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Student: Che-Yu Li Advisor : Jwu-Sheng Hu, Ph.D.

Institute of Electrical and Control Engineering
National Chiao-Tang University

ABSTRACT

Adaptive beamforming methods are known to degrade significantly if some of
underlying assumptions on the environment, sources, or sensor array are violated. The
array performance may become sensitive even for a slight mismatch between the
presumed and actual signal steering vectors when the desired signal is present. Such
kind of mismatch occurs due to the dynamic environment, near-far mismatch, source
spreading, and local scattering.

This paper presents a novel approach to design the robust broadband beamformer
against arbitrary steering vector mismatch based on the optimization of worst-case
performance. Using the spatial information from the microphone arrays, the desired
source is enhanced while suppressing the directive noises via the robust minimum
variance distortionless response (MVDR) beamformer. In practice, the beamformer is
formulated into state-space observer form of the second-order extended (SOE) Kalman
filter. However, the narrowband beamformer won’t consider the signal directivity in
the low frequency-bands and the desired source would be distorted. For maintaining
higher OutputSINR under steering mismatch, the broadband selection of the steering
vector bound is investigated. Furthermore, the noise tracking is utilized as null
constraints into the SOE Kalman filter for speech enhancement when the source is

absent. The proposed algorithm in this thesis not only improves the performance of



noise suppression but also enhances the speech equality. Simulations and experiments
demonstrate the effectiveness of the proposed algorithm in a noisy and reverberant

environment by comparing with existing algorithms.

Index Terms—wideband beamformer, constrained Kalman filter, robust MVDR

beamformer, signal mismatch problem.



wOW

PF Sk AR A g e A BT Y A ER T 8T | AT Bk e
FFFIEY AL R F P BT PR w0 AR R i g B 4 K
PP EE LS BERD DI E > AXFFLIRATOLBDIIET o T FlE
RS A E Y hr LY SR RS 2 R RS 0 A e B
—ap;;zﬁﬁﬁauaﬁﬁ’i%éaﬁﬁ%ﬁ?é%oﬁﬂubéﬂAB
ik fE FIFR A » X R BB AT

T bR A A R L R Al B (5 PR RN M A R g

PR A A GEATNE L 0 AR S S ST B B P T kG R R

etk - BIAAY S p b s 4 e RPN AE X

.

& AT I AR

FANEZEp g N T é’éﬁw R 11,;1%] o
F AR P XLAB eh3 R ot EREOR R o R FHE s w B elAg
SRR REE F e K-

FE R R E BT A Judon A BB AP B EAFE- R PRI L

S ) e R EERA R BT

MEEHFEELEA S TR0 & KT AR 77 2R - b oo
WBHEA RS A A AR ER R OREEFE PR R FE B RE
RHRHLAF AR EFREL RAF REF oLz FL - B afoHn
BedFad B ~ B3 WALt 7 A BB ~ B ABFER ~ IR R F Pt E 3 i@
3C &

;
3

BEapPEaggd AR 4 - nar] Lk 0 R mﬁ;;ﬁ O EF

et
(p4

AL F IR R R KA LR o L ik T
AEFEOEE RN BR PRI A E e G R LR R P 5
s e r XLAB 2 % Flie B2 % Rt i e § o

BESRREHLEL AT KA FIRLL BEEEF A v R OREFIETE

Beng i E TR AACRLRSERE N TR B AN R S

EH LA 2 2 E TR e



CONTENT

BB B e I
A B ST RA CT e nnaes I
S SRS v
@10 ] I I 1 1 RSP PPRR Vv
LIST OF FIQUIES... ettt et et e e te et e e eeereeanneannesnne s VIl
LISE OF TADIES ..ttt IX
Chapter 1. INTrodUCTION .....ooiviiiiciicic e nneas 1
1.1 Motivation and ODJECHIVE..........cccceiririeieeeiireie et 1

1.2 LItErature REVIEW.....ccoovieueiiiiieieiee ettt 2

1.3 Thesis Scope and ContribULION ..ot 4

1.4 OULIING OF TNESIS ..o it ettt b ettt ettt 5
Chapter 2. Adaptive BeamfOrmMer ...t 6
2.1 Array Signal ProCESSING ... oeeciisiis o edeiantevereteseesssesesesesssseseseseessssesesesssesesesens 6

2.2 Beamformer under MVDR STIUCIUIE ... 10

2.3  Beamformer Using Equality State Constrained Kalman Filter ...................... 12
2.3.1 Soft-Constraint Kalman Filter under MVDR Structure............ccccu....... 12

2.3.2 Hard-Constraint Kalman Filter under MVVDR Structure........................ 17

2.4  Adaptive Constrained Least Mean Square Beamformer...........c.ccccoeevvvvvenneee. 24
Chapter 3. Robust Adaptive Beamformer to the Signal Mismatch Problem ......... 28
3.1 INEFOAUCTION....ceieieiie e 28

3.2  Formulation of Signal Mismatch Problem............cccoeoineiieeviceeecee 29

3.3 Solution to the Signal Mismatch Problem Using SOE Kalman Filter .......... 33

3.4  Parameter Selection and Tradeoff...........coeeiirveeiieee e 37
3.4.1 Covariance Matrix of Kalman Filter...........cccccovvreeiinneeereeene, 37

3.4.2 Steering Vector Bound Wideband Selection...........ccccceeivveeencenienenen. 39

3.5  Speech Enhancement under Proposed Constrained Formulation .................. 44

\Y



3.5.1 Beamformer Null Tracking when Source is Absent .........ccccccovevvvennee. 45

3.5.2 Beamformer Null Constraint when Source is Present............c.ccceeunee.. 50

3.6 Overall System ArChiteCIUIE........ccccvvivieieteeieeeree et 58
Chapter 4. Simulation and Experiment ReSUILS ...........cccoevvieiiiiicie i 61
4.1  Introduction of the Simulation and Experiment Condition ...............cccc......... 61

4.2 Adaptive Spatial Filter Comparison Result ...........cccoeeevinivveieiinnceeeen 66

4.3  Experiment on Performance to the Signal Mismatch Problem...................... 71
Chapter 5. Conclusion and Future Study...........cccccceeiiiiiiiciie e, 86
REFERENCE ...ttt e e e et e e nb e e e e e e ennes 87

Vi



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

List of Figures

1 Uniform Linear Array StrUCtUIE (ULA). ..o 7
2 Uniform Circular Array StruCture (UCA)........ooiiiieieiese e 9
3 Block diagram of the Soft-Constrained Kalman filter algorithm[12]...........cccccceviiiviiiiininennn, 16
4 LMS algorithm BIOCK. .........oviiiiiiiiie e 25
5 Beampattern of signal mismatch and non-mismatch condition. ...........c.ccocvviniieieiciciciee 32
6 (a) Output SINR of wideband epsilon selection A8 = 8°(b) A8 = 16°(SOE-KF). .......ccccuvenee.e. 39
7 The Sigmoid fuNCtioNS COMPAIET. .......ceiiiiriiieieci e 40
8 Standard logistic SIgMOId FUNCLION. ........cciiiiiiccc e 41
9 The Sigmoid function of different SIOPE. ........ccoveiiiieiii s 42
10 The OutputSINR Of different SIOPES. ........ooiiiiiieieice s 43
11 The Log Spectrum Distortion of different SIOPes...........ccvvvviiiiiiiiieiciese e 43
12 Comparison between wideband and narrowband epsilon selection...........c.ccccoecevvvivevcieenenne. 44
13 (a) Wideband beampattern gain of one-interference 50°(HC-KF)(b) (SOE-KF). ......ccccveuuee. 46
14 (a) Wideband beampattern gain.of two-interferences 50°, —50°(HC-KF)(b) (SOE-KF)......... 46
15 Beampattern null tracking (two-interferences SIR'5(dB)-30°, SIR 0(dB) 60°). ........ccccveneeee. 49
16 Beampattern null tracking (two-interferences SIR 5(dB) =507, SIR 5(dB) 50°)........cccceeveuenne. 49
17 (a) Output SINR of null-constraint wideband epsilon selection A6 = 8°(b) A6 =

169 (HC-SOE-KE IMIZA). ..ot oiiieaseseeseseeeeseees st ot tasb s eeee s s eees s sess s eeseees e eese s eeseeeses 52
18 (a) Output SINR of null-constraint wideband epsilon selection A8 = 8°(b) A8 = 16°
(HC-SOE-KF MZB).......oooevoeeeeeeeeeeeseesseeesees e ssseess e sse s es s anesnss s ense e 52
19 (a) Peaks of OutputSINR with epsilon selection (no null-constraint) (b) null-constraint......... 52
20 Visible mainlobe of beampattern and bandwidth. ... 55
21 (a) Delay and Sum (DAS) beamformer wideband beampattern M=4 (b) M=6. ............ccco.... 56
22 (a) Narrowband epsilon selection of one-interference 50° (b)

two-interference 50°, —50° (HC-SOE-KF). .....cccoiiiiiiiiist s 56
23 (a) Wideband epsilon selection of one-interference 50° (b) two-interference

50°, —50° (HC-SOE-KF). ¢.vvrvereeeeeeeeeeeeeeeseseoeeseeeseessssssesesesesssessees s sessses s sessseseesseeesees s esseeesee 57
24 (a) Narrowband epsilon selection speech enhancement of one-interference (b)

LT Lo T a1 (=T (=T (=] oSSR 57
25 (a) Wideband epsilon selection speech enhancement of one-interference (b) two-interferences.

...................................................................................................................................................... 57
26 The Speech Enhancement structure of the Overall SYStem. ..........cccovviiiininincneneceee 58
27 The Flowchart of the Overall SYStEM. .......cccovii i e 60

Vil



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

28 The location of microphone array and SOUICES. .......cc.oiviirrerieeie e eee s see st eee e 61
29 Pre-processing of raw data in beamforming (STFT) ..o 63
30 The HATS and the digital microphone arrays (ULA). .......ccoveeiiiiieie e 64
31 The real meeting room ENVIFONMENT. ..........oceiieiiiiisisi et 65
32 The illustration of experiment EQUIPMENTS. .........coviiiiriie e 65
33 The difference between SC-KF and HC-KF ..o 67
34 Comparison between different adaptive algorithms. ... 67
35 Experiment results with input SNR 0(dB), SIR -7(dB). ....ccooiiiiiiieiiiieseseeeeeeeee 68
36 Experiment results with input SNR 0(dB), SIR O(dB)........cceveiiiiiiiesecie e 69
37 Experiment results with input SNR 0(dB), SIR 7(UB)......ccccoiirierieieieiiinisese e 70
38 Comparison of mismatch conditions (No Null-constraint) (a) OutputSINR (b) LSD. ............. 73
39 Comparison of mismatch conditions (Null-constraint) (a) OutputSINR (b) LSD..................... 73
40 Filtering results in different mismatch conditions (No Null-constraint)...........cc.ccceeevieiinnnne 74
41 Filtering results in different mismatch conditions (Null-constraint)............c.ccccevvveiviiiiinnnnne 75
42 OutputSINR Comparison of algorithms (VW) . cveceeccecccece e e 77
43 LSD Comparison of algorithms (VAW). i i it 77
44 PESQ Comparison of algorithms (V4W). cii v it 77
45 Filtering results in input avgSINR -5(AB)(VFW) ...t e 78
46 Filtering results in input avgSINR O(AB)(VAW). c....o i 79
47 Filtering results in input aVgSINR 5(UB)(VAW). it 80
48 OutputSINR Comparison of algorithms (VA4V). ..o 82
49 LSD Comparison of algorithms (V4V). .o 82
50 PESQ Comparison of algorithms (V+V). ..o 82
51 Filtering results in input aVgSINR -5(AB)(VHV). ..ot 83
52 Filtering results in input aVgSINR O(AB) (V+V). c.ooiiiiiiiiiieieeee e 84
53 Filtering results in input aVgSINR 5(UB) (VHV). c.eciiiiiiiiiieeeee e 85

Vil



Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.

List of Tables

Soft-Constraint Kalman filter algorithm. ... 16
Hard-Constraint Kalman filter algorithm. ... 23
Second-Order Extended Kalman filter algorithm. ...........cccoooevieiieiie i 36
Second-Order Extended Constrained Kalman filter algorithm. ............cccocoiininnn. 53
Parameters in simulations and eXPeriments. .........cccoeveriiereninienieeeese e 62
Results of different algorithms for speech enhancement based on MVDR(V+W). ... 76

Results of different algorithms for speech enhancement based on MVDR(V+V).....81



Chapter 1. Introduction

1.1 Motivation and Objective

Speech enhancement in a noisy environment is an important research issue for
speech signal processing. It will cause a great impact on both respects of voice
recognition and communication. Although the hearing of human beings is able to
recognize desired speeches even under noisy environment, it is still regarded as a
difficult task for computers or machines.

