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摘  要 

當演算法中與環境及麥克風陣列的相關假設是不成立的時候，適應性波束形 

成方法的性能會有大幅的衰減。當預設目標訊號出現在訓練的樣本數中，即使在 

預設的指向向量和實際的指向向量有輕微的失配發生，陣列演算法的效果也會變

得相當靈敏，相關的失配問題發生於變動的環境以及遠近效應、聲源散佈、與局

部散射等。 

本論文提出一套穩健型寬頻波束形成器，基於最佳化中在最糟情況下解決任 

意且受規範的目標訊號之指向向量失配的問題。利用麥克風陣列訊號的空間資訊 

，由最小變異無失真響應(MVDR)的波束形成器以空間濾波的方式針對聲源方向

純化語音，同時壓抑來自於其它方向的雜訊。在實際應用的例子，波束形成器可

以表示為狀態觀測器於二階展開的卡曼濾波器(SOE-KF)。然而窄頻波束形成器沒

有考慮低頻訊號的空間指向性，目標聲源會因此受到壓抑而造成語音的失真。為

了在指向向量失配的情況下輸出較高的輸出訊號與干擾加雜聲比，演算法根據不

同頻帶下訊號的特性來選擇適當的指向向量的限制範圍。此外，當目標聲源不存

在時，演算法對雜訊做追蹤，並透過零波束形成限制式於 SOE-KF 中以進一步提

升語音純化的效果。本論文所提出的方法不僅改善了壓抑雜訊的效果並且提升了

語音的品質。透過模擬和實驗驗證，本論文所提出的演算法有效地提升語音品質

於吵雜以及有迴響的環境，並與其它已知的方法進行比較和分析。 
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ABSTRACT 

Adaptive beamforming methods are known to degrade significantly if some of 

underlying assumptions on the environment, sources, or sensor array are violated. The 

array performance may become sensitive even for a slight mismatch between the 

presumed and actual signal steering vectors when the desired signal is present. Such 

kind of mismatch occurs due to the dynamic environment, near-far mismatch, source 

spreading, and local scattering. 

This paper presents a novel approach to design the robust broadband beamformer 

against arbitrary steering vector mismatch based on the optimization of worst-case 

performance. Using the spatial information from the microphone arrays, the desired 

source is enhanced while suppressing the directive noises via the robust minimum 

variance distortionless response (MVDR) beamformer. In practice, the beamformer is 

formulated into state-space observer form of the second-order extended (SOE) Kalman 

filter. However, the narrowband beamformer won’t consider the signal directivity in 

the low frequency-bands and the desired source would be distorted. For maintaining 

higher OutputSINR under steering mismatch, the broadband selection of the steering 

vector bound is investigated. Furthermore, the noise tracking is utilized as null 

constraints into the SOE Kalman filter for speech enhancement when the source is 

absent. The proposed algorithm in this thesis not only improves the performance of 
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noise suppression but also enhances the speech equality. Simulations and experiments 

demonstrate the effectiveness of the proposed algorithm in a noisy and reverberant 

environment by comparing with existing algorithms. 

 

Index Terms—wideband beamformer, constrained Kalman filter, robust MVDR 

beamformer, signal mismatch problem. 
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Chapter 1.  Introduction 

1.1 Motivation and Objective 

Speech enhancement in a noisy environment is an important research issue for 

speech signal processing. It will cause a great impact on both respects of voice 

recognition and communication. Although the hearing of human beings is able to 

recognize desired speeches even under noisy environment, it is still regarded as a 

difficult task for computers or machines. 

The common sensor for receiving sound waves is the microphone. Single 

microphone can collect spectral information but not the spatial information. The 

advantage of microphone arrays is applied to catch not only spectral information but 

also spatial information among the sound waves. Adaptive spatial filter, which is 

called beamformer, is one of the most effective methods and are extensively studied 

for hands-free speech communication or recognition among several existing 

microphone-array-based speech enhancement algorithms in recent years. 

The background noise and reverberation from undirected diffused noises or 

directed interferences are the most dominant reasons for the degradation of signal 

quality. The noises and reverberation level will determine the distortion level of the 

desired signal. Although the methods of multichannel speech enhancement are used to 

reduce the effect of noise and reverberation, they do not perform well in real practice 

when the pre-assumption of adaptive spectral filter violates the environment conditions. 

This provides the motivation of this thesis to study and propose innovative methods to 

handle both interference suppression and desired source mismatch problems, which is 

useful in a scenario like a real life conference in a meeting room or communication in 

the living room, where the equality of sound is deteriorated by human beings’ talking 

noise and reverberation in the space of the room. 
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1.2 Literature Review 

Microphone arrays can be used to achieve the effect of spatial filtering, which is 

generally called Beamformer (BF) [1]. The beamformers can be categorized in two 

types, fixed beamformers and adaptive beamformers. Although the implementation 

costs of fixed beamformers are often lower than the adaptive beamformers, the 

beamforming effect is not robust enough due to there is no update mechanism in the 

algorithm.  

Fixed beamformers include delay-and-sum beamformer (DAS) [2], constant 

directivity beamformer (CDB) [3] and fixed superdirective beamformers [4]. The fixed 

weights are utilized to form a spatial filter according to the pre-known spatial 

information. The DAS is the simplest structure in beamformer. It compensates to the 

relative time delay between distinct microphone signals and then sums the steered 

signals with a fixed weighting in every channel to form a single output. The CDB 

maintains the spatial response over a wide frequency-band; and the fixed 

superdirective beamformer keeps desired source distortionless at a pre-defined 

direction while attempting to suppress the noises from the other directions. These 

approaches assume the desired source and interferences are at pre-known location in 

stationary environment. Hence, these algorithms are sensitive to steering mismatches, 

which degrade the capacity of noise reduction and result to desired source distortion 

and signal self-cancellation. 

Instead of using fixed beamformer, an adaptive beamformer can generate a beam 

response to the desired source direction and null at undesired signals to suppress the 

noises and interferences. Many adaptive beamformer techniques were extensively 

studied in the last three decade. The linearly constrained minimum variance (LCMV) 

beamformer was proposed in [5] to minimize the array output power under a look 

direction constraint. A special case similar to LCMV is the minimum variance 
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distortionless response (MVDR) proposed by Capon in [6]. Another popular technique 

is the generalized sidelobe canceller (GSC) algorithm which essentially transforms the 

LCMV constrained minimization problem into an unconstrained one [7].  

The formulation of MVDR is implemented with Kalman filter using the 

state-space observer form. Owing to the undesirable mismatch between the actual 

desired signal steering vector and the presumed one in single steered constraint, 

various adaptive beamformers were proposed to improve the performance. The signal 

mismatches can be induced by signal point error [8], imperfect array calibration [9], or 

channel effect. In the presence of these effects, an adaptive beamformer suppresses the 

desired signal instead of maintaining distortionless response. Such phenomenon is 

commonly referred as signal self-nulling [10]. To strengthen the robustness against 

steering vector error, various methods are investigated [17], [19]. The Kalman filter 

can also be substituted by second-order extended Kalman filter [18], [20] and 

constrained Kalman filter [12], [13] to improve its robustness and reducing 

non-linearity against mismatch problems. 

Among adaptive beamformers which are realized by Kalman filter, the usage of 

constraint projected method and steering vector bound regulation in wideband concept 

is a solution to the signal mismatch problem. The relative theory can be found in [17], 

[18], [21], [22]. 
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1.3 Thesis Scope and Contribution 

The contribution of this thesis is to propose and implement an innovative 

algorithm against signal mismatch problem for speech enhancement. The scope of 

thesis can be divided to two parts. The first part is to formulate a constrained adaptive 

beamformer considering the multiple arrays directivity and spatial coherence of spatial 

filtering. The second part is to handle the beamforming constraints given by the 

information of voice activity detection to achieve better performance of speech 

enhancement. 

In the first part, the formulation using MVDR structure with signal mismatch 

problems is given. To obtain the solution, the nonlinear second-order extended Kalman 

filter is applied to deal with inequality nonlinear constraints as well as constraining the 

state prediction. In the optimal minimum mean-square error (MMSE) algorithm, the 

selection of parameters is to avoid suppression of the desired signal component (signal 

self-nulling) in broadband sense. Each selection has different result in different signal 

mismatch situation. The principle of selection is investigated and explained. 

In the second part, the noise tracking can be utilized as null constraints for further 

enhancement when the desired source is not present. We incorporate the 

equality-constraints (Hard-Constraints) into the Kalman filter by projecting the 

updated state estimate onto the constrained region. The robustness of performance 

against signal mismatch for directive noise and dereveberation is achieved by choosing 

appropriate parameters in different conditions (ex: microphone arrays number, 

mismatch angle). In particular, the information given by the voice activity detector can 

also be reused to select appropriate parameters in beamforming. The performance of 

the algorithm is discussed and explained. 
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1.4 Outline of Thesis 

The remainder of this thesis is organized as follows. 

Chapter 2: The beamformers of adaptive spatial filtering which are based on the robust 

beamforming technique Minimum Variance Distortionless Response 

(MVDR) are introduced. The ideal steered linear inequality constraint is 

incorporated into the steepest gradient method and state space formulation 

to implement MVDR. By comparisons, the pros and cons construct the 

foundation of proposed algorithm. 

Chapter 3: The detailed formulation of second-order extended Kalman filter with 

nonlinear inequality constraints is presented. It includes the solutions to 

signal mismatch problem and beamformer null constraint for suppression 

of interferences, given the information of voice activity detection (VAD). 

The technique of choosing the appropriate parameter in wideband 

beamforming and its effect are also discussed. Finally, the overall flowchart 

and architecture are illustrated and explained. 

Chapter 4: The results of simulation and experiment are shown. It contains comparison 

between adaptive spatial beamformers and the capability of beamforming 

against signal mismatch problem in Room Impulse Response (RIR) and 

real room respectively. Some objective indices are calculated to compare 

the performance between proposed algorithm and other existing algorithms. 

Chapter 5: The conclusion of this thesis and some issue that is discussed for future 

studies in this chapter. 
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Chapter 2.  Adaptive Beamformer  

2.1 Array Signal Processing 

In the traditional digital signal processing, Most of the techniques focus on the 

processing skills in the time and frequency domain. Generally, sampling the 

continuous signals first, and then converting to the frequency domain to analyze the 

signals or discriminate different components by passing the filter. 

Multiple microphones are in a fixed shape to receive the signals which are 

transported in the spatial. As a result of the microphones in the different position, 

microphones will retrieve different energy change and time delay from the same signal 

in the same source. Then the processing analysis for exacting a desired source out of 

spatial distinct sources from multiple microphones is called microphone array signal 

processing. The field of the research can be classified to two categories: 

 

First：Focus on the number of signals or the spatial direction, generally called 

(Direction of Arrivals Estimation, DOA). 

Second：Using the spatial relationship of signals can find out different gain of    

different direction of signals to have the spatial filtering effect. Generally, the 

way to separate the different direction signals is beamformer, and is also one 

kind of spatial filter. 

 

Assign a microphone array and a reference point (generally one microphone of the 

array), array manifold vector defines the relationship between the source signal 

retrieved from microphones and the reference point of time. In the thesis of 

beamformer, array manifold vector is used to compensate the input signal phase delay 

between different microphones. And, in the thesis of Direction of Arrivals Estimation, 
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many methods find out the source direction by comparing the similarity of array 

manifold vector and the eigenspace of source signals (Eigenstructure Method DOA). 

The array processing converts the raw data into frequency domain to compute by 

Short-Time Fourier Transform (STFT). In frequency domain, the time delay will 

become to the phase delay. Thus, the resolution of computation for source angle 

improves effectively in frequency domain.  

 

Usually using the different array arrangement in different situation, following is 

the common (Uniform Linear Array, ULA). The structure is as Fig. 1. Assume the   

source signal is the (Far field plane wave), s(t) is initial source, n(t) is noise, and the 

output of M microphones can represented as the following vector notation： 

 

 

Fig. 1 Uniform Linear Array structure (ULA). 

 

This Thesis is based on the Uniform Linear Array structure. 

d d

source

r

r : unit vector

reference point

1x 2x
Mx

2x r 
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1

1

1 1

2

1

( ) ( ) ( )

( )

( ) ( )
( )

( )

( ) ( ) ( )

( )

         ( )

c

M
c

M

c

c

x r
jw

c

x r

j

jw M
c

x r

x r
M

k

jk

x t s t e n t

x t

x t n t
s t e

n t

a r s t n t

n t

e

s t

e









 
    
      
    
       



 
 

 

 

 
 

 



 
  


 

            (2.1) 

2c
c

c

w
k

c




  , ck is called wavenumber, and cw  is the wavelength, c  is the 

wavespeed. 

