

國 立 交 通 大 學

資訊科學系

碩 士 論 文

運用雲端運算在系統容易出現迫切需求:

用亞馬遜 Web服務(AWS)

Applying Cloud Computing to Systems Prone to Pressing Demand:

Using Amazon Web Services (AWS)

研 究 生：黎高昆
指導教授：林寶樹 教授

中 華 民 國 一 百 零 二 年 八 月

運用雲端運算在系統容易出現迫切需求:

用亞馬遜 Web服務(AWS)
Applying Cloud Computing to Systems Prone to Pressing Demand:

Using Amazon Web Services (AWS)

研 究 生：黎高昆 Student: Le Cao Con
指導教授：林寶樹 教授 Advisor: Prof. Bao-Shuh Paul Lin

國 立 交 通 大 學
資訊科學與工程研究所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

August 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年八月

i

運用雲端運算在系統容易出現迫切需求:

用亞馬遜 Web服務(AWS)

研 究 生：黎高昆 指導教授：林寶樹 教授

國 立 交 通 大 學
資訊科學與工程研究所 碩士班

摘要

雲端運算的使用，在技術及商業界已經司空見慣。雲端服務供應

商的數量一直不斷增長，因此有一系列給遠端用戶的選擇。也有一些優

秀的應用，如 Dropbox 的發明，檔案託管服務，提供雲端儲存以及文件

同步等等。

藉由一些課程，我學習到與雲端運算相關的大量的知識，我參加

了一些課程並做一個敏銳的觀察者，我意識到，這樣的系統如選課系統

（例如，在交大的選課系統）或在我的國家，越南的鐵路銷售系統，像

這樣的系統有時不太穩定。

當網站流量激增、流量過量時，將造成伺服器負載急劇增加而影

響伺服器上的網路連接。比方說針對選課系統來說在學校讓學生選課時

有時候會有超多學生同時一起來跟系統連結，這會造成伺服器當機或是

反應很慢。另外一個系統像鐵路銷售系統在過年時有許多人為了工作而

ii

離開家裡從北部移到南部，然後過年時要回家團圓，因為他們同時跟系

統連結，所以這也會造成一個系統像上面提到一樣的。

針對類似上面提到的系統我們會有什麼辦法又簡單又便宜能夠解

決短時間迫切需求之系統呢？

亞馬遜 Web 服務(AWS)是一家雲端運算供應商，他們提供許多服

務又便宜又有大彈性。所以我認為這就是我們的選擇之一。在我的研究，

我建好一個簡單的系統跟選課系統差不多，然後把這個系統移轉到遠端

去，接下來是針對這兩個系統做評估看它們的效率如何。最後我建議在

雲端可以建一個系統，它的架構包含一個域名系統 Web 服務、三個負

載平衡器、三到十八台虛擬 Web 伺服器、和一台資料庫伺服器。Web

伺服器的數量會變動是因為靠使用者的數量同時供用讓整個系統做自動

縮放。假設我們本來的系統頻寬大概 1Gbps，然後跟新的系統做一個比

較，新的系統能力最大可以比本來的系統能力高三倍。而且新的系統也

不算貴，每學期大概要花美金 600 元。

完成這個研究，我有一個結論是上面類似之系統可以改善它的情

況如果有應用雲端運算。

iii

Applying Cloud Computing to Systems Prone to Pressing Demand:
Using Amazon Web Services (AWS)

Student: Le Cao Con Advisors: Prof. Bao-Shuh Paul Lin

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Cloud computing has been a commonplace and widely used in both

technological and business world. The number of cloud providers has been

constantly growing and so has the set of options for end users. There have

also been some outstanding applications such as the invention of Dropbox, a

file hosting service that offers cloud storage and file synchronization.

With a great deal of knowledge on cloud computing from some

courses that I took in the master program and as a keen observer, I realized

that such systems as the course selection system (for example the one that

operates at NCTU) or the railway ticket system back in my country, Vietnam,

do not work well sometimes.

There are times that websites are overloaded to a point when their

services are degraded or disrupted entirely. This web traffic overload happens

when there is a large surge in traffic to a particular website causing a dramatic

increase in server load and putting severe strain on the network links leading

to the server. For example many students access the course selection system

iv

at the time the school lets the students select their courses on it. Also, many

people want to buy railway tickets on railway ticket system at the time closing

to New Year vacation when they want to go home.

For those systems, is there any practical way to improve them with low

cost but high degree of effectiveness?

Amazon Web Services (AWS), a cloud computing provider, provides a

number of services with low cost and rapid elasticity. Therefore, this should

be considered as a choice for us. In this research, I am going to conduct

several experiments with an aim to migrate a sample system like a course

selection system to AWS and evaluate the effects of the new system.

Furthermore, I expect to propose a model for the new system on the cloud

which includes one domain name system web services, three load balancers,

three to eighteen web servers, and one database server. The number of web

servers might be changed depending on how many users access the new

system at the same time. It’s assumed that the original system has the

capacity bandwidth of 1Gbps. As well as that if we compare the new system

with the original one, the capacity of the new system is approximately 3 times

as big as that of the original system. Furthermore, the cost of new system is

relatively low estimated at $600 for every semester.

After doing this research, I have reached the conclusion that the

overload system may be improved by applying cloud computing technology.

v

ACKNOWLEDGEMENTS

In my exploring of knowledge and in the course of completing my

thesis, many individuals have assisted me. I would like to acknowledge

wholeheartedly their assistance, cooperation and encouragement which all

contributed in making this study possible. Without them, this study would not

have been completed.

First, my appreciation goes to my advisor, Prof. Bao-Shuh Paul Lin. He

has guided me through the completion of the master program and through this

thesis. He discussed with me patiently, carefully and challenged me to think

critically. He has constantly provided me with great sympathy,

encouragement and support and most importantly trusted my capacity as a

researcher. My sincere gratitude also goes to Dr. Li-Ping Tung who eagerly

exchanged her ideas with mine and did not hesitate to share her resources. It

is an honor for a student like me to have them as advisors during my research

and role models for my forthcoming profession.

I also wish to thank other teachers and staff from the Institute of

Computer Science and Engineering, NCTU, my friends, my classmates and

my roommates back in the dormitory for creating an academic and friendly

environment for me. Without their expectations, patience and cooperation, I

may have struggled with this project.

Finally, a million thanks go to my families, in particular my wife and

my adorable daughter who always take care of me and support me with

understanding and kindness. Their love has given me enormous strength to

overcome all the difficulties that a student has to face up with while studying

abroad. As my appreciation, my heart goes with them forever.

