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非理想通道資訊及時空關連通道下之空間調變信號偵測 
  

學生：張軒誠 

 

指導教授：蘇育德 

國立交通大學 

電信工程研究所碩士班 

摘 要       

 

    空間調變(SM)是一個高效率的多天線傳輸方法。它沒有傳統多天線系統中通

道間交互干擾(ICI) 的問題、不需建立多傳輸天線資料鏈的同步，傳送端只需要

一個射頻鏈路(RF chain)並可將資訊置於傳送天線序號中。 

    為偵測、解調 SM訊號，接收端需有通道資訊(CSI)。大多數的研究都假設通

道是非時變的(time-invariant)並有完整正確的 CSI，這樣的假設並不實際。此外一

般的 CSI 通道估計演算通常忽略或是不考慮通道的空間與時間的關連性(spatial 

and temporal correlations)，其推論或估測之正確性有頗多改善的餘地。 

    本論文探討了決策引導(decision-directed)與基於模型(model-based) 兩種 CSI

估測法。我們同時考慮通道估計誤差(CSI estimation error)及其時空關連性並分別

推導相關的最佳解調器。 

此外，我們進一步提出了兩種可大幅降低解調器運算複雜度的解調器結構。

針對所提出的各種解調器結構，我們透過了電腦模擬來檢驗其效能並與現有的方

法比較。這些數據顯示我們所提出的空間調變解調器改善了現有解調器的效能，

且低運算複雜度的解調器與最佳解調器的效能差別幾乎是可忽略的。 
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Abstract

Spatial modulation (SM) is a promising multiple antennas based transmission scheme

that induces no inter-(spatial) channel interference (ICI) and does not require timing

synchronization amongst multiple spatial data streams. It only needs a single radio fre-

quency (RF) chain and can exploit transmit antenna index for carrying extra information

to enhance spectral efficiency.

To detect the SM signals, channel state information (CSI) is need at the receive

side. Most SM detection studies assume that the channel is time-invariant and CSI is

perfectly known. In reality, CSI is never perfect and varies in time. Moreover, spatial

correlations among multiple spatial channels exist but are ignored in channel estimation.

In this thesis we release the above assumptions and develop a class of decision-directed

and a model-based channel estimator.

Based on the proposed channel estimators we derive optimal detectors that take

into account both the CSI error and time-spatial correlation. To simplify the optimal

detector, we then proposed two low-complexity suboptimal structures for each optimal

detector. Computer simulations are carried out to estimate the corresponding perfor-

mance and numerical results show that the optimal detectors offer performance gain

against conventional SM detector and the suboptimal detectors incur negligible perfor-

mance loss.
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Chapter 1

Introduction

Spatial modulation (SM) is a promising multiple antennas based transmission scheme

that induces no inter-(spatial) channel interference (ICI) and does not require timing

synchronization amongst multiple spatial data streams. As it allows only one transmit

antenna to be active in any one transmission interval [1], it needs a single radio frequency

(RF) chain and exploit transmit antenna index for carrying extra information to enhance

efficiency and capacity [2]. The low system complexity makes SM an attractive candidate

for high rate transmissions. When it only exploits the transmit antenna index to carry

information, SM degenerates to the so-called space-shift keying (SSK) [3, 4].

Performance assessment on multi-antenna based radio communication systems often

assume that the channel state information (CSI) is perfectly known at the receiver. In

practice, the CSI at the receiver (CSIR) is obtained by a pilot-assisted estimator. To

minimize the overhead, pilot symbols are only sparsely and periodically inserted, CSIR

is therefore inevitably imperfect, and tracking errors may sometimes result in serious

performance degradation.

In many studies, the channel is assumed to be either time-invariant (static) within

a frame consist of pilot block and data block [5]- [9]. This assumption yield poor per-

formance valid for time-varying or correlated block-fading channels due to the change
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of channel state within the time varying from the pilot block time to data block time

in real world. In this thesis, we introduce some channel estimation schemes for use in

time-varying block-faded channels. We release the assumption that the channel state

estimated in pilot block is the same as that in data block. The first scheme is a decision-

directed one which uses the detected signals of previous time block to update estimated

channel coefficients. Since we insert pilot periodically in data stream, the CSI will up-

date at least a frame time. This scheme has error floor in high SNR (signal to noise

ratio) due to the error propagation of channel estimation.

To avoid error propagation problem, another scheme called model-based which use

polynomials to fit the channel variation is proposed. Since the coefficients of the polyno-

mials have to be solved for sufficient data, there is a process time (delay) in this method.

Furthermore, we introduce some other adaptive channel estimations that are similar to

decision-directed in conceptually. The first one is recursive least square (RLS) method

whose objective is to minimize a weighted linear least squares cost function relating to

the received signals. In this thesis, we will find that RLS method is a weighted version of

the decision-directed channel estimation method. The other adaptive channel estimation

method is least mean square (LMS) which converges slower but has lower complexity

compared to RLS method.

The optimal detector method is the Maximum likelihood (ML) detector which often

calls for exhaustive search over the entire set of possible transmitted symbol vectors.

Due to noise and to the finite number of pilot symbols in a frame, the channel estimated

is not perfect. The minimum Euclidean distance criterion is no longer the ML detection

rule, but the statistic of the estimation/tracking error is known. There are lots of studies

finding an ML detection metric with imperfect channel estimation [5]- [8], but many of

them consider either time correlation only or spatial correlation only channel and assume

that the pilot matrix and data matrix are in the same static channel.

We will derive a new ML detector structure that takes into account the CSIR error
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and the transmission channel’s time-spatial correlation, and a suboptimal ML detector

whose complexity is lower than the proposed ML detector with near-ML performance is

derived. We also derive another approximated version of ML detector whose complexity

is less than the ML detector and performance is similar to it. Finally, we will compare

the performance of the ML detector and approximated ML detector.

The rest of this thesis is organized as follows. In Chapter 2 we present the transceiver

structure of a typical SM system along with spatial correlated channel models. In

Chapter 3, we propose some adaptive time varying channel estimation methods and

model-based method for SM systems and give simulated performance. In Chapter 4

and 5, we derive the detect metric that take time-spatial correlation of channel and

imperfect CSI into account with exact and approximated versions respectively. Our

main contributions are summarized in Chapter 6.

The following notations are used throughout the thesis: upper case bold symbols

denote matrices and lower case bold symbols denote vectors. IN is a N × N identity

matrix. (·)T , (·)H , and (·)† represent the transpose, conjugate transpose, and pseudo-

inverse of the enclosed items, respectively. (·)−1 denotes the inverse of matrix. vec(·)

is the operator that forms one tall vector by stacking columns of a matrix. While

E{·}, | · |, and ‖ · ‖F denote the expectation, absolute value, and Frobenius norm of

the enclosed items, respectively, ⊗ denotes the Kronecker product, and � denotes the

Hadamard product. (·)i and [·]ij respectively denote the ith row and (i, j)th element of

the enclosed matrix.

3



Chapter 2

Preliminaries

2.1 Conventional MIMO System Model

We consider a MIMO system with NT transmit and NR receive antennas and assume

a block-fading scenario where the MIMO channel remains static within a block of B

transmissions but varies from block to block. Thus, we treat the system block-wise and

express the received signal at block k as

Y(k)
def
= [y1(k), · · · ,yB(k)] = H(k)X(k) + Z(k) (2.1)

where H(k) = [h1(k), · · · ,hNT
(k)]

def
= [hij(k)] is the NR × NT wide-sense stationary

MIMO channel, X(k) = [x1(k), · · · ,xB(k)] the data matrix of size NT × B (B ≥ NT ),

and the entries of noise Z(k) are i.i.d. CN (0, σ2
z). This system is depicted in Fig. 2.1.
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Figure 2.1: A MIMO system model.

2.2 Spatio-Temporally Correlated Channel

2.2.1 Spatial-Correlated Channel Model

Let Φ = E
{

vec (H(k)) vecH (H(k))
}

be the spatial correlation matrix of vec(H(k))

that specifies the (NRNT )2 mutual correlation coefficients between all channel entries.

For instance, the spatial correlation matrix of a 2× 2 channel can be described as

Φ =



1 r t s1

r∗ 1 s2 t

t∗ s∗2 1 r

s∗1 t∗ r∗ 1


, (2.2)

where t and r are respectively transmit and receive antenna correlation coefficients and

s1
def
= E{h11(k)h∗22(k)} and s2

def
= E{h21(k)h∗12(k)} are cross-channel correlation. There-

fore, we may model the spatial-correlated Rayleigh fading channel as

vec (H(k)) = Φ
1
2 vec (Hw(k)) , (2.3)

5



where Hw(k) is an NR × NT spatially white (while may or may not be temporally

correlated) complex Gaussian matrix with zero mean and unit variance.

