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摘 要
本文探討的主題是開發和利用高效率迴紋二次化的方法來解決

結構迴紋多項式特徵值的問題。第 1 章將簡要介紹一些基本概念，數

學符號和一般所謂的『迴紋多項式特徵值問題』。在第 2 章中，起源

於德國的高速列車之計算與振動分析和表面聲波濾波器的研究，我們

探討和分析高效率的方法去解決多項式特徵值問題。在第 3 章中，我

們將提出一個保結構解決方法去對付奇次的迴紋矩陣多項式以及展

示明確的遞迴係數矩陣。最後，這篇論文的結論和未來的工作將在第

4 章討論。 
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1.1 The Arnoldi Method for Standard Eigenvalue Problems

The theme explored in this thesis is to develop and exploit efficient palindromic

quadratization methods to solve the structure-palindromic polynomial eigenvalue

problem. This chapter will briefly introduce some basic notions, mathematical nota-

tions and conventional methods of the so-called “palindromic polynomial eigenvalue

problems”. In Chapter 2, we investigate and analyze efficient methods for polyno-

mial eigenvalue problems arising from computing in the vibration analysis for fast

trains in Germany [20, 21] and then in the study of surface acoustic wave filters [65].

In Chapter 3, we will propose a structured-preserving method of palindromic ma-

trix polynomial of odd degree and show the explicitly recursive coefficient matrices.

Finally, conclusions and the future work of this thesis will be discussed in Chapter 4.

1.1 The Arnoldi Method for Standard Eigenvalue

Problems

Given a large sparse matrix A ∈ Cn×n, the Arnoldi method [30] is prevalent and

very widespread algorithm for solving the so-called standard eigenvalue problem

(SEP):

Ax = λx. (1.1)

Then, to find a scalar λ (real or complex) and a nonzero n-vector x which satisfy

the equation (1.1). In this case, we say that λ is an eigenvalue of A and x is called

an eigenvector of A with respect to λ. Moreover, the eigenpair of A can be define

as the pair (λ,x).

Before we resolve the SEP, we define some notations below. The following nota-

tions are frequently used in this thesis. Some Other notations will be clearly defined

whenever they are used.

• i =
√
−1.
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1.1 The Arnoldi Method for Standard Eigenvalue Problems

• R denotes the set of real numbers and C denotes the set of complex numbers.

• Re(λ) and Im(λ), respectively, denote the real part and the complex part of

the scalar λ ∈ C.

• Cn×m is the set of all n×m complex matrices, Cn = Cn×1 and C = C1.

• The direct sum of two matrices is denoted by “⊕”.

• 0 denotes zero vectors and matrices with appropriate size.

• In denotes the n× n identity matrix.

• We use ·⊤ and ·H to denote the transpose and conjugate transpose for vectors

or matrices.

• ⊗ denotes the Kronecker product.

• We adopt the following MATLAB notations:

v(i : j) denotes the subvector of the vector v that consists of the ith to the

jth entries of v;

A(i : j, k : ℓ) denotes the submatrix of the matrix A that consists of the

intersection of the rows i to j and the columns k to ℓ;

A(i : j, :) denotes the rows of A from i to j and A(:, k : ℓ) denotes the columns

of A from k to ℓ.

Let us come back to consider the Arnoldi method now. Beginning from a unit

vector v1, the Arnoldi method successively constructs a sequence of unitary vectors

v2,v3, . . . ,vm which creates an unitary basis of the Krylov subspace Km(A,v1) ≡

3



1.2 The Generalized Arnoldi Method for Generalized Eigenvalue
Problem

span{v1, Av1, . . . , A
m−1v1} with m ≪ n such that


hj+1,jvj+1 = Avj −

j∑
i=1

hijvi, j = 1, 2, . . . ,m,

vH
s vt = 0, ∀s ̸= t and vH

s vs = 1, ∀s,

or we can rewrite to  AVm = VmHm + hm,m+1vm+1e
⊤
m,[

V H
m

vH
m+1

]
[Vm vm+1] =

[
Im
0

0
1

]
,

(1.2)

where Vm is an n × m matrix with column vectors v1,v2, . . . ,vm and Hm is an

m × m upper Hessenberg matrix. Processing the factorization (1.2), called the

Arnoldi decomposition, we can diminish A into the upper Hessenberg Hm by using

the unitary transformation V H
m AVm = Hm. The eigenpairs of the reduced SEP

Hmz = µz can be solved by the classical eigenvalue techniques, for instance the QR

algorithm [13, 14]. Besides, we see that if (θ,y) is an eigenpair of Hm then (θ, Vmy)

is so-called a Ritz pair of A that is an approximate eigenpair of A with the residual

norm

∥(A− θIn)Vmy∥ = |hm+1,m||e⊤my|.

Moreover, we refer to [11, 49, 59] for more details on the practical realization and

theoretical analysis of the Arnoldi method.

1.2 The Generalized Arnoldi Method for General-

ized Eigenvalue Problem

The generalized eigenvalue problem (GEP) for the matrix pencil A− λB of two

square matrices A and B with size n is to determine scalars λ and n-vectors x ̸= 0

4



1.2 The Generalized Arnoldi Method for Generalized Eigenvalue
Problem

such that

Ax = λBx. (1.3)

If B is nonsingular, the GEP (1.3) can be transformed into SEPs

(B−1A)x = λx (1.4)

or

(AB−1)y = λy, y = Bx (1.5)

which following can be solved by the standard Arnoldi method. In addition, the QZ

algorithm [39] present an analog of the QR algorithm for the GEP that is also a

popular choice for dealing with the GEP (1.3) with small dense coefficient matrices.

However, when we are faced with large-scale GEPs, some pioneers came up with

some solutions. Sorensen [50] proposed the truncated QZ method to approach the

eigenpairs. For m ≪ n, this method constructs a generalization of the standard

Arnoldi decomposition (1.2),


AZm = YmHm + hm+1,mym+1e

⊤
m,

BZm = YmRm,

ZH
mZm = Im, Y H

m Ym = Im, Y H
m ym+1 = 0,

(1.6)

which is called the generalized Arnoldi reduction in [50]. It is efficient and artfully

processing the small-sized GEP Hmv = µRmv of the m × m upper Hessenberg-

triangular pair (Hm, Rm) to approximate eigenpairs of the original large-scale GEP

(1.3).
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1.3 Palindromic Eigenvalue Problem and Linearization

1.3 Palindromic Eigenvalue Problem and Lineariza-

tion

We consider the palindromic quadratic eigenvalue problem (PQEP) of the form

P(λ) ≡ Q(λ)x ≡ (λ2A⊤
1 + λA0 + A1)x = 0, (1.7)

where λ ∈ C, x ∈ C\{0} and A1, A0 ∈ Cn×n with A⊤
0 = A0. The scalar λ and

the nonzero vector x in (1.7) are the eigenvalue and the associated eigenvector of

P(λ), respectively. A palindrome is a word or phrase which reads the same in both

directions. The matrix polynomial P(λ) also has the property that reversing the

order of the coefficients, then continued by taking the transpose, which leads back

to the original matrix polynomial. Therefore, we can find that the eigenvalues of

P(λ) satisfy the “symplectic" property by taking the transpose of (1.7). The word

symplectic is, the eigenvalues λ and 1/λ both exist with respect to the unit circle

(with 0 and ∞ considered to be reciprocal).

The “linearization" is a typical and frequently used technique to solve the (PQEP)

in which the problem is reformulated into a linear one which doubles the order of

the system. We select suitable matrices A,B ∈ C2n×2n and the vector φ ∈ C2n and

transform (1.7) into the (GEP)

(A− λB)φ = 0 (1.8)

satisfying the relation

E(λ)(A− λB)F(λ) =

[
P(λ)

0

0

In

]
,

where E(λ) and F(λ) are 2n × 2n matrix polynomials in λ with constant nonzero
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1.3 Palindromic Eigenvalue Problem and Linearization

determinants. In this case,

det(A− λB) = det(λ2A⊤
1 + λA0 + A1)

shows that the eigenvalues of the original PQEP (1.7) are simultaneous with the

eigenvalues of the enlarged GEP (1.8). Consequently, the linearization technique of

PQEPs makes classical methods for GEPs as well as SEPs can be used.

There are many choices of (A,B)’s, but probably the most famous ones in prac-

tice are the companion forms [16]: the first companion form

A =

 −A0 −A1

In 0

 and B =

 A⊤
1 0

0 In


as well as the second companion form

A =

 −A0 In

−A1 0

 and B =

 A⊤
1 0

0 In

 . (1.9)

However, there are some drawbacks of the linearization technique to solve PQEPs.

For example, it doubles the size of the problem dimension that increases the compu-

tational cost and the original structures of the coefficient matrices (A0, A1) such as

palindromic and symplectic may be lost. In order to prevent these drawbacks, one

may solve the PQEP directly to keep some original advantages. Methods of this type

include the residual iteration method [22, 38, 44], the second-order Arnoldi method

[1, 32, 62], the Jacobi-Davidson method [51, 52], the nonlinear Arnoldi method [60],

a Krylov-type subspace method [31] and an iterated shift-and-invert Arnoldi method

[64]. These methods use a similar projection process, but the selection of projection

subspaces is the main difference between them.
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1.3 Palindromic Eigenvalue Problem and Linearization

In chapter 2, we propose a palindromic quadratization approach that transforms

a palindromic matrix polynomial of even degree to a palindromic quadratic pencil.

Based on the (S + S−1)-transform and Patel’s algorithm, W.-W. Lin puts forward

the structure-preserving algorithm [24] which can then be applied to solve the cor-

responding palindromic quadratic eigenvalue problem. Consequently, Numerical

experiments show that the relative residuals for eigenpairs of palindromic polyno-

mial eigenvalue problems computed by palindromic quadratized eigenvalue problems

are better than those via palindromic linearized eigenvalue problems or polyeig in

MATLAB. In chapter 3, We consider the structured factorization of a palindromic

matrix polynomials of odd degree. To obtain such factorizations, there are some dif-

ficult nonlinear matrix equations that have to be solved. However, these equations

are shown to be equivalent to the well known solvent equation, when the solution

X is soluble. Without writing down the dreary NMEs, we provide a general version

from the palindromic matrix polynomials of odd degree to a structure-preserving

factorization by solving the solvent equation.
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2.1 Introduction

2.1 Introduction

In this section, we extend from PQEP(1.7) to (⋆, ε)-palindromic matrix polyno-

mials of even degree 2d

P(λ) ≡
d−1∑
k=0

λ2d−kA⋆
d−k + λdA0 + ε

d∑
k=1

λd−kAk, (2.1)

where d ≥ 2, ε = ±1 and ⋆ = H (Hermitian) or T (transpose), Ak ∈ Cn×n

(k = 0, 1, . . . , d) and A⋆
0 = εA0. The corresponding polynomial eigenvalue prob-

lem P(λ)x = 0, with λ ∈ C and x ∈ Cn\{0} being the eigenvalue and the associated

eigenvector respectively, is called a (⋆, ε)-palindromic polynomial eigenvalue problem

((⋆, ε)-PPEP). The equation (2.1) is also called a ⋆-PPEP if ε = 1 or a ⋆-anti-PPEP

if ε = −1.

