift is roughly equal to ponderomotive shift

(Up). Therefore, the photoelectron peak from intermediate bound states through DRMPI

behaves almost steady with increasing laser intensity [10] while that from NRMPI will

”run” with increasing laser intensity. This is a useful clue to identify where a multiphoton

peak comes from.

In the following, we introduce another useful tool to identify the multiphoton peaks.

That is separation of the photoelectron spectra into odd and even angular momentum

parts. Since one photon absorbtion is only allowed between states satisfying the selection

rule ∆l = ±1. Given a initial state with even angular momentum, the next states must be

composed of odd angular momentum by absorbing one photon. The further next states

must be even again after absorbing one more photon and so on. Therefor, multiphoton

peaks must be composed of either even angular momentum or odd angular momentum

and adjacent peaks even-odd change alternatively (Refer to Fig. 3.6).

In Fig. 3.13, we present two cases for example. Both are lithium atom under 785

wavelength, 10fs FWHM pulse but different intensity. Up row are original results, con-

tain all angular momentum. In the bottom row, we separate the photoelectron spectra

into odd and even angular momentum parts. In the left sub-figure, it is not difficult to

distinguish the two peaks even in the original plot (up left). The peaks at ∼0.9 eV is the

4-photon peak and the one at ∼2.5 eV is the 5-photon peak. They differ by about a photon

energy (1.57 eV). Check the angular momentum component (left bottom), the 4-photon

peak is contributed from even angular momentum part while 5-photon peak from odd an-

gular momentum part. At larger intensity, situation becomes more complicated (right up).

However, by separating the photoelectron spectra into odd and even angular momentum
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Figure 3.13: Photoelectron spectra of a lithium atom with a linear polarized laser pulse

FWHM 10fs, wavelength 785nm, and peak intensity:20× 1011W/cm2 (left column) and

120×1011W/cm2 (right column). The up row contain all angular momentum components

while we separate the angular momentum into even and odd parts in the bottom row.

parts (right bottom), we can distinguish three different ATI groups, A, B, and C easily by

two principles : (a) choose a peak, the next associated peak (absorbing one more photon)

must differ in color. (b) Their energy differ by a photon energy (1.57 eV). Further, we can

identify the first B peak is a 4-photon peak which is hard to tell in the original plot (right

up). Therefore, we can know that the green-dash line ranging from 0 eV to 1.5 eV is a

4-photon group and the red-dotted line ranging from 1 eV to 3 eV is a 5-photon group.

3.3.1 Examination of the spectra for 30fs pulse

Now, we return to examine the multiphoton peaks for 30fs pulse. In Fig. 3.8 (a), (b),

and (c), we find the first peak move to lower energy with increasing intensity, so this

is a NRMPI peak from ground state 2s by absorbing 4 photons. The second peak is its

associated 5-photon ATI peak. In (d), another peak appears and forms a doubles peaks

structure. One at ∼0.5 eV and the other at 0.7-0.8 eV. To trace it origin, it is helpful to

separate the photoelectron spectra into odd and even angular momentum parts as well as

examine the population history of those relevant bound states. In Fig. 3.14, we show the

population history of the some relevant bound states (left), and the photoelectron spectra
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Figure 3.14: Population history of some relevant bound states (left) and photoelectron

spectra (right) of a lithium atom with a linear polarized laser pulse FWHM 30fs, wave-

length 785nm, and peak intensity 40 × 1011W/cm2. Inset in the right sub-figure is the

photoelectron spectra for 35fs pulse.

in odd and even angular momentum parts (right). From the population history, we find

the 2p, 4p, and 4f are strongly coupled. So, we expect there should be two peaks at 0.7-