( )a r is the array manifold vector, including the time relationship of signals transported 

to the microphones, which can simplified as following : 

sin (M 1)sin
( ) 1 c cjk d jkTa e e

                                   (2.2) 

 

In addition to the assumption to the source model, the equality of the microphones 

has to be checked to a certain extent. Theoretically, we will assume the characteristics 

between microphones are identical completely (No difference in gain or phase) to 

ensure the signal from desired source to the microphone arrays is just a relationship of 

time delay. Once there is difference between arrays, the estimation of spatial 

equivalent relationship will be influenced considerably (ex, Direction of Achieving 

Angle). Therefore, we have to confirm the gain between microphones is limited to a 

range. When the distance from desired source to microphone arrays is smaller, we 

have to consider the near-field assumption. Opposite to the near-field assumption is the 

far-field assumption which is used in array signal processing. Moreover, the 

shadowing effect of arrays disposal and directivity of array itself will both influence 

the spatial relationship that arrays received. 



 

9 

Fig. 2 is the uniform circular array arrangement. Its source angle searching ability 

has 2-D dimensions. Setting the center of the Fig. 2 as reference point, the array 

manifold vector can deduced to the following vector notation： 

2 2(M 1)
* sin cos( ) * sin cos( )

* sin cos
( ) 1

c c
c

jk R jk R
jk RT M Ma e e e

 
   

 


  
  
 

         (2.3) 

R：Center of the circle        M：Number of arrays  

 

Z

X

Y





R

Source
Reference

Point

 

 Fig. 2 Uniform Circular Array structure (UCA). 
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2.2 Beamformer under MVDR Structure 

The minimum variance distortionless response (MVDR) beamformer, also known 

as Capon beamformer [6], minimizes the output power of the beamformer under a 

single linear constraint on the response of the array towards the desired signal. 

Consider the conventional signal model in which an M-element microphone array 

captures a convolved desired signal (speech source) in some noise field. The received 

signals are expressed as [3] 

                   1 , 2 , . . . Mm        )()(*)(  kvksakx mmm                (2.4) 

where ma  is the impulse response from the unknown (desired) source )(ks  to the 

thm  microphone, * stands for convolution, and )(kvm  is the noise at the microphone 

m . The signals )(ks  and )(kvm  are assumed as uncorrelated and zero mean. In the 

frequency domain, (2.4) can be written as  

               1 , 2 , . . . Mm        )()(*)()(  jwVjwSjwAjwX mmm           (2.5) 

where )( jwAm , )( jwS , )( jwX m , )( jwVm  are the discrete-time Fourier transforms 

(DTFTs) of )(kam , )(ks , )(kxm , )(kvm , respectively, at angular frequency 

)(    ww  and j  is the imaginary unit ( 12 j ). 

 These M  microphone signals in the frequency domain are summarized in a 

vector notation as 

      )()()()( jwjwSjwjw VAX                 (2.6) 

where               

1 2

1 2

1 2

( ) [ ( ) ( ) ( )]

( ) [ ]

T

X     

A    [ ]

V  

T

M

M

T

M

jw X jw X jw X jw

(jw) A (jw)  A (jw)    A (jw)

jw V (jw)  V (jw)    V (jw)







 

and superscript T  denotes transpose of a vector or a matrix. 
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Consider finding a weighting vector MVw  which satisfies the look direction 

constraint 

( ) ( , ) 1H
MV sw jw a jw                          (2.7) 

while attempting to minimize beamformer output power 

22
{ ( ) } { ( ) ( ) } ( ) ( ) ( )H H

MV MV XX MVE Y jw E w jw X jw w jw R jw w jw            (2.8) 

in order to suppress undesired interference from s   and noise. )( jwY  is the 

beamformer output given by 

( ) ( ) ( )H

MVjw w jw X jwY .                        (2.9) 

( , )sa jw  is the array manifold vector that points to the source direction. 

With the consideration above, the following constrained optimization problem can 

be formulated: 

min ( ) ( ) ( )  subject to  ( ) ( , ) 1H H
MV XX MV MV sw jw R jw w jw w jw a jw                   (2.10) 

To solve this problem, the Lagrange Multiplier is incorporated. 

( ) ( )( ) ( ) ( ) [ ( ) ( , ) 1] 0

( ) ( , ) 1

MV MV

H H
W jw MV XX MV W jw MV s

H
MV s

w jw R jw w jw w jw a jw

w jw a jw

 



    




          (2.11) 

(2.8) can be reduced to  

( ) ( ) ( , )

( ) ( , ) 1

XX MV s

H
MV s

R jw w jw a jw

w jw a jw

 



 




                  (2.12) 

Assuming XXR  is nonsingular. Then  

1

1

( ) ( , )
( )

( , ) ( ) ( , )

XX s
MV H

s XX s

R jw a jw
w jw

a jw R jw a jw



 




               (2.13) 

which is the optimal solution to MVDR problem proposed by Capon [6]. 
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2.3 Beamformer Using Equality State Constrained Kalman Filter 

    Kalman filtering [26] is a method to make real-time prediction for systems with 

some known dynamics in control theory. Traditionally, problems requiring Kalman 

Filtering have been complex and nonlinear. Many advances have been made in the 

direction of dealing with nonlinearities (e.g., Extended Kalman Filter, Unscented 

Kalman Filter). These problems also tend to have inherent state space equality 

constraints and state space inequality constraints. In this thesis, the use of constrained 

Kalman filter in signal processing is more concerned. A constraint on the microphone 

array response along the look direction is added to the measurement equation of the 

Kalman filter. The weight vector of the constrained Kalman beamformer is derived and 

shown to converge to that of the minimum-variance distortionless-response 

beamformer (MVDR). The technique of incorporating state space concept and Kalman 

filter to solve the MVDR problem is presented in subsection 2.3.1 and subsection 2.3.2 

by two forms of constraints. In later Sections, another formulation to maintain the 

distortionless constraint will be presented and investigated.  

2.3.1  Soft-Constraint Kalman Filter under MVDR Structure 

The traditional formulation and solution to MVDR is presented in Section 2.2. In 

this Section, The Kalman filter is introduced to solve the MVDR problem in a new 

formulation by Y.H. Chen and C.T. Chiang [12]. 

With the same formulation as MVDR structure above(2.10), state equations 

describing such formulation can be written as： 

Measurement Equation： 

1

2

0 ( , )( , )
( , )    ( , ) ( , ) ( , )

( ) 1 ( , )( , )

H

H

H
s s

v k jwX k jw
w k jw k jw w k jw k jw

f v k jwa jw 

    
        

     
Y X V (2.14) 

Process Equation 

( 1, ) ( , ) ( , )w k w w k w Q k w                     (2.15) 
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where k  is the frame index and the superscript “ H ” means conjugate-transpose. A 

cure for the signal-distortionless problem is to constrain the gain of the system as unity 

on the desired signal from look direction and minimize the system output power 

subject to this constraint as Equation (2.7). The noise ),( wkV  and ),( wkQ  are 

assumed with Gaussian distribution and thus the covariance matrix can be written as 

 

2

2

1

2

2

( , ) ~ (0, )

0
( , ) ~ (0, )

0

Q

v

v

k w N I

k w N







 
 
 

Q

V
                   (2.16) 

where “N” means Normal Distribution and 2

Q , 2

1v , 2

2v are parameters to be chosen. 

( , )k wX  is the received signal and ( , )sa jw is the array manifold vector. 

Let the state estimation error is 

ˆ( 1, ) ( , ) ( 1, )e k k w w k w w k k w                                   (2.17) 

and the error covariance matrix is 

( 1, ) [ ( 1, ) ( 1, )]T
eeR k k w E e k k w e k k w                             (2.18) 

In the first step, no new observation is used. To predict ( )w k  by using the state 

equation, the best possible predictor would be as below which is given that no new 

information is available. 

    ˆ ˆ( 1, ) ( 1 1, )w k k w w k k w                                     (2.19) 

The estimation error is 

 

ˆ( 1, ) ( , ) ( 1, )

ˆ    ( 1, ) ( , ) ( 1 1, )

    ( 1 1, ) ( , )

e k k w w k w w k k w

w k w Q k w w k k w

e k k w Q k w

   

     

   

　　　　

　　　　

                     (2.20) 

If requiring that 0)],11([  wkkE e (this zero-mean condition states that there is no 
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constant bias in the optimal linear estimation [7]), [ ( 1, )] 0.E e k k w   Since 

( 1 1, )e k k w   is uncorrelated with ),( wkQ , 

2( 1, ) ( 1 1, )ee ee QR k k w R k k w I     (Riccati Equation)      (2.21) 

In the second step, the new observation, 
0

( ) 1sf 

 
 

 
= ),( wkY  is incorporated to 

estimate ),( wkw . A linear estimate that is based on ˆ ( 1, )w k k w  and ),( wkY  has the 

form 

ˆ ˆ( , ) '( , ) ( 1, ) ( , ) ( , )w k k w k w w k k w k w k w  K k Y           (2.22) 

where ),(' wkK  and ),( wkk  are some matrix and vector to be determined. The vector 

),( wkk  is called the Kalman gain. Now, the estimation error is 

ˆ( , ) ( , ) ( , )

ˆ   ( , ) '( , ) ( 1, ) ( , ) ( , )

   ( , ) '( , )[ ( , ) ( 1, )] ( , )[ ( , ) ( , ) ( , )]

   [ '( , ) ( , ) ] ( , ) '( , ) ( 1, ) ( , ) ( ,

H

H

k k w w k w w k k w

w k w k w w k k w k w k w

w k w k w w k w e k k w k w k w w k w k w

I k w k w w k w k w e k k w k w k w

 

   

     

     

　　　　

　　　　

　　　　

e

K k Y

K k X V

K k X K k V ),

   (2.23)                                           

where 
( , )

( , )
( , )

H

H

H

s

X k w
k w

a jw

 
  
 

X . 

Since [ ( 1, )] 0,E e k k w   then [ ( , )] 0E e k k w   only if 

'( , ) ( , ) Hk w I k w K k X                   (2.24) 

with this constraint, it follows that  

ˆ ˆ( , ) [ ( , ) ] ( 1, ) ( , ) ( , )

ˆ ˆ    ( 1, ) ( , )[ ( , ) ( 1, )]

H

H

w k k w I k w w k k w k w k w

w k k w k w k w w k k w

   

    　　　　

k X k Y

k Y X
      (2.25) 

and 

( , ) '( , ) ( 1, ) ( , ) ( , )

   [ ( , ) ] ( 1, ) ( , ) ( , ).H

e k k w k w e k k w k w k w

I k w e k k w k w k w

  

   　　　　

K k V

k X k V
           (2.26) 
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Since ),( wkV  is uncorrelated with ),( wkQ  and with ),1( wk Y , then ),( wkV  will 

be uncorrelated with ( , )w k w  and with ˆ ( -1, )w k k w ; as a result [ ( , ) ( , )]E e k k w k wV =0. 

Therefore, the error covariance matrix for ( , )e k k w  is 

( , ) [ ( , ) ( , )]

   [ ( , ) ] ( 1, )[ ( , ) ] ( , ) ( , ) ( , ),

T
ee

H H T T
ee v

R k k w E e k k w e k k w

I k w R k k w I k w k w R k w k w



    k X k X k k
    (2.27) 

where ( , )vR k w  = 2

1

1 0

0
v

v




 
 
 

. 

The final task is to find the Kalman gain vector ),( wkk , that minimizes the MSE 

( ) [ ( , )]eeJ k tr R k k w                        (2.28) 

Differentiating )(kJ  with respect to ),( wkk , we get 

( )
2[ ( , ) ] ( 1, ) 2 ( , ) ( , )

( , )

H
ee v

J k
I k w R k k w k w R k w

k w


    


k X X k

k
       (2.29) 

and equating it to zero, we deduce the Kalman gain 

1

( , ) ( 1, ) ( 1, ) ( , )H
ee ee vk w R k k w R k k w R k w


     k X X X          (2.30) 

The expression for the error covariance matrix can be simplified as 

( , ) [ ( , ) ] ( 1, )

[ ( , ) ] ( 1, )[ ( , ) ] ( , ) ( , )} ( , )

H
ee ee

H H T
ee v

R k k w I k w R k k w

I k w R k k w I k w R k w k w k w

   

   　　｛ ，

k X

k X k X k k
      (2.31) 

Where, by using (2.29), the second term in (2.31) is equal to zero. Hence 

( , ) [ ( , ) ] ( 1, )H
ee eeR k k w I k w R k k w ＝ k X                 (2.32) 

 

In conclusion, the Soft-Constraint Kalman filter can be summarized as following. 

