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1.1 The Arnoldi Method for Standard Eigenvalue Problems

The theme explored in this thesis is to develop and exploit efficient palindromic
quadratization methods to solve the structure-palindromic polynomial eigenvalue
problem. This chapter will briefly introduce some basic notions, mathematical nota-
tions and conventional methods of the so-called “palindromic polynomial eigenvalue
problems”. In Chapter 2, we investigate and analyze efficient methods for polyno-
mial eigenvalue problems arising from computing in the vibration analysis for fast
trains in Germany [20, 21| and then in the study of surface acoustic wave filters [65].
In Chapter 3, we will propose a structured-preserving method of palindromic ma-
trix polynomial of odd degree and show the explicitly recursive coefficient matrices.

Finally, conclusions and the future work of this thesis will be discussed in Chapter 4.

1.1 The Arnoldi Method for Standard Eigenvalue
Problems

Given a large sparse matrix A € C"*"  the Arnoldi method [30] is prevalent and
very widespread algorithm for solving the so-called standard eigenvalue problem
(SEP):

Ax = Ix. (1.1)

Then, to find a scalar A (real or complex) and a nonzero n-vector x which satisfy
the equation (1.1). In this case, we say that A is an eigenvalue of A and x is called
an eigenvector of A with respect to \. Moreover, the eigenpair of A can be define
as the pair (\, x).

Before we resolve the SEP, we define some notations below. The following nota-
tions are frequently used in this thesis. Some Other notations will be clearly defined

whenever they are used.

o i=+/1.




1.1 The Arnoldi Method for Standard Eigenvalue Problems

R denotes the set of real numbers and C denotes the set of complex numbers.

e Re(A) and Im()\), respectively, denote the real part and the complex part of

the scalar A € C.
o C™™ is the set of all n x m complex matrices, C* = C"*! and C = C.
e The direct sum of two matrices is denoted by “&”.
e 0 denotes zero vectors and matrices with appropriate size.
e [, denotes the n x n identity matrix.

e We use -" and -2 to denote thetranspose‘and conjugate transpose for vectors

or matrices.
e ® denotes the Kronecker product.

e We adopt the following MATLAB notations:

v(i : j) denotés_the subvector of the vector v that consists of the ith to the

jth entries of v;

A(i 1 4,k : £) denotes the submatrix of the matrix A that consists of the

intersection of the rows 7 to j and the columns k to ¢;

A(7 @ j,:) denotes the rows of A from i to j and A(:, k : £) denotes the columns

of A from k to /.

Let us come back to consider the Arnoldi method now. Beginning from a unit
vector vy, the Arnoldi method successively constructs a sequence of unitary vectors

Vo, Vs, ...,V which creates an unitary basis of the Krylov subspace KC,,(A4,vy) =




1.2 The Generalized Arnoldi Method for Generalized Eigenvalue

Problem
span{vy, Avy,..., A" v} with m < n such that
j .
hj+1,jvj+1 = AVj — Zl hith ] = ]., 2, e,
1=
viv, =0, Vs#t and vilv,=1, Vs,
or we can rewrite to
Avm = VmHm + hm,mﬂvm“e;, (1 2)
v L, O ‘
[vH ] Vin Vina] = [0 1} )
m—+1
where V,, is an n X m matrix with column wvectors vi,vs,...,v,, and H,, is an

m X m upper Hessenberg matrix. Processing the factorization (1.2), called the
Arnoldi decomposition; we can diminish A into the upper Hessenberg H,, by using
the unitary transformation V¥ AV, = H,,. The eigenpairs of the reduced SEP
H,,z = pz can besolved by the classical eigenvalue techniques; for instance the QR
algorithm [13, 14|.+Besides, we see that-if (6;y)-ds-an eigenpair of H,, then (6,V,,y)
is so-called a Ritz pair-of A that is'an approximate eigenpair of A with the residual

norm

(A —=0L,)Viuyll = |hm+1,m||e;3’|‘

Moreover, we refer to [11, 49, 59| for more details on the practical realization and

theoretical analysis of the Arnoldi method.

1.2 The Generalized Arnoldi Method for General-
ized Eigenvalue Problem

The generalized eigenvalue problem (GEP) for the matrix pencil A — AB of two

square matrices A and B with size n is to determine scalars A and n-vectors x # 0




1.2 The Generalized Arnoldi Method for Generalized Eigenvalue

Problem
such that
Ax = A\Bx. (1.3)
If B is nonsingular, the GEP (1.3) can be transformed into SEPs
(B A)x = \x (1.4)
or
(AB- Yy =Ny, y = Bx (1.5)

which following can besolved by the standard Arnoldi method. In addition, the QZ
algorithm [39] present an analog-of the QR algorithm for the GEP that is also a
popular choice for.dealing with-the GEP (1.3) with small dense coefficient matrices.

However, when we are faced with large-scale GEPs, some pioneers came up with
some solutions. Serensen [50| proposed the truncated QZ method to approach the
eigenpairs. For m < n, this method constructs-a generalization of the standard

Arnoldi decomposition(1.2);

AZm = YmHm + hm—&-l,mYm-‘rle;,rN
BZy, = Yo Ron, (1.6)

Zme = Im, YmHYm = Ima YmHYm—i-l = 07

which is called the generalized Arnoldi reduction in [50]. It is efficient and artfully
processing the small-sized GEP H,,v = uR,,v of the m x m upper Hessenberg-
triangular pair (H,,, R,,) to approximate eigenpairs of the original large-scale GEP

(1.3).




1.3 Palindromic Eigenvalue Problem and Linearization

1.3 Palindromic Eigenvalue Problem and Lineariza-
tion

We consider the palindromic quadratic eigenvalue problem (PQEP) of the form
PN =Q\)x = (MVA] + 24+ A)x =0, (1.7)

where A € C, z € C\{0} and A;, Ay € C*" with A] = Ay. The scalar A\ and
the nonzero vector x in (1.7) are the eigenvalue and the associated eigenvector of
P()), respectively. A palindrome is a word or phrase which reads the same in both
directions. The matrix polynomial P()\) also has the property that reversing the
order of the coefficients, then continued by taking the transpose, which leads back
to the original matrix polynomial. Therefore, we can find that the eigenvalues of
P(A) satisfy the “symplectic! property by taking the transpose of (1.7). The word
symplectic is, the eigenvalues A and 1/\ both exist with respect to the unit circle
(with 0 and oo considered to'be reciprocal).

The “linearization" is a typical and frequently used technique to solve the (PQEP)
in which the problem is reformulated into a linear one which doubles the order of
the system. We select suitable matrices A, B € C*"*?" and the vector ¢ € C** and

transform (1.7) into the (GEP)

(A—=AB)p=0 (1.8)
satisfying the relation

EO)(A — AB)F()) = {P(A) 0] ,

0 I,

where £(A) and F(A) are 2n X 2n matrix polynomials in A with constant nonzero




1.3 Palindromic Eigenvalue Problem and Linearization

determinants. In this case,

det(A — AB) = det(\?A] + A + A))

shows that the eigenvalues of the original PQEP (1.7) are simultaneous with the
eigenvalues of the enlarged GEP (1.8). Consequently, the linearization technique of
PQEPs makes classical methods for GEPs as well as SEPs can be used.
There are many choices of (A, B)’s, but probably the most famous ones in prac-
tice are the companion forms [16]: the first companion form
—Ay —A Al 20

A= and B =
I, 0 o I,

—AO In AI 0
A= and B = : (1.9)

—A; 0O 0 I,

However, there are some drawbacks of the linearization technique to solve PQEPs.
For example, it doubles the size of the problem dimension that increases the compu-
tational cost and the original structures of the coefficient matrices (Ao, A1) such as
palindromic and symplectic may be lost. In order to prevent these drawbacks, one
may solve the PQEP directly to keep some original advantages. Methods of this type
include the residual iteration method [22, 38, 44], the second-order Arnoldi method
[1, 32, 62], the Jacobi-Davidson method [51, 52|, the nonlinear Arnoldi method [60],
a Krylov-type subspace method [31] and an iterated shift-and-invert Arnoldi method
[64]. These methods use a similar projection process, but the selection of projection

subspaces is the main difference between them.




1.3 Palindromic Eigenvalue Problem and Linearization

In chapter 2, we propose a palindromic quadratization approach that transforms
a palindromic matrix polynomial of even degree to a palindromic quadratic pencil.
Based on the (S + 8§~ !)-transform and Patel’s algorithm, W.-W. Lin puts forward
the structure-preserving algorithm [24] which can then be applied to solve the cor-
responding palindromic quadratic eigenvalue problem. Consequently, Numerical
experiments show that the relative residuals for eigenpairs of palindromic polyno-
mial eigenvalue problems computed by palindromic quadratized eigenvalue problems
are better than those via palindromic-linearized eigenvalue problems or polyeig in
MATLAB. In chapter 3, We consider the structured factorization of a palindromic
matrix polynomials of edd degree. To obtain such factorizations, there are some dif-
ficult nonlinear matrix equations that have to be solved. However, these equations
are shown to be equivalent to the well known solvent equation, when the solution
X is soluble. Without writing down the dreary NMEs, we provide a general version
from the palindromic matrix polynemials-of odd-degree to a structure-preserving

factorization by solving the ‘solvent equation.
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2.1 Introduction

2.1 Introduction

In this section, we extend from PQEP(1.7) to (%, e)-palindromic matrix polyno-

mials of even degree 2d

d—1 d
PO =) NTFAL L+ M A+ ) NTRA, (2.1)
k=0 k=1

where d > 2, ¢ = +1 and * = H (Hermitian) or T (transpose), A, € C"*"
(k =0,1,...,d) and A} = €Ap.. The corresponding polynomial eigenvalue prob-
lem P(\)x = 0, with A €. C and € C"\{0} being the eigenvalue and the associated
eigenvector respectivelyyis called a (x, €)-palindromic pelynomial eigenvalue problem
((x,e)-PPEP). The equation (2-1)-is also called a x*PPEP if e = 1 or a x-anti-PPEP
ife =—1.