The underlying matrix polynomial P(λ) in (2.1) has the property that reversing

the order of coefficients, followed by taking the (conjugate) transpose, leads to the

original matrix polynomial (anti-)invariant, which satisfies

P(λ) = ελ2dP(1/λ)⋆ (2.2)

and explains the world “(anti-)palindromic” [40]. Consequently, taking the (conju-

gate) transpose of (2.1), we easily see that the eigenvalues of P(λ) satisfy a “recip-

rocal” property, that is, they appear in the pairs of the form (λ, 1/λ⋆).

The (⋆, ε)-PPEPs arise in solving higher order systems of ordinary or partial dif-

ferential equations. In the beginning, a T-palindromic quadratic eigenvalue problem

(T-PQEP) is raised in the vibration analysis for fast trains in Germany [20, 21] and

then in the study of surface acoustic wave filters [65]. An H-palindromic quadratic

eigenvalue problem (H-PQEP) arises in the computation of the Crawford number,

for detecting definite Hermitian pairs or hyperbolic or elliptic quadratic eigenvalue

10



2.1 Introduction

problems [23]. Furthermore, a ⋆-PPEP of even degree is obtained by solving the lin-

ear quadratic discrete-time optimal control problem for higher order systems [2, 63].

A standard approach for computing the eigenpairs of P(λ) in (2.1) is to linearize

it to a 2dn× 2dn linear matrix pencil by the companion linearization and compute

its generalized Schur form [55]. Nevertheless, the reciprocal property of eigenvalues

of P(λ) is not preserved and this has resulted in large numerical errors [6, 24, 29].

Recently, in order to preserve the reciprocity of eigenvalues, some forerunner’s works

[40, 41] propose some good linearizations that linearize P(λ) to palindromic linear

pencils of the form λZ⋆ + Z . This does lead to a great improvement over pre-

vious unstructured approaches, keeping the palindromic structure in the original

polynomial and enabling structure-preserving numerical methods to be designed.

Later, a QR-like algorithm [53] and a hybrid method [42] which combines Jacobi-

type method with the Laub’s trick, a postprocessing step of the generalized Schur

form, are proposed for solving T-palindromic linear eigenvalue problems efficiently.

The QR-like algorithm typically requires O(n4) flops and the hybrid method re-

quires O(n3log(n)) flops. Recently, a URV-decomposition based structured method

of cubic complexity is developed in [54] to solve T-palindromic linear eigenvalue

problems, producing eigenvalues which are reciprocally paired to working precision.

A new structure-preserving doubling algorithm with cubic complexity for solving

⋆-palindromic linear eigenvalue problems is developed in [7]. On the other hand,

for solving a (⋆, ε)-PQEP, a structure-preserving doubling algorithm is developed in

[6, 8] via the computation of a solvent of a nonlinear matrix equation associated with

the (⋆, ε)-PQEP. Lately, a numerically stable structure-preserving algorithm (SPA),

based on the (S+S−1)-transform [33] and Patel’s algorithm [45], is proposed in [24]

to solve the T-PQEP directly. The numerical results obtained by the SPA algorithm

show much promise and the computational cost of SPA is about a half of that of

11



2.2 P-Quadratization of (⋆, ε)-PPEP

the URV-based method.

The purpose of this section is to develop a palindromic quadratization which

transforms a (⋆, ε)-palindromic matrix polynomial of even degree with (⋆, ε) ̸=

(T,−1) into a (⋆, ε)-palindromic quadratic pencil. If ⋆ = T and ε = 1, then we

can apply the SPA algorithm in [24] to solve the associated quadratized T-PQEP

directly. If ⋆ = H and ε = ±1, we first transform the associated quadratized (H, ε)-

PQEP to an H-skew-Hamiltonian pencil by the (S + S−1)-transform and enlarge

the H-skew-Hamiltonian pencil to a real skew-Hamiltonian pencil, to which the SPA

algorithm is applicable. Note that for the case (⋆, ε) = (T,−1), the T-anti-PPEP

can then be solved by applying the URV-based method [54, 58] to the linearized

T-palindromic linear pencil.

This section is organized as follows. In Section 2.2, we propose a palindromic

quadratization for a (⋆, ε)-palindromic matrix polynomial of even degree. In Sec-

tion 2.3, we develop a structure-preserving algorithm for solving the H-PQEPs. We

consider the structured backward stability in Section 2.5. After that We develop bal-

ancing techniques for PPEPs and PQEPs in Section 2.5. Comparisons of numerical

results computed by the palindromic quadratization, the palindromic linearization

and the standard companion linearization are presented in Section 2.6. Conclusions

are given in Section 2.7.

2.2 P-Quadratization of (⋆, ε)-PPEP

In [24], a structure-preserving algorithm is well-developed for solving the T-

PQEP. A similar structure-preserving algorithm for solving the H-PQEP will be

introduced in Section 2.3. As the H-anti-PQEP can be easily transformed to the H-

PQEP, all (⋆, ε)-PQEPs with (⋆, ε) ̸= (T,−1) can be solved by structure-preserving

algorithms. Furthermore when (⋆, ε) ̸= (T,−1), we shall propose a new palindromic

12



2.2 P-Quadratization of (⋆, ε)-PPEP

quadratization (P-quadratization) which can be utilized to transform a (⋆, ε)-PPEP

into a (⋆, ε)-PQEP so that the structure-preserving algorithm in [24] is applicable.

Next we present definitions of quadratization and P-quadratization of a general

matrix polynomial and a palindromic matrix polynomial, respectively.

Definition 2.1. (Quadratization/P-Quadratization)

(i) Let P(λ) be an arbitrary ν × ν matrix polynomial of degree p ≥ 2 with pν = 2q.

A q×q quadratic matrix polynomial (quadratic pencil) Q(λ) is a quadratization

of P(λ) if there are matrix rational functions E(λ) and F(λ) of size q× q with

nonzero and constant determinants satisfying the two-sided factorization

E(λ)Q(λ)F(λ) =

 P(λ) 0

0 Iq−ν

 . (2.3)

(ii) Let P(λ) be an arbitrary ν × ν (⋆, ε)-palindromic matrix polynomial of degree

p ≥ 2 with pν = 2q (i.e., P(λ) = ελpP(1/λ)⋆ as in (2.2)). A quadratization

Q(λ) of P(λ) having the (⋆, ε)-palindromic structure is called a P-quadratization

of P(λ).

Theorem 2.2. Let Q(λ) be a q × q quadratization of a ν × ν matrix polynomial

P(λ) of degree p with pν = 2q. Then

(i) λ0 ∈ C is a finite eigenvalue of Q(λ) (i.e., det(Q(λ0)) = 0) if and only if λ0 is

a finite eigenvalue of P(λ) (i.e., det(P(λ0)) = 0).

(ii) ∞ is an eigenvalue of Q(λ) (i.e., det
(
[λ2Q( 1

λ
)]
∣∣
λ=0

)
= 0) if and only if ∞ is

an eigenvalue of P(λ) (i.e., det
(
[λpP( 1

λ
)]
∣∣
λ=0

)
= 0).

Proof. (i) The factorization (2.3) implies that det(Q(λ)) = c det(P(λ)) for some

nonzero constant c, so that Q(λ) and P(λ) are singular or nonsingular for precisely

the same values of λ0.

13



2.2 P-Quadratization of (⋆, ε)-PPEP

(ii) Since

det
[
λ2Q

(
1

λ

)]
= λ2qdet

[
Q
(
1

λ

)]
= cλ2qdet

[
P
(
1

λ

)]
= c det

[
λpP

(
1

λ

)]
,

both Q(λ) and P(λ) have or have no infinite eigenvalues.

Since both det(E(λ)) and det(F(λ)) are nonzero and constant, it is easily seen

that the two-sided factorization (2.3) implies the existence of a more wide class of

one-sided factorization

Q(λ)F (λ) ≡ Q(λ)F(λ)

 In

0

 = E(λ)−1

 In

0

P(λ) ≡ G(λ)P(λ), (2.4)

where F (λ) and G(λ) are matrix rational functions of size q × ν. From the factor-

ization (2.4) a close connection between eigenpairs of P(λ) and eigenpairs of Q(λ)

has been shown in [17].

Theorem 2.3. [17] Assume that (2.4) holds at λ0 ∈ C with F (λ0) and G(λ0) being

of full column rank. Then F (λ0)z1 is an eigenvector of Q(λ) if and only if z1 is an

eigenvector of P(λ), both corresponding to eigenvalue λ0.

In Definition 2.1(i), we give a new definition of quadratization for a general

matrix polynomial. In Theorems 2.2 and 2.3, we show the connection between

eigenpairs of a general matrix polynomial and its quadratization. We next present

a P-quadratization for a palindromic matrix polynomial of even degree explicitly.

Theorem 2.4. Let P(λ) be an n×n (⋆, ε)-palindromic matrix polynomial of degree

2d as in (2.1) with (⋆, ε) ̸= (T,−1). Then P(λ) can be P-quadratized into a (⋆, ε)-

14



2.2 P-Quadratization of (⋆, ε)-PPEP

palindromic quadratic pencil of the form

Q(λ) ≡ λ2A⋆
1 + λA0 + εA1 (2.5)

with A⋆
0 = εA0, where

(i) (For 2d = 4m ) A1 and A0 are given by

A1 =

 A1 d⋆1I

ε
√
εd1A2 0

 , A0 =

 A0 −
√
εI −

√
εA⋆

2A2 0

0 −
√
εd1d

⋆
1I

 (2.6)

if m = 1; otherwise,

A1 =



A1 0 · · · · · · · · · 0 d⋆mI

ε
√
εd1A2m 0 · · · · · · · · · · · · 0

A2m−1 d⋆1I
. . . ...

0 −εd2I
. . . ...

... . . . . . . ...

A3 d⋆m−1I 0
...

0 −εdmI 0



, (2.7a)

A0 =



A0 −
√
εI −

√
εA⋆

2mA2m 0 A⋆
2m−2 0 · · · A⋆

2 0

0 −
√
εd1d

⋆
1I

...

εA2m−2 0
...

0 0
...

... . . . ...

εA2 0 0

0 · · · · · · · · · · · · · · · 0



(2.7b)

15



2.2 P-Quadratization of (⋆, ε)-PPEP

(ii) (For 2d = 4m+ 2) A1 and A0 are given by

A1 =



A1 0 · · · · · · · · · · · · 0 d⋆mI

A2m+1 0 · · · · · · · · · · · · · · · 0

0 −εd1I
. . . ...

A2m−1 d⋆1I
. . . ...

0 −εd2I
. . . ...

... . . . . . . ...

A3 d⋆m−1I 0 0

0 −εdmI 0



, (2.8a)

A0 =



A0 A⋆
2m 0 A⋆

2m−2 0 · · · A⋆
2 0

εA2m 0
...

0 0
...

εA2m−2 0
...

0 0
...

... . . . ...

εA2 0 0

0 · · · · · · · · · · · · · · · · · · 0



; (2.8b)

in which d1, . . . , dm are arbitrary nonzero constants.