The signal-flow graph of the constrained Kalman algorithm can be plotted as Fig. 3. 
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Algorithm: Soft-Constraint Kalman filter 

 

Table 1. Soft-Constraint Kalman filter algorithm. 

 

Fig. 3 Block diagram of the Soft-Constrained Kalman filter algorithm[12]. 

State Equation: 

ˆ ˆ( 1 , ) ( , ) ( , )w k k w w k k w k w  Q  

Measurement Equation (Cost Equation): 

0 ( , )
( , ) ( , ) ( , )

( ) 1 ( , )

H

H
s s

X k w
k w w k w k w

f a jw 

  
    

   
Y V = ( , ) ( , ) ( , )H k w w k w k wX V  

Computation for ,2,1k  

ˆ ˆ( 1, ) ( 1 1, )w k k w w k k w     

2( 1, ) ( 1 1, )ee ee QR k k w R k k w I      

The Kalman gain: 

1

( , ) ( 1, ) ( 1, ) ( , )H
ee ee vk w R k k w R k k w R k w


     k X X X  

ˆ ˆ ˆ( , ) ( 1, ) ( , )[ ( , ) ( , ) ( 1, )]Hw k k w w k k w k w k w k w w k k w    k Y X  

( , ) [ ( , ) ( , )] ( 1, )H

ee eeR k k w I k w k w R k k w  k X  
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Soft equality constraints are constraints that are only required to be approximately 

satisfied rather than exactly satisfied. The perfect measurement approach (Kalman- 

Filter) can be extended to soft constraints by adding small nonzero measurement noise 

to the perfect measurement as v . It makes the optimal Lagrange Multiplier solution 

be a trade-off between the residual error and the constraint error. The methods are 

implemented in cases where the constraints are heuristic rather than exactly satisfied. 

But in thesis cases, we want to use Hard-constraints, as opposed to Soft-constraints, to 

solve the signal mismatch problem which is discussed in next Chapter. 

2.3.2 Hard-Constraint Kalman Filter under MVDR Structure 

A number of approaches have been proposed for solving the constrained Kalman 

Filtering problem [13], [14], [15], [26]. Analogous to the way that a Kalman filter can 

be extended to solve problems containing nonlinearities, linear equality constrained 

filtering can be extended to problems with nonlinear constraints by linearizing locally. 

The accuracy achieved by methods dealing with nonlinear constraints will naturally 

depend on the structure and curvature of the nonlinear function itself. We would want 

to implement the equality constraints that are exactly satisfied specifically.  

In this subsection, there are two distinct approaches which are discussed to 

generalize an equality constrained Kalman Filter. The first approach is to run an 

unconstrained Kalman Filter and project the estimate down to the equality constrained 

space in each iteration. The second approach will start with a constrained prediction, 

and restrict the Kalman Gain so that the estimate will lie in the constrained space. 

Finally, we will show the numerical preservation of the updated error covariance with 

the feedback loop in the projection framework. The equality constraint in this 

subsection can be defined as below, where A is a q w  matrix, b  is a q -vector, and 

kw  the state is a w -vector. 



 

18 

( )kA w b                         (2.33) 

So the updated state estimate and state prediction to be constrained at each 

iteration, which would allow a better forecast in the system, as below. 

|

| 1

ˆ
{

k k

k k

Aw b

Aw b




   

state estimate

state prediction




             (2.34) 

    In the following two approaches, we will discuss the constraining updated state 

estimate. 

 

A.  Projecting the Unconstrained Estimate 

This method projects the state to lie in the constrained space each iteration, feeds 

the new constrained estimate back to the unconstrained Kalman Filter and continues 

this process. Such method can be described by the following minimization problem for 

a given time-step k, in which |
ˆ P

k kw  is the constrained estimate, |
ˆ

k kw  is the 

unconstrained estimate from the Kalman Filter equation, and kW is any positive 

definite symmetric weighting matrix, where the superscript ‘ P ’ is used to denoted the 

“Projected” constrained filter and ‘U ’ is denoted as “Unconstrained”. 

 | | |
ˆ ˆ ˆarg min ( ) ( ) :

n

P U T U

k k k k k k k
w

w w w W w w Aw b


               (2.35)  

The constrained estimate is then solved by the Lagrange Multiplier as equation 

(2.11~2.13), which is given as below: 

1 1 1

| | |
ˆ ˆ ˆ( ) ( )P U T T U

k k k k k k k kw w W A AW A Aw b                    (2.36) 

In a general case, we can find out the updated error covariance as a function of the 

unconstrained Kalman Filter’s updated error covariance matrix as before. Define the 

matrix   as below first.  

1 ' 1 ' 1( )k kW A AW A                         (2.37) 
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Equation (2.36) can be re-written as follows: 

| | |
ˆ ˆ ˆ( )P U U

k k k k k kw w Aw b                     (2.38) 

The reduced form for |
ˆ P

k k kw w  as below:  

| | |

| |

|

              

               ( )(

ˆ ˆ ( ( ))

ˆ ˆ

)

( )

ˆ

P

k k k k k k k k k

k k k k k k

k k k

w w w w Aw b Aw b

w w A w w

A w wI

       

   

 



 

         (2.39) 

According to the definition of the error covariance matrix, we arrive at the 

following expression.  

'

| |

' '

| |

'

|

' ' ' '

| | | |

| |

|

|

        ( )( )( ) ( )

        ( ) ( )

       

       

        (

ˆ ˆ( )(

)

)

ˆ ˆ

I

k k k k k k

k k

k k k k k k k k

k k k k

k

P P P

k k k k k k k k

k

P E w w w

E I A x x I A

I A P I A

P AP P A AP A

P AP

A P

w

w w        

    

       

  



    

 

        (2.40) 

Note that the A  in equation (2.39) is a projection matrix, as is ( )I A , so we 

can deduce the equation (2.40) to the result. It can be shown that there is smallest 

updated error covariance when 1

|kk kW P . It also provides a measure of the information 

in the state k . 

B.  Restricting the optimal Kalman Gain 

Alternatively, for restricting the optimal Kalman gain so the updated state estimate 

lies in the constrained space, we can expand the updated state estimate term in 

Equation (2.34) using Equation (2.25), the state update is | | 1
ˆ ˆ

k k k k k kw w K V  , where  

| 1
ˆ( )k k k k kV Y H w   . 

| 1
ˆ( )k k k kA w K V b                          (2.41) 
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The MMSE of the estimate 
|

ˆ
k kw  is

| |
ˆ ˆ( ) ( )T

k k k k k kE w w w w    , which is equivalent 

to the trace of error covariance matrix of 
|

ˆ
k kw . Then, we can choose a Kalman Gain

P

kK  that forces the updated state estimate to be in the constrained space. We choose 

the optimal Kalman Gain kK  which yields Equation (2.30) in the unconstrained case 

by solving the minimization below    

 
*

' '

| 1arg min ( ) ( )
n m

k k k k k k k k k k
K

K trace I K H P I K H K R K


           (2.42) 

    Now we seek the optimal P

kK  that satisfies the constrained optimization problem 

written below for a time-step k . 

*

1

' '

| 1

|      .

arg m

. ( )

in ( ) ( )

ˆ

n m

P

k k k k k k k

k k k k

k k
K

K trace I K H P I K H K R

ws

K

t A K V b








 



   




    (2.43) 

Using the method of Lagrange Multiplier technique to solve the optimal 

minimization, 

'

1

| 1

'

|

      

(( ) (

   ( (

)

)

)

ˆ )

k k k k k k k

T

k k k k k

k k kJ Tr I K H P I K H K R K

A K V bw





  

 




            (2.44) 

where the k  is the Lagrange multiplier. Taking the derivative of kJ  with respect to 

kK  and setting it to zero yields                   

| 12 2 0T T T

k k k k k k k kP H K C A V                    (2.45) 

where | 1

T

k k k k k kC H P H R  . Then we find the following Kalman gain. 

1 1

| 1

1

2

P T T

k k k k k k k k

T
kK P H C A V C 

                   (2.46) 

Applying Equation (2.41), after some manipulations, the optimal Lagrange 

multiplier is obtained as below. 

1 1 1

| 1 | 12 ˆ( ) ( )T T T T

k k k k k k k k k k k k k k kV C V A A A P H C V A w b   

          (2.47) 
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Finally, substituting the optimal Kalman Gain and Lagrange multiplier into the 

Equation (2.41) that yields the following constrained updated state estimate: 

1

|
ˆ ˆ( ) ( )P U T T U

k k k k k k k kw v A A A A w b                 (2.48) 

This is of course equivalent to the result of Equation (2.36) with the weighting matrix 

kW  which is chosen as the identity matrix in open loop scheme. The error covariance 

is given by Equation (2.40). That is, the Kalman Filter can be run in real-time, and as a 

post-processing step, the unconstrained estimate and updated error covariance matrix 

can be reformulated in the constrained space; or alternatively, the constrained estimate 

and its updated error covariance matrix can be fed back into the system in real-time. A 

large benefit of incorporating constraints can be realized in both techniques, though the 

feedback system should generally outperform the system without feedback. 

 

Numerical Preservation of the Updated Error Covariance 

   These methods are shown to be mathematically equivalent under the assumption 

that the weighting matrix kW  is chosen appropriately. In [15], with the augmentation 

method, the soft equality constraints can be deduced to be equivalent to hard equality 

constraints into a Kalman filter by adding a proportionate amount of noise to the 

bottom right error covariance matrix (see Equation (2.16)). However, the numerical 

round-off error will be ignored possibly in implementations. We will not see the exact 

same result while these methods can be mathematical equivalent. The round-off error 

that causes the most trouble occurs when the updated error covariance matrices lose 

symmetry or positive definiteness. According to feedback loop of the projection frame, 

we should find a form of state estimate and state error covariance that preserves 

symmetry and positive definiteness better.  
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[15] uses the numerical preservation of updated error covariance to find a simplified 

form for the constrained updated error covariance as below: 

' '

| | 1( ) ( )P P P U P P P P

k k k k k k k k k k kP I K H P I K H K R K              (2.49) 

   Define the projection matrix k , 

' ' 1

| |( )U U

k k k k kI P A AP A A                     (2.50) 

   In term of k , the following are true. 

| |

| | | |

{
( )

P U

k k k k k

P P P P

k k k k k k k k k

P P

I K H I K H

 

   
                   (2.51) 

Finally, in order to maintain numerical stability we can find out the simplified form of 

constrained updated error covariance by using Equation (2.49). 

' '

| | 1

' '

| 1

' '

' ' '

| 1

'

|

( ) ( )

( ) ( )

( ) ( )

     

          

     

     

P P P U P P P P

k k k k k k k k k k k

U U U U U

k k k k k k k k

U U

k k k k k

U U U U U U U

k k k k k k k k k k k

U

k k k k

P I K H P I K H K R K

I K H P I K H

K R K

I K H P I K H K R K

P







   

    

  

       

  

    (2.52) 
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In conclusion, the Hard-Constraint Kalman Filter can be summarized under MVDR 

structure as following : 

Algorithm: Hard-Constraint Kalman filter 

  

Table 2. Hard-Constraint Kalman filter algorithm. 

 

 

 

State Equation: 

ˆ ˆ( 1 , ) ( , ) ( , )w k k w w k k w k w  Q  

Measurement Equation (Cost Equation): 

 ( , ) 0 ( , ) ( , ) ( , )Hk w k w w k w k w  Y X V  

Computation for ,2,1k   

ˆ ˆ( 1, ) ( 1 1, )w k k w w k k w     

2( 1, ) ( 1 1, )ee ee QR k k w R k k w I      

The Kalman gain : 

1

( , ) ( 1, ) ( 1, ) ( , )H

ee ee vk k w R k k w R k k w R k w


     X X X  

Update the state estimate : 

ˆ ˆ ˆ( , ) ( 1, ) ( , )[ ( , ) ( , ) ( 1, )]Hw k k w w k k w k w k w k w w k k w    k Y X  

1ˆ ˆ ˆ( , ) ( , ) ( , )( ( , ) ( , )) ( ( , ) ( , ) )H H H

s s s sw k k w w k k w a jw a jw a jw a jw w k k w b       

Update the error covariance : 

( , ) [ ( , ) ( , )] ( 1, )H

ee eeR k k w I k w k w R k k w  k X   

1

1 '                        

( , ) [ ( , )( ( , ) ( , )) ( , )]*

( , )[ ( , )( ( , ) ( , )) ( , )]

H H

ee s s s s

H H

ee s s s s

R k k w I a jw a jw a jw a jw

R k k w I a jw a jw a jw a jw

   

   





 


 

b : Response value 
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2.4 Adaptive Constrained Least Mean Square Beamformer 

The optimal Linearly-Constrained Minimum-Variance Filter (LCMV) in the 

concept of the minimum mean output energy (MOE) that minimizes the same 

objective function as MVDR beamformer, and projects to the set of the linear 

constraints. In [5] Frost has proposed an algorithm to estimate optw  based on the 

least-mean-square (LMS) algorithm for adaptive filtering. Under the MVDR structure, 

linearly-constrained adaptive filters are deduced as below. 

