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Detection of SM Signals in the Presence of CSI

Error and Spatio-Temporal Correlation

Student : Hsuan-Cheng Chang Advisor : Yu T. Su

Institute of Communications Engineering

National Chiao Tung University

Abstract

Spatial modulation (SM) is a promising multiple antennas based transmission scheme
that induces no inter-(spatial) channel interference (ICI) and does not require timing
synchronization amongst multiple spatial data streams. It only needs a single radio fre-
quency (RF) chain and can exploit transmit antenna index for carrying extra information
to enhance spectral efficiency.

To detect the SM signals, channel state information (CSI) is need at the receive
side. Most SM detection studies assume that the channel is time-invariant and CSI is
perfectly known. In reality, CSI is never perfect and varies in time. Moreover, spatial
correlations among multiple spatial channels exist but are ignored in channel estimation.
In this thesis we release the above assumptions and develop a class of decision-directed
and a model-based channel estimator.

Based on the proposed channel estimators we derive optimal detectors that take
into account both the CSI error and time-spatial correlation. To simplify the optimal
detector, we then proposed two low-complexity suboptimal structures for each optimal
detector. Computer simulations are carried out to estimate the corresponding perfor-
mance and numerical results show that the optimal detectors offer performance gain
against conventional SM detector and the suboptimal detectors incur negligible perfor-

mance loss.
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Chapter 1

Introduction

Spatial modulation (SM) is a promising multiple antennas based transmission scheme
that induces no inter-(spatial) channel interference (ICI) and does not require timing
synchronization amongst multiple spatial data streams. As it allows only one transmit
antenna to be active in any one transmission interval [1], it needs a single radio frequency
(RF) chain and exploit transmit antenna index for carrying extra information to enhance
efficiency and capacity [2]. The low system complexity makes SM an attractive candidate
for high rate transmissions. When it only exploits the transmit antenna index to carry
information, SM degenerates to the so-called space-shift keying (SSK) [3,4].

Performance assessment on multi-antenna based radio communication systems often
assume that the channel state information (CSI) is perfectly known at the receiver. In
practice, the CSI at the receiver (CSIR) is obtained by a pilot-assisted estimator. To
minimize the overhead, pilot symbols are only sparsely and periodically inserted, CSIR
is therefore inevitably imperfect, and tracking errors may sometimes result in serious
performance degradation.

In many studies, the channel is assumed to be either time-invariant (static) within
a frame consist of pilot block and data block [5]- [9]. This assumption yield poor per-

formance valid for time-varying or correlated block-fading channels due to the change



of channel state within the time varying from the pilot block time to data block time
in real world. In this thesis, we introduce some channel estimation schemes for use in
time-varying block-faded channels. We release the assumption that the channel state
estimated in pilot block is the same as that in data block. The first scheme is a decision-
directed one which uses the detected signals of previous time block to update estimated
channel coefficients. Since we insert pilot periodically in data stream, the CSI will up-
date at least a frame time. This scheme has error floor in high SNR (signal to noise
ratio) due to the error propagation of channel estimation.

To avoid error propagation problem, another scheme called model-based which use
polynomials to fit the channel variation is proposed. Since the coefficients of the polyno-
mials have to be solved for sufficient data, there is a process time (delay) in this method.
Furthermore, we introduce some other adaptive channel estimations that are similar to
decision-directed in conceptually. The first one is recursive least square (RLS) method
whose objective is to minimize a weighted linear least squares cost function relating to
the received signals. In this thesis, we will find that RLS method is a weighted version of
the decision-directed channel estimation method. The other adaptive channel estimation
method is least mean square (LMS) which converges slower but has lower complexity
compared to RLS method.

The optimal detector method is the Maximum likelihood (ML) detector which often
calls for exhaustive search over the entire set of possible transmitted symbol vectors.
Due to noise and to the finite number of pilot symbols in a frame, the channel estimated
is not perfect. The minimum Euclidean distance criterion is no longer the ML detection
rule, but the statistic of the estimation/tracking error is known. There are lots of studies
finding an ML detection metric with imperfect channel estimation [5]- [8], but many of
them consider either time correlation only or spatial correlation only channel and assume
that the pilot matrix and data matrix are in the same static channel.

We will derive a new ML detector structure that takes into account the CSIR error



and the transmission channel’s time-spatial correlation, and a suboptimal ML detector
whose complexity is lower than the proposed ML detector with near-ML performance is
derived. We also derive another approximated version of ML detector whose complexity
is less than the ML detector and performance is similar to it. Finally, we will compare
the performance of the ML detector and approximated ML detector.

The rest of this thesis is organized as follows. In Chapter 2 we present the transceiver
structure of a typical SM system along with spatial correlated channel models. In
Chapter 3, we propose some adaptive time varying channel estimation methods and
model-based method for SM systems and give simulated performance. In Chapter 4
and 5, we derive the detect metric that take time-spatial correlation of channel and
imperfect CSI into account with exact and approximated versions respectively. Our
main contributions are summarized in Chapter 6.

The following notations are used throughout the thesis: upper case bold symbols
denote matrices and lower case bold symbols denote vectors. Iy is a N x N identity
matrix. ()7, (-)%, and (-) represent the transpose, conjugate transpose, and pseudo-
inverse of the enclosed items, respectively. (-)~! denotes the inverse of matrix. vec(-)
is the operator that forms one tall vector by stacking columns of a matrix. While
E{-}, | - |, and || - || denote the expectation, absolute value, and Frobenius norm of
the enclosed items, respectively, ® denotes the Kronecker product, and ® denotes the
Hadamard product. (-); and [-];; respectively denote the ith row and (i, j)th element of

the enclosed matrix.



Chapter 2

Preliminaries

2.1 Conventional MIMO System Model

We consider a MIMO system with Ny transmit and Ny receive antennas and assume
a block-fading scenario where the MIMO channel remains static within a block of B
transmissions but varies from block to block. Thus, we treat the system block-wise and

express the received signal at block k as

Y (k) < [yi(k), - yu(k)] = H(k)X (k) + Z(k) (2.1)

where H(k) = [hy(k), -, hy, (k)] el [hij(k)] is the Ng x Np wide-sense stationary

MIMO channel, X(k) = [x1(k),--- ,xp(k)] the data matrix of size Ny x B (B > Nr),

and the entries of noise Z(k) are i.i.d. CN(0,0?). This system is depicted in Fig. 2.1.
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Figure 2.1: A MIMO system model.

