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ABSTRACT 

Process capability indices such as  C,, k, and Cpk, have been widely used in 
manufacturing industry to provide numerical measures on process potential and 
performance. While C, measures overall process variation, k measures the degree 
of process departure. In this paper, we consider the index C, and a transformation 
of k defined as C, = 1 - k which measures the degree of process centering. W e  
refer to C, as the process precision index, and C, as the process accuracy index. 
W e  consider the estimators of C, and Ca, and investigate their statistical 
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986 PEARN, LIN, AND CHEN 

properties. For C,, we obtain the UMVUE and the MLE. We show that this 
UMVUE is consistent, and asymptotically efficient. For C,, we investigate its 
natural estimator. W e  obtain the first two moments of this estimator, and show 
that the natural estimator is the MLE, which is asymptotically unbiased and 
asymptotically efficient. We also propose an efficient test based on the UMVUE 
of C,. W e  show that the proposed test is the UMP test. 

1. INTRODUCTION 

Process capability indices, which establish the relationships between the 
actual process performance and the manufacturing specifications (including the 
target value and specification limits), have been the focus of recent research in 
quality assurance and process capability (quality) analysis. Those capability 
indices, quantifying process potential and performance, are important for any 
successful quality improvement activities and quality program implementation. 
Several indices widely used in manufacturing industry providing numerical 
measures on whether a process meets the preset quality requirement, include C,, 
k, and Cpk which are defined as the following (see Kane (1986)): 

c, = YSL - LSL 
60  ' 

U S L -  p p - LSL C* = min (--- -- I 3 0  ' 30  ' 

where USL and LSL are the upper and the lower specificat~on limits preset by the 
process engineers or product designers, p is the process mean, u is the process 
standard deviation, m is the mid-point between the upper and the lower 
specification limits (m = (USL + LSL)/2), and d is half length of the specification 
interval (d = (USL - LSL)/2). We have assumed the target value T = m (which is 
quite common in practical situarions) for simplicity of our discussions. 

The  index C, was designed to measure the magnitude of the overall process 
variation. For processes with two-sided specification limits, the percentage of 
nonconforming items (%NC) can he calculated as I - F(USL) + F(LSL), where 
F(.) is the cumulative distribution function of the process characteristic X. On the 
assumption of normality, %NC can he expressed as: 

USL - p LSL - p 
%NC= I - o ( ~ ~ + o ( ~ ) ,  
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PROCESS ACCURACY AND PRECISION INDICES 987 

where a( . )  is the cumulative function of the standard normal distribution. If the 
process is perfectly centered, then %NC can be expressed alternatively as %NC = 
2 - 20(3q) .  For example, C, = 1.00 corresponds to %NC = 2700 ppm, and C, = 

1.33 corresponds to &NC = 63 ppm. Thus, the index C, provides an exact 
measure of the actual process yield. Since C, measures the magnitude of process 
variation. C, may be viewed as aprocess precision index. 

While the precision index C, measures the magnitude of process variation, 
the index k measures the departure of process mean, p, from the center-point m. 
Therefore, the transformation of k defined as C, = 1 - k measures the degree of 
process centering (the ability to cluster around the center), which can be regarded 
as a process accuracy index. For example, C, = 1 indicates that the process is 
perfectly centered (p = m), C, > 1/ 2 indicates that p is within half of the 
specification interval, and C, = 0 indicates that p is on the specification limits (c( = 
USL, or p = LSL). On the other hand. if C, c 0 then it indicates that p falls 
outside the specification limits (p > USL, or p < LSL). Obviously, the process is 
severely off-center and it needs an immediate troubleshooting. 

2. ESTIMATION OF C ,  

To estimate the precision index C,, we consider the natural estimator ?, 
defined as the following, where S = [EL1 (Xi - Z)'/(n - 1)]In is the conventional 
estimator of the process standard deviation o, which may be obtained from a 
stable process. 

