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Synthesis of Naphthalimide Derivative and Diketopyrrolopyrrole (DPP)-Based
[2]Rotaxane/Polyrotaxane as Novel Chemosensor Materials and a Controllable Hierarchical
Nano Self-Assembled Structure from Polyrotaxane
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The pivotal objective of this dissertation is to construct novel orthogonally H-bonded mechanically
interlocked molecular/polyrotaxane architectures with an asymmetric (Diketopyrrolopyrrole) stopper
and to study their molecular shuttling process under.solvent, anion, and acid-base stimuli control
along with their controllable  hierarchical nanostructure formations plugged with positive
cooperativity non-covalent interactions. In the introduction of this doctoral thesis we have introduced
brief early synthetic attempts to create-mechanically interlocked molecules (MIMs) such as rotaxanes
and catenanes as well astheir-polymeric counterparts. Moreover novel templating methodologies to
build MIMs and some.latest examples of MIMs based molecular shuttles under various stimuli
control were also introduced. Fundamentally, underplayed chemo sensing mechanisms in these
systems were presented. Meanwhile, we have developed a novel and facile fluorescent ratiometric
chemodosimeter for grisly toxic hydrazine via mild Ing-Manske phthalimide deprotection method in

this doctoral thesis as well.

In chapter two, a novel [2]rotaxane based on an orthogonal H-bonded motif and 3,6-di(thiophen-
yDpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) with controlled topicity was successfully
constructed, displaying excellent stimulated responses toward anion and solvent polarity. The
extensive 'H & *°F NMR titrations were lucidly revealed the binding site and the mode binding
interaction as well. The preorganized host selectively recognized F~ with high optical sensitivity and
reversibility via enhanced positive cooperativity and noncovalent interaction by evidence of a shorter
fluorescence lifetime. Therefore we developed a first prototype [2]rotaxane molecular shuttle for

selective recognition of F~ with high optical outputs.



In chapter three, four analogous polymers were systematically synthesized by copolymerization of
a 9-alkylidene-9H-fluorene  monomer with various monomers, which contained a
diketopyrrolopyrrole unit tethered with a dumbbell unit, a metalated [2]rotaxane, a demetalated
orthogonal H-bonded [2]rotaxane, and a simple alkyl chain, to furnish P1, P2, P3, and P4,
respectively, to investigate the supramolecular interactions of the mechanically interlocked rotaxane
pendants and conjugated polymer backbones. Prevailing *H NMR and UV-vis to NIR titration
profiles indicated that the novel polyrotaxane P3 showed a sensitive and reversible acid-base
molecular switch capability via supramolecular interactions in contrast to the other polymers (P1, P2,
and P3). Compared with the other polymers, P3 possessed a narrower bandgap, which was also
confirmed by the computational study. Prominently, the monitoring of a controllable nano-self-
assembly process of P3 was obtained by reversible acid-base molecular switch approaches. The
orthogonal H-bonded pendant [2]rotaxane unit and the steric demand of P3 judiciously allowed to
morph into a hierarchical nanostructure via interconvertible H-bonds, anion-z and z-z stackings, as

well as hydrophobic interactions.

In chapter four, A facile and sensitive fluorescent probe for hydrazine based on phthalimide
appended hydrophilic naphthalimide was successfully constructed, displaying excellent colorimetric
and ratiometric responses towards hydrazinevia Ing-Manske phthalimide deprotection conditions in
semi-aqueous buffer solution. The estimated detection limit was as lowas 4.2 nM (hydrazine content
= 1 ppb) far below than the threshhold limit value (TLV) of 10 ppb according to the U. S.
Environmental Protection Agency (EPA). Prevailing detection of hydrazine in living cells of the

current probe is demonstrated.

Thus in conclusion, a novel archetype DPP based highly fluorescent [2]rotaxane was developed.
The remarkable stimulated responses towards solvent polarity and fluoride ion were discussed.
Moreover, the extended efforts of this current design into polyrotaxane architectures along with their
acid-base controllable hierarchical nanostructure formations via reversible optical molecular switch
approaches coupled with various non-covalent interactions were discussed. Furthermore a novel
fluorescent ratiometric chemodosimeter for hydrazine based on Ing-Manske phthalimide

deprotection was presented in detail.
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Figure 2.10 Changes in photophysical properties of [2]rotaxane under solvent stimuli; (a) UV-vis