The common sensor for receiving sound waves is the microphone. Single
microphone can collect spectral information but not the spatial information. The
advantage of microphone arrays is applied to catch not only spectral information but
also spatial information among the. sound waves. Adaptive spatial filter, which is
called beamformer, is one of the most effective. methods and are extensively studied
for hands-free speech communication or recognition among several existing
microphone-array-based speech-enhancement algorithms in recent years.

The background noise and reverberation from undirected diffused noises or
directed interferences are the most dominant reasons for the degradation of signal
quality. The noises and reverberation level will determine the distortion level of the
desired signal. Although the methods of multichannel speech enhancement are used to
reduce the effect of noise and reverberation, they do not perform well in real practice
when the pre-assumption of adaptive spectral filter violates the environment conditions.
This provides the motivation of this thesis to study and propose innovative methods to
handle both interference suppression and desired source mismatch problems, which is
useful in a scenario like a real life conference in a meeting room or communication in
the living room, where the equality of sound is deteriorated by human beings’ talking

noise and reverberation in the space of the room.



1.2 Literature Review

Microphone arrays can be used to achieve the effect of spatial filtering, which is
generally called Beamformer (BF) [1]. The beamformers can be categorized in two
types, fixed beamformers and adaptive beamformers. Although the implementation
costs of fixed beamformers are often lower than the adaptive beamformers, the
beamforming effect is not robust enough due to there is no update mechanism in the
algorithm.

Fixed beamformers include delay-and-sum beamformer (DAS) [2], constant
directivity beamformer (CDB) [3] and fixed superdirective beamformers [4]. The fixed
weights are utilized to form a spatial filter according to the pre-known spatial
information. The DAS is the simplest structure in beamformer. It compensates to the
relative time delay between distinct microphone signals and then sums the steered
signals with a fixed weighting: in-every channel to form a single output. The CDB
maintains the spatial response over —a . wide frequency-band; and the fixed
superdirective beamformer keeps desired source distortionless at a pre-defined
direction while attempting to suppress the noises from the other directions. These
approaches assume the desired source and interferences are at pre-known location in
stationary environment. Hence, these algorithms are sensitive to steering mismatches,
which degrade the capacity of noise reduction and result to desired source distortion
and signal self-cancellation.

Instead of using fixed beamformer, an adaptive beamformer can generate a beam
response to the desired source direction and null at undesired signals to suppress the
noises and interferences. Many adaptive beamformer techniques were extensively
studied in the last three decade. The linearly constrained minimum variance (LCMV)
beamformer was proposed in [5] to minimize the array output power under a look

direction constraint. A special case similar to LCMV is the minimum variance
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distortionless response (MVDR) proposed by Capon in [6]. Another popular technique
is the generalized sidelobe canceller (GSC) algorithm which essentially transforms the
LCMV constrained minimization problem into an unconstrained one [7].

The formulation of MVDR is implemented with Kalman filter using the
state-space observer form. Owing to the undesirable mismatch between the actual
desired signal steering vector and the presumed one in single steered constraint,
various adaptive beamformers were proposed to improve the performance. The signal
mismatches can be induced by signal point error [8], imperfect array calibration [9], or
channel effect. In the presence of these effects, an adaptive beamformer suppresses the
desired signal instead of maintaining distortionless response. Such phenomenon is
commonly referred as signal self-nulling [10]. To strengthen the robustness against
steering vector error, various methods are investigated [17], [19]. The Kalman filter
can also be substituted by second-order extended Kalman filter [18], [20] and
constrained Kalman filter [12], [13] to .improve its robustness and reducing
non-linearity against mismatch problems.

Among adaptive beamformers which are realized by Kalman filter, the usage of
constraint projected method and steering vector bound regulation in wideband concept
is a solution to the signal mismatch problem. The relative theory can be found in [17],

[18], [21], [22].



1.3 Thesis Scope and Contribution

The contribution of this thesis is to propose and implement an innovative
algorithm against signal mismatch problem for speech enhancement. The scope of
thesis can be divided to two parts. The first part is to formulate a constrained adaptive
beamformer considering the multiple arrays directivity and spatial coherence of spatial
filtering. The second part is to handle the beamforming constraints given by the
information of voice activity detection to achieve better performance of speech
enhancement.

In the first part, the formulation using MVDR structure with signal mismatch
problems is given. To obtain the solution, the nonlinear second-order extended Kalman
filter is applied to deal with inequality nonlinear constraints as well as constraining the
state prediction. In the optimal minimum.-mean-sguare error (MMSE) algorithm, the
selection of parameters is to avoid-suppression of the desired signal component (signal
self-nulling) in broadband sense. Each selection.has different result in different signal
mismatch situation. The principle of selection is-investigated and explained.

In the second part, the noise tracking can be utilized as null constraints for further
enhancement when the desired source is not present. We incorporate the
equality-constraints (Hard-Constraints) into the Kalman filter by projecting the
updated state estimate onto the constrained region. The robustness of performance
against signal mismatch for directive noise and dereveberation is achieved by choosing
appropriate parameters in different conditions (ex: microphone arrays number,
mismatch angle). In particular, the information given by the voice activity detector can
also be reused to select appropriate parameters in beamforming. The performance of

the algorithm is discussed and explained.



1.4 Outline of Thesis
The remainder of this thesis is organized as follows.

Chapter 2: The beamformers of adaptive spatial filtering which are based on the robust
beamforming technique Minimum Variance Distortionless Response
(MVDR) are introduced. The ideal steered linear inequality constraint is
incorporated into the steepest gradient method and state space formulation
to implement MVDR. By comparisons, the pros and cons construct the
foundation of proposed algorithm.

Chapter 3: The detailed formulation of second-order extended Kalman filter with
nonlinear inequality constraints is presented. It includes the solutions to
signal mismatch problem and. beamformer null constraint for suppression
of interferences, given the information of voice activity detection (VAD).
The technique of choosing the appropriate parameter in wideband
beamforming and its effect are also discussed. Finally, the overall flowchart
and architecture are illustrated and explained.

Chapter 4: The results of simulation and experiment are shown. It contains comparison
between adaptive spatial beamformers and the capability of beamforming
against signal mismatch problem in Room Impulse Response (RIR) and
real room respectively. Some objective indices are calculated to compare
the performance between proposed algorithm and other existing algorithms.

Chapter 5: The conclusion of this thesis and some issue that is discussed for future

studies in this chapter.



Chapter 2. Adaptive Beamformer

2.1 Array Signal Processing

In the traditional digital signal processing, Most of the techniques focus on the
processing skills in the time and frequency domain. Generally, sampling the
continuous signals first, and then converting to the frequency domain to analyze the
signals or discriminate different components by passing the filter.

Multiple microphones are in a fixed shape to receive the signals which are
transported in the spatial. As a result of the microphones in the different position,
microphones will retrieve different energy change and time delay from the same signal
in the same source. Then the processing analysis for exacting a desired source out of
spatial distinct sources from multiple: microphones is called microphone array signal

processing. The field of the research can be classified to two categories:

First : Focus on the number “of. signals or the /spatial direction, generally called
(Direction of Arrivals Estimation, DOA).

Second : Using the spatial relationship of signals can find out different gain of
different direction of signals to have the spatial filtering effect. Generally, the
way to separate the different direction signals is beamformer, and is also one

kind of spatial filter.

Assign a microphone array and a reference point (generally one microphone of the
array), array manifold vector defines the relationship between the source signal
retrieved from microphones and the reference point of time. In the thesis of
beamformer, array manifold vector is used to compensate the input signal phase delay

between different microphones. And, in the thesis of Direction of Arrivals Estimation,



many methods find out the source direction by comparing the similarity of array
manifold vector and the eigenspace of source signals (Eigenstructure Method DOA).
The array processing converts the raw data into frequency domain to compute by
Short-Time Fourier Transform (STFT). In frequency domain, the time delay will
become to the phase delay. Thus, the resolution of computation for source angle

improves effectively in frequency domain.

Usually using the different array arrangement in different situation, following is
the common (Uniform Linear Array, ULA). The structure is as Fig. 1. Assume the
source signal is the (Far field plane wave), s(t) is initial source, n(t) is noise, and the

output of M microphones can represented.as. the following vector notation :

source

T : unitvector

reference point

Fig. 1 Uniform Linear Array structure (ULA).

This Thesis is based on the Uniform Linear Array structure.



x® |s®e™ | [n)
x)y=| : |= : +|
X, (t) |y ()
_S(t)e ¢ ) (21)
A n, ()
= s)+| i |=a(r)st)+n(t)
ejkcﬂf Ny, t)
W, 27 . . .

kC:?C:/T , k. is called wavenumber, and w_, is the wavelength, c is the
wavespeed.

a(r) is the array manifold vector, including the time relationship of signals transported

to the microphones, which can simplified as following :

aT (0):[1 ejkcdsiné? ejkc(M—l)sin49:| 2.2)

In addition to the assumptionto the source-model, the equality of the microphones
has to be checked to a certain extent. Theoretically, we will assume the characteristics
between microphones are identical completely (No difference in gain or phase) to
ensure the signal from desired source to the microphone arrays is just a relationship of
time delay. Once there is difference between arrays, the estimation of spatial
equivalent relationship will be influenced considerably (ex, Direction of Achieving
Angle). Therefore, we have to confirm the gain between microphones is limited to a
range. When the distance from desired source to microphone arrays is smaller, we
have to consider the near-field assumption. Opposite to the near-field assumption is the
far-field assumption which is used in array signal processing. Moreover, the
shadowing effect of arrays disposal and directivity of array itself will both influence

the spatial relationship that arrays received.
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Fig. 2 is the uniform circular array arrangement. Its source angle searching ability
has 2-D dimensions. Setting the center of the Fig. 2 as reference point, the array

manifold vector can deduced to the following vector notation :

. . 2r . . 2M-D)x
%D jk.*Rsingcos(6——) jk.*Rsingcos(6— )
a‘T (9) — |:1 ejkc Rsingcosd e M e M (23)
R : Center of the circle M : Number of arrays
A
Source
Reference
Point
\ 0
R

Fig. 2 Uniform Circular Array structure (UCA).



2.2 Beamformer under MVDR Structure
The minimum variance distortionless response (MVDR) beamformer, also known
as Capon beamformer [6], minimizes the output power of the beamformer under a
single linear constraint on the response of the array towards the desired signal.
Consider the conventional signal model in which an M-element microphone array
captures a convolved desired signal (speech source) in some noise field. The received

signals are expressed as [3]

X, (K)=a, *s(k)+V,, (k) m=1,2,.. (2.4)
where a, is the impulse response from the unknown (desired) source s(k) to the
m,, microphone, * stands for convolution, and v, (k) is the noise at the microphone

m. The signals s(k) and v, (k) are assumed as uncorrelated and zero mean. In the

frequency domain, (2.4) can be written as
X (W) = A, (W) *S(w) +Vii(jw) - m=1,2,.. (2.5)
where A (jw), S(jw), X, (jw), V, (jw) are the discrete-time Fourier transforms

(DTFTs) of a,(k), s(k), x,(k), v,(k), respectively, at angular frequency

w (—z<w<z) and j isthe imaginary unit (j*=-1).

These M microphone signals in the frequency domain are summarized in a

vector notation as

X(jw) = A(jw)S(jw) +V(jw) (2.6)

X(jw) =[X, (jw) X, (jw) - Xy, (W)’
where AGW) = [AGW) AGw) - A, (W'
V(iw) =[My(w) V,(w) -V, W'

and superscript T denotes transpose of a vector or a matrix.

10



Consider finding a weighting vector w,,, which satisfies the look direction
constraint
Wy (jw)a(é,, jw) =1 (2.7)
while attempting to minimize beamformer output power
EQY (W) 3= EQwia, (W)X ()] 3=, () R () Wap, (JW) (2.8)
in order to suppress undesired interference from 6 =6, and noise. Y(jw) is the
beamformer output given by
Y (Jw) = Wy, (W)X (jw). (2.9)
a(é,, jw) 1s the array manifold vector that points to the source direction.

With the consideration above; the following constrained optimization problem can
be formulated:

minwih, ()R (W)W, (j) subject to- wiky (w)a(dy. jw) =1 (2.10)

To solve this problem, the Lagrange Multiplier is incorporated.