Proof. (i) (For 2d = 4m) We define the n × n matrix rational functions for j =

1, . . . ,m:

F2j,1(λ) =
(
λ2j−1d⋆j

)−1

(
ε
√
ελ2mIn +

2j−2∑
k=0

λkA2m−k

)
, (2.9a)
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2.2 P-Quadratization of (⋆, ε)-PPEP

and for j = 1, . . . ,m− 1:

F2j+1,1(λ) = λ2m−2jIn. (2.9b)

Let

F1(λ) =

 In F2,1(λ)
T F3,1(λ)

T · · · F2m,1(λ)
T

0 I(2m−1)n


T

. (2.10)

Routine but tedious calculation in terms of F1(λ) in (2.10), Q(λ) in (2.5) and A0,A1

in (2.6) or (2.7) leads to

Q(λ)F1(λ)

 In

0(d−1)n,n

 =

 Q1(λ)

0(d−1)n,n

 , (2.11)

where

Q1(λ) = λ2A⋆
1 + λ

(
A0 −

√
εI −

√
εA⋆

2mA2m

)
+ εA1

+ λ
√
εA⋆

2m

(
λ2mε

√
εI + A2m

)
+

m−1∑
k=1

λ2m−2k
(
λ2A⋆

2m−2k+1 + λA⋆
2m−2k

)
+ ελ1−2m

(
ε
√
ελ2mI +

2m−2∑
k=0

λkA2m−k

)
= λ1−2mP(λ). (2.12)

Next, we define for j = 1, . . . ,m:

E1,2j+1(λ) = λ2j−2mIn, for j = 1, . . . ,m− 1,

E1,2j(λ) =
(
λ2m−2j+1dj

)−1

(
2j−2∑
k=0

λ2m−kA⋆
2m−k +

√
εIn

)
,
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2.2 P-Quadratization of (⋆, ε)-PPEP

and let

E1(λ) =

 In E1,2(λ) E1,3(λ) · · · E1,2m(λ)

0 I(2m−1)n

 . (2.13)

From (2.12) and the definition of E1(λ) in (2.13), we have

[
In 0n,(d−1)n

]
E1(λ)Q(λ)F1(λ) =

[
λ1−2mP(λ) 0n,(d−1)n

]
.

Then from (2.10) and (2.13), it follows for m = 1 that

[
0 In

]
E1(λ)Q(λ)F1(λ)

 0

In

 = −λ
√
εd1d

⋆
1In;

or for m ≥ 2:

[
0 I(d−1)n

]
E1(λ)Q(λ)F1(λ)

 0

I(d−1)n



=



−λ
√
εd1d

⋆
1In λ2d1In 0 · · · · · · 0

εd⋆1In 0 −λ2εd⋆2In
. . . ...

0 −d2In
. . . . . . . . . ...

... . . . . . . . . . λ2dm−1In 0

... . . . εd⋆m−1In 0 −λ2εd⋆mIn

0 · · · · · · 0 −dmIn 0


.

Using the factorizations

 In 0
√
ε

λdj
In In


 −λ

√
εdjd

⋆
jIn λ2djIn

εd⋆jIn 0


 In

λ√
εd⋆j

In

0 In

 =

 −λ
√
εdjd

⋆
jIn 0

0 λ
√
εIn


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2.2 P-Quadratization of (⋆, ε)-PPEP

and

 In 0

dj+1√
ελ
In In


 λ

√
εIn −λ2εd⋆j+1In

−dj+1In 0


 In λ

√
εd⋆j+1In

0 In


=

 λ
√
εIn 0

0 −λ
√
εdj+1d

⋆
j+1In

 ,

it holds that

E2m−1(λ) · · ·E2(λ)E1(λ)Q(λ)F1(λ)F2(λ) · · ·F2m−1(λ)

= diag
{
λ1−2mP(λ),−λ

√
εd1d

⋆
1In, λ

√
εIn, · · · , λ

√
εIn,−λ

√
εdmd

⋆
mIn
}
,

where

E2j(λ) = I(2j−1)n ⊕

 In 0
√
ε

λdj
In In

⊕ I(2m−2j−1)n,

E2j+1(λ) = I2jn ⊕

 In 0

dj+1√
ελ
In In

⊕ I(2m−2j−2)n,

and

F2j(λ) = I(2j−1)n ⊕

 In
λ√
εd⋆j

In

0 In

⊕ I(2m−2j−1)n,

F2j+1(λ) = I2jn ⊕

 In λ
√
εd⋆j+1In

0 In

⊕ I(2m−2j−2)n,
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2.2 P-Quadratization of (⋆, ε)-PPEP

for j = 1, . . . ,m− 1. Finally, letting

E2m(λ) := diag
{
λ2m−1In,−(λ

√
εd1d

⋆
1)

−1In, (λ
√
ε)−1In,−(λ

√
εd2d

⋆
2)

−1In,

· · · , (λ
√
ε)−1In,−(λ

√
εdmd

⋆
m)

−1In
}
,

E(λ) := E2m(λ) · · ·E1(λ) and F(λ) := F1(λ) · · ·F2m−1(λ), one can easily verify

that E(λ)Q(λ)F(λ) = diag(P(λ), I(2m−1)n). Furthermore, it holds that det(E(λ)) =

(−ε)m/(
√
ε
∏m

j=1 djd
⋆
j) and det(F(λ)) = 1.

(ii) (For 2d = 4m+ 2) Let

Π2j = I(2j−1)n ⊕

 0 In

In 0

⊕ I(2m−2j)n, for j = 1, . . . ,m.

Similar to part (i), we define n× n matrix rational functions E1(λ) and F1(λ) by

E1(λ) = Π2

 In E1,2(λ) E1,3(λ) · · · E1,2m+1(λ)

0 I2mn

 ,

F1(λ) =

 In F2,1(λ)
T F3,1(λ)

T · · · F2m+1,1(λ)
T

0 I2mn


T

with

E1,2j(λ) = λ2j−2m−2In, E1,2j+1(λ) = d−1
j

2j−1∑
k=0

λk+1A⋆
2m+k−2j+2,

F2j,1(λ) = λ2m−2j+2In, F2j+1,1(λ) =
(
d⋆jλ

2j
)−1

2j−1∑
k=0

λkA2m−k+1 (2.14)
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2.2 P-Quadratization of (⋆, ε)-PPEP

for j = 1, . . . ,m. Via careful calculation we get

Q(λ)F1(λ)

 In

0

 =

 λ−2mP(λ)

0


and

[
In 0

]
E1(λ)Q(λ)F1(λ) =

[
λ−2mP(λ) 0

]
.

Letting

Ej(λ) = Π2j

I2(j−1)n ⊕

 In 0

λ−2In In

⊕ I(2m−2j+1)n

 ,

Fj(λ) = I(2j−3)n ⊕


In 0 λ2In

0 In In

0 0 In

⊕ I(2m−2j+1)n,

for j = 2, . . . ,m, and

Em+1(λ)

= diag
{
λ2mIn,

−1

d1
In,

−1

λ2εd⋆1
In,

−1

d2
In,

−1

λ2εd⋆2
In, · · · ,

−1

dm
In,

−1

λ2εd⋆m
In

}
,

one can also verify that E(λ)Q(λ)F(λ) = diag(P(λ), I2mn), where E(λ) = Em+1(λ) · · ·E1(λ)

and F(λ) = F1(λ) · · ·Fm(λ). Furthermore, it holds that det(E(λ)) = ε−m/(
∏m

j=1(djd
⋆
j))

and det(F(λ)) = 1.

Note that the P-quadratization of a (⋆, ε)-palindromic matrix polynomial of odd

degree with even matrix dimension can be defined as in Definition 2.1. However, to

the best of our knowledge, a P-quadratization of this type has not been found.
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2.2 P-Quadratization of (⋆, ε)-PPEP

We now show the relationship between eigenpairs of Q(λ) in (2.5) and P(λ) in

(2.1).

Theorem 2.5. Let Q(λ) in (2.5) be a P-quadratization of P(λ) in (2.1) with (⋆, ε) ̸=

(T,−1). Denote z =

[
zT1 · · · zTd

]T
with zj ∈ Cn (j = 1, . . . , d). Then

(i) For λ0 ̸= 0, (λ0, z1) is an eigenpair of P(λ) if and only if (λ0, z) is an eigenpair

of Q(λ) with zj = Fj,1(λ0)z1 (j = 2, . . . , d), where {Fj,1(λ)}dj=2 are given in

(2.9) (for d = 2m) or (2.14) (for d = 2m+ 1).

(ii) (0, z1) is an eigenpair of P(λ) if and only if (0, z) is an eigenpair of Q(λ),

where, for j = 1, . . . ,m− 1:

(for d = 2m)

 z2m = −(d⋆m)
−1A1z1, z2j+1 = 0,

z2j = −(d⋆j)
−1A2m−2j+1z1;

(2.15a)

(or, for d = 2m+ 1)

 z2m+1 = −(d⋆m)
−1A1z1, z2m = 0,

z2j = 0, z2j+1 = −(d⋆j)
−1A2m−2j+1z1.

(2.15b)

(iii) (∞, z2) is an eigenpair of P(λ) if and only if (∞, z) is an eigenpair of Q(λ),

with z1 = z3 = · · · = zd = 0.

Proof. (i) From Theorem 2.4, there are dn × dn matrix rational functions E(λ)

and F(λ) with nonzero and constant determinants such that E(λ)Q(λ)F(λ) =

diag(P(λ), I(d−1)n). Since λ = 0 is the only pole of E(λ) and F(λ), the matrices

F (λ0) and G(λ0) defined in (2.4) are of full rank. The assertion in (i) follows imme-
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2.2 P-Quadratization of (⋆, ε)-PPEP

diately from Theorem 2.3 and the relation

F (λ0)z1 = F(λ0)

 z1

0

 = F1(λ0)

 z1

0

 =



z1

F2,1(λ0)z1

...

Fd,1(λ0)z1


=



z1

z2

...

zd


.

(ii) By the definition of Q(λ) in (2.5), we have Q(0)z = εq ≡ ε

[
qT1 · · · qTd

]T
,

where for d = 2m: q1 = A1z1 + d⋆mz2m, q2 = ε
√
εd1A2mz1, q3 = A2m−1z1 + d⋆1z2,

q4 = −εd2z3, · · · , q2m−1 = A3z1 + d⋆m−1z2m−2, q2m = −εdmz2m−1;
(2.16a)

and for d = 2m+ 1:

 q1 = A1z1 + d⋆mz2m+1, q2 = A2m+1z1, q3 = −εd1z2, q4 = A2m−1z1 + d⋆1z3,

q5 = −εd2z4, · · · , q2m = A3z1 + d⋆m−1z2m−1, q2m+1 = −εdmz2m.

(2.16b)

From (2.16), we see that (0, z1) is an eigenpair of P(λ); i.e., Adz1 = 0 if and only if

(0, z) is an eigenpair of Q(λ); i.e., Q(0)z = εq = 0, where {zj}dj=1 satisfy (2.15).

(iii) By the definition of Q(λ) in (2.5) again, we have
[
λ2Q

(
1
λ

)]
λ=0

z = q ≡[
qT1 · · · qTd

]T
, where for d = 2m:

 q1 = A⋆
1z1 +

√
εd⋆1A

⋆
2mz2 +

∑m−1
k=1 A⋆

2m−2k+1z2k+1, q2 = d1z3,

q3 = −εd⋆2z4, · · · , q2m−2 = dm−1z2m−1, q2m−1 = −εd⋆mz2m, q2m = dmz1;
(2.17a)
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2.2 P-Quadratization of (⋆, ε)-PPEP

and for d = 2m+ 1:

 q1 = A⋆
1z1 +

∑m
k=1 A

⋆
2m−2k+3z2k, q2 = −εd1z3, q3 = d⋆1z4,

· · · , q2m = −εdmz2m+1, q2m+1 = d⋆mz1.
(2.17b)

From (2.17), it follows that (∞, z2) is an eigenpair of P(λ); i.e., A⋆
dz2 = 0 if and

only if (∞, z) is an eigenpair of Q(λ), or
[
λ2Q

(
1
λ

)]
λ=0

z = q = 0, with z1 = z3 =

· · · = zd = 0.