Core of the LMS algorithm is to find a weighting to minimize the error covariance 

between desired source and filtered output. Assume the desired signal, that we want to 

achieve, is zero-mean and the variance is 2

d . Auto-correlation and cross-correlation 

matrices definition of the input signal are the following. 

   
 

 

22

*

     Auto correlation

(

matrix

      

) 0, ( )

( )* ( )  

d( ) ( )  Cross correlation matrix

d

xx

dx

E d k E d k

R E x k x k

R E k x k

 









 

Then the Cost function is as Equation (2.53). 

 
2 *( ) min ( ) ( )* ( ) ( ( ) ( )* ( ))( ( ) ( )* ( ))

w
J k E d k x k w k E d k x k w k d k x k w k      (2.53) 

Then the method to find the weighting is the Steepest-Descend Method as 

( ) ( 1)w k w k p                          (2.54) 

  is the proportion called step-size (or convergence factor), and the p  choosing is 

deduced from (2.53). Expanding the Equation (2.53): 

2 * * *( ) ( ) ( ) ( ) ( )d dx dx xxJ k R w k w k R w k R w k              (2.55) 

We take the w  of (2.55) to find the minimization and we get 

( 1)dx xxp R R w k   ,                      (2.56) 

For the purpose to let ( )w k on the lowest direction and strength of ( )J k , 
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and rewritten the (2.54) 

  ( ) ( 1) (  )   1 1dx xxw k w k R R w k k                  (2.57) 

   Thus, LMS algorithm can be organized as below 

   Filter out     ： 
*( ) ( ) ( )y k x k w k  

   Error function ： ( ) ( ) ( )e k d k y k                                (2.58) 

   Update weight ： 
*(k 1) ( ) ( )w x k e k   

 

Fig. 4 LMS algorithm block. 

Since the frequency response of look-direction is fixed by the desired source 

constraint under MVDR structure, minimization of the non-look-direction noise power 

is the same as minimization of the total output power as Equation (2.10). The 

gradient-descent constrained LMS algorithm presented as below using the same 

method of Lagrange multipliers, which is discussed in Equation (2.11). 

 

         

( ) ( 1) ( 1)

( 1  ) ( 1) ( ) ( )

w

xx s

w k w k H w k

w k R w k a k



  

    

   
              (2.59) 

The Lagrange multipliers are chosen by requiring ( )w k to satisfy the constraint 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1T T T T

s s s s xx s sf a w k a w k a R w k a a k                (2.60) 

Solving for the Lagrange multipliers ( )k  and substituting back to the weight 

+ 

 

 

 

 

 

 

 
－ 

ｘ 
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iteration Equation (2.59),  

1

1

(k)

                  

( 1) ( )( ( ) ( )) ( ) ( ) (k)

( )( ( ) ( )) ( ) 1 (         ) (k)

T T

s s s s s xx

T T T

s s s s s

w k I a a a a a R w

a a a a a w

w      

    





   



 

   

      (2.61) 

Defining the M  dimension vector (F), and M M  matrix (P), 

1( )( ( ) ( )) ( )T T

s s s sP I a a a a     

is the projection matrix onto the subspace orthogonal to the subspace spanned by the 

constraint matrix. 

1( )( ( ) ( ))T

s s sF a a a      

The algorithm could be rewritten as  

 ( ) ( 1) ( )xxw k P w k R w k F                      (2.62) 

where the algorithm requires the prior knowledge of the input correlation matrix xxR , 

which, however, is unavailable a priori in the array problem. Using the outer product 

of tap voltage vector to approximate xxR  at k𝑡ℎ iteration with itself : ( ) ( )Tx k x k , 

gives the stochastic constrained LMS algorithm. 

 

                       (

( ) ( 1) ( ) (

0

)

)

w k P w k

w

y k x k F

F





   
              (2.63) 

Note that [11] in (2.63) the term multiplied by the projection matrix corresponds to the 

unconstrained LMS solution, which is projected onto the homogeneous hyperplane 

( ) ( ) 0T

sa w k  , and moved back to the constraint hyperplane by adding the vector F.  

    In the LMS algorithm, for sure the convergence of the algorithm, the range of 

step-size   must to be in 
max

2
0 


  , max  is the maximum eigenvalue of the xxR . 

If the order of the spatial filter is higher, it is more difficult to solve the problem. Thus, 

for simplifying the computation load, there is normalized version derived.  
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*

( ) ( )
( ) (  1)

( ) (
 (N S)

)
LM

x k w k
w k w k

x k x k




  


             (2.64) 

In Equation (2.64), the difference between NLMS and LMS is weight updating. The 

step-size is replaced by the 
*( ) ( )x k x k



 
. 0 2   ,   is the number for sure that 

the denominator is not equal to zero. In that way, the algorithm of NLMS will 

converge. Another normalized version of CLMS is shown in [11], which uses the 

result of NLMS for convergence speed need. Since the instantaneous error is given in 

Equation (2.53), the instantaneous squared error (posterior error)[11] can be written as. 

2'2

2          

( )

( ( ) ( )( ( ) ( ))

( ( ) ( ) ( 1)

)

)T

T

k

e k d k x

d k x k w k

w k

x k

k

  

  
           (2.65) 

Take the partial derivative of the '2 ( )e k  with respect to k  and make it to zero, 

( ) ( ) ( )

( ) ( )

T

k T

d k x k w k

x k x k



                      (2.66) 

and start with the NLMS algorithm as same as the CLMS algorithm.   

           

( 1) ( 1)

     ( ) ( )

NLMS

kP

w k P

w k

w k

x F

F

k

  

  


               (2.67) 

Remember that ( )w k  has to satisfy the constraint in Equation (2.60) which means 

that ( ) ( )w k Pw k F  , and the Equation (2.67) can be rewritten as  

( 1) ( ) ( )kw k w k Px k                     (2.68) 

From Equation (2.58) and (2.68), (2.66), we substitute the input vector by a rotated 

version of '( ) ( )x k Px k . Moreover, recalling that 2P P , it follows that 

( ) ( ) ( ) ( )

( ) ( )
( ) ( 1)

( ) ( )

T

T

e k d k x k w k

e k x k
w k P w k F

x k Px k

 

 
    

 

 (NCLMS)        (2.69) 

   And in Equation (2.69), the step-size, which is normalized with respect to the 

energy of projected input vectors, makes sure the convergence of the algorithm.  
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Chapter 3. Robust Adaptive Beamformer to the Signal Mismatch Problem 

3.1 Introduction 

Robust speech enhancement algorithm arises in many practical applications where 

the desired source is usually contaminated by background noise and influenced by 

reverberation in the beamformer training data. (e.g., mobile communications, passive 

source location, microphone arrays speech processing, medical imaging, and radio 

astronomy). 

One of the key issues in adaptive beamformers is the sensitivity due to the 

mismatch between the presumed signal steering vector of desired signal and the actual 

one (e.g., mismatches due to array perturbations, array manifold vector mismodeling, 

wave-front distortions, or source local scattering). Several approaches have been 

developed to overcome arbitrary mismatches since past three decades, such as 

diagonal loading of the sample covariance matrix [24] and the eigenspace beamformer 

[25]. However, for the former approach, it is not clear how to obtain the optimal value 

of the diagonal loading factor based on the known level of uncertainty of the signal 

steering vector; For the latter, it is limited to the high signal-to-noise ratios (SNRs) and 

the dimension of signal-plus-interference subspace. Then one of the theoretically 

rigorous and efficient approaches to robust beamforming in the presence of an 

arbitrary unknown steering signal mismatch is based on worst-case performance 

optimization [17]. It optimizes the weighting vector by minimizing the output 

interference-plus-noise power while maintaining a distortionless response in the worst 

case. The robust minimum variance distortionless response (MVDR: the dominant 

structure of this thesis) was formulated in [17] as a second-order cone programming 

(SOCP) problem, which can be solved in polynomial time using interior point method. 

In further works, several extensions of the robust MVDR beamformer have been 
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developed in [19], [20], and in alternative Newton-type iterative algorithms. The 

dominant shortcoming of these algorithms is that they do not have a computationally 

efficient online implementation. 

In this thesis, the constrained Kalman filter is used to solve the linearly equality 

constrained MVDR beamforming problem, which is first proposed in [12]. Following 

the similar idea, the second-order extended (SOE) Kalman filter for recursive 

implementation uses the robustness constraint, which is incorporated into the 

measurement equation instead of the conventional distortionless constraint used in [12]. 

To derive the SOE Kalman filter based on the MVDR beamformer in the frequency 

domain [17], the second-order Taylor series expansion is used to approximate the 

nonlinear function involved in the beamformer under the assumption that the dynamics 

of the signal generating processes are known. However these assumptions limit the 

performance on the practical application. To solve the limitation of performance, this 

thesis combines the voice activity detection information and the constraint projected 

method with the SOE Kalman filter to strengthen the performance of speech 

enhancement against steering mismatch problem. 

3.2 Formulation of Signal Mismatch Problem 

According to the Equation (2.10), the well-known MVDR beamformer minimizes 

the output power of the interference-signals-plus-stationary-noise while maintaining a 

distortionless response to the desired signal, which is given in the frequency domain 

(the imaginary unit j  is omitted for equation simplification ), 

min ( ) ( ) ( )  subject to  ( ) ( , ) ( ) 1H H

MV XX MV MV s sw w R w w w w w a w f    

where 

  ( ) ( , ) ( , )H

xxR w E X k w X k w   

( )xxR w  is the M M  correlation matrix and the 1( , ) M

sa w   is the presumed 
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steering vector. The solution of the MVDR problem is given by Equation (2.13)  

1

1

( ) ( , )
( )

( , ) ( ) ( , )

XX s
MV H

s XX s

R w a w
w w

a w R w a w



 




  

in real application, the correlation matrix is unavailable and usually approximated by 

1

1
( ) ( , ) ( , )

N
H

xx

k

R w X k w X k w
N 

                       (3.1) 

where N  is the number of frames available, which is called sample covariance 

matrix. Using the Equation (3.1) to replace the true correlation matrix and the resulting 

solution is commonly referred to the sample matrix inversion (SMI) algorithm. The 

main disadvantage of the SMI algorithm is that it is not robust to the mismatch 

between the presumed steering vector and the actual one, and the algorithm degrades 

dramatically if the desired signal is present in the training snapshots. The signal 

self-cancellation phenomenon observed in such case is commonly known as signal 

self-nulling. The phenomenon is shown in Fig. 5. Obviously, there is a severe null at 

the signal of interest (SOI) when the presumed steering vector is different to the actual 

steering vector. The goal of solutions to the signal mismatch problem is to constrain 

more steering vectors to exceed unity gain while suppressing the interferences as the 

red solid dotted line which is expressed in Fig. 5. 

For the sufficient robustness against the desired signal mismatch problem, the 

norm of the steering vector distortion can usually be bounded by some known constant 

0  [18], and the actual steering vector belongs to the set 

 ( ) ( ) | ( ) ( , ) ( ), ( )sC w C w a w e w e w                   (3.2) 

the robust formulation of the MVDR beamformer can be written as [18].  

min ( ) ( ) ( )  subject to  (          ) ( ) 1 ( ) ( )H H
xxMV MV MVw w R w w w w w C w for all C w    (3.3) 

Such distortionless response is maintained by means of inequality constraints for a 

continuum of all possible steering vectors by the set ( ) . For each choice of 
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( ) ( )C w  , the condition ( ) ( ) 1H

MVw w C w   represents a nonlinear and nonconvex 

constraint on w . There are infinite vectors ( )C w in ( ) . Hence, the Equation (3.3) 

is a semi-infinite nonconvex quadratic program. It is well known that the nonconvex 

constrained quadratic programming problem is NP-hard. Such problems are difficult to 

solve in engineering. For simpler formulation of Equation (3.3), we convert the 

semi-infinite nonconvex constraints to a single constraint that corresponds to the 

worst-case constraint. The Equation (3.3) can be equivalently described as below. 