{VWW (i Wty (IW)Roox ()W, (JW) = AV up [Wiy (1W)a(6,, W) ~1] =0 211
wyy (Jw)a(d,, jw) =1
(2.8) can be reduced to
{RXX ()i (90 = 72(6,, ) 2.12)
Wy (Jw)a(d;, jw) =1
Assuming R,, isnonsingular. Then
. R (] '
W, (jw) = xx (Iw)a(b;, jw) (2.13)

a™ (6,, (W)Ry (Jw)a(@,, jw)

which is the optimal solution to MVDR problem proposed by Capon [6].
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2.3 Beamformer Using Equality State Constrained Kalman Filter

Kalman filtering [26] is a method to make real-time prediction for systems with
some known dynamics in control theory. Traditionally, problems requiring Kalman
Filtering have been complex and nonlinear. Many advances have been made in the
direction of dealing with nonlinearities (e.g., Extended Kalman Filter, Unscented
Kalman Filter). These problems also tend to have inherent state space equality
constraints and state space inequality constraints. In this thesis, the use of constrained
Kalman filter in signal processing is more concerned. A constraint on the microphone
array response along the look direction is added to the measurement equation of the
Kalman filter. The weight vector of the constrained Kalman beamformer is derived and
shown to converge to that of the . minimum-variance distortionless-response
beamformer (MVDR). The technique of incorporating state space concept and Kalman
filter to solve the MVDR problem-is presented in subsection 2.3.1 and subsection 2.3.2
by two forms of constraints. In later Sections, another formulation to maintain the
distortionless constraint will be presented and investigated.
2.3.1 Soft-Constraint Kalman Filter under MVDR Structure

The traditional formulation and solution to MVDR s presented in Section 2.2. In
this Section, The Kalman filter is introduced to solve the MVDR problem in a new
formulation by Y.H. Chen and C.T. Chiang [12].

With the same formulation as MVDR structure above(2.10), state equations
describing such formulation can be written as :

Measurement Equation :

0 ] [X"kiw] o [k W) o |
LWOﬂHa“(@,jw)}w(k"w){vz(k,jw)} = Y= X0k juwtk, jw)+Vk, jw) (2.14)

Process Equation
w(k +1,w) = w(k, w) +Q(k, w) (2.15)

12



where k is the frame index and the superscript “"” means conjugate-transpose. A
cure for the signal-distortionless problem is to constrain the gain of the system as unity
on the desired signal from look direction and minimize the system output power

subject to this constraint as Equation (2.7). The noise V(k,w) and Q(k,w) are
assumed with Gaussian distribution and thus the covariance matrix can be written as

Q(k,w) ~ N(0,621)
ﬁ»o}) (2.16)

2
O-v2

WKM~N@{

where “N” means Normal Distribution and o5, o, o, are parameters to be chosen.
X(k,w) is the received signal and a(e,, jw)is the array manifold vector.

Let the state estimation error is
e(k|k —1,w) =w(k, w) =(k |k =1,w) (2.17)
and the error covariance matrix'is

Reo (K|k —1,w) = Efe(k|k -1, w)e" (kfk =Lw)] (2.18)

In the first step, no new observation is used. To predict w(k) by using the state
equation, the best possible predictor would be as below which is given that no new
information is available.

W(k |k —1,w) =W(k -1k —1,w) (2.19)

The estimation error is

e(k |k —1,w) = w(k,w) —W(k |k —1,w)
=w(k —1,w) + Q(k,w) —(k -1k —1,w) (2.20)

=e(k -1k —1,w) + Q(k, w)

If requiring that E[e(k—]Jk—l, w)] =0 (this zero-mean condition states that there is no

13



constant bias in the optimal linear estimation [7]), E[e(klk-1,w)]=0. Since
e(k—1jk—1,w) is uncorrelated with Q(k,w),

R.(k|k—1,w) =R, (k-1k -1,w)+ o5l (Riccati Equation) (2.21)

In the second step, the new observation, { }:Y(k,w) is incorporated to

f(6,)=1
estimate w(k,w). A linear estimate that is based on W(k|k-1w) and Y(k,w) has the
form

Wk [k, w) = K (k, W)k [k —2,w) + K (k, w) Y (k, w) (2.22)

where K'(k,w) and k(k,w) are some matrix and vector to be determined. The vector
k(k,w) is called the Kalman gain. Now, the estimation error is

e(k |k, w) =w(k, w) —(k |k, w)
= w(k,w) — K (k, )Wk [k =1, w) —k(k, w) Y (k, w)

:w(k,w)—K‘(k,w)[w(k,w)—e(k|k =L w)]=k(k, WX (k, w)w(k, w) + V(k, w)] (2.23)
=[1 = K '(k, w) — k(k, W)X " Tw(k;w) + K (k, w)eck [k —1,w) — k(k, W)V (k, w),
where X" (k,w) { f (k,yv) }
a" (6, jw)
Since Efe(k|k-1,w)]=0, then E[e(k|k,w)]=0 only if
K'(k,w) = I —k(k,w)X" (2.24)
with this constraint, it follows that
Wk [k, w) =1 —k(k, w)X" ik [k —2, w) +k (k, w) Y (k, w) (2.25)
=Wi(k [k —1,w) + k(k, w)[Y (k, w) = X"k |k =1, w)] '
and
e(k|k,w) = K'(k, w)e(k |k —1,w) —k(k, w)V(k, ) (2.26)

=1 —k(k, W)X" Je(k [k —1,w) — (K, w)V/(K, w).
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Since V(k,w) is uncorrelated with Q(k,w) and with Y(k-1,w), then V(k,w) will
be uncorrelated with w(k,w) and with w(k|k-1,w); as a result E[e(k|k,w)V(k,w)]=0.
Therefore, the error covariance matrix for e(k|k,w) is

R.e (K|, W) = Efe(k [k, w)eT (k|k, )]

(2.27)
— [ =k, W) X" TRy, (K |k L w)[1 —k(k, W)X T" +k(k, W)R, (k, W)k (K, w),

where R, (k,w) = o :
0 p,
The final task is to find the Kalman gain vector k(k,w), that minimizes the MSE

3(k) =tr[R,o (K|, W] (2.28)

Differentiating J(k) with respect to® k(k, w), we get

83 (K)

e w ~ 2 ik WXEIRG Kb WX + 2K (K, WR, (K, W) (2.29)

and equating it to zero, we deduce the Kalman:gain
K(k,W) = R (k|k -1, w)x[xH Res (k[k —Lw)X + Rv(k,w)]’l (2.30)
The expression for the error covariance matrix can be simplified as

Ree(k|k,w) =[1 —k(k,w)X" ]Ree(k|k -1 w)-

(2.31)

[0 =Kk, W)X" TR (k [k =L w)[1 =k (k, W) X" T+ R, (k, w)k (k, w)}K" (k, w)-

Where, by using (2.29), the second term in (2.31) is equal to zero. Hence
Ree (K [k, W)=I —k(k, W) X" IR, (k|k —1,w) (2.32)

In conclusion, the Soft-Constraint Kalman filter can be summarized as following.

The signal-flow graph of the constrained Kalman algorithm can be plotted as Fig. 3.
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Algorithm: Soft-Constraint Kalman filter

State Equation:
Wk +2]k, w) = W(k |k, w) +Q(k, w)

Measurement Equation (Cost Equation):

Y= [ f (9?) =J ) Ljﬁ (;sk,,;lvvg)}w(k’w) +V(k, w) = X" (k, ww(k, w) +V(k, w)
Computation for k =1,2,---

W(k |k =1, w) = W(k — 1|k —1,w)

Ree(k|k -1, w) =R, (k —1|k —l,W)+o-éI
The Kalman gain:

k(k,w) = Reo (k [k =1L W) X[ X" R,, (k|k ~Lw)X + Rv(k,w)]‘l

W(k [k, w) = Wik [k —L, w) + Kk, WLY (K, w) — X" (k, w)i(k [k =1, w)]

R.. (k[k, w) =[1 —k(k, w) X" (k, )R, (k |k —L w)

Table 1. Soft-Constraint Kalman filter algorithm.

Sensors o Ch
[ W
Desired Signal
X, (n) /Wz:':)/
> output
. . Y y(n)
' w_(n
X () .4
Interference D L
Col?astrained
an
—  algorithm
H
T Residual error = -y(n) -
X
Desired
Output
r(m)= 0

Fig. 3 Block diagram of the Soft-Constrained Kalman filter algorithm[12].
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Soft equality constraints are constraints that are only required to be approximately
satisfied rather than exactly satisfied. The perfect measurement approach (Kalman-

Filter) can be extended to soft constraints by adding small nonzero measurement noise

to the perfect measurement as p, . It makes the optimal Lagrange Multiplier solution

be a trade-off between the residual error and the constraint error. The methods are
implemented in cases where the constraints are heuristic rather than exactly satisfied.
But in thesis cases, we want to use Hard-constraints, as opposed to Soft-constraints, to
solve the signal mismatch problem which is discussed in next Chapter.
2.3.2 Hard-Constraint Kalman Filter under MVDR Structure

A number of approaches have been proposed for solving the constrained Kalman
Filtering problem [13], [14], [15], [26]. Analogous to the way that a Kalman filter can
be extended to solve problems. containing nonlinearities, linear equality constrained
filtering can be extended to problems with nonlinear constraints by linearizing locally.
The accuracy achieved by methods dealing with nonlinear constraints will naturally
depend on the structure and curvature of the-nonlinear function itself. We would want
to implement the equality constraints that are exactly satisfied specifically.

In this subsection, there are two distinct approaches which are discussed to
generalize an equality constrained Kalman Filter. The first approach is to run an
unconstrained Kalman Filter and project the estimate down to the equality constrained
space in each iteration. The second approach will start with a constrained prediction,
and restrict the Kalman Gain so that the estimate will lie in the constrained space.
Finally, we will show the numerical preservation of the updated error covariance with
the feedback loop in the projection framework. The equality constraint in this

subsection can be defined as below, where Ais a gxw matrix, b isa q-vector, and

w, the state isa w-vector.
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A(w,) =b (2.33)

So the updated state estimate and state prediction to be constrained at each

iteration, which would allow a better forecast in the system, as below.

AW, = b state — estimate

i 2.34
AW, =D state—prediction (2.:34)
In the following two approaches, we will discuss the constraining updated state

estimate.

A. Projecting the Unconstrained Estimate
This method projects the state to lie in the constrained space each iteration, feeds
the new constrained estimate back to the unconstrained Kalman Filter and continues

this process. Such method can be.described by the following minimization problem for

a given time-step k, in which' Wg is the constrained estimate, W, is the

unconstrained estimate from the. Kalman Filter equation, and W, is any positive

definite symmetric weighting matrix, where the superscript ‘P’ is used to denoted the
“Projected” constrained filter and ‘U ’ is denoted as “Unconstrained”.

W, =arg min{(w_\,vti‘k)TWk(W—\i\fk’lk): Aw=b} (2.35)

weR"
The constrained estimate is then solved by the Lagrange Multiplier as equation
(2.11~2.13), which is given as below:
v‘ka]k = v‘\kaIk ~W, AT (AWk’lAT)’l(AWt’Ik —-b) (2.36)
In a general case, we can find out the updated error covariance as a function of the

unconstrained Kalman Filter’s updated error covariance matrix as before. Define the

matrix Y as below first.

Y =W, *A (AW *A)™ (2.37)
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Equation (2.36) can be re-written as follows:

Wi, =W, — (AW, —b) (2.38)
The reduced form for w, —g, as below:

W, — Wy, =W, =W, + Y(AW,, —b—(Aw, —b))
=W, — W, + YAW, —W,,) (2.39)
= _(I - YA)(Wk\k _Wk)

According to the definition of the error covariance matrix, we arrive at the

following expression.

Ri = E [ (W, —Vig, )(w, — i)' ]
= E[ (1 = YA) (W, — %)Wy, —=%,) (1 = YA) ]
= (1 - YA)Ry (I = YA)
= Ry~ YAR R AY + YAR, AY
=P, — YAP,,
=(I- YA)R,

(2.40)

Note that the YA in equation (2.39) is a projection matrix, as is(l — YA), SO we

can deduce the equation (2.40) to the result. It can be shown that there is smallest

updated error covariance whenW, = R, . It also provides a measure of the information

in the state k.
B. Restricting the optimal Kalman Gain
Alternatively, for restricting the optimal Kalman gain so the updated state estimate

lies in the constrained space, we can expand the updated state estimate term in

Equation (2.34) using Equation (2.25), the state update is W, =W, _, +K,V, , where

Vk = (Yk - kak|k71) .

