5 17 A8 5 K2R
EFREBR
Bt

& #

R

EE L AR b DR T R
%35 5 Web PRas(ANS)

Applying Cloud Computing to Systems Prone to Pressing Demand:
Using Amazon Web Services (AWS)

B P TN

R TR R®

hERE-HB-FN\A

FH ZRER b op s 2 MRS F R

* 37 5 5 Web PRF3(AWS)
Applying Cloud Computing to Systems Prone to Pressing Demand:
Using Amazon Web Services (AWS)

A IR3 N Student: Le Cao Con
dh R TR R Advisor: Prof. Bao-Shuh Paul Lin
B = 2 <7
ool A TR 7
AL &=

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
August 2013

Hsinchu, Taiwan, Republic of China

Ed ZTHEEE A RARE S DT R
* 17 5 5 Web PRA%(AWS)
GEERERE L TR R R

Bl 2 8
TAAFEE I YT LR

TR - TR RIS ORI R - TR 1
PR R BT » BRI 2 SRR I 0555 -
75HMEF 5, 40 Dropbox SR SRR ERAS ». L P DUR L1
A%

FEHLEERE - B TR R E AR R A E YA > IS
TR (EBUR AR R - EEE BRI AT R
(Bl - FEATKHYBEIR B) BAEIRATE o » R H BRI B 29 &
BRI RSARAKRE -

EWIR RN EBEER - RS E s SR IR
Eelfivas EAVHERSIERE - ELJTER $H T BE IR AR AL B P aRe B A SRRy
ARt & 7 S 2 B2 A [F] G —REARER £ 4 i g At (el ik s E A EUE
FHEIRTG » S8h—{H SR G 1 & RSB R A ET 2 N R T LIEM

HEFA AL AR R ER - MR R E B - R R M RIE R 2
GUESE > AUt GiE R H & LR s —5Hy -

ST DL B AR FIHY ARG T & A (A S B O H RE # i
SR RIE VIR K Z 24t 2

S Web R (AWS)E—F EnmE BALER - e ftar2ik
B EE ARG - Bl G pETl iy B 2 — - fEIRAYTSE
B4 — (5 B RGPS AR A M A 2 MR B (1 S 4 5 =i
% B NGRS EIE W S8 it B E MHOCRAA] o iR BOER A
i 1] AR (B A BRI EE S Ei s Web i - =B &
#oP s > =5kt Web fmlfiREs - Mo &R EE RS - Web
() e HY B & S B DN A S (58 P S Y B [e P 2 2] i 5
4R o EEHFIA IR SR R 1Gbps » ZVREBHTH Y 23878 fie—{ELE
B Y ZSiRE B KRB PAEE A SRE A &RBE U = =15 © Il ¥R 2 &t
AEE - BRI EACEE 600 T ©

ERGEIETEE » BA - (#&S e LI RILZ A5 il IE v 115
DUAISRA BRI 5 o

Applying Cloud Computing to Systems Prone to Pressing Demand:
Using Amazon Web Services (AWS)

Student: Le Cao Con Advisors: Prof. Bao-Shuh Paul Lin

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Cloud computing has been a commonplace and widely used in both
technological and business world. The number of cloud providers has been
constantly growing and so has the set of options for end users. There have
also been some outstanding applications such as the-invention of Dropbox, a

file hosting service that offers cloud storage and file'synchronization.

With a great deal of knowledge on cloud computing from some
courses that | took in the master program and as a keen observer, | realized
that such systems as the course selection system (for example the one that
operates at NCTU) or the railway ticket system back in my country, Vietnam,

do not work well sometimes.

There are times that websites are overloaded to a point when their
services are degraded or disrupted entirely. This web traffic overload happens
when there is a large surge in traffic to a particular website causing a dramatic
increase in server load and putting severe strain on the network links leading

to the server. For example many students access the course selection system
iii

at the time the school lets the students select their courses on it. Also, many
people want to buy railway tickets on railway ticket system at the time closing

to New Year vacation when they want to go home.

For those systems, is there any practical way to improve them with low

cost but high degree of effectiveness?

Amazon Web Services (AWS), a cloud computing provider, provides a
number of services with low cost and rapid elasticity. Therefore, this should
be considered as a choice for us. In this research, | am_going to conduct
several experiments with an aim to migrate a sample system like a course
selection. system to AWS and evaluate the effects of the new system.
Furthermore, | expect to propose a-model for the new system on the cloud
which includes one domain-name system web services, three load balancers,
three to eighteen web servers, and one database server. The number of web
servers might be changed depending on how many users access the new
system at the same time. It’s assumed that the original system has the
capacity bandwidth of 1Gbps. As well as that if we compare the new system
with the original one, the capacity of the new system-is approximately 3 times
as big as that of the original system. Furthermore, the cost of new system is

relatively low estimated at $600 for every semester.

After doing this research; | have reached the conclusion that the

overload system may be improved by applying cloud computing technology.

ACKNOWLEDGEMENTS

In my exploring of knowledge and in the course of completing my
thesis, many individuals have assisted me. | would like to acknowledge
wholeheartedly their assistance, cooperation and encouragement which all
contributed in making this study possible. Without them, this study would not

have been completed.

First, my appreciation goes to my advisor, Prof. Bao-Shuh Paul Lin. He
has guided me through the completion of the master program and through this
thesis. He discussed with-me patiently, carefully and challenged me to think
critically. - He has ..constantly ‘provided me with great sympathy,
encouragement and support and most importantly trusted my capacity as a
researcher. My sincere gratitude also goes to Dr. Li-Ping Tung who eagerly
exchanged her ideas with mine and did not hesitate to share her resources. It
is an honor for a student like me to have them as advisors during my research

and role models for my forthcoming profession.

I also wish to thank other teachers and staff from the Institute of
Computer- Science and Engineering, NCTU, my friends; my classmates and
my roommates back in the dormitory for creating an academic and friendly
environment for me. Without their expectations, patience and cooperation, |

may have struggled with this project.

Finally, a million thanks go to my families, in particular my wife and
my adorable daughter who always take care of me and support me with
understanding and kindness. Their love has given me enormous strength to
overcome all the difficulties that a student has to face up with while studying

abroad. As my appreciation, my heart goes with them forever.

TABLE OF CONTENTS

B ettt e ettt e et e et e st e e e — e e e — e e e e e et —e e — et ettt et —eer—ae e —ee s bee et e e e et eaaeearreeias [
ABSTRACT e ii
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS ..ot vi
LIST OF FIGURES. ..ottt ittt e ki see e niee e iae e anne e viil
R 101 0o [FTox oo O e B P TUPR TR 1
1.1 MOUVATION ... sissssses s sesmsesns e e nsdannbe s eeenenaiiesnnsesssiiheeeseeesennsnnens 1
1.2 OsiFe. Rl Fr I A ... 1
1.3 Research CONTFIDULIONo ie et aiit e cass iarieanb e evanseannnre e seenns 2
1.4 ThesiS OrganiZaAtIONeeueiueeiue aiiunneeessiannesneanesseasneseeebeesesibiiiheneenns 2

2 Theoretical Background...........ccoe ottt nn e 3
2.1 Cloud COMPULING ...cttuer e aitueanneesuneanneannessnesssbeseeesseessueesessbaeiasessnnssseeees 3
2.1.1 " Essential Characteristics of Cloud Computingccccisueeveenen. 4
2.1.2 - Service mOdels e e 5
2.1.3 Cloud Deployment Modelsc..ouiincaiinnintie e, 6

2.2 Amazon Web ServiCes (AWS)ccciiiiniiimeiimiieeseeieesiee e sineaseeenas 7
221 WHY AWS ..o e e e et 7
2.2.2 SBIVICES ..ootiiiie ittt sttt sttt sttt bbbttt nreas 8

3 ATCHITECTUIE ..o e 14
3.1 Website Overload REaSONS.........cccccveiiieiiiiiriii e 14
3.2 Website Overload SOIULIONSccoviieieiieiisie e 17

Vi

3.2.1 Expanded the Original System...........cccccvviviiiiiniieiiene e, 17

3.2.2 Applying AWS to the Original Systemccccccevveviieiinnennenn, 20
3.3 D0oING MIQratiOnS......c.ccieeiieiiieiiesiie et seee e 22
3.3.1 Database MIgrationccecveveeiieiiiesieesee e see e 24
3.3.2 Web server Migrationccccoveiieiiiiie e 26
3.4 SECUIItY PrODIBMIS it ettt bee et oot e e et e e eeeesreennee e 28
O 1101 0] LT =T] - Ui [0 o e S RSSO 31
4.1 EXPEFIMENTSoouviiiieiiiesiieiieeieesieesieesieesnifin e e eeedbaeabbeanee e st e seeesneesneeas 31
4.1:1 - Choice software for SIMUIAtIoNcccoovieveieeniiieaiiines e, 32
4.1.2 © Testlink speed LOOMDBPScc.coiviiiiiiiie et e sia e 33
4.1.3 Test liNk SPeed 1GhPS....ccuoiuviiiiriiaiiisiieiiesie sttt e e 34
4.1.4 Test with Amazon WeD ServiCes...........c.ccoocvibeiieneiitinneiinannnn, 35
4.2 Monitoring SYSteM SCAIING cie.veeiueeiiee e iie s eiee e b seaa s iR 38
421 REQUITEIMENTS it eteeiueeiuuesnraaseresiansseeavnaesseeasassseesseessbansbasiunssseeseens 38
429 BCULICUHEE . 4B N .. Y 39
423 GRCEIIM.ccooovvevreincnniienienieee el W 42

4.3 Cost of using Amazon Web Services for Course Selection System .. 43

5 Conclusion and FUtUre Wrks..........cc.ioieiiiniienese e 45
6 REFERENCES. ... s 46
AppendixX 1: AWS SCAlINGccoviiiiiiieiiesee et 48
Appendix 2: Database Migration...........cccocevviiieie e 51
Appendix 3: Web MIgration...........ccceeiieiieiie i 54

Vil

LIST OF FIGURES

Figure 2.1:
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18

Figure 4.1:

Cloud computing logical diagram (Wikipedia.org)cccccveuue.n. 3
Cloud computing types (WiKipedia.org)cccccevvveveereesvesneannnn, 6
General web farm architecture [15].......ccccoooveviiiiiiiciiececceen, 14
Database Server oVerload..........cco..iorvoiieeneeiie i 15
Web Servers OVerload..............ccooo i vesvesivnsine e seenee e 16
Load Balancer oVerload....c.........ooeeeiaiiineeeeeiibin s s isie e 16
Database Server-overload SOIUtIONcocievvvveiiiieiniieeee e 17
Web Servers.overload solution..............cco. i vee it eitennes e 18
Load Balancer overload solution.........ccccooveieeiieeiineciise cesnssssienne 19
Extended original system with the AWSccccccoiniieeinnee, 20
A normal WebSIte SYSTEM....c.oiuiiiiiiiiatie e e 21
:New system on AWS model............ccoooe et 21
- Equivalent of new systemmodel..............co. i 22
' Migration from On-Premise to Off-Premise.......cc...ccoevvvvvennnnn, 23
: modeling database MIgration.......ccciv o iieeiee e 24
: Modeling web server migrationccccoeevevivnieennesee s 26
P AWS EC2 KEY Pl ..c.oeiciiciec e 28
: AWS EC2 SECUNILY GrOUPS ..ccveeveeiiieeieesiee e siie e esieesiessiee s 29
. DB SECUNILY GIOUPS ...vvvevveeieeiieesiiesieeteeste e tee e sae e e snne e 30
: AWS security credentialScoceovvevieiieiiie i 30
SIMUulation WEDPAgEc.eevieiiiee e 31

Figure 4.2: Jmeter GUIoovi it 32

Figure 4.3: Simulation 200Mbps TINKc.cccveiieiiiii e 33
Figure 4.4: Simulation 1Gbps lINK........cccooviiiiiii 34
Figure 4.5: AWS experiment arChiteCtureccccevveviveereeniesee e 35

Figure 4.6: 02 AWS EC2 m1.large instances — 02 Elastic Load Balancers... 35
Figure 4.7: 04 AWS EC2 m1.large instances — 02 Elastic Load Balancers... 36
Figure 4.8: 06 AWS EC2 m1l.large instances — 02 Elastic Load Balancers ... 36
Figure 4.9: 06 AWS EC2 m1.large instances — 03 Elastic Load Balancers... 37
Figure 4.10: 12 AWS EC2 ml.large instances — 03 Elastic Load Balancers. 37

Figure 4.11: Running 18 AWS EC2 large instances and RDB dh.m2.2xlarge

... 38
Figure 4.12: Running 18 AWS EC2 large instances and RDB db.m2.4xlarge
... 38
Figure 4.13: Replace NaMESEIVET ..ciiuuiiieiiiiieeieeieiinie e eie e s an e anna st 39
FIQUIe 4.14: AWS SCAIE-IN cituuiiiieiieiieiire e steesaeeasesaneeanneeneeeeesne sanadins e enes 40
Figure 4.15: AWS SCale-0UL............cooii et e 41
Figure 4.16: AWS SCAIINGccovveiiieiieiieiie e aiie e i sba e 42
Figure 4.17: References Of SErVEr PriCiNg ... eieeiiieeenieenieesieesinesneeenns 44

Chapter 1:

Introduction

1.1 Motivation
Recently while selecting courses, | have always felt that NCTU’s

system do not respond.very well. One reason might be that many students
access the servers at the same time, which possibly makes the servers
overload. In.general, the course selection system just requires more power at
the time the students choose their courses at the beginning and the end of

every semester.

Another system is railway ticket selling. system. It seems appears
difficult for passengers to order tickets when the time Is close to vacations,
especially in New Year. A lot of people want to travel or go home, so the
amount of access to train ticket system is suddenly increased. Sometimes such
escalating demand shuts the system down completely, and then no.one can
order tickets. In my country, actually, numerous workers working in the South
but want to-head back by train to the North where their families and homes
are before the Traditional New Year vacation, and then come back to work
after the holiday .is finished. However, they cannot order train tickets via the
system and, as a result, they have to buy expensive tickets by some other

ways such as through middlemen in the black market.

1.2 Objective
As a matter of fact, cloud computing is very popular nowadays. One of

the features of cloud computing is that it is elastic. This means we can change
any resource appropriately and quickly on demand. It is very easy to scale-in

or scale-out while the cost is based on actual usage. Therefore, it occurs to me

1

that we can apply cloud computing to our course selection system or the
system of selling railway tickets. When we need our system to be more
powerful, we just scale-out our system. Otherwise, we scale-in or use the
original system only. In that way a lot of money can be saved to buy new

devices and maintain them. The basis is pay as we go.

My research purpose is to construct a tool which could automatically
attach some virtual Web servers that are run on. AWS, migrate Database
server to Amazon cloud and scale it up or-down if needed when the system
responds too- slowly. That enables the managers to manage and scale the
system as they want. After that, synchronize the database back with the

original database when we do not need to use AWS.

1.3 Research Contribution
This research hopes to identify the causes of and work towards

solutions to the problem of congestion in websites and system with suddenly

and rapidly increased access at given time.

1.4 Thesis Organization
The thesis is organized as follows. Chapter 2 presents an overview of

Cloud Computing and Amazon Web Services. Chapter 3 illustrates why a
website can be overloaded and proposes some solutions. Chapter 4 presents
experiments with web traffic load. Finally; Chapter 5 states the conclusion

and envisages future work.

Chapter 2:

Theoretical Background

2.1 Cloud Computing
Cloud computing is a recent computing concept that describe a lot of

computers which are connected together through. communication network.
There exist various definitions of cloud computing. For.example, as is put by
National Institute of Standards and Technology Definition of Cloud
Computing, “Cloud computing is a model for enabling ubiguitous, convenient,
on-demand network access-to a shared. pool of configurable computing
resources (e.g., networks,.servers, storage, applications; and services) that can
be rapidly provisioned and released with minimal management effort or
service provider interaction” [6]. Also, according to webopedia.com, a
famous online computer dictionary for computer and “internet, “Cloud
computing is a type “of computing that relies on sharing computing
resources rather than having local servers or personal devicesto handle

applications.” [10]

- g |
v P =
Application - —
p— ™
! \ st kit
== - I
Platform /
] — ™,
[-
” Queue —3 |
Rurtime e
Infrastructure /
a . '
Sl
a & B
A ock Storage f— Tablets
N S

Cloud Computing

Figure 2.1: Cloud computing logical diagram (Wikipedia.org)

2.1.1 Essential Characteristics of Cloud Computing
Cloud computing has the following characteristics: [5] [6]:
v On-demand self-service

Consumer can use resources as much as they want. They can provision
any mount of computers, network storages at anytime and anywhere without

requiring human interaction.

v" Broad network access

Consumer can use any kind of devices such as desktops, laptops,
mobile phones, handhelds, etc. to access cloud computing services as long as

they can access the Internet.

v Resource pooling

Computing resources are provided like a pool where coansumers can use
many kinds of resources such as virtual machine, storage, bandwidth, etc.
However, they do not know where the resources exactly are; they just know
the high-level of abstraction (ex: country, region). In other words, the location

of resources is invisible to end users.
v' Rapid elasticity
Consumers can scale their application in or out very quick as the
resources seem unlimited and can satisfy any requirement.

v" Measured service

Cloud systems provide metering capability that helps consumers
monitor their used resources such as CPU usage, data storage, network
bandwidth, etc.)

2.1.2 Service models

Cloud computing services can be classified into several kinds of
services such as Infrastructure as a Service (laaS), Platform as a Service
(PaaS), Software as a Service (SaaS), Network as a Services (NaaS), Database

as a Service (DaaS), and XaaS - anything as a service.

v Infrastructure as a service (laaS)

In this kind.of service, cloud providers offer a complete infrastructure
such as machine, netwaork, firewall, load balancer, disk image, etc. Therefore,
consumers do not need to care about hardware layer nor do they have to
manage low layer. However, when they want to deploy an application, they
not only have to install operating systems on the cloud infrastructure by
themselves, but. also have to .install the required environment. And the
consumers have to manage and maintain their own operating systems as well

as applications.

v'_Platform as a service (PaaS)

In this model, cloud providers supply-an environment that includes
operating . systems, database server, web server, -and programming
environment. Consumers can deploy their application without worrying about
underlying hardware and software layers. Providers have to take care of the
underlying layers including keeping them up to date. Consumers will take
care of their application only. In some cases, cloud providers can scale their

resources automatically to match the consumers’ demands.

v Software as a service (SaaS)

This is the highest level of cloud computing services where consumers

can rent or buy application software directly. Cloud providers make sure that

these software are up —to - date. Consumers do not need to manage the cloud

infrastructure and platform.

2.1.3 Cloud Deployment Models

H'}"t'nd \-"__,.:-'"_'__"-\.__
P T . H"\\
Privatef - ~ | TN Y
Internal " Public/ — o)

v External [/
\\._ __,.-'/

"

On Premises | Internal Off Premises / Third Party

Cloud Computing Types

CC-BY-5s. 10 by Sam | ohrmkon

Figure 2.2: Cloud computing types (Wikipedia.org)
v Private cloud

Private cloud is only for a single organization. It'is hosted.at On-
Premise (internal) or Off-Premise (external). Those who want to develop
private cloud must be experts who have significant knowledge about system
and system security. Every single security issue must be addressed to protect

the organization from any potential vulnerabilities.

v Public cloud
Public cloud is open for public use. Therefore, it does not need high
level of security as required by private cloud. However, the architecture of
both private cloud and public cloud is the same.

v' Community cloud

Community cloud is a cloud model that stands between private cloud

and public cloud. This cloud model is made when some organizations share

6

infrastructure. Therefore, the number of users of this model are fewer than
that of public cloud that is used all over the world and bigger than that of
private cloud which is used within certain organization. That means

community cloud does not help to save cost.

v Hybrid Cloud

Hybrid cloud is comprised of two or more of the aforementioned cloud
models to take advantage of multiple deployment models to satisfy some

temporary needs

2.2 Amazon Web Services (AWS)
Amazon Web Services offers a complete set of infrastructure and

application services that allows everything from enterprise applications and
big data projects to social games and mobile applications to be run virtually in
the cloud [11].

