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Abstract

In 3D image processing, the depth estimation based on the given left and right images (the
so-called stereo matching algorithms) has been widely used in many 3D applications. One
type of applications tracks the body motion and/or poses with the aid of depth information.
How to evaluate depth estimation algorithms for different applications becomes an issue. The
conventional method of evaluating these depth estimation algorithms is often using a small
number of test computer-generated images, which is insufficient to reflect the problems in the
real world applications.

In this study, we design a number of scenes and capture them using the RGB-D cameras;
that is, our dataset consists of stereo pair images and their corresponding ground truth
disparity map. Our dataset contains two categories of factors that may affect the performance
of the stereo matching algorithms. They are image content factors and image quality factors.
The image content factor group includes simple and complex backgrounds, different number

of objects, different hand poses and clothing with various color patterns. In the group of



image quality factor, we create images with different PSNR and rectification errors.

In addition, each stereo pair has their ground truth disparity map. All images and the depth
maps are captured by a pair of Kinect devices. To generate appropriate images for the test
dataset, we need to calibrate and rectify the captured RGB image pairs and we also need to
process the captured depth maps and create the so-called trimaps for evaluation purpose. For
the left and right color images, because they come from different sensors, we must perform
camera calibration to obtain the camera parameters, and color calibration to match colors in
two images. Also, we align the left and right images using the existing camera rectification
technique. To generate the ground truth disparity map, we first capture the raw depth map
from Kinect, and we warp it from the view of the IR camera to the RGB camera. These depth
maps have many black holes due to its sensing mechanism. To make the ground truth
disparity map more reliable, we propose an adaptive hole-filling algorithm. Last, we adopt the
matting segmentation concept to create a tri-value map (trimap) that classifies image pixels
into foreground, background, and in-between regions. Our error metrics are bad-matching
pixel rate and the mean square error between the ground truth disparity map and the estimated
disparity map. We focus on the performance in the foreground region. In our experiments,
three stereo matching algorithms are used to test our dataset and evaluation methodology. We

analyze these algorithms based on the collected data.
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chapter 1  Introduction

1.1 Background

Kinect is an innovation in human-computer interaction since it was released by Microsoft.
The active depth sensor in Kinect provides the depth information, which can be very helpful
for the applications such as human skeleton tracking. Seme other systems use stereo RGB
cameras to produce the depth information based on the stereo matching algorithms. This
approach has the advantage of lower hardware cost since only one more camera is added to
the system without the need of an active depth sensor. Here comes the challenge that there are
many factors in.a real scene, which lower the performance of stereo matching. Knowing
which stereo matching algorithm is more robust to certain factors can help us to choose and
improve the right matching algorithms for different applications. The focus of this thesis is

design appropriate test images for evaluating stereo matching algorithms.

1.2 Motivations and Contributions

There were several evaluation methods proposed in the past years, and the method from [1] is
the most popular one. The database contains a few image pairs with ground truth depth maps.
It evaluates the algorithms by focusing on the accuracy in three regions: non-occluded region,
discontinuity region and the entire image. However, this evaluation site does not match our
purpose because the dataset contains a small number of images, which cannot cover the issues
we are interested in such as complex background versus simple background, one object versus
several objects, etc. In [2], they provide a dataset with three different noises: Gaussian noise,
brightness differences, and blurring. But the sequences in the dataset are computer-generated,

which are quite different from the real scenes.
1



In this thesis, we design a test dataset and propose an evaluation procedure. The dataset
consists of stereo pair images of real scene and their corresponding ground truth disparity
maps. These images reflect six kinds of factors that appear in the real world and may affect
depth estimation performance. To produce the ground truth depth maps, we propose a
hole-filling method to polish the captured disparity maps. We focus on the disparity in the
foreground, which is more important in the human-computer interaction applications. In our
experiments, we show the evaluation results produced by three stereo matching algorithms

and we discuss the causes of leading to their varying performances on different scenes.

1.3 Organizations of Thesis

In this thesis, we first introduce. the depth estimation principles and the existing evaluation
methods In chapter 2. In chapter 3, we talk about the fundamental principles of camera
calibration, rectification and color calibration, which are used to generate the test dataset.
Next, we describe how the dataset is created, and our error metrics to evaluate the stereo
matching algorithms in chapter 4. In chapter 5, we show the experimental results and

discussion. At last, conclusions and future work are mentioned in chapter 6.



chapter 2  Depth Estimation

2.1 Introduction to Depth Estimation

In the recent years, 3D display becomes more and more popular. People love this kind of
entertainment that gives them the depth perception. Besides, the motion sensing devices such
as Kinect and Wii have huge success because people can involve deeper in the game when
they can move their body to control the figures in the game. These two technologies
mentioned above have the same feature — they all need the depth information. For example,
Kinect uses the depth information to detect motion more precisely, and 3D movie need the
depth to create disparity.

In image processing, the depth information is kept in the depth map. A depth map is an
image that presents the distances from a camera to scene objects by grayscale. Typically, the
depth value in the map is quantized into 256 levels (8-bit representation) by the following

equation:

1 1

v =255 —FL"— (2)

Znear—Zfar

where v is the quantized depth value, z is the original depth value, and Z,.,. and Zg,,
are the nearest and the farthest clipping planes in the 3D space. This non-uniform depth
quantization is designed by Chai et al in [3]. When the quantized depth value is larger, the
corresponding pixel is closer to the camera, and vice versa.

How to produce an accurate depth map is always an important issue for people doing
research in the field of computer vision and image processing, and there are already many
depth estimation methods to help people find the depth. Generally depth estimations can be

divided into two categories: active depth sensing and passive depth sensing. We will describe
3



more details about them in the following sections.

2.2 Active Depth Sensing

The depth sensing devices which can directly measure the depth value are called active depth
sensing devices. Different depth sensors have their own special sensing mechanism to operate
in real time. Among these devices, the Time-of-flight (ToF) and the structured-light depth
sensors are the most popular ones, and they happen to use infrared (IR) light in their sensing
mechanism. In [4], they did an evaluation comparison between Time-of-flight and structured
light depth cameras. Time-of-flight camera, such as Mesa SR4000, can estimate depth by
measuring phase changing from the emitted infrared light to the reflected infrared light.
Figure 1 shows that the green wave. is the infrared light that is directed to the objects from the
IR emitter. Blue wave is the infrared light that is reflected back to the receiver. The
phase-delay between these two can be converted to depth of the scene objects.
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Figure 1: The principle of TOF depth camera [4]

Structured-light depth sensors uses structured light scanning as its distance measurement
method. As Figure 2 shows, the projector sends a pattern consisting of many stripes in
different orientations. The pattern will distorts geometrically so that we can get the 3D

information of the scene objects. For example, the stripe will be straight when being projected

4



on the flat surface object, but distorted when being projected onto non-flat surface like hands.
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Figure 2: Simple concept of structured light depth camera [5]

Kinect is one of depth sensors that uses structured light sensing. However, Kinect’s
system is very different from the traditional method. The device consists of an infrared light
projector, an infrared camera and a RGB camera. This is how it works: the IR light projector
emits infrared light which goes through a Diffractive Optical Element and then becomes
speckle patterns. These speckle patterns are projected on the objects in the scene and they
have three different sizes when projected in the different depth range. Next, the IR camera
detects these speckle patterns and the system on chip (SOC) calculates convert the data to the

depth values. Figure 3 illustrates how Kinect estimates depth.
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Figure 3: The principle of structured-light depth camera [6]
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Kinect has been a great hit since it was released by Microsoft, because it is easy to access
and not as expensive as Mesa SR4000. When playing motion sensing games, Kinect can track
our body movement very well. When doing research, the official Kinect SDK or OPENNI
provides many useful functions to make the best use of Kinect for researchers. Figure 4 shows

the Kinect device.

XBOX 360

IR projector
RGB camera

IR camera

Figure 4: Introduction of Kinect for Xbox

2.3 Passive Depth Sensing

Instead of using the depth sensing devices, we can also calculate the depth information from
two or more images. Because we have to use the computer vision method to obtain the depth
indirectly, we call this depth sensing method as passive depth sensing. Precisely speaking,
what we calculate is not depth but disparity which can be converted to depth. Disparity is the
shift when a point in the 3D world projects on different image planes. Because of disparity,
we can perceive depth information, as the illustration in Figure 5. In Figure 5, 0, and Og
are the left and right camera centers, or we can regard them as our eyes. P is an arbitrarily
point in the 3D world, and P, and P; are the points that P projects on the right and left

image plane. X; and Xy are the x coordinate of P, and P;. Because we assume that the
6



cameras are set in the 1D parallel configuration, the disparity between two corresponding
points is Xz — X;. As we can see P is closer to the camera in the left scene, which makes
disparity value of the right corresponding pair is smaller than that of the left corresponding

pair. This is how disparity information provides us the perception of depth.