2.2 Spatio-Temporally Correlated Channel

2.2.1 Spatial-Correlated Channel Model

Let ® = E {vec (H(k)) vec' (H(k))} be the spatial correlation matrix of vec(H(k))
that specifies the (NzxN7)? mutual correlation coefficients between all channel entries.

For instance, the spatial correlation matrix of a 2 x 2 channel can be described as

where t and r are respectively transmit and receive antenna correlation coefficients and
s H E{h11(k)h3,(k)} and sy «f E{ho1(k)his(k)} are cross-channel correlation. There-

fore, we may model the spatial-correlated Rayleigh fading channel as

vee (H(k)) = ®2vec (H, (k) (2.3)



where H, (k) is an Nr x Np spatially white (while may or may not be temporally
correlated) complex Gaussian matrix with zero mean and unit variance.

As pointed out in [10] and [11], if at both the transmitter and receiver sides are
locally of rich scatterers, the statistics at both sides is assumed separable. In such case,

the spatial channel can be modeled by the famous Kronecker Model [12]:
H(k) = ®1H,, (k)®2. (2.4)
where the correlation matrix ® has been reduced to
P =07 @ Pp, (2.5)

the Kronecker product of the spatial correlation matrix of the transmitter side ®

and that of receiver side ®p, where tr(®;)®r et E{HY(k)H(k)} and tr(®R)®Pg et

E{H(k)H" (k)}. With transmit and receive antennas being arranged into two uniform

linear arrays (ULAs), [10] suggests that channel spatial correlation

pS(i —m,j — n) = E{h”(k)h:nn(k‘)} = [Q)} (j—1)Ngr+i, (n=1)Ng+m [(I)T]nj[q)R]im' (2'6)

The aforementioned correlation characteristics is adopted throughout this work for de-

riving channel estimators and signal detectors.

2.2.2 Block-Fading Scenario

On the other hand, while the channel is assumed to vary from block to block and
remain unchanged in each block of B transmissions, the temporal correlation between

blocks follows [10]

E{hij(k)h, (0} = ps(i —m, j —n) - pr(k =) (2.7)
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Figure 2.2: An SM system model.

with pr(k — £) = E{hy;(k)hj;(£)} denoting the channel correlation in time. As will be
seen in the ensuing chapters, the proposed ML detectors require the information about
spatio-temporal correlation. In addition to the scenario where such correlation values

are well-known, we also consider cases when they are needed to be estimated prior to

the detection.

2.3 Spatial Modulation

Despite the fact that spatial multiplexing (or BLAST) is widely used for MIMO
systems, it suffers from significant ICI at the receiver. This makes signal detection
algorithms of high complexity. Spatial modulation (SM) is a promising multiantenna
transmission scheme that eliminates ICI and does not require timing synchronization
amongst transmission antennas. Since SM allows only one active transmit antenna at
a time [1], it only requires a single RF chain. While the single-antenna limitation may
seem to avoid ICI at the cost data rate reduction, extra information is conveyed with

the selection of transmit antenna and thus spectral efficiency can be retained [2].

2.3.1 SM System Model

Spatial modulation maps a block of information bits to: i) a symbol chosen from the
constellation; ii) a transmit antenna that sends the symbol chosen. An m-bit/transmission
SM system can be realized by partitioning the data bits into groups of m = log,(M Nr)

bits of which the first log, N bits represent the index of the transmit antenna to be



Table 2.1: Signal mapping rules for 3-bit/transmission SM system

Mapping 1 Mapping 2

Input bits | Tx antenna | Tx symbol | Tx antenna | Tx symbol
000 Ant. 1 +1 Ant. 1 exp(j %)
001 Ant. 1 -1 Ant. 1 exp(j2T)
010 Ant. 2 +1 Ant. 1 exp(j2T)
011 Ant. 2 -1 Ant. 1 exp(jIr)
100 Ant. 3 +1 Ant. 2 exp(j§)
101 Ant. 3 -1 Ant. 2 exp(j28)
110 Ant. 4 +1 Ant. 2 exp(j28)
111 Ant. 4 -1 Ant. 2 exp(j o)

activated and the rest correspond to an element in A,;, a constellation of size M. They
as a whole constitute an SM symbol. An SM model is depicted in Fig. 2.2. Since only
one transmit antenna is active at each transmission, X (k) has only one nonzero element
in each column and the average transmission power is

def 1

Bp=\=
B

E{IXMIE} = SE {ir (X(X" (1)} (2.

where FE is equivalent to the average power of A,;. Two mapping rules for the 3-
bit /transmission SM system using BPSK or QPSK constellations with £ = 1 are exem-
plified in Table 2.1. Therefore, for j = 1,---, B, the received signal at the jth symbol

time of block k can be alternatively expressed as
yi(k) = by (K)s; (k) + 2;, (2.9)

where (; = (;(k) is the active transmit antenna index and x;(k) = [0,---,0,2y,(k),

0,---,0]" with the ¢;th entry x, (k) = sj(k) € Ap.



2.3.2 SM Signal Detection

Due to the fact that only one antenna is active at a time, maximum likelihood (ML)
detector can be employed without to much computation effort. With the assumption
of full CSI at the receiver (CSIR) and equally likely bit outcomes, ML detector aims to

maximizing [15]

P(YWIH(.X(0) = (r02) ™ exp (= 1Y) - HOXWIE). (210)

z

which requires exhaustively searches over all possible transmit antenna index-constellation

point pairs. Specifically, the decomposition into single-stream detection, V7,

(4300),5,(k) ) = avgmax P (y; (k) [FL(K) ) (2.11)

= arg min ly; (k) — hys|? (2.12)
(s,)eAnrx{1,- ,Np}

which searches over a space of O(M Nr), is possible. Nevertheless, in the real-world
scenario, it is impossible to obtain exact CSI which is available only when the pilot energy
is infinitely large. In the ensuing chapters, we first develop some channel estimators and
propose signal detectors in the presence of channel estimation error suitable for MIMO

or particularly SM system.