2.2.1. Why AWS

Amazon Web Services provides a flexible, scalable, low-cost cloud

computing platform for businesses of all sizes all around the world.

- _Pay as you go: Consumers pay for exactly what they use. Except
for AWS. monthly free usage_tier; there are no long-term

contracts or up-front commitments.

- Scalable: With AWS, any application can be easily scaled in/out
or up/down when needed as a result of a massive infrastructure

that is provided by Amazon.

- Flexible: Every task from operating system to programming

language, or those related to web application platform, software,

database server, etc. is performed flexibly. If an application can

run On-Premise, it can run in the cloud.

Easy to use: AWS can be started within few minutes. We have
many ways to do what we need by using AWS Management

Console, APIs, and Command Line Tools.

2.2.2 Services

AWS provides many following products and services:

(@)
0]

% Compute

Amazon Elastic Compute Cloud (EC2)
Amazon Elastic MapReduce

+ Auto Scaling

0]
@)
0]

Xg

L)

L)

0]
0
O
0

Elastic Load Balancing (ELB)
Content Delivery
Amazon CloudFront

Database

Amazon Relational Database Service (RDS)
Amazon DynamoDB

Amazon ElastiCache

Amazon Redshift

+ Deployment & Management

0

O O0OO0OO0O0

0

AWS ldentity and Access Management (IAM)
Amazon CloudWatch

AWS Elastic Beanstalk

AWS CloudFormation

AWS Data Pipeline

AWS OpsWorks

AWS CloudHSM

%+ Application Services

o

O 00O

0)

Amazon CloudSearch

Amazon Simple Workflow Service (SWF)
Amazon Simple Queue Service (SQS)
Amazon Simple Notification Service (SNS)
Amazon Simple Email Service (SES)
Amazon Elastic Transcoder

«» Software

0)

AWS Marketplace

K/
0‘0

Networking

o
o
o

Amazon Route 53
Amazon Virtual Private Cloud (VPC)
AWS Direct Connect

Payments & Billing

o
o

Amazon Flexible Payments Service (FPS)
Amazon DevPay

Storage

o
o
o
o
o

Amazon Simple Storage Service (S3)
Amazon Glacier

Amazon Elastic Block Store (EBS)
AWS Import/Export

AWS Storage Gateway

Support

O

AWS Support

«» Web Traffic

o
0]

Alexa Web Information Service
Alexa Top.Sites

+» Workforce

0)

Amazon Mechanical Turk

e Amazon Elastic Compute Cloud (EC2)

in the cloud. It is designed to make web-scale computing easier for developers.

instances to.minutes; allowing you to quickly scale capacity, both up and

Amazon EC2 is a web service that provides resizable compute capacity

Amazon EC2 reduces the time required to obtain and boot new server

down, as your computing requirements change.

you to launch instances with a variety of operating systems, load them with
your custom application environment, manage Yyour network’s access

permissions, and run your image using as many or few systems as you desire.

Amazon EC2 presents a true virtual computing environment, allowing

Service Highlights:

v' Elastic: we can scale the number of instances within minutes.
Furthermore, we can launch thousands of server instances
simultaneously.

v' Completely Controlled: We have complete control of our
instances.

v Flexible: We have multiple choices of instance types, operating

systems, and software packages.

v" Designed for use with other Amazon Web Services: It is tightly
integrated with other Amazon Web Services.

v Reliable: Amazon EC2 offers.a highly reliable environment; the
Service Level Agreement commitment is 99.95% availability for
each Amazon EC2 Region.

v Secure: Amazon EC2 works in conjunction with Amazon Virtual
Private Cloud (VPC)to provide security and robust networking

functionality for our compute resources.

v Inexpensive: We pay a very low rate for the compute capacity we
actually consume.

v _Easy to Start: Amazon EC2 provides preconfigured software on
Amazon Machine Images (AMIs), so we can quickly deploy this
software to EC2 via 1-Click launch, EC2 console, and API
functions.

e Elastic Load Balancing

Elastic Load Balancing automatically distributes incoming application
traffic across multiple Amazon EC2 instances. It can detect unhealthy
instances and automatically reroutes traffic to healthy instances until the

unhealthy instances are detected becoming healthy instances.

Customers can enable Elastic Load Balancing within a single

Availability Zone or across multiple zones for even more consistent
10

application performance. Elastic Load Balancing can also be used in an
Amazon Virtual Private Cloud (“VPC”) to distribute traffic between

application tiers.

e Amazon Relational Database Service (Amazon RDS)

Amazon Relational Database Service (Amazon RDS) is a web service
that makes it easy to set up, operate, and scale a relational database in the
cloud. It provides cost-efficient and resizable capacity while managing time-
consuming database administration tasks, freeing you up to focus on your

applications and business.

Amazon RDS gives you access to the capabilities of a familiar MySQL,
Oracle or Microsoft SQL Server database engine. Amazon RDS automatically
patches the database software and backs up your database, storing the backups
for a user-defined retention period and enabling point-in-time recovery. You
benefit from the flexibility of being able to scale the compute resources or
storage capacity associated with your Database Instance (DB Instance) via a

single API call.
Service Highlights:

v' Simple to Deploy: Easy to create new database server by using API
calls or AWS Management Console in _minutes without any worry
about underlying hardware or software level.

v Managed: Amazon RDS handles time-consuming database
management tasks, such as backups, patch management, and
replication, allowing you to pursue higher value application

development or database refinements.

11

v' Compatible: With Amazon RDS, you get native access to a
relational database. This facilitates compatibility with your existing
tools and applications.

v" Fast, Predictable Performance: Amazon RDS Provisioned I0OPS
is a high performance storage option designed to deliver fast,
predictable, and consistent performance for /O intensive
transactional database workloads.

v’ Scalable: “You can easy scale your database to meet your
application needs by using API function or the AWS Management
Console.

v Reliable: Many features such as automated backups, DB snapshots,
automatic host. replacement, and Multi-Available Zone, enhances
the level of reliability for our database.

v Designed for use with other Amazon Web Services: Amazon
RDS is tightly integrated with other Amazon Web Services.

v Secure: Amazon RDS provides a number of mechanisms to secure
your DB Instances. It includes configure firewall settings that
control network access to your database. And it also allows you to
run your DB Instances in Amazon Virtual Private Cloud (Amazon
VPC). Amazon VPC enables you to isolate your DB Instances by
specifying the IP. range you wish to use, and connect to your
existing IT infrastructure through industry-standard encrypted IPsec
VPN.

v" Inexpensive: You pay very low rates and only for the resources
you actually consume.

e Amazon Simple Queue Service (Amazon SQS)

Amazon Simple Queue Service (SQS) is a fast, reliable, scalable, fully
managed queue service. SQS makes it simple and cost-effective to decouple
12

the components of a cloud application. You can use SQS to transmit any
volume of data, at any level of throughput, without losing messages or

requiring other services to be always available.

e Amazon CloudWatch

Amazon CloudWatch provides monitoring for AWS cloud resources
and the applications customers run on AWS. Developers and system
administrators can use it to collect and track metrics, gain insight, and react
immediately to keep their applications and businesses running smoothly.
Amazon CloudWatch monitors AWS resources such as Amazon EC2 and
Amazon RDS DB instances, and can also monitor custom metrics generated

by a customer’s applications and services.

Amazon - CloudWatch lets you programmatically retrieve your
monitoring data, view graphs, and set alarms to help you troubleshoot, spot
trends, and take automated action based on the state of your. cloud

environment.

e Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name
System (DNS) web service. It is designed to give developers and businesses
an extremely reliable and cost effective way to route end users to Internet

applications by translating human readable names like www.example.com

into the numeric IP addresses like 192.0.2.1 that computers use to connect to
each other. Route 53 effectively connects user requests to infrastructure
running in Amazon Web Services (AWS) — such as an Amazon EC2 instance,
an Amazon Elastic Load Balancer, an Amazon CloudFront distribution, or an
Amazon Simple Storage Service (Amazon S3) bucket — and can also be used

to route users to infrastructure outside of AWS.

13

http://www.example.com/

Chapter 3:

Architecture

For the websites of small and medium — sized agencies, investing in the
hardware system is a difficult puzzle to solve because of several reasons. First
and foremost, substantial-investment for the initial hardware system will be an
expensive and needless waste if actual demand. is too low. On the other hand,
a modest sum leads to the situation in which the system will not be able to
cope well 'with a sudden surge in demand at certain points. This is even more
challenging for websites..with very low level of usual ‘access but with
occasional massive traffic.. The question of how much to spend or invest

poses a genuine dilemma for the designers and operators of such systems.

Clients
Web Server 1

Process
Request

o

Load Balancer
Internet - L —

Process
Request

;ﬁ;’; ° ﬁf

Web Server 2

@ © %

Figure 3.1: General web farm architecture [15]

3.1 Website Overload Reasons
General website models typically shown in figure 3.1 included some

main components such as Load Balancer, Web Server, Database Server,

network link, firewall, etc. Website is overload when we let the system do a
14

work exceeds its ability [3]. A website overloaded should be due to one of the

three following reasons:

3.1.1 Database Server Overload

Load
Balancer

Database
Server

Overload

Server

Internet/Intranet

Figure 3.2: Database Server overload

If a system’s Load Balancer and Web Servers are good enough, Load
Balancer can satisfy.massive data going through and if Web Servers have
strong configuration, the reason for our website system overload maybe is our
Database Server is overloaded. Of course, like Web Servers, Database Server
is overloaded because its CPU is overloaded or memory overloaded or

bandwidth overloaded, etc.

