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Chapter 2 
 

LITERATURE REVIEW 
 

Jaky’s formula was often used to calculate the earth pressure at-rest behind a 

retaining wall. However, the theory to estimate the lateral earth pressure on retaining 

wall near an inclined rock face has received very little attention in the literature. 

Theoretical and empirical relationship to estimate the lateral earth pressure adjacent to 

a vertical rock face has been reported by Janssen (1895), Reimbert and Reimbert 

(1976), and Spangler and Handy (1984) articles mentioned above will be discussed in 

this chapter.  

 

2.1 Earth Pressure At-Rest 

2.1.1 Coefficient of Earth Pressure At-Rest 

In Fig.2.1(a), the soil element A formed in a horizontal sedimentary deposit is 

compressed by the overburden pressure σv=γz. During the formation of the deposit, 

the element is consolidated under the pressureσv. The vertical stress tends to produce 

a lateral deformation against surrounding soils due to the Poisson's ratio effect. 

However, the surrounding soil resists the lateral deformation with a developed lateral 

stressσh . Over the geological period, the horizontal strain is kept to be zero. A stable 

stress state will develop in which the principal stressesσ1 andσ3 acts on the vertical 

and horizontal planes, as shown Fig.2.1(b). The equilibrium condition produced at 

this stress in commonly termed as the Ko condition. The ratio of the horizontal stress 

σh  to vertical stressσv is defined as the coefficient of earth pressure at-rest, Ko, or 
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sinceσv=γz, then σ γh K z= 0 , where γ  is the unit weight of soil. 

 

2.1.2 Jaky’s Formula 

Attempts have been made to establish a theoretical relationship between the 

strength properties of a soil and the coefficient Ko. The empirical relationship to 

estimate Ko of coarse-grained soils is discussed in this section. Mesri and Hayat (1993) 

reported that Jaky (1944) arrived at the relationship between Ko and the internal 

friction angle φ  by analyzing a talus of granular soil freestanding at the angle of 

repose. Jaky assumed that the angle of repose is equal to the internal friction angle φ . 

This is a reasonable assumption for sediment, normally consolidated materials. Jaky 

reasoned that the sand cone OAD illustrated in Fig.2.2 is in a state of equilibrium and 

its surface and inner points are motionless. The horizontal pressure acting on the 

vertical plane OC is the earth pressure at rest. Slide planes exist in the inclined sand 

mass. However, as OC is a line of symmetry, shear stresses cannot develop on it. 

Hence OC is a principal plane. Based on the equations of equilibrium, Jaky was able 

to expressed the coefficient of earth pressure at rest Ko with the angle of internal 

friction φ : 
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without any further explanation Jaky (1944), adopted  

 

                           K0 1= − sin φ                        (2.3) 

Mayne and Kulhawy (1982) reported that, the approximate theoretical 
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relationship for Ko for normally consolidated soils introduced by Jaky appears valid 

for cohesionless soils. Using Jaky’s equation to estimate the in situ lateral earth 

pressure is reliable enough for most engineering purposes.  

 

2.1.3 Hendron’s Formula 

Hendron (1963) reported a comprehensive study on the behavior of sand 

in one-dimensional compression. He derived a theoretical approach to predict 

Ko analytically. Hendron (1963) concluded that the values of Ko for round sand 

are lower than for an angular one at identical values of the angle of shearing 

resistance. The theoretical derivation of Hendron is based on the assumption 

that uniform, well-rounded, dense sand can be approximated by a 

face-centered array of equiradii spheres. If the array of spheres were subjected 

to one-dimensional compression, then the relationship between Ko and internal 

friction angle of the soil φ  can be expressed as 
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2.1.4 Study of Sherif, Fang and Sherif 

Sherif, Fang and Sherif (1984) presented their experimental results 

regarding the at-rest stresses against a rigid wall as a function of soil density. 

All experiments were conducted in the University of Washington shaking table 

and retaining wall facility. The model system consists of four components: (1) 

shaking table and soil box; (2) loading and control units; (3) retaining wall; 

and (4) data acquisition system.  