The underlying matrix polynomial P(A) in (2.1) has'the préperty that reversing
the order of coefficients, followed by taking the (conjugate) transpose, leads to the

original matrix polynemial (anti-)invariant, which satisfies

PA) = e NP1/ N)* (2.2)

and explains the world “(anti-)palindromic” [40]. Consequently, taking the (conju-
gate) transpose of (2.1), we easily see that the eigenvalues of P(\) satisfy a “recip-
rocal” property, that is, they appear in the pairs of the form (A, 1/\*).

The (%, €)-PPEPs arise in solving higher order systems of ordinary or partial dif-
ferential equations. In the beginning, a T-palindromic quadratic eigenvalue problem
(T-PQEP) is raised in the vibration analysis for fast trains in Germany [20, 21| and
then in the study of surface acoustic wave filters [65]. An H-palindromic quadratic
eigenvalue problem (H-PQEP) arises in the computation of the Crawford number,

for detecting definite Hermitian pairs or hyperbolic or elliptic quadratic eigenvalue

10



2.1 Introduction

problems [23]. Furthermore, a x-PPEP of even degree is obtained by solving the lin-
ear quadratic discrete-time optimal control problem for higher order systems |2, 63].

A standard approach for computing the eigenpairs of P(\) in (2.1) is to linearize
it to a 2dn x 2dn linear matrix pencil by the companion linearization and compute
its generalized Schur form [55]. Nevertheless, the reciprocal property of eigenvalues
of P(A) is not preserved and this has resulted in large numerical errors [6, 24, 29].
Recently, in order to preserve the reciprocity of eigenvalues, some forerunner’s works
[40, 41] propose some good linearizations that linearize P()A) to palindromic linear
pencils of the form A\Z* + 7  This does lead to a great improvement over pre-
vious unstructured approaches, keeping the palindromic structure in the original
polynomial and enabling structure-preserving numerical methods to be designed.
Later, a @ R-like algorithm [53] and a hybrid method [42] which combines Jacobi-
type method with-the Laub’s trick, a postprocessing step of the generalized Schur
form, are proposed for solving T-palindromic linear eigenvalue problems efficiently.
The QR-like algorithm typically requires O(n*) flops and the hybrid method re-
quires O(n3log(n)) flops: Reeently, a URV-decomposition based structured method
of cubic complexity is developed in [54] to solve T-palindromic linear eigenvalue
problems, producing eigenvalues which are reciprocally paired to working precision.
A new structure-preserving doubling algorithm with cubic complexity for solving
*-palindromic linear eigenvalue problems is developed in [7]. On the other hand,
for solving a (%, ¢)-PQEP, a structure-preserving doubling algorithm is developed in
[6, 8] via the computation of a solvent of a nonlinear matrix equation associated with
the (%, ¢)-PQEP. Lately, a numerically stable structure-preserving algorithm (SPA),
based on the (S +S8™!)-transform [33] and Patel’s algorithm [45], is proposed in [24]
to solve the T-PQEP directly. The numerical results obtained by the SPA algorithm

show much promise and the computational cost of SPA is about a half of that of

11



2.2 P-Quadratization of (x,¢)-PPEP

the URV-based method.

The purpose of this section is to develop a palindromic quadratization which
transforms a (%, e)-palindromic matrix polynomial of even degree with (x,&) #
(T,—1) into a (*,¢&)-palindromic quadratic pencil. If x = T and ¢ = 1, then we
can apply the SPA algorithm in [24] to solve the associated quadratized T-PQEP
directly. If x = H and € = £1, we first transform the associated quadratized (H, ¢)-
PQEP to an H-skew-Hamiltonian pencil by the (S + S~!)-transform and enlarge
the H-skew-Hamiltonian pencil to a real skew-Hamiltonian pencil, to which the SPA
algorithm is applicable. Note that for the case (x,8) = (T, —1), the T-anti-PPEP
can then be solved by.applying the URV-based method [564, 58] to the linearized
T-palindromic linear pencil.

This section is organized as follows. In Section 2.2, we propose a palindromic
quadratization for-a (,e)-palindromi¢ matrix polynomial ofreven degree. In Sec-
tion 2.3, we develop a structure-preserving algorithm for solving the H-PQEPs. We
consider the structured backward stability in Section 2.5./After that We develop bal-
ancing techniques for PPEPs and PQEPs in Seetion 2.5. Comparisons of numerical
results computed by the palindromic quadratization, the palindromic linearization
and the standard companion linearization are presented in Section 2.6. Conclusions

are given in Section 2.7.

2.2 P-Quadratization of (x,¢)-PPEP

In [24], a structure-preserving algorithm is well-developed for solving the T-
PQEP. A similar structure-preserving algorithm for solving the H-PQEP will be
introduced in Section 2.3. As the H-anti-PQEP can be easily transformed to the H-
PQEP, all (x,¢)-PQEPs with (x,¢) # (T, —1) can be solved by structure-preserving

algorithms. Furthermore when (%, ¢) # (T, —1), we shall propose a new palindromic

12



2.2 P-Quadratization of (x,¢)-PPEP

quadratization (P-quadratization) which can be utilized to transform a (%, ¢)-PPEP
into a (x,¢)-PQEP so that the structure-preserving algorithm in [24] is applicable.
Next we present definitions of quadratization and P-quadratization of a general

matrix polynomial and a palindromic matrix polynomial, respectively.
Definition 2.1. (Quadratization/P-Quadratization)

(1) Let P(\) be an arbitrary v X v matriz polynomial of degree p > 2 with pv = 2q.
A g% q quadratic matriz polynomial (quadratic pencil) Q(N) is a quadratization
of P(N) if there are matriz rational functions £(\) and F () of size g X q with

nonzero and constant determinants satisfying the two-sided factorization

ENJONF (X) = . (2.3)

(i1) Let P(N\) be an arbitrary v X v (%, )-palindromic matriz polynomial of degree
p > 2 with pri= 2q (i.e., P(A) = eXPP(L/N)* as'in (2.2)). A quadratization
Q(N) of P(A) having the (%, €)-palindromic structure is called a P-quadratization
of P(N).

Theorem 2.2. Let Q(\) be a q¢ X q quadratization of a v X v matriz polynomial
P(N) of degree p with pv = 2q. Then
(1) Mo € C is a finite eigenvalue of Q(N) (i.e., det(Q(XNg)) = 0) if and only if \g is

a finite eigenvalue of P(N) (i.e., det(P(No)) = 0).
(11) 0o is an eigenvalue of Q(N) (i.e., det([AzQ(i)HA:O) = 0) if and only if oo is
an, eigenvalue of P(X) (i-e., det([NWP(3)]],_,) = 0).

Proof. (i) The factorization (2.3) implies that det(Q(\)) = ¢ det(P(\)) for some
nonzero constant ¢, so that Q(A) and P(\) are singular or nonsingular for precisely

the same values of .

13



2.2 P-Quadratization of (x,¢)-PPEP

(ii) Since

o lro Q)] - wonfo(3)] oo 1)
- canfer (1]

both Q(A) and P(A) have or have no infinite eigenvalues. O

Since both det(£(\)) and det(F (X)) are nonzero and constant, it is easily seen
that the two-sided factorization (2.3) implies the existence of a more wide class of

one-sided factorization

QN E()

I
£
N
-~
S~—

I
=

>
S~—r

L
3
>
N~—

I
2

>
S~—
By
=
©

W~
S~—

where F'(\) and G(A) are matrix rational functions of size gx v. From the factor-
ization (2.4) a close connection between eigenpairs of P(X) and eigenpairs of Q(\)

has been shown in [17].

Theorem 2.3. [17] Assume that (2.4) holds at N\g € C with F(\o) and G()\g) being
of full column rank. Then F(\o)z is an eigenvector of Q(A) if and only if 2, is an

eigenvector of P(\), both corresponding to eigenvalue Xg.

In Definition 2.1(i), we give a new definition of quadratization for a general
matrix polynomial. In Theorems 2.2 and 2.3, we show the connection between
eigenpairs of a general matrix polynomial and its quadratization. We next present

a P-quadratization for a palindromic matrix polynomial of even degree explicitly.

Theorem 2.4. Let P()\) be an n x n (%, e)-palindromic matriz polynomial of degree

2d as in (2.1) with (x,€) # (T, —1). Then P(\) can be P-quadratized into a (*,¢)-

14



2.2 P-Quadratization of (x,¢)-PPEP

palindromic quadratic pencil of the form

Q()\) = /\2./4’1( + Ao + A

with Af = €Ay, where

(i) (For2d=4m ) Ay and Ay are given by

A

E\/EdlAQ

Ay — VeI — \JeA3 Ay
A =

if m = 1; otherwise,

£
A =
i 0 —ed, 1
AO - \/C:I - \/EAEmAQm 0 Agm—2 0
0 eyt
€Aom—2 0
Ao 0 0
€A2
i 0

(2.5)
0
(2.6)
—vedidil
I
, (2.7a)
A5 0
(2.7b)
0 0
0 -

15



2.2 P-Quadratization of (x,¢)-PPEP

(1t) (For 2d = 4m +2) Ay and Ay are given by

Ay

in which dy, . ..

A
Aot
0
Agm1

—8d1[

&i1

—Edzl

, dy, are arbitrary nonzero constants.