As pointed out in [10] and [11], if at both the transmitter and receiver sides are

locally of rich scatterers, the statistics at both sides is assumed separable. In such case,

the spatial channel can be modeled by the famous Kronecker Model [12]:

H(k) = Φ
1
2
RHw(k)Φ

1
2
T , (2.4)

where the correlation matrix Φ has been reduced to

Φ = ΦT ⊗ΦR, (2.5)

the Kronecker product of the spatial correlation matrix of the transmitter side ΦT

and that of receiver side ΦR, where tr(ΦT )ΦT
def
= E{HH(k)H(k)} and tr(ΦR)ΦR

def
=

E{H(k)HH(k)}. With transmit and receive antennas being arranged into two uniform

linear arrays (ULAs), [10] suggests that channel spatial correlation

ρS(i−m, j − n) ≡ E{hij(k)h∗mn(k)} =
[
Φ
]
(j−1)NR+i, (n−1)NR+m

= [ΦT ]nj[ΦR]im. (2.6)

The aforementioned correlation characteristics is adopted throughout this work for de-

riving channel estimators and signal detectors.

2.2.2 Block-Fading Scenario

On the other hand, while the channel is assumed to vary from block to block and

remain unchanged in each block of B transmissions, the temporal correlation between

blocks follows [10]

E{hij(k)h∗mn(`)} = ρS(i−m, j − n) · ρT (k − `) (2.7)

6



( )( ) = (     ) 

       bits 

X( )

( ) 

Transmitter

( )
  ( ) 

Receiver 

Spatial 

Modulation 

)

Channel 

Estimation

Signal 

Detection

SM 

Demapper

Figure 2.2: An SM system model.

with ρT (k − `) ≡ E{hij(k)h∗ij(`)} denoting the channel correlation in time. As will be

seen in the ensuing chapters, the proposed ML detectors require the information about

spatio-temporal correlation. In addition to the scenario where such correlation values

are well-known, we also consider cases when they are needed to be estimated prior to

the detection.

2.3 Spatial Modulation

Despite the fact that spatial multiplexing (or BLAST) is widely used for MIMO

systems, it suffers from significant ICI at the receiver. This makes signal detection

algorithms of high complexity. Spatial modulation (SM) is a promising multiantenna

transmission scheme that eliminates ICI and does not require timing synchronization

amongst transmission antennas. Since SM allows only one active transmit antenna at

a time [1], it only requires a single RF chain. While the single-antenna limitation may

seem to avoid ICI at the cost data rate reduction, extra information is conveyed with

the selection of transmit antenna and thus spectral efficiency can be retained [2].

2.3.1 SM System Model

Spatial modulation maps a block of information bits to: i) a symbol chosen from the

constellation; ii) a transmit antenna that sends the symbol chosen. Anm-bit/transmission

SM system can be realized by partitioning the data bits into groups of m = log2(MNT )

bits of which the first log2NT bits represent the index of the transmit antenna to be
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Table 2.1: Signal mapping rules for 3-bit/transmission SM system

Mapping 1 Mapping 2

Input bits Tx antenna Tx symbol Tx antenna Tx symbol

000 Ant. 1 +1 Ant. 1 exp(j π
4
)

001 Ant. 1 −1 Ant. 1 exp(j 3π
4

)

010 Ant. 2 +1 Ant. 1 exp(j 5π
4

)

011 Ant. 2 −1 Ant. 1 exp(j 7π
4

)

100 Ant. 3 +1 Ant. 2 exp(j π
4
)

101 Ant. 3 −1 Ant. 2 exp(j 3π
4

)

110 Ant. 4 +1 Ant. 2 exp(j 5π
4

)

111 Ant. 4 −1 Ant. 2 exp(j 7π
4

)

activated and the rest correspond to an element in AM , a constellation of size M . They

as a whole constitute an SM symbol. An SM model is depicted in Fig. 2.2. Since only

one transmit antenna is active at each transmission, X(k) has only one nonzero element

in each column and the average transmission power is

Es
def
=

1

B
E
{
‖X(k)‖2F

}
=

1

B
E
{

tr
(
X(k)XH(k)

)}
, (2.8)

where Es is equivalent to the average power of AM . Two mapping rules for the 3-

bit/transmission SM system using BPSK or QPSK constellations with Es = 1 are exem-

plified in Table 2.1. Therefore, for j = 1, · · · , B, the received signal at the jth symbol

time of block k can be alternatively expressed as

yj(k) = h`j(k)sj(k) + zj, (2.9)

where `j ≡ `j(k) is the active transmit antenna index and xj(k) = [0, · · · , 0, x`j(k),

0, · · · , 0]T with the `jth entry x`j(k)
def
= sj(k) ∈ AM .
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2.3.2 SM Signal Detection

Due to the fact that only one antenna is active at a time, maximum likelihood (ML)

detector can be employed without to much computation effort. With the assumption

of full CSI at the receiver (CSIR) and equally likely bit outcomes, ML detector aims to

maximizing [15]

P
(
Y(k)|H(k),X(k)

)
=
(
πσ2

z

)−NR exp

(
− 1

σ2
z

‖Y(k)−H(k)X(k)‖2F
)
, (2.10)

which requires exhaustively searches over all possible transmit antenna index-constellation

point pairs. Specifically, the decomposition into single-stream detection, ∀j,

(
ˆ̀
j(k), ŝj(k)

)
= arg max

x
P (yj(k)|H(k),x) (2.11)

= arg min
(s,`)∈AM×{1,··· ,NT }

‖yj(k)− h`s‖2 (2.12)

which searches over a space of O(MNT ), is possible. Nevertheless, in the real-world

scenario, it is impossible to obtain exact CSI which is available only when the pilot energy

is infinitely large. In the ensuing chapters, we first develop some channel estimators and

propose signal detectors in the presence of channel estimation error suitable for MIMO

or particularly SM system.

9



Chapter 3

Estimation of Time-Varying MIMO

Channels

In this chapter, we first introduce the conventional channel estimation schemes with

the aid of pilot blocks. Subsequently, methods that help reduce training overhead are

also given. Among them, three adaptive estimators that treat previous detected data as

pilots and an estimator which models channel variations in time using polynomials are

introduced. The MIMO signal frame structure used through the thesis is depicted in

Fig. 3.1, where a pilot signal block is inserted as preamble into each frame. Specifically,

a frame of N blocks is consisted of one pilot block followed by N − 1 data blocks and

therefore occupies NB symbol times. The value of N , or equivalently the sparsity of

pilots, relies highly on the rapidity of channel change in time.

 

 

Pilot  Data  Pilot  Data  Pilot  Data  

 

 
Frame size=  

 

Figure 3.1: Periodical pilot signal inserion in transmit data.
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3.1 Pilot-Assisted Channel Estimation

Let the channel coefficients be obtained at the training block kp by transmitting

NT ×B pilot matrix X(kp) = XP which is known to both sides. The received signal can

be written as

Y(kp) = H(kp)XP + Z(kp), (3.1)

where Xp is a constant matrix with average power denoted by

EP
def
=

1

B
‖XP‖2F . (3.2)

Without loss of generality, we may assume throughout this work that Xp is full-rank

with only one nonzero element on each column to enable its usage on the SM systems.

Two conventional estimators are provided as follows.

In the absence of channel and noise statistics, a simple least squares (LS) estimator,

which minimizes ‖Y(kp)−H(kp)X(kp)‖2F , may be applied using the received pilot, i.e.,

ĤLS(kp) = Y(kp)X
†
P = H(kp) + Z(kp)X

†
P (3.3)

where A†
def
= AH(AAH)−1. The fact that LS estimator neglects channel statistics may

lead to significant noise power enhancement and thus serious channel equalization per-

formance degradation. To deal with such potential problem, we alternatively aim to find

an F that minimizes the mean square error (MSE) E {‖Y(kp)F−H(kp)‖2F}. Therefore,

we have ĤMMSE(kp)
def
= Y(kp)F where

F =
(
σ2
zNRIB + XH

P ΦTXP

)−1
XH
P ΦT . (3.4)

In the rest of this chapter, ĤLS(kp) or ĤMMSE(kp) are exploited as reliable initial guess

for the adaptive channel estimation methods.
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3.2 Decision-Directed Channel Estimation

In this section, we refer to the decision-directed (DD) channel estimation as the

scheme that treats previous detected data blocks as known pilot and updates the esti-

mates sequentially, while detecting data using the CSI estimated in the previous block;

see Chapter 4 and Chapter 5 . Just as all other DD algorithms, the proposed DD channel

estimator for SM systems suffers from error propagation. To mitigate the error prop-

agation problem, channel estimates are entirely renewed at each pilot block kp + sN ,

s ∈ N.