The shaking table is 3 m long, 2.4 m wide, 0.194 m deep, and is made of 

steel as shown in Fig. 2.3. A rigid soil box of 2.4 m long, 1.8 m wide and 1.2 
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m high is built on the shaking table for geotechnical earthquake engineering 

research. The movable model retaining wall and its driving system are shown 

in Fig. 2.4. The model wall consists of the main frame and the center wall. The 

center wall is 1 m wide, 1 m high, and 0.127 m thick. Six soil pressure 

transducers are mounted on the centerline of the wall surface at different 

depths (Fig. 2.5) to measure the soil pressure distribution against the main 

body of the center wall.  

Figs. 2.6, 2.7 and 2.8 show the magnitudes and distribution of static 

at-rest stresses against the retaining wall for loose, medium dense and dense 

sand. The data in these figures reveal that the at-rest stress distribution behind 

non-yielding wall is linear. Fig. 2.6 indicates that the earth pressure 

distribution for loose sand in good agreement with the Jaky’s equation. 

However, when the backfill behind the wall is either compacted or vibrated, 

the magnitude of the at-rest stresses increases as a result of densification of 

the backfill. The total at-rest stress exerted on the wall could be the sum of the 

stresses due to gravity effects and the locked-in stresses due to densification. 

Fig. 2.9 shows the relationship between the extra coefficient due to locked-in 

stresses Kol and the density change of soil. An empirical equation is proposed 

to estimate the Ko value for a compacted granular backfill as follows. 
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where     γd = actual compacted dry unit weight of soil behind the wall 

γd(min) = dry unit weight of soil in the loosest state 

It is obvious that the well-known Jaky’s equation applies only when the 

backfill is deposited at its loosest state, and the method employed for backfill 

placement has a strong influence on Ko values. 
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2.2 Effects of Soil Compaction on Earth Pressure At-Rest 

 

Compaction a soil can produce a stiff, settlement-free and less permeable 

mass. It is usually accomplished by mechanical means that cause the density 

of soil to increase. At the same time the air voids are reduced and. It has been 

realized that the compaction of the backfill material has an important effect on 

the earth pressure on the wall.  

Several theories and analytical methods have been proposed to analyze 

the residual lateral earth pressures induced by soil compaction. Most of these 

theories introduce the idea that compaction represents a form of 

overconsolidation, where stresses resulting from a temporary or transient 

loading condition are retained following removal of this load. 

 

2.2.1 Study of Rowe 

Rowe (1954) conducted some experiments with cohesionless soils in 

shear-box and triaxial compression machines to investigate the influence of 

the confining stress, soil density, and strain history on soil behavior. Rowe 

proposed that compaction could be considered as the application and removal 

of a surficial surcharge pressure. Based on his test results, Rowe suggested 

that virtually all lateral soil stress induced by the surcharge loading would be 

retained after the surcharge removal. It is suggested that the coefficient of 

at-rest earth pressure following compaction could be expressed as Ko’. 
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where 

Ko = the coefficient of earth pressure at-rest before compaction; 
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σv = the effective overburden pressure; 

σv + ∆σ = the effective transient overburden pressure represent the peak loading 

during compaction process. 

 

2.2.2 Study of Broms 

Considering placement and compaction of horizontal layers of backfill 

adjacent to a non-deflection vertical wall, Broms (1971) proposed an 

analytical procedure based on the concept of hysteretic loading and unloading 

behavior. The stress path of hysteretic model that Broms’ analytical procedure 

based is shown in Fig. 2.10a. Considering an element exists at some depth of 

the backfill, the initial stress state of the element can be illustrated as σhi = 

Koσvi which is shown at point A in Fig. 2.10. When the compactor is 

positioned immediately above the soil element, an increase of the vertical 

stress results in an increase in horizontal stress on the basis of the assumption 

of no lateral yield. The stress state can be expressed as σhm = Koσvm (point B). 