vi

TABLE OF CONTENTS

摘要 .. i

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. viii

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Objective ... 1

1.3 Research Contribution .. 2

1.4 Thesis Organization .. 2

2 Theoretical Background .. 3

2.1 Cloud Computing ... 3

2.1.1 Essential Characteristics of Cloud Computing 4

2.1.2 Service models .. 5

2.1.3 Cloud Deployment Models ... 6

2.2 Amazon Web Services (AWS) ... 7

2.2.1 Why AWS ... 7

2.2.2 Services ... 8

3 Architecture ... 14

3.1 Website Overload Reasons ... 14

3.2 Website Overload Solutions ... 17

vii

3.2.1 Expanded the Original System .. 17

3.2.2 Applying AWS to the Original System 20

3.3 Doing Migrations .. 22

3.3.1 Database Migration ... 24

3.3.2 Web server Migration ... 26

3.4 Security problems ... 28

4 Implementation ... 31

4.1 Experiments .. 31

4.1.1 Choice software for simulation ... 32

4.1.2 Test link speed 100Mbps .. 33

4.1.3 Test link speed 1Gbps ... 34

4.1.4 Test with Amazon Web Services .. 35

4.2 Monitoring System Scaling .. 38

4.2.1 Requirements ... 38

4.2.2 Structure .. 39

4.2.3 Result ... 42

4.3 Cost of using Amazon Web Services for Course Selection System .. 43

5 Conclusion and Future Works ... 45

6 REFERENCES .. 46

Appendix 1: AWS Scaling .. 48

Appendix 2: Database migration ... 51

Appendix 3: Web migration .. 54

viii

LIST OF FIGURES

Figure 2.1: Cloud computing logical diagram (Wikipedia.org) 3

Figure 2.2: Cloud computing types (Wikipedia.org) .. 6

Figure 3.1: General web farm architecture [15] .. 14

Figure 3.2: Database Server overload ... 15

Figure 3.3: Web Servers overload ... 16

Figure 3.4: Load Balancer overload .. 16

Figure 3.5: Database Server overload solution ... 17

Figure 3.6: Web Servers overload solution ... 18

Figure 3.7: Load Balancer overload solution .. 19

Figure 3.8: Extended original system with the AWS 20

Figure 3.9: A normal website system .. 21

Figure 3.10: New system on AWS model... 21

Figure 3.11: Equivalent of new system model .. 22

Figure 3.12: Migration from On-Premise to Off-Premise 23

Figure 3.13: modeling database migration .. 24

Figure 3.14: Modeling web server migration ... 26

Figure 3.15: AWS EC2 Key Pair .. 28

Figure 3.16: AWS EC2 Security Groups .. 29

Figure 3.17: DB Security Groups ... 30

Figure 3.18: AWS security credentials ... 30

Figure 4.1: Simulation webpage ... 31

ix

Figure 4.2: Jmeter GUI ... 32

Figure 4.3: Simulation 100Mbps link ... 33

Figure 4.4: Simulation 1Gbps link .. 34

Figure 4.5: AWS experiment architecture .. 35

Figure 4.6: 02 AWS EC2 m1.large instances – 02 Elastic Load Balancers ... 35

Figure 4.7: 04 AWS EC2 m1.large instances – 02 Elastic Load Balancers ... 36

Figure 4.8: 06 AWS EC2 m1.large instances – 02 Elastic Load Balancers ... 36

Figure 4.9: 06 AWS EC2 m1.large instances – 03 Elastic Load Balancers ... 37

Figure 4.10: 12 AWS EC2 m1.large instances – 03 Elastic Load Balancers . 37

Figure 4.11: Running 18 AWS EC2 large instances and RDB db.m2.2xlarge
 ... 38

Figure 4.12: Running 18 AWS EC2 large instances and RDB db.m2.4xlarge
 ... 38

Figure 4.13: Replace Nameserver ... 39

Figure 4.14: AWS scale-in .. 40

Figure 4.15: AWS scale-out .. 41

Figure 4.16: AWS scaling ... 42

Figure 4.17: References of server pricing ... 44

1

Chapter 1:

1 Introduction

1.1 Motivation
Recently while selecting courses, I have always felt that NCTU’s

system do not respond very well. One reason might be that many students

access the servers at the same time, which possibly makes the servers

overload. In general, the course selection system just requires more power at

the time the students choose their courses at the beginning and the end of

every semester.

Another system is railway ticket selling system. It seems appears

difficult for passengers to order tickets when the time is close to vacations,

especially in New Year. A lot of people want to travel or go home, so the

amount of access to train ticket system is suddenly increased. Sometimes such

escalating demand shuts the system down completely, and then no one can

order tickets. In my country, actually, numerous workers working in the South

but want to head back by train to the North where their families and homes

are before the Traditional New Year vacation, and then come back to work

after the holiday is finished. However, they cannot order train tickets via the

system and, as a result, they have to buy expensive tickets by some other

ways such as through middlemen in the black market.

1.2 Objective
As a matter of fact, cloud computing is very popular nowadays. One of

the features of cloud computing is that it is elastic. This means we can change

any resource appropriately and quickly on demand. It is very easy to scale-in

or scale-out while the cost is based on actual usage. Therefore, it occurs to me

2

that we can apply cloud computing to our course selection system or the

system of selling railway tickets. When we need our system to be more

powerful, we just scale-out our system. Otherwise, we scale-in or use the

original system only. In that way a lot of money can be saved to buy new

devices and maintain them. The basis is pay as we go.

My research purpose is to construct a tool which could automatically

attach some virtual Web servers that are run on AWS, migrate Database

server to Amazon cloud and scale it up or down if needed when the system

responds too slowly. That enables the managers to manage and scale the

system as they want. After that, synchronize the database back with the

original database when we do not need to use AWS.

1.3 Research Contribution
This research hopes to identify the causes of and work towards

solutions to the problem of congestion in websites and system with suddenly

and rapidly increased access at given time.

1.4 Thesis Organization
The thesis is organized as follows. Chapter 2 presents an overview of

Cloud Computing and Amazon Web Services. Chapter 3 illustrates why a

website can be overloaded and proposes some solutions. Chapter 4 presents

experiments with web traffic load. Finally, Chapter 5 states the conclusion

and envisages future work.

3

Chapter 2:

2 Theoretical Background

2.1 Cloud Computing
Cloud computing is a recent computing concept that describe a lot of

computers which are connected together through communication network.

There exist various definitions of cloud computing. For example, as is put by

National Institute of Standards and Technology Definition of Cloud

Computing, “Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or

service provider interaction” [6]. Also, according to webopedia.com, a

famous online computer dictionary for computer and internet, “Cloud

computing is a type of computing that relies on sharing computing

resources rather than having local servers or personal devices to handle

applications.” [10]

Figure 2.1: Cloud computing logical diagram (Wikipedia.org)

4

2.1.1 Essential Characteristics of Cloud Computing

Cloud computing has the following characteristics: [5] [6]:

 On-demand self-service

Consumer can use resources as much as they want. They can provision

any mount of computers, network storages at anytime and anywhere without

requiring human interaction.

 Broad network access

Consumer can use any kind of devices such as desktops, laptops,

mobile phones, handhelds, etc. to access cloud computing services as long as

they can access the Internet.

 Resource pooling

Computing resources are provided like a pool where consumers can use

many kinds of resources such as virtual machine, storage, bandwidth, etc.

However, they do not know where the resources exactly are; they just know

the high level of abstraction (ex: country, region). In other words, the location

of resources is invisible to end users.

 Rapid elasticity

Consumers can scale their application in or out very quick as the

resources seem unlimited and can satisfy any requirement.

 Measured service

Cloud systems provide metering capability that helps consumers

monitor their used resources such as CPU usage, data storage, network

bandwidth, etc.)

5

2.1.2 Service models

Cloud computing services can be classified into several kinds of

services such as Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), Software as a Service (SaaS), Network as a Services (NaaS), Database

as a Service (DaaS), and XaaS - anything as a service.

 Infrastructure as a service (IaaS)

In this kind of service, cloud providers offer a complete infrastructure

such as machine, network, firewall, load balancer, disk image, etc. Therefore,

consumers do not need to care about hardware layer nor do they have to

manage low layer. However, when they want to deploy an application, they

not only have to install operating systems on the cloud infrastructure by

themselves, but also have to install the required environment. And the

consumers have to manage and maintain their own operating systems as well

as applications.

 Platform as a service (PaaS)

In this model, cloud providers supply an environment that includes

operating systems, database server, web server, and programming

environment. Consumers can deploy their application without worrying about

underlying hardware and software layers. Providers have to take care of the

underlying layers including keeping them up to date. Consumers will take

care of their application only. In some cases, cloud providers can scale their

resources automatically to match the consumers’ demands.

 Software as a service (SaaS)

This is the highest level of cloud computing services where consumers

can rent or buy application software directly. Cloud providers make sure that

6

these software are up – to - date. Consumers do not need to manage the cloud

infrastructure and platform.

2.1.3 Cloud Deployment Models

Figure 2.2: Cloud computing types (Wikipedia.org)

 Private cloud

Private cloud is only for a single organization. It is hosted at On-

Premise (internal) or Off-Premise (external). Those who want to develop

private cloud must be experts who have significant knowledge about system

and system security. Every single security issue must be addressed to protect

the organization from any potential vulnerabilities.

 Public cloud

Public cloud is open for public use. Therefore, it does not need high

level of security as required by private cloud. However, the architecture of

both private cloud and public cloud is the same.

 Community cloud

Community cloud is a cloud model that stands between private cloud

and public cloud. This cloud model is made when some organizations share

7

infrastructure. Therefore, the number of users of this model are fewer than

that of public cloud that is used all over the world and bigger than that of

private cloud which is used within certain organization. That means

community cloud does not help to save cost.