Remark 2.6. (i) Theorem 2.4 cannot be applied to the case (⋆, ε) = (T,−1). In

fact, up to now, there is no structure-preserving algorithm to solve the T-anti-PQEP

directly. So it is pointless to transform a T-anti-PPEP to a T-anti-PQEP. Thus, for

a (T,−1)-palindromic matrix polynomial, we can apply the palindromic linearization

[40] to transform it into a T-palindromic linear pencil λZT + Z, and then solve it

by the QR-like algorithm [53], the hybrid method [42], the URV-based method [54]

or the doubling algorithm [7].

(ii) On the other hand, if we rewrite λZT + Z to a T-palindromic quadratic

pencil Q̂(λ̂) ≡ λ̂2ZT + λ̂0 + Z by letting λ̂2 = λ, then the SPA algorithm [24] can

also be used to solve its eigenpairs. It is shown in [24] that applying the SPA to solve

Q̂(λ̂)y = 0 is mathematically equivalent to applying the URV-based method to solve

λZT + Z.

Applying the P-quadratization in Theorem 2.4, an H-anti-PPEP can be quadra-

tized into an H-anti-PQEP whose eigenpairs can then be computed from an H-PQEP

by the following relationship.

Proposition 1. Given an H-anti-PQEP: (λ2AH
1 +λA0−A1)x = 0, with AH

0 = −A0.

Then (ıω, x) is an eigenpair of the H-anti-PQEP if and only if (ω, x) is an eigenpair

of the H-PQEP:
[
ω2(−A1)

H + ω(ıA0) + (−A1)
]
x = 0.
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2.2 P-Quadratization of (⋆, ε)-PPEP

Proof. The result can be easily obtained by setting λ = ıω and using the fact

(ıA0)
H = ıA0.

We now consider the ⋆-even and ⋆-odd polynomial eigenvalue problems of even

degree. Let C(λ) =
∑2d

k=0 λ
kCk, where Ck ∈ Cn×n (k = 0, 1, . . . , 2d) and C2d ̸= 0.

The polynomial eigenvalue problem C(λ)x = 0 is called a ⋆-even polynomial eigen-

value problem, if C⋆
2k = C2k (k = 0, 1, . . . , d) and C⋆

2k−1 = −C2k−1 (k = 1, . . . , d); and

it is called a ⋆-odd polynomial eigenvalue problem, if C⋆
2k = −C2k (k = 0, 1, . . . , d)

and C⋆
2k−1 = C2k−1 (k = 1, . . . , d). By the Cayley transformation, it was shown

in [40] that a ⋆-even/odd polynomial eigenvalue problem can be transformed to a

(⋆,±1)-PPEP, respectively.

Figure 2.1: Relations between various structured polynomial eigenvalue problems
(PEPs).

We illustrate the relationship among various structured polynomial eigenvalue

problems in Figure 2.1. We see that T-even, T-odd, T-anti-palindromic and T-

palindromic polynomial eigenvalue problems of even degree can be P-quadratized to

T-PQEPs. Thus, the SPA algorithm in [24] can be applied to solve the associated T-

PQEPs. On the other hand, we see that H-even, H-odd, H-anti-palindromic and H-

palindromic polynomial eigenvalue problems of even degree can be P-quadratized to

H-PQEPs. Therefore, we are motivated to develop a structure-preserving algorithm

in the next section to solve the H-PQEP.
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2.3 ⋆-palindromic Quadratic Eigenvalue Problems

Consider the ⋆-PQEP

Q(λ)x ≡ (λ2A⋆
1 + λA0 + A1)x = 0, (2.18)

where A0, A1 ∈ Cn×n with A⋆
0 = A0. The eigenvalues of Q(λ) clearly appear in the

“reciprocal” pairs of the form (λ, 1/λ̂) where

λ̂ = λ̄ if ⋆ = H, λ̂ = λ if ⋆ = ⊤.

Classical linearizations of (2.18) in a companion form, generally, do not preserve

the symplectic structure. Fortunately, the special linearization of (2.18) (see [8] or

[24])

(M− λL)z ≡


 A1 0

−A0 −I

− λ

 0 I

A⋆
1 0



x
y

 = 0 (2.19)

where y = 1
λ
A1x and multiplying the second equation of (2.18) satisfies

MJM⋆ = LJL⋆, J = J2n ≡

 0 In

−In 0

 , (2.20)

so that the matrix pair (M,L) has eigenvalues λ and 1/λ̂, preserving reciprocity.

The pencil M− λL or the matrix pair (M,L) are called H-symplectic.

For any real symplectic matrix pair (M,L) satisfying (2.20), a structure-preserving

(S + S−1)-transform for the computation of all eigenvalues was proposed by [33].

The (S +S−1)-transform (Ms,Ls) of an ⋆-symplectic matrix pair (M,L) is defined
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by

Ms ≡ MJL⋆ + LJM⋆ ≡ KJ , Ls ≡ LJL⋆ ≡ NJ . (2.21)

It is easily seen that K and N are both ⋆-skew-Hamiltonian, i.e., KJ = JK⋆ and

NJ = JN ⋆. Hence, if µ is an eigenvalue of (K,N ), so is µ̂.

The relationship between eigenpairs of an ⋆-symplectic matrix pair and its (S +

S−1)-transform has been given in [33].

Theorem 2.7. [33] Let (M,L) be ⋆-symplectic and (Ms,Ls) be its (S + S−1)-

transform as in (2.21). Suppose zs is an eigenvector of (Ms,Ls) corresponding to

µ = ν + 1
ν
. If (L⋆ − 1

ν
M⋆)zs ̸= 0 or (L⋆ − νM⋆)zs ̸= 0, then (ν,J (L⋆ − 1

ν
M⋆)zs) or

(1/ν,J (L⋆ − νM⋆)zs) is an eigenpair of (M,L), respectively.

We have some different derivative theorems between ⋆ = ⊤ [24] and ⋆ = H here.

Then the relationship between eigenpairs of (Ms,Ls) and Q(λ), ⋆ = H is given as

follows.

Theorem 2.8. Let (M,L) be H-symplectic of the form in (2.19) and (Ms,Ls) be

its (S+S−1)-transform. Suppose that zs is an eigenvector of (Ms,Ls) corresponding

to the eigenvalue µ ̸= ±2, and denote zs ≡ [zTs1, zTs2]
T with zs1, zs2 ∈ Cn. Let ν be a

root of the quadratic equation λ+ 1
λ
= µ. Then

(i) at least one of vectors zs1 +
1
ν
zs2 and zs1 + νzs2 is nonzero;

(ii) if zs1 + 1
ν
zs2 ̸= 0, then zs1 +

1
ν
zs2 is an eigenvector of Q(λ) corresponding to ν;

(iii) if zs1 + 1
ν
zs2 = 0, then zs2 is an eigenvector of Q(λ) corresponding to 1

ν
.

Proof. (i) Suppose that zs1+ 1
ν
zs2 = 0 and zs1+νzs2 = 0. It implies that (ν− 1

ν
)zs2 =

0. If zs2 = 0, then zs1 = 0 and zs = 0 which contradicts the fact that zs is an
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eigenvector. Hence, ν = ±1 and then µ = ±2 which contradicts the assumption

that µ ̸= ±2. Therefore, zs1 + 1
ν
zs2 ̸= 0 or zs1 + νzs2 ̸= 0.

(ii) Since MJMH = LJLH , by (2.21) it holds that

0 = (Ms − µLs) zs = (M− νL)J (LH − 1

ν
MH)zs. (2.22)

From (2.22), we obtain

(M− νL)

 zs1 +
1
ν
zs2

xν

 = 0, (2.23)

where

xν ≡ 1

ν
AH

1 zs1 −
1

ν
A0zs2 − A1zs2. (2.24)

Substituting (M,L) of (2.19) into (2.23), we have

xν =
1

ν
A1(zs1 +

1

ν
zs2) (2.25)

and

A0(zs1 +
1

ν
zs2) + xν + νAH

1 (zs1 +
1

ν
zs2) = 0. (2.26)

Substituting xν of (2.25) into (2.26) and multiplying (2.26) by ν, we get Q(ν)(zs1 +

1
ν
zs2) = 0.

(iii) Since zs1 +
1
ν
zs2 = 0, it follows that zs1 = − 1

ν
zs2 ̸= 0 and xν = 0 in (2.25).

Substituting these results into (2.24), it holds that

0 = xν = −
(
1

ν

)2

AH
1 zs2 −

1

ν
A0zs2 − A1zs2.
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Therefore, zs2 is an eigenvector of Q(λ) corresponding to the eigenvalue 1
ν
.

In [24], a structure-preserving algorithm (SPA) based on Patel’s algorithm [45]

has been developed for solving T-PQEPs. In order to solve an H-PQEP, we apply

the (S + S−1)-transform to the H-symplectic pair (M,L) of the form (2.19) and

get the generalized eigenvalue problem Kzs = µN zs, where K and N are defined in

(2.21). Substituting (M,L) in (2.19) into (2.21), the H-skew-Hamiltonian K and N

can be represented as

K =

 A0 AH
1 − A1

A1 − AH
1 A0

 , N =

−A1 0

0 −AH
1

 . (2.27)

However, Patel’s algorithm can only be applied to (K,N ) of (2.27) in the real case,

but cannot be directly applied to (K,N ) in the complex conjugate case. In the

following, we convert (K,N ) of (2.27) into an enlarged real T-skew-Hamiltonian

pair so that Patel’s algorithm can be applied. We extend (K,N ) in (2.27) to a real

4n× 4n matrix pair (K2,N2) by

K2 =

 KR −KI

KI KR

 , N2 =

 NR −NI

NI NR

 ∈ R4n×4n, (2.28)

where K = KR + ıKI and N = NR + ıNI . From (2.28), it is easily seen that if µ is

an eigenvalue of (K,N ), then µ and µ̄ are eigenvalues of (K2,N2).

Theorem 2.9. The multiplicities of eigenvalues of (K2,N2) are all even.

Proof. Define K̃2 ≡ ΠK2Π and Ñ2 ≡ ΠN2Π, where Π = In ⊕

 0 In

In 0

⊕ In. It is

easy to check that K̃2 and Ñ2 are real skew-Hamiltonian; i.e., (K̃2J4n)
T = −K̃2J4n

and (Ñ2J4n)
T = −Ñ2J4n. Therefore, from the result of [33], it follows that the

multiplicities of eigenvalues of (K̃2, Ñ2) are all even.
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From (2.21), we see that µ is an eigenvalue of (K,N ) if and only if µ̄ is also an

eigenvalue. We now give the relationship between eigenpairs of (K,N ) and (K2,N2).

Theorem 2.10. (i) If (α + ıβ, x + ıy) is an eigenpair of (K,N ), then

 x

y

 ±

ı

 y

−x

 are eigenvectors of (K2,N2) corresponding to the eigenvalues α± ıβ.