3.2.1 Least Squares Estimation

Due to the nature of SM signal that only one element in each column of X̂(k), the

detected block k, should be nonzero, it is likely that not all channel vectors h`(k)’s are

updated at each block instance. Nevertheless, in the long run, all channel coefficients

would be updated since the transmit antenna is selected uniformly. Assume for the

moment that the detected data matrix X̂(k) is full-rank. Let X̂(kp + sN) = XP . By

treating X̂(k) as pilot the LS estimate of H(k) is obtainable, i.e.,

Ĥ(k) = Y(k)X̂†(k) (3.5)

for kp + sN < k < kp + (s + 1)N . However, due to the fact that X(k) or X̂(k) is not

full-rank most of the time, we let Ĥ(k) = [ĥ1(k), · · · , ĥNT
(k)] and denote by H[L](k)

the truncated H(k) by eliminating the columns not specified in the set L. As a result,

we have

Ĥ[L̂(k)](k) = Y(k)X̄†(k),
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where L̂(k)
def
= {ˆ̀1(k), · · · , ˆ̀

B(k)} and X̄(k) is the truncated X̂(k) with its all-zero rows

removed. On the other hand, the columns not updated in this block are kept unchanged

as the previous block to avoid the rank insufficient problem as well, i.e.,

Ĥ[L \ L̂(k)](k) = Ĥ[L \ L̂(k)](k − 1), (3.6)

where L def
= {1, · · · , NT}.

Inspired by the fact that a channel vector may not be updated at every block time and

thus its previous estimate must be used to retain the integrity, a natural generalization is

to include the estimates of the whole channel of several previous blocks. Such inclusion

ameliorates the performance degradation error propagation has brought about. In the

subsequent subsections, two adaptive methods that not only improve performance but

also save the heavy computation of matrix inversion are given.

3.2.2 Recursive Least Squares Estimation

To make channel estimation robust and computationally efficient, the LS criterion

is replaced by the recursive least squares (RLS) estimation which in addition eliminates

the need to perform matrix inversions. Specifically, we are interested in solving

Ĥ(k) = arg min
H̃

{
‖Y(k)− H̃X̂(k)‖2F +

k−1∑
i=kp+sN+1

λk−i‖Y(i)− Ĥ(i)X̂(i)‖2F

+δλk−kp−sN‖H̃‖2F

}
(3.7)

for kp + sN < k < kp + (s+ 1)N , s ∈ N, where the first two terms comprise the sum of

weighted error squares and the last is a regularizing term with δ being the regularization

parameter. Moreover, λ ∈ (0, 1) can be treated as a forgetting factor. By differentiation,

we have

Ĥ(k) = Z(k)P−1(k), (3.8)
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where Z(k) =
∑k

i=kp+sN+1 λ
k−iY(i)X̂H(i) and

P(k) = Diag

 k∑
i=kp+sN+1

λk−i‖X̂1(i)‖2F , · · · ,
k∑

i=kp+sN+1

λk−i‖X̂NT
(i)‖2F

+ δλk−kp−sNINT

(3.9)

with X̂r(i) being the rth row of X̂(i). The recursion formulae for (3.8) are readily

derivable [16]:

P−1(k) = λ−1P−1(k − 1)
(
INT
−C(k)K(k)

)
(3.10)

Z(k) = λZ(k − 1) + Y(k)X̂H(k) (3.11)

where

C(k) = Diag
(
‖X̂1(k)‖F , · · · , ‖X̂NT

(k)‖F
)

=
((

X̂(k)X̂H(k)
)
� INT

) 1
2

(3.12)

K(k) = λ−1
(
INT

+ λ−1CH(k)P−1(k − 1)C(k)
)−1

CH(k)P−1(k − 1). (3.13)

Finally, due to the fact that C(k) and P(k) are diagonal, a matrix inversion-free version

of (3.8) is derived:

Ĥ(k) = λZ(k − 1)P−1(k) + Y(k)X̂H(k)P(k)−1

= Ĥ(k − 1)(I−C(k)K(k)) + Y(k)X̂H(k)P−1(k). (3.14)

The RLS estimation algorithm is summarized in Algorithm 1.

To conclude this subsection, we observe that C(k)K(k) is also diagonal and with

its ιth diagonal element being zero if ι ∈ L \ L̂(k). Therefore, columns of Ĥ(k) with

indices belong to ι ∈ L\L̂(k) will not be updated by the new information obtained from

Y(k) but maintained only by the old detected data blocks, while the rest of the columns

are updated by the combination of the new and old information. On the other hand,
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Algorithm 1 DD RLS Channel Estimation

1: (Initialization) Initialize some λ and δ.
2: repeat
3: if k = kp + sN then

4: Ĥ(k) := ĤLS(k) or ĤMMSE(k);
5: P−1(k) := δ−1INT

.
6: else
7: k := k + 1;
8: X̂(k) := arg min[X̃]ij∈AM∪{0}P (Y(k)|X̃, Ĥ(k − 1));

9: C(k) :=
((

X̂(k)X̂H(k)
)
� INT

) 1
2

10: K(k) := λ−1
(
INT

+ λ−1CH(k)P−1(k − 1)C(k)
)−1

CH(k)P−1(k − 1);
11: P−1(k) := λ−1P−1(k − 1)

(
INT
−C(k)K(k)

)
;

12: Ĥ(k) := Ĥ(k − 1)(I−C(k)K(k)) + Y(k)X̂H(k)P−1(k).
13: end if
14: until Transmission is ended.

scalars λ and δ are determined empirically by the system signal-to-noise ratio (SNR) to

attain better performance. Specifically, they are roughly inverse proportional to SNR

because the detected data may be very unreliable in the low SNR regime. In this way,

the channel estimates of the current block is more dependent on the previous blocks

even for the channel vectors indexed L̂(k). On the contrary, (3.14) approaches the LS

estimator for high SNRs for its forgetfulness of the past.

3.2.3 Least Mean Squares Estimation

While previous two DD estimators originate from the LS criterion, in this subsection

we consider an adaptive estimator that aims to minimize MSE. Specifically, the least

mean squares (LMS) estimate [16]

Ĥ(k) = Ĥ(k − 1)− 1

2
µ∇J(Ĥ(k − 1)) (3.15)

tracks the minimum of

J(H̃) = E
{
‖Y(k)− H̃X̂(k)‖2

}
(3.16)
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Algorithm 2 DD LMS Channel Estimation

1: (Initialization) Initialize some µ.
2: repeat
3: if k = kp + sN then

4: Ĥ(k) := ĤLS(k) or ĤMMSE(k);
5: else
6: k := k + 1;
7: X̂(k) := arg min[X̃]ij∈AM∪{0}P (Y(k)|X̃, Ĥ(k − 1));

8: Ĥ(k) = Ĥ(k − 1)
(
INT
− 1

2
µX̂(k)X̂H(k)

)
+ 1

2
µY(k)X̂H(k).

9: end if
10: until Transmission is ended.

along the gradient direction ∇J(Ĥ(k− 1)) with updating step size µ, for kp + sN < k <

kp + (s+ 1)N , s ∈ N, where we may derive

∇J(Ĥ(k − 1)) = Ĥ(k − 1)X̂(k)X̂(k)H −Y(k)X̂H(k). (3.17)

Consequently, the channel estimate can be updated via

Ĥ(k) = Ĥ(k − 1)− 1

2
µ
(
Ĥ(k − 1)X̂(k)X̂(k)H −Y(k)X̂H(k)

)
= Ĥ(k − 1)

(
INT
− 1

2
µX̂(k)X̂H(k)

)
+

1

2
µY(k)X̂H(k) (3.18)

= Ĥ(k − 1)

(
INT
− 1

2
µX̂(k)X̂H(k)

)
+ Y(k)X̂†(k)

(
1

2
µX̂(k)X̂H(k)

)
. (3.19)

The LMS estimation algorithm is summarized in Algorithm 2.

We can see from (3.19) that the estimated channel coefficients are updated by the

linear combination of the last estimates Ĥ(k − 1) and the new ones Y(k)X̂†(k), the LS

estimates obtained in Section 3.2.3, with a weighting factor of 1
2
µX̂(k)X̂. It bears a

similarity to the RLS estimator (3.14) in that they both take the past estimates into

account to deal with the possibility that the newly detected data might not be reliable

enough for channel estimation. In the next section, we introduce another estimator that

does not produce any error propagation as that lies in DD algorithms.
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3.3 Model-Based (MB) Channel Estimation

In this section, 2nd-order polynomials are utilized to capture the channel variation

in time. Specifically, if the (i, j)th component of the channel can be modeled as

hij(k) = αij(k)k2 + βij(k)k + γij(k) (3.20)

where ξij(k)
def
= [αij(k), βij(k), γij(k)]T are the coefficients of the polynomial, H(k) is

estimated once ξij(k)’s are obtained for all i and j, where ξij(k)’s are updated every 2

frames. Specifically, at block kp + 2N , three pilot blocks at kp, kp +N , and kp + 2N are

gathered to solve ξij(kp), and then ξij(kp + 2N) is solved with pilot blocks at kp + 2N ,

kp + 3N , and kp + 4N ; so on and so forth. Without loss of generality, we will assume

XP = EP INT
and B = NT throughout this work to avoid excessive notations.