Xy, Xr Xp /720 o Xg
,:J rL \'\I R ,,»' L l \\\\ R
o >e >0
0 L 0) R 0 L OR

Figure 5: The relation between the disparity and the perception of depth

Back to the passive depth sensing method, to get the disparity value we have to find the
pixel correspondences between two images. Once the disparity is correctly found, it can be

converted to depth by triangulation. Their relationship is shown in Figure 6.
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Figure 6: An illustration of the transformation between depth and disparity

In Fig. 1.6, most of the points have been defined in the previous paragraph. f is the focal
length of two cameras. Z is an depth of the arbitrary 3D point p. Note that according to the
1D parallel configuration, the disparity of P, and Py is simply the horizontal shift: X, — X;.
So the relation of depth and disparity, which can be derived from triangulation, is expressed as

an equation:

z=2 2)

where d is the disparity and b is the baseline distance.

To sum up, the core concept of passive depth estimation is to find the matching pixels
between two images. As a result, we call it passive depth estimation stereo matching
algorithm. Nowadays, there are many state of the art stereo matching algorithms being
proposed by the researchers. In general, there are four major steps performed in most stereo
matching algorithms [7]:

1. Matching cost computation
2. Cost aggregation
3. Disparity computation/ optimization
4. Disparity refinement

In the first step, we calculate the matching cost which measures the similarity between
pixels. That is to say, the smaller the cost, the higher probability that they may be a pair of
corresponding pixels. From [8], we apply several dissimilarity measures as our matching cost.
For example, the sum-of-squared-differences algorithm (SSD) or sum-of-absolute-differences
algorithm (SAD) are commonly used. In addition, people use the metrics such the
normalized-cross-correlation (NCC) algorithm or the zero-mean-sum-of-absolute-difference
(ZSAD) algorithm to take the intensity differences caused by different shutter times, apertures

of the cameras or light conditions into account.
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Second, we aggregate the matching costs over a support window. This step can reduce
the problem of errors due to noise sensitivity when using pixel-wise dissimilarity measure.
But the drawback is that we will produce less detailed results, especially in the region of
discontinuities. The bigger the window size is, the worse the quality of the discontinuous
region. And if we set the window size small, the quality of the discontinuous region will
perform better. However, it will become more sensitive to the noise. Not to fall into this
trade-off, some people apply multiple windowing aggregation strategies instead of fixed
window. Generally, these methods change its window size and shape adaptively depending on
the texture of the neighbor pixels. In [9] they provide an adaptive window approach, which
improves the results and can run in real time.

Third, we find the best match for each pixel. In this step, the algorithm can be
categorized into local and global methods. Local methods simply choose the minimum
matching cost at each pixel and this will determine the pixel’s disparity. Winner-take-all
(WTA) optimization is often applied in the local method. The advantage of local methods is
that they are easy to implement and run in real time because of their simplicity. However,
local methods have difficulty of handling the occlusion region, and they produce a smooth
less result.

On the other hand, global methods determine the disparity by minimizing global energy
function. The energy function usually contains a data term and smoothness term. It is shown
below:

E(d) = Eqata(d) + AEsmootn(d) 3)
Egqtq(d) is the data term that measures the dissimilarity between pixels just like the

matching cost mentioned in step 1. We define it as follow:

Eqqra(d) =3 C(x,y.d(x,y) (4)

X,y
Where c is the cost function, x and y are the coordinates of the pixel to be found its
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correspondence, and d(x,y) is the candidate of disparity d . The aggregation process can
be ignored when we apply to global method. E,00:n(d) is the smooth term that computes
the dissimilarity of disparities between the pixels to be matched and their neighbor pixels.
Because we assume that the neighbor pixels may be more likely on the same objects, they
should have equal or very similar disparity. To minimize the smooth term enable us to
produce a more smooth disparity map..This explicit hypothesis is a feature in the global
methods while the local methods make implicit smoothness assumptions. There are some
methods to compute the smooth term. For example, we can easily use the difference of
disparities between neighbor pixels as follow:

Eqara(@) =3 p(d(x,y) - d(x+1,y)) + p(d(x,y) - d(x,y+1)) (5)

X,y

Where , is a monotonically increasing function of disparity difference.
Also, we can introduce the difference of intensity into the smooth term and it is shown as
follows.

Egata(d) =3 p, (d(x,y) =d (x +1,y) - p, (1 (x, y) - 1(x + 1, y)) (6)

X,y

Where p, Is a monotonically decreasing function of intensity difference that minimize the
smooth term focusing on high intensity gradients.

Third, after introducing the cost function in local method and energy function in the
global method, and we then talk about how to minimize them. There are several algorithms
can be applied. For example, Graph Cuts and Belief Propagation which find the optimization
by modeling the disparity map as a Markov Random Field (MRF) are commonly used to. A
detailed comparison of the methods using MRF can be found in [10]. In addition, the dynamic
programming technique which is an early termination method, is still used in the present
stereo matching algorithm. Dynamic programming finds the global optimization along
independent scan-line. In [11], they present a 2D scan-line structure instead of traditional 1D

scan-line structure which causes streaking effect.
10



The advantage of global methods is that it can handle the uniform and occlusion texture
well, and produces more smooth disparity results. As a result, the quality of the disparity map
is better than the local method. Yet the computation time of the global methods is much longer
than the local method because it seeks a global optimization.

In the last step, we introduce some methods to make the disparity map more accurate.
Although some applications such as human detection and skeleton tracking do not need very
perfect disparity map, other applications like Depth Image Based Rendering (DIBR) cannot
tolerate the disparity map with errors. Consequently, refinement of disparities is required.
Many people use sub-pixel interpolation, which can be done by fitting a curve to the matching
costs at discrete disparity values, or perform iterative gradient descent. Besides, people can
simply use some of the filtering. method as post processing of the disparity map. The

morphological operators, median filtering and bilateral are commonly used.

2.4 Comparison between active depth sensing and passive depth

sensing

Active depth sensing, which uses a depth sensor to measure depth, can produce a depth map
in real time. On the other hand, the passive depth sensing, which uses algorithm to calculate
depth usually, has a longer computation time. Although researchers have proposed many
real-time stereo matching algorithms, the quality still hardly competes with those having
longer computation time. Active depth sensing can only be used in a limited range. For
example, Kinect’s sensing range is from 800mm to 4000mm, and SR4000 of wide field of
view version’s sensing range is from 100mm to 10000mm. However, passive depth sensing
has no such limitation, and it is a better choice when we want to produce a depth map of

outdoor scene. The overall quality of the depth map produced by active depth sensing is better
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than passive depth sensing, though there are some noises caused by the scene objects with
material that reflect or refract infrared light. If we focus on the quality of the object’s edge,
passive depth sensing is better than the active depth sensing. Figure 7 shows the quality

difference between active and passive depth sensing:

(@) color image (b) depth map produced  (c) depth map produced

by active depth sensing by passive depth sensing

Figure 7: Quality comparison between active and passive depth sensing.

2.5 Evaluation of stereo matching algorithms

Stereo matching has been studied for a very long time. People work hard to solve all sorts of
inaccurately computed disparity. Since there are many different kinds of stereo matching
algorithms, people then try to build a system that can evaluate these algorithms fairly. Generally,
we can divide the traditional evaluation method into two ways: qualitative and quantitative
way. The qualitative evaluation method such as Structural Similarity (SSIM) illustrated in [12]
used human related biasing factors to simulate a human-like evaluation result. Quantitative
method thought to be more robust than the qualitative method is much more commonly used.

Middlebury [1] is a platform devoted to quantitative evaluation methods and is well known by
researchers in this area. There are more details in [7]. Middlebury provides several image pairs
and their ground truths in their database. People use these image pairs to produce disparity

maps by using their own algorithms. Then, they can upload these disparity maps to the website.
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Middlebury evaluate the algorithms by the ratio of bad matching pixel in three sections:
non-occluded areas, all areas and discontinuity areas. If the difference between the estimated
disparity value and ground truth disparity value exceeds a given threshold, the pixel will be
thought to be a bad matching pixel. The final evaluation result comes from comparing with all
other algorithm uploaded to Middlebury: how the algorithm performs in these three parts will
be ranked together with many other algorithms, and the rank is its score. The average of the
three scores will be the final evaluation score. However, some researchers think Middlebury’s
evaluation methodology has some drawbacks. One of them is that it does not measure the
magnitude of the estimated errors because no matter how big the errors are, they are all
consider as bad matching pixel. Besides, errors below the threshold will be seen as a correctly
estimated pixel, but this little error may affect some applications a lot such as DIBR.
Moreover, since the matching cost is very important to the stereo matching algorithm, [13]
presents an evaluation methodology that computes the insensitivity of different matching
costs with respect to radiometric differences of the input images. Radiometric differences
mean the difference between corresponding pixels. These variations can be caused by
camera’s settings or the position of illumination in the scene. To simulate some of the
radiometric variations, the paper adds global intensity changes, local intensity changes and
noise to the test images. After the disparity maps are calculated from the dataset by several
stereo matching algorithms, they compute the bad matching pixel rate. The result they found
is that all of the algorithms they tested cannot handle strong local radiometric changes caused
by changing the location of the illumination.