, (2.8a)

(2.8b)

Proof. (i) (For 2d = 4m) We define the n x n matrix rational functions for j =

1,...,m:

2j—2
k=0

16



2.2 P-Quadratization of (x,¢)-PPEP

and for j=1,...,m—1:

Fojpa(N) = A1, (2.9b)
Let
T
Ll By (N B (V)T - By (N7
R - b1 (AT Faa(A) it (V) 210
0 I(mel)n

Routine but tedious calculation in terms of Fy(A) in (2:10), Q()) in (2.5) and A, A,

in (2.6) or (2.7) leadsito

QM) Ei(N) ’ ! (2.11)

where

Q1(N) = NA]+ X (Ag= Vel — VeAb, A FE4

m—1

+ AVEAS, (VMeVEl+ Agm) £ ) N (WA, ir + MG 0r)
k=1
2m—2
+ eat—m (6\/5/\2m]+ Z /\kA2m—k> = NTEP(A). (2.12)
k=0

Next, we define for j =1,...,m:

E172j+1<)\) = )\2j—2m]n7 forjzl,...,m—l,

2j-2
E1,2j<>\) — ()\Qm—2j+1dj)—1 <Z /\2m—kA>2km7k 4 \/E]n) 7

k=0

17



2.2 P-Quadratization of (x,¢)-PPEP

and let

Ei5(\) Ei3(\) Ey 9m(N)

(2.13)

I(Qm—l)n

From (2.12) and the definition of E}(\) in (2.13), we have

L O, | BOVQIAM) = | XmP() 0,0,

Then from (2.10) and (2.13); it follows for-m.=1 that

{ 0.1, } E, (MO E(X) | — \edid T,
In

or for m > 2:

0 T BB RO
- Ta—1yn
[ AVEddiL, A, 0 0 |
ed:1, 0 —Xedil,
0 —dsy I,
- Ndy 11, 0
ed I, 0 —Xed I,
0 0 —dp 1, 0
Using the factorizations
Lo 0 || =NEddiL, Ndil, | | o 2l | | =WEdid;,
Nl I ed:1, 0 Lo 0




2.2 P-Quadratization of (x,¢)-PPEP

and

it holds that

where

and

L 0 || AWEL —NedioL, | | L AR
I L I || —dialy 0 0 In
MWEL 0

0 —AVEdjdi I,

L, 2l
ng(/\) = I(Qj_l)n@ ’ @I(Qm—Qj—l)n;
0 I,
I, Med,, I,
F2j+1()\) = Ian@ a @I(Qm—2j—2)n:
0 I,

19



2.2 P-Quadratization of (x,¢)-PPEP

for j =1,...,m — 1. Finally, letting

E2m<)‘) = dlag {)\2m—1[n’ _()‘\/gdld){)_lln7 ()‘\/g)_l (A\/_d2d2) n

) (A\/E)_llm _()‘\/gdmd:z)_lln} )

EN) = Eypn(N)--- E1(N) and F(A) == Fi(A\) - Fon-1()A), one can easily verify
that £(A)Q(A)F(A) = diag(P(A), L2m—-1)n)- Furthermore, it holds that det(£())) =
(—e)™/(VEIIiL d;d) and det(F(A)) = 1.

(ii) (For 2d = 4m + 2) Leét

My =i 1), @ Ddlomagny forj=1,...,m
I, 0

Similar to part (i)ywe define n X n mafrix rational functions #;(\) and F;(\) by

Ei(\) =411 Inl E12(A) EisA)ets -/ Eromi1()
1 - 2 )
OT ]2mn
AT
A In | Ba@E TR )T - By (V)"
1 prm—
0 Ian
with
2j—1
E1,2j<)‘) = )‘2)_2m_2]m E1,2j+1()‘):djilz)‘kHA;mesza
k=0
2] 1
Fyjn(N) = NP By (A) = (d5AY) Z)\ Agmrsr (2.14)
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2.2 P-Quadratization of (x,¢)-PPEP

for j =1,...,m. Via careful calculation we get
I, AT2MP(N)
QA F1(A) =
0 0
and

Letting
I, 0
EJ()\) = HQJ IQ(j—l)n@ @I(2m—2j+l)n )
e/, 2\
I, 0 X\,
F;(Mm= Toj—3n @40 04 L, I, | ©lom-241n,
0 01,
for j =2,...,m, and

Em+1<)‘)

N | 1 -1
= di )\QmIrm_Irw—[n?_[n?—[n?'” 7_[n7— n(s
lag{ A Ned ™ dy ™ Needy " N2edr, }

one can also verify that £(A) Q(A)F(N) = diag(P(N), Lomn), where E(X) = Epi1(N) -+ Er(N)
and F(A) = F1(A) - - - F,(\). Furthermore, it holds that det(£()\)) = e™™/([ ], (d;d}))
and det(F (X)) = 1. O

Note that the P-quadratization of a (x, €)-palindromic matrix polynomial of odd
degree with even matrix dimension can be defined as in Definition 2.1. However, to

the best of our knowledge, a P-quadratization of this type has not been found.
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2.2 P-Quadratization of (x,¢)-PPEP

We now show the relationship between eigenpairs of Q()) in (2.5) and P(A) in

(2.1).

Theorem 2.5. Let Q(\) in (2.5) be a P-quadratization of P(\) in (2.1) with (%, ¢) #

T

T,—1). Denote z = | ,T ... T with z; € C" (j =1,...,d). Then
1 d J

(i) For \g # 0, (Ao, 21) is an eigenpair of P(A) if and only if (N, 2) is an eigenpair

of Q) with zj = Fj1(Mo)z (j = 2,...,d), where {F;1(\)}}_, are given in

(2.9) (ford=2m) or (2.14) (ford=2m+1).

(11) (0,21) is an eigenpair-of P(N) if and only.if (0s2) is an eigenpair of Q(N),

where, for 3 =1, m —1:
Zom =—(d*)) A2, 22501 = 0,
(for d=2m) < : N (2.15a)
(P2 _(d§)71A2m—2j+1Z1;
(
o =—ld’,) "t A{z1} 29, = 0,
(or, for'd =2m+ 1) K. &) S (2.15b)
[ 75— 0, 22541 = —(d;)_lAgm,ngzl.

(111) (00, z2) is an eigenpair of P(X) if and only if (0o, z) is an eigenpair of Q(N),

with 21 = z3 =+ = 24 = 0.

Proof. (i) From Theorem 2.4, there are dn x dn matrix rational functions £(\)
and F(A) with nonzero and constant determinants such that E(A)Q(N)F(A) =
diag(P (), [(a—1)n)- Since A = 0 is the only pole of £(A) and F(A), the matrices

F(Xo) and G(Ag) defined in (2.4) are of full rank. The assertion in (i) follows imme-
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2.2 P-Quadratization of (x,¢)-PPEP

diately from Theorem 2.3 and the relation

21 Z1
z1 21 F2,1(/\0)21 Z2
F(/\())Zl = .F(/\[)) = Fl()\O) = =
0 0 :
Fd,1(>\o)21 Zd
T
(ii) By the definition of Q(\) in (2.5), we have Q(0)z = eq = ¢ [ a g ] ,

where for d = 2m:

@ = A1z1 A%, Qo= er/Ed1 Aozt Gz = Ao 121 + d 2o,

(2.16a)
Qs = —edo@3, -, Qom=1 = Agzpd- d;@_lem—% Gom == 2om—1;
and for d = 2m 4-1:
¢ = Az + dgampr, Q@ = Aomii2i, Q3 =—edizo, qu =elom_121 + dizs,
g5 = —€daza, -+ (Gom = Az + d:,hlZQm—h om4+1 = —Ed, Zom -
(2.16b)

From (2.16), we see that (0, z1) is an eigenpair of P(A); i.e., Azz1 = 0 if and only if

(0,z) is an eigenpair of Q(\); i.e., Q(0)z = eq = 0, where {z;}%_, satisfy (2.15).

(iii) By the definition of Q(X) in (2.5) again, we have [\*Q(3)],_,2 = ¢ =
T
[%T qg} , where for d = 2m:
¢ = Az + Vedi Az, 20 + qu?;ll A —oky172k+1, G2 = d1zs,
(2.17a)
q3 = —edyza, "+, Qom—2 = dp_1Z2m—1, Qom—1 = —€dy,Zom, Qom = dpm21;
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2.2 P-Quadratization of (x,¢)-PPEP

and for d = 2m + 1:

@ = Afz+ D000 Asogszon, @2 = —edizs, g3 = diz, (2.17b)

oy Qom = _EdmZZm—i-la 2m+1 = dfnZL

From (2.17), it follows that (oo, 25) is an eigenpair of P(\); i.e., Ajzy = 0 if and

only if (o0, z) is an eigenpair of Q(\), or [A2Q (+)], 2z =¢ =0, with z, = 23 =

A=0

=2 = 0. O

Remark 2.6. (i) Theorem 2.7 cannot be applied to the case (x,¢) = (T,—1). In
fact, up to now, there is no structure-preserving algorithm to solve the T-anti-PQEP
directly. So it is pointless to transform a T-anti-PPEP to a T-anti-PQEP. Thus, for
a (T, —1)-palindromic matriz-polynomial, we can apply the palindromic linearization
[40] to transformyit into a T-palindromic linear pencil A\Z1 47, and then solve it
by the QR-like algorithm [53], the hybrid method. [}2], the URV-based method [54]
or the doubling algorithm [7].

(ii) On the other hand,wif we rewrite \ZT + Z to @ T-palindromic quadratic
pencil O(\) = N2ZT + N0 +Z by letting A2-=X, then the SPA algorithm [24] can
also be used to solve its eigenpairs. It is shown in [24] that applying the SPA to solve

Q(N)y = 0 is mathematically equivalent to applying the URV-based method to solve

T+ 7.