Collecting received signals Y(kp), Y(kp +N), and Y(kp + 2N)

ỹij(kp)
def
=


yij(kp)

yij(kp +N)

yij(kp + 2N)

 =


hij(kp)

hij(kp +N)

hij(kp + 2N)

+ z̃ij(kp), (3.21)

we may solve

ξ̂ij(kp)
def
=


α̂ij(kp)

β̂ij(kp)

γ̂ij(kp)

 = T−1(kp) ỹij(kp) (3.22)

with

T(k)
def
=


k2 k 1

(k +N)2 k +N 1

(k + 2N)2 k + 2N 1

 ,

where z̃ij(kp) ∼ CN (0, σ2
kI3). Finally, with (3.20), (3.22), and t(k) = [k2, k, 1]H , the
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channel estimates

ĥij(k) = tH(k)ξ̂ij(kp) = tH(k) T−1(kp) ỹij(kp) (3.23)

at pilot blocks kp and kp + N and data blocks k ∈ {kp + 1, · · · , kp + N − 1, kp + N +

1, · · · , kp + 2N − 1} can be respectively retained and interpolated. While this approach

avoids error propagation, the issue of long latency arises if the system is of low overhead

(or long frame) and thus has to wait for a long time to amass three pilots. This may be

even more serious if higher order polynomials are applied.

3.4 Simulation Results

In this section, the performance of aforementioned estimators are simulated. While

frame structure shown in Fig. 3.1 is adopted, the pilot block at the beginning of each

frame is assumed to be an identity matrix; thus, B = NT . We consider the estimation

of block-fading, spatially-uncorrelated 4×4 MIMO channels with SM signals, where the

time variation follows the Jakes’ model [17]. Specifically, time correlation is assumed to

be

ρT (k − `) = J0(2πfD|t1 − t2|BTs), (3.24)

where fD is the Doppler frequency. Throughout this section, 4- and 6-bit/transmission

rate are respectively achieved with AM being BPSK and 16-QAM constellation, i.e.,

M = 4 and 16. Besides, frame size of 5 and 40 are used to investigate the effect of error

propagation lies in the DD estimators. The rest of the simulation parameters are list

in Table 3.1. While the performance of channel estimators are investigated through bit

error rate (BER), canonical (or later called mismatched) detectors

X̂ = arg min
[X̃]ij∈AM∪{0}

‖Y(k)− ĤX̃‖F ; (3.25)

18



Table 3.1: Simulation parameters
Parameters Values
Operating frequency 2 GHz
Symbol period 0.1 ms
Number of transmit antennas NT 4
Number of receive antennas NR 4
Block size B 4

Table 3.2: Values of forgetting parameters λ in RLS.
SNR (dB)

0 4 8 12 16 20

fDTs

0.0222 0.6400 0.5120 0.4096 0.3277 0.0467 0.0280
0.0370 0.5120 0.4096 0.3277 0.2621 0.0280 0.0168
0.0519 0.4096 0.3277 0.2621 0.2097 0.0168 0.0101
0.0667 0.3277 0.2621 0.2097 0.1678 0.0101 0.0060

which treat channel estimates as real channels are employed, where Ĥ = Ĥ(k) for MB

estimators and Ĥ(k − 1) for DD ones.

µ in LMS algorithm is 1.45.

In Fig. 3.2 and Fig. 3.4 , we compared the BER of recursive least square (RLS)

and LS both using decision-directed (DD) with 3 bits/transmittion at different velocity

and frame size are 5 and 40, respectively. As mentioned in Subsection 3.2.2 the RLS

updated equation is similar to the LS updated equation. Both channel coefficients at

next time index are the linear combination of channel coefficient at last time index and

the received data in this time index.

In Fig. 3.3-3.5, we compared the BER of RLS, LMS and MB estimators with 3

bits/transmittion and frame size 5 or 40 at different velocity. It can been seen from LMS

estimator that channel coefficient at next time index are also the linear combination of

channel coefficient at last time index and the received data this time index, but the

weighting factor does not change with SNR. Therefore, even in high SNR, the channel is

updated by the ’old’ channel coefficients with certain ratio causing the poor performance

than RLS. However, the benefit of LMS is low complexity compared to the RLS method.

On the other hand, the performance of the MB estimator outperform the RLS estimator
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Table 3.3: Values of regularization parameters δ in RLS.
SNR (dB) 0 4 8 12 16 20

δ 1000 0.0665 0.0186 0.0067 0.0026 0.0001
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Figure 3.2: BER of DD estimators with 3 bits/transmission; N = 5.

and LMS estimator at frame size 5, but worse than them when the frame size become

larger. This is because the polynomial order is too small to chase the channel variation

if the frame size is too large. The MB estimator is sensitive to the change of the velocity.

Fig. 3.6-3.7 is the simulation result of RLS, LS, LMS and MB estimator with 16-QAM

and frame size is 5.

In Fig.3.8 and Fig.3.9, we compared the Mean square Error (MSE) of RLS and

LMS at different SNR and different velocity. When the iterations number is large, both

algorithm converge at low velocity. Both figure shows that the RLS algorithm have

lower MSE than LMS algorithm, which explains the performance of LMS is poor than

the RLS algorithm in Fig.3.8 and Fig.3.9. Furthermore, when the SNR is large, the

MSE of these two algorithm get closer.
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Figure 3.3: Comparison of RLS and MB estimators with 3 bits/transmission; N = 5;
fDTs = 0.0222, 0.0370, 0.0519, 0.0667.
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Figure 3.4: BER of DD estimator with 3 bits/transmission; N = 40.
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Figure 3.5: BER of MB estimators with 3 bits/transmission; N = 40; fDTs =
0.0222, 0.0370, 0.0519.
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Figure 3.6: BER of DD estimators with 6 bits/transmission, N = 5.
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Figure 3.7: Comparison of RLS and MB with 6 bits/transmission, N = 5; fDTs =
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Figure 3.8: MSE of RLS and LMS with 3 bits/transmission, N = 5.
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Chapter 4

Spatio-Temporal Correlation and

Channel Estimation Error-Aware

ML Detection

As the so-claimed ML MIMO detector (2.10) maximizes likelihood and thus mini-

mizes symbol error rate (SER) when full CSIR is available, it becomes strictly suboptimal

when only partial CSI or channel estimate is available at the receiver and is alternatively

referred to as the mismatched detector

X̂MM(k)
def
= arg min

[X̃]ij∈AM∪{0}
‖Y(k)− ĤX̃‖F , (4.1)

where Ĥ = Ĥ(k) for MB estimators and Ĥ(k− 1) for DD ones. In this chapter, the real

ML detectors corresponding to LS decision-directed and model-based channel estimators

are derived. While most of the existing researches assume channel to be time-invariant

within a frame, i.e., pilot and data transmission over the same channel, throughout this

work, a more general environment is adopted. The channel varies from block to block

and is spatio-temporally correlated. In the next section, the ML detector based on MB
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channel estimation is given first. The following lemma is useful for deriving our proposed

detectors throughout the work.

Lemma: Let z1 and z2 be circularly symmetric complex Gaussian random vectors with

zero means and full-rank covariance matrices Σij
def
= E{zizHj }. Then, conditioned on

z2, the random vector z1 is circularly symmetric Gaussian with mean Σ12Σ
−1
22 z2 and

covariance matrix Σ11 −Σ12Σ
−1
22 Σ21.