Inspired by the evaluation methodology illustrated in the previous paragraph, we want to
create an evaluation method that focuses on not only the textural accuracy but also the
robustness against different kinds of factors influencing disparity’s quality. The reason why

we want to do this research is that there are many current applications make use of the depth
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information. So we want to know which stereo algorithm produces results that satisfy certain
application. This problem of choosing a proper algorithm based on how the algorithm
performs when the input images may contain noise or lack texture, which may lead to poor
depth estimation. In [2], they present an evaluation system that answers the question how the
stereo algorithm performs under certain situations. It provides a dataset consists of several
synthetic sequences, which are added with three noises: Gaussian noise, brightness difference
and blurring. However, these sequences are not real and we know that we can get a totally
different result using real sequences and synthetic sequences. Furthermore, the noises may not
strong enough to handle the entire situation for different applications. In this thesis, we will
present an evaluation methodology on the stereo matching algorithm using a dataset consisting
of real images. Moreover, we add.noises to the images. Roughly, there are two categories of

the influencing factors: content factors and image quality factors.
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chapter 3  Calibration and rectification

In this chapter, we introduce three preprocessing alogorithms applied to the stereo images
before conducting the stereo matching. They are camera calibration, image rectification and
color adjustment. In camera calibration, we find the transformation between the 3D world
coordinates and 2D image coordinates, then we use this transformation to do the image
rectification. Image rectification transforms the stereo images to a common image plane
(epipolar geometry), which can simplify the search of correspondence to one dimension. In
color adjustment, we ensure the same object feature points in two images have the same color
intensity, because they usually are not the same due to different cameras or illumination

reflection.

3.1 Camera Calibration

This is a process to find the camera parameters which enables us to fully understand the
relation between the 3D world coordinates and 2D image coordinates. Camera parameters can
be divided into intrinsic parameters and extrinsic parameters. Intrinsic parameters link 2D
image coordinates to 3D camera coordinates, and the extrinsic parameters link 3D camera
coordinates to 3D world coordinate. They are described in more detail in [14].

First, we introduce the intrinsic parameters. Intrinsic parameters can be described by a

pinhole camera model, which is shown in the Figure 8:
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Figure 8: The pinhole model

This simplified model used for CCD like sensors describes the relationship between a point P
in the 3D coordinate and its projection point p in the image plane. Camera center is the
center of the projection, and is also called optical center. The line passing through the camera
center and Is perpendicular to the image plane is called the principal axis. The intersection of
the principal axis and the image plane is the principal point. The coordinate of the principle
point is (uc, v.), and f, which stands for the distance between camera center and the
principal point, is called the focal length of the camera. We can represent the projection point

p by the following equation hy triangulation:
(W) = (L +ue, L+ 1), @
where Z is the depth value of point P. If we rewrite p and P by using homogeneous

coordinates, then the transformation from the image plane to the 3D camera coordinate can

simply be a linear mapping, which is illustrated as follows:

uy [f, 0 wu 0 );
zH: 0 f v of|Y ©
1 o o 1 ol [}
fu 0 u 0 fu VY Uo
In the above equation, we rewrite |0 f, v, 0] into K[I|0], where K=10 f, wv,].
0 0 1 0 0 0 1
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fu and f, are the focal lengths of camera’s x axis and y axis. y is the skew parameter
describing the angle between the x axis and y axis, and it is zero for most of the camera. Now,
we let X...n» be a point in the 3D camera coordinates and x be the point in the image plane.
Note that both of them are in the form of homogeneous vectors. So we can get a simple
equation of relation between X.,,, and x:
x = K[L|0]X cam (9)
We usually called the matrix K the intrinsic parameter matrix containing all the intrinsic
parameters of camera.
Now we introduce the extrinsic parameters. As previously mentioned, the extrinsic
parameters represent the link between 3D camera coordinates and 3D world coordinates. To

illustrate this in details, first we take a look at Figure 9
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Figure 9: The transformation between the world and camera coordinate frames

We can see two different coordinate frames in the figure: one is world coordinate frame, and
the other is camera coordinate frame. These two frames can be transformed by a rotation and
a translation, and we call them the extrinsic parameters. Now we let X ,,,, be a point of
inhomogeneous 3-vector in the camera coordinate frame, and X,, be the same point in the
world coordinate frame. So we can write their relation in the following equation:

Xeam = RX,, +t (10)
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where R isa 3 x 3 rotation matrix and t is a 3-vector translation:

11 Tz T3 ty
R=|T21 T2 ™3|, t=|L; (11)
T31 T3z 133 i3

Now we rewrite the relation between X.,,,, and X,, in homogeneous coordinate where they
become X.,n and X,,:
R t
Xcam = 0 1] Xy (12)
Then we put the equation above into Eq. 9 and we get:

x = K[1|0] [1; % =KRIOX, = M- X, (13)

We call [R|t] the extrinsic parameter matrix. M which is a 3 x4 matrix is the link of 3D
world coordinate and 2D image plain, and we call it the projection matrix. Note that when we

use the projection matrix, the two coordinates should be in homogeneous coordinates.

3.2 Image Rectification

Image rectification is the process to align the two images’ corresponding epipolar lines. When
doing the stereo matching, this preprocessing is very important because the search of the
correspondence can be done simply along the horizontal lines after rectification. To rotate and
translate the original images into the rectified images, we have to use the camera parameters
obtaining from camera calibration. Before explaining how to do image rectification, we first

introduce epipolar geometry, and there are more details in $£52! FRAFIREEFIR - ].

3.2.1.Epipolar Geometry

To well describe epipolar geometry, we have to see the Figure 10 below:

18



P Epipolar

Epipolar |

line . Epipolar

line

Figure 10: Epipolar geometry

0, and Oy are the left and right camera centers. P is a point in the 3D worlds, and P, and
Py are the projections onto the left and right image planes. The line 0,0y is called baseline.
The right camera center Oy projects e, into the left image plane, and eg is similarly
specified. e; and ey are called epipoles. P, O, and O form a plane which is call the
epipolar plane. We can see that when the two cameras’ positions.are fixed, then the epipoles
are fixed as well. So if we can find the corresponding pair of epipoles, we are able to know
the relative positions of the cameras. If we see the line 0, P from the left camera, point P,
shows up on left image plane. But if we see from the right camera, it is a line on the left image
plane. We call this line epipolar line. This epipolar line can help us find corresponding points.
For examples: we want to find the corresponding point of P, on the right image plane. Once
we find the epipolar line on the right image plane, then the point P must lie on this line.
This constraint, which we called it epipolar constraint, can simplify the work of stereo

matching.
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3.2.2.Rectification of stereo pairs

Now we know that epipolar constraint make stereo matching simpler. But when the epipolar
lines are not horizontal, it causes problems when we turn the skew epipolar lines into
pixel-based presentation. As a result we need to transform the stereo pairs into new ones that
their epipolar lines are parallel and horizontal, and this transformation is called rectification.
Fig 3.3 can be seen as two unrectified images, and Figure 11 shown below are the two

rectified images:

Figure 11: Two rectified images

The concept of rectification is rotating the left and right image planes around their
camera centers to make them coplanar and parallel. If the left and right camera centers are O,
and Og, and the original left and right projection matrices are Ki[R|t,] and Kgr[Rg|tr]
respectively. After the transformation, the new projection matrices will be K[R|t;] and

K[R]|tr]. The new intrinsic parameter matrix K, which can be set arbitrarily and we choose:
K = (Kp + Kg) (14)

The new rotation matrix is defined as follows:

T
ry
0.,-0
R=|rI| where ry =——"E r,=r1r; XZ,4, [x =10 XT,. 15
T L R
I3

r; isthe new X axis that must parallel to the baseline to make sure that the epipolar lines are
20



horizontal. r, is the new Y axis which is the cross product of the new X axis and the Z
unit vector of the original left matrix. r, isthe new Z axis which is the cross product of the

new X axis and new Y axis. There are more details described in [15].

3.3 Color Calibration

Color calibration, which makes sure that a pair of correspondence has the same color intensity,
is an important preprocessing stop before conducting the stereo matching algorithm. Even the
identical cameras may not have the same color responses, not to mention using different
cameras. The concept is that we have the images from the left and right cameras, and then we
match the color of one image to another by a certain algorithm. Here we introduce a simple
algorithm we used in this thesis, histogram-based color calibration.

