List of Figures

Number		Page
1.1	Bridge abutment near an inclined rock face	55
1.2	Basement walls near inclined rock faces	56
1.3	Hopper of the storage silo with granular material	57
1.4	Different interface inclinations	58
2.1	Development of in-situ stresses	59
2.2	Jaky's formulation of the relationship between K_o on OC and ϕ mobilized in OAB (after Mesri and Hayat, 1993)	60
2.3	Shaking table, soil box, and actuator (after Sherif et al., 1984)	61
2.4	Shaking table with movable retaining wall (after Sherif et al., 1984)	62
2.5	Locations of soil-pressure transducers (after Sherif et al., 1984)	63
2.6	Distribution of at-rest stresses for loose sand (after Sherif et al., 1984)	64
2.7	Distribution of at-rest stresses for medium-dense sand (after Sherif et al., 1984)	65
2.8	Distribution of at-rest stresses for dense sand (after Sherif et al., 1984)	66
2.9	Lock-in at-rest pressure due to soil densification (after Sherif et al., 1984)	67
2.10	Broms's simplified compaction pressure theory (after Broms, 1971)	68
2.11	Lateral pressure distribution due to compaction of fill (after Broms, 1971)	69

Page

2.12	Hand-calculation for estimating σ_h (after Peck and Mesri, 1987)	70
2.13	Distribution of vertical earth pressure measured in soil mass (after Chen, 2002)	71
2.14	Distribution of horizontal earth pressure after compaction (after Chen, 2002)	72
2.15	Stress path of a soil element under compaction (after Chen, 2002)	73
2.16	Horizontal lamina for derivation of Janssen's equations (redrawn after Safarian and Harris, 1985)	74
2.17	Lamina of stored material for derivation of the Reimbert's equations (after Reimbert and Reimbert, 1895)	75
2.18	Free-body diagram for ditch conduit (after Spangler and Handy, 1984)	76
2.19	Distribution of soil pressure against fascia walls to partial support from wall friction F (after Spangler and Handy, 1984)	77
2.20	Model retaining wall (after Frydman and Keissar, 1987)	78
3.1	NCTU non-yielding retaining wall	79
3.2	Location of soil pressure transducer mounted on the model wall (after Chen and Fang, 2002)	80
3.3	Soil pressure transducer	81
3.4	Data acquisition system	82
3.5	Acentric force as a function of number of acentric plate (Mikasa KJ75)	83
3.6	Side-view of square vibratory soil compactor	84
3.7	Square vibratory soil compactor	85

Number		Page
3.8	Strip vibratory soil compactor	86
3.9	 (a) Strip compactor and model wall (Front-view) (b) Strip compactor and model wall (Side-view) (c) Strip compaction plate (d) Acentric motor on top of compactor 	87
3.10	Compaction of backfill	89
3.11	Strip vibratory compactor and extended cushion	90
4.1	Steel interface plate and non-yielding wall	91
4.2	2100 mm × 1497 mm steel interface plate	92
4.3	Steel interface plate	93
4.4	Side-view of steel interface plate and non-yielding wall	94
4.5	Non-yielding wall and steel interface plate	95
4.6	Top-view of supporting frame and non-yielding wall	96
4.7	Base supporting frame	97
4.8	Top supporting beam	98
4.9	Interface inclination, $\alpha = 0^{\circ}$	99
4.10	Interface inclination, $\alpha = 45^{\circ}$	100
4.11	Interface inclination, $\alpha = 60^{\circ}$	101
4.12	Interface inclination, $\alpha = 70^{\circ}$	102

4.13	Interface inclination, $\alpha = 80^{\circ}$	103
5.1	Grain size distribution of Ottawa sand	104
5.2	Shear box of direct shear test device (after Wu, 1992)	105
5.3	Relationship between unit weight γ and internal friction angle (after Chang, 2000)	106
5.4	Soil hopper	107
5.5	Pluviation of the Ottawa sand into soil bin	108
5.6	Backfill compacted with square compactor in 5 lifts	109
5.7	Backfill compacted with strip compactor in 15 lifts	110
5.8	Backfill compacted with square compactor in 6 lanes	111
5.9	Backfill compacted with strip compactor in 15 lanes	112
5.10	Soil-density control cup	113
5.11	Soil-density cup	114
5.12	Soil density cups buried at the different elevations	115
5.13	Location of soil density cups at same elevation	116
5.14	Distribution of soil density for loose sand	117
5.15	Compaction of backfill with square compactor	118

5.16	Distribution of soil density compacted with square compactor	119
5.17	Compaction of backfill with strip compactor	120
5.18	Distribution of soil density compacted with strip compactor $(Lift = 0.5 m)$	121
5.19	Distribution of soil density compacted with strip compactor $(Lift = 0.1 m)$	122
5.20	Comparison of density distribution compacted with strip and square compactor	123
5.21	Relative density vs. depth relation for vibratory roller compaction (after D'Appolonia et al., 1969)	124
5.22	Lubrication layer hung on the side wall	125
5.23	Schematic diagram of sliding block test (after Fang et al., 2004)	126
5.24	Sliding block test apparatus (after Fang et al., 2004)	127
5.25	Viriation of interface angle with normal stress (after Fang et al., 2004)	128
5.26	Direct shear test arrangement to determinate wall friction angle	129
5.27	Relationship between unit γ and wall friction angle δ (after Ho, 1999)	130
5.28	Direct shear test arrangement to determine interface friction angle	131
5.29	Relationship between unit weight γ and steel interface plate friction angle δ_i	132
5.30	Relationship between unit weight γ and friction angles	133
6.1	Different interface inclinations	134

6.2	Distribution of lateral earth pressure at $\alpha = 0^{\circ}$ for loose sand	135
6.3	Distribution of lateral earth pressure at $\alpha = 45^{\circ}$ for loose sand	136
6.4	Distribution of lateral earth pressure at $\alpha = 60^{\circ}$ for loose sand	137
6.5	Distribution of lateral earth pressure at $\alpha = 70^{\circ}$ for loose sand	138
6.6	Distribution of lateral earth pressure at $\alpha = 80^{\circ}$ for loose sand	139
6.7	Distribution of lateral earth pressure at various α for loose sand	140
6.8	Variation of $K_{o,h}$ at various α for loose sand	141
6.9	Point of application of resultant force at various α for loose sand	142
7.1	Different interface inclinations	143
7.2	Distribution of lateral earth pressure at $\alpha = 0^{\circ}$ for sand compacted with a square compactor	144
7.3	Distribution of lateral earth pressure at $\alpha = 0^{\circ}$ for sand compacted with strip compactor	145
7.4	Comparison of lateral earth pressure at $\alpha = 0^{\circ}$ for sand compacted	146
7.5	Stress path of a soil element under compaction	147
7.6	Distribution of lateral earth pressure at $\alpha = 45^{\circ}$ for compacted sand	148
7.7	Distribution of lateral earth pressure at $\alpha = 60^{\circ}$ for compacted sand	149
7.8	Distribution of lateral earth pressure at $\alpha = 70^{\circ}$ for compacted sand	150

7.9	Distribution of lateral earth pressure at $\alpha = 80^{\circ}$ for compacted sand	151
7.10	Distribution of lateral earth pressure at various α for sand compacted with square compactor	152
7.11	Distribution of lateral earth pressure at various α for sand compacted with strip compactor	153
7.12	Variation of $K_{o,h}$ at various α	154
7.13	Horizontal lamina of Ottawa sand	155
7.14	Point of application of resultant force at various α	156
7.15	Overturning moments above the base, M _o at various α	157

Page