As the compactor moves off the fill, a subsequent decrease in vertical 

effective stress (unloading) results in no lateral stress decrease until a 

limitation (Kr-line) is reached (point C). The assumption is made that the 

maximum value of the horizontal stresses induced by compaction sustained 

until the vertical stress is reduced below a critical value at point C as shown in 

Fig. 2.10. After that, further unloading results in a decrease in horizontal 

stress through the stress path as σhf = Krσvi (point D) until the original vertical 

stress is reached. Kr is the coefficient of lateral earth pressure ( pro KKK ≤≤ , 

where Kp = coefficient of passive earth pressure). Broms (1971) assumed that 

Kr equals to 1/Ko. Compared with the residual horizontal stress, σhf and initial 

horizontal stress, σhi at the same vertical effective stress. It is obviously that 

the σhf is much higher than σhi. The process of soil compaction would result in 

a higher residual horizontal stress exists. 
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For a deeper soil element, the vertical stress on the soil element increases 

under the roller load from A’ to B’, and upon unloading the full maximum 

horizontal load (σhm) is retained. Therefore, a critical depth zc will exist, 

where the stress state after compaction will return exactly to point C’. The 

critical depth zc can be expressed as follows: 
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where σvm = γz + ∆σv, γz is the vertical stress due to the weight of soil, and  

∆σv is the temporary increase in vertical stress at depth z due to the compactor. 

Using the method proposed by Broms to calculate the 

compaction-induced earth pressure involves incremental analysis of the 

stresses resulting from the placement and compaction of each layer of backfill. 

Compaction at any point is modeled as the application of a transient increase 

in vertical effective stress (∆σv) caused by the compaction vehicle as 

determined by simple Boussinesq elastic analysis, followed by subsequent 

removal of the transient vertical load. The horizontal effective stresses due to 

the transient compaction loading, as well as those due to surcharge increases 

as a result of fill placement, are then determined by the model shown in Fig. 

2.10. 

Considering the effect of placing and removing a compactor at the 

surface of the fill, the distribution of lateral pressure due to compaction 

proposed by Broms (1971) is shown in Fig. 2.11 (a). Before compaction is 

applied to the fill, the soil element is under the condition of at-rest, and the 

horizontal pressure is equal to Koσv (curve 1). The application of the 

compactor leads to an increase in vertical stress which decreases with depth. 

The maximum horizontal pressure can be calculated with Koσvm, where σvm 

equals to σv + ∆σv and ∆σv is the increase in vertical stress at any depth due to 
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the compactor (curve 2). As the compactor is removed, the backfill below the 

critical depth retains the increased horizontal stress and the fill above the 

critical depth reduces its horizontal stress to Krσv (curve 3). Based on the 

above discussions, as the backfill is compacted at the surface, the profile of 

the pressure distribution is indicated by the shaded area in Fig. 2.11 (a). 

In reality, compaction is carried out regularly on thin layers of fill up the 

back of the retaining wall. The residual lateral pressure distribution is then 

given by the locus of the point A as the surface of the fill moves upward. A 

simplified distribution is illustrated in Fig. 2.11 (b). 

2.2.3 Study of Peck and Mesri 

Based on the elastic analysis, Peck and Mesri (1987) presented a 

calculation method to evaluate the compaction-induced earth pressure. The 

lateral pressure profile can be determined by four conditions on σh, as 

illustrated in Fig. 2.12 and summarized in the following.  

1. Lateral pressure resulting from the overburden of the compacted backfill, 

 

                             zh γφσ )sin1( −=                       (2.8) 

2. Lateral pressure limited by passive failure condition, 

 

                        zh γφσ )2/45(tan 2 +=                    (2.9) 

3. Lateral pressure resulting from backfill overburden plus the residual horizontal 

stresses, 

                                 hh z σγφσ φ ∆−+−= )15(
4
1)sin1( sin2.1                (2.10) 

where ∆σh is the lateral earth pressure increase resulted from the surface 

compaction loading of the last backfill lift and can be determined based on the 

elastic solution. 



 11

4. Lateral pressure profile defined by a line which envelops the residual lateral 

pressures resulting from the compaction of individual backfill lifts. This line can 

be computed by Eq. 2.11. 
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  Fig. 2.12 indicates that near the surface of backfill, from point a to b, the lateral 

pressure on the wall is subject to the passive failure condition. From b to c, the 

overburden and compaction-induced lateral pressure profile is determined by Eq. 2.10 

From c the lateral pressure increases with depth according to Eq. 2.11 until point d is 

reached. Below d, the overburden pressure exceeds the peak increase in stress by 

compaction. In the lower part of the backfill, the lateral pressure is directly related to 

the effective overburden pressure. 
 