3.1.2 Web Servers Overload

15

Load
B Balancer

Database
Server

Server

Internet/Intranet

Balancer

o

Database 2

2
c
A
@

Server

Internet/Intranet

Web

Server 3

Figure 3.4: Load Balancer overload

16

The principle of Load Balance’s operation is that every request is sent
to Load Balancer, and then Load Balance passes the requests to one of the
Web Servers. After that, Web Server queries data from Database Server and
prepares response content, and then the content go through Load Balancer
before it is sent to end user. Obviously, data from every Web Server is
transferred over Load Balancer, so Load Balance’s bandwidth rate equals to
Web Servers’ entire bandwidth rate. Therefore, if users want their websites to
work well even at times of a vast simultaneous. user access, a Load Balance
which has a large enough capacity bandwidth is needed. Otherwise, their

website will be easily overloaded and cannot be expanded.

3.2 Website Overload Solutions
The solution depends-on how adjustable a system is. If the system still

can expand, several servers can be added into our original system. Otherwise,
we can think about migrating our original system to one of cloud platforms
such as Amazon Web Services (AWS).

3.2.1 '"Expanded the Original System

a) Database Server Overload

Load
Balancer

.#ld Web Server

Internet/Intranet

Figure 3.5: Database Server overload solution

17

The solution to this situation is using DB Read Replica technique,
database replication [7][8][9]. It seems like a master — slave relationship
between the original and the copies of database. The master can read/write

database, but the slaves only can solely read

Every time the master writes new or updates several rows of database,

it will also do synchronous database with the slaves

b) Web Servers Overload

Load
Balancer

Database
Server

Internet/Intranet

- Extended Web Server — /

Figure 3.6: Web Servers overload solution

In this situation, we can upgrade the Web Servers or add some new
Web Servers to the original system. However, machines should not be added
in large number. Otherwise, the system may experience the previous problem
(Database Server overload)

The numbers of Web Servers which can be added depend on the

following aspects:

18

- Load Balance’s capacity bandwidth: It is no sense if total Web
Servers bandwidth, including added Web Servers, exceeds Load

Balancer’s capacity bandwidth.

Database server ability (CPU, memory, bandwidth, etc.): The
Database server cannot serve too much Web Servers. If Database
Server is strong enough and we just care about bandwidth, after
doing some experiments, | have come to the conclusion that total
Web Servers’ bandwidth should approximately be 3 times as strong
as Database server’s bandwidth. That makes all of them work

perfectly together.
¢) Load Balancer Overload

To solve this situation,-we can upgrade our-Load Balancer, or add some
new Load Balancers together with using Bin9 to route users’ requests to one

of Load Balancers.

Bin9 (round-
robin dns)

&

B

Database
Server

Figure 3.7: Load Balancer overload solution

19

For those aforesaid three solutions, before applying them, it’s essential

to analyze the strengths and the weaknesses:
» Strengths:
— If we extend the original system, it will be used for long time

— The whole system architecture does not change, so we do not

need to worry about the system security.
» Weakness:
— Extended system needs up-front cost.

— Extended system also needs more power consumption and more

management.

3.2.2 Applying AWS to the Original System

a) Extended original system with the AWS

Load Balancer

-

Datab ar—t
MR o 7

My lab’s Capacity
Bandwidth is small
(10MBps)

- T T N\
)
Py

~ - Extended Web Server — /

AWS EC2

Figure 3.8: Extended original system with the AWS

20

The drawback of this solution is my lab’s capacity bandwidth is small,
so | could not see the effects. Furthermore, another reason is the data of
database must be uploaded from local to AWS, but it is a slow speed link

(uplink), I cannot do this kind of experiment.

b) Migration original to the AWS

Q& Internet/Intranet g :g
DILEase

Web Server

Server

Figure 3.9: A normal website System

With the kind—of-system aforementioned, we could think about
migrating our system-to-a-cloud platform where we can scale our system
infout very quickly. | choose Amazon Cloud Services because it is cheap,
supportive, and ease to develop. As a result; the real system, after we move

our original system to cloud can be depicted in the figure bellow:

Amazon
Route53

AWS Elastic Load | ,”

|

| Balancer2 -
| .
I /

I
AWS Elastic Load | f
N Balancer3 -a

|

l E
o _AWSEC2 _

Figure 3.10: New system on AWS model
21

2

Web Sérver 1

g Qﬂ =
Load Web Server 2 Database
Balancer Server

oy

Web Sérver 3

Figure 3.11: Equivalent of new system model

In-this model, we need to use Amazon Route53 services that redirect

user’s requests to one of Amazon Elastic Load Balancers.

After migrating original system to AWS, if the capacity bandwidth of
the link between user and Web Server is 1Gbps, we will have a new system’s
ability which is 3 times as efficient as the original system’s ability. (The

results.of experiments are discussed later)

3.3 Doing Migrations

As a current trend, the concept of cloud computing has grown so
popular, addressing multiple issues related to processing, calculating and
sharing software, or developing enterprises. A lot of companies have thought

about moving their services to cloud platform.

In the technologically business world, the use of on - premise software
and off — premise software has been greatly assisting business activities. The
former, which is often abbreviated as on-prem software, is installed and run
on computers on the premises (in the building) of the person or an
organization using the software, rather than at a remote place. The latter, off-

22

premises software, is commonly known as “software as service” or

“computing in the cloud”

Until around 2005, the on-premises approach to deploying data was the
most common. However, later, software running at a remote location became
widely available and adopted. The use of new, alternative deployment method
removed the need for the user to install any software on premises and brought
about further benefits. Running software remotely can result in considerable
cost savings because of reduced staffing, maintenance, power consumption,

etc.

In_other words, cloud computing has made it much easier to deploy
data. With cloud, businesses can reduce .up-front costs, management costs,

pay for what they use, scale-as they want, etc.

On-Premise Off-Premise

Figure 3.12: Migration from On-Premise to Off-Premise

To move a website from On-Premise to Off-Premise, we need to move

Database and Web Servers.

23

3.3.1 Database Migration

Migrate Database To
Amazon AWS

Load input
parameters?

Yes»(LoadMigrateDBInfo >

(EnterMigrateDBlnfo) —No

Save information? No

Save Information

<

Load Execute State?

e Load the Last Saved Migrate
DB State
Create Amazon aveM |grate
MySQL DB DBState
Update Security Group Yes aveMlgrate
DBState

Get IP Address of new AWS
MySQL DB

Migrate Database To Amazon
MySQL DB

aveMigrate
< Create Database Account Yes DBState
MySqgl Grant Permission For User Yes aveMigrate
yoQ DBState

< Update Web Config File >

\ 4

End

Figure 3.13: modeling database migration

* Simplified code file looks at appendix 2

24

The figure 3.7 shows the structure of doing database migration
independently. When database migration starts, it asks whether the user wants
to load the last saved input information or not. In situation 1, if the answer is
yes, it will load the last saved information; otherwise, it will let us enter some
requirement information for program running. After it gets all the requirement
information, it will ask if the user wants to load the last saved program state
or not. If the answer is yes, it-will go to the last saved state of the program.
Why is it necessary to save the state of the program? The answer is sometimes
the program is crashed while it is running, so we do not want to let the
program run at the beginning. \We want the program to run from the last
failed position. In contrast, in situation 2, if the answer is no, it will start to
create.a MySQL database on.Amazon Relational Database Services (RDS). If
this procedure is finished successfully, it will save this state and continue with
the next step. The next step is to update security group of RDS which stores
the list of the IPs with allowed access to database. Afterward, the program
will get an IP address for the new database server and transfer database onto it.
The program will accordingly create a new account and grand permission for
that account to enable us to use the application. The last step of the program is
to update:web configuration file due to the change of database server IP

address.

25

3.3.2 Web server Migration

Migrate Website To Amazon
AWS

oad inpu . .
@No{ Enter parameters for creating AWS mstances)

< Enter parameters for moving website >

. . Save
Save information? Yes)
Information

< Connect to AWS)

Gaunch aEC2 instanc@
Compress website
directory

Upload zip file to
Server

ompare MD5 of two zi
files?

Not equal

Equal

Extract zip file to web
directory of Server
< End >

Figure 3.14: Modeling web server migration

* Simplified code file looks at appendix 3
26

The figure 3.8 shows the process of migrating web server
independently. First of all, after started, the program asks the user if he/she
wants to load requirement information. If the answer is no, it will call the
input functions and let him or her enter requirement information. After that
the program will ask another question which is whether the user wants to save
the information or not. The user makes the decision and the program will
proceed to the next step. In contrast, if the -answer is no, the program will
advance directly. In the next stage, the program will connect to AWS, launch
an EC2 instance of AWS, and wait for the new instance to run until the
instance’s status -is available. Afterward, the program will call compress
website ‘directory function — the function to make a zipped file including our
whole website directory, and insert the new database configuration file into
the zip file. This zip file later is uploaded to a new instance via SFTP (SSH
File Transfer Protocol) function, a function of paramiko [14] that transfers
files through SSHClient of paramiko between local machine and remote
machine. At this point, the program will compare the MD5 of two zip files. If
it is perfectly matched, the last step can be carried out. If not, it will try to
upload the zip file again. In other words, the program will go to the last step
when the MD5 of local zip file and remote zip file are matched and the last
step will extract the zip file of new EC2 instance to the web directory of the

instance. In the end, the new EC2 instance becomes a Web Server.

Actually, this function'may be used just once. Why is that? This is
because when we do the auto scaling — terminate or launch several instances —
there are two ways to make an EC2 instance become a Web Server. In the
first way, we create an Amazon Machine Image (AMI) that includes all of our
requirement software and web directory which stores our website. As a result,
we just have to update database configuration file at the time a new EC2
instance is created. In the second way, we compress our web directory and

27

upload it to Amazon Simple Storage Services (Amazon S3). When a new EC2
instance is created, it will download the compressed file from Amazon S3,

extract the file to web directory, and then update database configuration file.

3.4 Security problems

Request Instances Wizard Cancel (¥

i
L

Public/private key pairs allow you to securely connect to your instance after it launches. For Windows Server instances, a Key

Pair is required to set and deliver a secure encrypted password. For Linux server instances, a key pair allows you to S5H into

wour instance.

To create a key pair, enter a name and click Create & Download Your Key Pair. You will be prompted to save the private

ey to your computer. Note: You only need to generate a key pair once - not each time yvou want to deploy an Amazon EC2

instance.