This is how the algorithm to be done. Given that we have a reference image I; and the
adjusted image I,, calculating their histogram separately. These histograms represent the
probability mass function (PMF), which describes the probability of each color intensity
(0~255). Then we derive their cumulative mass functions (CDF) from PMFs: €; and C,.
Because the CDF is monotonically increasing, we can design an inverse function for C;.
Finally we can write the relation between the old intensity and new intensity of I,:

Lnew (U, v) = CrH[Co 1,010 (w,w)]], (16)
where I, ,,4(u, v) is the color intensity of I, before color calibration, and I, ;. (u,v) is

the color intensity after color calibration accordingto I;.
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chapter 4 Dataset Generation for Evaluation

In this chapter, we introduce our evaluation methodology applied to the stereo matching
algorithm. First, as mentioned in section 2.4, we build a dataset that consists of stereo pair
images and their corresponding disparity map. The stereo pairs can be categorized into two
groups according to the factors affecting disparity estimation: quality factor and content factor.
The quality factor group contains images corrupted with White Gaussian Noise and
rectification errors, and the content factor group contains images with different backgrounds,
objects, hand poses and dresses. Three stereo matching algorithms are used to estimate
disparity ‘map of each stereo pair. Then, we evaluate the estimated disparity map using
selected error metrics.

We capture the images and disparity maps from two Kinects. We need to rectify captured
images and depth maps. First, we do camera calibration. After we obtain the camera
parameters of Kinect, we rectify the images. Next, we perform color calibration on captured
RGB images. After this step, most images are ready for evaluation. For testing purpose, we
add additional processing: White Gaussian Noise and rectification errors. To generate the
ground truth disparity map, we modify an existing procedure to refine the captured depth
maps [16]. The flow chart in Figure 12 shows the processing steps. More details will be

described later in the following sections.
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Figure 12: Flow chart of building the dataset

4.1 Calibration of Kinect

In section 3.1, we introduce why and how we need to do camera calibration. In section 4.1,
we introduce the exact method we use to find the camera parameters. There are two different
types of cameras on Kinect: RGB camera and an infrared (IR) camera. Generally, they use the
same camera calibration method. However, the IR camera needs some preprocessing before
calibration. As a result, we separate them into two parts. First we discuss the calibration of

Kinect’s RGB camera.

4.1.1 Calibration of Kinect’s RGB Camera

In [17], they classify the camera calibration techniques into two groups: Photogrammetric
Calibration and Self Calibration. In Photogrammetric Calibration, we take picture of a
selected object which is usually composed of two or three planes and they are orthogonal. In
addition, we need to know precisely the object’s geometry in the 3-D space. In Self
Calibration, we use one stationary object but we move a few times. Three or more images are
taken by the same camera with fixed internal parameter at several locations. Then, we can
reconstruct the 3-D scene based on the correspondence among these images. Reference [17]
proposed a camera calibration procedure using Photogrammetric Calibration and Self
calibration, and this procedure is widely used nowadays. The followings are brief description
of their calibration procedure:

1. Print a pattern and attack it to a planar surface;

2. Take a few images of the object plane under different orientations by moving either the

object or the camera;

3. Detect the feature points in the images;
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4. Estimate the five intrinsic parameters and all the extrinsic parameters using the
closed-form solution;
5. Estimate the coefficients of the radial distortion by solving the linear least-squares;
6. Refine all parameters by minimizing the maximum likelihood functions
In this thesis, we use a camera calibration toolbox provided by [18]. Their method is
defined based on [17]. Users can easily access this toolbox because it is free online, and its
GUI based interface makes users convenient to use. The patterns that we usually put on the
planar surface are rectangulars of alternating white and black colors. Because it looks like the
checkerboard in playing English draughts, we call it checkerboard. The following pictures
captured by the left Kinect are the checkerboard set at different orientations. Here, we take 18

pictures.

Calibration images

Figure 13: 18 pictures of checkerboard with different orientations

The feature points in this toolbox are the corners of each rectangular. The software can detect
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the corners automatically after we draw an endorsed target region identically on each image

and tell it how many rectangulars in the region. Figure 14 shows the software can precisely

detect the corners:
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After the feature pomts are detected the toolbox makes an 1n|t|al estlmatlon of the planar

homographies and then reflned by the method presented tn [17] At the end, we can get the
( | o~
camera parameters of the Kinect’s RGB camera.

4.1.2 Calibration of Kinect’s IR camera

To calibrate the IR camera, we need to get the output images. As said in section 2.1: the IR
camera captures the scene with speckle patterns which we call it IR image. Then, the SOC

converts the IR image to depth image. Here we used the IR images to do camera calibration.

25



We use [18] for calibration, and the procedure is similar to that of the RGB camera. However,
the raw IR image contains of black dots that affect the accuracy of the calibration results. In
order to remove the dots, we use the method suggested by [19]: block the IR projector and

illuminate the checkerboard by a halogen. Figure 15 shows how we set up the equipment.

(a) Environment setup for calibrating the IR camera

(b) Raw IR image of checkerboard  (c)IR image of checkerboard illuminated

by a halogen lamp instead of IR projector

Figure 15: How we get the IR images for calibrating the IR camera
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4.2 RGB Image Rectification

In section 3.2.2, we talk about how to get the new camera parameters that make the two
image’s epipolar lines parallel and horizontal. Here we talk more about how to compute the
transformation from the original image plane onto the rectified image plane. According to

section 3.2.2, the original left projection rix.is_P,; = K [R.[ty]. The a new projection

matrix will be P,; = K[R]t.]. To tran : . ew image plane, we can write:
17)
m, and om the above

equations, we i ormati and we can

rewrite the

(18)
We apply e 17 shows our
result s and its

corresponding epi \fte epipols es in two images become

horizontal.

Figure 16: The stereo pair before rectification
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(a) Raw RGB image captured by the left Kinect
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(b) Raw RGB image captured by the right Kinect
Figure 18: Original images from left and right Kinects and their RGB histograms

Comparing their color histograms, we can easily see that there are a lot different between the
pictures captured by two Kinects. As a result, color calibration must be performed on the
images captured by different Kinects. The algorithm we use is described in section 3.3. Here,
we set the image from the left Kinect as the reference image, and we set the right Kinect
image as the target image. The target image color histogram will be mapped to the reference
image’s color histogram. The following figures show the results: image from the right Kinect
before and after color calibration. With color calibration, the colors of the target image

matches those of the reference image much better both subjectively or objectively.
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Figure 19: The image from the left Kinect after color calibration

4.4 Generation of Disparity map’s Ground Truth

In this study, the ground truth disparity map Is necessary for our evaluation. After a few
attempts, we finally decided to use the depth data captured by Microsoft Kinect. Generally,
Kinect has three kinds of outputs: RGB image, IR image and depth image. The maximal
resolution of the depth image is 320%240. Each pixel of the depth image has a 12-bits data
which represents its actual distance in millimeters. Table 1 from [20] shows the Kinect’s

technical specification:

Table 1: Kinect technical specifications

Color and depth-sensing sensors

Sensor \oice microphone array

Tilt motor for sensor adjustment
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Field of View

Horizontal field of view: 57 degrees

Vertical field of view: 43 degrees

Physical tilt range: +27 degrees

Depth sensor range: 1.2m-4m

Data Steams

320240 16-bit depth @ 30 frames/sec

640x480 32-bit color @ 30 frames/sec

16-bit audio @ 16kHz

Skeleton Tracking

System

Tracks up to 6 people, including 2 active players

Tracks 20 joints per active player

Audio System

XBOX LIVE party chat and in-game voice chat

Echo cancellation system enhances voice input

Speech recognition in multiple languages

According to Table 1, Kinect provides many ways for us to interact with XBOX 360 and
computers. Microsoft releases Windows software development kit (SDK) for Kinect that
contains drivers, tools, APIs, device interfaces and code samples that help people to develop

applications. Microsoft updates the Kinect SDK frequently. Through SDK, we can access and

control those sensors. More information about the Kinect SDK can be found at [21].

In this section, we introduce how to convert the depth image to the ground truth disparity
map. In our system, the ground truth disparity map is chosen for the left image, so we capture
the depth image from the left Kinect. This raw disparity map has to go through the following

processing: (1) alignment of Depth image and RGB image, (2) hole filling and (3) conversion
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of depth to disparity. First, we discuss the alignment between depth image and RGB image.

4.4.1 Alignment of Depth Image and RGB Image

The first thing we have to do is to match the raw depth image and the RGB image from the
left Kinect, because they come from two different sensors. Figure 20 illustrates how we do the

alignment:

Alignment of Depth and RGB images

:

|
Raw depth 3D warping —>| Max filter —:—7/depth imag¥
image / N
|
|

camera
amera parameter

RGB camera
Camera paramete

Figure 20: Flow chart of alignment of depth and RGB image

The concept is that we convert the depth image from the depth image coordinate to the RGB
image coordinate. Since we can get the camera parameters applying camera calibration to the
RGB camera and the IR camera, this job seems to a routine. What we need to do is to project
each pixel in the depth image into the 3D word coordinates, and then reproject them into the
RGB image coordinates. We call this algorithm 3D warping. Assume that Xg.,., is the
position of a pixel in the raw depth image, P,z is the projection matrix of the IR camera and
Prgp s the projection matrix of the RGB camera. Xy, qepen 1S the pixel’s new position after
3D warping, and then the warping is represented by the following equation:

Xnew depth = Pras * Pir" * Xdepth- (19)
It is very similar to Eqg. 18 in section 4.2. Rectification is to project a point to a virtual view,

while here we project a point to an existing camera’s view.