4.1 ML Detection With MB Channel Estimates

4.1.1 Universal MIMO Signal Detection

While the well-known Frobenius norm-based metric fails to optimize SER, the true

ML detector shall be derived. Recall that with MB channel estimate Ĥ(k), the universal

ML MIMO detection shall be done with the maximization of likelihood function

P
(

vec(Y(k))
∣∣∣vec(X(k)), vec(Ĥ(k))

)
. (4.2)

Since the entries of Y(k) and Ĥ(k) are all zero-mean, invoking Lemma with

z1 = vec(Y(k)) = vec(H(k))� vec(X(k)) + vec(Z(k)),

z2 = vec(Ĥ(k))

=
[
vec(Y(kp)) vec(Y(kp +N)) vec(Y(kp + 2N))

](
tH(k)T−1(kp)

)T
(4.3)

helps us obtain (4.2). Specifically, with

Σ11 = E{z1z
H
1 } =

(
XT (k)⊗ INR

)
Φ(X∗(k)⊗ INR

) + σ2
zINRNT

,

Σ12 = E{z1z
H
2 } = tH(k)T−1(kp)q(k)

(
XT (k)⊗ INR

)
Φ,

Σ22 = E{z2z
H
2 } = ν(k)Φ + σ2

z

∥∥tH(k)T−1(kp)
∥∥2
F

INRNT
, (4.4)
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we are able to find the conditional mean and covariance of Y(k) given X(k) and Ĥ(k):

Σ12Σ
−1
22 z2 =

(
XT (k)⊗ INR

)
A(k)vec(Ĥ(k)), (4.5)

Σ11 −Σ12Σ
−1
22 ΣH

12 = σ2
zIBNR

+
(
XT (k)⊗ INR

)
·
(
INRNT

−A(k)tH(k)T−1(kp)q(k)
)
Φ (X∗(k)⊗ INR

)

def
= D(k) (4.6)

where

q(k) =
[
ρT (k − kp), ρT (k − kp −N), ρT (k − kp − 2N)

]T
,

ν(k) = tH(k)T−1(kp)


1 ρT (N) ρT (2N)

ρT (N) 1 ρT (N)

ρT (2N) ρT (N) 1


(
tH(k)T−1(kp)

)H
,

A(k) = Φ tH(k)T−1(kp)q(k)Σ−122 . (4.7)

Finally, the ML detector with MB channel estimates for universal MIMO system is

obtained:

X̂ML(k) = arg min
[X̃]ij∈AM∪{0}

log det D̃(k)

+
(

vec(Y(k))−
(
X̃T ⊗ INR

)
A(k)vec(Ĥ(k))

)H
D̃−1(k)

·
(

vec(Y(k))−
(
X̃T ⊗ INR

)
A(k)vec(Ĥ(k))

)
. (4.8)

Note that instead of D(k), D̃(k) is used because D(k) is a function of X(k) and thus

varies with candidate blocks.

While in the above derivation no assumption has been made on the structure of data

matrix X(k), i.e., it can carry spatial-multiplexed, spatial-modulated symbols, etc., we

specifically find the ML detectors for SM systems with QAM or PSK-modulated symbols
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which are of lower complexity than (4.8) due to the simplicity of SM in the following.

4.1.2 An Alternative Perspective on ML Detector Derivation

From another point of view, we can express in terms of Ĥ which is estimated by

Model-Based estimator as

Ĥ(k) = H(k) + E(k) (4.9)

where E(k) is the channel estimation error matrix. And we can express the error matrix

as follow

vec(E(k)) = vec(Ĥ(k))− vec(H(k))

=
[
vec(Y(kp)) vec(Y(kp +N)) vec(Y(kp + 2N))

](
tH(k)T−1(kp)

)T
− vec(H(k))

(4.10)

Then, we have the mean and covariance matrix of E(k)

E
{

vec(E(k))
}

= 0

E
{

vec(E(k))vec(E(k))H
}

= (ν(k)− 2tH(k)T−1(kp)q(k) + 1)Φ + σ2
z

∥∥tH(k)T−1(kp)
∥∥2
F

INRNT

(4.11)

At the receiver side we have

Y(k) = Ĥ(k)X(k) +
(
Z(k)− E(k)X(k)

)
= Ĥ(k)X(k) + W(k) (4.12)

where W(k) is the colored noise.
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To derive the ML detector, we invoke Lemma with z1 = vec(Y(k)) and

z2 = vec(Ĥ(k))

=
[
vec(Y(kp)) vec(Y(kp +N)) vec(Y(kp + 2N))

](
tH(k)T−1(kp)

)T
(4.13)

and with (4.11), (4.12), we can have the following parameters

Σ11 = E{z1z
H
1 } =

(
XT (k)⊗ INR

)
Φ(X∗(k)⊗ INR

) + σ2
zINRNT

,

Σ12 = E{z1z
H
2 } = tH(k)T−1(kp)q(k)

(
XT (k)⊗ INR

)
Φ,

Σ22 = E{z2z
H
2 } = ν(k)Φ + σ2

z

∥∥tH(k)T−1(kp)
∥∥2
F

INRNT
, (4.14)

Finally, we have the universal ML detector.

X̂ML(k) = arg min
[X̃]ij∈AM∪{0}

log det D̃(k)

+
(

vec(Y(k))−
(
X̃T ⊗ INR

)
A(k)vec(Ĥ(k))

)H
D̃−1(k)

·
(

vec(Y(k))−
(
X̃T ⊗ INR

)
A(k)vec(Ĥ(k))

)
. (4.15)

which has exactly the same as (4.8).

4.1.3 ML Spatial-Modulated Signal Detectors

Because we may let candidate X̃ = L̃S̃ with S̃ = Diag(s̃1, s̃2, · · · , s̃B) and

[L̃]ij =

 1, if i = ˜̀
j;

0, otherwise,
(4.16)

the dedicated ML detector for SM signals using different AM are derived with A(k)

(4.7).
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I M-PSK

For SM MIMO system using M -PSK AM , (4.8) can be reduced to

X̂ML(k) = arg min
s̃j∈AM , ˜̀j∈L

log det D̃(k)

+

(
1

Es
vec(Y(k)S̃H)− (L̃T ⊗ INR

)A(k)vec(Ĥ(k))

)H
D̃−1(k)

·
(

1

Es
vec(Y(k)S̃H)− (L̃T ⊗ INR

)A(k)vec(Ĥ(k))

)
(4.17)

where D̃(k)
def
= σ2

z

Es
IBNR

+(L̃T ⊗ INR
)
(
INRNT

−A(k)tH(k)T−1(kp)q(k)
)

Φ(L̃∗⊗ INR
) and

Es = |sj|2, ∀j.

I M-QAM

On the other hand, if AM denotes M -QAM, the ML decision rule becomes

X̃ML(k) = arg min
s̃j∈AM , ˜̀j∈L

NR log det Ẽs + log det D̃(k)

+
(

vec(Y(k)S̃HẼ−1s )− (L̃T ⊗ INR
)A(k)vec(Ĥ(k))

)H
D̃−1(k)

·
(

vec(Y(k)S̃HẼ−1s )− (L̃T ⊗ INR
)A(k)vec(Ĥ(k))

)

with D̃(k)
def
= σ2

z(Ẽ
−1
s ⊗INR

)+(L̃T ⊗INR
)
(
I−A(k)tH(k)T−1(kp)q(k)

)
Φ(L̃∗⊗INR

) and

Ẽs
def
= S̃S̃H .

4.1.4 Complexity-Aware Near-ML M-PSK SM Detector

As SM detector (4.17) calls for the exhaustive search over all possible combination of

active antenna-transmitted symbol pairs which belong to LB ×ABM , the computational

complexity is nontrivial. It is desirable to find a low-complexity counterpart that reduces

the search dimension while keeping the performance loss to a minimum. To this end, we

develop a two-step approach that detects the active antenna indices and then transmitted
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symbols sequentially. Specifically, the maximization of

P
(
Y(k)

∣∣∣L(k), Ĥ(k)
)

=
∑
s1(k)

∑
s2(k)

· · ·
∑
sB(k)

P
(
Y(k)

∣∣∣L(k),S(k), Ĥ(k)
)
P
(
S(k)

)

with respect to L(k) gives the following by letting s̃ = [s̃1, · · · , s̃B]T :

L̂(k) = arg max
L̃

M−B(detEsD̃(k))−
1
2

∑
s̃

exp
(
− 1

2
m̃H(k)D̃−1(k)m̃(k)

− 1

2E2
s

s̃T J̃(k)s̃∗ +
1

Es
<{b̃H(k)s̃∗}

)
(4.18)

where D̃(k)
def
= σ2

z

Es
IBNR

+ (L̃T ⊗ INR
)
(
INRNT

−A(k)tH(k)T−1(kp)q(k)
)

Φ(L̃∗ ⊗ INR
),

m̃(k) = (L̃T ⊗ INR
)A(k)vec(Ĥ(k)), and

J̃(k) =


yH1 (k)

. . .

yHB (k)

 D̃−1(k)


y1(k)

. . .

yB(k)

 , (4.19)

b̃(k) =


yH1 (k)

. . .

yHB (k)

 D̃−1(k)m̃(k). (4.20)

Since for a specific L̃, the following sum is dominated by one term:

∑
s̃

exp
(
− 1

2
m̃H(k)D̃−1(k)m̃(k)− 1

2E2
s

s̃T J̃(k)s̃∗ +
1

Es
<{b̃H(k)s̃∗}

)
≈ exp

(
− 1

2
m̃H(k)D̃−1(k)m̃(k)− 1

2E2
s

s̄T (L̃)J̃(k)s̄∗(L̃) +
1

Es
<{b̃H(k)s̄∗(L̃)}

)
(4.21)

where a function of L̃

s̄(L̃)
def
= QAM

(
Es(J̃

−1(k)b̃(k))∗
)

(4.22)
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is obtained by differentiation with QAM
(·) demodulating the enclosed item to its nearest

constellation points in AM .