AWy, + KV, ) =b (2.41)
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The MMSE of the estimate W, isE[ (w, —W,,)" (W, —W,) |, which is equivalent
to the trace of error covariance matrix of W, . Then, we can choose a Kalman Gain

K. that forces the updated state estimate to be in the constrained space. We choose

the optimal Kalman Gain K, which yields Equation (2.30) in the unconstrained case

by solving the minimization below

K, =argmintrace| (I -K,H, )P (1 -K,H,) +K,R K, | (2.42)

KeR™m

Now we seek the optimal K, that satisfies the constrained optimization problem

written below for a time-step k.

K/’ :ag}r{rn]niqntrace[(l K HOPy (1=K H) + KR K ] (2.43)
StAW,, #K.V,)=b
Using the method of Lagrange Multiplier-technique to solve the optimal
minimization,

‘]k :Tr((l _Kka)Pk|k—1(| _Kka)‘+ KkRkKk')

(2.44)
‘M‘kT (A(Wk|k—l + Kkvk) - b)

where the 2, is the Lagrange multiplier. Taking the derivative of J, with respect to
K, and setting it to zero yields
2Ry Hg +2K,C + A AV, =0 (2.45)
where C, =H,R, ,H; +R,. Then we find the following Kalman gain.
Kkp = Pk|k—1HkTCk_l _% AlIAkaTCk_l (2.46)

Applying Equation (2.41), after some manipulations, the optimal Lagrange

multiplier is obtained as below.
A =2V CVAA) (AR H{ GV, + Ay, —b) (2.47)
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Finally, substituting the optimal Kalman Gain and Lagrange multiplier into the

Equation (2.41) that yields the following constrained updated state estimate:
Vg =Vl = AC(AA) (AW, —b) (2.48)
This is of course equivalent to the result of Equation (2.36) with the weighting matrix

W, which is chosen as the identity matrix in open loop scheme. The error covariance

is given by Equation (2.40). That is, the Kalman Filter can be run in real-time, and as a
post-processing step, the unconstrained estimate and updated error covariance matrix
can be reformulated in the constrained space; or alternatively, the constrained estimate
and its updated error covariance matrix can be fed back into the system in real-time. A
large benefit of incorporating constraints can be realized in both techniques, though the

feedback system should generally outperform the system without feedback.

Numerical Preservation of the Updated Error Covariance

These methods are shown to be mathematically equivalent under the assumption

that the weighting matrix W, is chosen appropriately. In [15], with the augmentation

method, the soft equality constraints can be deduced to be equivalent to hard equality
constraints into a Kalman filter by adding a proportionate amount of noise to the
bottom right error covariance matrix (see Equation (2.16)). However, the numerical
round-off error will be ignored possibly in implementations. We will not see the exact
same result while these methods can be mathematical equivalent. The round-off error
that causes the most trouble occurs when the updated error covariance matrices lose
symmetry or positive definiteness. According to feedback loop of the projection frame,
we should find a form of state estimate and state error covariance that preserves

symmetry and positive definiteness better.
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[15] uses the numerical preservation of updated error covariance to find a simplified

form for the constrained updated error covariance as below:

Rk = (1 =K HO) R (1 = KJHY) + KR K (2.49)
Define the projection matrixT, ,
[, =1-R A(AR,A) A (2.50)
In term of T, the following are true.

Pk||::< =I, PkL\Jk

(2.51)
| —K HP =T (1 —-KS Hp )

{

Finally, in order to maintain numerical stability we can find out the simplified form of
constrained updated error covariance.by using Equation (2.49).
Pka = (I - K;Hf)Pkak—l(l B KkPHlf)' + KkPRkKkPI
:Fk(l Tl KIEJHIl(J)PkLIJk—l(I _KEHE)IF‘k
+ DK RK Ty (2.52)
=T, I:(I K KEHE)PkL]Jk-l(I _KEHE)'*‘ KLtJ RkKltJl]rlk
=T PkL|Jkrk'
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In conclusion, the Hard-Constraint Kalman Filter can be summarized under MVDR

structure as following :

Algorithm: Hard-Constraint Kalman filter

State Equation:

Wk + 1]k, w) = Wik |k, w) + Q(K, w)

Measurement Equation (Cost Equation):
Y (k,w) =[0] = X" (k, w)w(k, w) + V(k, w)
Computation for k=1,2,---

W(k|k—1,w):W(k—1|k—1,w)
Ree(k|k -1,w) =R, (k —1|k —l,W)+O'é|
The Kalman gain :

k(k, W) =Ry (k[k =1, w)X[ X"R (k |k —1, w)X + Rv(k,w)]_l
Update the state estimate :

Wk [k, w) = Wk |k —1, w) + K (k, W)LY (k, w) — X* (k, W)k [k -1, w)]

vk [k, w) =ik |k, w)—a" (6, w)@(8,, iw)a" (6, iw))"(@" (6, iwhik [k, w) —b)
Update the error covariance :

Roo (K [k, w) =[1 —k (K, W) X" (k, W)]R,, (k |k 1, w)

R (k[k,w) =[I —a" (&, jw)(a(@,, jw)a" (¢, jw)) "a(e, jw)]*
R (k [k, W)[1 —a™ (&, jw)(a(é,, iw)a™ (6., jw)) *a(é,, iw)]

b : Response value

Table 2. Hard-Constraint Kalman filter algorithm.
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2.4 Adaptive Constrained Least Mean Square Beamformer
The optimal Linearly-Constrained Minimum-Variance Filter (LCMV) in the
concept of the minimum mean output energy (MOE) that minimizes the same

objective function as MVDR beamformer, and projects to the set of the linear

constraints. In [5] Frost has proposed an algorithm to estimate w,_, based on the

opt

least-mean-square (LMS) algorithm for adaptive filtering. Under the MVDR structure,
linearly-constrained adaptive filters are deduced as below.
Core of the LMS algorithm is to find a weighting to minimize the error covariance

between desired source and filtered output. Assume the desired signal, that we want to

achieve, is zero-mean and the variance is o/. Auto-correlation and cross-correlation

matrices definition of the input signal are the following.

E{d(k)}= 0,05 = E{Jd (K[}
R, = E {x(k)*x(k)} Auto —correlation matrix

Ry = E{d(k)x(k)*} Cross —correlation matrix
Then the Cost function is as Equation (2.53).

3 (k) =min E {d (k) - x(K) *W(k)}* = E(d (k) = x(k) *W(k))(d (k) - x(k) *W(k))" (2.53)

Then the method to find the weighting is the Steepest-Descend Method as
w(k) =w(k —1) + up (2.54)
4 is the proportion called step-size (or convergence factor), and the p choosing is

deduced from (2.53). Expanding the Equation (2.53):

J(k) = o =Ry w(k) =W (K)Ry +W (k)Rw(k) (2.55)
We take the Vv, of (2.55) to find the minimization and we get
p=R, —R w(k-1), (2.56)
For the purpose to let w(k) on the lowest direction and strength of J(k),
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and rewritten the (2.54)
w(k) =w(k —1) + z[R, —R,w(k -1)] k=>1 (2.57)
Thus, LMS algorithm can be organized as below
Filter out ty(k) = X (K)w(k)
Error function : e(k)=d(k)—y(k) (2.58)

Update weight :  w(k—1)+ zx" (k)e(k)

X (k)

A 4

X (N wik)
A

w(k —1)

Fig.4 LMS algorithm block.

Since the frequency response of look-direction is fixed by the desired source
constraint under MVDR structure, minimization of the non-look-direction noise power
is the same as minimization of the total output power as Equation (2.10). The
gradient-descent constrained LMS algorithm presented as below using the same

method of Lagrange multipliers, which is discussed in Equation (2.11).

w(k) = w(k —1) — &V ,H [w(k —1)]

(2.59)
= w(k 1)~ u[R,w(k ~1) - a(6,)A(K)]

The Lagrange multipliers are chosen by requiring w(k) to satisfy the constraint
£(6,)=a" (0,)w(k) =a" (,)w(k) - xa’ (6,)R,W(k) - rza (8,)a(d,)A(k) =1  (2.60)

Solving for the Lagrange multipliers (k) and substituting back to the weight
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iteration Equation (2.59),

w(k) = w(k -1 - 1 -a(8,)(@ (6,)a(8,))*a" (6,)a(8,) |R,wW(K) (261)
+a(6,)@" (8,)a(6,))a" (6,)[1-a" (6,)w(K) |
Defining the M dimension vector (F), and M xM matrix (P),
P=1-a(0)@" (6,)a(s,))"a’ (6,)
is the projection matrix onto the subspace orthogonal to the subspace spanned by the
constraint matrix.
FZa(g,)@ 6)a@,)"
The algorithm could be rewritten as

w(k) = P[w(k 1) — R w(k)]+F (2.62)

where the algorithm requires the prior knowledge of the input correlation matrix R

XX !

which, however, is unavailable-a priori in the array problem. Using the outer product
of tap voltage vector to approximate R, -at k., iteration with itself : x(k)x' (k),

gives the stochastic constrained LMS algorithm.

w(0)=F

2.63
w(k) = P[w(k 1) - y(k)x(K)]+ F (2:63)

Note that [11] in (2.63) the term multiplied by the projection matrix corresponds to the

unconstrained LMS solution, which is projected onto the homogeneous hyperplane

a’ (6,)w(k) =0, and moved back to the constraint hyperplane by adding the vector F.

In the LMS algorithm, for sure the convergence of the algorithm, the range of

max

step-size x musttobein O<u< /12 , A 1S the maximum eigenvalue of the R, .

max

If the order of the spatial filter is higher, it is more difficult to solve the problem. Thus,

for simplifying the computation load, there is normalized version derived.

26



ax(k)w(k)
y+X (K)x(k)

w(k) =w(k -1)+ (NLMS) (2.64)

In Equation (2.64), the difference between NLMS and LMS is weight updating. The

step-size is replaced by the % 0<a<2, y is the number for sure that

y+ X (K)x(K)
the denominator is not equal to zero. In that way, the algorithm of NLMS will

converge. Another normalized version of CLMS is shown in [11], which uses the
result of NLMS for convergence speed need. Since the instantaneous error is given in

Equation (2.53), the instantaneous squared error (posterior error)[11] can be written as.

e?(k) = (d (k) - X" (K)w(k +1))

. ) (2.65)
= (d (k) —x" (k)(w(k) + £4,x(k)))
Take the partial derivative of the e?(k) withrespectto x, and make it to zero,
dik) = x' (K)w(k)
. 2.66
,uk XT (k)X(k) ( )
and start with the NLMS algorithm as 'same as the CLMS algorithm.
W(k+1) = Pw, s (K+D+F
(2.67)

=Pw(k)+ g x(K)]+F
Remember that w(k) has to satisfy the constraint in Equation (2.60) which means
that w(k) = Pw(k)+F , and the Equation (2.67) can be rewritten as
W(k +1) = w(k) + 2, Px(k) (2.68)
From Equation (2.58) and (2.68), (2.66), we substitute the input vector by a rotated
version of x (k) = Px(k) . Moreover, recalling that P> = P, it follows that
e(k) =d (k) —x" (k)w(k)

_ B e(k)x(k)
w(k) = P{W(k Dbg o OPH(S

NCLMS 2.69
}F (NCLMS) (2.69)
And in Equation (2.69), the step-size, which is normalized with respect to the

energy of projected input vectors, makes sure the convergence of the algorithm.
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Chapter 3. Robust Adaptive Beamformer to the Signal Mismatch Problem

3.1 Introduction

Robust speech enhancement algorithm arises in many practical applications where
the desired source is usually contaminated by background noise and influenced by
reverberation in the beamformer training data. (e.g., mobile communications, passive
source location, microphone arrays speech processing, medical imaging, and radio
astronomy).

One of the key issues in adaptive beamformers is the sensitivity due to the
mismatch between the presumed signal steering vector of desired signal and the actual
one (e.g., mismatches due to array perturbations, array manifold vector mismodeling,
wave-front distortions, or source local scattering). Several approaches have been
developed to overcome arbitrary mismatches. since past three decades, such as
diagonal loading of the sample-covariance matrix [24]-and the eigenspace beamformer
[25]. However, for the former approach, it is not clear how to obtain the optimal value
of the diagonal loading factor based on the known level of uncertainty of the signal
steering vector; For the latter, it is limited to the high signal-to-noise ratios (SNRs) and
the dimension of signal-plus-interference subspace. Then one of the theoretically
rigorous and efficient approaches to robust beamforming in the presence of an
arbitrary unknown steering signal mismatch is based on worst-case performance
optimization [17]. It optimizes the weighting vector by minimizing the output
interference-plus-noise power while maintaining a distortionless response in the worst
case. The robust minimum variance distortionless response (MVDR: the dominant
structure of this thesis) was formulated in [17] as a second-order cone programming
(SOCP) problem, which can be solved in polynomial time using interior point method.