Chapter 3

Estimation of Time-Varying MIMO

Channels

In this chapter, we first introduce the conventional channel estimation schemes with
the aid of pilot blocks. Subsequently, methods that help reduce training overhead are
also given. Among them, three adaptive estimators that treat previous detected data as
pilots and an estimator which models channel variations in time using polynomials are
introduced. The MIMO signal frame structure used through the thesis is depicted in
Fig. 3.1, where a pilot signal block is inserted as preamble into each frame. Specifically,
a frame of N blocks is consisted of one pilot block followed by N — 1 data blocks and
therefore occupies VB symbol times. The value of N, or equivalently the sparsity of

pilots, relies highly on the rapidity of channel change in time.

B
e

Pilot Data Pilot Data Pilot Data

Frame size= NB

Figure 3.1: Periodical pilot signal inserion in transmit data.
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3.1 Pilot-Assisted Channel Estimation

Let the channel coefficients be obtained at the training block k, by transmitting
Nr x B pilot matrix X(k,) = Xp which is known to both sides. The received signal can
be written as

Y(kp) = H(kp)XP + Z<kp)> (3.1)
where X, is a constant matrix with average power denoted by

def 1

Bp e X3 (32)

Without loss of generality, we may assume throughout this work that X, is full-rank
with only one nonzero element on each column to enable its usage on the SM systems.
Two conventional estimators are provided as follows.

In the absence of channel and noise statistics, a simple least squares (LS) estimator,

which minimizes ||Y (k,) — H(k,)X(k,)||%, may be applied using the received pilot, i.e.,
His(ky) = Y (k) X}, = H(k,) + Z(k,) X}, (3.3)

where At % AH(AAH)~1 The fact that LS estimator neglects channel statistics may
lead to significant noise power enhancement and thus serious channel equalization per-
formance degradation. To deal with such potential problem, we alternatively aim to find
an F that minimizes the mean square error (MSE) E {||Y (k,)F — H(k,)||%}. Therefore,
we have Hynse (k) = Y (k,)F where

F = (0?Nglp + XE®,Xp) ' XEd,. (3.4)

In the rest of this chapter, ﬂLs(kp) or ﬂMMSE(kp) are exploited as reliable initial guess

for the adaptive channel estimation methods.

11



3.2 Decision-Directed Channel Estimation

In this section, we refer to the decision-directed (DD) channel estimation as the
scheme that treats previous detected data blocks as known pilot and updates the esti-
mates sequentially, while detecting data using the CSI estimated in the previous block;
see Chapter 4 and Chapter 5 . Just as all other DD algorithms, the proposed DD channel
estimator for SM systems suffers from error propagation. To mitigate the error prop-
agation problem, channel estimates are entirely renewed at each pilot block &, + sN,

s € N.

3.2.1 Least Squares Estimation

Due to the nature of SM signal that only one element in each column of X(k), the
detected block k, should be nonzero, it is likely that not all channel vectors hy(k)’s are
updated at each block instance. Nevertheless, in the long run, all channel coefficients
would be updated since the transmit antenna is selected uniformly. Assume for the
moment that the detected data matrix X(k) is full-rank. Let X(k, + sN) = Xp. By

treating X (k) as pilot the LS estimate of H(k) is obtainable, i.c.,

A

H(k) = Y (k)X (k) (3.5)

for k, +sN < k < k, + (s + 1)N. However, due to the fact that X(k) or X (k) is not
full-rank most of the time, we let H(k) = [hy(k),--- ,hy, (k)] and denote by H[L](k)
the truncated H(k) by eliminating the columns not specified in the set £. As a result,

we have
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where £ (k) wf {0(K), -+, lp(k)} and X(k) is the truncated X (k) with its all-zero rows
removed. On the other hand, the columns not updated in this block are kept unchanged

as the previous block to avoid the rank insufficient problem as well, i.e.,

A

HIL\ L(k))(k) = H[L\ L(k)](k 1), (3.6)

where L %/ {1,---,Nr}.

Inspired by the fact that a channel vector may not be updated at every block time and
thus its previous estimate must be used to retain the integrity, a natural generalization is
to include the estimates of the whole channel of several previous blocks. Such inclusion
ameliorates the performance degradation error propagation has brought about. In the
subsequent subsections, two adaptive methods that not only improve performance but

also save the heavy computation of matrix inversion are given.

3.2.2 Recursive Least Squares Estimation

To make channel estimation robust and computationally efficient, the LS criterion
is replaced by the recursive least squares (RLS) estimation which in addition eliminates

the need to perform matrix inversions. Specifically, we are interested in solving

k—1
H(k) = arg}nin{ 1Y (k) - HX®)E+ Y XY () - HOX@):
H i=kp+sN+1

+6)\kkPSN]]I:I]\2F} (3.7)

for k, + sN <k <k, + (s+1)N, s € N, where the first two terms comprise the sum of
weighted error squares and the last is a regularizing term with ¢ being the regularization
parameter. Moreover, A € (0, 1) can be treated as a forgetting factor. By differentiation,

we have

H(k) = Z(k)P(k), (3.8)



where Z(k) = S°F A=Y (1) XH (i) and

i=kp+sN+1
k k
P(k) = Diag Z MNX ()%, -, Z A Ko, (1) |2 | + SAERe N
i=kptsN+1 i=kp+sN+1

(3.9)
with X, (i) being the rth row of X(i). The recursion formulae for (3.8) are readily
derivable [16]:

P (k) =X"P (k- 1)(Iy, — C(k)K(k)) (3.10)
Z(k) = \Z(k — 1) + Y (k)X (k) (3.11)
where
C(k) = Diag (IIKa(k) iy <+ 1K (B)]1r ) = (XWX (8)) 01, )" (3.12)
K(k) = A" (Iyy + A'CH ()P~ (k — 1)C(k)) ' CH ()P~ (k —1). (3.13)

Finally, due to the fact that C(k) and P(k) are diagonal, a matrix inversion-free version

of (3.8) is derived:

H(k) = \Z(k — 1)P7L(k) + Y (B)XH (k)P (k) !