 Hybrid Cloud

Hybrid cloud is comprised of two or more of the aforementioned cloud

models to take advantage of multiple deployment models to satisfy some

temporary needs

2.2 Amazon Web Services (AWS)
Amazon Web Services offers a complete set of infrastructure and

application services that allows everything from enterprise applications and

big data projects to social games and mobile applications to be run virtually in

the cloud [11].

2.2.1 Why AWS

Amazon Web Services provides a flexible, scalable, low-cost cloud

computing platform for businesses of all sizes all around the world.

- Pay as you go: Consumers pay for exactly what they use. Except

for AWS monthly free usage tier; there are no long-term

contracts or up-front commitments.

- Scalable: With AWS, any application can be easily scaled in/out

or up/down when needed as a result of a massive infrastructure

that is provided by Amazon.

- Flexible: Every task from operating system to programming

language, or those related to web application platform, software,

8

database server, etc. is performed flexibly. If an application can

run On-Premise, it can run in the cloud.

- Easy to use: AWS can be started within few minutes. We have

many ways to do what we need by using AWS Management

Console, APIs, and Command Line Tools.

2.2.2 Services

AWS provides many following products and services:

 Compute
o Amazon Elastic Compute Cloud (EC2)
o Amazon Elastic MapReduce

 Auto Scaling
o Elastic Load Balancing (ELB)
o Content Delivery
o Amazon CloudFront

 Database
o Amazon Relational Database Service (RDS)
o Amazon DynamoDB
o Amazon ElastiCache
o Amazon Redshift

 Deployment & Management
o AWS Identity and Access Management (IAM)
o Amazon CloudWatch
o AWS Elastic Beanstalk
o AWS CloudFormation
o AWS Data Pipeline
o AWS OpsWorks
o AWS CloudHSM

 Application Services
o Amazon CloudSearch
o Amazon Simple Workflow Service (SWF)
o Amazon Simple Queue Service (SQS)
o Amazon Simple Notification Service (SNS)
o Amazon Simple Email Service (SES)
o Amazon Elastic Transcoder

 Software
o AWS Marketplace

9

 Networking
o Amazon Route 53
o Amazon Virtual Private Cloud (VPC)
o AWS Direct Connect

 Payments & Billing
o Amazon Flexible Payments Service (FPS)
o Amazon DevPay

 Storage
o Amazon Simple Storage Service (S3)
o Amazon Glacier
o Amazon Elastic Block Store (EBS)
o AWS Import/Export
o AWS Storage Gateway

 Support
o AWS Support

 Web Traffic
o Alexa Web Information Service
o Alexa Top Sites

 Workforce
o Amazon Mechanical Turk

• Amazon Elastic Compute Cloud (EC2)

Amazon EC2 is a web service that provides resizable compute capacity

in the cloud. It is designed to make web-scale computing easier for developers.

Amazon EC2 reduces the time required to obtain and boot new server

instances to minutes, allowing you to quickly scale capacity, both up and

down, as your computing requirements change.

Amazon EC2 presents a true virtual computing environment, allowing

you to launch instances with a variety of operating systems, load them with

your custom application environment, manage your network’s access

permissions, and run your image using as many or few systems as you desire.

Service Highlights:

10

 Elastic: we can scale the number of instances within minutes.

Furthermore, we can launch thousands of server instances

simultaneously.

 Completely Controlled: We have complete control of our

instances.

 Flexible: We have multiple choices of instance types, operating

systems, and software packages.

 Designed for use with other Amazon Web Services: It is tightly

integrated with other Amazon Web Services.

 Reliable: Amazon EC2 offers a highly reliable environment; the

Service Level Agreement commitment is 99.95% availability for

each Amazon EC2 Region.

 Secure: Amazon EC2 works in conjunction with Amazon Virtual

Private Cloud (VPC) to provide security and robust networking

functionality for our compute resources.

 Inexpensive: We pay a very low rate for the compute capacity we

actually consume.

 Easy to Start: Amazon EC2 provides preconfigured software on

Amazon Machine Images (AMIs), so we can quickly deploy this

software to EC2 via 1-Click launch, EC2 console, and API

functions.

• Elastic Load Balancing

Elastic Load Balancing automatically distributes incoming application

traffic across multiple Amazon EC2 instances. It can detect unhealthy

instances and automatically reroutes traffic to healthy instances until the

unhealthy instances are detected becoming healthy instances.

Customers can enable Elastic Load Balancing within a single

Availability Zone or across multiple zones for even more consistent

11

application performance. Elastic Load Balancing can also be used in an

Amazon Virtual Private Cloud (“VPC”) to distribute traffic between

application tiers.

• Amazon Relational Database Service (Amazon RDS)

Amazon Relational Database Service (Amazon RDS) is a web service

that makes it easy to set up, operate, and scale a relational database in the

cloud. It provides cost-efficient and resizable capacity while managing time-

consuming database administration tasks, freeing you up to focus on your

applications and business.

Amazon RDS gives you access to the capabilities of a familiar MySQL,

Oracle or Microsoft SQL Server database engine. Amazon RDS automatically

patches the database software and backs up your database, storing the backups

for a user-defined retention period and enabling point-in-time recovery. You

benefit from the flexibility of being able to scale the compute resources or

storage capacity associated with your Database Instance (DB Instance) via a

single API call.

Service Highlights:

 Simple to Deploy: Easy to create new database server by using API

calls or AWS Management Console in minutes without any worry

about underlying hardware or software level.

 Managed: Amazon RDS handles time-consuming database

management tasks, such as backups, patch management, and

replication, allowing you to pursue higher value application

development or database refinements.

12

 Compatible: With Amazon RDS, you get native access to a

relational database. This facilitates compatibility with your existing

tools and applications.

 Fast, Predictable Performance: Amazon RDS Provisioned IOPS

is a high performance storage option designed to deliver fast,

predictable, and consistent performance for I/O intensive

transactional database workloads.

 Scalable: You can easy scale your database to meet your

application needs by using API function or the AWS Management

Console.

 Reliable: Many features such as automated backups, DB snapshots,

automatic host replacement, and Multi-Available Zone, enhances

the level of reliability for our database.

 Designed for use with other Amazon Web Services: Amazon

RDS is tightly integrated with other Amazon Web Services.

 Secure: Amazon RDS provides a number of mechanisms to secure

your DB Instances. It includes configure firewall settings that

control network access to your database. And it also allows you to

run your DB Instances in Amazon Virtual Private Cloud (Amazon

VPC). Amazon VPC enables you to isolate your DB Instances by

specifying the IP range you wish to use, and connect to your

existing IT infrastructure through industry-standard encrypted IPsec

VPN.

 Inexpensive: You pay very low rates and only for the resources

you actually consume.

• Amazon Simple Queue Service (Amazon SQS)

Amazon Simple Queue Service (SQS) is a fast, reliable, scalable, fully

managed queue service. SQS makes it simple and cost-effective to decouple

13

the components of a cloud application. You can use SQS to transmit any

volume of data, at any level of throughput, without losing messages or

requiring other services to be always available.

• Amazon CloudWatch

Amazon CloudWatch provides monitoring for AWS cloud resources

and the applications customers run on AWS. Developers and system

administrators can use it to collect and track metrics, gain insight, and react

immediately to keep their applications and businesses running smoothly.

Amazon CloudWatch monitors AWS resources such as Amazon EC2 and

Amazon RDS DB instances, and can also monitor custom metrics generated

by a customer’s applications and services.

Amazon CloudWatch lets you programmatically retrieve your

monitoring data, view graphs, and set alarms to help you troubleshoot, spot

trends, and take automated action based on the state of your cloud

environment.

• Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name

System (DNS) web service. It is designed to give developers and businesses

an extremely reliable and cost effective way to route end users to Internet

applications by translating human readable names like www.example.com

into the numeric IP addresses like 192.0.2.1 that computers use to connect to

each other. Route 53 effectively connects user requests to infrastructure

running in Amazon Web Services (AWS) – such as an Amazon EC2 instance,

an Amazon Elastic Load Balancer, an Amazon CloudFront distribution, or an

Amazon Simple Storage Service (Amazon S3) bucket – and can also be used

to route users to infrastructure outside of AWS.

http://www.example.com/

14

Chapter 3:

3 Architecture

For the websites of small and medium – sized agencies, investing in the

hardware system is a difficult puzzle to solve because of several reasons. First

and foremost, substantial investment for the initial hardware system will be an

expensive and needless waste if actual demand is too low. On the other hand,

a modest sum leads to the situation in which the system will not be able to

cope well with a sudden surge in demand at certain points. This is even more

challenging for websites with very low level of usual access but with

occasional massive traffic. The question of how much to spend or invest

poses a genuine dilemma for the designers and operators of such systems.

Figure 3.1: General web farm architecture [15]

3.1 Website Overload Reasons
General website models typically shown in figure 3.1 included some

main components such as Load Balancer, Web Server, Database Server,

network link, firewall, etc. Website is overload when we let the system do a

15

work exceeds its ability [3]. A website overloaded should be due to one of the

three following reasons:

3.1.1 Database Server Overload

…..

Internet/Intranet

Database
Server

Web
Server

Load
Balancer

Overload

Figure 3.2: Database Server overload

If a system’s Load Balancer and Web Servers are good enough, Load

Balancer can satisfy massive data going through and if Web Servers have

strong configuration, the reason for our website system overload maybe is our

Database Server is overloaded. Of course, like Web Servers, Database Server

is overloaded because its CPU is overloaded or memory overloaded or

bandwidth overloaded, etc.

3.1.2 Web Servers Overload

16

Overload
Internet/Intranet

Database
Server

Web
Server

Load
Balancer

…..

Figure 3.3: Web Servers overload

When capacity bandwidth of Load Balancer is large enough, it can

handle all data transferred from Web Servers. The reason for website

overload maybe is Web Servers are overloaded. Web Server has some kind of

overloads like CPU overload, memory overload, bandwidth overload, etc.

3.1.3 Load Balancer Overload

Overload

Internet/Intranet

Database
Server

Web
Server

Load
Balancer

…..

Figure 3.4: Load Balancer overload

17

The principle of Load Balance’s operation is that every request is sent

to Load Balancer, and then Load Balance passes the requests to one of the

Web Servers. After that, Web Server queries data from Database Server and

prepares response content, and then the content go through Load Balancer

before it is sent to end user. Obviously, data from every Web Server is

transferred over Load Balancer, so Load Balance’s bandwidth rate equals to

Web Servers’ entire bandwidth rate. Therefore, if users want their websites to

work well even at times of a vast simultaneous user access, a Load Balance

which has a large enough capacity bandwidth is needed. Otherwise, their

website will be easily overloaded and cannot be expanded.

3.2 Website Overload Solutions
The solution depends on how adjustable a system is. If the system still

can expand, several servers can be added into our original system. Otherwise,

we can think about migrating our original system to one of cloud platforms

such as Amazon Web Services (AWS).

3.2.1 Expanded the Original System

a) Database Server Overload

…..

Internet/Intranet

Web Server

Load
Balancer

DB Read Replica
Slave

…..

Master

Figure 3.5: Database Server overload solution

18

The solution to this situation is using DB Read Replica technique,

database replication [7][8][9]. It seems like a master – slave relationship

between the original and the copies of database. The master can read/write

database, but the slaves only can solely read

Every time the master writes new or updates several rows of database,

it will also do synchronous database with the slaves

b) Web Servers Overload

Internet/Intranet

Database
Server Web

Server

Load
Balancer

…..

…..

Extended Web Server

Figure 3.6: Web Servers overload solution

In this situation, we can upgrade the Web Servers or add some new

Web Servers to the original system. However, machines should not be added

in large number. Otherwise, the system may experience the previous problem

(Database Server overload)

The numbers of Web Servers which can be added depend on the

following aspects:

19

- Load Balance’s capacity bandwidth: It is no sense if total Web

Servers bandwidth, including added Web Servers, exceeds Load

Balancer’s capacity bandwidth.

 Database server ability (CPU, memory, bandwidth, etc.): The

Database server cannot serve too much Web Servers. If Database

Server is strong enough and we just care about bandwidth, after

doing some experiments, I have come to the conclusion that total

Web Servers’ bandwidth should approximately be 3 times as strong

as Database server’s bandwidth. That makes all of them work

perfectly together.

c) Load Balancer Overload

To solve this situation, we can upgrade our Load Balancer, or add some

new Load Balancers together with using Bin9 to route users’ requests to one

of Load Balancers.

Load Balancer

…..
…..

…..

Database
Server

Web Server

Internet/Intranet

Bin9 (round-
robin dns)

Figure 3.7: Load Balancer overload solution

20

For those aforesaid three solutions, before applying them, it’s essential

to analyze the strengths and the weaknesses:

• Strengths:

– If we extend the original system, it will be used for long time

– The whole system architecture does not change, so we do not

need to worry about the system security.

• Weakness:

– Extended system needs up-front cost.

– Extended system also needs more power consumption and more

management.

3.2.2 Applying AWS to the Original System

a) Extended original system with the AWS

Internet/Intranet

Database
Server

Web Server

Load Balancer

…..

…..

Extended Web Server
AWS EC2

My lab’s Capacity
Bandwidth is small
(10MBps)

Figure 3.8: Extended original system with the AWS

21

The drawback of this solution is my lab’s capacity bandwidth is small,

so I could not see the effects. Furthermore, another reason is the data of

database must be uploaded from local to AWS, but it is a slow speed link

(uplink), I cannot do this kind of experiment.

b) Migration original to the AWS

Web Server Database
Server

Internet/Intranet

Figure 3.9: A normal website system

With the kind of system aforementioned, we could think about

migrating our system to a cloud platform where we can scale our system

in/out very quickly. I choose Amazon Cloud Services because it is cheap,

supportive, and ease to develop. As a result, the real system, after we move

our original system to cloud can be depicted in the figure bellow:

AWS Elastic Load
Balancer 1

AWS Elastic Load
Balancer 3

…..

AWS EC2

AWS RDS DB

Amazon
Route53

Internet

AWS Elastic Load
Balancer 2

…..

AWS EC2

…..

AWS EC2

Figure 3.10: New system on AWS model

Internet/Intranet

22

Web Server 1

Database
Server

Load
Balancer

Web Server 2

Web Server 3

Figure 3.11: Equivalent of new system model

In this model, we need to use Amazon Route53 services that redirect

user’s requests to one of Amazon Elastic Load Balancers.

After migrating original system to AWS, if the capacity bandwidth of

the link between user and Web Server is 1Gbps, we will have a new system’s

ability which is 3 times as efficient as the original system’s ability. (The

results of experiments are discussed later)

3.3 Doing Migrations
As a current trend, the concept of cloud computing has grown so

popular, addressing multiple issues related to processing, calculating and

sharing software, or developing enterprises. A lot of companies have thought

about moving their services to cloud platform.

In the technologically business world, the use of on - premise software

and off – premise software has been greatly assisting business activities. The

former, which is often abbreviated as on-prem software, is installed and run

on computers on the premises (in the building) of the person or an

organization using the software, rather than at a remote place. The latter, off-

23

premises software, is commonly known as “software as service” or

“computing in the cloud”

Until around 2005, the on-premises approach to deploying data was the

most common. However, later, software running at a remote location became

widely available and adopted. The use of new, alternative deployment method

removed the need for the user to install any software on premises and brought

about further benefits. Running software remotely can result in considerable

cost savings because of reduced staffing, maintenance, power consumption,

etc.

In other words, cloud computing has made it much easier to deploy

data. With cloud, businesses can reduce up-front costs, management costs,

pay for what they use, scale as they want, etc.

Figure 3.12: Migration from On-Premise to Off-Premise

To move a website from On-Premise to Off-Premise, we need to move

Database and Web Servers.