0.8 eV. One is from ground state 2s by absorbing 4 photons through NRMPI (Eq. 3.7),

and the other is from 4p and 4f by absorbing 1 photon through DRMPI. Since 4p and 4f

are nearly degenerate, and can be thought of contributing to the same peak. These two

pathways all give even angular momentum to their first ionized peaks. However, in the

photoelectron spectra (right), we only find a peak at 0.7-0.8 eV. To check further, we use

a longer pulse (35fs), hence has a higher resolution in energy spectrum. In the inset, we

actually find two peaks at 0.7-0.8 eV, thus confirm our scenario. For the peak at ∼0.5 eV,

we think it mainly from the 2p by absorbing 3 photons. Let’s go back to check the energy

levels in Fig. 3.6 first. E2p − E2s >a photon energy, therefore the 2p state should have

ac-Stark downshift as so to couple to 2s state and largely occupied at the -10 cycles of the

pulse time [Fig. 3.14 (left)]. The ac-Stark downshift of 2p state should be at least 0.25

eV. And, according to Eq. (3.8), the peak from 2p through DNMPI should be at ∼0.5 eV,

which agree with what we have observed. The double peaks at 2-2.5 eV is the associated

5-photon ATI peaks of the former 4-photon peaks.

3.3.2 Examination of the spectra for 10fs pulse

For the 10fs pulse, just the same as 30fs case, the first peak at (a), (b), and (c) in Fig. 3.10

is from 2s by absorbing 4 photons through NRMPI. For (d), by checking the population

history in Fig. 3.15, the more active states are 2p, 4p, and 5f. [see also the angular

momentum analysis. Fig. 3.16 (b)] Similar to 30fs case, the peak at ∼0.7 eV with broader

44



bandwidth contains the contribution from 2s by absorbing 4 photons through NRMPI,

from 2p by absorbing 3 photons through DRMPI, and from 4p and 4f by absorbing 1

photon through DRMPI. In addition, there is still a small peak at ∼1.2 eV, this is from the

5f by absorbing 1 photon through DRMPI.

Figure 3.15: Population history of some relevant bound states of a lithium atom with a

linear polarized laser pulse FWHM 10fs, wavelength 785nm, and peak intensity 40 ×
1011W/cm2.

Further, we find a transition from direct 4-photon ionization to direct 5-photon ioniza-

tion from bound states for 10fs pulse. This is not a unique process for 10fs pulse, but it is

more easy to observe in the 10fs case. In Fig. 3.16, we show the photoelectron spectra for

10fs pulse from intensity 20× 1011W/cm2 and increase gradually to 120× 1011W/cm2.

In Fig. 3.16 (a), with intensity 20 × 1011W/cm2, we can observe a 4-photon peak A at

∼0.9 eV. In (b), with intensity 40 × 1011W/cm2, the A peak (might contain three peaks

discussed above) move to ∼0.7 eV due to larger ponderomotive shift. In addition, another

small 4-photon peak B appear at ∼1.2 eV. In (c), with intensity 60 × 1011W/cm2, the A

peak keep move to lower energy. The small B peak keep steady and we know that this

a DRMPI peak from higher energy level (actually it is from 5f discussed above). In (d)

and (e), the 4-photon peak at ∼0.7 eV from 4p and 4f show up which can’t be distinguish

from other peaks nearby previously due to the broader bandwidth. In (f), with intensity

120× 1011W/cm2, we focus to the 5-photon group (red-dotted line, ranging from 1 eV to

3 eV). Except the one indicated by arrow, all others have a associated 4-photon peaks in

front of them which means these 5-photon peaks are the ATI peaks by absorbing one more

photon from the front associated 4-photon peaks. We have distinguished two ATI series

A’s and B’s. Therefore, the indicated 5-photon peak with no front associated 4-photon

peak should be direct ionized from bound states. This happens when the intensity is so

high (so does the ponderomotive shift) that it is no longer enough for ionization by just

absorbing 4 photons , one more photon is needed.
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Figure 3.16: Photoelectron spectra of a lithium atom with a linear polarized laser

pulse FWHM 10fs, wavelength 785nm, and peak intensity:(a)20 × 1011W/cm2, (b)40 ×
1011W/cm2, (c)60 × 1011W/cm2, (d)80 × 1011W/cm2, (e)100 × 1011W/cm2, and

(f)120× 1011W/cm2.
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Figure 3.17: (a) peak-position of the highest peak of the 4-photon group (green-dash line)

and 5-photon group (red-dotted line) vs laser intensity. (b) the same as (a) with three

auxiliary lines.