= H(k—1)(I- C(k)K(k)) + Y (k)X (k)P (k). (3.14)

The RLS estimation algorithm is summarized in Algorithm 1.

To conclude this subsection, we observe that C(k)K(k) is also diagonal and with
its 1th diagonal element being zero if + € L'\ £(k). Therefore, columns of H(k) with
indices belong to ¢ € L.\ £(k) will not be updated by the new information obtained from
Y (k) but maintained only by the old detected data blocks, while the rest of the columns

are updated by the combination of the new and old information. On the other hand,
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Algorithm 1 DD RLS Channel Estimation
1: (Initialization) Initialize some A and 4.

2: repeat

3 if £ =k, + sN then

4: H(k’) HLs(k’) or HMMSE(k)

5: P (k) =6 y,.

6 else

7 k:=Fk+1;

8 X(k) := arg mm[X]HEAMU{O}P<YEk>|X H(E—1));

0: C(k) = ((X(k;)XH(k;)> @INT>§

10: K(k) :=\"! (INT + A ICH(R)YPL(k — )C(k)) CH(k) Yk —1);
11: 1?—1(/4) = A"P7'(k—1)(Iy, — C(k)K (k;})
() = Hi(h - D - CHK(E) + YRR (WP
13: end i

14: until Transmission is ended.

scalars A and § are determined empirically by the system signal-to-noise ratio (SNR) to
attain better performance. Specifically, they are roughly inverse proportional to SNR
because the detected data may be very unreliable in the low SNR regime. In this way,
the channel estimates of the current block is more dependent on the previous blocks
even for the channel vectors indexed ﬁ(k) On the contrary, (3.14) approaches the LS

estimator for high SNRs for its forgetfulness of the past.

3.2.3 Least Mean Squares Estimation

While previous two DD estimators originate from the LS criterion, in this subsection
we consider an adaptive estimator that aims to minimize MSE. Specifically, the least

mean squares (LMS) estimate [16]
A 1 A
H(k)=H(k—1) — §uVJ(H(k -1)) (3.15)

tracks the minimum of

J(H) = E{|[Y (k) - HX (k)] (3.16)
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Algorithm 2 DD LMS Channel Estimation
1: (Initialization) Initialize some p.
2: repeat

3: if & =k, + sN then

4: H(k) := Hys(k) or Hynsg(k);

5: else

6: k:=k+1; o

7: X(k) == argming; o, 0100 (Y (K)[X, H(k — 1));

8: H(k) = FI(k = 1) (T, — X ()XY (R)) + SY ()X (1)
9: end if

10: until Transmission is ended.

along the gradient direction VI(H(k — 1)) with updating step size y, for k,+sN < k <

k, + (s +1)N, s € N, where we may derive

A

VI(H((k—1)) = H(k — )X(k)X(k)T = Y (k)X (k). (3.17)

Consequently, the channel estimate can be updated via

=H(k-1) (INT — %uX(k)XH(k)) + %MY(k)XH(k) (3.18)
=H(k-1) <1NT S %MX(I@)XH(I{)) + Y (k)X (k) (%,uf((k:)XH(k)) (3.19)

The LMS estimation algorithm is summarized in Algorithm 2.

We can see from (3.19) that the estimated channel coefficients are updated by the
linear combination of the last estimates H(k — 1) and the new ones Y (k)X(k), the LS
estimates obtained in Section 3.2.3, with a weighting factor of %,uf((k;)f( It bears a
similarity to the RLS estimator (3.14) in that they both take the past estimates into
account to deal with the possibility that the newly detected data might not be reliable
enough for channel estimation. In the next section, we introduce another estimator that

does not produce any error propagation as that lies in DD algorithms.

16



3.3 Model-Based (MB) Channel Estimation

In this section, 2nd-order polynomials are utilized to capture the channel variation

in time. Specifically, if the (7, 7)th component of the channel can be modeled as

hij(k) = aij(k)k* + Bij(k)k + 7i; (k) (3.20)

where &,;(k) wf [vij(k), Bij(k), vi;(k)]" are the coefficients of the polynomial, H(k) is

estimated once §;;(k)’s are obtained for all i and j, where §,;(k)’s are updated every 2
frames. Specifically, at block k, + 2N, three pilot blocks at k,, k, + N, and k, + 2N are
gathered to solve &;;(k;), and then &;;(k, + 2N) is solved with pilot blocks at k, + 2NV,
k, + 3N, and k, + 4N; so on and so forth. Without loss of generality, we will assume
Xp = Eply, and B = Ny throughout this work to avoid excessive notations.

Collecting received signals Y (k,), Y (k, + N), and Y (k, + 2N)

Yij (kp) hij (kp)
i) D | iyt N) | = | bk, + N) |+ 7(Ry), (3.21)
i (kp +2N) hij(ky, + 2N)
we may solve
aij(kp)
&) = | Byl | =T (ko) ug(hy) (3.22)
Yij (kp)
with
k2 k 1
TR | keN2 k4N 1.

(k+2N)* k+2N 1
where z;;(k,) ~ CN(0,071;). Finally, with (3.20), (3.22), and t(k) = [k% k,1]", the
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channel estimates
hij(k) = 6" (k)&,;(ky) = t" (k) T~ (k) ¥4 (k) (3.23)

at pilot blocks k, and k, + N and data blocks k € {k, +1,--- ,k, + N — 1.k, + N +
1,---,ky,+ 2N — 1} can be respectively retained and interpolated. While this approach
avoids error propagation, the issue of long latency arises if the system is of low overhead
(or long frame) and thus has to wait for a long time to amass three pilots. This may be

even more serious if higher order polynomials are applied.