32



Fortunately, we can use Kinect SDK to do 3D warping. Figure 21 shows the depth image

before and after 3D warping.

(A)

3D warping

(B)
Figure 21: The depth image before and after 3D warping

Because 3D warping is a one to one warping, half of the pixels in Figure 21 (B) do not have
information because the resolution of input image is 320x240 and the output image is 640x480.
Here, we use the maximum filter to fill the empty space. Figure 22 can shows the results after

filling:

Figure 22: Depth image after 3D warping and maximum filter

To check whether the alignment works, we overlap the depth image and RGB image together
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in Figure 23

Figure 23: Image that we overlap the depth image and RGB image together

Examine the edge carefully, we can find that some regions do not match exactly. There are
two possible reasons. One is that the function from the Kinect SDK may not be very accurate,
and another one is the inaccuracy due to the way Kinect estimates depth. The small
misalignment will cause a lot of problems if we use the depth map to do the applications such
DIBR. However, the depth map in our proposed evaluation system can tolerate a little
misalignment. As a result, the SDK outputs are ok for our study. From Figure 23, there are
still some black regions in the image. The black regions around pictures boarders come from
3D warping, and we can cut off this region. The resolution of the depth map then becomes
550x420. The black holes inside the picture will be filled using our hole-filling algorithm,

which will be introduced in the next section.

4.4.2 Hole-Filling Method

The black holes appear mainly because the IR camera detects no speckle patterns in these
areas. There are two reasons. The First reason is that the objects in the foreground obstruct the

speckle patterns that are to be projected to in the background. So the occlusion region in the
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background does not have depth information. It marked by dark area in the raw depth image.

Figure 24 from [22] can explain this phenomenon.

No depth information

~ 9
IR camera IR projector

The se : S efraction

and reflection. The object e IR camera

cannot the speckl object is

made o describes

this phenon
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IR camera IR projector

(c) Light refracting material

Figure 25: IR light projects on objects made of reflective and refractive materials [22]

Here, we propose a method to fill up these black regions according to the depth distribution of
their neighboring regions. The idea of the depth distribution of neighboring regions comes
from [16]. This paper finds the neighboring region of black holes in the depth map and
computes the histogram to determine the depth value to be filled in the depth holes. In our
scheme, we use the same method to find the neighboring region, but our method of filling the
black holes is somewhat different from the method in [16].

Before finding the neighboring region, we need to detect those black holes. Usually the
intensity value which equals to zero can be viewed as a black hole, so we can convert the
depth map into the binary map that 255 stands for the hole. Figure 26 shows the RGB image,

the depth map and the binary map of holes.



Figure 26: (a) RGB image (b) depth map (c) binary map of holes

Then we cluster these black holes. Here, we use the 8-connectivity rule to group them.
Referring to [23], the definition of an 8-connected component is: A set of white pixels P in
the binary map is an 8-connceted component if for every pair of pixels p; and p; in P, there
exists a sequence of pixel p;..., pj suchthat

(@) all pixels in the sequence are'in the set P, I.e., they are all black, and

(b) every two pixels that are adjacent in the sequence are 8-neighbors

Figure 27 shows the result after completing the 8-connectivity, and we use different colors to

represent different groups.
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Figure 27: Group of holes

Next, we find the neighboring region of these labeled holes. The idea is to expand the holes to
identify their neighbors. The subtraction of the new holes and the original holes is the hole’s
neighboring region. Dilation, is a basic morphology operation, is used for expansion purpose.

The structural element in dilation is 5x5 square. Figure 28 shows the neighboring region of

black holes.
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Figure 28: neighboring region of black holes

From the previous discussions, we assume that the depth values in the neighboring
regions are highly correlated with the missing depth value in the holes. Then, we compute the
distribution of each neighboring region, and identify the most probable depth value according
to the distribution, which is to be used to fill the hole. Our procedure is as follows: we
compute the histogram of each neighboring region, and find the dominant peaks in the
histogram. The dominant peaks are those peaks having more pixels than a certain percentage
of the total pixels in a neighboring region. In [16], they choose the percentage to be 10%, but
we find that this value will eliminate too many possible candidates. As a result, we set the
threshold as 5% after many experiments. After determining the dominant peaks, [16]
eliminates the dominant peaks that are less than the average value of the dominant peaks, and
then takes the median of these values as the depth to fill the holes. It means that they tend to
fill in the value that is farther to solve the occlusion problem. We use a different method to
determine the dominant depth value. Before we talk about our method, we first take a look at
the Figure 29. In the picture, we categorize the holes according to how many dominant peaks

they have.
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Figure 29: Holes are classified based on the number of the amount of dominant peaks. Red

means one dominant peak. Green means two dominant peaks. Blue means three dominant

peaks. Yellow means four or more dominant peaks.

Observing Figure 29, we can draw some conclusion of the correlation between different kinds
of holes and their amount of dominant peaks. The holes that have one or two dominant peaks
usually appear ‘inside the objects, and the holes that have three or more dominant peaks
usually appear in the occlusion areas or the surfaces that reflect or refract the IR light. As a
result, we fill the holes depending on the number of dominant peaks in their neighboring
regions:

(@) For one or two dominant peaks: W fill in with the depth value of the highest peak.

This is because most of the holes are on the same object with their neighboring region, and
filling in with the most dominant depth is the most appropriate.

(b) For three or more dominant peaks: We have to recognize whether it is an occlusion region

or a light-reflecting/ refracting surface first, and then we fill in different value respectively. To
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do the classifying, we perform a k-means clustering, and we choose k to be 2. If the difference
of the two centroids is larger than a threshold, then we treat it as an occlusion region. On the
other hand, if the difference is smaller than a threshold, we say it is a light-reflecting or
light-refracting surface. For an occlusion region, we fill in with the smallest depth value from
the candidates. For a light-reflecting or light-refracting surface, we fill in with the most
dominant peak. Here, we experimentally set the threshold to be 20. The following figure
shows our results after our proposed hole-filling algorithm. We also put on the original depth
map and the depth map using the hole-filling algorithm in [16]. We can tell that the
performance of our method is better than the method in [16], especially in the occlusion

region.

(b) | ©

Figure 30: The performance of our proposed hole-filling algorithm (a) the original depth map
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(b) the performance of [16] (c) the performance of our method

4.4.3 Conversion of Depth to Disparity

The last step of generating a ground truth disparity map is to convert the depth value to the
disparity value. According to the Eq. 2 in section 2.3, once we know the depth, the baseline
distance and the focal length, and then we can calculate the disparity. Depth value comes from
the raw depth map, and the baseline distance is the distance between the right and the left
Kinect. By doing the camera calibration, we can get the focal length of the IR camera. Note
that the unit of the baseline distance and the depth value is millimeter, and the unit of the
disparity and focal length is pixel. Figure 31 shows the results of the conversion of depth
value to disparity. In our experiment, the baseline distance which is the distance between the

left and right IR camera is 283 mm. The focal length is 525 pixels.

(a) (b)

Figure 31: Cnversion of depth to disparity. (a) depth map (b) disparity map

4.5 Introduction of Dataset and Error metrics

We introduce some evaluation methods on depth estimations in section 2.5. In our study, we

construct a dataset consisting of stereo pair images. In all test images there is always a person
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in the scene, because these images are designed for the applications of human-computer
interaction. Many factors may affect the results of depth estimations. The factors can be
categorized into two groups: image quality factor and image content factor. We design test
images that include those factors. We will give detailed descriptions and display these images
in the next two sub-sections. In 4.5.3, we discuss how to use this dataset to evaluate the depth

evaluation.

4.5.1 Image Content Factor

In the image content factor catagory, we want to check what kind of the content will influence
the sterea_matching algorithms. The factors include background complexity, numbers of
objects, hand pose and clothing.

There are two parts in background complexity. Part one is the images of complex
background and textureless background. Part two is the images of textureless background and
the image with reduced textureless background. In part one, we first capture pictures whose
background is nearly textureless, and then we add two complex textures posters into the
background: repeated texture and non-repeated texture. They help us to see If the repeated
texture will interfere the depth estimation process as reported before. Figure 32 shows the

pictures in part one.