(ii) If

 x1

x2

 + ı

 y1

y2

 is an eigenvector of (K2,N2) corresponding to the eigen-

value α+ıβ, then (x1−y2)+ı(x2+y1) is an eigenvector of (K,N ) corresponding

to α + ıβ.

Proof. (i) Since K(x+ıy) = (α+ıβ)N (x+ıy), comparing the real and the imaginary

parts of both sides leads to

K2


 x

y

± ı

 y

−x


 = (α± ıβ)N2


 x

y

± ı

 y

−x


 .

(ii) Since

 x1

x2

 + ı

 y1

y2

 is an eigenvector of (K2,N2) corresponding to the

eigenvalue α + ıβ, it holds that

KRx−KIy = α(NRx−NIy)− β(NIx+NRy),

KIx+KRy = β(NRx−NIy) + α(NIx+NRy),

by setting x = x1 − y2 and y = x2 + y1. Thus, (α + ıβ, x + ıy) is an eigenpair of

(K,N ).

From Theorem 2.10, the eigenpairs of (K,N ) can be computed from the eigen-

pairs of (K̃2, Ñ2). Since K̃2 and Ñ2 are both real skew-Hamiltonian, based on Patel’s
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approach [24, 45], the pair (K̃2, Ñ2) can be reduced to block upper triangular forms

K̃2 := QT K̃2Z =

K11 K12

0 KT
11

 , Ñ2 := QT Ñ2Z =

N11 N12

0 NT
11

 , (2.29)

where Q,Z ∈ R4n×4n are orthogonal satisfying Q = J T
4nZJ4n, and K11, N11 ∈ R2n×2n

are upper Hessenberg and upper triangular, respectively.

From Theorem 2.9 and (2.29), we see that the pair (K11, N11) has the same

spectrum as (K̃2, Ñ2). We then apply the QZ algorithm to (K11, N11) to compute all

its eigenpairs {(µj, z̃j)}2nj=1. Consequently, {(µj,ΠZ

z̃j
0

)}2nj=1 are the 2n eigenpairs

of (K2,N2). Let µj = αj + ıβj and ΠZ[z̃Tj , 0
T ]T ≡

[
xT
1j, x

T
2j

]T
+ ı
[
yT1j, y

T
2j

]T with

αj, βj ∈ R and x1j, x2j, y1j, y2j ∈ R2n. From Theorem 2.10, {(αj + ıβj,J T (x1j −

y2j+ı(x2j+y1j)))}2nj=1 are eigenpairs of (Ms,Ls). Finally, we compute all eigenvalues

and the associated eigenvectors of Q(λ) by Theorem 2.8. We present the structure-

preserving algorithm for solving H-PQEP in Algorithm 2.1.

Algorithm 2.1 Structure-Preserving Algorithm (SPA) for H-PQEP
Input: An H-palindromic quadratic pencil Q(λ) ≡ λ2AH

1 +λA0+A1 with A0, A1 ∈
Cn×n and AH

0 = A0;
Output: All eigenvalues and eigenvectors of Q(λ).
1: Form the matrix pair (K̃2, Ñ2) = (ΠK2Π,ΠN2Π) as in (2.28);
2: Reduce (K̃2, Ñ2) to block upper triangular forms as in (2.29);
3: Compute eigenpairs {(µj, z̃j)}2nj=1 of (K11, N11) defined in (2.29) by the QZ algo-

rithm;

4: Compute ΠZ

[
z̃j
0

]
≡
[
x1j

x2j

]
+ ı

[
y1j
y2j

]
, j = 1, 2, . . . , 2n;

5: Compute the eigenpair (µj, zj), for j = 1, 2, . . . , 2n, of (Ms,Ls) by

zj = J T (x1j − y2j + ı(x2j + y1j)) ≡ [zTj1, z
T
j2]

T ;

6: Compute νj and 1
νj

by solving ν2 − µjν + 1 = 0; Compute xj1 ≡ zj1 +
1
νj
zj2 and

xj2 ≡ zj1 + νjzj2 for j = 1, 2, . . . , 2n;
7: If xj1 ̸= 0, then it is an eigenvector of Q(λ) corresponding to νj; If xj2 ̸= 0, then

it is an eigenvector of Q(λ) corresponding to 1
νj

;
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2.4 Structured Backward Perturbation Analysis

Typically, algorithms would approach the right solution in the limit, if there were

no round-off or truncation errors. However, depending on the specific computational

method, errors can be magnified and causing the error to grow exponentially.Let

{µ, z} be a computed eigenpair of

(
d∑

ℓ=0

Aℓλ
ℓ

)
x = 0.

Theoretically, we would like to have
(

d∑
ℓ=0

Aℓµ
ℓ

)
z = 0. But practically we have(

d∑
ℓ=0

Aℓµ
ℓ

)
z = −r with residual r ̸= 0 but usually tiny. Backward error analysis

asks if the computed eigenpair {µ, z} is an exact eigenpair of a nearby PEP such

that (
d∑

ℓ=0

(Aℓ + ρℓ△Aℓ)µ
ℓ

)
z = 0

where △Aℓ are called backward perturbation matrices and ρℓ are scaling parameters.

Tisseur [56] developed a backward error perturbation analysis for PEP generally,

where △Aℓ is no structure. However, as A are Hermitian, we would like to enforcing

that △Aℓ should be Hermitian, too. This is the reason why the structured backward

perturbation analysis be developed. That is to say, we consider PPEP with

(
d∑

ℓ=0

(Aℓ + ρℓ△Aℓ)µ
ℓ

)
z = 0, Ad−ℓ = εA⋆

ℓ for ℓ = 0, 1, ... ⌊d/2⌋ . (2.30)

We have mentioned the fast train application [29, 43? ] which yield a problem

of this form with d = 2,⋆ = ⊤, and ε = 1 before. Let ∥·∥ be either the spectral norm

∥·∥2 or the Frobenius norm ∥·∥F .Now, we are interested in knowing the structrued

32



2.4 Structured Backward Perturbation Analysis

backward error

△ = min

√∑⌊d/2⌋

ℓ=0
∥△Aℓ∥2,

subject to
(∑d

ℓ=0
(Aℓ + ρℓ△Aℓ)µ

ℓ
)
z = 0, (2.31)

scaling parameters ρd−ℓ = ρℓ ≥ 0

Ad−ℓ + ρd−ℓ△Ad−ℓ = ε (Aℓ + ρℓ△Aℓ)
⋆

for ℓ = 0, 1, ... ⌊d/2⌋

The constraints in (2.31) require ρd−ℓ = ρℓ and △Ad−ℓ = ε△A⋆
d−ℓ just like the

palindromic form, and we decompose (2.30) which is equivalent to

(
d∑

ℓ=0

ρℓ△Aℓµ
ℓ

)
z = r

def
= −

(
d∑

ℓ=0

Aℓµ
ℓ

)
z, (2.32)

where △Aℓ ∈ Cn×n (ℓ = 0, 1, ...d) . We will seek if (2.32) has a solution

{△Aℓ, ℓ = 0, 1, ... ⌊d/2⌋} and if it does, we’ll seek △Aℓ such that

min

⌊d/2⌋∑
ℓ=0

∥△Aℓ∥2 (2.33)

where ∥·∥ is either ∥·∥2 or ∥·∥F .

The key to solve (2.32) and (2.33) is a reduction technique that has been used in

[4, 25, 35, 57]. The technique allows us to consider (2.32) in the case of 2×2 reduced

matrix when we deal with backward errors in a 2-dimensional subspace spanned by

{z, r} or by {z, r̄}.
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Let Q ∈ Cn×n be a unitary matrix (QQH = In), such that

QH (z r̂) =



α γ

0 β

0 0

...
...

0 0


, (2.34)

where

r = r if ⋆ = H, and r̂ = r̄ if ⋆ = ⊤.

Such Q always can be generated, and the equation (2.34) also implies

|α| = ∥z∥2 , γ =
zH r̂

ᾱ
, |β| =

∥∥∥∥∥r̂ − zH r̂

∥z∥22
z

∥∥∥∥∥
2

=

√
∥r̂∥22 ∥z∥

2
2 − |zH ẑ|2

∥z∥2
(2.35)

We can rewrite (2.32) by multiplying Q , then

Q⋆

(
d∑

ℓ=0

ρℓ△Aℓµ
ℓ

)
QQHz = Q⋆r,

or equivalently

(
d∑

ℓ=0

ρℓ△Bℓµ
ℓ

)
y = w, ρd−ℓ = ρℓ and △Bd−ℓ = ε△B⋆

ℓ , for ℓ = 0, 1, ... ⌊d/2⌋ (2.36)

where

△Bℓ = Q⋆ (△Aℓ)Q, y = QHz =



α

0

...

0


, w = Q⋆r =



r̂

β̂

0

...

0


,
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β̂ = β and γ̂ = γ if ⋆ = H, and β̂ = β̄ and γ̂ = γ̄ if ⋆ = ⊤.

Since Q is unitary, (2.31) and (2.36) have the same solvability property. It means

that if the former is solvable, so is the latter, and moreover

⌊d/2⌋∑
ℓ=0

∥△Bℓ∥2 =
⌊d/2⌋∑
ℓ=0

∥△Aℓ∥2 . (2.37)

Thus we can focus on the optimal solution {△Bℓ, ℓ = 0, 1, ..., ⌊d/2⌋} to (2.37) which

means

min

⌊d/2⌋∑
ℓ=0

∥△Bℓ∥2 . (2.38)

That also generate one solution {△Aℓ, ℓ = 0, 1, ..., ⌊d/2⌋} to (2.32) in the sence

of (2.33), and vice versa. Furthemore, we transfrom (2.31) to the reduced structrued

backward error

△p = min


√√√√⌊d/2⌋∑

ℓ=0

∥△Bℓ∥2p : (2.36) satisfied

 for p =2,F

It follows from (2.35) that

|δ1| =
∣∣zH r̂∣∣
∥z∥22

, |δ2| =

√
∥r̂∥22 ∥z∥

2
2 − |zH r̂|2

∥z∥22
,

√
|δ1|2 + |δ2|2 =

∥r∥2
∥z∥2

(2.39)

The complex calculations and technical operation in Theorem 2.12 [47] are omit

and we present the significant results.We first define a few parameters in term of a
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given approximate eigenpair {µ, z} of PPEP (2.30): for even d

Φeven
def
= ξeven + ζeven =

d/2−1∑
ℓ=0

ρ2ℓ

(
|µ|ℓ + |µ|d−ℓ

)2
+ ρ2d/2 |µ|

d ,

ϕeven
def
= ξeven − ζeven =

d/2−1∑
ℓ=0

ρ2ℓ

(
|µ|ℓ − |µ|d−ℓ

)2
,

Ψeven
def
=

d/2−1∑
ℓ=0

ρ2ℓ

(
|µ|2ℓ + |µ|2(d−ℓ)

)2
+ ρ2d/2 |µ|

d /2.

and for odd d

Φodd
def
= ξodd + ζodd =

(d−1)/2∑
ℓ=0

ρ2ℓ

(
|µ|ℓ + |µ|d−ℓ

)2
,

ϕodd
def
= ξodd − ζodd =

(d−1)/2∑
ℓ=0

ρ2ℓ

(
|µ|ℓ − |µ|d−ℓ

)2
,

Ψodd
def
=

(d−1)/2∑
ℓ=0

ρ2ℓ

(
|µ|2ℓ + |µ|2(d−ℓ)

)2
.