3.4 Simulation Results

In this section, the performance of aforementioned estimators are simulated. While
frame structure shown in Fig. 3.1 is adopted, the pilot block at the beginning of each
frame is assumed to be an identity matrix; thus, B = Np. We consider the estimation
of block-fading, spatially-uncorrelated 4 x 4 MIMO channels with SM signals, where the
time variation follows the Jakes” model [17]. Specifically, time correlation is assumed to
be

pr(k =€) = Jo(2m fplt1 — 12| BT), (3.24)

where fp is the Doppler frequency. Throughout this section, 4- and 6-bit/transmission
rate are respectively achieved with A,; being BPSK and 16-QAM constellation, i.e.,
M = 4 and 16. Besides, frame size of 5 and 40 are used to investigate the effect of error
propagation lies in the DD estimators. The rest of the simulation parameters are list
in Table 3.1. While the performance of channel estimators are investigated through bit

error rate (BER), canonical (or later called mismatched) detectors

X = argmin |Y(k) — HX|p; (3.25)
[X]:; €A U{0}
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Table 3.1: Simulation parameters

Parameters Values
Operating frequency 2 GHz
Symbol period 0.1 ms
Number of transmit antennas Np 4
Number of receive antennas Ng 4
Block size B 4

Table 3.2: Values of forgetting parameters A in RLS.
SNR (dB)

0 4 8 12 16 20

0.0222{0.6400]0.5120]0.4096 [ 0.3277]0.0467 [ 0.0280

T, 0.037010.5120{0.4096 |0.3277|0.2621 [ 0.0280 | 0.0168

D=+10.0519]0.4096 [0.3277]0.2621 [0.2097 [ 0.0168 | 0.0101

0.0667{0.3277]0.2621 |0.2097{0.1678 | 0.0101 | 0.0060

which treat channel estimates as real channels are employed, where H = H(k) for MB
estimators and H(k — 1) for DD ones.

w in LMS algorithm is 1.45.

In Fig. 3.2 and Fig. 3.4 , we compared the BER of recursive least square (RLS)
and LS both using decision-directed (DD) with 3 bits/transmittion at different velocity
and frame size are 5 and 40, respectively. As mentioned in Subsection 3.2.2 the RLS
updated equation is similar to the LS updated equation. Both channel coefficients at
next time index are the linear combination of channel coefficient at last time index and
the received data in this time index.

In Fig. 3.3-3.5, we compared the BER of RLS, LMS and MB estimators with 3
bits/transmittion and frame size 5 or 40 at different velocity. It can been seen from LMS
estimator that channel coefficient at next time index are also the linear combination of
channel coefficient at last time index and the received data this time index, but the
weighting factor does not change with SNR. Therefore, even in high SNR, the channel is
updated by the ’old’ channel coefficients with certain ratio causing the poor performance
than RLS. However, the benefit of LMS is low complexity compared to the RLS method.

On the other hand, the performance of the MB estimator outperform the RLS estimator
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Table 3.3: Values of regularization parameters § in RLS.
SNR (dB)| 0 4 8 12 16 20
) 1000|0.0665|0.0186 | 0.0067 | 0.0026 | 0.0001

BER

Figure 3.2: BER of DD estimators with 3 bits/transmission; N = 5.

and LMS estimator at frame size 5, but worse than them when the frame size become
larger. This is because the polynomial order is too small to chase the channel variation
if the frame size is too large. The MB estimator is sensitive to the change of the velocity.
Fig. 3.6-3.7 is the simulation result of RLS, LS, LMS and MB estimator with 16-QAM
and frame size is 5.

In Fig.3.8 and Fig.3.9, we compared the Mean square Error (MSE) of RLS and
LMS at different SNR and different velocity. When the iterations number is large, both
algorithm converge at low velocity. Both figure shows that the RLS algorithm have
lower MSE than LMS algorithm, which explains the performance of LMS is poor than
the RLS algorithm in Fig.3.8 and Fig.3.9. Furthermore, when the SNR is large, the

MSE of these two algorithm get closer.
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BER

|-6=mB |
| —&—DDRLS|

Figure 3.3: Comparison of RLS and MB estimators with 3 bits/transmission; N = 5;
fpTs = 0.0222,0.0370, 0.0519, 0.0667.

BER

0 5 10 15 20

Figure 3.4: BER of DD estimator with 3 bits/transmission; N = 40.
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Figure 3.5: BER of MB estimators with 3 bits/transmission; N = 40; fpT, =
0.0222,0.0370,0.0519.
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Figure 3.6: BER of DD estimators with 6 bits/transmission, N = 5.
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BER

Figure 3.7: Comparison of RLS and MB with 6 bits/transmission, N = 5; fpTs =
0.0222,0.0370,0.0519, 0.0667.
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Figure 3.8: MSE of RLS and LMS with 3 bits/transmission, N = 5.
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Figure 3.9: MSE of RLS and LMS 3 bits/transmission, N = 40.
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Chapter 4

Spatio-Temporal Correlation and

Channel Estimation Error-Aware

ML Detection

As the so-claimed ML MIMO detector (2.10) maximizes likelihood and thus mini-
mizes symbol error rate (SER) when full CSIR is available, it becomes strictly suboptimal
when only partial CSI or channel estimate is available at the receiver and is alternatively

referred to as the mismatched detector

XXMMk argmin Y (k) - HX|p, (4.1)

[X]ijeApU{0}
where H = H(k) for MB estimators and H(k — 1) for DD ones. In this chapter, the real
ML detectors corresponding to LS decision-directed and model-based channel estimators
are derived. While most of the existing researches assume channel to be time-invariant
within a frame, i.e., pilot and data transmission over the same channel, throughout this
work, a more general environment is adopted. The channel varies from block to block

and is spatio-temporally correlated. In the next section, the ML detector based on MB
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channel estimation is given first. The following lemma is useful for deriving our proposed
detectors throughout the work.

Lemma: Let z; and z, be circularly symmetric complex Gaussian random vectors with
zero means and full-rank covariance matrices 3;; et E{z;z]'}. Then, conditioned on
Zs, the random vector z; is circularly symmetric Gaussian with mean 21222_21z2 and

covariance matrix >q; — 2122521221.