absorption of translational isomer 2-P (1 x 10° M in DCM) and translational isomer 2-R (1 x 10° M
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in DMSO); (b) fluorescence of translational isomer 2-P (in DCM) and translational isomer 2-R (in
DMSO). (hex =525 MM). . eeeeeeeee e ee e e e e e s s s s ee e eee e 77
Figure 2.11 (a), (b) UV-Vis and fluorescence spectral changes of 2-R (1 x 10°M in DMSO) upon
the addition of TBAF in DMSO (0-40 equiv), respectively. Inset pictures in (a) and (b) indicating
naked eye color changes as well as fluorescence changes under UV light (365 nm) upon the addition
of TBAF, respectively (Aex = 525 NM) . .eniini e 77
Figure 2.12 (a) Fluorescence spectral responses of 2-R were utilized in determining the
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Connors method; (c) stern-volmer plot-of-1/10 (Aem= 582 nm) vs [F ]; (d) histograms representing the
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UV light (365 nm); (c) naked eye color changes of 2-R and its precursors 1-C and 2-M with the
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addition of 30 equiv TBAF; (d) fluorescence changes of samples mentioned in (c); (e) as depicted in
the inset picture of 2-R fluorescence spectra , fluorescence changes of (A) 2-R free, (B) after
addition of TBAF to sample (A), and (C) is recovered sample with the addition of TFA to sample (B)
under UV light (365 nm); (f) fluorescence intensity changes of 2-R (1 x 10° M, DMSO) at 582 nm

under addition of alternate compounds (TBAF and TFA) for four cycles (hex = 525 nm).

Figure 2.15 Electrochemical titration studies of 2-P (3 mM) using 0.1M TBAPFg supporting
electrolyte at a scan rate of 0.1Vs™in CHCls: a).changes in electrochemical potential of 2-P with
TBAF (30 mM) upon progressive addition from 0-10.equiv; b) plot of potential change in mV
against flUOKIde BQUIV. ... 0 e e e i e 81
Figure 2.16 Time resolved fluorescence-spectral changes of [2]rotaxane 2-R before and after the
addition Of TBAF. ... i e it et O
Figure 2.17 Time resolved fluorescence spectral responses for 1-C and 2-M before and after
addition of TBAF ... . it e e i e i 83
Figure 3.1 Acid-base driven reversible molecular shuttling process in a conjugated side-chain
polyrotaxane having an orthogonal topological cavity and its  controllable hierarchical nanostructure
formation mechanism along with high contrast optical functions......................cooiiiiin.. 87
Figure 3.2 Gel permeation chromatographs of polymers P4 and P3..........c.cccoeiiiiiicie e, 98
Figure 3.3 (a) *H NMR (600 MHz, CDCls, 298 K) stock plot of monomer 2-b and polymer P3 and
(b) 2D-DOSY (600 MHz, CDCl3, 298 K) NMR spectra of P3 at a concentration of 12 mg/ml.
Diffusion coefficient of MIPA, axle part, and free monomer were marked with circles. The

assignments correspond to the lette showninScheme 1........ccoooiiiiiiiiiiiiieens 100

XIX
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Figure 3.25 (a) and (b) AFM cross-sectional analysis of polymers P2 and P3. Marked
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Figure 4.4 (a) Fluorescence responses of probe HZ (5 uM) with various primary amines (25 uM) in
a mixture of PBS buffer (PBS, pH 7.2, 10 mM) and EtOH (1:9, v/v) solution. Bars represent the
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Figure 4.8 (a) and (b) Semi-empirical PM3 method optimized HOMO and LUMO frontier molecular
orbital distributions of probe HZ, respectively (c) energy-minimized geometry of probe HZ.
Dihedral angle between phthalimide and naphthalimide plane was denoted which effectively blocked
the 1ICT-process. Mulliken charges of phthalimide and naphthalimide carbonyl carbons were denoted
in picture (c). Color coding of atoms blue = N, red = O, grey = C and white = H,
=R 0LTo )V Y 145
Figure 4.9 (a) and (b) Semi-empirical PM3 method optimized HOMO and LUMO frontier molecular
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uM) in a mixture of PBS buffer (PBS, pH 7.2,°10 mM) and EtOH (1:9, v/v) solution. The
fluorescent intensity data were collected after certain time intervals as depicted in the figure (a). (b)
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buffer (pH 7.2, 10 mM) and EtOH (1:9, v/v) solution. Bars represent the fluorescence intensity ratio
in the presence and absence of various metal ions (Na*, Ag*, Ca**, Zn**, Cu®*, Ni*, Cd**, Hg*",
Pb*, Ag?*, Fe** and AI*"). Black bar represent the addition of metal ions (50 uM) to probe HZ (5
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Figure 4. 20 Fluorescence images of Hep G2 cells incubated with 10 uM probe HZ for 15 min (b)
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