@ Choose from your existing Key Pairs

Your existing Key Pairs®: | |- lz‘

© Create a new Key Pair

© Proceed without a Key Pair

Back Continue |

Figure 3.15: AWS EC2 Key Pair

If we want to access one of EC2 instances, we need to show the Key

Pair value. Every EC2 instance has one Key Pair.

28

Viewing: | EC2 Security Groups [»| (Search) [€ € twe3of3lems > 3

Group 1D Name VPC ID Description
50-893432db q} quick-start-1 quick-start-1
sg-d0fccBa2 0 default default group
sg-df3f2d84 | research limited using
1 Security Group selected
@ Security Group: quick-start-1 [_] = |
| Details | | Inbound |
Create a | Custom TCP rule =] | I .
new rule: Port (Service) Source Action
Port range: | | 22 (55H) 0.0.0.0/0 Delete
(=.5.. B0 or 49152-65535) 80 (HTTP) 0.0.0.0/0 Delete

Source: [0.0.0.0/0 |
{=.g., 192.168.2.0/24, sg-47ad482e, ar

1234567890/ default)
of Add Rule

Apply Rule Changes

EC2 Security G

Every EC2 instance belg

o\

remote cor d

Every connection

29

DB Security Groups > default

v Security Group Details

Connection Type Details
CIDRIP CIDRIP: 140.113.128.159/32
CIDRAP CIDRAP: 175.41.188.60/32
CIDRAP CIDRAP: 192.168.0.110/32
CIDRAP CIDRAP: 140.113.128.212/32
CIDRAP CIDRAP: 192.168.0.109/32
CIDRAP CIDRAP: 46.137.235.208/32
CIDR:
CIDR/IP |Z| Qur best e.stin'ste for :re ;ll:r! :.f your current n'sd‘ir‘e. is 1=.:|.1 12.1:3.15; 32,
However, if your machine is behind a proxy/firewsll, this estimate may be inaccurate

and you may need to contact your network administrator.

Status

authorized

authorized

authorized

authorized

authorized

authorized

Figure 3.17: DB Security Groups

Actions

Remove
Remove
Remove
Remove
Remove

Remove

DB Security Groups-is for every Database server. It is also.a firewall

where we can set which IP address or range of IP address that can access our

database.

Any device IP address which does not belong to the list of DB security

group access to our database will-be denied.

Your Security Credentials

Use this page to manage the credentials for your AWS account. To manage credentials for AWS Identity and Access Mangement (IAM) users, use the IAM Console

To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials in AVWS General Reference

+ Password
+ Multi-Factor Authentication (MFA)

=/ Access Keys

Note: You can have a maximum of two access keys (active or inactive) at a time
Created Deleted Access Key ID

May 21st 2013 AKIAINMYCN3POSJ2DCVWA

Jan 19th 2013 AKIAKK2YLVOBJAXOSMA

Sep 21st 2012 AKIAJOLYOHEQY 3MJUCMA

May 21st 2013
Mar 9th 2013

Status
Active
Deleted
Deleted

Figure 3.18: AWS security credentials

Actions
IMake Inactive | Delete

For programmers who want to build an application interactive with

AWS, they have to own one of security credentials.

30

Chapter 4:

Implementation

4.1 Experiments
For simulation, | have created a simple webpage that shows a list of

course names. The table-List Course has 43 rows. . The webpage looks like a
student who is making a query to Course Selection System. At the time the
webpage is shown, it will insert a row into another table to mark one access is
made successfully. After that we can count how many number of end users

accessing the website at the same time.

[~ |ocsom0 Independent Study 45 BRI i
10C3029 || Algorithms 60 45 6AEC115 R IR Bz
I0C3040 || Artificial Intelligence 60 45 |[6AECL1S 3 3 imy iz
10C3042 || Evohtionary Computation 60 43 6AECI15 3 3 BRIE i
I0C5057 || Operating System 60 45 6AEC115 3 3 BRI i
I0C3076 ||Graph Theory 60 45 6AEC115 3 3 BRI 13
I0C3081 || Data Mining 60 45 |[6AECL1S 3 3 imy iz
10C3087 ||Secure Programming 60 45 |[6AEC11S 3 3 BT iz
10C5090 ;ﬂiﬁ:‘f@ 60 45 |6AEC1IS 3 3 HRTH iz
10C3091 || Computer Architecture 60 45 6AEC115 3 3 BRI AT iz
1005100 i;ﬁi?ﬁ:‘;ﬁ;ﬁ 60 4 6AEC ERT iz

Figure 4.1: Simulation webpage

For running code file, we need to prepare our environment. We need to

install some following tools:
- Boto [12]

- Amazon Relational Database Service Command Line [13]

31

- Paramiko [14]

4.1.1 Choice software for simulation

We have a lot of software which could help us to generate vast of users
to simulate a real system with many users at the same time. They include
httpert, curl-loader, loadUl, jmeter, etc. [16] But, the easiest, the most
effective software is Jmeter - a java program. Jmeter can run on both
Windows platform and Linux platform. And. it is an application can be run
with both command line and GUI.

-= |cc_Thread Group.jmx (C\Users\LeCaoCon\Downloads\apache-jmeter-2.9\bin\lcc_Thread Group.jmx) - Apache JMeter (2.9 r1437961) L‘:' =l é]
File Edit Search Run Options Help

F o o7 -) . " g= .
Dl@l?Ed X8| +]|=|4%| &k 3 4 W % 5 H 04 010 1]

? (& TestPan
¢ & Thread Group
,{" website o |Name: |Thread Group
WorkBench Comments:
Action to be taken afier a Sampler error

Thread Group

(® Continue (_» Start Next Thread Loop () Stop Thread (0 Stop Test (' Stop Test Now

2| rThread Properties
;| | Number of Threads (users): ‘EDD |

Ramp-Up Period (in seconds): ‘1 |

: Loop Count: Forever
[Delay Thread creation until needed

[] Scheduler

r 5
-= |cc_Thread Group.jmx (C\Users\LeCaoCon\Downloads\apache-jmeter-2.9\bin\lcc_Thread Groupjmx) - Apache JMeter (2.9 r1437961) =RNCN| X

File Edit Search Rum Options Help

D@ M KA + =4 & % x A IRCIRSIRES]) 04 00T
& TestPin |~
¢ | Thread Group é HT Request
,{" website Name: |websne
WorkBench | |comments:
: Web Server Timeouts (milliseconds)
‘| | server name orip: [19.168.0.100 |Port number: [30 || Connect: [30000 | Response: [10000 |
HTTP Request

Implementation: I:'zl Protocol [hitp]: Method: = Content encoding:

:| | Path: [flist.php

[] Redirect Automatically Follow Redirects Use Keephlive [| Use multipartform-data for POST [_] Browser-compatible headers

|| | [Parameters | Post Body

Figure 4.2: Jmeter GUI

If we want to run the application from command line, we need to
prepare a jxm file. To create jxm file, we have two ways. First, we create a

project from GUI, and then set all appropriate parameter values. After that

32

we will save the project into a new jxm file. Now we can use this file for
running the application from command line. Second, we can use a jxm format

file and insert some values into appropriate position such as host-ip, path, etc.
The command line format looks like:

java —jar ApacheJMeter.jar —n —t [jxm_filename]

4.1.2 Test link speed 100Mbps

HE 100Mbps P N < =
& &

e lecaocon@dellvostro:

05-08-201316:42.42 05-08-2013 16:43:11 05-08-201316:43:31 05-06-2013 16:43:51 05-08-2013 16:44:11 05-08-2013 16:44:31
Time

Figure 4.3: Simulation 100Mbps link

33

With the link connecting between end users and web server running at
100Mbps, we can see that the outgoing of system is approximate 80Mbps, and

the number of user -access at the same time- is about 200 users.

4.1.3 Test link speed 1Gbps

Web Server Request

-
& Database Q\y 1Gbps S
Server - . N

< Response "

2000

1500

LIRILIY
1000 kil

n
=}
=

Response Number

05-08-2013 21:56:19 05-08-2013 21:55:46 05-08-2013 22:03:17

Time
Figure 4.4: Simulation 1Gbps link

With this kind of link between end users and web server, we can see
that the outgoing of system is approximate 500Mbps, and the number of user -

access at the same time- is about 1000 users.

34

4.1.4 Test with Amazon Web Services

AWS Elastic Loa
Balancer 1

Amazon
7 ' Route53

AWS Elastic Load .~
Balancer 2 4

’
|

7
7

[
WS Elastic Load |
Balancer 3)

—— —— —

. AWSEC2

Figure 4.5: AWS experiment architecture

In these experiments, | create some virtual machines at another cloud

platform as these machines are supposed to help me to generate big mount of

requests.

=
g

a) 02 AWS EC2 instances

B
=

g

8

g

Response Number
A
8

g

=}

|

‘ i
31-07-201317:07:17 31-07-201317:08:07 31-07-201317:09:13
Time

Figure 4.6: 02 AWS EC2 m1l.large instances — 02 Elastic Load Balancers

When we run 02 EC2 instances, the number of user access at the same

time is about 1100 per second. However, as illustrated in the diagram,

35

sometimes the number of user access decreases because the CPU of one or
both of EC2 instances is overloaded. Therefore, these EC2 instances are

marked unhealthy and ELB does not route traffic to these instances.

b) 04 AWS EC2 instances

Last experiment

o
=)
=

=
=]
-]

e Number

500 1 —— T T T i

Respons

31-07-2013 17:08:07 31-07-201317:10:05 31-07-2013 17:17:59 31-07-201317:19:47
Time

Figure 4.7: 04 AWS EC2 m1.large instances — 02 Elastic Load Balancers

With this kind of model, the number of access can reach 1500 per
second. Nevertheless, in some cases, one of the EC2 instances is overloaded,

so the number of access may fall.

c) 06 AWS EC2 instances

0 Lrast experiment
i

o
=1
=}

g

Response Number

2}
=}
=}

31072013 17:10:05 3072013171947 Time 31072013 17:3247 31072013 17:36:07

Figure 4.8: 06 AWS EC2 m1.large instances — 02 Elastic Load Balancers

With this kind of model, the number of access can reach 1500 per
second. Nevertheless, in some cases, one of the EC2 instances is overloaded,

so the number of access may fall.