Therefore, we have

L̂(k) ≈ arg min
L̃

1

2

(
log det(EsD̃(k)) + m̃H(k)D̃−1(k)m̃(k) +

1

E2
s

s̄T (L̃)J̃(k)s̄∗(L̃)
)

− 1

Es
<
{

b̃H(k)s̄∗(L̃)
}
.

(4.23)

Consequently, the transmitted symbol is decided as

ŝ(k) = s̄(L̂(k)).

Compared to (4.17), the search dimension of detector (4.23) is effectively reduced.

4.2 ML Detection With DD Channel Estimates

On the other hand, in this section, the ML detector for SM system incorporating LS

decision-directed channel estimator is derived. Invoking Lemma with z1
def
= vec(Y(k))

and

z2
def
= vec(Ĥ(k − 1)) = vec(Y(k − 1)X̂†(k − 1)),

the maximization of

P
(

vec(Y(k))
∣∣∣vec(X(k)), vec(Ĥ(k − 1))

)
(4.24)
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mandates

X̂ML(k) = arg min
[X̃]ij∈AM∪{0}

log det D̃(k)

+
(

vec(Y(k))−
(
X̃T ⊗ INR

)
Avec(Ĥ(k − 1))

)H
D̃−1(k)

·
(

vec(Y(k))−
(
X̃T ⊗ INR

)
Avec(Ĥ(k − 1))

)
(4.25)

because the conditional mean and covariance of Y(k) given X(k) and Ĥ(k − 1) are

respectively

Σ12Σ
−1
22 z2 =

(
XT (k)⊗ INR

)
Avec(Ĥ(k − 1)),

Σ11 −Σ12Σ
−1
22 ΣH

12 = σ2
zIBNR

+
(
XT (k)⊗ INR

)
(INRNT

− ρT (1)A) Φ (X∗(k)⊗ INR
)

def
= D(k)

with A
def
= ρT (1) Φ (Φ + σ2INRNT

)−1.

4.2.1 ML Spatial-Modulated Signal Detectors

Similarly, let X̃ = L̃S̃ with S̃ = Diag(s̃1, s̃2, · · · , s̃B) and L defined as (4.16), we

derive the dedicated ML detector for SM signals under DD channel estimation with

A
def
= ρT (1) Φ (Φ + σ2INRNT

)−1.

I M-PSK

For SM MIMO system using M -PSK AM , the detection may be done via

X̂ML(k) = arg min
s̃j∈AM , ˜̀j∈L

log det D̃(k)

+

(
1

Es
vec(Y(k)S̃H)− (L̃T ⊗ INR

)Avec(Ĥ(k − 1))

)H
D̃−1(k)

·
(

1

Es
vec(Y(k)S̃H)− (L̃T ⊗ INR

)Avec(Ĥ(k − 1))

)
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where D̃(k)
def
= σ2

z

Es
IBNR

+ (L̃T ⊗ INR
) (INRNT

− ρT (1)A) Φ(L̃∗ ⊗ INR
).

I M-QAM

As for M -QAM AM , (4.25) can be reduced to

X̃ML(k) = arg min
s̃j∈AM , ˜̀j∈L

NR log det Ẽs + log det D̃(k)

+
(

vec(Y(k)S̃HẼ−1s )− (L̃T ⊗ INR
)A(k)vec(Ĥ(k))

)H
D−1(k)

·
(

vec(Y(k)S̃HẼ−1s )− (L̃T ⊗ INR
)A(k)vec(Ĥ(k))

)

where D̃(k)
def
= σ2

z(Ẽ
−1
s ⊗ INR

) + (L̃T ⊗ INR
)
(
I−A(k)tH(k)T−1(kp)q(k)

)
Φ(L̃∗ ⊗ INR

).

4.2.2 Complexity-Aware Near-ML M-PSK SM Detector

Similarly, reducing the search range of (4.26) from LB × ABM to LB is desirable

and can effectively saves computational complexity. While in this subsection we also

propose a low-complexity two-step approach which sequentially detects the antenna

indices and transmitted symbols, an alternative perspective is considered to put forward

this detector. Specifically, this time, we first consider maximizing the original likelihood

P
(
Y(k)

∣∣∣X(k), Ĥ(k − 1)
)
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with respect to X(k). Then, the following is obtainable:

max
L̃, s̃

M−B(detEsD̃(k))−
1
2 exp

(
− 1

2
m̃H(k)D̃−1(k)m̃(k)− 1

2E2
s

s̃T J̃(k)s̃∗

+
1

Es
<{b̃H(k)s̃∗}

)
≈ max

L̃
(detEsD̃(k))−

1
2 exp

(
− 1

2
m̃H(k)D̃−1(k)m̃(k)

)
·max

s̃
exp

(
− 1

2E2
s

s̃T J̃(k)s̃∗ +
1

Es
<{b̃H(k)s̃∗}

)
= max

L̃
(detEsD̃(k))−

1
2 exp

(
− 1

2
m̃H(k)D̃−1(k)m̃(k)− 1

2E2
s

s̄T (L̃)J̃(k)s̄∗(L̃)

+
1

Es
<{b̃H(k)s̄∗(L̃)}

)
(4.26)

where J̃(k), b̃(k), and s̄(L̃) are defined respectively as (4.19), (4.20), and (4.22) and

m̃(k) = (L̃T⊗INR
)Avec(Ĥ(k−1)) and D̃(k) = σ2

z

Es
IBNR

+(L̃T⊗INR
) (INRNT

− ρT (1)A) Φ(L̃∗⊗

INR
).

As a result, a two-step detection which has the same structure as (4.23) is obtained:

L̂(k) = arg min
L̃

1

2

(
log det(EsD̃(k)) + m̃H(k)D̃−1(k)m̃(k) +

1

E2
s

s̄T (L̃)J̃(k)s̄∗(L̃)
)

− 1

Es
<
{

b̃H(k)s̄∗(L̃)
}
,

ŝ(k) = s̄(L̂(k)).

4.3 Simulation Results

In this section we first compare the bit error rate (BER) performance of the derived

ML MIMO signal detector and that of the mismatched detectors, and then compare the

performance of the derived approximated ML SM signal detector and ML SM signal

detector.

In the first comparison, we operating the detector in spatial-time correlated channel
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being estimated by the model-based method. And we adopted the system model de-

scribed in Section 2.1 with B = NT = NR = 2 and the rest of the environment setting

are the same as in Section 5.3.

In Fig.4.1-4.3, we show the BER comparison of mismatched detector and proposed

ML detector both using model-based channel estimation with different values of antenna

spacing and of velocity in conventional MIMO systems. The frame size and the data

rate are 10 and 4 bits/transmission respectively with QPSK modulation being used. We

can see that as the antenna spacing goes small which means more correlated channel,

the BER goes large as expected, and the performance improvement with respect to the

mismatched detector goes large. A high modulation order is shown in Fig.4.4-4.5.

Fig.4.6-4.7 show the BER comparison of mismatched detector and proposed ML

detector with DD channel estimator. Both figures show that the proposed ML detector

outperform the mismatched detector, and the ML detector with DD channel estimator

is more robust to channel aging than it with MB channel estimator.

Fig.4.8 and Fig.4.9 show the performance comparison of the complexity-reduced de-

tector (4.23) and the proposed ML detector (4.17). We see that the performance these

two detector are very similar to each other which is independent of spatial correlation

and velocity. These two figures show that the two dimension maximization problem can

be reduced into one dimension problem with nearly no performance degradation.
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Figure 4.1: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 0.1λ, 4 bits/transmission, N = 10 in 2 × 2
MIMO system.
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Figure 4.2: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 1λ, 4 bits/transmission, N = 10 in 2 × 2
MIMO system.
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Figure 4.3: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 5λ, 4 bits/transmission, N = 10 in 2 × 2
MIMO system.
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Figure 4.4: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 1λ, 8 bits/transmission, N = 10 in 2 × 2
MIMO system.
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Figure 4.5: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 5λ, 8 bits/transmission, N = 10 in 2 × 2
MIMO system.
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Figure 4.6: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; ξ = 1λ, 4 bits/transmission, N = 10 in 4 × 4
MIMO system.
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Figure 4.7: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; ξ = 5λ, 4 bits/transmission, N = 10 in 4 × 4
MIMO system.
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Figure 4.8: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 0.1λ, 4 bits/transmission, N = 10 in 4 × 4
SM MIMO system.
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Figure 4.9: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 1λ, 4 bits/transmission, N = 10 in 4× 4 SM
MIMO system.
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Chapter 5

Approximated Maximum-Likelihood

MIMO Detection

Unlike in Section 4.1.4 and 4.2.2, only PSK SM signal constellations are considered,

in this chapter we aim to reduce the detection complexity of ML criterion for all sorts

of MIMO systems.