In further works, several extensions of the robust MVDR beamformer have been
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developed in [19], [20], and in alternative Newton-type iterative algorithms. The
dominant shortcoming of these algorithms is that they do not have a computationally
efficient online implementation.

In this thesis, the constrained Kalman filter is used to solve the linearly equality
constrained MVDR beamforming problem, which is first proposed in [12]. Following
the similar idea, the second-order extended (SOE) Kalman filter for recursive
implementation uses the robustness constraint, which is incorporated into the
measurement equation instead of the conventional distortionless constraint used in [12].
To derive the SOE Kalman filter based on the MVDR beamformer in the frequency
domain [17], the second-order Taylor series expansion is used to approximate the
nonlinear function involved in the beamformer under the assumption that the dynamics
of the signal generating processes are known. However these assumptions limit the
performance on the practical application. To solve the limitation of performance, this
thesis combines the voice activity detection.information and the constraint projected
method with the SOE Kalman filter to strengthen the performance of speech
enhancement against steering mismatch problem.

3.2 Formulation of Signal Mismatch Problem

According to the Equation (2.10), the well-known MVDR beamformer minimizes
the output power of the interference-signals-plus-stationary-noise while maintaining a
distortionless response to the desired signal, which is given in the frequency domain
(the imaginary unit j is omitted for equation simplification ),

minw, (W)R,, (W)w,,, (W) subject to wi, (w)a(é,,w) = f(6,) =1
where

R, (W) = E{X (k, W)X " (k,w)}
R,(w) is the MxM correlation matrix and the a(g,,w)eC"* is the presumed

29



steering vector. The solution of the MVDR problem is given by Equation (2.13)

Re (W)a(8,,w)
a" (6, W)R, (Wa(6,,w)

Wy (W) =

in real application, the correlation matrix is unavailable and usually approximated by
N
Rxx(w):%ZX(k,w)XH(k,w) (3.1)
k=1

where N is the number of frames available, which is called sample covariance
matrix. Using the Equation (3.1) to replace the true correlation matrix and the resulting
solution is commonly referred to the sample matrix inversion (SMI) algorithm. The
main disadvantage of the SMI algorithm is that it is not robust to the mismatch
between the presumed steering vector and the actual one, and the algorithm degrades
dramatically if the desired signal .is present in_the training snapshots. The signal
self-cancellation phenomenon abserved in such. case is commonly known as signal
self-nulling. The phenomenon s shown in Fig. 5. Obviously, there is a severe null at
the signal of interest (SOI) when the presumed steering vector is different to the actual
steering vector. The goal of solutions to the signal mismatch problem is to constrain
more steering vectors to exceed unity gain while suppressing the interferences as the
red solid dotted line which is expressed in Fig. 5.

For the sufficient robustness against the desired signal mismatch problem, the
norm of the steering vector distortion can usually be bounded by some known constant

£>0[18], and the actual steering vector belongs to the set
A(g) ={C(wW)|C(w) = a(8,, w) +e(w), |[e(w)] < £} (3.2)
the robust formulation of the MVDR beamformer can be written as [18].
minw, (W) R (W)W, ,, (W) subject to ‘W;V(W)C(w)‘zl for all C(w) e A(e) (3.3)
Such distortionless response is maintained by means of inequality constraints for a

continuum of all possible steering vectors by the set A(g). For each choice of
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C(w) e A(e), the condition ‘wﬂv (w)C(w)‘zl represents a nonlinear and nonconvex

constraint on w. There are infinite vectors C(w)in A(g). Hence, the Equation (3.3)
is a semi-infinite nonconvex quadratic program. It is well known that the nonconvex
constrained quadratic programming problem is NP-hard. Such problems are difficult to
solve in engineering. For simpler formulation of Equation (3.3), we convert the
semi-infinite nonconvex constraints to a single constraint that corresponds to the

worst-case constraint. The Equation (3.3) can be equivalently described as below.
minw, (W)Rx (W)w,,, (W) subject to - min )\w;V (W)C(w)| 21 (3.4)
According to Equation (3.2), we can rewrite the constraint of Equation (3.4) as

; H H
min_ |wi, (Wa(,, w) +wy, (We(w)|>1

Applying the triangle and Cauchy-Schwarz -inequalities along with the inequality
le(w)| < &, we know that
[win, (W)a(8,, W) + Wi, (W)e(w)| = Wiz, (W)a(8:, wh|=fwiy, (W)e(w)| = wyi, (W)a(e,, w)| - w]
(3.5)
Moreover, we can deduce that
[winy (W)a(6,, w) +wip, (We(w)| =|wis, (Wa(d,, w)| - & w] (3.6)
Then, the semi-infinite nonconvex quadratic constrained problem can be replaced as
the following quadratic minimization problem with a single nonlinear constraint:
minw,,, (W)Ra (W)w,,, (W) subject to ‘Wﬂv (W)a(HS,W)‘—EHWMV (W)HZl (3.7)
The nonlinear constraint in Equation (3.7) is still nonconvex due to the absolute value
operation on the left-hand side. We can observe that the cost function in Equation (3.7)

is a complex number which is unchanged when the w undergoes an arbitrary phase

rotation. Hence, choose w such that without any loss of generality.
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Re{wl, (W)a(d,,w)} =0 Im{wj, (w)a(6,,w)} =0 (3.8)

Using this observation and employing Equation (3.8) as additional constraints, the

constraint in Equation (3.7) can be rewritten as
Wi, (W)a(g,, w) — & |w,, (W) 21 (3.9)

Note that the formulation is much simpler than the Equation (3.3) and is convex. It can
be proved that the inequality constraint in (3.9) can be presented by an equality one
under some assumption in [18].

min wy, (W) Rox (W)W, (W) (3.10)

subject to ‘wﬂv (w)a(o,,w) —1‘2 =’ W, (W)w,,, (W)
The problem in (3.4) has been solved by second-order cone programming in [17]. In
the next Section, we will briefly review the SOE Kalman filter solution and combine

with a new approach based on it for speech enhancement.
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Fig. 5 Beampattern of signal mismatch and non-mismatch condition.
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3.3 Solution to the Signal Mismatch Problem Using SOE Kalman Filter

The constraint in Equation (3.10) can be rewritten as
fo (Wi (kW) = £(6,) =1 (3.11)

where

f, (W (K, W) = SZWHV (k, w)wy, (k, w)
—wi, (K, )a(a,, wya® (6, W)y, (k, w) (3.12)

+wp, (k, wya(o,, w) +a" (6., wyw,,, (k,w)

For the sake of the convenience of analysis, the mean square error (MSE) between the

zero signals and the beamformer output is presented as following

E Do— X" (K, Wyw,, (K, w)ﬂ —w (K, WR, (W)w, (K, W) (3.13)
where E() denotes the expectation_.operation. Therefore, the robust MVDR
beamformer problem can be formulated as

min EDO— X (k, w)wyy (k’W)\ZJ

Wiy

(3.14)
subject to f, (W (KyW)) =1

The Kalman filter is a minimum mean square error (MMSE) estimator, using the
state-space model to model an unknown dynamic system of the constraint

minimization problem in Equation (3.14) is:
State Equation

Wy, (K, W) =W, (K =1, W) + v (k, w) (3.15)
Measurement Equation

Xk wywyy (kow) | [ v (kW)

y{ £, (W, (K, W) }{vz(k,w)} (3.16)

= F(Wyy (K, W) +v,, (k,w)
where v (k,w) and v_(k,w) are the process and measurement noise respectively,
and modeled as zero-mean, independent white noise sequences with the covariance

matrices Q and R.
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E[ v, (k,w)v!' (k,w) | =071 =Q

: ) (3.17)
E[vm(k,w)vg(k,w)]:[‘zl :2}

The SOE Kalman filter expands the nonlinear function around the last estimate of

the state vector w,,, (k,w) by using the second-order Taylor series and finds out the

unbiased estimate W,,, (K,w) to minimize the variance of estimation error which is

presented as below

MSE:EUWMV(k,w)—ww(k,w)ﬂ (3.18)
the estimated weight vector wwv (k,w) can be found by evaluating the first
derivative of f(w,, (k,w)) which is.denoted as Jacobian F,(k,w) and the second
derivative of f(w,, (k,w)) which is denoted as the Hessian matrices F."(w) and
F 2 (w) below

Fkow) = (V,, £ (W (sw)

) LZWEV (k, w) —(a(6,, w)a" (6,, w)wy, (k,w))" +a" (6., W)}
FOW) =V, Vi {X"Kww, (kw)}=0 (3.20)
Fan W)=V, Vi {f,(W, (k,W)} =&’ —a(g,,w)a" (6,,w) (3.21)

where the | is the identity matrix. The SOE Kalman filter solution is given by [18],

[21] based on the state space model (3.15) and (3.16)
W, (K, W) =Wy, (k—1,w) + K (k, w) [V — f(wyy (K, W) ]+ 7 (k, w) (3.22)

where

a(k,w) = % K(k, w) - m -tr{Fvgj-j (wW)B" (k, w)} (3.23)
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is the correction term to make the state estimate unbiased. The filter gain and the

predicted weight error covariance matrices are given by

K(k,w) =P~ (k, w)F," (k, W) [ F, (k, w)P~(k, W)F,y' (k, W) + A(k, W) + Fi]’l (3.24)

P (k,w)=P*(k—-1Lw)+Q (3.25)

Pr(k,w) =[ 1 -K(k,W)F, (kW) | P~ (k,w) (3.26)
where

A(k,W)zé{g ﬂtr{Fvﬁfv)(W)f"(k,W)Fvﬁi)(W)ﬁ‘(k,W)} (3.27)

is the correction term deduced from the =m(k,w); K(k,w) is the Kalman gain;

P~(k,w) is the a priori error covariance matrix:and P*(k,w) is the a posteriori error
covariance matrix. After some algebra operation the Kalman gain and the covariance

matrices can be rewritten as below

K (k,w) =P~ (k,w) | 1+ Fr! (k, w)(AGK W) + R) 5 (W) P (k, w)]’l Fr (K, w)(Ak, w) +R)™
(3.28)

B (kw) =P (k=L w)[ 1 + R} (k-1 W)(AK-L W) +R) < F, (k-Lw)P (k-Lw) | +Q

(3.29)
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Algorithm: Second-Order Extended Kalman filter

State Equation:
Wk +2]k, w) = Wik |k, w) +Q(k, w)

Measurement Equation (Cost Equation):

Y(kow) = 0 _ X (k, w)w,,, (K, w) V(KW
, f(HS):l fZ(WMV (k,w)) ’

Computation for k=1,2,---

110 O ~
S, =H!'P H/ +;[0 Jtr{Hv(viv)R(Hv(Viv)Pk}+ R

Update the state estimate :

_ _ T
K, =P HHS ™ H,(w,) ={V,h" (w,)}
H A~ = X':_‘
L 7 X W 2w —(CCw, )" +C"
- =

1
h, (W )+ =tr tHERS
(7 2 { " k} Jacobian: H), =V, Vi {X'w } =0

W, =W, +K, (2, —2,) Hessian: H{) =V, Vi {h,(w)}=¢&*1 —CC"

Update the error covariance :

P=(-KH)R (I-KH)"+KRK"

Table 3. Second-Order Extended Kalman filter algorithm.

In Section 3.4, we will use the structure as Equation (3.17) Q and R, where the

parametersc?,o7,07,and ¢ are discussed.
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3.4 Parameter Selection and Tradeoff
In Section 3.3, the steering vector bound that discriminates the speech

enhancement is not determined. In subsection 3.4.1 the parameters selection and the

relationship between the error covariance matriceso?, 0,07 of Kalman filter will be

presented. In subsection 3.4.2 the steering vector bound & selection in wideband

concept are further discussed in different source direction mismatch conditions.