4.1 ML Detection With MB Channel Estimates

4.1.1 Universal MIMO Signal Detection

While the well-known Frobenius norm-based metric fails to optimize SER, the true
ML detector shall be derived. Recall that with MB channel estimate I:I(k;), the universal

ML MIMO detection shall be done with the maximization of likelihood function

P(VeC(Y(k:))

vec(X(k)),vec(ﬂ(k))). (4.2)
Since the entries of Y (k) and H(k) are all zero-mean, invoking Lemma with

2, = vec(Y (k) = vec(H(k)) ® vec(X(k)) + vee(Z(k)),

zo = vec(H(k))

= [vec(Y(ky)) vee(¥ (k, + N)) vee(¥ (k, + 2N) (tH(k)T‘l(k:p)>T (4.3)
helps us obtain (4.2). Specifically, with

Y= E{le{{} = (XT(k> ® INR) @(X*(k) ® INR) + O—zINRNT>
She = B{mall} = 7 ()T (k)a(k) (X7 (k) © L) .

Sas = B{zo25'} = v(k)® + o2 ||t (K) T (k,) || Inpvss (4.4)
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we are able to find the conditional mean and covariance of Y (k) given X (k) and H(k):

Y5z = (XT(k) ® Iny,) A(k)vec(H(k)), (4.5)
S — T35 B = oIy, + (X7 (k) @ Ly,,)
- (Inpng — AR (R)T ™ (By)a(k)) @ (X (k) @ Iny)

= D(k) (4.6)
where

a(k) = |pr(k —kp), pr(k — kp = N), pr(k — k, — 2N)}T,
L pr(N) pr(2N)
v =BT E) | ) 1 V) | (BTRT )

pr(2N) pr(N) 1
A(k) = @ t" (k)T (ky)a(k) 22, (4.7)

Finally, the ML detector with MB channel estimates for universal MIMO system is

obtained:

XM (k) = ~argmin logdet D(k)
[X]ijEA]uU{O}

—|—<vec(Y(k:)) - (XT ® INR> A(k)vec(ﬂ(k;)))Hf)‘l(k)

-<vec(Y(k:)) - <5’<T®1NR A(k:)vec(ﬂ(k:))). (4.8)

Note that instead of D(k), D(k) is used because D(k) is a function of X(k) and thus
varies with candidate blocks.

While in the above derivation no assumption has been made on the structure of data
matrix X(k), i.e., it can carry spatial-multiplexed, spatial-modulated symbols, etc., we

specifically find the ML detectors for SM systems with QAM or PSK-modulated symbols
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which are of lower complexity than (4.8) due to the simplicity of SM in the following.

4.1.2 An Alternative Perspective on ML Detector Derivation

From another point of view, we can express in terms of H which is estimated by

Model-Based estimator as

~

(k) = H(k) + E(k) (4.9)

where E(k) is the channel estimation error matrix. And we can express the error matrix

as follow

vec(E(k)) = vec(H(k)) — vec(H(k))
= [vec(Y (k) vee(Y (k, + N) vee(¥ (k, + 2N))] (#(k)D" (k) — vec(H(k))

(4.10)

Then, we have the mean and covariance matrix of E(k)

]E{vec(E(k))} =0
E{ vec(B(k))vee(E(k)) b = (v(k) — 26" (k)T (Ry)a(k) + 1)@ + o || (K)T " (ky) |7 T
(4.11)
At the receiver side we have
Y (k) = H(K)X (k) + (Z(k) - E(k)X(k))
= H(k)X (k) + W (k) (4.12)

where W (k) is the colored noise.
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To derive the ML detector, we invoke Lemma with z; = vec(Y (k)) and

~

zy = vec(H(k))

T

= [vec(Y (k) vec(Y (k, + N)) vee(Y (k, + 2N))} (tH(k:)T‘l(k:,,)) (4.13)
and with (4.11), (4.12), we can have the following parameters

Su=E{zz'} = (X'(k) @ Ly,) (X" (k) © Ing) + 02 Inpng,
S = E{mz'} = t7 ()T (k,)a(k) (X (k) @ In,) @,

Soy = B{zozl } = v(k)® + o2 |67 (k)T (k) || Inponvr (4.14)
Finally, we have the universal ML detector.

XMU (k) = _argmin  logdet D(k)
[X}l‘j E.A]\/[U{O}
H .

—|—(vec(Y(k:)) _ (XT ®1NR) A(k:)vec(ﬂ(k:))) D(k)

-<vec(Y(k:)) - (XT ® INR> A(k:)vec(fl(k:))). (4.15)
which has exactly the same as (4.8).
4.1.3 ML Spatial-Modulated Signal Detectors
Because we may let candidate X = LS with S = Diag($1, 39, -+ ,5p) and

y 1, ifi=40;
0, otherwise,

the dedicated ML detector for SM signals using different A, are derived with A(k)
(4.7).

30



» M-PSK

For SM MIMO system using M-PSK A,;, (4.8) can be reduced to

XME(E) = argmin log det D(k)

§j€«4]\4, ZjG]L

+ (Eivecmk)éﬂ) 1T INR)A(k)Vec(ﬂ(k))) D (k)

s

: (EVeC(Y(k)SH) - (L'® INR)A(k)Vec(fI(k))) (4.17)

where D(k) & Z 1oy, + (L7 @ Ly,) (Lvgx, — AGE (K)T (ky)q(k)) S(L* @ Ly,) and

Es = |Sj|27 \V/]

> M-QAM

On the other hand, if A,; denotes M-QAM, the ML decision rule becomes

XMU(E) = argmin Ny logdet E, 4 logdet D(k)

§j€AN[, ng]L

+(vec(Y(k)SHE;1) (e INR)A(k)vec(ﬂ(k)))Hnl(k>

(vec(Y (R)SES) — (7 T, ) A (K)vec(Fi(k)))

with D(k) & 02(BE 0 1y,) + (L ©1y,) (T— A2 (B) T (k,)a(k)) ®(L* @1y,) and

z

B, Y §sH.