36

d) 06 AWS EC2 instances with 03 Elastic Load Balancer

2500 - i
+ 2000 | I ,1
8 I URILN |I
E L by il |
1500 y 1 J - | T v e) I‘u ST TR L NI
3 LT IPTT P Y N R
A Ll W |, | | I " [! | '
a Il 11 I | i || },-,w‘ Ui I ! | 1 i ‘
S0 : ‘ ‘| . o] 11l ! ,
| i) il N T M
ST YT A | L -. I [|
& 50 I Ll il | LIl | [
o T AT IF T rrong T ‘
| | | |
o Ll | |
31-07-201317:10:05 31-07-201317:19:47 31-07-2013 17:32:47 31-07-2013 17:36:07 3107-201317:39:27 31-07-2013 18:12:08
Time

Figure 4.9: 06 AWS EC2 m1.large instances = 03 Elastic Load Balancers

In this experiment, the number of access can reach 2000 per second,

but the drawback is that the system is not really stable.

e) 12 AWS EC2 instances

3500 ¥
- Last experiment | | |
8 | |) "-JIL ‘\III -”l]llllll | M “I”F ““
€ 20w I Ui LY I A VAT o
5 T
5o mif OO PR Rl i ! :
2 KT T [
Q 1500 ;"1’,1 I il W M i "‘|j ‘l"il ! i |i i s il y b = I
a | b | !
& 1000 dil HI \! lHl‘ JW] f‘l |] ! | | bl I }|
by i M. f | ‘ n | ' |
£ H \.4”‘\[IJ}!:‘T Ill’ Jl %j ‘ l“l L] "‘JIIL L ||! % |
jﬁ ! r J | ! [
31-07-201317:39:27 Time 31072013 18:35:04 31-07-201319:00:49

Figure 4.10: 12 AWS EC2 ml.large instances — 03 Elastic Load Balancers

In this experiment, the number of access almost reaches 3000 per

second while the whole system remains quite stable.

f) 18 AWS EC2 instances

37

=]
=]

- '.:"‘“’i b 4y SRR TR Y Lkl 1y 1 i
e ATt A AR AP ot O OE O TR NIy KD
T i [{ M I L AR R VDL (i il
! “-M-“"".I.w' (1 ‘-."|‘||I“,‘ (IR ".\“ {l A L[N
P LTRSS ALt LTl I
|| IRl il il L 1l ‘I-' LT el

.
=}
=]

w
&

)
=1
=]

Response Number

=
=
=

31-07-2013 20:56:52 31-07-2013 21:00:12 31-07-201321:03:32 31-07-2013 21:06:52 31-07-201321:10:12
Time

Figure 4.11: Running 18 AWS EC2 large instances and RDB db.m2.2xlarge

5000

.
=
=]

=

w
=1
5]

=

o
=1
=]

=

Response Number

=
5]
=

31-07-2013 21:57:12 . 31-07-2013 22:07:49 31-07-201322:16:42

Time

Figure 4.12: Running 18 AWS EC2 large instances and RDB db.m2.4xlarge

When we migrate our system to Amazon Web Services, our new
system can respond up to 4000 user’s requests at the same time. The new

system is 3 to 4 times as efficient as our original system.

And the new system running with RDB db.m2.4xlarge gives a little bit
better results than the others.
4.2 Monitoring System Scaling

4.2.1 Requirements

- Replace Nameserver of our Domain Name by Nameserver of

Amazone Route53

38

Route 53: lecaccon.info » Record Sels & 8 Dempieg » LECADCONINFO

liiisane foes 2ones L) oot Baconti) sz LECAOCON.INFO -
fr— Ay Type [=] 2] Asases Only 7] waightes Onty Siabs: Acive | Created T3 | Expiees: M310078 | Folder plons | Prodle: bons
I — — ORues (o (Owwse (S Bt v R Areerus | Depens | O e
i |
1 lecacon.info
| ©1 recaseoninto.
| 1 absecacconinto,
| 71 abasecacconinto.
| 1 iniecsocon v CNAME | mylb1-84 1530801 ap-southeast-1
|) iblecacconinto. | CNAME | myib2-560534588 ap-southeast-1
| E1 iblecacconinto. CNAME | rriylb3-4735616298 ap-southeast-1

minutes

39

[sclem)

AWS-EC2 instances CPU usage
within 10 minutes

Under 20 percent

yes
4

4@3move EC2 instanc%

Figure 4.14: AWS scale-in

=—No

However, it’s essential we set several conditions for scale-out
operations. If the CPU usage is over 50 percent, we will launch 01 EC2
instance. If the CPU usage is increased to over 70 percent, we will launch 02
EC2 instances. As the system is subject to.-pressing demand, the system

capacity needs to be enhanced more quickly.

We also set another condition for scale-out operation. The condition is
when two or more EC2 instances are unhealthy instances, we will launch 01
EC2 instances because those instances will be back on track soon after they

are detected as healthy instances.

With several policies, we can see that when our system have to
response too much requests, some of instances maybe overload for few
minutes and the whole system’s CPU usage increase more quickly. At that
time, we better launch several EC2 instances instead of launch one by one; it

gives us a more effective system. [4]

40

C Scale-Out > C Scale-Out >

A A

AWS-EC2 instances CPU usage AWS-EC2 instances CPU usage
within 1 minute within 1 minute

Over 50 percent

= !

yes
J‘A

Launch new EC2

b instances L4 instances

I
[]
—1CIO
— Scale-Out
Sk

Launch new EC2
instances

Figure 4.15: A scale-out

* Simplified code file looks at appendix 1

41

4.2.3 Result

Launch Instance ~ ¢ » o
Viewing: | All Instances E All Instance Types |‘ Search)] 1to 20 of 20 Instances

[| Hame Instance AMIID Root Device Type State Status Checks Alarm Status Monitoring Security Groups ~ Key Pair Nam Virtualiz
[E] | web3 & i-321af064 ami-cB034b%a = ebs ml.large @ running & 2/2 checks passed none basic quick-start-1 (o} paray *
1 | web @ i-701af025 ami-cB034b%a | ebs ml.large & running & 2/2 checks passed none basic quick-start-1 lec paray)
[| web? @ i-b3306aed ami-cB034b8a | ebs millarge @ running & 212 checks passed rone basic quick-start-1 lec paray,
[| webg @ i-b2396ae5 ami-c8034b%9%a | ebs ml.large @ running & 2/2 checks passed none basic quick-start-1 (o} paray) 5
1 | web2 @ i-857082d3 ami-cB034b8a ebs mlarge @ running & 212 checks passed none basic quick-start-1 leo paras)
| at @ i-23649075 ami-cB034b%a = ebs ml.large @ running & 2/2 checks passed none basic quick-start-1 (o} paray
| a2 @ 20640076 ami-cB034b%a | ebs ml.large & running & 2/2 checks passed none basic quick-start-1 (== paras
F| a3 & 21640077 ami-cB034b8a | ebs millarge @ running & 212 checks passed rone basic quick-start-1 lec paray
[| too & i-55113d02 ami-3a135b68 = ebs m.large o runn@g & 2/2 checks passed none basic quick-start-1 lcc paray
[| web11 @ i-aBe7b6f ami-c8034b8a | ebs millarge @ running & 212 checks passed rione basic quick-start-1 lec paray
= - B umnaccas cemi —AAALA .- . Y S, e e L S S E— PR R —

Figure 4.16: AWS scaling

By default, our account is limited to a maximum of 20 instances per
EC2 region. If we want to run more than 20 instances, we have to get
approval directly from-Amazon. ‘Actually, RDS Database bandwidth is
limited, so we do not need to launch too much EC2 instances. We will create
three Elastic Load Balancers that make an optimized system for us; the
number of EC2 instances of every Load Balancer is scaled from 1 to 6

instances depends on the system work load.

42

4.3 Cost of using Amazon Web Services for Course Selection
System

EC2 and RDS
Cost per Hour Number of Hours Days Cost
instances per Day

EC2 ml.large $0.32 3 15 5| $72.00

EC2 ml.large $0.32 15 15 2 | $144.00

RDS m2.2xlarge $1.28 1 15 5] $96.00
$312.00

Other services
Cost per GB Using (GB) Cost

Elastic Load

Balancing

$0.008 per GB Data g —_—

Processed $8.00

AWS Data Transfer

$0.190 per GB - first 10

TB / month data 50.190 1000

transfer out $190.00

Other services $90.00
$288.00

Total $600.00

The content of the table above is estimated for Selection Course System.

A Course Selection System is often opened from 9:00 AM to 12:00
AM every weekday of two weeks. Normally, in the first week, the system still
works well with original system. This means we do not need to change our

original system.

In the second week, actually, the system needs to be more powerful at
the end of the week. Assuming that the last two days is the time of vast
number of students using the system. Therefore, the first three days of the
second week, we just launch three AWS EC2s for running web server. After

that, for the last two days of the second week, the system maybe

43

automatically scaled out to its highest level that includes 18 EC2 instances

running giving us a really powerful system..

If we apply this model of cloud computing for our Course Selection
System, the estimated cost is $600 per semester.

Some references of server pricing:

PChore Eist5%

buobrey Plzznz [Ty
KUSOBOX B 7 1
oy | +* 02-3393-8508
DChome > BMESEE » SHEsm
I Hot: MRES #EFR. SESF0 RSO0 MRS 00

EH/E5—
PCERE

All in One £

3

-

PChome BE#IF

n-us,l;.@

KUSOBOX
E R LW

= (BFFTED)
S EFR (1)
= TR

Poat

. BREESS| SN

DRHE GRS .