Theorem 2.11. [47] Let {µ, z} be a given approximate eigenpair of PPEP (2.30).

Suppose ⋆ = H and ε = ±1 in (2.31), and δ1 and δ2 are as in (2.39) with r̂ = r

which is defined in (2.32). Let

ϕ =

 ϕeven for even d

ϕodd, for odd d
Φ =

 Φeven for even d

Φodd, for odd d
Ψ =

 Ψeven for even d

Ψodd, for odd d

Theorem 2.12. For the structure backward error △F defined in (2.31), we have

1. If |µ| = 1 and zHr/(
√
εµd/2) /∈ R, then △F = +∞
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2. If |µ| = 1 and zHr/(
√
εµd/2) ∈ R, then

△F =

√
|δ1|2

Φ
+

|δ2|2

Ψ

3. If |µ| ̸= 1, then

△F ≤

√
|δ1|2

ϕ
+

|δ2|2

Ψ

Let us look back at our original problems (2.1) and apply the Theorem 2.12 in

our PPEP. Taking d = 4, ε = 1 for example, we consider

P(λ) = λ4AH
2 + λ3AH

1 + λ2A0 + λA1 + A2. (2.40)

From the quadration we mentioned in Theorem 2.4 where A1 and A0 are given by

A1 =

 A1 I

A2 0

 , A0 =

 A0 − I − AH
2 A2 0

0 −I


which satisties

Q(λ) = λ2AH
1 + λA0 +A1. (2.41)

In section 2, we propose a method to solve the equation (2.41) with structure-

preserving algorithm. In this case, it is quite reasonable to use structure-preserving

backward error to estimate the stability. First, we select the equation (2.40) and

transform it to (2.41). If (λ0, z1) is an eigenpair of P(λ), then (λ0, z) is an eigenpair

of Q(λ) with z = [z⊤1 , z
⊤
2 ]

⊤ where

z2 =
1

λ0

(
λ2
0AH

2 z1 + z1
)
.

By the structure-preserving backward error analysis, we use the equivalent no-
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2.5 Balancing of P(λ) and Q(λ)

tation on Q(λ) and let {µ, z} =
{
λ0, [z

⊤
1 , z

⊤
2 ]

⊤} . The theorem 2.12 gives us an

estimated backward error upper bound and the bound is △F ≤
√

|δ1|2
ϕ

+ |δ2|2
Ψ

. The

terms ϕ and Ψ just relate to λ0 which is preserved in our algorithm. In spite of this,

the term δ1 contains the eigenvector z which is changed in our process (|δ1| =
|zH r̂|
∥z∥22

).

More precisely, the norm of A2 cause considerable impact on our structure-preserving

backward error. In general, the norm of Aℓ, ℓ = 0, 1, ... ⌊d/2⌋ become perturbative

factors that we have to face it. Next section we provide a classical technique that

modify our backward error and easily implement in our algorithm.

2.5 Balancing of P(λ) and Q(λ)

Scaling [3, 9, 15, 34] is a commonly used technique for standard eigenvalue prob-

lems for the improvement of the sensitivity of eigenvalues. In this section, we first

propose a diagonal scaling for P(λ) in (2.1). Then, we determine the free parameters

d1, . . . , dm in (2.7) and (2.8) to improve the backward errors of eigenpairs for P(λ)

as in [26, 27, 47].

In order to balance the entries of coefficient matrices in P(λ), we define a complex

diagonal matrix

D ≡ diag(2α1 , 2α2+ıβ2 , · · · , 2αn+ıβn)

with αj, βj ∈ R so that the magnitudes of entries of coefficient matrices in the new

(⋆, ε)-palindromic matrix polynomial

D

(
d−1∑
k=0

λ2d−kA⋆
d−k + λdA0 + ε

d∑
k=1

λd−kAk

)
D⋆

are close to one as much as possible. That is, we determine α1, . . . , αn and β2, . . . , βn
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2.5 Balancing of P(λ) and Q(λ)

so that

2αj+ıβjAk(j, ℓ)2
αℓ−ıβℓ ≈ 1, (2.42)

for j, ℓ = 1, 2, . . . , n and k = 0, 1, . . . , d, where Ak(j, ℓ) is the (j, ℓ)-th entry of Ak.

By taking logarithm of (2.42), the parameters, α1, . . . , αn and β2, . . . , βn can be

determined by solving the least square problems

αj + αℓ = −Re(log2(Ak(j, ℓ))), βj − βℓ = −Im(log2(Ak(j, ℓ))),

where Re(c) and Im(c) represent the real and imaginary parts of c, respectively.

Then, the parameters α1, . . . , αn and β2, . . . , βn are determined by the associated

normal equations

BTB [α1, · · · , αn]
T = BT b, CTC [β2, · · · , βn]

T = CT c.

We now determine d1, . . . , dm in (2.7) or (2.8), to balance the magnitudes of

entries of A0 and A1 in Q(λ). For convenience, we define

di =

 d
(1)
i , if 2d = 4m,

d
(2)
i , if 2d = 4m+ 2;

for i = 1, . . . ,m.

From the row balancing of A1 in (2.7a) or (2.8a), we first set

η
(s)
i = max {1, max{∥A2m−k+s−1∥1 : k = 0, 1, . . . , 2i− 3 + s}} .

Then we take δ
(s)
i to be the geometric average of η(s)i and the average of the absolute
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2.6 Numerical Results

magnitudes of entries of A2m−2i+1 in A1; i.e.,

δ
(s)
i =

√√√√η
(s)
i

(
n∑

j=1

n∑
ℓ=1

|A2m−2i+1(j, ℓ)|/n2

)

for i = 1, . . . ,m and s = 1, 2. Although the value of d(s)i can be set to δ
(s)
i to balance

the entries of A1, we also need to consider the balance of the entries of both A0

and A1 in (2.7) or (2.8). As a result, we take the values of d(s)1 , . . . , d
(s)
m to be the

geometric average of the maximal values of δ(s)1 , . . . , δ
(s)
m and the maximal average

for the absolute magnitudes of entries of Ak (k = 0, . . . , d); i.e., for i = 1, . . . ,m and

s = 1, 2, we set

d
(s)
i :=

√√√√ρ(s) max
0≤k≤d

{
n∑

j=1

n∑
ℓ=1

|Ak(j, ℓ)|/n2

}

with

ρ(s) = max{δ(s)i ; i = 1, . . . ,m}.

2.6 Numerical Results

In [24], an SPA is proposed for solving T-PQEPs. Numerical experiments show

that SPA performs well on the T-PQEP arising from a finite element model of high-

speed trains and rails. In this section, we shall focus on the numerical comparison of

the performance and accuracy for solving H-PPEP of even degree by using structure-

preserving algorithms and companion linearization.

For solving an n× n H-PPEP of even degree 2d, we apply the P-quadratization

in Section 2 to transform it into a dn × dn H-PQEP. We then apply the SPA

(Algorithm 2.1) in Section 3 to solve the H-PQEP. The combination of the P-

40



2.6 Numerical Results

quadratization and SPA is called the PQ_SPA algorithm. On the other hand,

we can also use the “good” linearization [40, 41] to transform the H-PPEP into a

palindromic linear pencil λZH + Z, and then utilize SPA to solve the H-PQEP:

(λ̂2ZH + λ̂0 + Z)x = 0 with λ = λ̂2. The combination of the “good” linearization

and SPA is called the PL_SPA algorithm. As mentioned in Remark 2.6 (ii), we see

that applying the SPA to λ̂2ZT + λ̂0 + Z is mathematically equivalent to applying

the URV-based method [54] to λZT + Z.

2.6.1 Computational Cost

For making PQ_SPA more efficient, we reorder the submatrices of (K̃2, Ñ2) in

step 1 of Algorithm 2.1 by the permutations

Π1 =



In 0 0 0 0

0 0 I(d−1)n 0 0

0 0 0 0 I(d−2)n

0 0 0 In 0

0 In 0 0 0


,Π2 =



0 0 In 0 0 0

0 I(d−2)n 0 0 0 0

0 0 0 0 0 In

0 0 0 0 I(d−2)n 0

0 0 0 In 0 0

In 0 0 0 0 0


.

We substitute A1 in Theorem 2.4 into Ñ2 and get

Ñ2 :=

 Π1 0

0 Π2

 Ñ2

 ΠT
2 0

0 ΠT
1



=



D1 0 −V1 V2

0 D1 V2 V1

0 0 V3 −V4

0 0 V4 V3


⊕



D1 0 0 0

0 D1 0 0

−V T
1 V T

2 V T
3 V T

4

V T
2 V T

1 −V T
4 V T

3


,
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2.6 Numerical Results

where D1 is a (2d− 2)n× (2d− 2)n diagonal matrix and V3, V4 ∈ Rn×n. Set

K̃2 :=

 Π1 0

0 Π2

 K̃2

 ΠT
2 0

0 ΠT
1

 .

Now, we compare the computational costs for PQ_SPA and PL_SPA:

• (QR factorization and updating with real arithmetic operations) Compute

Q1 and Z1 such that QT
1 Ñ2Z1 = diag

(
N

(1)
11 , (N

(1)
11 )

T
)
, where N

(1)
11 is upper

triangular, and update QT
1 K̃2Z1. It requires (80/3n3 + 32dn3) and 3411

3
d3n3

flops for PQ_SPA and PL_SPA, respectively.

• (Given’s rotations and updating with real arithmetic operations) Reducing the

new pair (K̃2, Ñ2) produced by above step to block upper triangular forms of

(2.29), it requires 232d3n3 − (296d2 − 24d)n2 and 1856d3n3 − 800d2n2 flops for

PQ_SPA and PL_SPA, respectively.

• (Computing eigenvalues of (K11, N11)) Computing eigenvalues of the real upper

Hessenberg and triangular pair (K11, N11) by QZ algorithm, it requires 176d3n3

and 1408d3n3 flops for PQ_SPA and PL_SPA, respectively, to obtain the

upper quasi-triangular and triangular pair.

• The eigenvectors of (K̃2, Ñ2) can be computed by an additional (408d3 +

32d)n3 − (332d2 − 16d)n2 and 1920d3n3 − 1088d2n2 flops for PQ_SPA and

PL_SPA, respectively.

We summarize the computational flops of PQ_SPA and PL_SPA in Table 2.1.
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2.6 Numerical Results

Eigenvalues Eigenvectors Total

PQ_SPA (408d3 + 32d+ 80/3)n3 (408d3 + 32d)n3 (816d3 + 64d+ 80/3)n3

PL_SPA 36051
3
d3n3 1920d3n3 55251

3
d3n3

Table 2.1: Computational flops of PQ_SPA and PL_SPA

2.6.2 Numerical Experiments

For an approximate eigenpair (λ, x) of the palindromic matrix polynomial P(λ),

we define the associated relative residual by

RRes ≡ RRes(λ, x) :=
∥P(λ)x∥2[∑d

k=1 (|λ|d+k + |λ|d−k) ∥Ak∥2 + |λ|d∥A0∥2
]
∥x∥2

.

We will show numerical results of RRes and the reciprocal property of eigenpair

(λ, x) for the H-PPEPs, computed by PQ_SPA, PL_SPA and polyeig in MATLAB

(applied directly to (2.1)).