4.1.4 Complexity-Aware Near-ML M-PSK SM Detector

As SM detector (4.17) calls for the exhaustive search over all possible combination of
active antenna-transmitted symbol pairs which belong to L? x A%, the computational
complexity is nontrivial. It is desirable to find a low-complexity counterpart that reduces
the search dimension while keeping the performance loss to a minimum. To this end, we

develop a two-step approach that detects the active antenna indices and then transmitted
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symbols sequentially. Specifically, the maximization of

P(Y(k)‘L(k:),ﬂ(k)) -y ¥y.-% P(Y(k:)‘L(k:),S(k:),ﬂ(k:))P(S(k))

s1(k) s2(k) sp(k)

with respect to L(k) gives the following by letting § = [3;, -+, 55| :

L(k) = argmax M7 (det E;D(k))™2 Y exp ( - %th(k)ﬁ‘l(k)rh(k:)

L 5

1 T T o 1 W H o*
~ 5 IS + R (b)3 })

(4.18)

where D(k) 2 Loy, + (L7 ® L) (Ivane = AR ()T (k,)a(k) @(L* © Ly,),

m(k) = (L7 ® Iy,)A(k)vec(H(k)), and

yi (k) yi(k)
J(k) = D Y(k) : (4.19)

yi (k) ys(k)

b(k) = D~ (k)m(k). (4.20)

yg (k)

Since for a specific L, the following sum is dominated by one term:

S e (- L (1D (k)i (k) — 2;32 ST3 (k)5 + E%?R{BH(k)é*})

S (DD (Bi(h) — 5 s (D30 (E) + - RB" (0" (E)})

(4.21)

where a function of L

S(L) Y Qu,, (B3 (k)b(k))") (4.22)



is obtained by differentiation with Q4,,(-) demodulating the enclosed item to its nearest
constellation points in Aj;.

Therefore, we have

L(k) ~ arg min %(log det(E,D(k)) + m (k)D~(k)m(k) + isT(L)j(k;)s*(L)>

L s

Consequently, the transmitted symbol is decided as

Compared to (4.17), the search dimension of detector (4.23) is effectively reduced.

4.2 ML Detection With DD Channel Estimates

On the other hand, in this section, the ML detector for SM system incorporating LS
decision-directed channel estimator is derived. Invoking Lemma with z, e/ vee(Y (k))

and
2o vee(H(k — 1)) = vee(Y(k — DXI(k — 1)),
the maximization of

P(vec(Y(k))(vec(X(k)), vec(H(k — 1))) (4.24)
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mandates

XMU(E) = argmin logdet D(k)
[X}ijE.A]MU{O}

+<vec(Y(k)) — (XT ® INR> Avec(H(k — 1))>Hﬁ1(k)

(veelY (k) = (X" @ Ty, ) Avec(FI(k — 1)) (4.25)

because the conditional mean and covariance of Y (k) given X(k) and H(k — 1) are

respectively

Y15z = (X7 (k) ®1n,) Avec(H(k — 1)),
i - B3y B = o, + (X7 (k) © Ing) Tnvpny — pr(1)A) @ (X*(k) © Ing)

= D)
: def 2 -1
with A = pr(1) ® (P + oc*In,ng) -

4.2.1 ML Spatial-Modulated Signal Detectors

Similarly, let X = LS with S = Diag(51, 3, -, 35g) and L defined as (4.16), we

derive the dedicated ML detector for SM signals under DD channel estimation with

de
A pr(1) @ (@ + 0% Iy,n,)

» M-PSK

For SM MIMO system using M-PSK A,,, the detection may be done via

XME(k) = argmin logdet D(k)

§j€A1\{, [jE]L

+ (EisveC(Y(k)SH) i (I~JT ® INR)AveC(I:I(k — 1))) f)—l(k,)

1 S H = i
. (Evec(Y(k’)S ) — (L" ®In,)Avec(H(k — 1)))
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where D(k) € ZIpy, + (L7 @ Iy,) (Iveny — pr(1)A) (L7 @ Ly,,).

> M-QAM

As for M-QAM Ay, (4.25) can be reduced to

XME(E) = argmin Nplogdet E, 4 logdet D(k)

§j€./41u, ZjE]L

+(vec(Y(k)SHE;1) (LT ® INR)A(k)vec(ﬂ(k))>HD‘l(k)

-(vec(Y(kz)SHEs_l) (T INR)A(k)vec(ﬂ(k))>
where D(k) < o2(B;! © Iy,) + (L7 @ 1y,) (1= A(k)t" (k)T (k,)a(k)) ®(L* @ Ly,).

4.2.2 Complexity-Aware Near-ML M-PSK SM Detector

Similarly, reducing the search range of (4.26) from L? x AP, to LP is desirable
and can effectively saves computational complexity. While in this subsection we also
propose a low-complexity two-step approach which sequentially detects the antenna
indices and transmitted symbols, an alternative perspective is considered to put forward

this detector. Specifically, this time, we first consider maximizing the original likelihood

P(Y(/f)‘X(k;),ﬂ(k; - 1))
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with respect to X (k). Then, the following is obtainable:

max M~2(det ED(R))F exp (- %th(k)Dl(k)rh(k) — S I
L o i H oo
BB (1))
~ max (det E.D(K) exp ( - %th(k:)f)‘l(k)rh(k))

max exp ( — 2;2 sTI(k)s* + Eis%{f)H(k)é*})
= max (det E.D() exp ( - %th(k)f)‘l(k)rﬁ(k) _ 222 §7 ()3 (k)5 (L)
1 CH =k (T
BT ()8 (L)})
(4.26)

where J(k), b(k), and §(L) are defined respectively as (4.19), (4.20), and (4.22) and
m(k) = (L"®Ly,)Avec(H(k—1)) and D(k) = ZLgn, +(L @Ly,) (Lyv,vy — pr(1)A) ®(L*@
In,).

As a result, a two-step detection which has the same structure as (4.23) is obtained:

~

L(k) = arg min %(log det(E,D(k)) + m” (k)D~" (k) (k) + —gT(IL)j(k;)s*(L))

4.3 Simulation Results

In this section we first compare the bit error rate (BER) performance of the derived
ML MIMO signal detector and that of the mismatched detectors, and then compare the
performance of the derived approximated ML SM signal detector and ML SM signal
detector.