Applying the P-quadratization in Theorem 2.4, an H-anti-PPEP can be quadra-
tized into an H-anti-PQEP whose eigenpairs can then be computed from an H-PQEP

by the following relationship.

Proposition 1. Given an H-anti-PQEP: (N2 AT+ Aq— Ay)z = 0, with Al = —A,.
Then (w, x) is an eigenpair of the H-anti-PQEP if and only if (w, x) is an eigenpair
of the H-PQEP: [w?(—A)H + w(14g) + (—Ay)] & = 0.
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2.2 P-Quadratization of (x,¢)-PPEP

Proof. The result can be easily obtained by setting A = w and using the fact

(ZA())H = ZAQ. ]

We now consider the x-even and *-odd polynomial eigenvalue problems of even
degree. Let C(\) = iio NGy, where Cyp € C™" (k= 0,1,...,2d) and Cyy # 0.
The polynomial eigenvalue problem C(A)z = 0 is called a x-even polynomial eigen-
value problem, if C3, = Cy, (k= 0,1,...,d)and C},_; = —Cor—q (k= 1,...,d); and
it is called a *x-odd polynomial eigenvalue problem, if C3, = —Cq; (k =0,1,...,d)
and C3,_; = Coy—1 (K = 1,..2,d). By the Cayley transformation, it was shown
in [40] that a x-even/odd polynomial eigenvalue problem can be transformed to a

(%, £1)-PPEP, respectively.

H-even [42] H-palindromic | Theorem 2.4 H-palindromic
— —_—
PEP PEP QEP
T-even [42] T-palindromic Theorem 2.4 T-palindromic
—_— —_—
PEP PEP QEP
H-odd 42 H-anti-palindromic| Theorem 2.4 H-anti-palindromic | proposition 1 H-palindromic
— (82] g ST TR e
PEP PEP QEP QEP
T-0dd [42] : T-anti-palindromic [42, 43] - T-palindromic | Remark2.6 . T-palindromic
PEP PEP GEP QEP

Figure 2.1: Relations between various structured polynomial eigenvalue problems

(PEPs).

We illustrate the relationship among various structured polynomial eigenvalue
problems in Figure 2.1. We see that T-even, T-odd, T-anti-palindromic and T-
palindromic polynomial eigenvalue problems of even degree can be P-quadratized to
T-PQEPs. Thus, the SPA algorithm in [24]| can be applied to solve the associated T-
PQEPs. On the other hand, we see that H-even, H-odd, H-anti-palindromic and H-
palindromic polynomial eigenvalue problems of even degree can be P-quadratized to
H-PQEPs. Therefore, we are motivated to develop a structure-preserving algorithm

in the next section to solve the H-PQEP.
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2.3 x-palindromic Quadratic Eigenvalue Problems

2.3 *-palindromic Quadratic Eigenvalue Problems

Consider the »-PQEP
ON)z = (N2AT + Ay + Az =0, (2.18)

where Ay, A; € C™™ with A§ = Ap. The eigenvalues of Q(\) clearly appear in the

“reciprocal” pairs of the form (X, 1/\) where

>
I
>1
=
X
I
=
>
|
>
=
%
I
_|

Classical linearizations of (2:18) in a companion form, generally, do not preserve
the symplectic structure. Fortunately, the special linearization of (2.18) (see [8] or
[24])

(ML) 2 = —X —0 (2.19)

where y = A1z and multiplying the second equation of (2.18) satisfies

0o I,
MIM = LIL*, T =Jon = , (2.20)
-1, O

so that the matrix pair (M, £) has eigenvalues A and 1/, preserving reciprocity.
The pencil M — AL or the matrix pair (M, L) are called H-symplectic.

For any real symplectic matrix pair (M, £) satisfying (2.20), a structure-preserving
(S + S~')-transform for the computation of all eigenvalues was proposed by [33].

The (S + S~ 1)-transform (Mg, L,) of an *-symplectic matrix pair (M, L) is defined
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2.3 x-palindromic Quadratic Eigenvalue Problems

M= MIL + LIM =KT, Li=LTL =NT. (2.21)

It is easily seen that K and A are both x-skew-Hamiltonian, i.e., KJ = JK* and
NT = JN*. Hence, if p is an eigenvalue of (K, N), so is ji.
The relationship between eigenpairs of an x-symplectic matrix pair and its (S +

S 1H)-transform has been given in [33].

Theorem 2.7. [33] Let. (M, L) be x-symplectic and (M, L) be its (S + S71)-
transform as in (2.21). Suppose z, is an eigenvector of (Ms, L) corresponding to
p=v+ I If (£* = LM*)z, £ 008 (L5~ vM*) 2 # 0, then (v, T (L* — T M*)z,) or

(1/v, T(L* — v MX)2,) is an eigenpair of (M L) respectively:

We have some different derivative theorems between x = T.[24] and x = H here.
Then the relationship between eigenpairs of (Mg, £;) and Q(M\),x = H is given as

follows.

Theorem 2.8. Let (M, L) be H-symplectic of the form in (2.19) and (M, L) be
its (S+87Y)-transform. Suppose that z, is an eigenvector of (M, L) corresponding
to the eigenvalue p # +2, and denote z; = [stl, z;g]T with zg, 29 € C". Let v be a

root of the quadratic equation \ + % = . Then

(1) at least one of vectors zg + %ng and zg + VzZso 1S nONZETO;

(i) of za + 11/232 #£0, then zg + 11/232 is an eigenvector of Q(\) corresponding to v;
(iii) if ze1 + %zsg =0, then zs is an eigenvector of Q(X) corresponding to %

Proof. (i) Suppose that zg —|—%zsg = 0 and z5 +vz5 = 0. It implies that (v— %)232 =

0. If z;o = 0, then z,; = 0 and z;, = 0 which contradicts the fact that z, is an

27



2.3 x-palindromic Quadratic Eigenvalue Problems

eigenvector. Hence, v = £+1 and then p = £2 which contradicts the assumption
that p # +2. Therefore, 2z, + %282 # 0 or zg +vzeo # 0.

(ii) Since MJMH = LJ LY by (2.21) it holds that

1
0= My —pLy)ze=M—-vL)T LT — ;MH)ZS (2.22)
From (2.22), we obtain
1
Zs1 + 5252
(M= vL) 2, (2.23)
Ty
where
1,1
x, = =A7 2q — “Apes — A1 20} (2.24)
v v
Substituting (M, £) of (2.19) into (2.23), we have
o) (2.25)
€Ty = - 1(Zs1 VZSQ .
and
1 . 1
Ao(zs1 + ;282) +x, + VAT (21 + ;zsg) =0. (2.26)

Substituting x, of (2.25) into (2.26) and multiplying (2.26) by v, we get Q(v)(zs1 +
5282) = 0.
(iii) Since zg + %zsg = 0, it follows that z4 = —%zsg # 0 and z, = 0 in (2.25).

Substituting these results into (2.24), it holds that

1\? . 1
0= Ty = — | — Al Zg2 — —A()ZSQ — A12’52.
1% 14
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2.3 x-palindromic Quadratic Eigenvalue Problems

Therefore, zg is an eigenvector of Q(A) corresponding to the eigenvalue % ]

In [24], a structure-preserving algorithm (SPA) based on Patel’s algorithm [45]
has been developed for solving T-PQEPs. In order to solve an H-PQEP, we apply
the (S + S7!)-transform to the H-symplectic pair (M, L) of the form (2.19) and
get the generalized eigenvalue problem Kz, = uN zs, where K and N are defined in
(2.21). Substituting (M, £) in (2.19) into (2.21), the H-skew-Hamiltonian X and N/
can be represented as

Ay @ A= 24,0
K = ; S Y O . (2.27)

A — AH Ay 0 =Af
However, Patel’s algorithm can-only be applied to (I, ) of (2.27) in the real case,
but cannot be directly applied to (I, A[) in-the complex conjugate case. In the
following, we convert (I, N) of (2.27) into an enlarged real:T-skew-Hamiltonian
pair so that Patel’s algorithm can be applied. Wé extend (IC; ) in (2.27) to a real
4n x 4n matrix pair (Ks, A5). by

Kr —K Nr -\
= T M= | T T | erin, (2.28)

Kr Kz Nr Ng
where I = Kg + 1K and N = Ny + N, From (2.28), it is easily seen that if u is

an eigenvalue of (IC, ), then p and [ are eigenvalues of (Kq, N2).

Theorem 2.9. The multiplicities of eigenvalues of (Ko, N3) are all even.

~ - 0 I,
Proof. Define Ky = IIKC,IT and Ny = IIANLIL, where IT = I, ® @I, Itis
I, O

easy to check that ’EQ and /\72 are real skew-Hamiltonian; i.e., (l%gj4n)T = —I€2j4n
and (MoJin)T = —NoTum. Therefore, from the result of [33], it follows that the

multiplicities of eigenvalues of (K, N3) are all even. O
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2.3 x-palindromic Quadratic Eigenvalue Problems

From (2.21), we see that u is an eigenvalue of (K, N) if and only if ji is also an

eigenvalue. We now give the relationship between eigenpairs of (K, V') and (KCa, N>).

T

Theorem 2.10. (i) If (o + 10,z + wy) is an eigenpair of (K,N), then +
Y
? are eigenvectors of (Ko, N3) corresponding to the eigenvalues av+10.
—T
.. x1 o | : : .
(i) If +1 is an eigenwector of (Ko, N3) corresponding to the eigen-
T2 Y2

value a+13, then (£3—=12)F 1(x2+y1) is an eigenvéctor of (K, N') corresponding

to v +1f5.