Off-Premise On-Premise

24

3.3.1 Database Migration

Migrate Database To
Amazon AWS

Load input
parameters? LoadMigrateDBInfoEnterMigrateDBInfo YesNo

No

Create Amazon
MySQL DB

SaveMigrate
DBStateSuccessful? Yes

Update Security Group SaveMigrate
DBStateSuccessful? Yes

Get IP Address of new AWS
MySQL DB

Migrate Database To Amazon
MySQL DB

Create Database Account

MySql Grant Permission For User

Update Web Config File

SaveMigrate
DBStateSuccessful? Yes

SaveMigrate
DBStateSuccessful? Yes

End

Save information?

Save Information

Yes

Load Execute State? Yes Load the Last Saved Migrate
DB State

No

Figure 3.13: modeling database migration

* Simplified code file looks at appendix 2

25

The figure 3.7 shows the structure of doing database migration

independently. When database migration starts, it asks whether the user wants

to load the last saved input information or not. In situation 1, if the answer is

yes, it will load the last saved information; otherwise, it will let us enter some

requirement information for program running. After it gets all the requirement

information, it will ask if the user wants to load the last saved program state

or not. If the answer is yes, it will go to the last saved state of the program.

Why is it necessary to save the state of the program? The answer is sometimes

the program is crashed while it is running, so we do not want to let the

program run at the beginning. We want the program to run from the last

failed position. In contrast, in situation 2, if the answer is no, it will start to

create a MySQL database on Amazon Relational Database Services (RDS). If

this procedure is finished successfully, it will save this state and continue with

the next step. The next step is to update security group of RDS which stores

the list of the IPs with allowed access to database. Afterward, the program

will get an IP address for the new database server and transfer database onto it.

The program will accordingly create a new account and grand permission for

that account to enable us to use the application. The last step of the program is

to update web configuration file due to the change of database server IP

address.

26

3.3.2 Web server Migration

Migrate Website To Amazon
AWS

Connect to AWS

Launch a EC2 instance

Enter parameters for creating AWS instances

Enter parameters for moving website

No

Save information? Save
InformationYes

Compress website
directory

Upload zip file to
Server

Compare MD5 of two zip
files?

Not equal

Equal

Extract zip file to web
directory of Server

End

Load input
parameters? No

Yes

Figure 3.14: Modeling web server migration

* Simplified code file looks at appendix 3

27

The figure 3.8 shows the process of migrating web server

independently. First of all, after started, the program asks the user if he/she

wants to load requirement information. If the answer is no, it will call the

input functions and let him or her enter requirement information. After that

the program will ask another question which is whether the user wants to save

the information or not. The user makes the decision and the program will

proceed to the next step. In contrast, if the answer is no, the program will

advance directly. In the next stage, the program will connect to AWS, launch

an EC2 instance of AWS, and wait for the new instance to run until the

instance’s status is available. Afterward, the program will call compress

website directory function – the function to make a zipped file including our

whole website directory, and insert the new database configuration file into

the zip file. This zip file later is uploaded to a new instance via SFTP (SSH

File Transfer Protocol) function, a function of paramiko [14] that transfers

files through SSHClient of paramiko between local machine and remote

machine. At this point, the program will compare the MD5 of two zip files. If

it is perfectly matched, the last step can be carried out. If not, it will try to

upload the zip file again. In other words, the program will go to the last step

when the MD5 of local zip file and remote zip file are matched and the last

step will extract the zip file of new EC2 instance to the web directory of the

instance. In the end, the new EC2 instance becomes a Web Server.

Actually, this function may be used just once. Why is that? This is

because when we do the auto scaling – terminate or launch several instances –

there are two ways to make an EC2 instance become a Web Server. In the

first way, we create an Amazon Machine Image (AMI) that includes all of our

requirement software and web directory which stores our website. As a result,

we just have to update database configuration file at the time a new EC2

instance is created. In the second way, we compress our web directory and

28

upload it to Amazon Simple Storage Services (Amazon S3). When a new EC2

instance is created, it will download the compressed file from Amazon S3,

extract the file to web directory, and then update database configuration file.

3.4 Security problems

Figure 3.15: AWS EC2 Key Pair

If we want to access one of EC2 instances, we need to show the Key

Pair value. Every EC2 instance has one Key Pair.

29

Figure 3.16: AWS EC2 Security Groups

EC2 Security Groups acts as a firewall that lets us control our ports.

Every EC2 instance belongs to one security group.

Look at the picture above, we just open two ports, port 22 for Linux

remote control and port 80 for http connection.

Every connection from outside to other ports number is denied.

30

Figure 3.17: DB Security Groups

DB Security Groups is for every Database server. It is also a firewall

where we can set which IP address or range of IP address that can access our

database.

Any device IP address which does not belong to the list of DB security

group access to our database will be denied.

Figure 3.18: AWS security credentials

For programmers who want to build an application interactive with

AWS, they have to own one of security credentials.

31

Chapter 4:

4 Implementation

4.1 Experiments
For simulation, I have created a simple webpage that shows a list of

course names. The table List Course has 43 rows. The webpage looks like a

student who is making a query to Course Selection System. At the time the

webpage is shown, it will insert a row into another table to mark one access is

made successfully. After that we can count how many number of end users

accessing the website at the same time.

Figure 4.1: Simulation webpage

For running code file, we need to prepare our environment. We need to

install some following tools:

- Boto [12]

- Amazon Relational Database Service Command Line [13]

32

- Paramiko [14]

4.1.1 Choice software for simulation

We have a lot of software which could help us to generate vast of users

to simulate a real system with many users at the same time. They include

httpert, curl-loader, loadUI, jmeter, etc. [16] But, the easiest, the most

effective software is Jmeter - a java program. Jmeter can run on both

Windows platform and Linux platform. And it is an application can be run

with both command line and GUI.

Figure 4.2: Jmeter GUI

If we want to run the application from command line, we need to

prepare a jxm file. To create jxm file, we have two ways. First, we create a

project from GUI, and then set all appropriate parameter values. After that

33

we will save the project into a new jxm file. Now we can use this file for

running the application from command line. Second, we can use a jxm format

file and insert some values into appropriate position such as host-ip, path, etc.

The command line format looks like:

java –jar ApacheJMeter.jar –n –t [jxm_filename]

4.1.2 Test link speed 100Mbps

100Mbps

Figure 4.3: Simulation 100Mbps link

Re
sp

on
se

 N
um

be
r

Time

34

With the link connecting between end users and web server running at

100Mbps, we can see that the outgoing of system is approximate 80Mbps, and

the number of user -access at the same time- is about 200 users.

4.1.3 Test link speed 1Gbps

1Gbps
Web Server
& Database

Server

Request

Response

Figure 4.4: Simulation 1Gbps link

With this kind of link between end users and web server, we can see

that the outgoing of system is approximate 500Mbps, and the number of user -

access at the same time- is about 1000 users.

Re
sp

on
se

 N
um

be
r

Time

35

4.1.4 Test with Amazon Web Services

AWS Elastic Load
Balancer 1

AWS Elastic Load
Balancer 3

…..

AWS EC2

AWS RDS DB

Amazon
Route53

Internet

AWS Elastic Load
Balancer 2

…..

AWS EC2

…..

AWS EC2 32

Figure 4.5: AWS experiment architecture

In these experiments, I create some virtual machines at another cloud

platform as these machines are supposed to help me to generate big mount of

requests.

a) 02 AWS EC2 instances

Figure 4.6: 02 AWS EC2 m1.large instances – 02 Elastic Load Balancers

When we run 02 EC2 instances, the number of user access at the same

time is about 1100 per second. However, as illustrated in the diagram,

Re
sp

on
se

 N
um

be
r

Time

36

sometimes the number of user access decreases because the CPU of one or

both of EC2 instances is overloaded. Therefore, these EC2 instances are

marked unhealthy and ELB does not route traffic to these instances.

b) 04 AWS EC2 instances

Figure 4.7: 04 AWS EC2 m1.large instances – 02 Elastic Load Balancers

With this kind of model, the number of access can reach 1500 per

second. Nevertheless, in some cases, one of the EC2 instances is overloaded,

so the number of access may fall.

c) 06 AWS EC2 instances

Figure 4.8: 06 AWS EC2 m1.large instances – 02 Elastic Load Balancers

With this kind of model, the number of access can reach 1500 per

second. Nevertheless, in some cases, one of the EC2 instances is overloaded,

so the number of access may fall.