The natural estimator ?, can be al[ernatively written as: 

On the assumption of normality, the statistic (n - 1)S2/& is distributed as Xi . I ,  a 
chi-square with n - 1 degrees of freedom. Therefore, the probability density 
function of ?, can be expressed as (Chou and Owen (1989)): 

for x > 0. The r-th moment of c,, therefore can be calculated as the following: 
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988 PEARN. LIN.  AND CHEN 

and the first two moments as well as the variance nay  be obtained as (see also 

Chou and Owen (1989). and Pearn, Kotz and Johnson (1992)): 

It can be shown that the coefficient of ~ ( e , ) ,  [(n - 1)/2]lR T[(n - 2)/2]/r[(n 
- 1)/2] > 1 for all n. For n 2 15, this coefficient can be accurately approximated 
by (4n - 4)/(4n - 7). Therefore, the natural estimator e, is biased, which over- 
estimates the actual value of C,. Table 1 displays the values of E(G)  under the 
condition C, = 1 for various sample sizes n. For the percentage bias to be less 
than one percent ( I E ( ~ , )  - CpI/Cp 10.01). it requires the sample size n > 80. 

- 
we may obtain an unbiased estimator C, = b,&. That is, ~ ( e , )  = C,. Since br < 
1, then the variance of e, is smaller than that of the natural estimator ep. That is, 
var(?,) < var(Ep). In the following, we investigate the statistical properties of e,. 
We show that e, is the UMVUE of C,, which is consistent and asymptotically 
efficient. 

An estimator in of e is said to be consistent if for all e > 0, - 01 > E) + 0 
A 

as n -+ m for all 8. A sufficient condition for the consistency is that E(e,) + e and 

~ a r ( i , )  -+ 0. Under regular conditions, the estimator 8, is said to be 
A A ,. 

asymptotically efficient if 8, is asymptotically normal, nin [en - E(0J + 0, and {n 

~ a r [ i ,  - E(;j,)]) converges to the Cramer-Rao Bound. 
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PROCESS ACCURACY AND PRECISlON INDICES 

Table 1. Valucs of E(?,) corresponding 
to C, = 1 for various sample sizes n. 

Theorem 1. If the process characteristic follows normal distribution, then 

(a) is the UMVUE of C,. 
(b) is consistent. 
(c) nIn (?, - C,) converges to N(0, [CPl2/2) in distribution. 
(d) e, is asymptotically efficient. 

Proof: (a) We first note that the statistic R, S2) is sufficient and complete 
for (p, oZ). Since E(?,) = C,, and e, is a function of O(. S2) only, then 
by Lehmann-Scheffe' Theorem (Arnold (1990)) e, is the UMVUE of C,. 

(b) For all E > 0, p(i?p - C,I > E) < E(?, - Cp)?/@. NOW, E(?, - Cp)2 = 
~ a r ( G )  = E(?,)z - C,Z. By Stirling's formula, we can show that E(E,)~ 
converges to C,?. Hence, E(?, - Cp)2 converges to zero. Therefore, ?, 
converges to C, in probability and ?, must be consistent. 

(c) If the process characteristic is normally distributed, then it is clear that 
the statistic nln(S2 - 02) converges to N(0, 204) in distribution. We apply 
Cramer-8 Theorem (Arnold (1990)) with g(t) defined as g(t) = d/(3t1n). 
Since gt(t) = - d/(6t3"), and [g'(o*)]2 = (CP)2/(4o4), then n'" [g(S2) - g(a*)] 
= nln [d/(3S) - d/(30)] = nl"(& - C,) converges to N(0, 204[g'(02)]?), or 
N(0, [Cp]2/2) in distribution. By (b) ?, converges to C, in probability, 
then by Slutzky's Theorcm (A~mold (1990)) nln(ep - ep) converges to 
N(0, [Cp]2/2), and so nll?(ep - C,) converges to N(0. [CPl2/2) in distribution. 
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994 PEARN, LIN, AND CHEN 

If the knowledge on whether p(p 2 m) = 1, or 0 is available, then we can - 
consider the estimator C, = 1 - [(X - m) sgn(p - m)]/d, where sgn(p - m) = 1 if p - 
m 2 0, and sgn(p - m) = -1 if p - m < 0. Thus, c, = 1 - (X - m)/d if p 2 m, and e, 
= 1 - (m - X)/d if p < m. We can show that the estimator Fa is the MLE, and the 
UMVUE of C,. We can also show that the estimator c, is consistent, and 
efficient. 