Proof. (i) Since K(a41y) = (ee+25)N (2+1y), comparing the real and the imaginary

parts of both sidesleads to

x Y z Yy
ICy + = (a £ 18N> +3
Yy < y —x
L1 1
(ii) Since +1 is an eigenvector of (K, N3) corresponding to the
L2 Y2

eigenvalue a + 13, it holds that

Krr—Kry = aNrzx —Nry)— BNz + Ngy),

Kix+Kry = BWNrr —Npy) + a(Niz + Nry),
by setting x = x1 — yo and y = x5 + y;. Thus, (o + 18,2 + 1y) is an eigenpair of
(KK, N). O

From Theorem 2.10, the eigenpairs of (K, N') can be computed from the eigen-

pairs of (IEQ, /\72) Since 162 and K/'Q are both real skew-Hamiltonian, based on Patel’s
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2.3 x-palindromic Quadratic Eigenvalue Problems

approach |24, 45|, the pair (162,/\72) can be reduced to block upper triangular forms

~ ps - T N1 Nip
Ko = Q"' KoZ = , Ny = Q ' NoZ = , (2.29)
0 KL 0 NI

where Q, Z € R4 are orthogonal satisfying Q = J[. Z Jy,, and K1, Ny, € R#*2"
are upper Hessenberg and upper triangular, respectively.

From Theorem 2.9 and (2.29), we see that the pair (K41, Ni1) has the same

spectrum as (162,/%). We then apply the QZ algorithm to (K71, N11) to compute all

2n

i, are the 2n eigenpairs

Z,
its eigenpairs { (i, Z;) }32 . Consequently, {(u;, 112 1
0

of (Ko, N3). Let yi; = a; + of;-and IZ[ZF 07" = [x'{],m%;]T + 1 [yﬂ,ygj]T with
aj,B; € R and 1,29, 415, y2; € R?". From Theorem 2.10, {(a; + 16;, T (z1; —
Yoj+1(225+Y1;))) }52, are eigenpairs of (Mg, Ls). Finally, we compute all eigenvalues
and the associated-eigenvectorsof Q(\) by Theorem 2.8. We present the structure-

preserving algorithm for solving H-PQEP in Algorithm 2.1.

Algorithm 2.1 Structure-Preserving Algorithm (SPA) for H-PQEP
Input: An H-palindromic quadratic pencil @(\) = \2AH + NAy + A; with Ay, A; €
C™ " and Al = Ay;
Output: All eigenvalues and eigenvectors of Q(\).
1: Form the matrix pair (K, N3) = (ITKC,IT, TIAGII) as in (2.28);
2: Reduce (IEQ,/\Z) to block upper triangular forms as in (2.29);
3: Compute eigenpairs {(u;, 2;)}3%; of (K11, N11) defined in (2.29) by the QZ algo-
rithm;
4: Compute I17 [Z]] = [ 1 ] +1 [ 1 ] J=1,2,...,2n;
0 Taj Y2j
5. Compute the eigenpair (p;, z;), for j =1,2,...,2n, of (Ms, L;) by

Zj = jT(l'lj — Yaj + (x5 + y15)) = [Z]Tp ZJ'TQ]TE

6: Compute v; and Vi by solving v? — p;v + 1 = 0; Compute ;1 = zj; + %ZJQ and
J J
Tjo = zj1 + vz for j=1,2,...,2n;
7. If ;1 # 0, then it is an eigenvector of Q(\) corresponding to v;; If 25 # 0, then

it is an eigenvector of Q(\) corresponding to %;
J
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2.4 Structured Backward Perturbation Analysis

2.4 Structured Backward Perturbation Analysis

Typically, algorithms would approach the right solution in the limit, if there were
no round-off or truncation errors. However, depending on the specific computational
method, errors can be magnified and causing the error to grow exponentially.Let

{1, z} be a computed eigenpair of
d
(Z Ag>\£> z=0.
=0

d
Theoretically, we would like to have (Z Ag//) z.= 0o But practically we have
=0

d

(Z Ag,uf) z = —rawith residual-r # 0 but usually tiny. Backward error analysis
=0

asks if the computed ‘eigenpair {ji, 2} is an exact eigenpair of a nearby PEP such

that

(Z (Ag = pzAAz) ,l/) z=0

=0
where A A, are called backward perturbation matricesand py are scaling parameters.
Tisseur [56] developed a backward. error perturbation analysis for PEP generally,
where A Ay is no structure. However, as' A are Hermitian, we would like to enforcing
that A A, should be Hermitian, too. This is the reason why the structured backward

perturbation analysis be developed. That is to say, we consider PPEP with

d
(Z (Ar + peDNAy) ;f) 2=0, Agpr=cA; forl=0,1,..[d/2]. (2.30)

=0

We have mentioned the fast train application [29, 43?7 | which yield a problem
of this form with d = 2,x = T, and € = 1 before. Let ||-|| be either the spectral norm

||-]|, or the Frobenius norm ||-||..Now, we are interested in knowing the structrued
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2.4 Structured Backward Perturbation Analysis

backward error

. Ld/2]
A = min \/Zezo | AA?,

d
subject to (ZH (Ar + peDAY) ,ﬂ) 2 = 0, (2.31)
scaling parameters pg_, = p; >0
Agv+ paiDAay = e(Ar+ piLAy)

for ¢ = 0,1,...|d/2]

The constraints in (2.31) require pg—y = pr and DA, 4 = eAA}_, just like the

palindromic form, and we decompose (2.30) which is equivalent to

d Tt d
(Z pgAAg//) 2= = 4 (Z Ag,t/) Z, (2.32)
(=0

=0
where AA, € C" (£ = 0, 1,...d) .-We will seek if (2:32) has a solution
{AA £ =0,1,...|d/2]} and ifiit does, we'll seek A Ay such that

[d/2]
min Y [JAA| (2.33)
=0

where ||-|| is either ||-]|, or [|-|| 7.
The key to solve (2.32) and (2.33) is a reduction technique that has been used in
[4, 25, 35, 57]. The technique allows us to consider (2.32) in the case of 2 x 2 reduced

matrix when we deal with backward errors in a 2-dimensional subspace spanned by

{z,r} or by {z,7}.
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2.4 Structured Backward Perturbation Analysis

Let Q € C™" be a unitary matrix (QQY = I,,), such that

a vy
0 B

Q"Gzm=1| 0 o |,
0 0

where

r=r tdx=H, andr=¢ dfx=T.

Such @ always can be generated, and the equation (2.34) also implies

2B

~112 2 212
S e 122

T

P
o = =1, e = Bl =

- z
122 [P

2

We can rewrite (2.32) by multiplying @ , then

d
Q* (Z peAAM) QU"z =@,

=0

or equivalently

=0

where
7
a{ A
. B
ABKZQ*(AAZ)Q)?J:QHZ: ] ,’U):Q*T: 0
0
0

(2.34)

(2.35)

d
(Z pgABg/f) Yy =w,pag—¢ = prand ABy_y =ecABj,for { =0,1,...|d/2] (2.36)
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2.4 Structured Backward Perturbation Analysis

B=Bandy=~ifx=H, and =B and 4 =7 if x=T.

Since @ is unitary, (2.31) and (2.36) have the same solvability property. It means

that if the former is solvable, so is the latter, and moreover

Ld/2] Ld/2]

STABP =D IIAALP. (2.37)
/=0 =0

Thus we can focus on the optimal solution {AB,, ¢ = 0,1, ..., |d/2]} to (2.37) which
means
Ld/2]
min Yy [|AB% (2.38)
=0
That also generate one solution {AA, ¢ =0,1,...,|d/2]} to (2.32) in the sence

of (2.33), and viceversa. Furthemore, we transfrom(2.31) to the reduced structrued

backward error

/2]
> AB;: (2:36) satisfied o vor p =5 g
/=0

A, = min

It follows from (2.35) that

VIFI I = 1297
) ’(52’ = ) ‘51| + |52‘ = HZ||2 (2'39>
2

2
11l

‘zH'f

|61]

- 2
12113

The complex calculations and technical operation in Theorem 2.12 [47] are omit

and we present the significant results.We first define a few parameters in term of a
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2.4 Structured Backward Perturbation Analysis

given approximate eigenpair {y, z} of PPEP (2.30): for even d

d/2—1

def _0\?
Peven = even + Geven = Z pi (|M|é+ |M|d Z) +p3/2 |,u\d,
=0
def d/2-1 )
e _
Peven = Eeven — Ceven = Z P? <|M|e - |M|d e) )
=0
dof d/2-1 )
e -
even D7 g (ul* + P )+ pda ul /2
=0
and for odd d
(d-1)/2
def A2
Dodd 4= Hodd + Soaarmaatel (il lul ) .
=0
(d=1)/2
def —0\?
Gotd | <boad—Sodd =D Pt (Il St )
=0
(d-1)/2
def —0\?
Uodd (= D0 PG )

=0

Theorem 2.11. [47| Let {u, =} be a given approrimate eigenpair of PPEP (2.30).
Suppose x = H and ¢ = £1an~(2.31), and oy and 65 are as in (2.39) with 7 = r

which is defined in (2.32). Let

5 deven for even d o ®even for even d . Weven for even d

bodq- for odd d ®,qq> for odd d V44, for odd d
Theorem 2.12. For the structure backward error Ap defined in (2.31), we have

1. If |u| =1 and 297 /(\/ep??) ¢ R, then Ap = +o0
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2.4 Structured Backward Perturbation Analysis

2. If \u| = 1 and 27 /(\/ep?'?) € R, then

161)% 10|
A= /120 1921
F o 0
3. If |u| # 1, then
517 10s)?
Ap < g 1920
FS 3 + 87

Let us look back at our original problems (2.1) and apply the Theorem 2.12 in

our PPEP. Taking d = 4,¢ = 1 for example, we.consider

PN = NATE WAL F N2 Ap 3 A Ay F A, (2.40)

From the quadration we mentioned in Theorem 2.4 where A, and A, are given by

Ay T Ag—1 — AglAg 0
-/41 — ) AO i
As 0 0 -1
which satisties
Q) = NAT + My + A, (2.41)

In section 2, we propose a method to solve the equation (2.41) with structure-
preserving algorithm. In this case, it is quite reasonable to use structure-preserving
backward error to estimate the stability. First, we select the equation (2.40) and
transform it to (2.41). If (Ao, 21) is an eigenpair of P()\), then (Ao, 2) is an eigenpair

of Q(A\) with z = [2], z, ] where

1

)\0 (/\3./45{21 + Zl) .