( ) ( )
min ( ) ( ) ( )  subject to  min ( ) ( ) 1

C w

H H
xxMV MV MVw w R w w w w w C w


       (3.4) 

According to Equation (3.2), we can rewrite the constraint of Equation (3.4) as 

( ) ( )
min ( ) ( , ) ( ) ( ) 1H H

MV s V
C

M
w

w w a w w w e w





                  

Applying the triangle and Cauchy-Schwarz inequalities along with the inequality

( )e w  , we know that 

( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , )H H H H H

MV s MV MV s MV MV sw w a w w w e w w w a w w w e w w w a w w         

(3.5) 

Moreover, we can deduce that 

( ) ( , ) ( ) ( ) ( ) ( , )H H H

MV s MV MV sw w a w w w e w w w a w w                (3.6) 

Then, the semi-infinite nonconvex quadratic constrained problem can be replaced as 

the following quadratic minimization problem with a single nonlinear constraint: 

min ( ) ( ) ( )  subject to  ( ) ( , ) ( ) 1H H
xxMV MV MV s MVw w R w w w w w a w w w       (3.7) 

The nonlinear constraint in Equation (3.7) is still nonconvex due to the absolute value 

operation on the left-hand side. We can observe that the cost function in Equation (3.7) 

is a complex number which is unchanged when the w  undergoes an arbitrary phase 

rotation. Hence, choose w  such that without any loss of generality. 
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   Re ( ) ( , ) 0 Im ( ) ( , ) 0  
H H

MV s MV sw w a w w w a w               (3.8) 

Using this observation and employing Equation (3.8) as additional constraints, the 

constraint in Equation (3.7) can be rewritten as  

( ) ( , ) ( ) 1H

MV s MVw w a w w w                      (3.9) 

Note that the formulation is much simpler than the Equation (3.3) and is convex. It can 

be proved that the inequality constraint in (3.9) can be presented by an equality one 

under some assumption in [18]. 

2
2

min ( ) ( ) ( )  

subject to  ( ) ( , ) 1 ( ) ( )

H
xxMV MV

H H

MV s MV MV

w w R w w w

w w a w w w w w  
         (3.10) 

The problem in (3.4) has been solved by second-order cone programming in [17]. In 

the next Section, we will briefly review the SOE Kalman filter solution and combine 

with a new approach based on it for speech enhancement. 

 

Fig. 5 Beampattern of signal mismatch and non-mismatch condition. 

 

( ) ( ) 1H

MVw w C w 
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3.3 Solution to the Signal Mismatch Problem Using SOE Kalman Filter 

    The constraint in Equation (3.10) can be rewritten as 

2( ( , )) ( ) 1MV sf w k w f                     (3.11) 

where 

2

2 ( ( , )) ( , ) ( , )

(                          , )  

                         

( , ) ( , ) ( , )

( , ) ( , ) ( , )  ( , ) 

H

MV MV MV

H H

MV s s MV

H H

MV s s MV

f w k w w k w w k w

w k w a w a w w k w

w k w a w a w w k w



 

 







               (3.12) 

For the sake of the convenience of analysis, the mean square error (MSE) between the 

zero signals and the beamformer output is presented as following 

2

0 ( , ) ( , ) ( , ) ( ) ( , )H H

MV MV xx MVE X k w w k w w k w R w w k w  
  

      (3.13) 

where ( )E   denotes the expectation operation. Therefore, the robust MVDR 

beamformer problem can be formulated as  

 

2

2

min 0 ( , ) ( , )

subject to  ( ( , )) 1

MV

H

MV
w

MV

E X k w w k w

f w k w

 
  



                  (3.14) 

   The Kalman filter is a minimum mean square error (MMSE) estimator, using the 

state-space model to model an unknown dynamic system of the constraint 

minimization problem in Equation (3.14) is: 

  Equation

    

State

( , ) ( 1, ) ( , )       MV MV sw k w w k w k w   v
                                (3.15)          

22

1

Measurement

( , ) ( , )

( ( ,

  Equation

( , )
  

))

( ( , )) (

      
( , )

    k, w)         

H

MV

MV

MV m

X k w w k w

f w

v k

k w

w k w

w
y

v k w

   
    

  

 f v

                            (3.16) 

where ( , )s k wv  and ( , )m k wv  are the process and measurement noise respectively, 

and modeled as zero-mean, independent white noise sequences with the covariance 

matrices Q  and R .  
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2

2

1

2

2

( , ) ( , )

0
( , ) ( , )

0

H

s s s

H

m m

E k w k w I Q

E k w k w R







    

 
     

 

v v

v v
               (3.17) 

    The SOE Kalman filter expands the nonlinear function around the last estimate of 

the state vector ( , )MVw k w  by using the second-order Taylor series and finds out the 

unbiased estimate ˆ ( , )MVw k w  to minimize the variance of estimation error which is 

presented as below 

2
ˆMSE= ( , ) ( , )MV MVE w k w w k w 

 
                 (3.18) 

the estimated weight vector ( , )MVw k w  can be found by evaluating the first 

derivative of ( ( , ))MVf w k w  which is denoted as Jacobian ( , )wF k w  and the second 

derivative of ( ( , ))MVf w k w  which is denoted as the Hessian matrices 
(1) (w)wwF  and 

(2) (w)wwF below 

 

2

(k, w)
            

(k, w) ( ( ,

   

))

( , ) ( ( , ) ( , ) ( , )) ( , )

MV

T
T

w w MV

H H H H

MV s s MV

H

s

F w k w

w k w a w a w w k w a

X

w   

 

 
  
   

f

  (3.19) 

 (1) (w) (k,w) ( , ) 0
MV MV

H H

ww w w MVF X w k w                      (3.20) 

 (2) 2

2(w) ( ( , )) ( , ) ( , )
MV MV

H H

ww w w MV s sF f w k w I a w a w              (3.21) 

where the I  is the identity matrix. The SOE Kalman filter solution is given by [18], 

[21] based on the state space model (3.15) and (3.16) 

 ( , ) ( 1, ) ( , ) ( ( , )) ( , )MV MV MVw k w w k w K k w y w k w k w    f π      (3.22) 

where 

 (2)
0

1

1
( , ) K( , ) ( ) ( , )

2
wwtrk w k w F w P k w


 

   
 

π             (3.23) 



 

35 

is the correction term to make the state estimate unbiased. The filter gain and the 

predicted weight error covariance matrices are given by 

1

( , ) ( , ) (k,w) (k,w) ( , ) (k,w) (k, w)H H

w w wK k w P k w F F P k w F R


     Λ    (3.24) 

( , ) ( 1, )P k w P k w Q                                        (3.25) 

( , ) ( , ) (k,w) ( , )wP k w I K k w F P k w                              (3.26) 

where 

  (2) (2)
0 01

(k, w) (w) ( , ) (w) ( , )
0 12

ww wwtr F P k w F P k w  
  

 
Λ                (3.27) 

is the correction term deduced from the ( , )k wπ ; ( , )K k w  is the Kalman gain; 

( , )P k w is the a priori error covariance matrix and ( , )P k w  is the a posteriori error 

covariance matrix. After some algebra operation the Kalman gain and the covariance 

matrices can be rewritten as below 

1
1 1( , ) ( , ) (k,w)( (k,w) ) (k,w) ( , ) (k,w)( (k,w) )H H

w w wK k w P k w I F R F P k w F R


         Λ Λ   

                                                                 (3.28)

1
1( , ) ( 1, ) (k 1,w)( (k 1,w) ) (k 1,w) ( 1, )H

w wP k w P k w I F R F P k w Q


              Λ  

                                                                (3.29) 
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Algorithm: Second-Order Extended Kalman filter 

 

Table 3. Second-Order Extended Kalman filter algorithm. 

 

In Section 3.4, we will use the structure as Equation (3.17) Q  and R , where the 

parameters 2

s , 2

1 , 2

2 , and   are discussed. 

 

 

 

State Equation: 

ˆ ˆ( 1 , ) ( , ) ( , )w k k w w k k w k w  Q  

Measurement Equation (Cost Equation): 
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3.4 Parameter Selection and Tradeoff 

In Section 3.3, the steering vector bound that discriminates the speech 

enhancement is not determined. In subsection 3.4.1 the parameters selection and the 

relationship between the error covariance matrices 2

s , 2

1 , 2

2  of Kalman filter will be 

presented. In subsection 3.4.2 the steering vector bound   selection in wideband 

concept are further discussed in different source direction mismatch conditions. 

 

3.4.1  Covariance Matrix of Kalman Filter 

    Firstly, the selection of the parameters 2

s and   are determined in the 

measurement equation and state equation rewritten as below: 

  Equation

   

State

( , ) ( 1, ) ( , )        MV MVw k w w k w k w  Q
                                (3.30) 

2

  Equation
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( ( , ))

H

MV

MV

X k w w k
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f
k

k
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w
w w k

w
w

 
    
 

V X V
                (3.31) 

2( , ) ~ (0, )sk w N IQ  

2

21
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2

1 00
( , ) ~ (0, (0, )

00
k w N N






   
   

  
V            (3.32) 

In the weighting matrix Q , 2

s  controls the error covariance of the random walk 

for the weights updating in the process equation. Since the environment surrounded is 

assumed to be a Linearly Time-Invariant (LTI) system, 2

s  is set to zero. Next, 2

1  

and 2

2  represent the variance of filtered output error and constraint error respectively 

in the measurement equation. Then the value 
2

2

1

s


 which is the ratio between 2

s  and 
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2

1 , controls the weighting matrix adaption speed. If the 
2

2

1

s


 is large, the filter adapts 

to the variation in environment faster. In (3.30), it can be observed that if 2

s  is large, 

the change between ( ,  )MVw k w  and 1,  ( )MVw k w will larger and leads to faster 

adaption in ( ,  )MVw k w . In (3.31), it can also be observed that if 2

1  is small, the 

measurement error ( , )k wV has small variations between each step, which means 

( ,  )MVw k w  has to adapt fast if ( , )k wX  varies fast. 

In [18], the authors proposed that 2

1  should be chosen of the same order as the 

optimal output power of the array. It can be approximated as 
2 2 2( )MV nw M  , 

where 2  and 2

n  are the desired signal and sensor noise power, respectively. The 

definition 

 
2

1

2 2

nM




 



                        (3.33) 

is discussed with the steering vector bound in the subsequent examples. The latter 

2

2  should be chosen small enough to satisfy the beam constraint robustness with a 

high accuracy. We choose the ratio 
2

2

2

1





  as (3.32) for the following numerical and 

mathematical reasons, rather than setting the parameter 2

2 . 

 

1)   determines the condition number of the weighting matrix ( , )k wV . 

2)   controls the tradeoff between noise reduction and dereverberation. 

3) The constrained Kalman algorithm converges to optimum MVDR filter if   is 

small enough. 
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Hence, large   leads to strong noise reduction and little dereveberation while 

small   leads to strong dereveberation and little noise reduction. If   is small, that 

means the error variation in the lower line of (3.32) is relatively small compared with 

the upper line, which leads to closer tracing in the lower line and looser tracing in the 

upper line, achieving strong dereveberation and weak noise reduction. Then 810   

is recommended to fulfill the requirements of the signal mismatch problem. (note that 

  should be set small enough to keep the matrix ( , )k wV  well-conditioned). 

3.4.2  Steering Vector Bound Wideband Selection 

    Second, the selection of the steering vector bound   of the SOE Kalman filter in 

different frequency bands with different array number are studied. We use the same 

parameters of the Kalman filter and choose the 2 2 2

1 50( )nM    , which the output 

SINR of Kalman filter remains close to the optimal in a wide range of the values of   

proven in [18][21]. Then [18][21] choose the fixed steering vector bound   in narrow 

band approach to ensure the spatial characteristics, and the performances are discussed 

under the frequency whose wavelength is chosen to be twice as the microphones’ 

spacing(i.e., f = c/2d, where c is the sound velocity). Different to that, we design 

different steering vector bound according to different subbands to keep outputSINR 

higher while maintaining the distortionless level in the wideband analysis. 

 

Fig. 6 (a) Output SINR of wideband epsilon selection ∆θ = 8𝑜(b)  ∆θ = 16𝑜(SOE-KF). 
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    Fig. 6 shows an example when the signal mismatch becomes severe when 

∆θ = 8𝑜 and 16𝑜 with six omnidirectional microphones. It can be observed that the 

characteristics of the OutputSINR maintain higher in the lower frequency-bands when 

the steering vector bound tends to be smaller. Although there is a wide range of fixed 

epsilon selection in higher frequency-bands, whose wavelength is chosen to be twice 

as the microphones’ spacing, the performance of narrowband selection is not good in 

speech enhancement as a whole. Compared to the narrowband epsilon selection, if 

there are steering vector mismatches, the result of wideband selection is closer to our 

destination obviously. Despite the fact that the conceptual relationship can be imagined, 

there is still no concrete equation to describe the relationship between them. Hence we 

propose to choose the steering vector bound functionally by the sigmoid function 

which is a mathematical function used in modeling system as below.  