Left Image Right Image

Textureless

Background




Complex

background

Figure 32:

In part two, v o eSS reg an help improves the

accuracy 0 0. The first

“cut” re oper strip of

the backagrc

Figure 33: Stereo pairs of different cut
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Next, we want to know if the number of the objects will affect the performance of depth
estimation. First set of images simply have a person and a table, and then we add in a bear
doll, a checkerboard and a box in order. Note that all of these images are with complex
background. We additionally take the pictures that contain all objects in the simple

background. So, we have five sets of images, and Figure 34 shows all of them:

Right Image

Number

objects=0 |

Number

objects=1
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Figure 34: Pictures of different number of objects in the scene

The hand pose may affect the result of the depth estimation algorithm. If we raise our
arms horizontally, finding the corresponding pixel in the hand area may be more difficult than

putting our hands down. So we take a set of the pictures with arms up horizontally and with
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hands down. Figure 35 shows these pictures.

Left Image Right Image

Hand pose 1

Hand pos'e:2

F.i‘gdre 3'5:\"Pictures with d'ifferent‘ hand poses. ';l-‘ &

Some apolicetlons\extract the foreground based on the depth rnap Hence the estimated
disparity in the foreground |S more |mportant than in t’he backgrdund When the foreground is
a person, we want to know Whether the patterns on the clothes will influence the depth
estimation algorithms. As a result, we take a set of pictures in which the person wears clothes
with three different patterns. There are clothes with English alphabet, T-shirts with unicolor

plaid pattern and T-shirts with multicolor plaid pattern. Figure 35 shows the T-shirt with

letters. Figure 36 shows the other two patterns.
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Left Image Right Image

In image quality factor ca v Y, - e ge quality such as noise would
affect the depth estimation algorithms. The factrs include Gaussian noise and rectification
error.

We add Gaussian noise of different variance to the simple background image. The noise
level is labeled by PSNR. The independent Gaussian noise is added to the R, G, and B color

components separately. With some pre-experiment, we pick up three levels of PSNR: 30, 35

and 40dB. In Figure 37, we show our images of different PSNR levels.
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Left Image Right Image

PSNR=30

PSNR=

PSNR=40

Figure 37: Images with different PSNR

Next, we introduce rectification error into images. Rectification error means the

corresponding pixels are not in the same horizontal line of the right and the left images, which
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may cause some problem in stereo matching. Here we have two parts. First part is to compare
the original images from Kinect and the rectified images using our rectification method.

Figure 38 shows the pictures.

Left Image Right Image

Before

calibration

After
calibratio N 4

re 36 ecti images

In part two, if one rectified picture is artificilly shifted by one to five lines with respect
to the other picture, how the shift affect depth estimation algorithms. The idea is to simulate
rectification errors. We assume that our rectification method is perfect. Pixels should be in the
same horizontal line. And then we move the left image upward 1 line to 5 lines to simulate the

shifted rectification errors. Figure 39 shows the images with shifts.

50



Left Image

Right Image

1-line
recification

error

2-line
recificatio

error

3-line
recification

error

51




4-line
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error
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error

In this study, we wan evaluate the stereo matching a ithm for the use of
human-computer interaction applications. These applications do not need very accurate depth
map. Often, extracting the foreground successfully from the background is more important.
Consequently, we evaluate the disparity map mostly in the foreground and background areas,
but the edge and the occlusion regions are ignored. Here we adopt the trimap concept in doing
the evaluation. Trimap consists of three regions: a definite foreground, a definite background
and a blended region, which is in-between the foreground and the background regions. In a

trimap, we mark the definite foreground region by 255, and the definite background region by
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0. The map value of the blended region is 125. Figure 40 shows an example of the trimap.

Figure 40: RGB image and its trimap

According to the trimap, we identify the region we want to evaluate. Due to the disparity map
errors around the object boundaries, we treat blended regions as “unknowns”. We generate a
trimap by the following steps:

(@) We extract the foreground using a threshold from the depth map. The threshold is
determined experimentally.

(b) Dilating the original foreground in a depth map, we get the dilated foreground. The region
which is outside dilated foreground is the definite background. And then we erode the
original foreground to get the eroded foreground. The region which is inside the eroded
foreground is the definite foreground. The blended region will be the subtraction of
dilated foreground and eroded foreground. The morphological structural element we use is
5x5 square.

After determining the evaluating regions, we select the quality metrics. In this study, we use

two metrics: mean squared value (MSE) and bad matching pixel rate (BPR). Assume that the

computed disparity map is d.(u,v) and the ground truth disparity map is dgr(u, v). MSE is
defined as the following equation

MSE == 2. |de(u,v) = der(u, )2, (20)

(u,v) € evaluation region
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where N is the total number of pixels in the evaluation region. BPR is defined as follows.

BPR=1 2 (Idc(u,v) — dgr(u v)| > 80), (21)

(u,v) € evaluation region

where &, is called disparity error tolerance. In this thesis, we use 6; = 10. If we choose a
small value, there will be too many errors, which will make it harder to analyze the evaluation

results. We choose 10 through many experiments.




chapter 5 Experimental Results and Discussion

In this chapter, we evaluate three stereo matching algorithms using our dataset introduced in

chapter 4, and show the estimated disparity map and the statistical results.

5.1 Experimental Environment

We use two Kinects for XBOX 360 to take the images of left and right view. They are set in

parallel as Figure 41 shows.

o o .\,,“ JM‘@MJMM’MM N9

A 15

Y

Figure 41: Experiment set up

In the Figure 41, there is a halogen light besides the Kinects, and it is used to do the camera
calibration for IR camera. We use Kinect-v1.0-beta2 and OPENNI to extract the raw RGB

image, the raw depth map and the IR image.
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5.2 Three Stereo Matching Algorithms

In this section, we briefly described the three stereo matching algorithms used in our
experiments. They are the non-local cost aggregation method for stereo matching [24], the
stereo matching with nonparametric smoothness priors in feature space [25] and the depth
estimation reference software (DERS) [26].- They are chosen to represent different types of
disparity estimation algorithms.

In [24], the authors propose a non-local cost aggregation method for stereo matching.
The basic flow is the same as in the introduction in section 2.3. They use winner-take-all to
find the disparity, so their method can finish in about 90 milliseconds when applied to the
Middlebury dataset. The feature of this paper is that they use a non-local cost aggregation
method instead of aggregating in a fixed local window. A tree structure is used to aggregate
the cost function. The nodes in the tree are all the pixels in the image, and the tree branches
between the two nearest neighboring pixels have a value representing their similarity. The
paper then branches the edges with largest dissimilarities, and. thus they get the minimum
spanning tree (MST). MST can be seen as a natural image pixel similarity measurement.
Aggregation operation is done with all the nodes in the MST, so it is called a non-local cost
aggregation method.

DERS is developed by the 3D video Coding Team of Moving Pictures Experts Group
(MPEG) for video (3DV) and free viewpoint Television (FTV). DERS needs three input
views: left, central and right view. By computing the cost functions from left to central view
and right to central view, DERS chooses the smaller cost out of them to improve the disparity
accuracy in the occlusion areas. To compare the DERS with the other stereo matching
algorithms which only use two views, we modify the software so that it computes the

disparity by using two views. There are three modes that we can choose in DERS: automatic
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mode, segmentation mode and semi-automatic mode. In this thesis, we use the automatic
mode, and the following figure shows its operation.

leftview centerview rightview

Input views

!

sompute Matching Cos;.
!

pdate Matching Co§§I

Optimize depth map

by graph cuts

Qutput depth map

Figure 42: Flow diagram of the automatic mode [26]

The basic flow is nearly identical to our introduction in section 2.3. The matching block here
iIs 3 X 3. The cost energy function containing a similarity term and a smoothing term, which
are calculated at every pixel, and then the graph-cuts algorithm is used for the energy
minimization.

In [25], a stereo matching algorithm with nonparametric smoothness priors in feature
space is proposed. They treat every pixel as a feature vector containing information of R, G,
B value and location. They build a nonparametric depth smoothness model in this feature
space that combining the features and depth values. The pixels with similar features can be
connected by the model, and become a connected network. This network is just like a
neighborhood system that grouping the similar pixels together without performing image
segmentation. The Graph-cuts algorithm is applied to the neighborhood system to find the

optimal disparity.
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5.3 Experimental Results on Image Content Factors

In this section, we show the evaluation results using our stereo pair images with different
image content factors. First, we show the computed disparity and their ground truth disparity
map, and then we compute and show the bad-matching pixel rate and MSE. Here, we call the
stereo matching using non-local aggregation.method, Winner-take-all method (WTA) because
of its optimization, and we call stereo matching with nonparametric smoothness priors in

feature space method graph-cuts in neighborhood system (GC-NS).

5.3.1 Background Complexity

We first show the disparity maps that use images of textureless background.

Ground truth disparity map WTA
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DERS GC-NS

Figure 43: Disparity maps on the simple background test images

Figure 44 shows the disparity maps-on the complex background test images (Figure 32).

Ground truth disparity. map - WTA

DERS ' GC-NS
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Figure 44: Disparity on complex background test images

Table 2 and Table 3 compare BPR and MSE of all methods on these test images. Note that the
error metrics are calculated only on the foreground region or only on the background region,

which are marked in the “Region” column (as explained in sec. 4.5).