22

By the structure-preserving backward error analysis, we use the equivalent no-
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2.5 Balancing of P()\) and Q())

tation on Q(\) and let {2z} = {Xo,[2/{,27]"}. The theorem 2.12 gives us an
estimated backward error upper bound and the bound is Ap < % + %. The

terms ¢ and W just relate to Ao which is preserved in our algorithm. In spite of this,

|ZH72|)

the term ¢; contains the eigenvector z which is changed in our process (|d;| = B
2

More precisely, the norm of A, cause considerable impact on our structure-preserving
backward error. In general, the norm of A,, ¢ = 0,1,...|d/2] become perturbative
factors that we have to face it. Next section we provide a classical technique that

modify our backward error and easily-implement in our algorithm.

2.5 Balancing of P(\) and Q(\)

Scaling [3, 9, 15;:34| is.a.commonly used technique for standard eigenvalue prob-
lems for the improvement of the sensitivity of eigenvalues. In this section, we first
propose a diagonal scaling for P(X) in(2.1). Then, we determine the free parameters
di,...,d, in (2.7) and (2.8) to improve the backward errors of eigenpairs for P(\)
as in [26, 27, 47].

In order to balance the entries of coefficient matrices in P(\), we define a complex

diagonal matrix
D= diag(2°‘1, 2042-5—1/327 cee 2an+zﬁn)

with o, f; € R so that the magnitudes of entries of coefficient matrices in the new

(%, &)-palindromic matrix polynomial

d—1 d
D (Z NEAL L+ A Ay e ) AdkAk> D*
k=1

k=0 =

are close to one as much as possible. That is, we determine «, ..., «a, and (3o, ..., 3,
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2.5 Balancing of P()\) and Q())

so that
20985 Ay (5, €)2 7P = 1, (2.42)

for j,0 =1,2,...,nand k = 0,1,...,d, where Ag(j,¢) is the (j, £)-th entry of Aj.
By taking logarithm of (2.42), the parameters, «ai,...,q, and fs,..., [, can be

determined by solving the least square problems

a; + ay = —Re(logy (Aily, 0))), - By Br= ~TIm(logy(Ak(4, 1)),

where QRe(c) and Jm(c) represent-the real and imaginary parts of ¢, respectively.
Then, the parameters aq, ... ay-and [, ..., (3, are determined by the associated

normal equations
BTBlay. - , ap) = Bropmofemssr s 547 ="C"c.

We now determine dj, . .%, dy in (2.7) or (2:8); to balance the magnitudes of

entries of Ay and A; in Q(A). For convenience, we define

AV, if 2d = 4m,
d; = fori=1,...,m.
(

d? . if2d = 4m +2;

From the row balancing of A; in (2.7a) or (2.8a), we first set
' = max {1, max{||Agm_sslli 1 k=0,1,...,2i —3+s}}.

Then we take 51(5) to be the geometric average of ngs) and the average of the absolute
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2.6 Numerical Results

magnitudes of entries of As,, 9,11 in Ay; ie.,

51(3) = 772(3) <Z Z | Aom—2i11(J, g)’/”2>

j=1 ¢=1

fori=1,...,mand s = 1,2. Although the value of dl(s) can be set to 558) to balance
the entries of A;, we also need to consider the balance of the entries of both A

and A; in (2.7) or (2.8). As a result, we take the values of dgs), ..., d%) to be the

geometric average of the maximal values of 5§S), e ,5,(5) and the maximal average
for the absolute magnitudes of entries of A, (k'=10,...,d);i.e, fori=1,...,m and

s=1,2, we set

n

(). oy (5) Al 2
W=y e m{Z 469 /"}

]:1 /=1

with

p(s) — max{(s,fs)’Z = ]_7 ce ,m}-

2.6 Numerical Results

In [24], an SPA is proposed for solving T-PQEPs. Numerical experiments show
that SPA performs well on the T-PQEP arising from a finite element model of high-
speed trains and rails. In this section, we shall focus on the numerical comparison of
the performance and accuracy for solving H-PPEP of even degree by using structure-
preserving algorithms and companion linearization.

For solving an n x n H-PPEP of even degree 2d, we apply the P-quadratization
in Section 2 to transform it into a dn x dn H-PQEP. We then apply the SPA

(Algorithm 2.1) in Section 3 to solve the H-PQEP. The combination of the P-
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2.6 Numerical Results

quadratization and SPA is called the PQ SPA algorithm. On the other hand,

we can also use the “good” linearization [40, 41| to transform the H-PPEP into a

palindromic linear pencil AZ# + Z, and then utilize SPA to solve the H-PQEP:

(N2ZH 4 X0+ Z)x = 0 with A = A2. The combination of the “good” linearization

and SPA is called the PL._ SPA algorithm. As mentioned in Remark 2.6 (ii), we see

that applying the SPA to AN2ZT £ 00+ Z is mathematically equivalent to applying

the URV-based method [54] to AZT + Z.

2.6.1 Computational Cost

For making PQ .SPA ‘more efficient, we reorder the submatrices of (IEQ,/\N/Q) in

step 1 of Algorithm.2.1 by the permutations

=
I
=)

0 0
0 0
0 Ja—2m
I, 0
0 0

We substitute A; in Theorem 2.4 into /iv/'g and get

No

N

-V
Va
V3

Vi

1
0

Va

0

I

0 0 I, 0 0
0 oy 05 0 0
0 0 0 O 0
000 0 0 Iy o
0 0 0 I, 0
I, 0 0 0 0
Dy 0 0 0 _
0 D, 0 0
_VIT V2T V3T V4T ’
V2T VlT _V4T VéT
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2.6 Numerical Results

where Dj is a (2d — 2)n x (2d — 2)n diagonal matrix and V3, Vy € R™*". Set

_ I, o | . |07 o
’C23: ’CQ

0 Il 0 1f
Now, we compare the computational costs for PQ SPA and PL_SPA:

e (QR factorization and updating with real arithmetic operations) Compute
Q. and Z; such that QTN,Z, = diag (Nl(i), (NS))T), where qu) is upper
triangular, and update:QFKsZ;. It requires (80/3n® + 32dn?) and 3415d%n’

flops for PQ_SPA and PL_SPA, respectively.

(Given’s rotations and updating withreal arithmetic operations) Reducing the
new pair (152,/\72) produced by above stepto block upper triangular forms of
(2.29), it requires 232d°n? — (296d* = 24d)n? and 1856d*n? — 800d*n? flops for

PQ_SPA and PL._SPA, respectively:

(Computing eigenvalues of (K71, N11)) Computing eigenvalues of the real upper
Hessenberg and triangular pair (K11, Nyy) by QZ algorithm, it requires 176d°n3

and 1408d°n3 flops for PQ SPA and PL_SPA, respectively, to obtain the

upper quasi-triangular and triangular pair.

The eigenvectors of (Ky,N3) can be computed by an additional (40843 +
32d)n3 — (332d* — 16d)n* and 1920d*n>® — 1088d?n? flops for PQ_SPA and

PL_SPA, respectively.

We summarize the computational flops of PQ SPA and PL_SPA in Table 2.1.
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2.6 Numerical Results

‘ Eigenvalues Eigenvectors Total
PQ SPA | (408d® + 32d +80/3)n3  (408d* + 32d)n® (816d> + 64d + 80/3)n3
PL_SPA 3605%d3n3 1920d3n? 5525%613713

Table 2.1: Computational flops of PQ_SPA and PL._ SPA

2.6.2 Numerical Experiments

For an approximate eigenpair (A, z) of the palindromic matrix polynomial P (),

we define the associated relative residual by

POzl

RRes = RRes(\, z) = y :
| S BN ANE A Aol 11l

We will show numerical results of RRes and the reciprocal property of eigenpair
(A, z) for the H-PPEPs, computed by PQ~ SPA, PL.  SPA and polyeigin MATLAB
(applied directly to (2.1)).

As mentioned before, theoretically, the eigenvalues of H-PPEP appear in recipro-
cal pairs (X, 1/X). So, if we sort the eigenvalues in-asc¢ending order by modulus, the
product of the i-th eigenvalue/and the conjugate of the (2dn + 1 — 7)-th eigenvalue
should be one. Therefore, we define the reciprocities of the computed eigenvalues

by

T = |>\i5\2dn+1—i =1 (i=1,...,dn).

All numerical experiments are carried out using MATLAB 2008b with machine
precision eps ~ 2.22 x 10716,

Let C,,;, denote the set of n x n complex matrices which real and imaginary parts
are randomly generated by the normal distribution with zero mean and standard

deviation b.

43



2.6 Numerical Results

Example 2.1. Consider the H-PPEP with d =5 and Ay € Cy100 (k=0,...,5).