 

 

Fig. 7 The Sigmoid functions compared. 
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In the Fig. 7, all of the sigmoid functions are normalized in such a way that their 

slope at origin is 1. Sigmoid functions that refer to the special case of the logistic 

function shown on the Fig. 8 are mathematical function having an “S” shape (sigmoid 

curve). Besides the logistic function, sigmoid functions include the ordinary 

arctangent, the hyperbolic tangent, and the error function, but also the generalized 

logistic function and algebraic functions in Fig. 7. The initial stage of growth is 

approximately exponential; then, as saturation begins, the growth slows, and at 

maturity, growth stops. For values of x in the range of real positive numbers from 

0   to + ∞, the tendency is similar to the Fig. 6. Hence we use the sigmoid function 

with equation as below: 

( *( ))

:
{

:

1
( )

1

 
   

 a x d

d shift

a slope
f x

e  



               (3.34)      

where e  is the Euler’s number. In practice, due to the nature of the exponential 

function 𝑒−𝑥, it is sufficient to compute ( )f x  over a wide range of real numbers with 

corresponding slope. In Fig. 9, the pre-training procedure changes a  from 0.01 to 0.1 

with summation of 0.01 and finds the appropriate slope a  .The output signal to 

interference-plus-noise ratio (OutputSINR) and log spectrum distortion (LSD) are used 

to be the criterions of selection in Fig. 10 and Fig. 11 respectively. 

    

Fig. 8 Standard logistic sigmoid function. 

1
( )

1

( ) ( )(1 ( ))

x
f x

e

d
f x f x f x

dx






 
 

It has the property that 

1 ( ) ( )f x f x    

Thus, the function is odd 
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Fig. 9 The Sigmoid function of different slope. 

The goal of wideband selection is to maintain the higher OutputSINR and 

distortionless when there are source direction mismatches to the assumption of 

algorithms. The relationship between them is mutually exclusive. The higher 

outputSINR leads to higher distortion and vice versa. In Fig. 10 and Fig. 11, the 

variation of OutputSINR in different signal mismatches has significant differences. 

The strategy of determination is based on higher OutputSINR to choose the 

distortionless response. The best sigmoid function slope is chosen as a = 0.05 and the 

maximum and minimum bound of sigmoid-function are 2.5 and 1.0 respectively 

according to the Fig. 6. 
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Fig. 10 The OutputSINR of different slopes. 

 

Fig. 11 The Log Spectrum Distortion of different slopes. 
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Using the appropriate selection of sigmoid function slope in Fig. 10-11 to 

compare the effect of wideband epsilon selection shows the significant difference. In 

Fig. 12, the proposed steering vector bound leads to not only higher outputSINR but 

also the lower LSD when the mismatch becomes severe with M=6. The result is the 

goal we want to achieve. In the next Section, we will introduce constraints projected 

method to combine with the proposed steering vector bound selection. 

 

(a) OutputSINR                          (b) LSD 

Fig. 12 Comparison between wideband and narrowband epsilon selection. 

 

3.5 Speech Enhancement under Proposed Constrained Formulation 

In beamforming, we estimate the signal of interest arriving from some specific 

directions in the presence of noise and interference signals with the aid of an array of 

sensors. These sensors are located at different spatial positions and sample the 

propagating waves in space. The specific spatial response of the array system is 

achieved with “beams” pointing to the desired signals and ‘nulls’ towards the 

interfering ones. Ideally, for beamforming, we aim to formulate a fixed response to the 

signal of interest and zero response to the interfering signals. Note for simplicity, we 

do not consider the effect of noise in this Section. This requirement can be expressed 

with array manifold vector as the following matrix equation: 
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        (3.35) 

Obviously, as long as the matrix on the left has full rank, we can always find a set of 

array weights to cancel the M-1 interfering signals and the exact value of the weights 

for complete cancellation of the interfering signals is dependent on the signal 

frequency (certainly also on their directions of arrival). 

    For wideband signals, since each of them consists of infinite number of different 

frequency components, the value of the weights should be different in different 

frequencies. That is the reason that narrowband beamforming structure with a single 

constant for each received signal from arrays will not work effectively in a wideband 

environment. In subsection 3.5.1, the directive interfering signal tracking when only 

noises are present can yield the direction of interference and the corresponding 

beamformer null response value. In subsection 3.5.2, using the information from the 

subsection 3.5.1 as constraints, which are combined with the proposed second-order 

extended Kalman filter to improve the performance of speech enhancement, compared 

to the existing algorithms is shown. 

 

3.5.1  Beamformer Null Tracking when Source is Absent 

   Firstly, we make the noise tracking problem to be the beamformer null tracking of 

the adaptive beamformer when the source is not present. The weightings of spatial 

filter in different frequency-bands can be expressed as beampattern gain according to 

the steering array manifold vector. Comparison between the two algorithms (HC-KF 

and SOE-KF) in beamformer null tracking ability with the same conditions is shown in 

Fig. 13 and Fig. 14. In Fig. 15 there are two interferences at 30𝑜 SIR = 5(dB) and 
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60𝑜 SIR = 0(dB). In Fig. 16, two interferences at  50𝑜 SIR = 5(dB) and - 50𝑜 SIR = 

5(dB) in Fig. 14 when desired source is at  0𝑜. In the low frequency, the HC-KF 

algorithm tracking is better than SOE-KF. Due to the desired source is not present, the 

algorithm focus on the noises reduction and no need to put more emphasis on the 

source direction distortionless. On the other hand, there is no trade-off between the 

covariance matrices which is discussed in the subsection 3.4.1. However, the beam 

directivity of the both algorithms degrades significantly in the low-frequency. For 

reducing the number of constraints to increase the degrees of freedom of the 

beamformer weightings for interferences suppression, we propose the HC-KF to do 

beamformer null tracking given the information of voice activity detection. 

 

Fig. 13 (a) Wideband beampattern gain of one-interference 50𝑜(HC-KF)(b) (SOE-KF). 

 

Fig. 14 (a) Wideband beampattern gain of two-interferences 50𝑜, −50𝑜(HC-KF)(b) (SOE-KF). 



 

47 

   Parametric methods for sources localization search physical space for local 

maximum(s) of a “point-based” measure of activity, which is estimated for each point 

of space, from the recorded multichannel signals. On the contrary, [32] proposes a 

Sector-based Activity Measure (SAM) method that partitions the space into sectors, 

and defines an activity measure for each sector. Each SAM method defines an activity 

function 1( , , )k MA X X   for each sector 1 binss N  . The higher this value is, the 

more likely the sector to contain active source, which can be used to take a hard 

decision, for example by applying a threshold on kA . And [33] uses the sparsity 

assumption, similar to the one in (Roweis, 2003), which implies that all other sectors 

sS , min ( )s s k  are attributed to a zero posterior probability of containing acoustic 

activity at the discrete frequency k . The posterior probability of having at least one 

active source in sector 
min ( )s kS  and at frequency k  is modeled as: 

(t)

min(sector   active at discrete frequency | (k)) (s s (k))s KrP S k u       (3.36) 

( )

min ( ) arg min ( )
t

sss k D k                    (3.37) 

where ( )Kr   is the Kronecker function, equal to 1 iff  =0, and zero otherwise; 
( )t

sD  

is defined as the function of standard comparison. Then, in order to measure the 

wideband acoustic activity within each sector of space, [33] proposes the 

SAM-SPARSE-MEAN method. For a given sector frame and a given frequency bin, it 

is the average probability where the sector is dominant. Similar to the concept and 

according to the adaptive beamforming result in Fig. 13-14, the space around a 

uniform linear microphone array would be partitioned to sectors tS : 

2
500 2000( )( , ) | ,

2 2
t HzS k k

 
 

 
       
 

         (3.38) 
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where  , k  designate azimuth and discrete frequency-bands. The high-frequencies 

signals degrade significantly as the distance between source and arrays is farther, so 

choose the middle-frequencies bins in the visible region. Within each frequency bin k , 

only one sector min ( , )h k   is judged as active: 

min ,( , ) arg min( )k
k

h k P                      (3.39) 

where , ( ( ))kP X k  is the beamformer null activity function in different frequency bins. 

2
( ) ( 1) sin

,

1

kM j i d
c

k i

i

P W e






 



                  (3.40) 

where iW  is the weighting of adaptive spatial filter for speech enhancement. Hence, 

we could use the mean of the beamformer null probability to search which direction of 

interference is dominant the same as the Equation (3.36). 

max

min

( )

, (sector  active at selected frequency | ( ))
k

t

s t s

k

P S k u k         (3.41) 

If there are more than one interference, we can take a hard decision by applying 

threshold on min ( , )h k   to do multiple interferences tracking.  

In the Fig. 15-16, there are two blocks used to determine the best estimation of the 

direction of interference in two cases. The first block separates the beampattern into 

three specific sections as shown below. Mainlobe section is the possible direction 

range of desired source, which is not regarded as the discussed section. And then the 

left and right minimum beamformer null statistical probability analyses are individual. 

With the minimum point statistical analyses, the null degrees will determine whether 

there is directive interference or not through thresholds. After the calculation and 

numerical analysis, the direction of interferences can be found with the response 

values to be null-constraints in next subsection. 



 

49 

 

Fig. 15 Beampattern null tracking (two-interferences SIR 5(dB) 30𝑜, SIR 0(dB) 60𝑜). 

 

Fig. 16 Beampattern null tracking (two-interferences SIR 5(dB) −50𝑜, SIR 5(dB) 50𝑜). 

 

Compared to the eigenspace-based beamformer, which is known as one of the most 

powerful robust techniques applicable to source tracking, the proposed method isn’t 

limited to high input avgSINR cases. The disadvantages of eigenspace-based 

beamformer are that the estimation of the projection matrix onto the signal- 

plus-interference subspace breaks down due to subspace swaps greatly at low input 

avgSINR and the dimension of signal-plus-interference subspace are low and unknown 

exactly. In particularly, if the calibration of arrays and compensation of phase delay do 

well, the beamformer null tracking outperforms than other algorithms. 
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3.5.2  Beamformer Null Constraint when Source is Present 

In this subsection, using the proposed SOE-KF method to handle the null 

constraints given with the information of voice activity detection in previous 

subsection has better performance in speech enhancement applications. In the 

subsection 3.5.1, we can yield the beamformer null thida 
n  and the corresponding 

response values ( )nf   according to the weighting of constrained Kalman filter which 

is based on robust MVDR beamformer. The goal of this subsection is to use the 

direction of interferences and corresponding response values as constraints to be 

combined with the constraint projected method, which is discussed in subsection 2.3.2, 

when the source is not present. 
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ˆ ( )
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    

  
(3.42) 

The steering vector to interference direction is applied to be constraints. For SOE-KF 

method, if there are noisy interferences existing, there are beam and null constraints 

integrated into the algorithm which is the proposed method (HC-SOE-KF). The state 

and error covariance matrix update equation of proposed method can be expressed 

briefly as below: 

ˆ ˆ ˆ( )k k k k kw w K z z                                                      

' ' 1ˆ ˆ ˆ( ) ( ( ))k k N N N N k nw w C C C C w f                                     (3.43) 

( ) ( )H H

k k w k k w k kP I K H P I K H K RK                                      

' ' 1 ' ' ' 1 ' '(I C (C C ) C )P (I C (C C ) C )k N N N N k N N N NP                             (3.44) 

'
( )

n

N SV nC a                                                       (3.45) 
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In Equation (3.43) and (3.44), the close loop updating form of Kalman filter is based 

on the optimal langrage multipliers solution. Although the proposed method can 

suppress the interference directively, the number of the null constraints is limited to the 

degrees of freedom of the beamformer weighting and the characteristic of spatial 

coherence. In Fig. 17 and Fig. 18, the OutputSINR of HC-SOE-KF shows the 

relationship between the steering vector bound and the frequency-bands in different 

mismatch conditions. Due to the wideband beamforming concept, the source and 

noises of the training data are white noises at direction 0𝑜and 50𝑜 respectively and 

the signal to interference ratio is 5(dB); signal to noise ratio is 20(dB). Obviously, 

there is enormous degradation in the low frequencies under 1K (Hz) approximately 

and different phenomenon in different microphone number. It is important to mention 

that no matter the number of arrays, smaller steering vector bound will have better 

performance in lower frequency-bands with null constraint. In array processing, the 

spectrum coherence influences the tracking of interferences direction and the increase 

in signal bandwidth will result in the degradation of steered response. In Fig. 19, the 

peaks of the OutputSINR corresponding to the epsilons selection in frequency-bands is 

shown. It can be observed that for the higher OutputSINR, the much lower epsilon in 

low frequency-bands. Hence the regulation of steering vector bound is in need to 

compensate such phenomenon of signal self-cancellation in low frequency-bands. 
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Fig. 17 (a) Output SINR of null-constraint wideband epsilon selection ∆θ = 8𝑜(b) ∆θ = 16𝑜(HC-SOE-KF M=4). 