Last experiment

Last experiment

Re
sp

on
se

 N
um

be
r

Time

Re
sp

on
se

 N
um

be
r

Time

37

d) 06 AWS EC2 instances with 03 Elastic Load Balancer

Figure 4.9: 06 AWS EC2 m1.large instances – 03 Elastic Load Balancers

In this experiment, the number of access can reach 2000 per second,

but the drawback is that the system is not really stable.

e) 12 AWS EC2 instances

Figure 4.10: 12 AWS EC2 m1.large instances – 03 Elastic Load Balancers

In this experiment, the number of access almost reaches 3000 per

second while the whole system remains quite stable.

f) 18 AWS EC2 instances

Last experiment

Last experiment

Re
sp

on
se

 N
um

be
r

Time

Re
sp

on
se

 N
um

be
r

Time

38

Figure 4.11: Running 18 AWS EC2 large instances and RDB db.m2.2xlarge

Figure 4.12: Running 18 AWS EC2 large instances and RDB db.m2.4xlarge

When we migrate our system to Amazon Web Services, our new

system can respond up to 4000 user’s requests at the same time. The new

system is 3 to 4 times as efficient as our original system.

And the new system running with RDB db.m2.4xlarge gives a little bit

better results than the others.

4.2 Monitoring System Scaling
4.2.1 Requirements

- Replace Nameserver of our Domain Name by Nameserver of

Amazone Route53

Re
sp

on
se

 N
um

be
r

Time

Re
sp

on
se

 N
um

be
r

Time

39

Figure 4.13: Replace Nameserver

- Prepare an Amazon Machine Image that includes all of the software

we need such as Apache, php5, php5-mysql, OpenSSH-Server, etc.

- Our web application can be stored in AMI or uploaded to Amazon

S3 or new EC2 instances (web server) have to send a message to a

machine that will upload web directory to the new EC2 instances.

4.2.2 Structure

We set 1 condition that is CPU usage under 20 percent within 10

minutes for scale-in

40

Scale-In

Under 20 percent

AWS-EC2 instances CPU usage
within 10 minutes

yes

Remove EC2 instances

no

Figure 4.14: AWS scale-in

However, it’s essential we set several conditions for scale-out

operations. If the CPU usage is over 50 percent, we will launch 01 EC2

instance. If the CPU usage is increased to over 70 percent, we will launch 02

EC2 instances. As the system is subject to pressing demand, the system

capacity needs to be enhanced more quickly.

We also set another condition for scale-out operation. The condition is

when two or more EC2 instances are unhealthy instances, we will launch 01

EC2 instances because those instances will be back on track soon after they

are detected as healthy instances.

With several policies, we can see that when our system have to

response too much requests, some of instances maybe overload for few

minutes and the whole system’s CPU usage increase more quickly. At that

time, we better launch several EC2 instances instead of launch one by one; it

gives us a more effective system. [4]

41

Scale-Out

Over 50 percent

AWS-EC2 instances CPU usage
within 1 minute

yes

Launch new EC2
instances

no

Scale-Out

Over 70 percent

AWS-EC2 instances CPU usage
within 1 minute

yes

Launch new EC2
instances

no

Scale-Out

Over 2

The number of AWS-EC2
unhealthy instances within 1 minute

yes

Launch new EC2
instances

no

Figure 4.15: AWS scale-out

* Simplified code file looks at appendix 1

42

4.2.3 Result

Figure 4.16: AWS scaling

By default, our account is limited to a maximum of 20 instances per

EC2 region. If we want to run more than 20 instances, we have to get

approval directly from Amazon. Actually, RDS Database bandwidth is

limited, so we do not need to launch too much EC2 instances. We will create

three Elastic Load Balancers that make an optimized system for us; the

number of EC2 instances of every Load Balancer is scaled from 1 to 6

instances depends on the system work load.

43

4.3 Cost of using Amazon Web Services for Course Selection
System

EC2 and RDS

 Cost per Hour Number of
instances

Hours
per Day Days Cost

EC2 m1.large $0.32 3 15 5 $72.00
EC2 m1.large $0.32 15 15 2 $144.00
RDS m2.2xlarge $1.28 1 15 5 $96.00

 $312.00

Other services

Cost per GB Using (GB) Cost

Elastic Load
Balancing
$0.008 per GB Data
Processed

$0.008 1000

 $8.00
AWS Data Transfer
$0.190 per GB - first 10
TB / month data
transfer out

$0.190 1000

 $190.00
Other services $90.00

 $288.00
Total $600.00

The content of the table above is estimated for Selection Course System.

A Course Selection System is often opened from 9:00 AM to 12:00

AM every weekday of two weeks. Normally, in the first week, the system still

works well with original system. This means we do not need to change our

original system.

In the second week, actually, the system needs to be more powerful at

the end of the week. Assuming that the last two days is the time of vast

number of students using the system. Therefore, the first three days of the

second week, we just launch three AWS EC2s for running web server. After

that, for the last two days of the second week, the system maybe

44

automatically scaled out to its highest level that includes 18 EC2 instances

running giving us a really powerful system..

If we apply this model of cloud computing for our Course Selection

System, the estimated cost is $600 per semester.

Some references of server pricing:

Figure 4.17: References of server pricing

45

Chapter 5:

5 Conclusion and Future Works

As a matter of fact, some kinds of websites, such as NCTU’s Course

Selection System or the railway ticket selling system in my country, always

meet traffic overload situation a certain time. After doing this research, I have

reached the conclusion that the system overload may be improved by

applying cloud computing technology. It is certain that it depends on how

well a system performs. If we compare 1Gbps-link system and AWS new

system, we can see that the power of AWS new system is approximately 3

times as big as that of the 1Gbps-link system. We should migrate the system

before congestion and set reasonable conditions for scaling to make our

system highly available and redundant.

With Amazon Web Services, Database server bandwidth is limited, so

we cannot make a more powerful system. But AWS has provided Database

Replicas function. Unfortunately, it does not seem to work very well.

I may consider changing testing method– insert one row into the

database at every loading webpage time, creating the ratio of read/write is

50:50 while this ratio should be 66 percent reads [1] or 60:40 [2]

I believe that the system will be more powerful when we combine EC2

Auto Scaling and Database Replicas functions.

I will also do research migrate systems based on Windows platform.

46

6 REFERENCES

[1] Microsoft TechNet “Understanding Database and Log Performance

Factors”, April 2013

[2] White paper of EMC Corporation, “Deploying Oracle Database on EMC

VNX Unified Storage”, May 2011

[3] Bianca Schroeder, Mor Harchol-Balter, “Web servers under overload:

How scheduling can help”, May 2002

[4] Marshall, P.; Tufo, H.; Keahey, K. "Provisioning Policies for Elastic

Computing Environments", Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th

International, On page(s): 1085 - 1094

[5] Wikipedia - Cloud Computing

http://en.wikipedia.org/wiki/Cloud_computing

[6] Peter Mell, Timothy Grance, “The NIST Definition of Cloud Computing”,

September 2011

[7] Database Replication

http://en.wikipedia.org/wiki/Replication_(computing)

[8] Database Journal, “Very Large Databases and High Availability

Evaluating Replication Options”, Nov 8, 2006

[9] A. Sousa L. Soares A. Correia Jr. F. Moura R. Oliveira, “Development

and evaluation of database replication in ESCADA”

 http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.160.3801&type=sc

[10] Webopedia – Cloud Computing

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Replication_(computing)
http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.160.3801&type=sc