Example 2.2. Consider the H-PPEP with d = 4 and Ay, As, Ay € Cp 100, and Ay

and Ay being defined as
Ap_1 = By, - diag{sogk), e ,goﬁf)} By, € CV"  (k=1,3)

where By, Bay, € Cp,1, and

(k) _ qitk=e' (k) _ i~k o
v, =4 . Wyl =4 (1=1,...,0),

k s (2.43)
Sogz) — 47k ifn s odd;

with € = n/2 (if nas even) orb-=-{n —1)/2 (otherwise).

Example 2.3. Consider the H-PPEP with d = 4 and Ay, A1, As, Ay € Cp 100, and

Ay being defined as
AQ = 313 . dza‘g{(pg?’)’ PR 790513)} . B23 c (Can’

where Bz, Bas € Cp1, and gog?’) is defined in (2.43) with k = 3.

1072 @ o (®)
*  polyeig * =

A PL_SPA * &
© PQ_SPA -~

-

e * . « *
. o o R ol N
0 S 5  EE MRk
2 ] x %3 *
210 =4 * % r‘ 'E x *
) 3 -
e Al -2 % 8
5 A 10 X oy oo x X
@ AAboA A ”
& 107% P EN
« g A0g° A

6 s

10 10
10° 10°
Al Al

Figure 2.2: Relative residuals of eigenpairs and the associated reciprocity for Ex-
ample 2.1.

We present the relative residuals (RRes) and the reciprocities of eigenpairs com-

puted by the polyeig, PL SPA and PQ_SPA for Examples 2.1-2.3, using the
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2.6 Numerical Results

(@) (b)

polyeig 5
PL_SPA o 10

PQ_SPA

op =

10°

10°

10

Reciprocity N
=

RRes of eigenpairs

- -<&
* *
(13 1]
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Figure 2.3: Relative residuals of eigenpairs and the associated reciprocity for Ex-
ample 2.2 with larger ||Ag||2 and [|Az|2.
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Figure 2.4: Relative residuals of eigenpairs and the associated reciprocity for Ex-
ample 2.3 with larger || Az |o:

balancing technique in Section 2:5 with n = 30.-Numerical results are shown in Fig-
ures 2.2-2.4. We indicate the results computed by polyeig, PL SPA and PQ_SPA
by “x” “/AA” and “0”, respectively. For the PL._ SPA and PQ_SPA, all reciprocities
of eigenvalues are preserved to machine accuracy, which are ignored in Figures 2.2
(b)-2.4 (b). From Figures 2.2-2.4, we see that most of relative residuals of eigenpairs
computed by the PQ SPA are better than that computed by the PL._SPA, only
a few exceptions. Overall, we conclude that applying P-quadratization and SPA
(Algorithm 2.1) to solve PPEPs not only preserves the reciprocal property but also

provides higher accuracy than that by PL_SPA and polyeig in MATLAB.
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2.7 Conclusions

In this section, we mainly propose a palindromic quadratization to transform
the (x,¢)-palindromic matrix polynomial of even degree with (x,¢) # (T, —1) to a
(%, &)-palindromic quadratic pencil, instead of the orthodox palindromic lineariza-
tion approach. The structure-preserving algorithm for solving palindromic quadratic
eigenvalue problem based on (S +8™!)-transform and Patel’s algorithm can then be
applied. Numerical experiments show that relative residuals of approximate eigen-
pairs for the palindromic polynomial eigenvalue problem computed by the PQ SPA
are better than those by the PL SPA and polyeig intMATLAB. Moreover, the

computational cost for PQ SPA-is much cheaper than that for PL._SPA.
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3.1 Introduction

3.1 Introduction

We are interesting in the palindromic matrix polynomial of degree d:
d
PN =D AN, Ar=A;, €C (i=0,-- ,d) (3.1)
i=0
with » = T, H, and the associated palindromic eigenvalue problem (PEVP)
Pi(Nx=0, . x #0. (3.2)

Throughout the section; we assume that A;ds nensingular and there is no zero
or infinite eigenvalues for P;(\); possibly after deflation.

With ¢ = AY2panyumatrix polynomial-of 0dd degree d ¢an be re-written as a
matrix polynomial of even degree 2d in g, for which the palindromic quadratization
approach in [27] can be applied:  Interestingly, we only manage to factorize Py;(\)
when the degree d iscodd in this paper . Consequently, the factorization in this paper
(for odd d) and the quadratization in [27] (for even'd) complement each other, when
apply to the solution of (3.2).

The main contribution of this paper is as follows. It has long been known, e.g.
from [36, Theorem 3.7|, that a matrix polynomial P,;(\) of degree d has a linear
factor (A — X)) from the right where the solvent X is a solution of Py(X) = 0;
ie., Py(A) = P;_1(A\)(M — X) for a matrix polynomial P, 1()) of degree d — 1.
In order to preserving the "symplectic" property, we shall show for a palindromic
matrix polynomial P;()\) (which satisfies [Py(\)]" = A Py(A71)) of odd degree d can
be factorized as

Py(N) = (M = X )Py o(N)X M — X) (3.3)

where P;_5(\) is a palindromic matrix polynomial of degree d —2 and X is a soluble
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3.2 Palindromic Factorization for d = 3

solution of the solvent equation Py;(X) = 0. There may well be useful meaning
on the structure-preserving solution of palindromic eigenvalue problems associated
with Py(\).

We shall explore the theoretical aspects of structured factorization of palin-
dromic matrix polynomials. Numerical aspects, such as the solution of the associated
PEVPs and nonlinear matrix equations, error analysis, operation counts, numerical

experiments and comparison with other approaches, will be attempted elsewhere.

3.2 Palindromic Factorization for d = 3

For illustration and motivation, we_ first, consider the cases d = 3,5, before con-
sidering the general case.
In [? |, the structure-preserving doubling algorithm (SDA) was based on the

factorization for a palindromic matrix quadratic:

ATNE + AN B AL = VAT - X)X TOX ZA4y), Ag= Al (3.4)

with X satisfying the nonlinear matrix equation [37]:

ATX A+ X + Ay =0. (3.5)

Similar approaches involving nonlinear matrix equations or solvent equations, having
been used by many others, can be found in, e.g., [5, 12, 18, 19, 28|. We first generalize

this factorization matrix equation approach for P;(\). We can verify that

Ps(N\) = ASN3 + AN+ AN+ Ay = (A — X ) (AA; + X A, X (A - X) (3.6)
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3.2 Palindromic Factorization for d = 3

with X satisfying the nonlinear matrix equation (NME)
X_*A;X - AQX_l - X*AQ - Al - O (37)

For the trivial case where n = 1, Ay = 0 forces A; = 0. However, as we have assumed
that Ay is nonsingular (and thus cannot vanish), such a case will not occur.

After solving (3.7), the PEVP (3.2) can be solved, we may apply the QR al-
gorithm to X and some other structure-preserving algorithm to the middle pencil
in (3.6) (or the equivalent NA3X 4 (A3X)*)«in a structure-preserving way. Some
eigenvectors may be directly obtained while others may have to be computed using
inverse iteration.

The NME (3.7).is nonstandard and does not-appear to be easy to solve. However,
under mild conditions, (3.7) is equivalent to the more familiar solvent equation (SE)
for Py(\) in (3.6):

PyX) =) AX'=0. (3.8)

Rewrite the PEVP (3.2)"in the form
AJVAL + Ay (VAT 4o A VA + AV =0

with A € C™¥ in Jordan form containing all the eigenvalues and V € Cnxd»
containing the corresponding eigenvectors. Consider a partition (possibly after a

re-ordering of the eigenvalues and the corresponding eigenvectors)
A=MNBAy, V=[V,V]; A, Vi €C™ (3.9)

Recall that we have assumed that all Jordan blocks in A\ are less than n in size, thus

enabling the partition in (3.9). It is easy to check that X = V;A;V; ! satisfy the SE
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3.2 Palindromic Factorization for d = 3

(3.8). In other words, the existence of the solution X of the SE is then guaranteed.
We shall show that any solution of the NME (3.7) satisfies the SE (3.8), and any

solved solution of the SE satisfies the NME.

Theorem 3.1. A soluble X satisfies the nonlinear matriz equation (3.7):

X7*ASX — ApX ' — X*A,— A1 =0

if and only if it satisfies the solvent equation (3.8) for d = 3: P3(X) = A3X3 +

AT X2+ A X +4,=0.

Proof. For necessity, the sum-of (3.7) and its transpose/hermitian (3.7)* times
X implies
S(R(X))=R(X)+R(X)X =0 (3.10)

where R(x) denotes the operator on the left-hand-side of (3.7):

RX)=WX *AsX — Ay X' XA, = Ay (3.11)

We expand the equation, and (3.10) is equivalent to

(X TFASX — Ap Xt — XF Ay — A)) + (XA X — XA — ASX — ADX =0

and, after simplification, is equivalent to

X2+ X+ A+ AX =0 (3.12)

Equation (3.12) in turn is equivalent to the SE (3.1). (Other linear combinations of
(3.7) and its transpose/hermitian, such as (3.7) xX + (3.7)*, X*x (3.7) + (3.7)*

or (3.7) + X*x (3.7)*, lead to the same conclusion.)
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3.2 Palindromic Factorization for d = 3

For sufficiency, start from (3.12), which is equivalent to the SE (3.1) as well as
(3.10), a *-Sylvester [10]. The x-Sylvester operator S(-) is invertible if and only if

the eigenvalues \; (i = 1,--- ,n) of X satisfy [10, Theorem 2.1] (see Appendix I):

NA -1 (V) MANT (i)

These conditions are satisfied when X is solved with all \; inside the unit circle.

Consequently, (3.10) implies that

or the NME (3.7). O

3.2.1 Solution of NME; SE or PEVP

If \; = —1, the preblem can be transformed to have ' A;, = 1 and the solution of
the NME (3.7) can be obtained through the SE*(3:1). Nonetheless, if we have both
A = ®1, then the transformation, and thus the equivalence of the NME and the SE,
fail.