3.4.1 Covariance Matrix of Kalman Filter

Firstly, the selection of the parameters oZand ¢ are determined in the

measurement equation and state equation rewritten as below:

State Equation

W (K, W) =iy, (kL W)+ QK ) (3:30)
Measurement Equation
y= {X (K w)wy, (k’W)}rV(k,w) = X (k, Wy+V (k, w) (3.31)
f, (Wi (K, W)
Q(k,w) ~N(0,51)
V (k, w) ~ N(o,ﬁ)12 :22} = N(0, 5?2 Ll) g}) (3.32)

In the weighting matrix Q, o’ controls the error covariance of the random walk

for the weights updating in the process equation. Since the environment surrounded is

assumed to be a Linearly Time-Invariant (LTI) system, o’ is set to zero. Next, o

and o represent the variance of filtered output error and constraint error respectively

2

in the measurement equation. Then the value 0—52 which is the ratio between o7 and

0,
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2

o, controls the weighting matrix adaption speed. If the 0—52 is large, the filter adapts

O,
to the variation in environment faster. In (3.30), it can be observed that if o7 is large,

the change between w,,, (k,w) and w,, (k—1w) will larger and leads to faster

adaption in w,,, (k,w). In (3.31), it can also be observed that if &/ is small, the
measurement error V(k,w) has small variations between each step, which means

w,,, (k,w) has to adapt fast if X(k,w) varies fast.
In [18], the authors proposed that &7 should be chosen of the same order as the

optimal output power of the array. It can be approximated as ||wMV||2(Maz+an2),

where o* and o’ are the desired signal and sensor noise power, respectively. The

definition

2
Oy

Mo’ +07°

* (3.33)

is discussed with the steering vector bound in the subsequent examples. The latter

o7 should be chosen small enough to satisfy the beam constraint robustness with a
O_Z

high accuracy. We choose the ratio &=—% as (3.32) for the following numerical and
03

mathematical reasons, rather than setting the parameter o .

1) & determines the condition number of the weighting matrix V (k,w) .
2) ¢ controls the tradeoff between noise reduction and dereverberation.
3) The constrained Kalman algorithm converges to optimum MVDR filter if & is

small enough.
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Hence, large ¢ leads to strong noise reduction and little dereveberation while
small ¢ leads to strong dereveberation and little noise reduction. If & is small, that
means the error variation in the lower line of (3.32) is relatively small compared with

the upper line, which leads to closer tracing in the lower line and looser tracing in the
upper line, achieving strong dereveberation and weak noise reduction. Then &<107°

is recommended to fulfill the requirements of the signal mismatch problem. (note that
& should be set small enough to keep the matrix V (k,w) well-conditioned).
3.4.2 Steering Vector Bound Wideband Selection

Second, the selection of the steering vector bound & of the SOE Kalman filter in

different frequency bands with different array number are studied. We use the same
parameters of the Kalman filter and choose the o7 =50(Mo? +57), which the output

SINR of Kalman filter remains close to-the optimal in-a wide range of the values of p
proven in [18][21]. Then [18][21] choose the fixed steering vector bound & in narrow
band approach to ensure the spatial characteristics, and the performances are discussed
under the frequency whose wavelength ‘is"chosen to be twice as the microphones’
spacing(i.e., f = c/2d, where c is the sound velocity). Different to that, we design
different steering vector bound according to different subbands to keep outputSINR
higher while maintaining the distortionless level in the wideband analysis.

OutputSINR-SNR(200B)-SIR(EJE) OutputSINR-SNR(20dB)-SIR(EJE)

4 4

epsilon
N

epsilon
N

1) 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency-Bands Frequency-Bands

Fig. 6 (a) Output SINR of wideband epsilon selection A8 = 8°(b) A8 = 16°(SOE-KF).
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Fig. 6 shows an example when the signal mismatch becomes severe when

A6 = 8% and 16° with six omnidirectional microphones. It can be observed that the

characteristics of the OutputSINR maintain higher in the lower frequency-bands when

the steering vector bound tends to be smaller. Although there is a wide range of fixed

epsilon selection in higher frequency-bands, whose wavelength is chosen to be twice

as the microphones’ spacing, the performance of narrowband selection is not good in

speech enhancement as a whole. Compared to the narrowband epsilon selection, if

there are steering vector mismatches, the result of wideband selection is closer to our

destination obviously. Despite the fact that the conceptual relationship can be imagined,

there is still no concrete equation to describe the relationship between them. Hence we

propose to choose the steering vector bound functionally by the sigmoid function

which is a mathematical function.used in modeling system as below.

A s
— {_'1_{_- [ v"'.'l f'_J . I f(';r:}
I 2 W 1 | .1'2 1

= tanh (r) —_ ;‘?_;-L]‘f‘t;—l]l [%r) p 4
. A - i
2gd(32) — 0.5
"T - 1+ |z

2.5 2 1.5 1 0.5 0.5 1 1.5 2.

Fig. 7 The Sigmoid functions compared.
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In the Fig. 7, all of the sigmoid functions are normalized in such a way that their
slope at origin is 1. Sigmoid functions that refer to the special case of the logistic
function shown on the Fig. 8 are mathematical function having an “S” shape (sigmoid
curve). Besides the logistic function, sigmoid functions include the ordinary
arctangent, the hyperbolic tangent, and the error function, but also the generalized
logistic function and algebraic functions in Fig. 7. The initial stage of growth is
approximately exponential; then, as saturation begins, the growth slows, and at
maturity, growth stops. For values of x in the range of real positive numbers from
0 to + oo, the tendency is similar to the Fig. 6. Hence we use the sigmoid function

with equation as below:

1 d : shift
f(x)= .
% 14 0d) {a:slope

(3.34)

where e is the Euler’s number. «In practice; due to the nature of the exponential
function e, it is sufficient to’compute f(x) over a wide range of real numbers with
corresponding slope. In Fig. 9, the pre-training procedure changes a from 0.01 to 0.1
with summation of 0.01 and finds the appropriate slope a .The output signal to
interference-plus-noise ratio (OutputSINR) and log spectrum distortion (LSD) are used

to be the criterions of selection in Fig. 10 and Fig. 11 respectively.

11 1
f(x) =
() 1+e™”

di f(x) = f ()L (X))
X

It has the property that
1- f(x)=f(—x)

)
o

-6 -4 -2 0 2 4 6 Thus, the function is odd

Fig. 8 Standard logistic sigmoid function.
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Fig. 9 The Sigmoid function of different slope.

The goal of wideband selection is to-maintain the higher OutputSINR and
distortionless when there are source-direction  mismatches to the assumption of
algorithms. The relationship between them is mutually exclusive. The higher
outputSINR leads to higher distortion and vice versa. In Fig. 10 and Fig. 11, the
variation of OutputSINR in different signal mismatches has significant differences.
The strategy of determination is based on higher OutputSINR to choose the
distortionless response. The best sigmoid function slope is chosen as a= 0.05 and the
maximum and minimum bound of sigmoid-function are 2.5 and 1.0 respectively

according to the Fig. 6.
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LSD
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Fig. 10 The OutputSINR of different slopes.
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Fig. 11 The Log Spectrum Distortion of different slopes.
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Using the appropriate selection of sigmoid function slope in Fig. 10-11 to
compare the effect of wideband epsilon selection shows the significant difference. In
Fig. 12, the proposed steering vector bound leads to not only higher outputSINR but
also the lower LSD when the mismatch becomes severe with M=6. The result is the
goal we want to achieve. In the next Section, we will introduce constraints projected

method to combine with the proposed steering vector bound selection.

(White-noise SNR(20dB) , SIR(5dB)) Log Spectrum Distortion
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Fig. 12 Comparison between wideband and narrowband epsilon selection.

3.5 Speech Enhancement under Proposed Constrained Formulation

In beamforming, we estimate the signal of interest arriving from some specific
directions in the presence of noise and interference signals with the aid of an array of
sensors. These sensors are located at different spatial positions and sample the
propagating waves in space. The specific spatial response of the array system is
achieved with “beams” pointing to the desired signals and ‘nulls’ towards the
interfering ones. Ideally, for beamforming, we aim to formulate a fixed response to the
signal of interest and zero response to the interfering signals. Note for simplicity, we
do not consider the effect of noise in this Section. This requirement can be expressed

with array manifold vector as the following matrix equation:
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1 ehm@® .. griwnaa(@) oy constant

1 e_jWTl('gl) e e—jWTM 4(4) W* 0
. . = . (3.35)
1 e*l-WT1(9M71) v e*J-WTMA(ngl) W’l\(/l o 0

Obviously, as long as the matrix on the left has full rank, we can always find a set of
array weights to cancel the M-1 interfering signals and the exact value of the weights
for complete cancellation of the interfering signals is dependent on the signal
frequency (certainly also on their directions of arrival).

For wideband signals, since each of them consists of infinite number of different
frequency components, the value of the weights should be different in different
frequencies. That is the reason that narrowband beamforming structure with a single
constant for each received signal from'arrays will not work effectively in a wideband
environment. In subsection 3.5.1, the directive interfering signal tracking when only
noises are present can yield -the direction of interference and the corresponding
beamformer null response value. In subsection 3.5.2, using the information from the
subsection 3.5.1 as constraints, which are-combined with the proposed second-order
extended Kalman filter to improve the performance of speech enhancement, compared

to the existing algorithms is shown.

3.5.1 Beamformer Null Tracking when Source is Absent

Firstly, we make the noise tracking problem to be the beamformer null tracking of
the adaptive beamformer when the source is not present. The weightings of spatial
filter in different frequency-bands can be expressed as beampattern gain according to
the steering array manifold vector. Comparison between the two algorithms (HC-KF
and SOE-KF) in beamformer null tracking ability with the same conditions is shown in

Fig. 13 and Fig. 14. In Fig. 15 there are two interferences at 30° SIR = 5(dB) and
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60° SIR = 0(dB). In Fig. 16, two interferences at 50° SIR =5(dB) and - 50° SIR =
5(dB) in Fig. 14 when desired source is at 0°. In the low frequency, the HC-KF
algorithm tracking is better than SOE-KF. Due to the desired source is not present, the
algorithm focus on the noises reduction and no need to put more emphasis on the
source direction distortionless. On the other hand, there is no trade-off between the
covariance matrices which is discussed in the subsection 3.4.1. However, the beam
directivity of the both algorithms degrades significantly in the low-frequency. For
reducing the number of constraints to increase the degrees of freedom of the
beamformer weightings for interferences suppression, we propose the HC-KF to do

beamformer null tracking given the information of voice activity detection.
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Parametric methods for sources localization search physical space for local
maximum(s) of a “point-based” measure of activity, which is estimated for each point
of space, from the recorded multichannel signals. On the contrary, [32] proposes a
Sector-based Activity Measure (SAM) method that partitions the space into sectors,

and defines an activity measure for each sector. Each SAM method defines an activity

function A (X,,...,X,)eR for each sector s=1...N,;.. The higher this value is, the

bins *

more likely the sector to contain active source, which can be used to take a hard

decision, for example by applying a threshold on A . And [33] uses the sparsity

assumption, similar to the one in (Roweis, 2003), which implies that all other sectors

S.,5#5,,,(k) are attributed to a zero posterior probability of containing acoustic

activity at the discrete frequency. k. The posterior probability of having at least one

active source in sector S, ., andat frequency k- is modeled as:
P(sector S, active at discrete frequency k |u® (k)) = 5, (5-5,,. (K)) (3.36)
s (k) =arg, min D (k) (3.37)

where 6§, (&) is the Kronecker function, equal to 1 iff £=0, and zero otherwise; [

is defined as the function of standard comparison. Then, in order to measure the
wideband acoustic activity within each sector of space, [33] proposes the
SAM-SPARSE-MEAN method. For a given sector frame and a given frequency bin, it
is the average probability where the sector is dominant. Similar to the concept and

according to the adaptive beamforming result in Fig. 13-14, the space around a

uniform linear microphone array would be partitioned to sectors S, :

S, ={(0, k) e R? |—%S9S%,SOOSK<ZOOO(HZ)} (3.38)
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where 6, k designate azimuth and discrete frequency-bands. The high-frequencies
signals degrade significantly as the distance between source and arrays is farther, so

choose the middle-frequencies bins in the visible region. Within each frequency bin k,

only one sector h_. (k,0) isjudged as active:

Mo (K, 6) =argmin(F, ) (3.39)

where B ,(X(k)) isthe beamformer null activity function in different frequency bins.

j(%ﬁk)-(ifl)d sing

M
Po=2 W e (3.40)
i=1

where W, is the weighting of adaptive spatial filter for speech enhancement. Hence,

we could use the mean of the beamformer null probability to search which direction of

interference is dominant the same as the Equation (3.36).

kmax
o = D P(sector:S, activeat selected frequency k |u® (k)) (3.41)

kmin
If there are more than one interference, we can take a hard decision by applying

threshold on h_ (k,0) to do multiple interferences tracking.