 

Fig. 18 (a) Output SINR of null-constraint wideband epsilon selection ∆θ = 8𝑜(b) ∆θ = 16𝑜(HC-SOE-KF M=6). 

 

Fig. 19 (a) Peaks of OutputSINR with epsilon selection (no null-constraint) (b) null-constraint. 
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Algorithm: Second-Order Extended Constrained Kalman filter 

 

Table 4. Second-Order Extended Constrained Kalman filter algorithm. 
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In Fig. 20, to illustrate two points, consider the beampattern near the origin whose 

period is c

d


 just same as the concept of “grating lobe”. Grating lobe is a lobe of the 

same height as the mainlobe in array processing. We refer to ∆𝑢2 as the null-to-null 

beamwidth and denote it by 𝐵𝑊𝑁𝑁. One-half of the  𝐵𝑊𝑁𝑁 is the distance to the first 

null (0.5𝐵𝑊𝑁𝑁 half-power beamwidth (HPBW)).  

0

0 0

0

0

sin (sin sin ) 0
2

2
sin sin 2 cos

cos

c

r l

c
NN r l

c

k Nd

BW
Nd

Nd

 

    


   






 
  

 

    

     

  

      (3.46) 

 
 

The wavenumber 𝑘𝑐 can be represented as following. 
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        (3.47) 

From Equation (3.46), beamwidth is directly proportional to c

Nd


. Thus, the 

beamwidth will be narrower when the number of array elements is larger or the 

distance between them is too far. That is to say that the spatial resolution of array is 

higher. We can enhance the resolution of an array system form by the increase of array 

number or array dimension; then another effect of beamwidth (Beam Broadening 

Effect). The effect is that the beamwidth will increase as the direction of beam tends to 
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be bigger. In Equation (3.46), beamwidth increases when 
0 0cos( )     .  

    In order to find out the frequency-bands corresponding to the first null-to-null 

bandwidth in different array number, we use the delay and sum (DAS) beamformer 

and Fig.19 (b) as the regulation standard of steering vector bound with 

beamformer-null constraint. The beampattern is shown in Fig. 21. 

 

 

Fig. 20 Visible mainlobe of beampattern and bandwidth. 

 

In Fig. 21, the steered response degrades with the decrease in frequency-bands. In 

high frequency whose wavelength is chosen to be the twice as the microphones’ 

spacing, the bandwidth of the impinging signals should be narrow enough to make 

sure the signals received by the opposite ends of the array are still correlated with each 

other which is termed a narrowband beamformer. In other words, the steering vector 

bound should be wide enough to avoid the signal self-cancellation when there is 

mismatch existing. However when the bandwidth of the impinging signal is too wide 

to lose the spatial directivity, the steering vector bound should be narrow enough to 
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keep the beam directivity. Thereafter the use of the functional steering vector bound 

selection which is based on the wideband concept, if there is in need to use the null 

constraints for suppressing the interferences, choosing the smaller one as same as the 

Fig. 19(b) below the first null-to-null frequency-bands to strengthen the performance 

of speech enhancement from the DAS beamformer. 

  

Fig. 21 (a) Delay and Sum (DAS) beamformer wideband beampattern M=4 (b) M=6. 

    Dramatically degradation on the low frequency-bands is shown in Fig. 22 which is 

compared to the Fig. 23. After the approximate epsilon regulation, there is a great 

improvement in the result of speech enhancement. In other words, the proposed 

method can achieve the noise reduction and solve the signal mismatch problem at 

meanwhile in the wideband concept. The results of filtered waveform are presented in 

the Fig. 24-25. 

 

Fig. 22 (a) Narrowband epsilon selection of one-interference 50𝑜 (b) two-interference 50𝑜 − 50𝑜 (HC-SOE-KF). 
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Fig. 23 (a) Wideband epsilon selection of one-interference 50𝑜 (b) two-interference50𝑜 , −50𝑜 (HC-SOE-KF). 

 

Fig. 24 (a) Narrowband epsilon selection speech enhancement of one-interference (b) two-interferences. 

 

Fig. 25 (a) Wideband epsilon selection speech enhancement of one-interference (b) two-interferences. 
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3.6 Overall System Architecture 

Combining the beamforming technique proposed in Section 3.3, the parameter 

determinism in Section 3.4, and the beamformer null-tracking and null-constraints in 

Section 3.5 for speech enhancement, the overall system architecture is summarized 

briefly in this Section. 

The flowchart is plotted in Fig. 27 to elaborate the overall system architecture. 

The main processing can be separated into three Kalman filters, written as Kalman 

filter 1, 2, 3 in Fig. 27. The Kalman filter 1 is operated as the beamformer null tracking 

estimator, thus its error covariance of measurement equation should be chosen small 

enough to achieve better efforts on noise reduction. Note that there is no tradeoff 

between noise reduction and dereverberation in the silent stage. The Kalman filter 2 

serves as the robust beamformer for solving the signal mismatch problem in speech 

stage, so the steering vector bound should be chosen appropriately to maintain the 

steered response in different frequency-bands. The Kalman filter 3 uses the null 

response value and dominant null direction as constraints to strengthen the noise 

reduction. The primary structure of the overall system is shown in Fig. 26. 

Fig. 26 The Speech Enhancement structure of the Overall System. 
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   To start with, new speech samples in time domain are collected in frames with 

fixed overlap to the previous frame and transformed to frequency domain after zero 

padding and Hanning windowing. Assume the information of voice activity detection 

is given, we can determine the new frame which is desired signal active or inactive. 

   If the new frame is determined as desired signal inactive, feeding the spatial 

filtering weights which is given by Kalman filter 1, into beamformer null-tracking. As 

mentioned before, the Kalman filter 1 serves as noise reduction beamformer and it 

could find out the direction of undesired interferences and the corresponding 

beamformer null response values. The parameters of noise tracking should be loaded 

into the parameters before adapting to the new frame, since the new frame that 

contains desired signal won’t be adapted by Kalman filter 1. 

   If the new frame is determined as desired signal active, it should to check the 

parameters which are loaded from noise-tracking. If there are no noisy interferences in 

the undesired direction, the Kalman filter 2 is used to filter out the undesired noise and 

solve the signal mismatch problem for maintaining the desired signal undistorted. 

Using the steering vector bound to cover more steering vectors in sigmoid 

mathematical model wideband selection works, but if there are noisy interferences 

existing, the parameters will be fed into the Kalman filter 3 as null constraints which 

are projected into the updated equation for suppressing the interferences dramatically. 

And the epsilon selection should be regulated according to the characteristic of (DAS) 

beamformer and Fig. 9 in low frequency-bands with different array number. 

   To sum up with, the overall algorithm contains three Kalman filters to handle the 

two issues of beamformer null tracking and robust beamforming against signal 

mismatch problems. The Kalman filters differ in its constraints for maintaining the 

desired signal and its crucial steering vector bound ε  parameter thus render different 

functions and speech enhancement results. The matrices of state and error covariance 
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in the measurement equation should also be chosen approximately according to 

subsection 3.4.1. Finally, given the information of voice activity detection incorporated 

to keep performance of speech enhancement more robust, and the more accurate 

performance on automatic speech recognizer or relative voice applications is.  

 

Fig. 27 The Flowchart of the Overall System. 
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Chapter 4.  Simulation and Experiment Results 

4.1 Introduction of the Simulation and Experiment Condition  

In this chapter, the comparisons between algorithms, which are discussed in 

chapter 2, are shown in Section 4.2 firstly. The second, we will choose the best 

performance one but use the proposed method to solve the main shortcoming of it in 

Section 4.3. The third, experiments in Room Impulse Response (RIR) environment 

and a real meeting room are presented for comparison. Finally, the pros and cons are 

explained and discussed with the experiment results. 

The proposed algorithm was tested with a uniform linear microphone array of 

four and six omnidirectional microphones. The distance between each microphone is 

4.5 cm. The Size of the room is 10 m × 10 m × 3 m and the microphone array was 

placed on a table at a distance of 1 m from the wall. The arrangement of microphone 

array and sound sources is shown in Fig. 28. 

 

Fig. 28 The location of microphone array and sources. 
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The desired source is located at −16𝑜~16𝑜 which consists of sentences spoken by 

man or woman. Two white interferences are located at 50𝑜 and −50𝑜. The distance 

between these sources and middle of the microphone array is 1 m. And the sound 

sources are recorded independently for the purpose of estimating the output signal to 

interference-plus-noise ratio (OutputSINR) and log spectrum distortion (LSD). 

The sound sources are played by the Head and Torso Simulator (HATS) and 

recorded in the anechoic chamber without reverberation; a real meeting room with 

reverberation in Section 4.2 and Section 4.3 respectively. The HATS is used to 

simulate the characteristic of human being acoustic output. And the sound sources are 

recorded by a digital microphone array, which are digital microphones to receive 

signal and collect 16-bits array data in an Altera FPGA development board. The 

received data is visible for embedded network hardware Net-Burner through shared 

memory. Finally, the array data is transferred to PC or Laptop through Local Area 

Network (LAN). 

The speech data is extracted from a listening comprehension test by an English 

learning center, thus the input SNR could be very high. The detail specifications about 

the pre-processing of raw data by Short-time Fourier transform (STFT) are presented 

in Table 5 and Fig. 29. The Fig. 30-32 illustrate the recording environment and 

experiment equipment (including Laser Range Finder, Decibel meter, Altera FPGA 

development board, digital microphone arrays, ULA setting block, and loud speaker). 

Three objective performance indices are used to measure the performance of noise 

reduction and waveform property directly as following: 

Microphone Number 4 , 6 Microphone Displacement 4.5 cm 

Sampling rate 8000 Hz FFT size 512 samples 

Shift number 160 samples Zero padding 32 samples 

Table 5. Parameters in simulations and experiments. 
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1.  Output signal to interference-plus-noise ratio (OutputSINR) 

One equality in the frequency weighted measurement for evaluating the 

performance of noise reduction, which is defined as below: 
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where the 
sY  is the filtered output of the desired signal, and 

nY  is the filtered output 

of interferences plus noise; 
1 1(w 5, 5)w   is the windowing of frequency-bands.  

2.  Log spectrum distortion (LSD) 

 The performance of noise reduction and distortion is a trade-off of beamforming. 

The better performance of noise reduction may cause more distortion. Hence, another 

equality measurement for evaluating the performance of distortion, which is defined as 

2
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where the ( , )Y k w  is the STFT of the filtered output and the 
1( , )S k w  is the STFT of 

the original sound played by the HATS. The LSD compares the original desired signal 

with the enhanced signal. LSD of different methods are evaluated by using the original 

desired source recorded by # microphone one and the enhanced signal from methods. 

 

Fig. 29 Pre-processing of raw data in beamforming (STFT) 
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3.  Perceptual Evaluation of Speech Quality (PESQ) 

The last equality measurement for evaluating the performance of speech equality 

is PESQ [27]. It is a widely accepted industry standard for objective voice quality 

testing and used to estimate the whole speech enhancement performance at different 

input avgSINR. The automatic objective estimation of speech equality is substituted to 

the judgment system before. The PESQ result will show the difference between the 

original input signal and the degrading output signal which is played by the HATS. 

The recorded sources contain background noise and diffused noise. PESQ can be 

regarded as the subjective hearing equality of human being to a certain extent.  

 

 

Fig. 30 The HATS and the digital microphone arrays (ULA). 
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Fig. 31 The real meeting room environment. 

 

Fig. 32 The illustration of experiment equipments.  
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4.2 Adaptive Spatial Filter Comparison Result 

In this Section, the comparisons of noise reduction between adaptive spatial 

filters, which are discussed in Section 2 based on the robust MVDR beamformer, is 

exhibited. The weights of spatial filter update only when the desired source is not 

present. When the desired source is present, we use the weights as the fixed 

beamformer to investigate the performance. The data is recorded at Anechoic Chamber 

without reverberation. In Fig. 33, the recorded source is at 0𝑜 SNR 20(dB) and 

interfering source at 50𝑜 SIR -5(dB). We change the variance of filtered output error 

covariance matrix in the measurement equation from 10−15~1015  to see the 

relationship between the SC-KF and HC-KF. Obviously, when the 𝜎1
2 is chosen too 

small, the OutputSINR and LSD of SC-KF will degrade significantly in Fig. 33(c), (d). 