For more clear, we present the peak-position of the highest peak of the 4-photon group

and 5-photon group in Fig 3.17. In (a), we find the highest peak of the 4-photon group

decreases with increasing intensity before 90 × 1011W/cm2 due to ponderomotive shift.

The highest peak of the 5-photon group is the associated ATI peak of the 4-photon highest

peak, hence decreases with 4-photon peak. Their positions differ by about a photon energy

(1.57 eV). After 90×1011W/cm2, the intensity is too high to allow direct 4-photon ioniza-

tion. Therefore, the 4-photon highest peak ceases decrease, but the 5-photon highest peak

exhibit a oscillation. After adding some auxiliary lines, see (b), things become clear. As a

matter of fact, there exist two paths in the 5-photon highest peak after 90× 1011W/cm2.

One path is for the associated ATI peak from the front 4-photon highest peak by absorbing

one more photon and keep steady as the front 4-photon highest peak, the other is for the

direct 5-photon ionization peak and the peak-position continue decrease with increasing

intensity. Since these two peaks are both 5-photon peak (in the same order of the pertur-

bation series [77]), they would compete each other and thus exhibit a oscillation as we

have observed.
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3.4 Rydberg stabilization

In this section, we devote to explain the significant change of the behavior of the ionization

probability with laser intensity below γ = 2.5 that we have mentioned in the section 3.2

(Fig. 3.11). Before proceeding, we discuss atomic stabilization first [78, 79, 80, 81, 82].

The atomic stabilization is easily understood in the Kramers-Henneberger (KH) frame

which is the frame of the moving electron in the laser field. The Hamiltonian of an atom

interacting with laser field in the length gauge is

H =
p2

2
+ V (r) + E(t) · r (3.8)

E(t) = E0cos(ωt)ẑ (3.9)

where ω is the laser frequency and E0 is the field strength. By doing the following unitary

transformation [81]: (
i
∂

∂t
−HKH

)
= S−1

(
i
∂

∂t
−H

)
S (3.10)

where

S = exp(−iT ) (3.11)

T = −
∫ t

0
A(t′)dt′

(
1

i

∂

∂r

)
+
∫ t

0
A2(t′)dt′ + A · r (3.12)

We obtain the Kramers-Henneberger Hamiltonian:

HKH =
p2

2
+ V (r − ẑ · αcos(ωt)) (3.13)

where α = E0/ω
2 is the amplitude of free-electron oscillation in a laser field.

The oscillating potential in Eq. (3.13) can be expanded in a Fourier series to take the

form of a sum of harmonics of the frequency ω. The zero-order harmonics, which is the

time-averaged part of the sum, represents a stationary potential. When the laser frequency

is much higher than the frequency of a atomic state, ω ≫ |En|/h̄, except the zero-order

harmonics, all other higher order terms can be neglected. The KH Hamiltonian is thus

independent of time, then the electron is stabilized in that state which is known as KH

stabilization.

Rydberg state is not a clearly-defined physical noun. It is usually used to indicate a

highly excited state without defining to what extent it should be.

Back to our system, the time scale of the Rydberg states is in microwave range,

whereas the 785nm infrared laser is at a much higher frequency than those of microwaves.

Then a electron in Rydberg states almost doesn’t respond to the laser field and thus is sta-

bilized in those states. This is what we mean ”Rydberg stabilization”.