2.3.4 Study of Chen 

    Chen (2002) reported some experiments in non-yielding retaining wall at 

National Chiao Tung University to investigate influence of earth pressure due to 

vibratory compaction. Air-dry Ottawa sand was used as backfill material. Vertical and 

horizontal stresses in the soil mass were measured in loose and compacted sand. 

Based on his test results, Chen (2002) proposed four points of view: (1) the 

compaction process does not result in any residual stress in the vertical direction. The 

effects of vibratory compaction on the vertical overburden pressure are insignificantly, 

as indicated in Fig. 2.13 and Fig. 2.15; (2) after compaction, the lateral stress 

measured near the top of backfill is almost identical to the passive earth pressure 

estimated with Rankine theory (Fig. 2.14). The compaction-influenced zone rises with 

rising compaction surface. Below the compaction-influenced zone, the horizontal 

stresses converge to the earth pressure at-rest, as indicated in Fig. 2.14(e); (3) when 

total (static + dynamic) loading due to the vibratory compacting equipment exceeds 
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the bearing capacity of foundation soils, the mechanism of vibratory compaction on 

soil can be described with the bearing capacity failure of foundation soils; (4) the 

vibratory compaction on top of the backfill transmits elastic waves through soil 

elements continuously. For soils below the compaction-influenced zone, soil particles 

are vibrated. The passive state of stress among particles is disturbed. The horizontal 

stresses among soil particles readjust under the application of a uniform overburden 

pressure and constrained lateral deformation, and eventually converge to the at-rest 

state of stress. 

 

 

2.3 Methods to Estimate Lateral Pressure on Silos and 

Bunkers 

 

These methods are based on equilibrium of the stored material in a static 

condition. Elastic interaction with the bin structure is not considered, nor is 

strain energy in either the stored material or the structure. 

 

2.3.1 Janssen’s Method 

Janssen’s method (1895) reported silo equation to estimate the distribution of the 

horizontal pressure with stored material as shown in Fig. 2.16. Equating the vertical 

forces to zero gives: 

 

( )'dqqA Ady A q dy p Udy
dy

γ µ
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              (2.12) 

 

where 

q = static vertical pressure at depth Y 

A = area of horizontal cross section through the silo 
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U = perimeter of horizontal cross section 

p = pressure of stored material against walls at depth Y below surface of stored 

material 

'µ = tanδ = coefficient of friction between stored material and wall 

γ  = unit weight of stored material 

Substituting kq  for p , and “hydraulic radius” R  for /A U , the differential 

equation of equilibrium becomes: 

 
'/ kdq dy q

R
µγ= −                       (2.13) 

 

where k  is the ratio of horizontal pressure to vertical. 

The solution to this differential equation is the Janssen formula for vertical 

pressure at depthY : 
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    Hence, to compute the horizontal pressure p , Eq. 2.14 is multiplied by k . Thus, 

the Janssen’s (1895) equation for horizontal pressure is: 

 
' /1

'
kY RRp e µγ

µ
−⎡ ⎤= −⎣ ⎦                      (2.15) 

The above derivation makes no assumption as to shape of the silo cross section. 

If the cross section is rectangular with side lengths a and b will have different 

pressures on short and long sides. A common procedure is to let '/ 4R a=  when 

computing pressure on the long side b, where: 
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An alternate value of 'a  suggested by Reimbert is to use 

 
22' ab aa

b
−

=                        (2.17) 

 

2.3.2 Reimbert and Reimbert’s Method  

In 1953 and 1954, Marcel and Andre Reimbert presented their method for 

computing static pressure due to stored material. Their derivation recognizes that at 

large depthsY , the curve of lateral pressure becomes asymptotic to the vertical axis. 