The condition number in Fig. 33(a) which is the maximum eigenvalue divided by the 

minimum eigenvalue of the input correlation matrix will be too big to cause the matrix 

singular. Although choosing the appropriate parameter of 𝜎1
2 and 𝜎2

2 , the HC-KF and 

SC-KF can be equivalent, there is a tradeoff relationship which is discussed in 

subsection 3.4.1 between the parameters in SC-KF. Hence for the robust performance 

consideration, the HC-KF is used as reference adaptive algorithm. In Fig. 34, under 

different input SIR, the HC-KC is closer to SMI solution in no signal mismatch 

problem. The CLMS and CNLMS are also close to the optimal solution, but the 

step-size, which is selected as 10−11, 10−1 respectively, should be chosen 

approximately according to the input data and the variable environment.  

    For subjective evaluation, Fig. 35, 36, 37 show the waveforms and spectrograms 

at different SIR -7 dB, 0 dB, 7 dB with same SNR (0 dB). It can be observed that the 

diffused noise is rather hard to suppress compared to directive interference. In the final 

experiments, the proposed method focuses on the suppression of directive interfering 

source and solves the signal mismatch problem at the same time. 
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(a) Condition number              (b) Convergence speed 𝜎1
2 = 1010 

  

(c) OutputSINR result                    (d) LSD result 

Fig. 33 The difference between SC-KF and HC-KF 

  

(a) AvgSINR in algorithms               (b) LSD in algorithms 

Fig. 34 Comparison between different adaptive algorithms. 
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          (a) Original Speech                 (b) Contaminated Speech 

 

          (c) HC-KF algorithm                  (d) SMI algorithm 

 

          (e) CNLMS algorithm                 (f) DAS algorithm 

Fig. 35 Experiment results with input SNR 0(dB), SIR -7(dB). 
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          (a) Original Speech                 (b) Contaminated Speech 

 

         (c) HC-KF algorithm                  (d) SMI algorithm 

 

         (e) CNLMS algorithm                 (f) DAS algorithm 

Fig. 36 Experiment results with input SNR 0(dB), SIR 0(dB). 
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         (a) Original Speech                 (b) Contaminated Speech 

 

         (c) HC-KF algorithm                  (d) SMI algorithm 

 

         (e) CNLMS algorithm                 (f) DAS algorithm 

Fig. 37 Experiment results with input SNR 0(dB), SIR 7(dB).  
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4.3 Experiment on Performance to the Signal Mismatch Problem 

In this Section, the comparisons of experiments in the Room Impulse Response 

(RIR) and a real meeting room are shown. Signal Mismatch problem could easily 

happen in real environment for speech enhancement applications. For examples, the 

reverberation is the most known reason that causes signal mismatches. The second, the 

assumption for spatial relationship of arrays is different to the real condition that 

results in arrays calibration procedure to compensate for channel amplitude and phase 

mismatch. The third, the violation of the spatial Nyquist theorem at low frequencies 

degrades the performance and limits the effective observations in finite time. 

 

(A) RIR Experiments Performance 

Three performance indices, which are introduced in Section 4.1, are used to 

compare the performance of speech enhancement. We use the HC-KF as beamformer 

null tracking when source is not present and the constrained SOE-KF as modification 

of HC-KF to solve the signal mismatch problems. The parameter of the HC-KF is 

𝜎1
2 = 1010 , which is the same as the SOE-KF filtered output covariance and the 

𝜎𝑠
2 = 0,  = 10−12. The steering vector bound ε is selected as 2.55 [18] in narrow- 

band selection, and slope of sigmoid function is 0.05 in wideband selection for ε.  

In Fig. 38-41, we analyze the different desired signal mismatch conditions from 

∆θ = −16 to ∆θ = 16  in the RIR experiment. The average input signal to 

noise-plus-interference ratio is 5 (dB) approximately. Comparisons between SOE-KF 

and HC-SOE-KF are also shown in LSD and OutputSINR. In Fig. 38-39, the 

OutputSINR and LSD of HC-SOE-KF are more non-sensitive against different 

mismatches than HC-KF and SMI with impressive performance. In particular, since 

the mismatch conditions differ from frequency-bands, the proposed mathematical 

functional ε selection in HC-SOE-KF has a better performance in average.  
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The robustness of beamforming in speech enhancement is what we want to 

achieve despite the HC-KF has the best result when there is no signal mismatch. The 

corresponding results of waveform of frequency spectrum in original desired source 

and interfering sources with diffused noise are shown in Fig. 40-41. 

 

(B)(C) Experiments in Real Meeting Room 

    The meeting room dimension is 10 m × 10 m × 3 m and a uniform linear array 

(ULA) with six omnidirectional microphones was placed on a table at a distance of 1.5 

m from the HATS. In Fig. 42-44;48-50, the results of performance indices, which is 

collected in the Table 6 and Table 7 as the same as the RIR experiment, are shown 

when the signal mismatch ∆θ = 16𝑜 . It can be observed that SMI and HC-KF 

beamformer don’t take the effect of steering error into account, so the OutputSINR is 

prone to be proportional to the distortion to a certain extent. Hence, it is possible to 

reduce the interferences while nulling the desired source, most especially in the low 

frequencies-bands (Fig. 45-47;51-53). Using the beamformer null-constraints, which 

are found out in the training snapshots, to strengthen the suppression of interferences is 

available on both the HC-SOE-KF (soft-beam and hard-null constraints) and HC-KF 

(hard-beam and hard-null constraints) when the desired source is present. The 

proposed method not only improves the shortcoming of robust MVDR beamformer 

which is based on Kalman filter for solving the signal mismatch problem but also 

enhances the OutputSINR as the same results in the RIR experiments. 

It has to be mentioned that, although the distortionless of proposed method is 

prone to be lower at lower avgSINR like -3 (dB), the performances of OutputSINR 

and the filtered speech quality PESQ are more robust than others. The reason is that 

the beam directivity will degrade in low frequency-bands due to hard null-constraints. 

It enhances the OutputSINR at the cost of signal self-nulling; and the beam constraints 
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by steering vector bound would amplify the desired source and diffused noise 

simultaneously in the worst-case performance optimization. Because the direction of 

source is unknown in algorithm, the distortionless performance is a challenging task 

under signal mismatch problem. The post-filtering of diffused noise and superdirective 

beamforming are in need as the future work. 

 

(A) Room Impulse Response 

 

Fig. 38 Comparison of mismatch conditions (No Null-constraint) (a) OutputSINR (b) LSD. 

 

Fig. 39 Comparison of mismatch conditions (Null-constraint) (a) OutputSINR (b) LSD. 
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(a) Original Speech                      (b) Contaminated Speech 

 

(c) SMI algorithm                          (d) HC-KF algorithm 

 

        (e) HC-SOE-KF (Wideband ε)                   (f) SOE-KF (Narrowband ε) 

Fig. 40 Filtering results in different mismatch conditions (No Null-constraint). 
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             (a) Original Speech                       (b) Contaminated Speech 

 

(c) SMI algorithm                          (d) HC-KF algorithm 

 

(e) HC-SOE-KF (Wideband ε)                 (f) SOE-KF (Narrowband ε) 

Fig. 41 Filtering results in different mismatch conditions (Null-constraint). 
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(B) (Speech source (woman) + White interference) 

Input AvgSINR = -5 (dB) 

Algorithms OutputSINR LSD PESQ 

Proposed 5.775 10.93 1.86 

HC-KF 5.144 10.21 1.621 

SOE-KF 2.135 12.71 1.636 

SMI 1.821 10.17 1.319 

Input AvgSINR = 0 (dB) 

Proposed 9.618 10.55 1.986 

HC-KF 8.531 10.89 1.755 

SOE-KF 5.226 12.3 1.741 

SMI 4.002 10.88 1.288 

Input AvgSINR = 5 (dB) 

Proposed 13.07 10.41 2.109 

HC-KF 11.78 11.47 1.851 

SOE-KF 8.296 12.08 1.839 

SMI 5.729 11.54 1.321 

Table 6. Results of different algorithms for speech enhancement based on MVDR(V+W). 
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Fig. 42 OutputSINR Comparison of algorithms (V+W). 

 

Fig. 43 LSD Comparison of algorithms (V+W). 

 

Fig. 44 PESQ Comparison of algorithms (V+W). 
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             (a) Original Speech                        (b) Contaminated Speech 

 

(c) SMI algorithm                         (d) SOE-KF algorithm 

 

              (e) HC-KF algorithm                       (f) HC-SOE-KF algorithm 

Fig. 45 Filtering results in input avgSINR -5(dB)(V+W). 

 

 



 

79 

 

              (a) Original Speech                      (b) Contaminated Speech 

 

(c) SMI algorithm                         (d) SOE-KF algorithm 

 

              (e) HC-KF algorithm                      (f) HC-SOE-KF algorithm 

Fig. 46 Filtering results in input avgSINR 0(dB)(V+W). 
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             (a) Original Speech                        (b) Contaminated Speech 

 

(c) SMI algorithm                        (d) SOE-KF algorithm 

 

              (e) HC-KF algorithm                      (f) HC-SOE-KF algorithm 

Fig. 47 Filtering results in input avgSINR 5(dB)(V+W). 

 

 



 

81 

(C) (Speech source (woman) + Speech interference (man)) 

Input AvgSINR = -5 (dB) 

Algorithms OutputSINR LSD PESQ 

Proposed 4.007 10.87 1.882 

HC-KF 0.5431 10.2 1.824 

SOE-KF 2.93 13.04 1.761 

SMI 0.0197 10 1.566 

Input AvgSINR = 0 (dB) 

Proposed 7.771 10.52 2.016 

HC-KF 3.049 10.92 1.943 

SOE-KF 5.447 12.52 1.839 

SMI 2.352 10.69 1.512 

Input AvgSINR = 5 (dB) 

Proposed 11.46 10.43 2.098 

HC-KF 6.48 11.56 2.048 

SOE-KF 7.534 12.2 1.9 

SMI 4.482 11.41 1.53 

Table 7. Results of different algorithms for speech enhancement based on MVDR(V+V). 
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Fig. 48 OutputSINR Comparison of algorithms (V+V). 

 

Fig. 49 LSD Comparison of algorithms (V+V). 

 

Fig. 50 PESQ Comparison of algorithms (V+V). 
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             (a) Original Speech                        (b) Contaminated Speech 

 

(c) SMI algorithm                        (d) SOE-KF algorithm 

 

             (e) HC-KF algorithm                      (f) HC-SOE-KF algorithm 

Fig. 51 Filtering results in input avgSINR -5(dB)(V+V). 
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             (a) Original Speech                        (b) Contaminated Speech 

 

(c) SMI algorithm                        (d) SOE-KF algorithm 

 

             (e) HC-KF algorithm                      (f) HC-SOE-KF algorithm 

Fig. 52 Filtering results in input avgSINR 0(dB) (V+V). 
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             (a) Original Speech                        (b) Contaminated Speech 

 

(c) SMI algorithm                        (d) SOE-KF algorithm 

 

   (e) HC-KF algorithm                      (f) HC-SOE-KF algorithm 

Fig. 53 Filtering results in input avgSINR 5(dB) (V+V). 
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Chapter 5.  Conclusion and Future Study 

The results of performance in speech enhancement are presented in chapter 4. The 

proposed beamformer null-constraint could be used to improve the OutputSINR both 

in HC-KF and SOE-KF. Using the wideband selection of steering vector bound in 

constrained Kalman filter works in solving signal mismatch problem. In this thesis, the 

fact can be observed that the proposed method is capable of noise reduction and 

maintaining the signal distortionless at the same time. The robustness of beamformer 

against array steering error compared to other algorithms is shown in Fig. 42-44;48-50. 

The relationship between the noise reduction and the dereverberation is a tradeoff of a 

beamformer. Because the existence of desired source from different direction is 

unknown and the environment reverberation is non-stationary, the better noise 

reduction performance may suppress the desired source, particularly in low 

frequency-bands when the number of arrays is small. To make sure the directivity of 

steered response is in low frequency-bands, the regulation of steering vector bound is 

needed according to the characteristic as in Fig. 17-19.  

There are several areas for improvement in selecting the appropriate steering 

vector bound and tracking the beamformer nulls for interference suppression. The 

inequality nonlinear beam constraint would amplify the desired source and diffused 

noise at meanwhile; and the null constraint would make a distortion to the desired 

source in low frequency-bands. Therefore, it would be interesting in noise 

post-filtering using broadband beamforming similar to [29][30]. This is left as a future 

research topic. As a conclusion, a more robust adaptive post-filter for diffused noise 

and more solid sources tracking (similar to superdirective beamformer [34] in low 

frequency-bands) will be helpful to overcome the signal mismatch problem under such 

environment further.  
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