Theorem 3. If the process characteristic follows normal distribution, then 

(a) E, is the MLE of C,. 
(b) c, is the UMVUE of C,. 
(c) Z', is consistent. 
(d) nl" (c, - C,) converges to N(0, 1 /[3Cp]2) in distribution. 

Proof: (a) We first note that the statistic (?, [(n - l ) /n] S2) is the MLE 
of (F, oZ). By the invariance property of the MLE, is the MLE of k, and 
Fa is the MLE of C,. 

(b) From Theorem 2(d), the Cramer-Rao bound = 1/[9n Cp2]. Since 
e, is distributed as  N(C,, 1/[9nCpZ]), then ?, is efficient for C,, and 
is the UMVUE of C,. 

(c) For all E > 0, p(lea - CaI > E) < E(E, - Ca)2/~2. Now, E(?, - Ca)2 = 
~ a r ( P , )  = l/[9nCp2] converges to zero, and so Z', must be consistent. 

(d) From (c), c, converges to C, in probability. From Theorem 2(c), 
niR (Fa - C,) converges to N(O, 1 /[3Cp]2) in distribution. By Slutzky's 
Theorem (Arnold (1990)). niR (c,  - C,) converges to N(0, 1 /[3CPl2) 
in distribution.. 

In fact, since and S' are mutually independent, thcn ?, and c, are also 
mutually independent. Therefore, since Z = 3 f i  cC,(ea - c,) is distributed as N(0, 
1) and W = (n - 1)(6,~,~/[?,]2 is distributed as xi-I, then 3ni~?,(C, - C,)/bt = 
Z/[W/(n-l)]lR is distributed as r,.,, a t distribution with n - 1 degrees of freedom. 
Therefore, the a-level confidence interval for C, can be established as: 

where tn.l,, is the upper a-th quantile of the r n . ~  distribution. The length, l', of 

the confidence interval, therefore is 
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PROCESS ACCURACY AND PRECISION INDICES 

Table 4. E(1' ) for C, with C, = 1 and a = 0.05 

Sample Size E(1') Sample Size E(1') 

The expected value E(I' ) and the variance Vat(l' ) of the length of the confidence 
interval I' , can be found as: 

for given sample size n. Table 4 displays the expected lengths, E(1' ), of the a- 
level confidence intervals for the accuracy index C, with Cp = 1 and a = 0.05 for 
various sample sizes n. 

4. TESTS FOR PROCESS CAPABILITY 

To judge whether a given process meets the preset capability requirement 
and runs under the desired quality condition. We can consider the following 
statistical testing hypothesis for C,: Ho: C, S C, and H I :  C, > C. Process fails to 
meet the capability (quality) requirement i f  C, 5 C, and meets the capability 

requirement if C, > C. We define the test @"(x) as: @*(x) = 1 if e, > co , and $*(x) 
= 0 otherwise. Thus, the test $* rejects the null hypothesis Ho (C, < C ) if 2, > Q, 
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PEARN. L I N .  A N D  CHEN 

Tahle 5. Critical valucs co for C = 1.00 with 
n = 10(10)100, and a = 0.01,0.025,0.05. 