(This can be shown by plotting pressures given by the Janssen equation or by noting 

that for large Y -values, the first derivative, dp dy , approaches zero.) At that depth, 

the lateral pressure reaches a maximum, shown as maxp  on Fig. 2.17 (a). A lamina of 

material at this depth shows in Fig. 2.17 (b). It has equal vertical pressure above and 

below. Consequently, the lamina weight is exactly balanced by wall friction, or: 

 

max'Ady p Udyγ µ=                      (2.18) 

 

Thus: 

 

max 'p Rγ µ=                        (2.19) 

 

where R  is the hydraulic radius, A U . 

The Reimbert equation for lateral static pressure at depth Y  is: 

 
2

max 1 1Yp p
C
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                  (2.20) 

 

For rectangular silos with short side and long side b, maxp and C  on the longer 
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wall are as follows: 

 

max ' 4 'p aγ µ=                       (2.21) 
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where 
22' ab aa

b
−

= . 

 

2.3.3 Spangler and Handy’s Method  

Fig. 2.18 represents a section of a ditch conduit 1 unit in length. Considering a 

thin horizontal element of the fill material of height dh  located at any depth h  

below the ground surface. Equating the upward and downward vertical forces on the 

element, the following equation is obtained. 

 

2 ' d
d

VV dV K dh V B dh
B

µ γ+ + = +                 (2.23) 

 

where 

V = vertical force on the top of the element 

V dV+ = vertical force on the bottom of the element 

dB dhγ = weight of the fill element 

( )dK V B dh = the lateral force on each side of the element, it is assumed that the 

vertical pressure on the element is uniformly distributed over the 

width dB . Since the element has a tendency to move downward in 

relation to the sides of the ditch, these lateral pressures induce 

upward shearing forces equal to '( )dK V B dhµ . 

Eq. 2.23 is a linear differential equation, the solution for V  is: 
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    Fig. 2.19 (a) shows some retaining walls are built in front of a stable rock face, 

not so much to retain soil as to prevent rockfalls. Granular backfill placed in the 

relatively narrow gap between the wall and the natural outcrop is partly supported by 

friction on each side, from the wall and form the outcrop. Since the friction is 

distributed vertically it reduces vertical stress within the soil mass, which in turn 

reduces the horizontal stress and the overturning moment. The weight of W  of a soil 

prism between the wall and the rock face parallel to the wall and at a distance B  

from the wall (Fig. 2.19 (a)) is: 

W Bhγ=                          (2.25) 

 

where γ  is the unit weight of the soil and h is the height down from the top of the 

wall. The vertical unsupported forceV from this weight is: 

 

2V W F= −                         (2.26) 

 

where F  is the vertical component of wall friction. The vertical stress at any height 

h  is v V Bσ = , and the horizontal stress is: 

 

h
VK
B

σ =                          (2.27) 

 

where K  is the coefficient of Lateral earth pressure. Substitution for V  from Eq. 

2.24, gives: 
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where µ = tanδ  , the coefficient of friction between the soil and the wall. 

Some solutions of Eq. 2.28 for different values of B  are shown in Fig. 2.19 (b). 

It can be seen that the soil pressure, instead of continuing to increase with increasing 

values of h , level off at a maximum value defined by Eq. 2.28 when When h 

approaches ∞, 

 

max 2 2 tan
B Bγ γσ
µ δ

= =                       (2.29) 

 

2.3.4 Frydman and Keissar’s Study 

    Frydman and Keissar (1987) used the centrifuge modeling technique to 

test a small model wall, and changes in pressure from the at-rest to the active 

condition was observed. The centrifuge system has a mean radius of 1.5 m, 

and can develop a maximum acceleration of 100 g, where g is acceleration due 

to gravity. The models are built in an aluminum box of inside dimensions 327 

× 210 × 100 mm. Each model includes a retaining wall made from aluminum 

(195 mm high × 100 mm wide × 20 mm thick) as shown in Fig. 2.20. The 

rock face is modeled by a wooden block, which can, through a screw 

arrangement, be positioned at varying distances d from the wall. Face of the 

block is coated with the sand used as fill, so that the friction between the rock 

and the fill is equal to the angle of internal friction of the fill. Frydman and 

Keissar (1987) found that Spangler and Handy’s solution may be used for 

estimating lateral pressure for the no-movement (Ko) condition. 

 