As mentioned before, theoretically, the eigenvalues of H-PPEP appear in recipro-

cal pairs (λ, 1/λ̄). So, if we sort the eigenvalues in ascending order by modulus, the

product of the i-th eigenvalue and the conjugate of the (2dn + 1− i)-th eigenvalue

should be one. Therefore, we define the reciprocities of the computed eigenvalues

by

ri ≡ |λiλ̄2dn+1−i − 1| (i = 1, . . . , dn).

All numerical experiments are carried out using MATLAB 2008b with machine

precision eps ≈ 2.22× 10−16.

Let Cn,b denote the set of n×n complex matrices which real and imaginary parts

are randomly generated by the normal distribution with zero mean and standard

deviation b.
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2.6 Numerical Results

Example 2.1. Consider the H-PPEP with d = 5 and Ak ∈ Cn,100 (k = 0, . . . , 5).

Example 2.2. Consider the H-PPEP with d = 4 and A1, A3, A4 ∈ Cn,100, and A0

and A2 being defined as

Ak−1 = B1k · diag
{
φ
(k)
1 , · · · , φ(k)

n

}
·B2k ∈ Cn×n (k = 1, 3)

where B1k, B2k ∈ Cn,1, and

 φ
(k)
i = 4i+k−ℓ, φ

(k)
ℓ+i = 4i−k (i = 1, . . . , ℓ),

φ
(k)
n = 4n/2−k if n is odd;

(2.43)

with ℓ = n/2 (if n is even) or ℓ = (n− 1)/2 (otherwise).

Example 2.3. Consider the H-PPEP with d = 4 and A0, A1, A3, A4 ∈ Cn,100, and

A2 being defined as

A2 = B13 · diag
{
φ
(3)
1 , · · · , φ(3)

n

}
·B23 ∈ Cn×n,

where B13, B23 ∈ Cn,1, and φ
(3)
i is defined in (2.43) with k = 3.
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Figure 2.2: Relative residuals of eigenpairs and the associated reciprocity for Ex-
ample 2.1.

We present the relative residuals (RRes) and the reciprocities of eigenpairs com-

puted by the polyeig, PL_SPA and PQ_SPA for Examples 2.1–2.3, using the
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Figure 2.3: Relative residuals of eigenpairs and the associated reciprocity for Ex-
ample 2.2 with larger ∥A0∥2 and ∥A2∥2.
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Figure 2.4: Relative residuals of eigenpairs and the associated reciprocity for Ex-
ample 2.3 with larger ∥A2∥2.

balancing technique in Section 2.5 with n = 30. Numerical results are shown in Fig-

ures 2.2–2.4. We indicate the results computed by polyeig, PL_SPA and PQ_SPA

by “×”, “△” and “o”, respectively. For the PL_SPA and PQ_SPA, all reciprocities

of eigenvalues are preserved to machine accuracy, which are ignored in Figures 2.2

(b)–2.4 (b). From Figures 2.2–2.4, we see that most of relative residuals of eigenpairs

computed by the PQ_SPA are better than that computed by the PL_SPA, only

a few exceptions. Overall, we conclude that applying P-quadratization and SPA

(Algorithm 2.1) to solve PPEPs not only preserves the reciprocal property but also

provides higher accuracy than that by PL_SPA and polyeig in MATLAB.
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2.7 Conclusions

In this section, we mainly propose a palindromic quadratization to transform

the (⋆, ε)-palindromic matrix polynomial of even degree with (⋆, ε) ̸= (T,−1) to a

(⋆, ε)-palindromic quadratic pencil, instead of the orthodox palindromic lineariza-

tion approach. The structure-preserving algorithm for solving palindromic quadratic

eigenvalue problem based on (S+S−1)-transform and Patel’s algorithm can then be

applied. Numerical experiments show that relative residuals of approximate eigen-

pairs for the palindromic polynomial eigenvalue problem computed by the PQ_SPA

are better than those by the PL_SPA and polyeig in MATLAB. Moreover, the

computational cost for PQ_SPA is much cheaper than that for PL_SPA.
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3.1 Introduction

3.1 Introduction

We are interesting in the palindromic matrix polynomial of degree d:

Pd(λ) ≡
d∑

i=0

Aiλ
i, A⋆

i = Ad−i ∈ Cn×n (i = 0, · · · , d) (3.1)

with ⋆ = T,H, and the associated palindromic eigenvalue problem (PEVP)

Pd(λ)x = 0, x ̸= 0. (3.2)

Throughout the section, we assume that Ad is nonsingular and there is no zero

or infinite eigenvalues for Pd(λ), possibly after deflation.

With µ = λ1/2, any matrix polynomial of odd degree d can be re-written as a

matrix polynomial of even degree 2d in µ, for which the palindromic quadratization

approach in [27] can be applied. Interestingly, we only manage to factorize Pd(λ)

when the degree d is odd in this paper . Consequently, the factorization in this paper

(for odd d) and the quadratization in [27] (for even d) complement each other, when

apply to the solution of (3.2).

The main contribution of this paper is as follows. It has long been known, e.g.

from [36, Theorem 3.7], that a matrix polynomial Pd(λ) of degree d has a linear

factor (λI − X) from the right where the solvent X is a solution of Pd(X) = 0;

i.e., Pd(λ) = Pd−1(λ)(λI − X) for a matrix polynomial Pd−1(λ) of degree d − 1.

In order to preserving the "symplectic" property, we shall show for a palindromic

matrix polynomial Pd(λ) (which satisfies [Pd(λ)]
⋆ = λdPd(λ

−1)) of odd degree d can

be factorized as

Pd(λ) = (λI −X−⋆)Pd−2(λ)X
−1(λI −X) (3.3)

where Pd−2(λ) is a palindromic matrix polynomial of degree d−2 and X is a soluble
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3.2 Palindromic Factorization for d = 3

solution of the solvent equation Pd(X) = 0. There may well be useful meaning

on the structure-preserving solution of palindromic eigenvalue problems associated

with Pd(λ).

We shall explore the theoretical aspects of structured factorization of palin-

dromic matrix polynomials. Numerical aspects, such as the solution of the associated

PEVPs and nonlinear matrix equations, error analysis, operation counts, numerical

experiments and comparison with other approaches, will be attempted elsewhere.

3.2 Palindromic Factorization for d = 3

For illustration and motivation, we first consider the cases d = 3, 5, before con-

sidering the general case.

In [? ], the structure-preserving doubling algorithm (SDA) was based on the

factorization for a palindromic matrix quadratic:

AT
1 λ

2 + A0λ+ A1 = (λAT
1 −X)X−1(λX − A1), A0 = AT

0 (3.4)

with X satisfying the nonlinear matrix equation [37]:

AT
1X

−1A1 +X + A0 = 0. (3.5)

Similar approaches involving nonlinear matrix equations or solvent equations, having

been used by many others, can be found in, e.g., [5, 12, 18, 19, 28]. We first generalize

this factorization matrix equation approach for P3(λ). We can verify that

P3(λ) ≡ A⋆
2λ

3 + A⋆
1λ

2 + A1λ+ A2 = (λI −X−⋆)(λA⋆
2 +X⋆A2X

−1)(λI −X) (3.6)
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3.2 Palindromic Factorization for d = 3

with X satisfying the nonlinear matrix equation (NME)

X−⋆A⋆
2X − A2X

−1 −X⋆A2 − A1 = 0. (3.7)

For the trivial case where n = 1, A2 = 0 forces A1 = 0. However, as we have assumed

that A2 is nonsingular (and thus cannot vanish), such a case will not occur.

After solving (3.7), the PEVP (3.2) can be solved, we may apply the QR al-

gorithm to X and some other structure-preserving algorithm to the middle pencil

in (3.6) (or the equivalent λA⋆
2X + (A⋆

2X)⋆) in a structure-preserving way. Some

eigenvectors may be directly obtained while others may have to be computed using

inverse iteration.

The NME (3.7) is nonstandard and does not appear to be easy to solve. However,

under mild conditions, (3.7) is equivalent to the more familiar solvent equation (SE)

for P3(λ) in (3.6):

Pd(X) =
d∑

i=0

AiX
i = 0. (3.8)

Rewrite the PEVP (3.2) in the form

AdV Λd + Ad−1V Λd−1 + · · ·+ A1V Λ + A0V = 0

with Λ ∈ Cdn×dn in Jordan form containing all the eigenvalues and V ∈ Cn×dn

containing the corresponding eigenvectors. Consider a partition (possibly after a

re-ordering of the eigenvalues and the corresponding eigenvectors)

Λ = Λ1 ⊕ Λ2, V = [V1, V2]; Λ1, V1 ∈ Cn×n. (3.9)

Recall that we have assumed that all Jordan blocks in λ are less than n in size, thus

enabling the partition in (3.9). It is easy to check that X = V1Λ1V
−1
1 satisfy the SE
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3.2 Palindromic Factorization for d = 3

(3.8). In other words, the existence of the solution X of the SE is then guaranteed.

We shall show that any solution of the NME (3.7) satisfies the SE (3.8), and any

solved solution of the SE satisfies the NME.

Theorem 3.1. A soluble X satisfies the nonlinear matrix equation (3.7):

X−⋆A⋆
2X − A2X

−1 −X⋆A2 − A1 = 0

if and only if it satisfies the solvent equation (3.8) for d = 3: P3(X) = A⋆
2X

3 +

A⋆
1X

2 + A1X + A2 = 0.

Proof. For necessity, the sum of (3.7) and its transpose/hermitian (3.7)⋆ times

X implies

S(R(X)) ≡ R(X) +R(X)⋆X = 0 (3.10)

where R(x) denotes the operator on the left-hand-side of (3.7):

R(X) ≡ X−⋆A⋆
2X − A2X

−1 −X⋆A2 − A1. (3.11)

We expand the equation, and (3.10) is equivalent to

(X−⋆A⋆
2X − A2X

−1 −X⋆A2 − A1) + (X⋆A2X
−1 −X−⋆A⋆

2 − A⋆
2X − A⋆

1)X = 0

and, after simplification, is equivalent to

A⋆
2X

2 + A⋆
1X + A1 + A2X

−1 = 0. (3.12)

Equation (3.12) in turn is equivalent to the SE (3.1). (Other linear combinations of

(3.7) and its transpose/hermitian, such as (3.7) ×X + (3.7)⋆, X⋆× (3.7) + (3.7)⋆

or (3.7) + X−⋆× (3.7)⋆, lead to the same conclusion.)
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3.2 Palindromic Factorization for d = 3

For sufficiency, start from (3.12), which is equivalent to the SE (3.1) as well as

(3.10), a ⋆-Sylvester [10]. The ⋆-Sylvester operator S(·) is invertible if and only if

the eigenvalues λi (i = 1, · · · , n) of X satisfy [10, Theorem 2.1] (see Appendix I):

λi ̸= −1 (∀i), λi ̸= λ−⋆
j (∀i ̸= j).

These conditions are satisfied when X is solved with all λi inside the unit circle.

Consequently, (3.10) implies that

R(X) = S−1(0) = 0

or the NME (3.7). 2

3.2.1 Solution of NME, SE or PEVP

If λi = −1, the problem can be transformed to have λi = 1 and the solution of

the NME (3.7) can be obtained through the SE (3.1). Nonetheless, if we have both

λ = ±1, then the transformation, and thus the equivalence of the NME and the SE,

fail.