-----..----------.--...--------------.---------------.----- 

Sample size 0.01 0.025 0.05 

with type I error a(co) = a, the chance of incorrectly judging an incapable process 
(C, 5 C) as capable (C, > C). The critical value, CO, can be determined as: 

Hence, we have 

whcre xA-1, a is the lower a-th quantile of xi., distribution, or, 

Therefore, if  ?, > CO, then $*(x)  = 1 and we reject the null hypothesis Ho and 
conclude that the process meets the capahility requirement (C, > C). Otherwise, 
we can not conclude that the process meets the capability requirement. Tables 5 
displays the critical values co for C = 1.00 with sample sizes n = 10(10)100, and a- 
risk = 0.01.0.025, 0.05 (the chance of incorrectly concluding a process with C, I 
C as one with C ,  > C). 
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PROCESS ACCURACY AND PRECISION INDICES 95'7 

Theorem 4. For the testing hypothesis Ho: C, I C and HI: C, > C, 
the test defined as $*(x) = 1 if e, > CU, and $*(x) = 0 otherwise, is 
the UMP test of level a, where c, is determined by E,[~*(x)] = a.. 

Proof: For the test, the power function is: 

FOP a(co) = a ,  co = brm where 1-0 satisfies 
G' 

Since for C; > C, > 0, B(x'* C; ) > f d x v  if and only if > x > 0, 
f~p(x', c p  ) f6(% cp ) 

then { f ~ ~  (x, C, ) I Cp > 0 )  has MLR (monotone likelihood ratio) property 
in c,. Therefore, the test 4' must be the UMP test. 

5. CONCLUSIONS 

Process capability indices such as C,, k, and Cpk, have been widely used in 
manufacturing industry to provide numerical measures on process potential and 
performance. The index C, measures the overall process variation, and the index 
k measures the degree of process departure. In this paper, we considered C, and a 
transformation of k defined as C, = 1 - k. We referred to C, as the process 
precision index, and C, as the process accuracy index which measures the degree 
of process centering. 

We considered the estimators of C, and C,, and investigated their statistical 
properties. For C,, we obtained the UMVUE and the MLE. We showed that this 
UMVUE is consistcnt, and asymptotically efficient. For C,, we investigated its 
natural estimator. We showed that this natural estimator is the MLE, which is 
asymptotically unbiased and asymptotically efficient. In addition, we proposed an 
efficient test based on the UMVUE of C,. Using this test, the practitioners can 
judge whether their processes meet the capability requirement preset in  the 
factory. We showed that the proposed test is in fact the UMP test. 
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998 PEARN, LIN,  A N D  CHEN 

Appendix 1 

Theorem 1: The probability density function of ?, can he expressed as: 

Proof: For - - < x l 1, the probability density function f(x) is 

d A  d A .. ,. 
f(x)=-p(C,Ix)=-p(1 - k I x ) = d - p ( k 2  1 - x ) = d - ( 1  - p ( k I  1 - x ) }  

dx  dx dx dx 

= g(1 - x), where g(x) is the probability density function ofc. 

- 
Now. the statistic Y =- is distributed as N (y  . [9n ( ~ , ) 2 ]  ' 1  . 

d 
a normal distribution with mean py = (p - myd and variance = [9n (cPf2]". 

Since = Ill = has a folded normal distribution, then the probability 

density function of is: 

= 6 C, cosh ( 9  n [C,]' k y ) exp I 
Therefore, the probability density function f(x) is 

f ( x ) = 6 ~ , ~ c o s h ( 9 n [ ~ ' k ( l  x - X I )  exp[ - 9 n ( ~ , f [ ( l  - x f + k 2 ]  
2 
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PROCESS ACCURACY AND PRECISION INDICES 

Appendix 2 

Theorem 2: The first two moments of ea are: 

Proof: For simplicity of the derivation of the exact formulae for the moments, we 
assume that p 2 m. For the other case, p < m, the derivation and the result will be the 
same. From Theorem 1, the probability density function of is 

Therefore. 

E [ C I = ~ O ~  7E exp 

1 exp - (c,)Y] + t [ I  - 2 a (- 3 f i  k cP)] =G [ 2  

1 = 9n(Cp)?(1 - Ca)2 + 1 - 9 n ( c p -  Cpr)'+ 1 
= ( 1  -cay+---- - 

9 I, G)z 9 n (c,)? 9 n (CPY 
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PEARN, LIN. A N D  CHEN 

Then, we may obtain E[(C,) and E[(c,)?] as: 
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