Table 2: BPR of disparity maps on simple and complex background test images

o foreground 0.1065 0.0180 0.0162
simple
P background 0.6611 0.4627 0.5693
foreground 0.0115 0.0735 0.0162
complex
background 0.4692 0.4571 0.4035

Table 3: MSE of disparity map on smiple and complex background test images

foreground 100.99 16.39 24.88
simple
background 5234.6 4258.8 6839.5
foreground 38.81 49.22 16.86
complex
background 4087.3 3476.3 4688.3

Examining the above images and tables, we have a few observation. For WTA, its BPR
and MSE in foreground and background both decrease from the simple background image to
the complex background image. For DERS, BPR and MSE decrease from the simple
background to complex in background, but increase in foreground. For GC-NS, BPR shows
no increasing and decreasing in foreground from simple to complex background, but BPR in
background and MSE in both foreground and background decrease. In the following
discussions, we focus on the foreground. When the background is simple, WTA has the worst
result in BPR. However, when the simple background changes to the complex background,
the result of DERS becomes worse than that of WTA. WTA improves estimation results the

most among the three methods from the simple to the complex background.
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The design principles of these disparity estimating algorithms may help explaining their
behaviors. Although WTA and GC-NS do not use image segmentation explicitly, their
grouping method is very similar to that of image segmentation. As a result, the edge can be
preserve better, and the estimated disparity in the foreground can also benefit from it. For
DERS, it does not use any concept of grouping, so the foreground get worse when the

background become complex.

Next, we want to see whether the re W hette : off the textureless regions.
Figure 45 shows that we first ¢ e call it CUT1 (Figure 33).
Figure 46 are the . T2 (Figure 33).
Table 4 and Tt in BPR and

MSE.
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GC-NS

Figure 46: Disparity maps on CUT2 images

62




Table 4: Compison of BPR of computed disparity maps on different size of background

FULL foreground 0.1065 0.0180 0.0162
background 0.6611 0.4627 0.5693
CUT1 foreground 0.1065 0.0213 0.0160
background 0.5071 0.2448 0.3066
foreground 0.1065 0.0216 0.0160
CUT2
background 0.4916 0.3293 0.2455

Table 5: Compison of MSE of computed disparity maps on different size of background

FULL foreground 100.99 16.39 24.88
background 5234.6 4258.8 6839.5
foreground 100.98 16.47 24.95
CUT1
background 297.6909 1444.7 232.48
foreground 100.98 17.13 24.95
CuT2
background 1382.7 1561.8 1957.7

For WTA, cutting off textureless background does not change the disparity results in the
foreground, but it helps to decrease the BPR and MSE in the background. The black regions
in the depth maps become less in CUT1 and CUT2. For DERS, there is an obvious
improvement in the background in BPR and MSE when the full size background changes is
reduced to CUTL. There are still some errors on the left side. This is because the pixels on the
picture left border of the left image have no corresponding pixels on the right image. For
GC-NS, the accuracy improves the most among the three methods in the background when
the full size background is reduced to CUT2. For all of these three methods, cutting off the
textureless does not affect the foreground much.

We thus conclude that cutting off the textureless region can improve the performance of
stereo matching algorithms as we expect. We found that estimation error of DERS on the left

side of image is caused not by both the textureless region and the missing part on the right
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view. But why we do not see this phenomenon in the other two methods? The reason is that
the two methods do cross checking between left and right estimated disparity. In fact, DERS
does cross checking by using three input images, but our modification uses only two input
images.

Next, we look at repeated-pattern background. Tables 6~9 show BPR and MSE
comparison between the repeated-pattern. background and the textureless background, and
between the complex and the textureless background.

WTA has better disparity estimation results when the texture is full of repeated pattern or
the texture is complex. The BPR and MSE of DERS indicate that it cannot handle the
repeated-pattern area well. But when the texture is complex, DERS performs better than when
the texture is simple. The performance of GC-NS, the performance improves when the
background contains repeated pattern or complex pattern.

WTA and GC-NS use adaptive windowing in their grouping methods. In contrast, DERS
uses a fixed window. We believe this explains why DERS has poor performance in the

repeated-pattern area.

Table 6: BPR focusing on the repeated-pattern area

“regon | Twe | wi | oms | GoNs

Repeated pattern (0.5341 0.9068 0.0285

Foreground
textureless 0.8650 0.0108 0.5019

Table 7: MSE focusing on the repeated-pattern area

Repeated pattern 1053.2 4645.5 51.46

Foreground
textureless 6545.7 16.29 9838.6
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Table 8: BPR focusing on the complex area

Complex 0.2006 0.1565 0.0169

Foreground )
simple 0.7323 0.3736 0.6693

Table 9: MSE focusing on the complex area

Complex 465.34 136.57 16.50

Foreground
simple 6521.8 703.74 8172.2

5.3.2 Different numbers of Objects

In this section, our focus is.the number of objects if this factor affects the performance of
stereo matching algorithms. We start with a person and a table in the scene, and then we add 3
objects gradually (Figure 34). Note that here we only focus on the estimated disparity value of

the person.

0 object + human (complex background) 1 object + human (complex background)
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2 object + human (complex background) 3 object + human (complex background)

M

3 object + human (simple backg

Stz
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Also, we show the trimaps of these cases.

0 object + human (complex background) 1 object + human (complex background)

2 object + human (complex background) 3 object + human (complex background)

3 object + human (simple background)

Figure 48: The trimaps in this evaluation
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0 object + human (complex background) 1 object + human (complex background)

2 object + human (complex background) 3 object + human (complex background)

3 object + human (simple background)

Figure 49: Computed disparity map using WTA
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0 object + human (complex background) 1 object + human (complex background)

2 object + human (complex background) 3 object + human (complex background)

3 object + human (simple background)

Figure 50: Computed disparity map using DERS
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0 object + human (complex background)

1 object + human (complex background)

3 object + human (simple background)

Figure 51: Computed disparity map using GC-NS
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Table 10: BPR of computed disparity maps using images consisting of different amount of

objects in the complex background

0 object human 0.9674 0.0185 0.0193
1 objects human 0.8821 0.0955 0.0412
2 objects human 0.9742 0.1961 0.0457
3 objects human 0.9575 0.1857 0.0849

Table 11: BPR of computed disparity maps using images consisting of 3 objects in the simple

background
3 object human 0.9837 0.2280 0.0870

All of the results of WTA are poor for these test images. We thus skip them. The results of
DERS become worse when we increase objects in the scene, but the third object which is the
closest to the camera does not worsen the results of the human depth map. \When the complex
background is replaced by the simple background, the result does not change too much. The
results of GC-NS also get worse when the object number increases, though the second object
has little impact on the results. Whether it is a complex background or a simple background,
the results remain about the same.

Among these three methads, the performance of GC-NS is the best, and the performance
of WTA is the worst. The complexity of the algorithms may explain the results. Compare
DERS with GC-NS, the behaviors are similar. But GC-NS is better at edge preservation

because it uses an adaptive grouping method.
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5.3.3

Hand Poses

Ground truth disparity map

WTA

v 2 \ F igure 52: Disparity maps on hadns down ‘ y

£ "
y B

Ground truth disparity map.
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DERS GC-NS

Figure 53: Disparity maps on horizontal arms

Table 12: BPR of computed diparity maps with vertical arms

Vertical pose  0.7808 0.0326 0.1621

Foreground )
Horizontal pose 0.8996 0.0585 0.3367

Table 13: MSE of computed diparity maps with horizontal arms

Vertical pose  154.28 21.25 76.18

Foreground
Horizontal pose 196.06 32.26 97.70

When we put our arms horizontally, finding corresponding pixels may be more difficult
because there are similar skin color pixels in the path of finding correspondence. Tables 12 &
13 show the results that agree to our speculation. On the foreground region, all of the BPR
and MSE of all three methods increase when the arm position is changed from vertical to
horizontal. To check whether the skin color region increases the errors, we show the computed
disparity maps (Figure 54) from DERS and GC-NS, where we use red color to mark the bad
matching pixels. We do not show the results from WTA because its errors are too high to tell

the difference. From Figure 54, we can clearly see the error increase in skin color region.
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DERS (vertical hand pose) DERS (horizontal hand pose)

GC-NS (vertical hand pose) GC-NS (horizontal hand pose)

Figure 54: Dispairty maps of two different hand poses with bad matching pixels marked on

them as red

5.3.4 People in Different Clothes

In this section, we show the experimental results of the images with different clothes. As
discussed earlier in sec. 4.5, three types of patterns on clothing are tested: T-shirts with letters,
with multicolor plaid pattern and with unicolor plaid pattern. The results of T-shirt with letters

are from
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DERS GC-NS

Figure 56: Disparity maps on images with unicolor plaid pattern T-shirt

Table 14: BPR of the estimated disparity maps in Figure 55 and Figure 56

Letters 0.7808 0.0326 0.1621
Foreground Multicolor 0.7414 0.0132 0.0094
Unicolor 0.9479 0.0616 0.0122

Table 15: MSE of the estimated disparity maps in Figure 55 and Figure 56

Letters 196.83 31.43 105.12
Foreground Multicolor 149.38 13.37 9.61
Unicolor 352.01 44.16 12.88

The results of all three methods become worse when changing cloth from multicolor plaid
pattern to unicolor plaid pattern. The results of T-shirt with letters using WTA and DERS are
better than the results of T-shirt with unicolor plaid pattern, but worse than that of T-shirt with
multicolor plaid pattern. However, the results of T-shirt with letters using GC-NS are the
worst in the tree types of patterns. Among the three methods, GC-NS has the best

performance, and WTA has the worst performance.
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5.4 Experimental Results on Image Quality Factors

In this section, we show the experimental results of computing disparity maps by using

images of different PSNRs and different rectification errors.