47

http://www.webopedia.com/TERM/C/cloud_computing.html

[11] Amazon Documentation

http://aws.amazon.com/documentation/

 [12] AWS SDK for Python

http://aws.amazon.com/sdkforpython/

[13] Amazon Relational Database Service Command Line

http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference

/StartCLI.html

[14] Paramiko

http://docs.paramiko.org/

[15] Abhijit’s World of .Net

http://abhijitjana.net/2010/10/01/what-is-the-difference-between-web-

farm-and-web-garden/

[16] Performance test tools

http://www.opensourcetesting.org/performance.php

http://www.webopedia.com/TERM/C/cloud_computing.html
http://aws.amazon.com/documentation/
http://aws.amazon.com/sdkforpython/
http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference/StartCLI.html
http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference/StartCLI.html
http://docs.paramiko.org/
http://abhijitjana.net/2010/10/01/what-is-the-difference-between-web-farm-and-web-garden/
http://abhijitjana.net/2010/10/01/what-is-the-difference-between-web-farm-and-web-garden/
http://www.opensourcetesting.org/performance.php

48

APPENDICES

Appendix 1: AWS Scaling

def AutoScaling(ELB):
 AutoScalingGroup_name='my-group-' + ELB
 scale_up_policy_name= 'scale-up-' + ELB
 scale_down_policy_name = 'scale-down-' + ELB
 scale_up_alarm_avarageCPU_name = 'scale-up-on-cpu-' + ELB
 scale_up_alarm_Unhealthy_name = 'scale-up-on-unhealthy-' + ELB
 scale_down_alarm_name = 'scale-down-on-cpu-' + ELB
 try:
 filename = '/home/lecaocon/masterproj/src/AWS_Userdata.py'
 f = open (filename, 'r')
 user_data= f.read()
 f.close()

 regions = autoscale.regions()
 region = regions[0]
 conn = AutoScaleConnection(aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region=region)
 print conn
 #autoscale = boto.ec2.autoscale.connect_to_region(region_name=HomeRegion)

 #Launch Config
 print 'Launch Config'
 lc = LaunchConfiguration(name='my-launch-config',
 image_id=image_id,
 key_name=key_name,
 security_groups=[security_groups],
 instance_type=instance_type,
 user_data=user_data)
 try:
 conn.create_launch_configuration(lc)
 except Exception,e:
 ''#print e

 #Auto Scaling Group
 print 'Auto Scaling Group'
 ag = AutoScalingGroup(group_name=AutoScalingGroup_name, load_balancers=[ELB],
 availability_zones=['ap-southeast-1a', 'ap-southeast-1b'],
 desired_capacity=1,
 launch_config=lc, min_size=1, max_size=6,
 connection=conn)
 conn.create_auto_scaling_group(ag)

 #Scale policy
 print 'Scale policy'
 print 'scale up'
 scale_up_policy = ScalingPolicy(
 name=scale_up_policy_name, adjustment_type='ChangeInCapacity',
 as_name=AutoScalingGroup_name, scaling_adjustment=1, cooldown=180)
 conn.create_scaling_policy(scale_up_policy)

 print 'scale down'

49

 scale_down_policy = ScalingPolicy(
 name=scale_down_policy_name, adjustment_type='ChangeInCapacity',
 as_name=AutoScalingGroup_name, scaling_adjustment=-1, cooldown=180)
 conn.create_scaling_policy(scale_down_policy)

 scale_up_policy = conn.get_all_policies(
 as_group=AutoScalingGroup_name, policy_names=[scale_up_policy_name])[0]
 scale_down_policy = conn.get_all_policies(
 as_group=AutoScalingGroup_name, policy_names=[scale_down_policy_name])[0]

 #Cloud Watch
 print 'Cloud Watch'
 regions= cloudwatch.regions()
 region = regions[0]
 cloudwatch_conn = CloudWatchConnection(aws_access_key_id=AWS_ACCESS_KEY_ID,
 aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
 region=region)

 #cloudwatch = boto.ec2.cloudwatch.connect_to_region(HomeRegion)
 print 'dimensions'
 alarm_dimensions = {"AutoScalingGroupName": '%s' % AutoScalingGroup_name}
 print 'alarm up'
 #print scale_up_policy.policy_arn
 #CPU Average > 50 percent
 scale_up_alarm = MetricAlarm(
 name=scale_up_alarm_avarageCPU_name + '-CPU50percent', namespace='AWS/EC2',
 metric='CPUUtilization', statistic='Average',
 comparison='>', threshold='50',
 period='60', evaluation_periods=1,
 alarm_actions=[scale_up_policy.policy_arn],
 dimensions=alarm_dimensions)
 cloudwatch_conn.create_alarm(scale_up_alarm)

 #CPU Average > 70 percent
 scale_up_alarm = MetricAlarm(
 name=scale_up_alarm_avarageCPU_name+ '-CPU70percent', namespace='AWS/EC2',
 metric='CPUUtilization', statistic='Average',
 comparison='>', threshold='70',
 period='60', evaluation_periods=1,
 alarm_actions=[scale_up_policy.policy_arn],
 dimensions=alarm_dimensions)
 cloudwatch_conn.create_alarm(scale_up_alarm)

 #UnHealthy Instances
 scale_up_alarm = MetricAlarm(
 name=scale_up_alarm_Unhealthy_name, namespace='AWS/EC2',
 metric='UnHealthyHostCount', statistic='Sum',
 comparison='>=', threshold='2',
 period='60', evaluation_periods=1,
 alarm_actions=[scale_up_policy.policy_arn],
 dimensions=alarm_dimensions)
 cloudwatch_conn.create_alarm(scale_up_alarm)

 print 'alarm down'
 #CPU Average < 20 percent
 scale_down_alarm = MetricAlarm(
 name=scale_down_alarm_name+ '-30percent', namespace='AWS/EC2',
 metric='CPUUtilization', statistic='Average',

50

 comparison='<', threshold='20',
 period='60', evaluation_periods=10,
 alarm_actions=[scale_down_policy.policy_arn],
 dimensions=alarm_dimensions)
 cloudwatch_conn.create_alarm(scale_down_alarm)

 except Exception, ex:
 print ex

51

Appendix 2: Database migration

def MigrateDBToAWS():
 #migrate database from a database server to another database server
 #Local DB
 ListVars.RootDBServerUsername = 'username'
 ListVars.RootDBServerPassword = 'xxx'
 ListVars.database_name = 'databasename'
 ListVars.DBRootUsername = 'root'
 ListVars.DBRootPassword = 'xxx'
 ListVars.dbusername = 'webaccess'
 ListVars.dbpassword = 'xxx'
 ListVars.OriDB_ip = '192.168.0.100'
 #AWS DB
 ListVars.AWSDBMasterName = 'root'
 ListVars.AWSDBMasterPassword = 'xxx'
 ListVars.DBid = 'AwsNctu'
 ListVars.HomeRegion = 'ap-southeast-1'
 ListVars.AWS_ACCESS_KEY_ID = 'KEY_ID'
 ListVars.AWS_SECRET_ACCESS_KEY = 'xxx'
 db_instance_type= 'db.m2.2xlarge'
 temp = raw_input('Do you want to load the information that you had saved (Yes/No)?')
 if (temp.upper() == 'Y' or temp.upper() == 'YES'):
 LoadInfo = True
 else:
 LoadInfo = False

 if(LoadInfo == True):
 b = LoadMigrateDBInfo()
 if(b == False):
 return False
 else:
 # Enter some basic information
 EnterMigrateDBInfo()

 temp = raw_input('Do you want to load execute state that you had saved (Yes/No)?')
 if (temp.upper() == 'Y' or temp.upper() == 'YES'):
 LoadState = True
 else:
 LoadState = False

 if(LoadState == True):
 b = LoadMigrateDBState()
 if(b == False):
 return False

 # Check this function has done or not?
 if(b_CreateMySQLDB == False):
 # Create AWS MySQL DB
 b = CreateMySQLDB(region=ListVars.HomeRegion,
 allocated_storage=5,
 instance_class=db_instance_type,
 master_username=ListVars.AWSDBMasterName,
 master_password=ListVars.AWSDBMasterPassword,
 DBid=ListVars.DBid,
 db_name=ListVars.database_name,
 backup_retention_period=1)
 if(b == True):

52

 # state 1
 SaveMigrateDBState(CreateFile=True, Function='CreateMySQLDB')
 else:
 return False

 # Check this function has done or not?
 if(b_MySqlSecurityGroupAddListServers == False):
 #Allow list of servers can access to DB Server
 print 'MySqlSecurityGroupAddListServers'
 b = MySqlSecurityGroupAddListServers(filename='hosts')
 if(b == True):
 # state 2
 SaveMigrateDBState(CreateFile=False, Function='MySqlSecurityGroupAddListServers')
 else:
 return False

 # Get AWS DB IP Address
 print 'Waiting for create DB Instance...'
 while (True):
 # include get DB instance EndPoint
 result = GetAWSDBInstanceStatus(DBid=ListVars.DBid,
 region=ListVars.HomeRegion,
 AWS_ACCESS_KEY_ID=ListVars.AWS_ACCESS_KEY_ID,
 AWS_SECRET_ACCESS_KEY=ListVars.AWS_SECRET_ACCESS_KEY)

 if(result == False):
 print '...'