It is interesting that stabilization of Rydberg states are accompanied by the transition

from direct 4-photon ionization to direct 5-photon ionization. In Fig. 3.18, we show a
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Figure 3.18: Schematic plot of the process of transition from direct 4-photon ionization to

direct 5-photon ionization. During this process, it is strongly coupling to Rydberg states.

|0⟩ is the ground state, |b⟩ is any intermediate bound state, IP is ionization potential, I0 is

laser intensity, Up is ponderomotive shift.

schematic plot for the transition process. At smaller intensity, electron can be ionized

by absorbing 4 photons. However, with increasing intensity, the ionization threshold

(ionization potential plus the ponderomotive shift) rises gradually. Finally, the energy of

absorbing 4 photons are lower than the ionization threshold, no longer afford to ionization,

but coupling to the Rydberg states instead. From Fig. 3.17, we know that transition from

direct 4-photon ionization to direct 5-photon ionization occur at about 90 × 1011W/cm2

(γ ∼ 2.3). We now proceed to check is there anything happening at (γ ∼ 2.3).

In Fig. 3.19, we show the ionization probability and the sum of the occupation prob-

ability of the low-lying bound states with principal quantum number n ≤ 4 and those of

Rydberg states with n ≥ 5 for 30fs, 10fs, and 6fs pulses. We find that there is a dra-

matic occupation to Rydberg states from (γ ∼ 2.3) for all three cases. We also find that

the trend of the ionized probability is closely related to that in the Rydberg states. This

manifest itself the Rydberg stabilization indeed dominate the features of the ionization

probability below γ = 2.3. The recover and oscillation of ionization probabilities for 10fs

and 6fs pulses are due to the broader bandwidth of these shorter pulses. In 30fs case,

the narrower bandwidth can concentrate on the Rydberg states and lasts for even higher

intensities (smaller γ). In 10fs case, the energy bandwidth can also concentrate on the
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Figure 3.19: Ionization probability and the sum of the occupation probability of the low-

lying bound states with principal quantum number n ≤ 4 and those of Rydberg states

with n ≥ 5 for 30fs, 10fs, and 6fs pulses.
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Rydberg states at γ ∼ 2.3. However, when γ reach to about 1.5. The energy bandwidth

start to cover lower levels where electron is no longer stabilized under the laser field and

thus ionized [83]. In 10fs case, the broader bandwidth can’t concentrate on the Rydberg

states only, it always covers the low-lying states. So the phenomena of ionization trapping

is not so dramatic as 30fs and 10fs pulses, it only exhibits a reduction of the ionization

rate. In addition to Rydberg stabilization, this reduced ionization rate is partially due to

the the direct 5-photon ionization dominant in this regime which is the next order to the

direct 4-photon ionization of the perturbation series.

Figure 3.20: Ratio of the sum of the occupation probability of the Rydberg states (n ≥ 5)

to that of total bound states.

In Fig. 3.20, we show the ratio of the sum of the occupation probability of the Rydberg

states (n ≥ 5) to that of total bound states. We find that, at about γ = 2.3 (the critical

value for transition from direct 4-photon ionization to direct 5-photon ionization), the

bound electron dramatically occupy Rydberg states. For 30fs pulse, over 90% bound

electron occupy the Rydberg state, over 80% for 10fs pulse, and over 60% for 10fs pulse.

This also confirms the Rydberg stabilization. The drop of the ratio of the Rydberg states

to the bound states at γ = 1 for 30fs pulse is simply because the 4-photon arrow starts to

couple to low-lying states with keeping increasing laser intensity.
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3.5 Fanlike structure in the direction perpendicular to

the polarization axis

In this section, we try to explain why the ionized electron is distributed mainly in the

direction perpendicular to the polarization axis gradually which have been observed from

Fig. 3.7 (e) to (g). Intuitively, electron is driven by the laser field and should be move

mainly in the polarization direction. Why the distribution changes to the direction per-

pendicular to the polarization axis in the higher intensity regime? In Fig. 3.21, we show

the two-dimensional momentum distribution for three intensities, 120 × 1011W/cm2,

200× 1011W/cm2, and 700× 1011W/cm2. Rather than according to Eq. (2.29)

∂2P

∂E∂θ
=
∂3P

∂3p
2πpsinθ (3.14)

which we used previously in this chapter, we just plot |ΨC |2 this time to reveal the electron

distribution in the polarization direction. The sinθ in Eq. (3.14) eliminates the probabil-

ity in the polarization direction where θ = 0, andπ, hence Eq. (3.14) is usually used to

emphasize the multiphoton rings in the direction perpendicular to the polarization axis.