Define Y = A5 X, the NME (3.7) has the form

AY Y — AY A YT — A = 0. (3.13)

Without the first term, (3.13) looks very similar to (3.5). Similar to (3.6), we have

the corresponding factorization

Ps(A) = (A\Y* — A))Y *(AY + Y)Y 1 (\A5 - Y) (3.14)
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3.3 Palindromic Factorization for d = 5

The structure-preserving solution of the PEVP (3.2) then involves the following
steps: Solve (3.7), or (3.13) for a solved X or associated Y. Apply the QR algorithm
to Al — X, or we can use the QZ algorithm to AA5 —Y. Using a structure-preserving

algorithm to solve the palindromic linearization A\Y + Y™*.

3.3 Palindromic Factorization for d = 5

Rewrite the palindromic matrix polynomial of degree d = 2r + 1 in the following

symmetric form:
7

S =D (MY L MNP (3.15)
i=0
where A; = M} 0y (i > r) or-A; = A5 5 (i < ), with [2] denoting the largest

integer less than mwrand 7 = 1, .- ,d. Motivated by the d = 3 case, we are seeking

the following structured factorization:

r—1
Se(A) = (I = ATX D ABNTLEXBX N (M - X)  (3.16)
=0

Note that the middle factor has the form

r—1
(BIAH? + X*B X TIATT) = 5 ()X
0

7=

where the symmetric
S0 =S (B 4 B R), Bi=xB

is a symmetric representation of a palindromic matrix polynomial of degree d =
2(r — 1). Consequently, in general, P;(\) in (3.3) or its symmetric representation

S-(A) in (3.16) may be recursively factorized until only linear factors exist, if all the
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3.3 Palindromic Factorization for d = 5

associated SEs can be solved. Note also that even if X is not exact, the palindromic
structure in the factored form of S,.(\) is preserved.
Expanding (3.16) and matching the coeflicient matrices for d = 5 and r = 2, we

obtain

M2 = Bl; (317)
M, = —X*B,+By,— B X", (3.18)
My = X*BiX '+ XTiB5X — X*By — BoX . (3.19)

Substitute By and Byfrom(3.17) and(3.18).into (3.19), we obtain the NME for X

(for d = 5):

R(X) = "M+ X My (X)°Ms -G X + M X 2 (3.20)

F XM X7 =X *MIX — X *M;X? £ (X *)’M;X =0. (3.21)

With nine terms (and’in general (r + 1)? terms); we don’t like to solve such a
long equation like this. However, similar-to Section 2, we can prove that (3.20) is

equivalent to (3.8) when a solved X is sought. Similar to (3.10), we have

S(R(X)) = R(X)+R(X)*X
= Mo+ X*M; + (X*)?*My+ My X+ My X2
X Mo X' — X MEX — X" MEX? — (X )2 My X
+MEX + MFX? + My X? + X *MiX + (X %) M3 X
+XTMX? — X My — (X*)* My — XMy X1
= M;X?+ MX?*+ MX + My+ My X'+ MpyX 2

= P(X)X2=0.
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With the same argument using the property of the x-Sylevester operator S(-), we
have shown a similar result as Theorem 2.1 that the NME (3.20) (or R(X) = 0) and
the SE (3.8) (or P5(X) = 0) are equivalent for a soluble X.

The challenge is to generalize the tedious argument for d = 3,5 to the general

case for all odd values of d.

3.4 Palindromic Factorization for Odd Degree d

We shall proof a generaliversion of Theorem 2.1 by generalizing the results in

Section 3.3 to a recursive argument, without writing dewn the tedious NMEs.

Theorem 3.2. For odd values-of d =2r4 1, a soluble X satisfies the nonlinear
matriz equation, rebtained by matching the coefficient matrices of S.(A\) in (3.15)
and its factorization in (3.16), if and only if it satisfies the solvent equation (3.8):
Py(X) =0.

That is to say, ang palindromic matriz polynomial of edd degree can be factor-
ized in a structure-preserving way.as in (3.16)by-solving the corresponding solvent

equation (3.8) for a solved X .

Proof. We shall follow the steps in Section 3.3 for the d = 5 case. Expanding

(3.16) and matching the coefficient matrices for a general d = 2r + 1, we obtain

M, = B,_i, (3.22)
M,_, = —X*B,_1+B,_o—B,_1 X, (3.23)
M; = —X*Bi+Bi 1 +X'Bin X '—BX "' (i=r—2,---,2), (3.24)
M, = —X*Bi+By+X*'ByX ' —B X!, (3.25)
My = X*BiX '+ X7*B}X — X*By — BoX . (3.26)
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3.4 Palindromic Factorization for Odd Degree d

The first d equations of (3.22)—(3.25) lead to all the values of B; (i =0,--- ,r — 1),
in terms of M; (i =0,---,r) and X. By substituting into the last equation (3.26),
we obtain the NME, which is very tedious and we shall apply a recursive argument
to avoid writing it down explicitly. Note that (3.22) and (3.23) are just special cases
of (3.24) with ¢ = r,7 — 1, in which those B; with i > r degenerate to zero.

From the last equation (3.26) and similar to (3.10) and (3.11), we obtain the
NME:

R(X)= My + X*By + BoX ' X *B;X - X*B X '=0 (3.27)

and the x-Sylvester operator

S(REX)) = R(X) + REX)AX. (3.28)

From (3.27) and (3.28), we obtain

S(R(X)) =My X*By+ BeX P X B X £ X*B X
H(MFX B X? + X *BiX = X*By — X *B} X?)
= M}X + By X*—=X"7"BiX*+ My+ BoX ' — X*B; X!

-0 (3.29)

For the initial step, substitute By from (3.25) into (3.29), we have

S(R(X)) = M{X+(M;+BX+X "B — X *B;X)X? - X *B{X*+ M,
(M, + X*B + B X' = X*B X HX ' - X*B X!
= MX +MX*+ B X~ X*B3X>+ My + M X™*

+B X 2 X*B,X2=0.
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3.4 Palindromic Factorization for Odd Degree d

It is then easy to see that the substitution of B; (and subsequently B; ; for i =

3,-+-,r) from (3.22)—(3.24), proves that

S(R(X)) = M{X+My+MX*+MX '+ -+ MXT 4+ MXT"

= S (X)XY2=Py(X)X " =0,

which is equivalent to the SE (3.8).

With S(-) invertible for a soluble X, we have shown S(R(X)) =0< R(X) =0

or the equivalence of the
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In this thesis, we consider two themes related to palindromic matrix polynomials
for solving nonlinear eigenvalue problems.

In the first topic (Chapter 2), we propose a palindromic quadratization to trans-
form the (%, ¢)-palindromic matrix polynomial of even degree with (x,¢) # (T, —1)
to a (%,¢)-palindromic quadratic pencil which is emerged in solving higher order
systems of ordinary or partial differential equations. Figure 2.1 illustrate the rela-
tionship among various structured polynomial eigenvalue problems. T-even, T-odd,
T-anti-palindromic and T-palindromie polynomial eigenvalue problems of even de-
gree can be P-quadratized toT-PQEPs.  Consequently, the structure-preserving
algorithm for solving palindromic quadratic €igenvalue problem based on (S +
S71)-transform and Patel’s algorithm can be applied.to slove the (x, ¢)-palindromic
quadratic pencil(- case in [24] and we present -/ ¢ase). By the structure-preserving
backward error analysis [47], we find the quadratization also caused considerable im-
pact on our backward error. However; we provide a-balancing technique that improve
our backward error and easily implement in our original algorithm. Numerical ex-
periments show that relative residuals of approximate eigenpairs for the palindromic
polynomial eigenvalue problem computed by the PQ SPA are better than those by
the PL._SPA and polyeig in MATLAB. Furthermore, the computational cost for
PQ_SPA is much cheaper than that for PL._ SPA.

In chapter 3, we consider the structured factorization of a palindromic matrix
polynomials of odd degree, instead of the orthodox palindromic linearization ap-
proach. We develop the theoretical aspects of structured factorization of palindromic
matrix polynomials. To be in face of such factorizations, there are some difficult
nonlinear matrix equations that have to be solved. However, we point out that these
equations are equivalent to the well known solvent equation, when the solution X

is solved. Without writing down the dreary NMEs, we provide a general version

59



from the palindromic matrix polynomials of odd degree to a structure-preserving
factorization by solving the solvent equation.

We have reported the numerical experiments which relative residuals of approx-
imate eigenpairs for the palindromic polynomial eigenvalue problem with small size
matrix. However, it is urgent and important to apply our quadratization to solve the
large sparse matrix. In [24], W.-W. Lin propose Generalized T-skew-Hamiltonian
Arnoldi method to cope with T-palindromic quadratic pencil. This will be a big
step forward if we can use this technology-to.solve our (x,e)-palindromic quadratic
pencil with quadratization  transform.

Other polynomial® eigenvalue problems of higher degree than two arise when
discretizing linear eigenproblems by dynamic elements [46; 61] or by least squares
elements [48], so it.is essentially for us to deal with palindromic matrix polynomials
of odd degree. Nevertheless, we face some difficult nonlinear matrix equations that
have to be solvedrin section 3¢ The theoretical aspects of factorization of palin-
dromic matrix polynomials cause another problem and it also cost numerous time
for computer to solve the nonlinear matrix equations. Many pioneers do a lot of
contributions in this field. For instance, V. Mehrmann [40] propose a “Good Lin-
earizations” to settle structured factorization of a palindromic matrix polynomials.
We also look forward to the palindromic matrix polynomials of odd degree can be

decomposition well with different methods.
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