54.1 PSNR

Ground truth disparity map

Figure 57: The ground truth disparity map

PSNR=30 PSNR=35
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PSNR=40

Figure 58: Co’mbUtéd, d‘fSparity maps using WTA on gaussian'r_loisé-i'mage's of different PSNR

- PSNR=30 . PSNR=35

PSNR=40 .
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Figure 59: Computed disparity maps using DERS on Gaussian noise images with different

PSNR

PSNR=30 PSNR=35

PSNR=40

Figure 60: Computed disparity maps using GC-NS on Gaussian noise images with different

PSNR
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Table 16: BPR of computed disparity map from Figure 58, Figure 59, and Figure 60

PSNR=30 foreground 0.4172 0.0132 0.0203
PSNR=35 foreground 0.2067 0.0022 0.0189
PSNR=40 foreground 0.1541 0.0025 0.0169
Original foreground 0.1065 0.0180 0.0162

Table 17: MSE of computed disparity map from Figure 58, Figure 59, and Figure 60

PSNR=30 foreground 315.46 24.26 25.33
PSNR=35 foreground 91.81 8.45 23.11
PSNR=40 foreground 77.93 9.11 25.32
Original foreground 100.99 16.39 24.88

The BPR and MSE of WTA get worse when PSNR drops. The results of DERS have the
same tendency as WTA. But an interesting phenomenon appears, when we compare the
disparity map using the original images with the disparity map using images of PSNR = 40.
The one with noise has better result. To check why this phenomenon happens, we use other
two sets of images to repeat experiment. They are the images of 0 object in Figure 34, and the

images with hand down in Figure 35. Table 18 shows the results:

Table 18: Comparison of estimated disparity for images of no noise and images of PSNR=40

“set | Type | hegion | DERs |

PSNR=40 foreground 0.0254
Original  foreground 0.0185
PSNR=40 foreground 0.0252
Original  foreground 0.0210

First set

Second set

The table shows that using the original images has better performance. A possible explanation
is that the depth estimation methods are fairly complicated. The high PSNR pictures may

occasionally produce better depth maps. But, in general, the original is better.
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The BPR and MSE of GC-NS become worse when PSNR drops. Comparing the disparity
map using the original images with the disparity map using images of PSNR = 40, the result

does not change much.

5.4.2 Rectification Errors

Ground truth disparity map

WAT on unrectifid images ‘ WAT on rectifid images

g
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DERS on unrectifid images

DERS on rectifid images

GC-NS on unrectifid images

GC-NS on rectifid images

Figure 61: Computed disarity maps on the rectified and unrectified images

Table 19: BPR of computed disparity map on the rectified and unrectified images

rectified

unrectified

foreground
background
foreground

background

0.1065
0.6611
0.1272
0.5528
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0.0180 0.0162
0.4627 0.5693
0.1039 0.0326
0.5083 0.5613




Table 20: MSE of computed disparity map using rectified and unrectified images

I T S R

foreground 101.25 110.87 27.78
rectified
background 5430.7 4423.6 6769.1
foreground 100.99 16.39 24.88
unrectified
background 5234.6 4258.8 6839.5

From Table 19 and Table 20, the BPR of three methods all increase in the foreground when
the two images are not rectified, and this is what we expected.

Without rectification, the performance of DERS decreases the most in BPR. This is
because DERS uses camera parameters to help finding the corresponding pixel when it is not
1D parallel, and the other two methods take every pixel into consideration.

Table 21 and Table 22 show the results of the experiments, where a 1-line to 5-line
rectification errors are inserted into test images. The performances of three methods all
become worse when the number of error line increases. Focusing on the foreground, GC-NS
has the best performance. Although WTA has the worst results, DERS is the one whose
performance drops the most when the error line changes from 1 to 5. We believe the reason is
that DERS addresses the non-1D parallel situation by using camera parameters, which is not

effective as taking every pixel into consideration.
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rectified

1-line error

2-line error

3-line error

4-line error

5-line error

rectified

1-line error

2-line error

3-line error

4-line error

5-line error

foreground

background
foreground
background
foreground
background
foreground
background
foreground
background
foreground

background

foreground

background
foreground
background
foreground
background
foreground
background
foreground
background
foreground

background

0.1065
0.6611

0.1971

0.6625

0.2701

0.6272

0.2865

0.6203

0.3364

0.6715

0.3301

0.6492

100.99
5234.6

102.49

5512.4

236.86

5185.5

250.06

5661

198.72

59121.1

414.69

5579.6
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0.0180
0.4627

0.0797

0.4661

0.1448

0.4897

0.1756

0.5012

0.2159

0.4727

0.2743

0.4869

16.39
4258.8

60.63

4303.6

100.17

4329.8

112.38

4088.4

198.72

59121.1

414.69

5579.6

Table 21: BPR of computed disparity map on the iamges of different rectification errors

0.0162
0.5693

0.0216

0.5709

0.0267

0.5870

0.0261

0.5474

0.1182

0.5598

0.1399

0.5630

Table 22: MSE of computed disparity map on the iamges of different rectification errors

24.88
6839.5

25.70

6946.0

28.15

6894.1

28.52

6803.3

93.32

6481.1

65.77

5967.1



chapter 6 Conclusions and Future Work

6.1 Conclusions

In this thesis, we propose a method to evaluate the stereo matching algorithms by using our
dataset consisting of stereo pair images. These images designed to include many factors that
may affect the performance of stereo matching algorithms. Our evaluation focuses on the
foreground, because we assume that the depth map is used for human-computer interaction
applications. With this set of evaluation dataset and procedure, we like to know the behavior
of a specific stereo matching algorithm. Is it robust to certain disturbance factors?

We summarize the characteristics. of the three disparity estimation algorithms test in this
thesis.

WTA (sterea matching using non-local aggregation method): When the background is
complex, the accuracy of WTA increases. No matter the background has repeated patterns or
irregular complex patterns, WTA has better results than the simple background. Reducing the
textureless background region can improve its performance. \When there are several objects in
the scene, WTA has very bad estimation results. A person with arms up horizontally or a
person in the T-shirt with unicolor plaid pattern makes the performance worse. When the
PSNR=40, WTA produces similar results as the cases without noises in the images.
Rectification error has little impact on WTA.

DERS (Depth Estimation Reference Software): When the background is complex, the
estimated disparity in the foreground has more errors. Cutting off textrueless region helps the
estimation accuracy. We found that without left-right cross check, DERS does not handle the
occlusion region well. DERS has very poor results in the repeated-pattern regions, but it

works well in the complex background. The increase of object number in a scene decreases
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the performance of DERS. A person with arms up horizontally or a person in the T-shirt with
unicolor plaid pattern increases the errors. PSNR=40 is good enough for DERS to do the
depth estimation. Rectification error has huge impact on DERS that the errors increase a lot.

GC-NS (stereo matching with nonparametric smoothness priors in feature space): The
estimated disparities in the foreground has little change when the background becomes
complex. Cutting off the textureless region .can be useful to improve the performance. The
performance increases a lot in the repeated-pattern region and irregular complex region. When
the number of objects increase, its performance gets worse. GC-NS cannot do well using the
images where a person with arms up horizontally or a person in the T-shirt with unicolor plaid
pattern. The Gaussian noise has little impact on GC-NS when the PSNR = 40. Rectification

error has some influences on the performance but not much.

6.2 Future Work

For the proposed dataset, it takes time to generate a dataset consisting of stereo pair images
and its ground truth, and we have tried our best to cover all of the factors in the dataset.
However, there’s still some factor can be added into the dataset, such as illumination, motion
blur and shape complexity. Moreover, we can do better to quantize the factors like
background complexity. It will be great if we can use sequence instead of single image. For
ground truth disparity map, we can find a better active sensor that the black holes can reduce
to make the ground truth more reliable.

For the evaluation part, we use BPR and MSE to see the performance. Since our purpose
is to evaluate the algorithm for novel applications, we should choose one of the applications

to help us complete the evaluation.
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