In (a), as expected, we find there has a considerable probability in the polarization direc-

tion. In (b), the ionization probability decrease, especially in the polarization direction.

Ionization probability keep decreasing in (c). From (a) to (c), we realize that the ob-

served electron distribution mainly in the direction perpendicular to the polarization axis

is not because electron becomes ionized more in that direction but the ionization proba-

bility decrease more rapidly in the polarization direction instead. As a result, it look like

the electron distribution changes to the direction perpendicular to the polarization axis,

especially plotted with the form of Eq. (3.14). [refer to Fig. 3.7 (g)]

Interestingly, this phenomena is closely related to the Rydberg stabilization. The ”dis-

appeared” electron actually recombined to the bound state. Electron with velocity in the

polarization direction is more easy to drive back to the ion core, and thus has more change

to recombine. This is why the electron distribution along the polarization axis decrease

more rapidly in (b) and (c). In the Rydberg stabilization regime, it is easy to couple to

Rydberg states. No matter what states the recombined electron stay, it is almost sent to

Rydberg states finally and keep stabilized there. This recombination mechanism also in-

terprets the suppression of the ionization probability below γ = 2.3 in Fig. 3.11 for 30fs

and 10fs pulses.
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Figure 3.21: Two-dimensional momentum distribution of a lithium atom with a lin-

ear polarized laser pulse FWHM 30fs, wavelength 785nm, and peak intensity:(a)120 ×
1011W/cm2, (b)200×1011W/cm2, (c)700×1012W/cm2. In this figure, we just plot |ΨC |2

rather than according to Eq. (3.14) we used previously in this chapter. p|| and p⊥ denote

the momentum parallel and perpendicular to polarization axis, respectively.
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Chapter 4

Conclusion

In the first part of this thesis, we developed an accurate as well as efficient scheme to solve

time-dependent Schrödinger equation in momentum space (P-space TDSE) of an atom in-

teracting with a laser field. Our scheme is based on second-order split-operator method

in energy representation. The central part of this method is to have an accurate complete

eigenstates as well as eigenenergies of the atomic Hamiltonian. However, the singularity

in the P-space Coulomb potential make it difficult to solve the eignevalue equation ac-

curately. Although this singularity can be remove by using Landé substraction method

and solve the eignevalue equation accurately, there exist another problem. Typical us-

age of the Landé substraction require a larger upper bound pmax in momentum space to

guarantee the accuracy. This larger upper bound pmax make the time propagation of the

P-space TDSE not efficient. We modify the Landé substraction method to be applicable

in a smaller pmax, named ”Landé substraction method with finite integration limits”. As

a result, accuracy as well as efficiency of the P-space TDSE are both improved greatly.

We test the scheme for linear polarized pulse, circular polarized pulse, and long wave-

length pulse. Our results agree well with other calculations. In addition, we also apply

the Landé substraction method with finite integration limits to generalize the Lewenstein

model by taking scattering process into account. The generalized Lewenstein model cor-

responding to the sum of all order of the Keldysh-Faisal-Reiss (KFR) theory and thus is a

nonperturbative model.

Next, we apply the developed P-space TDSE to study the strong-field ionization of

a lithium atom in the single-active-electron approximation. Our results agree well with

experimental results. By checking population history of relevant bound states and sepa-

ration of photoelectron spectra into odd and even angular momentum parts. We can trace

the origin of those multiphoton ionization peaks from nonresonant multiphoton ionization

(NRMPI) or dynamical resonant multiphoton ionization (NRMPI). We observe a transi-

tion from direct 4-photon ionization to direct 5-photon ionization. During this transition
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process, Rydberg states are strongly coupled and dramatically occupied due to Kramers-