In the Fig. 15-16, there are two blocks used to determine the best estimation of the
direction of interference in two cases. The first block separates the beampattern into
three specific sections as shown below. Mainlobe section is the possible direction
range of desired source, which is not regarded as the discussed section. And then the
left and right minimum beamformer null statistical probability analyses are individual.
With the minimum point statistical analyses, the null degrees will determine whether
there is directive interference or not through thresholds. After the calculation and
numerical analysis, the direction of interferences can be found with the response

values to be null-constraints in next subsection.
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Fig. 15 Beampattern null tracking (two-interferences SIR 5(dB) 30, SIR 0(dB) 60°).
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Fig. 16 Beampattern null tracking (two-interferences SIR 5(dB) —50°, SIR 5(dB) 50°).

Compared to the eigenspace-based beamformer, which is known as one of the most
powerful robust techniques applicable to source tracking, the proposed method isn’t
limited to high input avgSINR cases. The disadvantages of eigenspace-based
beamformer are that the estimation of the projection matrix onto the signal-
plus-interference subspace breaks down due to subspace swaps greatly at low input
avgSINR and the dimension of signal-plus-interference subspace are low and unknown
exactly. In particularly, if the calibration of arrays and compensation of phase delay do

well, the beamformer null tracking outperforms than other algorithms.
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3.5.2 Beamformer Null Constraint when Source is Present
In this subsection, using the proposed SOE-KF method to handle the null
constraints given with the information of voice activity detection in previous

subsection has better performance in speech enhancement applications. In the

subsection 3.5.1, we can yield the beamformer null thida ¢, and the corresponding

response values f(@,) according to the weighting of constrained Kalman filter which

is based on robust MVDR beamformer. The goal of this subsection is to use the
direction of interferences and corresponding response values as constraints to be
combined with the constraint projected method, which is discussed in subsection 2.3.2,
when the source is not present.

C W, = f(0,)

minw"Rw subject to { s
" Cy =2y (6,)

}ag\,(en)—[l il W)

The steering vector to interference direction is applied to be constraints. For SOE-KF
method, if there are noisy interferences existing, there are beam and null constraints
integrated into the algorithm which is the ‘proposed method (HC-SOE-KF). The state
and error covariance matrix update equation of proposed method can be expressed

briefly as below:

W, =W, + K, (z, —2,)

W, =W, —Cy (CyCy) (CyW, — f(6,)) (3.43)
P = (I -K.H,)R (1 -KH,)" +K,RK/

R =(1-Cy(CCy) " Cy\)R.(I-Cy (C,C\) " Cy) (3.44)

Cy =ag(6,) (3.45)
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In Equation (3.43) and (3.44), the close loop updating form of Kalman filter is based
on the optimal langrage multipliers solution. Although the proposed method can
suppress the interference directively, the number of the null constraints is limited to the
degrees of freedom of the beamformer weighting and the characteristic of spatial
coherence. In Fig. 17 and Fig. 18, the OutputSINR of HC-SOE-KF shows the
relationship between the steering vector bound and the frequency-bands in different
mismatch conditions. Due to the wideband beamforming concept, the source and
noises of the training data are white noises at direction 0°and 50° respectively and
the signal to interference ratio is 5(dB); signal to noise ratio is 20(dB). Obviously,
there is enormous degradation in the low frequencies under 1K (Hz) approximately
and different phenomenon in different microphone number. It is important to mention
that no matter the number of arrays, smaller steering vector bound will have better
performance in lower frequency-bands with null constraint. In array processing, the
spectrum coherence influences the tracking of interferences direction and the increase
in signal bandwidth will result in"the degradation of steered response. In Fig. 19, the
peaks of the OutputSINR corresponding to the epsilons selection in frequency-bands is
shown. It can be observed that for the higher OutputSINR, the much lower epsilon in
low frequency-bands. Hence the regulation of steering vector bound is in need to

compensate such phenomenon of signal self-cancellation in low frequency-bands.
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Fig. 17 (a) Output SINR of null-constraint wideband epsilon selection A6 = 8°(b) A8 = 16°(HC-SOE-KF M=4).
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Fig. 18 (a) Output SINR of null-constraint wideband epsilon selection A6 = 8°(b) A8 = 16°(HC-SOE-KF M=6).
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Fig. 19 (a) Peaks of OutputSINR with epsilon selection (no null-constraint) (b) null-constraint.
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Algorithm: Second-Order Extended Constrained Kalman filter

State Equation:
Wk +1]k, w) = W(k|k, w) + Q(k, w)

Measurement Equation (Cost Equation):

Y(kow) = 0 _ X (k, w)w,,, (k,w) V(KW
, f(HS):l fZ(WMV (k,w)) ’

Computation for k =1,2,---
0 0
20 1

Update the state estimate :

T T
K, =P HMS, H,(w,) ={V,h" w,)}
XH
XHW_ - k
- 7 g2w" — (CCHw, )" +C"

Ay L _

h, (PW)+=tr {HOR _

2 Jacobian: H), =V, Vi { X', } =0
W =W + K, (2 - %)
Hessian: H{ =V, Vi {h,(w)}=¢&*1 —CC"
W, =W, —C\ (C\ C\) "(Cy W —(6)) |

n

Cy =2y (6)

Update the error covariance :

P=(-KH,)P (I-KH,)"+KRK/

R =(1-Cy(Cy Cy) "Cy)R.(1-Cy(C\ C\) "Cy)

Table 4. Second-Order Extended Constrained Kalman filter algorithm.
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In Fig. 20, to illustrate two points, consider the beampattern near the origin whose
period is % just same as the concept of “grating lobe”. Grating lobe is a lobe of the
same height as the mainlobe in array processing. We refer to Au, as the null-to-null

beamwidth and denote it by BWy,. One-half of the BW,, is the distance to the first

null (0.5BWy, half-power beamwidth (HPBW)).

sin ( kCZNd (sin@—sin ao)j =0

0, -0,=0,-6, = A0

: : 2
= BW,, =sind. —sing, = Nﬁg ~ 2A0c0s 6, (3.46)
SAHzL
Nd cos 6,
| >
9] A a

The wavenumber k. can be represented as following.

k

W 27 d : array distance
c

= 7 W =27 f N : array number (3.47)
¢ c : voice speed

From Equation (3.46), beamwidth is directly proportional to lj;l . Thus, the

beamwidth will be narrower when the number of array elements is larger or the
distance between them is too far. That is to say that the spatial resolution of array is
higher. We can enhance the resolution of an array system form by the increase of array
number or array dimension; then another effect of beamwidth (Beam Broadening

Effect). The effect is that the beamwidth will increase as the direction of beam tends to
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be bigger. In Equation (3.46), beamwidth increases when 6, T= cos(,) = A8 .

In order to find out the frequency-bands corresponding to the first null-to-null
bandwidth in different array number, we use the delay and sum (DAS) beamformer
and Fig.19 (b) as the regulation standard of steering vector bound with

beamformer-null constraint. The beampattern is shown in Fig. 21.
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Fig. 20 Visible mainlobe of beampattern and bandwidth.

In Fig. 21, the steered response degrades with the decrease in frequency-bands. In
high frequency whose wavelength is chosen to be the twice as the microphones’
spacing, the bandwidth of the impinging signals should be narrow enough to make
sure the signals received by the opposite ends of the array are still correlated with each
other which is termed a narrowband beamformer. In other words, the steering vector
bound should be wide enough to avoid the signal self-cancellation when there is
mismatch existing. However when the bandwidth of the impinging signal is too wide

to lose the spatial directivity, the steering vector bound should be narrow enough to
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keep the beam directivity. Thereafter the use of the functional steering vector bound
selection which is based on the wideband concept, if there is in need to use the null
constraints for suppressing the interferences, choosing the smaller one as same as the
Fig. 19(b) below the first null-to-null frequency-bands to strengthen the performance

of speech enhancement from the DAS beamformer.
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Fig. 21 (a) Delay and Sum (DAS) beamformer wideband beampattern M=4 (b) M=6.

Dramatically degradation on the low frequency-bands is shown in Fig. 22 which is
compared to the Fig. 23. After the approximate epsilon regulation, there is a great
improvement in the result of speech.enhancement. In other words, the proposed
method can achieve the noise reduction and solve the signal mismatch problem at
meanwhile in the wideband concept. The results of filtered waveform are presented in

the Fig. 24-25.
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Fig. 22 (a) Narrowband epsilon selection of one-interference 50° (b) two-interference 50° — 50° (HC-SOE-KF).
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Fig. 23 (a) Wideband epsilon selection of one-interference 50° (b) two-interference50°, —50° (HC-SOE-KF).
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3.6 Overall System Architecture

Combining the beamforming technique proposed in Section 3.3, the parameter
determinism in Section 3.4, and the beamformer null-tracking and null-constraints in
Section 3.5 for speech enhancement, the overall system architecture is summarized
briefly in this Section.

The flowchart is plotted in Fig. 27 to elaborate the overall system architecture.
The main processing can be separated into three Kalman filters, written as Kalman
filter 1, 2, 3 in Fig. 27. The Kalman filter 1 is operated as the beamformer null tracking
estimator, thus its error covariance of measurement equation should be chosen small
enough to achieve better efforts on noise reduction. Note that there is no tradeoff
between noise reduction and dereverberation in the silent stage. The Kalman filter 2
serves as the robust beamformer for solving the signal mismatch problem in speech
stage, so the steering vector bound should be choesen appropriately to maintain the
steered response in different frequency-bands.. The- Kalman filter 3 uses the null
response value and dominant null direction_as constraints to strengthen the noise

reduction. The primary structure of the overall system is shown in Fig. 26.
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Fig. 26 The Speech Enhancement structure of the Overall System.
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To start with, new speech samples in time domain are collected in frames with
fixed overlap to the previous frame and transformed to frequency domain after zero
padding and Hanning windowing. Assume the information of voice activity detection
is given, we can determine the new frame which is desired signal active or inactive.

If the new frame is determined as desired signal inactive, feeding the spatial
filtering weights which is given by Kalman filter 1, into beamformer null-tracking. As
mentioned before, the Kalman filter 1 serves as noise reduction beamformer and it
could find out the direction of undesired interferences and the corresponding
beamformer null response values. The parameters of noise tracking should be loaded
into the parameters before adapting to the new frame, since the new frame that
contains desired signal won’t be adapted by Kalman filter 1.

If the new frame is determined as desired signal active, it should to check the
parameters which are loaded from-noise-tracking. If there are no noisy interferences in
the undesired direction, the Kalman filter 2 is used to filter out the undesired noise and
solve the signal mismatch problem for maintaining the desired signal undistorted.
Using the steering vector bound to cover more steering vectors in sigmoid
mathematical model wideband selection works, but if there are noisy interferences
existing, the parameters will be fed into the Kalman filter 3 as null constraints which
are projected into the updated equation for suppressing the interferences dramatically.
And the epsilon selection should be regulated according to the characteristic of (DAS)
beamformer and Fig. 9 in low frequency-bands with different array number.

To sum up with, the overall algorithm contains three Kalman filters to handle the
two issues of beamformer null tracking and robust beamforming against signal
mismatch problems. The Kalman filters differ in its constraints for maintaining the
desired signal and its crucial steering vector bound € parameter thus render different

functions and speech enhancement results. The matrices of state and error covariance
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in the measurement equation should also be chosen approximately according to
subsection 3.4.1. Finally, given the information of voice activity detection incorporated
to keep performance of speech enhancement more robust, and the more accurate

performance on automatic speech recognizer or relative voice applications is.
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Fig. 27 The Flowchart of the Overall System.
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Chapter 4. Simulation and Experiment Results

4.1 Introduction of the Simulation and Experiment Condition

In this chapter, the comparisons between algorithms, which are discussed in
chapter 2, are shown in Section 4.2 firstly. The second, we will choose the best
performance one but use the proposed method to solve the main shortcoming of it in
Section 4.3. The third, experiments in Room Impulse Response (RIR) environment
and a real meeting room are presented for comparison. Finally, the pros and cons are
explained and discussed with the experiment results.