 # creating -> backing-up
 if(result == 'creating'):
 print 'creating DB Instance ...'

 # available - active
 if(result == 'available' or result == 'active'):
 break

 time.sleep(20)

 # Doing migrate DB
 ssh_local = paramiko.SSHClient()
 ssh_local.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 ssh_local.connect(hostname=ListVars.OriDB_ip,
 username=ListVars.RootDBServerUsername,
 password=ListVars.RootDBServerPassword)

 # Check this function has done or not?
 if(b_CreateAWSDatabaseUserViaLocalMySQLCommandLine == False):
 print 'DumpDBFromLocalToAWS\n'
 b = False
 print 'Waiting for AWS Database active'
 while (not b):
 b = DumpDBFromLocalToAWS(ssh=ssh_local,
 database_name=ListVars.database_name,
 dbusernameLocal=ListVars.DBRootUsername,
 dbpasswordLocal=ListVars.DBRootPassword,
 to_server=ListVars.AWSDB_ip,
 dbusernameAWS=ListVars.AWSDBMasterName,
 dbpasswordAWS=ListVars.AWSDBMasterPassword)

53

 if(not b):
 print '...'
 time.sleep(20)

 print 'CreateAWSDatabaseUserViaLocalMySQLCommandLine\n'
 b = CreateAWSDatabaseUserViaLocalMySQLCommandLine(ssh=ssh_local,
 host_ip=ListVars.AWSDB_ip ,
 rootusername=ListVars.AWSDBMasterName,
 rootpass=ListVars.AWSDBMasterPassword,
 dbusername=ListVars.dbusername,
 dbpassword=ListVars.dbpassword)
 if(b == True):
 # state 3
 SaveMigrateDBState(CreateFile=False,

Function='CreateAWSDatabaseUserViaLocalMySQLCommandLine')
 else:
 return False

 # Check this function has done or not?
 if(b_DoMySqlGrantForListServersAWS == False):
 print 'DoMySqlGrantForListServersAWS\n'
 b = DoMySqlGrantForListServersAWS(filename='hosts',
 ssh=ssh_local,
 host_ip=ListVars.AWSDB_ip,
 rootusername=ListVars.AWSDBMasterName,
 rootpass=ListVars.AWSDBMasterPassword,
 database_name=ListVars.database_name,
 dbusername=ListVars.dbusername,
 dbpassword=ListVars.dbpassword)
 if(b == True):
 # state 4
 SaveMigrateDBState(CreateFile=False, Function='DoMySqlGrantForListServersAWS')
 else:
 return False

 ssh_local.close()

 # Update config file for website
 UpdateConfigFile()

 #Write DB configuration info to AWS message queue
 b = WriteDBConfigToSQS()
 if(b):
 print 'Create msg SQS'
 else:
 print 'msg SQS failed'
 'done'

54

Appendix 3: Web migration

def MigrateWebsiteToAWS():
 #migrate website from a server to another server
 ListVars.WebsiteDirectory = os.environ['HOME'] +'/web'
 ListVars.Key_Pem_File = os.environ['HOME'] + '/lcc.pem'

 ListVars.AWSWebServerRootUsername = 'ubuntu'
 ListVars.AWSWebServerRootPassword=''
 ListVars.AWSWebsiteDirectory = '/var/www'

 ListVars.ami = 'ami-bae2abe8'
 ListVars.instance_type = 'm1.large'
 ListVars.key_name = 'my_key'
 ListVars.security_group = 'quick-start-1'

 web_path = ListVars.WebsiteDirectory
 zip_file = 'web_temp.tar'
 config_file = 'config.ini'
 remote_folder = ListVars.AWSWebsiteDirectory

 temp = raw_input('Do you want to load information that you had saved (Yes/No)? ')
 if(temp.upper() == 'Y' or temp.upper() == 'YES'):
 LoadMigrateWebsiteInfo()
 else:
 EnterMigrateWebsiteInfo()

 # Creating AWS instance
 ret, ip, id = CreateNewAWSInstance()
 if(ret==False):
 print 'Cannot create AWS instance'
 return False

 #Update AWS list file
 UpdateAWSListFile(ip=ip)

 #Add new item to ListAWS
 AddListAWS(ip=ip,
 user=ListVars.AWSWebServerRootUsername,
 password=ListVars.AWSWebServerRootPassword)

 # Moving website
 # Save to code files folder
 zip = zip_web_directory(zip_file=zip_file, web_path=web_path, new_config_db=config_file)

 if(zip == False):
 return False

 '''check MD5 for original file'''
 # Save to code files folder
 local_file_data = open(zip_file, "rb").read()
 md1 = md5.new(local_file_data).digest()

 ssh = paramiko.SSHClient()
 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 try:
 if(toAWS==True):
 # AWS

55

 ssh.connect(hostname=ListVars.AWSWebServerIP,
 username=ListVars.AWSWebServerRootUsername,
 key_filename=ListVars.Key_Pem_File)
 else:
 # Local
 ssh.connect(hostname=ListVars.AWSWebServerIP,
 username=ListVars.AWSWebServerRootUsername,
 password=ListVars.AWSWebServerRootPassword)
 except Exception, e:
 print ListVars.AWSWebServerIP
 print ListVars.AWSWebServerRootUsername
 print 'connect to remote server failed'
 print e
 return False

 print "SFTP connected successfully!"

 sftp = ssh.open_sftp()
 while(True):
 try:
 sftp.put(zip_file, zip_file)
 except Exception, e:
 print 'Upload website failed'
 print e
 return False

 # break
 '''check MD5 for uploaded file'''
 remote_file_data = sftp.open(zip_file).read()
 md2 = md5.new(remote_file_data).digest()

 if(md1 == md2):
 break
 else:
 print 'Error MD5: '
 print 'original:', md1
 print 'remote:', md2
 time.sleep(10)

 sftp.close()

 #extract web file
 cmd = 'sudo tar -xf %s -C %s .' % (zip_file, remote_folder)
 re = ExecuteCommand(client=ssh,
 cmd=cmd, sudo=True,
 password=ListVars.AWSWebServerRootPassword)
 if(re == False):
 print 'Extract files failed'
 return False

 ssh.close()
 print "Website copied successfully!"

 AWSLoadBalanceAddInstance(instance=str(id))

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Research Contribution
	1.4 Thesis Organization

	2 Theoretical Background
	2.1 Cloud Computing
	2.1.1 Essential Characteristics of Cloud Computing
	2.1.2 Service models
	2.1.3 Cloud Deployment Models

	2.2 Amazon Web Services (AWS)
	2.2.1 Why AWS
	2.2.2 Services

	3 Architecture
	3.1 Website Overload Reasons
	3.2 Website Overload Solutions
	3.2.1 Expanded the Original System
	3.2.2 Applying AWS to the Original System

	3.3 Doing Migrations
	3.3.1 Database Migration
	3.3.2 Web server Migration

	3.4 Security problems

	4 Implementation
	4.1 Experiments
	4.1.1 Choice software for simulation
	4.1.2 Test link speed 100Mbps
	4.1.3 Test link speed 1Gbps
	4.1.4 Test with Amazon Web Services

	4.2 Monitoring System Scaling
	4.2.1 Requirements
	4.2.2 Structure
	4.2.3 Result

	4.3 Cost of using Amazon Web Services for Course Selection System

	5 Conclusion and Future Works
	6 References