SEA/E5—
PCiEf

Allin One 2378

#{ ASUS RS300-E

8-PS54 i #8320 fe]

B85 [Intel Xeon E

3-1230v3 3.3G [/ 4

Gigtefe / DVD-RW
1

35,720

%9 ASUS R5100-E
3-P12 AR R1UE R
£ [Intel Xeon E3-
1230w3 3.3G / 4G
E':&I!.-" DV RW]

Z9{ ASUS RS300-E
7 / RS54 MCPU Hot-
Swap#lUEHEL
{65853 [Intel Xeon
E3 1230 w2 3.2G/ 4

7§ RG300-E7 P54
1U dadhid 8 A el 5B
[Intel Xeon E3-12
30 w2 3.2G / 4G DD
R3 / XHRAID-0.1,

#7{ ASUS R5100-E
7 dkenh 58 fel IR
[Intel Xeon E3-
1230 w2 3.2G [4G

I Hot: BBER

IBM X3200 M3 (7
328-C2V) Hot-Sw
ap BMSATASSAS
AR [Intel X343
0 QC 2.4G f 16 x2
s S RAID-0,1

533,890

IBM X3300 M4 u

382-C2V) Hot-Sw

ap ESATASSAS

Hir LA M [Intel

ES-2420 6C 1.9G

F 4GBx1 y H1110(
Rasi

44

A o A 1

IBM X3100 M4 (2
S82-IRA) 35MA3(Si
mple-Swap JSATA
HCPUHI AAMS
[Intel E3-1230vw2
4C 3.36 / 2GB /

X #Raid-0/1/10

1

G DDR3 / RAID 0,1,
10]

10]

B e
RS
5

537,990

@R / DVD-RW]

534,890

HEH | POhame | =i

Jomm T

FE: EEsmEQ

R o S 1 M

=3500GEEExls I

BM X3100 M4 (25
82-IRA) ERWSAT
AHCPUE I AR
[Intel E3-1230
v2 4C 3,36 / 2GB
[X @Raid-0/171

1

Figure 4.17: References of server pricing

TEnE 00 RAEE

IBM X3200 M3 (7
328-42V) Hot-Sw
ap BIMSATA/SAS
AR [Intel X344
0 QC 2.53G f 1Gx
2@ / RAID-O,

549,000

Chapter 5:

Conclusion and Future Works

As a matter of fact, some kinds of websites, such as NCTU’s Course
Selection System or the railway ticket selling system in my country, always
meet traffic overload situation a certain time. After doing this research, | have
reached the conclusion that the system overload may be improved by
applying cloud computing technology. It is certain that it depends on how
well a system performs. If we compare 1Gbps-link system and AWS new
system; we can see that-the power of AWS new system is approximately 3
times'as big as that of the 1Gbps-link system. We should migrate the system
before congestion and set reasonable conditions for scaling to make our

system highly available and redundant.

With Amazon Web Services, Database server bandwidth is limited, so
we cannot make a more powerful system. But AWS has provided Database

Replicas function. Unfortunately, it does not seem to work very well.

| may consider changing testing method- insert one row into the
database at every loading webpage time, creating the ratio of read/write is
50:50 while this ratio should be 66-percentreads [1] or 60:40 [2]

| believe that the system will be more powerful when we combine EC2

Auto Scaling and Database Replicas functions.

I will also do research migrate systems based on Windows platform.

45

REFERENCES

[1] Microsoft TechNet “Understanding Database and Log Performance
Factors”, April 2013

[2] White paper of EMC Corporation, “Deploying Oracle Database on EMC
VNX Unified Storage”, May 2011

[3] Bianca Schroeder, Mor Harchol-Balter, “Web servers under overload:

How scheduling can help”, May 2002

[4] Marshall, P.; Tufo, H.; Keahey, K. "Provisioning Policies for Elastic
Computing Environments", Parallel . and Distributed _Processing
Symposium Woarkshops-& PhD Forum (IPDPSW), 2012 IEEE 26th
International, On page(s): 1085 - 1094

[5] Wikipedia - Cloud Computing

http://en.wikipedia.org/wiki/Cloud computing

[6] Peter Mell, Timothy Grance, “The NIST Definition of Cloud Computing”,
September 2011

[7] Database Replication

http://en.wikipedia.org/wiki/Replication (computing)

[8] Database Journal, ““Very Large Databases and High Availability
Evaluating Replication Options™, Nov 8, 2006

[9] A. Sousa L. Soares A. Correia Jr. F. Moura R. Oliveira, “Development

and evaluation of database replication in ESCADA”

http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.160.3801&type=sc

[10] Webopedia — Cloud Computing

46

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Replication_(computing)
http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.160.3801&type=sc

http://www.webopedia.com/TERM/C/cloud computing.html

[11] Amazon Documentation

http://aws.amazon.com/documentation/

[12] AWS SDK for Python

http://aws.amazon.com/sdkforpython/

[13] Amazon Relational Database Service Command Line

http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference
[StartCLI.html

[14] Paramiko

http://docs.paramiko.org/

[15] Abhijit’s World of .Net

http://abhijitjana.net/2010/10/01/what-is-the-difference-between-web-

farm-and-web-garden/

[16] Performance test tools

http://www.opensourcetesting.org/performance.php

47

http://www.webopedia.com/TERM/C/cloud_computing.html
http://aws.amazon.com/documentation/
http://aws.amazon.com/sdkforpython/
http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference/StartCLI.html
http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference/StartCLI.html
http://docs.paramiko.org/
http://abhijitjana.net/2010/10/01/what-is-the-difference-between-web-farm-and-web-garden/
http://abhijitjana.net/2010/10/01/what-is-the-difference-between-web-farm-and-web-garden/
http://www.opensourcetesting.org/performance.php

APPENDICES

Appendix 1: AWS Scaling

def AutoScaling(ELB):

AutoScalingGroup_name="my-group-' + ELB
scale_up_policy_name='scale-up-' + ELB
scale_down_policy_name = 'scale-down-' + ELB
scale_up_alarm_avarageCPU_name = 'scale-up-on-cpu-' + ELB
scale_up_alarm_Unhealthy_name = 'scale-up-on-unhealthy-' + ELB
scale_down_alarm_name = 'scale-down-on-cpu-' + ELB
try:

filename = 'home/lecaocon/masterproj/src/AWS_Userdata.py'

f = open (filename, 'r")

user_data= f.read()

f.close()

regions = autoscale.regions()

region = regions[0]

conn = /AutoScaleConnection(aws_access_key id=AWS _ACCESS KEY _ID,
aws_secret_access _key=AWS SECRET_ACCESS KEY, region=region)

print conn

#autoscale = boto.ec2.autoscale:.connect_to_region(region_name=HomeRegion)

#Launch Config

print 'Launch Config'

Ic = LaunchConfiguration(hame="my-launch-config',
image_id=image_id,
key_name=key name,
security_groups=[security. groups],
instance_type=instance_type,
user_data=user_data)

try:

conn:create_launch_configuration(lc)
except Exception,e:
"#print e

#Auto Scaling Group

print 'Auto Scaling Group'

ag = AutoScalingGroup(group..name=AutoScalingGroup-name, load_balancers=[ELB],
availability_zones=['ap-southeast-1a’, 'ap-southeast-1b'],
desired_capacity=1,
launch_config=Ic, min_size=1, max_size=6,
connection=conn)

conn.create_auto_scaling_group(ag)

#Scale policy
print 'Scale policy'
print 'scale up'
scale_up_policy = ScalingPolicy(
name=scale_up_policy_name, adjustment_type='ChangelnCapacity’,
as_name=AutoScalingGroup_name, scaling_adjustment=1, cooldown=180)
conn.create_scaling_policy(scale_up_policy)

print 'scale down'

48

scale_down_policy = ScalingPolicy(
name=scale_down_policy name, adjustment_type='ChangelnCapacity’,
as_name=AutoScalingGroup_name, scaling_adjustment=-1, cooldown=180)
conn.create_scaling_policy(scale_down_policy)

scale_up_policy = conn.get_all_policies(

as_group=AutoScalingGroup_name, policy_names=[scale_up_policy_name])[0]
scale_down_policy = conn.get_all_policies(

as_group=AutoScalingGroup_name, policy_names=[scale_down_policy _name])[0]

#Cloud Watch

print 'Cloud Watch'

regions= cloudwatch.regions()

region = regions[0]

cloudwatch_conn = CloudWatchConnection(aws-access_key_id=AWS_ACCESS KEY _ID,
aws_secret_access_key=AWS_SECRET_ ACCESS KEY,
region=region)

#cloudwatch = boto.ec2.cloudwatch.connect_to-region(HomeRegion)
print ‘'dimensions'
alarm_dimensions = {"AutoScalingGroupName": '%s' % AutoScalingGroup_name}
print ‘alarm up'
#print'scale_up_policy.policy arn
#CPU Average > 50 percent
scale_up_alarm = MetricAlarm(
name=scale_up_alarm_avarageCPU_name + -CPU50percent', namespace="AWS/EC2',
metric="CPUUtilization', statistic='Average',
comparison=">', threshold="50',
period="60", evaluation_periods=1,
alarm_actions=[scale_up_policy.policy. arn],
dimensions=alarm_dimensions)
cloudwatch_ conn.create_alarm(scale_up_alarm)

#CPU Average > 70 percent
scale_up_alarm = MetricAlarm(
name=scale_up_alarm_avarageCPU_name+ '-CPU70percent', namespace='"AWS/EC?2',
metric='CPUUtilization', statistic="Average’,
comparison=">', threshold="70",
period='60', evaluation_periods=1,
alarm_actions=[scale_up.policy.policy_arn],
dimensions=alarm_dimensions)
cloudwatch_conn.create ‘alarm(scale_up_alarm)

#UnHealthy Instances

scale_up_alarm = MetricAlarm(
name=scale_up_alarm_Unhealthy name, namespace="AWS/EC2',
metric='"UnHealthyHostCount', statistic="Sum’,
comparison=">=', threshold="2',
period="60", evaluation_periods=1,
alarm_actions=[scale_up_policy.policy_arn],
dimensions=alarm_dimensions)

cloudwatch_conn.create_alarm(scale_up_alarm)

print ‘alarm down'

#CPU Average < 20 percent

scale_down_alarm = MetricAlarm(
name=scale_down_alarm_name+ '-30percent’, namespace="AWS/EC2',
metric="CPUUltilization', statistic="Average',

