Effects of Adjacent Rock Face Inclination on Earth

Pressure At-Rest

Student : Fu-Jyun Wang Advisor : Dr. Yung-Show Fang Department of Civil Engineering National Chiao Tung University

Abstract

This paper studies the effects of adjacent inclined rock face on earth pressure at-rest. Dry Ottawa sand was used as backfill material. Horizontal earth pressures in loose ($D_r = 35\%$) and compacted ($D_r = 72\%$) soil mass were measured. The height of backfill is 1.5 m. The instrumented model retaining-wall at National Chiao Tung University was used to investigate the lateral earth pressure at different rock face inclination angles . To simulate an inclined hard rock face, an interface plate covered with Safety-Walk (anti-slip material) and its supporting system were designed and constructed. The interface inclination angles $= 0^{\circ}, 45^{\circ}, 60^{\circ}, 70^{\circ}, and 80^{\circ}$. Base on the test results for loose sand, the following conclusions can be drawn.

- 1. The distributions of lateral earth pressure are not linearly with depth for the interface inclined at $= 0^{\circ}, 45^{\circ}, 60^{\circ}, 70^{0}$ and 80° . The measured horizontal pressure h is lower than Jaky's solution, and h decreased with increasing angle.
- 2. Without the interface plate ($=0^{\circ}$), the coefficient $K_{o,h}$ is slightly less than Jaky solution. The point of application h/H of the at-rest earth pressure is located at about 0.33 H above the base of the wall. The coefficient $K_{o,h}$ decreases with the increase of the rock face inclination. The total soil thrust rises to higher locations with increasing interface inclination angle \cdot .
- 3. An empirical relationship between the coefficient $K_{o,h}$ and the interface inclination angle can be established: $K_{o,h,\alpha} = K_{o,h,Jaky} - 0.00462 \times \alpha$. This equation is

applicable for loose sand for $0^\circ \le \alpha \le 80^\circ$.

Base on the test results for dense sand, the following conclusions can be drawn.

- 1. After compaction, the lateral stress measured near the top of backfill is almost identical to passive earth pressure. Below the compaction-influenced zone for $= 0^{\circ}$, the lateral stresses converge to the earth pressure at-rest based on Jaky's equation.
- 2. The coefficient $K_{o,h}$ decreases with the increasing of the rock face inclination. The point of application h/H of the total thrust rises to a higher location with increasing interface angle.