Define Y = A⋆
2X, the NME (3.7) has the form

A2Y
−⋆Y − A2Y

−1A⋆
2 − Y ⋆ − A1 = 0. (3.13)

Without the first term, (3.13) looks very similar to (3.5). Similar to (3.6), we have

the corresponding factorization

P3(λ) = (λY ⋆ − A2)Y
−⋆(λY + Y ⋆)Y −1(λA⋆

2 − Y ) (3.14)
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3.3 Palindromic Factorization for d = 5

The structure-preserving solution of the PEVP (3.2) then involves the following

steps: Solve (3.7), or (3.13) for a solved X or associated Y . Apply the QR algorithm

to λI−X, or we can use the QZ algorithm to λA⋆
2−Y . Using a structure-preserving

algorithm to solve the palindromic linearization λY + Y ⋆.

3.3 Palindromic Factorization for d = 5

Rewrite the palindromic matrix polynomial of degree d = 2r+1 in the following

symmetric form:

Sr(λ) ≡
r∑

i=0

(
M⋆

i λ
i+1/2 +Miλ

−i−1/2
)
, (3.15)

where Ai = M⋆
i−r−1 (i > r) or Ai = A⋆

d−i (i ≤ r), with [x] denoting the largest

integer less than x and i = 1, · · · , d. Motivated by the d = 3 case, we are seeking

the following structured factorization:

Sr(λ) =
(
I − λ−1X−⋆

) [ r−1∑
i=0

(
B⋆

i λ
i+1/2 +X⋆BiX

−1λ−i−1/2
)]

(λI −X) (3.16)

Note that the middle factor has the form

r−1∑
i=0

(
B⋆

i λ
i+1/2 +X⋆BiX

−1λ−i−1/2
)
= Sr−1(λ)X

−1

where the symmetric

Sr−1(λ) ≡
r−1∑
i=0

(
B̃⋆

i λ
i+1/2 + B̃iλ

−i−1/2
)
, B̃i ≡ X⋆Bi

is a symmetric representation of a palindromic matrix polynomial of degree d =

2(r − 1). Consequently, in general, Pd(λ) in (3.3) or its symmetric representation

Sr(λ) in (3.16) may be recursively factorized until only linear factors exist, if all the
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3.3 Palindromic Factorization for d = 5

associated SEs can be solved. Note also that even if X is not exact, the palindromic

structure in the factored form of Sr(λ) is preserved.

Expanding (3.16) and matching the coefficient matrices for d = 5 and r = 2, we

obtain

M2 = B1, (3.17)

M1 = −X⋆B1 +B0 −B1X
−1, (3.18)

M0 = X⋆B1X
−1 +X−⋆B⋆

0X −X⋆B0 −B0X
−1. (3.19)

Substitute B0 and B1 from (3.17) and (3.18) into (3.19), we obtain the NME for X

(for d = 5):

R(X) ≡ M0 +X⋆M1 + (X⋆)2M2 +M1X
−1 +M2X

−2 (3.20)

+X⋆M2X
−1 −X−⋆M⋆

1X −X−⋆M⋆
2X

2 − (X−⋆)2M⋆
2X = 0. (3.21)

With nine terms (and in general (r + 1)2 terms), we don’t like to solve such a

long equation like this. However, similar to Section 2, we can prove that (3.20) is

equivalent to (3.8) when a solved X is sought. Similar to (3.10), we have

S(R(X)) = R(X) +R(X)⋆X

= M0 +X⋆M1 + (X⋆)2M2 +M1X
−1 +M2X

−2

+X⋆M2X
−1 −X−⋆M⋆

1X −X−⋆M⋆
2X

2 − (X−⋆)2M⋆
2X

+M⋆
0X +M⋆

1X
2 +M⋆

2X
3 +X−⋆M⋆

1X + (X−⋆)2M⋆
2X

+X−⋆M⋆
2X

2 −X⋆M1 − (X⋆)2M2 −X⋆M2X
−1

= M⋆
2X

3 +M⋆
1X

2 +M⋆
0X +M0 +M1X

−1 +M2X
−2

= P5(X)X−2 = 0.
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3.4 Palindromic Factorization for Odd Degree d

With the same argument using the property of the ⋆-Sylevester operator S(·), we

have shown a similar result as Theorem 2.1 that the NME (3.20) (or R(X) = 0) and

the SE (3.8) (or P5(X) = 0) are equivalent for a soluble X.

The challenge is to generalize the tedious argument for d = 3, 5 to the general

case for all odd values of d.

3.4 Palindromic Factorization for Odd Degree d

We shall proof a general version of Theorem 2.1 by generalizing the results in

Section 3.3 to a recursive argument, without writing down the tedious NMEs.

Theorem 3.2. For odd values of d = 2r + 1, a soluble X satisfies the nonlinear

matrix equation, obtained by matching the coefficient matrices of Sr(λ) in (3.15)

and its factorization in (3.16), if and only if it satisfies the solvent equation (3.8):

Pd(X) = 0.

That is to say, any palindromic matrix polynomial of odd degree can be factor-

ized in a structure-preserving way as in (3.16) by solving the corresponding solvent

equation (3.8) for a solved X.

Proof. We shall follow the steps in Section 3.3 for the d = 5 case. Expanding

(3.16) and matching the coefficient matrices for a general d = 2r + 1, we obtain

Mr = Br−1, (3.22)

Mr−1 = −X⋆Br−1 +Br−2 −Br−1X
−1, (3.23)

Mi = −X⋆Bi +Bi−1 +X⋆Bi+1X
−1 −BiX

−1 (i = r − 2, · · · , 2), (3.24)

M1 = −X⋆B1 +B0 +X⋆B2X
−1 −B1X

−1, (3.25)

M0 = X⋆B1X
−1 +X−⋆B⋆

0X −X⋆B0 −B0X
−1. (3.26)
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3.4 Palindromic Factorization for Odd Degree d

The first d equations of (3.22)–(3.25) lead to all the values of Bi (i = 0, · · · , r − 1),

in terms of Mi (i = 0, · · · , r) and X. By substituting into the last equation (3.26),

we obtain the NME, which is very tedious and we shall apply a recursive argument

to avoid writing it down explicitly. Note that (3.22) and (3.23) are just special cases

of (3.24) with i = r, r − 1, in which those Bi with i ≥ r degenerate to zero.

From the last equation (3.26) and similar to (3.10) and (3.11), we obtain the

NME:

R(X) ≡ M0 +X⋆B0 +B0X
−1 −X−⋆B⋆

0X −X⋆B1X
−1 = 0 (3.27)

and the ⋆-Sylvester operator

S(R(X)) = R(X) +R(X)⋆X. (3.28)

From (3.27) and (3.28), we obtain

S(R(X)) = (M0 +X⋆B0 +B0X
−1 −X−⋆B⋆

0X −X⋆B1X
−1)

+(M⋆
0X +B⋆

0X
2 +X−⋆B⋆

0X −X⋆B0 −X−⋆B⋆
1X

2)

= M⋆
0X +B⋆

0X
2 −X−⋆B⋆

1X
2 +M0 +B0X

−1 −X⋆B1X
−1

= 0 (3.29)

For the initial step, substitute B0 from (3.25) into (3.29), we have

S(R(X)) = M⋆
0X + (M⋆

1 +B⋆
1X +X−⋆B⋆

1 −X−⋆B⋆
2X)X2 −X−⋆B⋆

1X
2 +M0

+(M1 +X⋆B1 +B1X
−1 −X⋆B2X

−1)X−1 −X⋆B1X
−1

= M⋆
0X +M⋆

1X
2 +B⋆

1X
3 −X−⋆B⋆

2X
3 +M0 +M1X

−1

+B1X
−2 −X⋆B2X

−2 = 0.
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3.4 Palindromic Factorization for Odd Degree d

It is then easy to see that the substitution of B1 (and subsequently Bi−1 for i =

3, · · · , r) from (3.22)–(3.24), proves that

S(R(X)) = M⋆
0X +M0 +M⋆

1X
2 +M1X

−1 + · · ·+M⋆
rX

r+1 +MrX
−r

= Sr(X)X1/2 = Pd(X)X−r = 0,

which is equivalent to the SE (3.8).

With S(·) invertible for a soluble X, we have shown S(R(X)) = 0 ⇔ R(X) = 0

or the equivalence of the NME and the SE.
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4
Conclusions and Future Work
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In this thesis, we consider two themes related to palindromic matrix polynomials

for solving nonlinear eigenvalue problems.

In the first topic (Chapter 2), we propose a palindromic quadratization to trans-

form the (⋆, ε)-palindromic matrix polynomial of even degree with (⋆, ε) ̸= (T,−1)

to a (⋆, ε)-palindromic quadratic pencil which is emerged in solving higher order

systems of ordinary or partial differential equations. Figure 2.1 illustrate the rela-

tionship among various structured polynomial eigenvalue problems. T-even, T-odd,

T-anti-palindromic and T-palindromic polynomial eigenvalue problems of even de-

gree can be P-quadratized to T-PQEPs. Consequently, the structure-preserving

algorithm for solving palindromic quadratic eigenvalue problem based on (S +

S−1)-transform and Patel’s algorithm can be applied to slove the (⋆, ε)-palindromic

quadratic pencil(·⊤ case in [24] and we present ·H case). By the structure-preserving

backward error analysis [47], we find the quadratization also caused considerable im-

pact on our backward error. However, we provide a balancing technique that improve

our backward error and easily implement in our original algorithm. Numerical ex-

periments show that relative residuals of approximate eigenpairs for the palindromic

polynomial eigenvalue problem computed by the PQ_SPA are better than those by

the PL_SPA and polyeig in MATLAB. Furthermore, the computational cost for

PQ_SPA is much cheaper than that for PL_SPA.

In chapter 3, we consider the structured factorization of a palindromic matrix

polynomials of odd degree, instead of the orthodox palindromic linearization ap-

proach. We develop the theoretical aspects of structured factorization of palindromic

matrix polynomials. To be in face of such factorizations, there are some difficult

nonlinear matrix equations that have to be solved. However, we point out that these

equations are equivalent to the well known solvent equation, when the solution X

is solved. Without writing down the dreary NMEs, we provide a general version
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from the palindromic matrix polynomials of odd degree to a structure-preserving

factorization by solving the solvent equation.

We have reported the numerical experiments which relative residuals of approx-

imate eigenpairs for the palindromic polynomial eigenvalue problem with small size

matrix. However, it is urgent and important to apply our quadratization to solve the

large sparse matrix. In [24], W.-W. Lin propose Generalized ⊤-skew-Hamiltonian

Arnoldi method to cope with ⊤-palindromic quadratic pencil. This will be a big

step forward if we can use this technology to solve our (⋆, ε)-palindromic quadratic

pencil with quadratization transform.

Other polynomial eigenvalue problems of higher degree than two arise when

discretizing linear eigenproblems by dynamic elements [46, 61] or by least squares

elements [48], so it is essentially for us to deal with palindromic matrix polynomials

of odd degree. Nevertheless, we face some difficult nonlinear matrix equations that

have to be solved in section 3. The theoretical aspects of factorization of palin-

dromic matrix polynomials cause another problem and it also cost numerous time

for computer to solve the nonlinear matrix equations. Many pioneers do a lot of

contributions in this field. For instance, V. Mehrmann [40] propose a “Good Lin-

earizations” to settle structured factorization of a palindromic matrix polynomials.

We also look forward to the palindromic matrix polynomials of odd degree can be

decomposition well with different methods.
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