The proposed algorithm was tested with a uniform linear microphone array of
four and six omnidirectional microphones. The distance between each microphone is
4.5 cm. The Size of the room is 10 m~X 10 m- X+ 3 m and the microphone array was
placed on a table at a distance of 1 m-from the wall. The arrangement of microphone
array and sound sources is shown in Fig. 28.
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Fig. 28 The location of microphone array and sources.
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The desired source is located at —16°~16° which consists of sentences spoken by
man or woman. Two white interferences are located at 50° and —50°. The distance
between these sources and middle of the microphone array is 1 m. And the sound
sources are recorded independently for the purpose of estimating the output signal to
interference-plus-noise ratio (OutputSINR) and log spectrum distortion (LSD).

The sound sources are played by the Head and Torso Simulator (HATS) and
recorded in the anechoic chamber without reverberation; a real meeting room with
reverberation in Section 4.2 and Section 4.3 respectively. The HATS is used to
simulate the characteristic of human being acoustic output. And the sound sources are
recorded by a digital microphone array, which are digital microphones to receive
signal and collect 16-bits array data in. an Altera FPGA development board. The
received data is visible for embedded network hardware Net-Burner through shared
memory. Finally, the array data is transferred to PC or Laptop through Local Area
Network (LAN).

The speech data is extracted from a listening comprehension test by an English
learning center, thus the input SNR could be very high. The detail specifications about
the pre-processing of raw data by Short-time Fourier transform (STFT) are presented
in Table 5 and Fig. 29. The Fig. 30-32 illustrate the recording environment and
experiment equipment (including Laser Range Finder, Decibel meter, Altera FPGA
development board, digital microphone arrays, ULA setting block, and loud speaker).
Three objective performance indices are used to measure the performance of noise

reduction and waveform property directly as following:

Microphone Number 4,6 Microphone Displacement 4.5cm
Sampling rate 8000 Hz FFT size 512 samples
Shift number 160 samples Zero padding 32 samples

Table 5. Parameters in simulations and experiments.
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1. Output signal to interference-plus-noise ratio (OutputSINR)
One equality in the frequency weighted measurement for evaluating the

performance of noise reduction, which is defined as below:

s w+5

>3 ViKW

SINR,,, =10-log,, -4 (4.1)

w; +5

> 2 Vi kew)

W=w, -

where the Y, is the filtered output of the desired signal, and Y, is the filtered output
of interferences plus noise; (w,—5,w, +5) is the windowing of frequency-bands.

2. Log spectrum distortion (LSD)
The performance of noise reduction and distortion is a trade-off of beamforming.
The better performance of noise reduction may cause more distortion. Hence, another

equality measurement for evaluating the performance of distortion, which is defined as

1 &1 2
LSD :EXZ V_Vz(zo.mgm | AL (W)S; (k,w) | -201og,, | Y (k, W) [)? (4.2)

k=1 w=1
where the Y (k,w) is the STFT of the filtered output and the S, (k,w) is the STFT of
the original sound played by the HATS. The LSD compares the original desired signal

with the enhanced signal. LSD of different methods are evaluated by using the original

desired source recorded by # microphone one and the enhanced signal from methods.
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Fig. 29 Pre-processing of raw data in beamforming (STFT)
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3. Perceptual Evaluation of Speech Quality (PESQ)

The last equality measurement for evaluating the performance of speech equality
iIs PESQ [27]. It is a widely accepted industry standard for objective voice quality
testing and used to estimate the whole speech enhancement performance at different
input avgSINR. The automatic objective estimation of speech equality is substituted to
the judgment system before. The PESQ result will show the difference between the
original input signal and the degrading output signal which is played by the HATS.
The recorded sources contain background noise and diffused noise. PESQ can be

regarded as the subjective hearing equality of human being to a certain extent.

Fig. 30 The HATS and the digital microphone arrays (ULA).
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Fig. 31 The real meeting room environment.

Fig. 32 The illustration of experiment equipments.
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4.2 Adaptive Spatial Filter Comparison Result

In this Section, the comparisons of noise reduction between adaptive spatial
filters, which are discussed in Section 2 based on the robust MVDR beamformer, is
exhibited. The weights of spatial filter update only when the desired source is not
present. When the desired source is present, we use the weights as the fixed
beamformer to investigate the performance. The data is recorded at Anechoic Chamber
without reverberation. In Fig. 33, the recorded source is at 0° SNR 20(dB) and
interfering source at 50° SIR -5(dB). We change the variance of filtered output error
covariance matrix in the measurement equation from 107'5~10'> to see the
relationship between the SC-KF and HC-KF. Obviously, when the ¢ is chosen too
small, the OutputSINR and LSD of SC-KF will degrade significantly in Fig. 33(c), (d).
The condition number in Fig. 33(a) which. is.the maximum eigenvalue divided by the
minimum eigenvalue of the input correlation matrix will be too big to cause the matrix
singular. Although choosing the appropriate parameter of o2 and o7 , the HC-KF and
SC-KF can be equivalent, there is-a_tradeoff relationship which is discussed in
subsection 3.4.1 between the parameters in SC-KF. Hence for the robust performance
consideration, the HC-KF is used as reference adaptive algorithm. In Fig. 34, under
different input SIR, the HC-KC is closer to SMI solution in no signal mismatch
problem. The CLMS and CNLMS are also close to the optimal solution, but the
step-size, which is selected as 1071%,10°! respectively, should be chosen
approximately according to the input data and the variable environment.

For subjective evaluation, Fig. 35, 36, 37 show the waveforms and spectrograms
at different SIR -7 dB, 0 dB, 7 dB with same SNR (0 dB). It can be observed that the
diffused noise is rather hard to suppress compared to directive interference. In the final
experiments, the proposed method focuses on the suppression of directive interfering

source and solves the signal mismatch problem at the same time.
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Condition number of Singular matrix (White-noise SNR(20dB) , SIR(-5dB))
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4.3 Experiment on Performance to the Signal Mismatch Problem

In this Section, the comparisons of experiments in the Room Impulse Response
(RIR) and a real meeting room are shown. Signal Mismatch problem could easily
happen in real environment for speech enhancement applications. For examples, the
reverberation is the most known reason that causes signal mismatches. The second, the
assumption for spatial relationship of arrays is different to the real condition that
results in arrays calibration procedure to compensate for channel amplitude and phase
mismatch. The third, the violation of the spatial Nyquist theorem at low frequencies

degrades the performance and limits the effective observations in finite time.

(A) RIR Experiments Performance

Three performance indices; which are-introduced in Section 4.1, are used to
compare the performance of speech enhancement. \We use the HC-KF as beamformer
null tracking when source is not present and. the constrained SOE-KF as modification
of HC-KF to solve the signal mismatch problems. The parameter of the HC-KF is
g? = 10 , which is the same as the SOE-KF filtered output covariance and the
02 =0,& = 10712, The steering vector bound ¢ is selected as 2.55 [18] in narrow-
band selection, and slope of sigmoid function is 0.05 in wideband selection for «.

In Fig. 38-41, we analyze the different desired signal mismatch conditions from
AB=-16 to A6 =16 in the RIR experiment. The average input signal to
noise-plus-interference ratio is 5 (dB) approximately. Comparisons between SOE-KF
and HC-SOE-KF are also shown in LSD and OutputSINR. In Fig. 38-39, the
OutputSINR and LSD of HC-SOE-KF are more non-sensitive against different
mismatches than HC-KF and SMI with impressive performance. In particular, since
the mismatch conditions differ from frequency-bands, the proposed mathematical

functional ¢ selection in HC-SOE-KF has a better performance in average.
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The robustness of beamforming in speech enhancement is what we want to
achieve despite the HC-KF has the best result when there is no signal mismatch. The
corresponding results of waveform of frequency spectrum in original desired source

and interfering sources with diffused noise are shown in Fig. 40-41.

(B)(C) Experiments in Real Meeting Room

The meeting room dimension is 10 m x 10 m x 3 mand a uniform linear array
(ULA) with six omnidirectional microphones was placed on a table at a distance of 1.5
m from the HATS. In Fig. 42-44;48-50, the results of performance indices, which is
collected in the Table 6 and Table 7 as the same as the RIR experiment, are shown
when the signal mismatch A6 = 16°. _It. can be observed that SMI and HC-KF
beamformer don’t take the effect.of steering error into account, so the OutputSINR is
prone to be proportional to the distortion to a certain extent. Hence, it is possible to
reduce the interferences while nulling the desired source, most especially in the low
frequencies-bands (Fig. 45-47;51-53).. Using _the beamformer null-constraints, which
are found out in the training snapshots, to strengthen the suppression of interferences is
available on both the HC-SOE-KF (soft-beam and hard-null constraints) and HC-KF
(hard-beam and hard-null constraints) when the desired source is present. The
proposed method not only improves the shortcoming of robust MVDR beamformer
which is based on Kalman filter for solving the signal mismatch problem but also
enhances the OutputSINR as the same results in the RIR experiments.

It has to be mentioned that, although the distortionless of proposed method is
prone to be lower at lower avgSINR like -3 (dB), the performances of OutputSINR
and the filtered speech quality PESQ are more robust than others. The reason is that
the beam directivity will degrade in low frequency-bands due to hard null-constraints.

It enhances the OutputSINR at the cost of signal self-nulling; and the beam constraints
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by steering vector bound would amplify the desired source and diffused noise
simultaneously in the worst-case performance optimization. Because the direction of
source is unknown in algorithm, the distortionless performance is a challenging task
under signal mismatch problem. The post-filtering of diffused noise and superdirective

beamforming are in need as the future work.

(A) Room Impulse Response
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(B) (Speech source (woman) + White interference)

Input AvgSINR = -5 (dB)

Algorithms OutputSINR LSD PESQ
Proposed 5.775 10.93 1.86
HC-KF 5.144 10.21 1.621
SOE-KF 2.135 12.71 1.636
SMI 1.821 10.17 1.319

Input AvgSINR = 0 (dB)

Proposed 9.618 10.55 1.986
HC-KF 8.531 10.89 1.755
SOE-KF 5.226 12.3 1.741

SMI 4,002 10.88 1.288

Input AvgSINR = 5 (dB)

Proposed 13.07 1041 2.109
HC-KF 11.78 11.47 1.851
SOE-KF 8.296 12.08 1.839

SMI 5.729 11.54 1.321

Table 6. Results of different algorithms for speech enhancement based on MVDR(V+W).
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(C) (Speech source (woman) + Speech interference (man))

Input AvgSINR = -5 (dB)
Algorithms OutputSINR LSD PESQ
Proposed 4.007 10.87 1.882
HC-KF 0.5431 10.2 1.824
SOE-KF 2.93 13.04 1.761
SMI 0.0197 10 1.566
Input AvgSINR = 0 (dB)
Proposed 7.771 10.52 2.016
HC-KF 3.049 10.92 1.943
SOE-KF 5.447 12.52 1.839
SMI 2:352 10.69 1.512
Input AvgSINR = 5 (dB)
Proposed 11.46 1043 2.098
HC-KF 6.48 11.56 2.048
SOE-KF 7.534 12.2 19
SMI 4.482 1141 1.53

Table 7. Results of different algorithms for speech enhancement based on MVDR(V+V).
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Chapter 5. Conclusion and Future Study

The results of performance in speech enhancement are presented in chapter 4. The
proposed beamformer null-constraint could be used to improve the OutputSINR both
in HC-KF and SOE-KF. Using the wideband selection of steering vector bound in
constrained Kalman filter works in solving signal mismatch problem. In this thesis, the
fact can be observed that the proposed method is capable of noise reduction and
maintaining the signal distortionless at the same time. The robustness of beamformer
against array steering error compared to other algorithms is shown in Fig. 42-44,48-50.
The relationship between the noise reduction and the dereverberation is a tradeoff of a
beamformer. Because the existence of desired source from different direction is
unknown and the environment reverberation. is non-stationary, the better noise
reduction performance may suppress the desired source, particularly in low
frequency-bands when the number of arrays is small.-To make sure the directivity of
steered response is in low frequency-bands, the regulation of steering vector bound is
needed according to the characteristic as in-Fig. 17-19.

There are several areas for improvement in selecting the appropriate steering
vector bound and tracking the beamformer nulls for interference suppression. The
inequality nonlinear beam constraint would amplify the desired source and diffused
noise at meanwhile; and the null constraint would make a distortion to the desired
source in low frequency-bands. Therefore, it would be interesting in noise
post-filtering using broadband beamforming similar to [29][30]. This is left as a future
research topic. As a conclusion, a more robust adaptive post-filter for diffused noise
and more solid sources tracking (similar to superdirective beamformer [34] in low
frequency-bands) will be helpful to overcome the signal mismatch problem under such

environment further.
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