49

comparison='<', threshold="20",

period="60', evaluation_periods=10,

alarm_actions=[scale_down_policy.policy_arn],

dimensions=alarm_dimensions)
cloudwatch_conn.create_alarm(scale_down_alarm)

except Exception, ex:
print ex

Appendix 2: Database migration

def MigrateDBToAWS():
#migrate database from a database server to another database server
#Local DB
ListVars.RootDBServerUsername = 'username’
ListVars.RootDBServerPassword = 'Xxx'
ListVars.database_name = 'databasename’
ListVars.DBRootUsername = 'root’
ListVars.DBRootPassword = 'xxx'
ListVars.dbusername = ‘webaccess'
ListVars.dbpassword = 'xxx'
ListVars.OriDB_ip = '192.168.0.100'
#AWS DB
ListVars. AWSDBMasterName = ‘root'
ListVars. AWSDBMasterPassword = 'xxx'
ListVars.DBid = '"AwsNctu'
ListVars.HomeRegion ='ap-southeast-1'
ListVars. AWS_ACCESS KEY_ID ='KEY_ID'
ListVars.AWS_SECRET ACCESS KEY = xxx'
db_instance_type= 'db.m2.2xlarge'
temp = raw_input('Do you want to load the information that you had saved (Yes/N0)?')
if (temp.upper() =="Y" or-temp:upper() == 'YES):
LoadInfo = True
else:
Loadinfo = False

if(LoadInfo == True):
b = LoadMigrateDBInfo()
if(b == False):
return False
else:
Enter some basic information
EnterMigrateDBInfo()

temp = raw_input('Do you want to load execute state that you had saved (Yes/N0)?")
if (temp.upper() == "Y' or temp.upper() == 'YES'):

LoadState = True
else:

LoadState = False

if(LoadState == True):
b = LoadMigrateDBState()
if(b == False):
return False

Check this function has done or not?
if(b_CreateMySQLDB == False):
Create AWS MySQL DB
b = CreateMySQLDB(region=ListVars.HomeRegion,
allocated_storage=5,
instance_class=db_instance_type,
master_username=L.istVars. AWSDBMasterName,
master_password=ListVars. AWSDBMasterPassword,
DBid=ListVars.DBid,
db_name=ListVars.database_name,
backup_retention_period=1)
if(b == True):

o1

state 1

SaveMigrateDBState(CreateFile=True, Function="CreateMySQLDB")
else:

return False

Check this function has done or not?
if(b_MySqlSecurityGroupAddListServers == False):
#Allow list of servers can access to DB Server
print 'MySqlSecurityGroupAddListServers'
b = MySqlSecurityGroupAddListServers(filename="hosts")
if(b == True):
state 2
SaveMigrateDBState(CreateFile=False; Function="MySqlSecurityGroupAddL.istServers")
else:
return False

Get AWS DB, IP Address
print 'Waiting for create DB Instance...'
while (True):
include get DB instance EndPoint
result = GetAWSDBInstanceStatus(DBid=ListVars.DBid,
region=ListVars.HomeRegion,
AWS ACCESS KEY_ID=ListVars. AWS_ACCESS_KEY_ID,
AWS_SECRET ACCESS_KEY=ListVars.AWS_SECRET_ACCESS_KEY)

if(result == False):
print ...

creating -> backing-up
if(result == 'creating’):
print ‘creating DB Instance ..."

#available - active
if(result == ‘available' or result == 'active"):
break

time:sleep(20)

Doing migrate DB

ssh_local =paramike.SSHClient()

ssh_local.set_missing_host_key policy(paramiko.AutoAddPolicy())

ssh_local.connect(hostname=ListVars.OriDB _ip,
username=ListVars.RootDBServerUsername,
password=L.ist\ars.RootDBServerPassword)

Check this function has done or not?
if(b_CreateAWSDatabaseUserViaLocalMySQLCommandLine == False):
print ' DumpDBFromLocal ToAWS\n'
b = False
print 'Waiting for AWS Database active'
while (not b):

b = DumpDBFromLocal ToAWS(ssh=ssh_local,
database_name=L.istVars.database_name,
dbusernameLocal=ListVars.DBRootUsername,
dbpasswordLocal=L.istVars.DBRootPassword,
to_server=ListVars. AWSDB _ip,
dbusernameAWS=L.istVars. AWSDBMasterName,
dbpasswordAWS=L.istVars. AWSDBMasterPassword)

52

if(not b):
print'...'
time.sleep(20)

print ‘CreateAWSDatabaseUserViaLocalMySQLCommandLine\n'

b = CreateAWSDatabaseUserViaLocalMySQLCommandLine(ssh=ssh_local,
host_ip=ListVars. AWSDB_ip,
rootusername=L.istVars. AWSDBMasterName,
rootpass=L.istVars. AWSDBMasterPassword,
dbusername=L.istVars.dbusername,
dbpassword=L.istVars.dbpassword)

if(b == True):

state 3
SaveMigrateDBState(CreateFile=False,
Function="CreateAWSDatabaseUserViaLocalMySQLCommandLine")
else:
return False

Check this function has done or not?
if(b_DoMySqglGrantForListServersAWS == False):
print'DoMySqlGrantForListServersAWS\n'
b = DoMySqglGrantForListServersAWS(filename="hosts’,
ssh=ssh_local,
host_ip=ListVars.AWSDB_ip,
rootusername=ListVars. AWSDBMasterName,
rootpass=ListVars. AWSDBMasterPassword,
database_name=L.istVars.database name,
dbusername=L.istVars.dbusername,
dbpassword=L.istVars.dbpassword)
if(b == True):
state 4
SaveMigrateDBState(CreateFile=False, Function='"DoMySglGrantForListServersAWS')
else:
return False

ssh_local.close()

Update config file for website
UpdateConfigFile()

#Write DB configuration info to AWS message queue
b = WriteDBConfigToSQS()
if(b):
print 'Create msg SQS'
else:
print 'msg SQS failed'
‘done’

53

Appendix 3: Web migration

def MigrateWebsiteTOAWS():
#migrate website from a server to another server
ListVars.WebsiteDirectory = os.environ[HOME'] +'/web’
ListVars.Key_Pem_File = os.environ[HOME'] + ‘/Icc.pem’

ListVars. AWSWebServerRootUsername = ‘ubuntu’
ListVars. AWSWebServerRootPassword="
ListVars. AWSWebsiteDirectory = ‘/var/www'

ListVars.ami = 'ami-bae2abe8'
ListVars.instance_type = 'ml.large’
ListVars.key name ='my_key'
ListVars.security_group = 'quick-start-1'

web_path = ListVars.WebsiteDirectory

zip_file = 'web_temp.tar'

config_file ="config.inf'

remote_folder = ListVars.AWSWebsiteDirectory

temp.= raw_input('Do you want to load information that you had saved (Yes/N0)? ")
if(temp.upper() == "Y' or temp:upper() == "YES'):

LoadMigrateWebsitelnfo()
else:

EnterMigrateWebsitelnfo()

Creating AWS instance
ret, ip, id = CreateNewAWSlInstance()
if(ret==False):
print 'Cannot create AWS instance'
return False

#Update AWS list file
UpdateAWSListFile(ip=ip)

#Add new item to ListAWS

AddListAWS(ip=ip,
user=ListVars.AWSWebServerRootUsername,
password=L.istVars.AWSWebServerRootPassword)

Moving website
Save to code files folder
zip = zip_web_directory(zip_file=zip_file, web_path=web_ path, new_config_db=config_file)

if(zip == False):
return False

check MD?5 for original file
Save to code files folder
local_file_data = open(zip_file, "rb™).read()
md1 = md5.new(local_file_data).digest()

ssh = paramiko.SSHClient()
ssh.set_missing_host_key policy(paramiko.AutoAddPoalicy())
try:
if(toAWS==True):
AWS

54

ssh.connect(hostname=L.istVars. AWSWebServerIP,
username=ListVars. AWSWebServerRootUsername,
key_filename=ListVars.Key Pem_File)
else:
Local
ssh.connect(hostname=ListVars. AWSWebServerIP,
username=ListVars. AWSWebServerRootUsername,
password=L.istVars.AWSWebServerRootPassword)
except Exception, e:
print ListVars. AWSWebServerIP
print ListVars. AWSWebServerRootUsername
print ‘connect to remote server failed'
printe
return False

print "SFTP connected successfully!"

sftp = ssh.open_sftp()
while(True):
try:
sftp.put(zip_file, zip_file)
except Exception, e:
print'Upload website failed'
print e
return False

break

"'check MD5 for uploaded file"
remote_file_data = sftp.open(zip_file).read()
md2 = md5.new(remote_file_data).digest()

if(mdl == md2):
break

else:
print 'Error MD5: "
print ‘original:', md1
print ‘remote:’, md2

time.sleep(10)

sftp.close()

#extract web file
cmd = 'sudo tar -xf %s -C %s .' % (zip_file, remote folder)
re = ExecuteCommand(client=ssh,
cmd=cmd, sudo=True,
password=ListVars. AWSWebServerRootPassword)
if(re == False):
print 'Extract files failed'
return False

ssh.close()
print "Website copied successfully!"

AWSLoadBalanceAddInstance(instance=str(id))

55

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Research Contribution
	1.4 Thesis Organization

	2 Theoretical Background
	2.1 Cloud Computing
	2.1.1 Essential Characteristics of Cloud Computing
	2.1.2 Service models
	2.1.3 Cloud Deployment Models

	2.2 Amazon Web Services (AWS)
	2.2.1 Why AWS
	2.2.2 Services

	3 Architecture
	3.1 Website Overload Reasons
	3.2 Website Overload Solutions
	3.2.1 Expanded the Original System
	3.2.2 Applying AWS to the Original System

	3.3 Doing Migrations
	3.3.1 Database Migration
	3.3.2 Web server Migration

	3.4 Security problems

	4 Implementation
	4.1 Experiments
	4.1.1 Choice software for simulation
	4.1.2 Test link speed 100Mbps
	4.1.3 Test link speed 1Gbps
	4.1.4 Test with Amazon Web Services

	4.2 Monitoring System Scaling
	4.2.1 Requirements
	4.2.2 Structure
	4.2.3 Result

	4.3 Cost of using Amazon Web Services for Course Selection System

	5 Conclusion and Future Works
	6 References