5.1 Approximated ML Detection With MB Channel

Estimates

5.1.1 Universal MIMO Signal Detection

Originated from the fact that

P
(
Y(k)|X(k), Ĥ(k)

)
≈

NR∏
r=1

P
(
Yr(k)|X(k), Ĥr(k)

)
, (5.1)
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matrix computation effort can be relieved due to this matrix-to-vector transformation.

By letting

zH1
def
= Yr(k) = Hr(k)X(k) + Zr(k),

zH2
def
= Ĥr(k) = tH(k)T−1(kp)

[
ỹr,1, ỹr,2, · · · , ỹr,NT

]
,

based on the Lemma we have the conditional mean and covariance of Yr(k) given X(k)

and Ĥr(k) respectively as

zH2 Σ−122 ΣH
12 = Ĥr(k)A(k)X(k) (5.2)

Σ11 −Σ12Σ
−1
22 ΣH

12 = σ2
zIB + XH(k)

(
I−A(k)tH(k)T−1(kp)q(k)

)
ΦTX(k)

def
= D(k), (5.3)

where

Σ11 = XH(k)ΦTX(k) + σ2
zIB;

Σ12 = tH(k)T−1(kp)q(k)XH(k)ΦT ; (5.4)

Σ22 = ν(k)ΦT + σ2
z‖tH(k)T−1(kp)‖2F INT

,

with A(k)
def
= ΦT tH(k)T−1(kp)q(k)Σ−122 , [ΦT ]ij = ρS(0, j−i), q(k) =

[
ρT (k−kp), ρT (k−

kp −N), ρT (k − kp − 2N)
]T

, and

ν(k) = tH(k)T−1(kp)


1 ρT (N) ρT (2N)

ρT (N) 1 ρT (N)

ρT (2N) ρT (N) 1


(
tH(k)T−1(kp)

)H
. (5.5)
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As a result, maximizing (5.1), gives an approximated ML (AML) detector:

X̂(k) = arg min
[X̃]ij∈AM∪{0}

NR log det D(k) + tr

{(
Y(k)− Ĥ(k)A(k)X̃

)
D̃−1(k)

·
(
Y(k)− Ĥ(k)A(k)X̃

)H}
. (5.6)

Note that the approximation made in (5.1) becomes exact when channel is spatially-

uncorrelated [28], i.e., Φ = INRNT
.

5.1.2 Complexity-Aware AML M-PSK SM Detector

Similarly, for SM system carrying M -PSK symbols drawn from AM , AML detector

(5.6) can be simplified to

X̂(k) = arg min
s̃j∈AM , ˜̀j∈L

NR log det(EsD̃(k)) + tr

{( 1

Es
Y(k)S̃H − Ĥ(k)A(k)L̃

)
D̃−1(k)

( 1

Es
Y(k)S̃H − Ĥ(k)A(k)L̃

)H}
(5.7)

where D̃(k)
def
= σ2

z

Es
IB + L̃H

(
INT
−A(k)tH(k)T−1(kp)q(k)

)
ΦT L̃. In addition, the two-

step approach that detects the active transmit antenna indices first can also be done

to further reduce the detection complexity of the AML detector (5.7). Specifically, the

complexity-reduced AML is given as

L̂(k) = arg min
L̃

NR log det(EsD̃(k)) + tr
(
M̃(k)D̃−1(k)M̃H(k)

)
+

1

E2
s

s̄H(L̃)J̃(k)s̄(L̃)− 2

Es
<{b̃T (k)s̄(L̃)} (5.8)

and ŝ(k) = s̄(L̂(k)) where M̃(k) = Ĥ(k)A(k)L̃, J̃(k) = D̃−1(k) � (YH(k)Y(k))∗, b̃(k)

equals to the diagonal of YH(k)M̃(k)D̃−1(k), and s̄(L̃) = QAM

(
Es(b̃

T (k)J̃−1(k))H
)

.
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5.1.3 Estimation of Channel Correlation

While the successfulness of the exact and approximated ML detection in a corre-

lated environment relies on the perfect knowledge of channel correlation, in real world

applications just like the channel itself, its correlation values are also required to be

estimated. Recall that Φ = E
{

vec (H(k)) vecH (H(k))
}

, tr(ΦT )ΦT = E{HH(k)H(k)},

ρT (k − `) = E{hij(k)h∗ij(`)}. They may be approximated by the sample averages of the

MB channel estimates Ĥ. Specifically,

Φ̂T =
1

2N

2N∑
k=1

Ĥ(k)HĤ(k) (5.9)

5.2 Approximated ML Detection With DD Channel

Estimates

5.2.1 AML Spatial-Modulated Signal Detectors

Following the justification given in Section 4.2 and 5.1, we can also devise the approx-

imated ML detector with partial CSI obtained by decision-directed channel estimation.

Recall that the data block k is detected with the channel estimates of the previous block

Ĥ(k − 1). Therefore, the likelihood function aimed to be maximized becomes

P
(
Y(k)|X(k), Ĥ(k − 1)

)
≈

NR∏
r=1

P
(
Yr(k)|X(k), Ĥr(k − 1)

)
. (5.10)

Invoking the Lemma with zH1 = Yr(k) and

zH2
def
= Ĥr(k − 1) = Hr(k − 1)G1(k − 1) + Zr(k − 1)G2(k − 1),
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where G1(k)
def
= X(k)X̂†(k) and G2(k)

def
= X†(k)G1(k), we have

Σ11 = XH(k)ΦTX(k) + σ2
zIB,

Σ12 = ρT (1)XH(k)ΦTG1(k − 1),

Σ22 = GH
1 (k − 1)

(
ΦT + σ2

z(X(k − 1)XH(k − 1))−1
)
G1(k − 1)

≈ GH
1 (k − 1)(ΦT + σ2

zIB)G1(k − 1),

where approximation X(k)XH(k) ≈ E{X(k)XH(k)} = INT
is applied in the last line.

Thus, given X(k) and Ĥr(k − 1), Yr(k) has mean and covariance respectively

zH2 Σ−122 ΣH
12 = ρT (1)Ĥr(k − 1)(ΦT + σ2

zI)−1ΦTX(k)

Σ11 −Σ12Σ
−1
22 ΣH

12 = σ2
zIB + XH(k)

(
I− ρT (1)2ΦT (ΦT + σ2

zI)−1
)
ΦTX(k)

def
= C(k).

The AML detector is then given by

X̂(k) = arg min
[X̃]ij∈AM∪{0}

NR log det C̃(k)

+tr

{(
Y(k)− ρT (1)Ĥ(k − 1)

(
ΦT + σ2

zINT

)−1
ΦT X̃

)
C̃−1(k)

·
(
Y(k)− ρT (1)Ĥ(k − 1)

(
ΦT + σ2

zINT

)−1
ΦT X̃

)H}
. (5.11)

Similarly, the approximation (5.10) becomes exact when ΦT = INT
and thus

X̂(k) = arg min
[X̃]ij∈AM∪{0}

σ2
zNR log det C̃(k) + tr

{(
Y(k)− ρT (1)

1 + σ2
z

Ĥ(k − 1)X̃
)
C̃−1(k)

·
(
Y(k)− ρT (1)

1 + σ2
z

Ĥ(k − 1)X̃
)H}

(5.12)

where C(k)
def
=
(
IB +

(
1+σ2

z−ρ2T (1)

1+σ2
z

)
XH(k)X(k)

)
.
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5.2.2 Complexity-Aware AML M-PSK SM Detector

First, for SM system with PSK AM , the detector can be simplified as

X̂(k) = arg min
s̃j∈AM , ˜̀j∈L

NR log det(EsC̃(k))

+tr

{(Y(k)S̃H

Es
− ρT (1)Ĥ(k − 1)(ΦT + σ2

zINT
)−1ΦT L̃

)
C̃−1(k)

·
(Y(k)S̃H

Es
− ρT (1)Ĥ(k − 1)(ΦT + σ2

zINT
)−1ΦT L̃

)H}

where C̃(k)
def
= σ2

z

Es
IB + L̃H

(
INT
− ρT (1)2ΦT (ΦT + σ2

zINT
)−1
)
ΦT L̃. Again, with X(k) =

L(k)S(k) and DD channel estimates, the two-step complexity-reduced AML detector for

SM with PSK AM mandates

L̂(k) = arg min
L̃

NR log det(EsC̃(k)) + tr{M̃(k)C̃−1(k)M̃H(k)}

+
1

E2
s

s̄H(L̃)J̃(k)s̄(L̃)− 2

Es
<{b̃T (k)s̄(L̃)} (5.13)

and

ŝ(k) = s̄(L̂(k))

where M̃(k) = ρT (1)Ĥ(k−1)(ΦT +σ2
zINT

)−1ΦT L̃, J̃(k) = C̃−1(k)�(YH(k)Y(k))∗, b̃(k)

equals to the diagonal of YH(k)M̃(k)C̃−1(k), and s̄(L̃) = QAM

(
Es(b̃

T (k)J̃−1(k))H
)

.