Henneberger stabilization. We also explain why the electron is distributed in the direction

perpendicular to the polarization axis in the higher laser intensity regime. Rather than

the ionization probability increasing in the perpendicular direction, the electron along the

polarization has more changes to recombine to bound state, and finally stabilized in the

Rydberg states.
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Appendix

.1 Dipole approximation, velocity gauge, length gauge,

and Volkov state

The general expression of the Schrödinger equation of an atom in the laser field can be

written as:

ih̄
∂

∂t
Ψ(r, t) =

[
[p+ eA(r, t)]2

2m
+ V (r)

]
Ψ(r, t)

=

[
H0 +

e

m
A(r, t) · p +

e2

2m
A2(r, t)

]
Ψ(r, t) (1)

where H0 = p2/2 + V (r), A(r, t) is the vector potential of the laser field, V (r) is the

atomic potential, and the electron charge is defined as -e. Provided the laser intensity

is weak enough that the laser-atom interaction energy is less than the atomic potential

energy, the length scale of a electron motion should be in the order of several Å. For a

laser in the infrared regime, 800nm for example, the ratio of the length scale of a electron

motion and the wavelength of the laser field is too small (1Å/800nm) that a electron

almost doesn’t feel the variation of the laser field in the coordinate space. Therefore, the

coordinate dependence of the laser field can be neglected where A(r, t) = A(t). This is

called dipole approximation.

The Schrödinger equation can be simplified by gauge transformation. Two of the often

used gauge transformations are velocity gauge and length gauge. If we rewrite the wave

function in Eq. (1) with a phase factor as following:

Ψ(r, t) = exp

[
−i1
h̄

e2

2m

∫ t

A2(t′)dt′
]
ΨV (r, t) (2)

and substitute into Eq. (1), we get the Schrödinger equation of an atom in the laser field

in the velocity gauge.

ih̄
∂

∂t
ΨV (r, t) =

[
H0 +

e

m
A · p

]
ΨV (r, t) (3)

If rewriting the wave function with another phase factor:

Ψ(r, t) = exp
[
−i e
h̄

A · r
]
ΨL(r, t) (4)
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we get the Schrödinger equation of an atom in the laser field in the length gauge.

ih̄
∂

∂t
ΨL(r, t) = [H0 + eE · r] ΨL(r, t) (5)

Next, we solve the Schrödinger equation of an electron in the laser field. This can be

solved exactly and the states are called Volkov states [58]. The Schrödinger equation of

an electron in the laser field in the velocity gauge is:

ih̄
∂

∂t
ΨV (r, t) =

[
p2

2
+

e

m
A · p

]
ΨV (r, t) (6)

Then, we let

ΨV (r, t) = exp(ip · r)f(t) (7)

After substituting into Eq. (6), we get a differential equation for f(t):

ih̄
d

dt
f(t) =

[
h̄2p2

2m
+
eh̄

m
p · A(t)

]
f(t) (8)

This can be integrated easily:

f(t) = C exp

[
−ih̄p2t
2m

− ip · α(t)
]

(9)

where α = e
m

∫ t A(t′)dt′ is quiver amplitude of an electron in the laser field. Substitute

back to Eq. (7), and choose the normalization factor to be (1/2π)3/2, then the Volkov

states in velocity gauge is

ΨV (r, t) =
1

(2π)3/2
exp(ip · r) exp

[
−ih̄p2t
2m

− ip · α(t)
]

(10)

According to Eq. (2)

Ψ(r, t) =
1

(2π)3/2
exp(ip · r) exp[−iSp(t)] (11)

where

Sp(t) =
1

2

∫ ∞

−∞
dt′[p + A(t′)]2 (12)

And, according to Eq. (4), the Volkov states in length gauge is given by

ΨL(r, t) =
1

(2π)3/2
exp[i(p + A(t)) · r] exp[−iSp(t)] (13)

where

Sp(t) =
1

2

∫ ∞

−∞
dt′[p + A(t′)]2 (14)
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