5.3 Simulation Results

In this section, we compare the BER performance of the derived Approximated ML

(AML) SM signal detectors and that of the mismatched detectors. We are interested

in operating these detectors in two scenarios: i) time-correlated channel with decision-
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directed channel estimation; ii) channel with time-spatial correlation being estimated by

the decision-directed method and model-based method. Throughout the simulation in

this section, we adopt the system model described in Section 2.3 with B = NT = NR = 4

and equispaced transmit and receive antennas and choose the time-spatial correlation to

follow [29] with carrier frequency fc = 2 GHz and symbol time Ts = 0.1 ms. Specifically,

ρT (k − `) = J0(2πfD|k − `|BTs) (5.14)

ρS(i−m, j − n) = J0(2π|(i−m)|ξ/λ)J0(2π|(j − n)|ξ/λ), (5.15)

where fD is the maximum Doppler frequency, ξ the antenna spacing, λ the wavelength,

and J0(·) the zeroth-order Bessel function of the first kind. The frame structure is as

depicted in Fig. 3.1, thus the effective transmission rate is (N − 1)/N the claimed rate.

Note that bit power Eb = Es/m and Ep/N0 = 1/N0.

We first compare the detector performance for time-correlated channels in Figs. 5.1

and 5.2, where BPSK modulation is used to achieve a rate of 3 bits/transmission with

frame size 5, 40, respectively and ΦT = ΦR = INT
. As can be seen, the proposed detector

X̂DDML
T (k) outperforms X̂MM(k) significantly in all cases, especially when the channel

variation is serious. This is because in such case, the channel estimated by treating the

data detected by X̂MM(k) as pilot is not reliable and may continue to affect the following

data detection. In addition, what also can be seen is that a shorter frame helps receiver

to get rid of this error propagation phenomenon the decision-directed method inherits

at the cost of higher rate loss. The result using a higher modulation order is given in

Fig. 5.3.

Next, we consider another scenario, spatial-time correlated channel. The BER per-

formance of AML detector and Mismatched detector with DD estimator are compared

in Figs. 5.4-5.5. The frame size is 5 with 3 bits/transmission for using BPSK, and the

antenna spacing are 1λ, 5λ, respectively. we can see that the proposed approximated ML
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Figure 5.1: BER performance comparison of the Approx. ML and mismatched
detectors using decision-directed channel estimator in time-correlated channel; 3
bits/transmission, N = 5.
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Figure 5.2: Performance of various detectors with decision-directed channel estimate in
time-correlated channel; 3 bits/transmission, N = 40.
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Figure 5.3: BER of Approx. ML and mismatched detectors using decision-directed
channel estimate in channel with time correlation only; 6 bits/transmission, N = 5.

is out performance the conventional detector, although the high channel correlation will

cause performance degradation to either the proposed ML detector or the conventional

ML.

Next, the BER performance of AML, ML and mismatched detectors with MB and DD

channel estimators are compared in Figs. 5.6-5.9 with different antenna spacing, where

both spatial and time channel correlation is considered. In Figs. 5.6-5.7, the model-

based estimation is applied to capture channel variation. Performance improvement is

observed by using the proposed AML detector. We can see that the velocity influence

more on MB channel estimator than on DD one. And the performance improvement of

proposed AML detector is larger when the antenna spacing is small, i.e. high channel

correlation.

Furthermore, we also show the BER performance of AML detector with MB channel

estimator and estimated channel spatial correlation coefficient which is obtained in [27].
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Figure 5.4: BER comparison of the Approx. ML and mismatched detectors using
decision-directed channel estimator in channel with time-spatial correlation; ξ = 1λ,
3 bits/transmission, N = 5.
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Figure 5.5: BER comparison of the Approx. ML and mismatched detectors using
decision-directed channel estimator in channel with time-spatial correlation; ξ = 5λ,
3 bits/transmission, N = 5.
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Figure 5.6: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 0.1λ, 4 bits/transmission, N = 10 in 4 × 4
SM MIMO system.
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Figure 5.7: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 1λ, 4 bits/transmission, N = 10 in 4× 4 SM
MIMO system.
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Figure 5.8: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; ξ = 1λ, 4 bits/transmission, N = 10 in 4 × 4
SM MIMO system.
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Figure 5.9: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; ξ = 5λ, 4 bits/transmission, N = 10 in 4 × 4
SM MIMO system.
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Figure 5.10: BER comparison of the approximated ML and mismatched detectors using
model-based channel estimator in channel with time-spatial correlation; ξ = 0.1λ, 4
bits/transmission, N = 10.

The performance is a little degradation due to the estimation error of correlation coef-

ficients, but still better than the conventional mismatched detector.

Finally, let us see the performance of the complexity-reduced AML detector. In

Figs.5.13-Fig.5.15, we show the BER of complexity-reduced AML detector with MB

channel estimator. We can see that the BER of complexity-reduced AML have no

different from AML detector at different antenna spacing and velocity. This result is

similar to 4.8 and 4.9 that the complexity-reduced method cause nearly no performance

degradation to ML detector.
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Figure 5.11: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 1λ, 4 bits/transmission, N = 10.
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Figure 5.12: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ξ = 5λ, 4 bits/transmission, N = 10.
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Figure 5.13: BER comparison of the approximated ML and the complexity-reduced
detector using model-based channel estimator in channel with time-spatial correlation;
ξ = 0.1λ, 4 bits/transmission, N = 10.
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Figure 5.14: BER comparison of the approximated ML and the complexity-reduced
detector with model-based channel estimate in time- and spatial- correlated channel;
ξ = 1λ, 4 bits/transmission, N = 10.
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Figure 5.15: BER comparison of the approximated ML and the complexity-reduced
detector with model-based channel estimate in time- and spatial- correlated channel;
ξ = 5λ, 4 bits/transmission, N = 10.
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Chapter 6

Conclusion

In this thesis we investigated some issues associated with SM MIMO systems. We

first introduce the SM scheme and its optimal detector. Then, two kinds of channel

estimation have been introduced. The decision-directed estimator saves the pilot signal

overhead and thus retains the data rate but suffer from the error propagation problem.

We also propose two other kinds of decision-directed channel estimators that take

SNR into accounts to adjust the performance of estimator, the RLS and the LMS esti-

mator. These two detector update the channel coefficient, with a weighting factor called

forgetting factor, which is the linearly combination of the ’old’ channel coefficients and

the ’new’ channel coefficients estimated by LS method. The performance of RLS estima-

tor and LMS estimator are similar to decision-directed estimator due to the weighting

factor changing with the SNR.

To error propagation, we proposed a model-based channel estimator which uses a

polynomial to catch the channel variation. Model-based channel estimator keep the

pilot signal overhead ratio and prevent from the error propagation problem and update

channel coefficients every time index but there is a time delay from gather the enough

pilot to solve the coefficients of the polynomial. The higher the order of the polynomial

is, the larger the number of the polynomial coefficients is to be estimated causing longer
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delay time. But the interval of the pilot time can be adjusted to make the delay shorter.

We also analyzed the effect of imperfect CSIR over MIMO system and SM MIMO

system under different receiver strategies with time- and spatial-correlated fading chan-

nel.

By taking channel estimation into consideration, we derive the ML detector for

spatial-time correlated channel with model-based estimator and decision-directed es-

timator, and show the BER of ML detector using model-based channel estimator in

conventional MIMO system and in SM MIMO system. In both systems, the proposed

detectors outperform the convention mismatched detector. Furthermore, we reduced the

complexity of ML detector by maximize the likelihood function separately which causing

the dimension reduction in the exhausted search space, and the complexity-reduced ML

detector has the similar performance to the ML detector.

We also introduce another way to lower the complexity of ML detector. We derive

the approximated ML detector for time-correlated channel and spatial-time correlated

channel using decision-directed estimator and derive the approximated ML detector for

spatial-time correlated channel using model-based estimator. The detector for time-

correlation channel case using model-based estimator which we did not derive can easily

got by setting the correlation matrix R = I in the detector. All these detectors con-

sider the imperfect CSIR and spatial-time correlation thus outperform the conventional

mismatched detector and can be seen via the simulation results. In addition, we also

show the simulation results with estimated correlation matrix which is more practical

and only a little degeneration to the ideal value of correlation matrix. Note that for the

detectors using model-based estimator in this thesis are general form and can be used

for any spatial-time correlated channel MIMO system.

ML detector is similar to the approximated ML detector via simulation results

and would degenerate to the approximated ML detector when the channel is spatial-

uncorrelated.
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Finally, the fact that only one antenna is active at each time makes SM a promis-

ing scheme for data transmission in highly correlated channel. Nevertheless, channel

de-correlation, i.e., antenna spacing increment, improves the performance of both detec-

tors.
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