In the first comparison, we operating the detector in spatial-time correlated channel
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being estimated by the model-based method. And we adopted the system model de-
scribed in Section 2.1 with B = Ny = Nr = 2 and the rest of the environment setting
are the same as in Section 5.3.

In Fig.4.1-4.3, we show the BER comparison of mismatched detector and proposed
ML detector both using model-based channel estimation with different values of antenna
spacing and of velocity in conventional MIMO systems. The frame size and the data
rate are 10 and 4 bits/transmission respectively with QPSK modulation being used. We
can see that as the antenna spacing goes small which means more correlated channel,
the BER goes large as expected, and the performance improvement with respect to the
mismatched detector goes large. A high modulation order is shown in Fig.4.4-4.5.

Fig.4.6-4.7 show the BER comparison of mismatched detector and proposed ML
detector with DD channel estimator. Both figures show that the proposed ML detector
outperform the mismatched detector, and the ML detector with DD channel estimator
is more robust to channel aging than it with MB channel estimator.

Fig.4.8 and Fig.4.9 show the performance comparison of the complexity-reduced de-
tector (4.23) and the proposed ML detector (4.17). We see that the performance these
two detector are very similar to each other which is independent of spatial correlation
and velocity. These two figures show that the two dimension maximization problem can

be reduced into one dimension problem with nearly no performance degradation.
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Figure 4.1: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; £ = 0.1, 4 bits/transmission, N = 10 in 2 x 2
MIMO system.
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Figure 4.2: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ¢ = 1\, 4 bits/transmission, N = 10 in 2 x 2
MIMO system.
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Figure 4.3: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; §& = 5\, 4 bits/transmission, N = 10 in 2 x 2
MIMO system.
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Figure 4.4: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; ¢ = 1A, 8 bits/transmission, N = 10 in 2 x 2
MIMO system.
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Figure 4.5: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; & = 5\, 8 bits/transmission, N = 10 in 2 x 2
MIMO system.
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Figure 4.6: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; £ = 1\, 4 bits/transmission, N = 10 in 4 x 4
MIMO system.
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Figure 4.7: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; £ = 5\, 4 bits/transmission, N = 10 in 4 x 4

MIMO system.

BER

Figure 4.8: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; & = 0.1\, 4 bits/transmission, N = 10 in 4 x 4
SM MIMO system.
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Figure 4.9: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; £ = 1\, 4 bits/transmission, N = 10 in 4 x 4 SM
MIMO system.
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Chapter 5

Approximated Maximum-Likelihood
MIMO Detection

Unlike in Section 4.1.4 and 4.2.2, only PSK SM signal constellations are considered,
in this chapter we aim to reduce the detection complexity of ML criterion for all sorts

of MIMO systems.

5.1 Approximated ML Detection With MB Channel

Estimates

5.1.1 Universal MIMO Signal Detection

Originated from the fact that

P(Y(k;)|X(k;),ﬂ(k)) ~ ﬁp(n(/{;n){(k),ﬂ,.(/{;)), (5.1)
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matrix computation effort can be relieved due to this matrix-to-vector transformation.

By letting

2 9 Y, (k) = H, (k)X (k) + Z.(k),

def -~ - S < v
Zg = Hr(k) = tH(k)T 1(kp) |:y7“,17 Yro,: 7yT7NT]’

based on the Lemma we have the conditional mean and covariance of Y, (k) given X (k)

and H, (k) respectively as

25 S5 By = H, (k) A (k)X (k)

S — X 3 = o2l + XH(E) (T— A" (k)T (ky)a(k)) rX(k)

where

¥ = X (k)®rX(k) + o?1p;
g = t7(k)T " (ky)a(k) X" (k)@

oy = v(k)®r + oZ[t" (k)T (k) [} I, ,

with A(k) & ®265 (k)T (k,)q(k)S5s, [®1]:; = ps(0,—1), (k) = [pT(k—kp), p

T
k,—N), pr(k—k, —2N)| , and

1 pr(N) pr(2N)

v(k) =t" ()T (k) | pr(N) 1 pr(N) (tH<k>T‘1<k:p>)H
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As a result, maximizing (5.1), gives an approximated ML (AML) detector:

X(k) = argmin Nglogdet D(k) + tr <Y(k) — ﬂ(k)A(k)X)f)*l(k)
[X];; €A U{0}

Note that the approximation made in (5.1) becomes exact when channel is spatially-

uncorrelated [28], i.e., ® = Iy, N,

5.1.2 Complexity-Aware AML M-PSK SM Detector

Similarly, for SM system carrying M-PSK symbols drawn from A,;, AML detector

(5.6) can be simplified to

X(k) = argmin Nglogdet(ED(k)) + tr{ (—Y(k)SH 3 ﬂ(k)A(k)i)ﬁ*l(k)

§j€A]V[7 EjEL

where D(k) < Z15 + L (Iy, — A(k)t" (k)T (k,)a(k)) ®7L. In addition, the two-
step approach that detects the active transmit antenna indices first can also be done
to further reduce the detection complexity of the AML detector (5.7). Specifically, the

complexity-reduced AML is given as

~

L(k) = arg min Nplogdet(E,D(k)) + tr (M(k)ﬁ—l(k)MH(k)>
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5.1.3 Estimation of Channel Correlation

While the successfulness of the exact and approximated ML detection in a corre-
lated environment relies on the perfect knowledge of channel correlation, in real world
applications just like the channel itself, its correlation values are also required to be
estimated. Recall that ® = E {vec (H(k)) vec” (H(k))}, tr(®r)®r = E{H” (k)H(k)},
pr(k — ) = E{hi;j(k)hj;(£)}. They may be approximated by the sample averages of the

MB channel estimates H. Specifically,

2
. 1
b= —
T~ 9N

=z

H(k)"H(k) (5.9)

1

b
I

5.2 Approximated ML Detection With DD Channel

Estimates

5.2.1 AML Spatial-Modulated Signal Detectors

Following the justification given in Section 4.2 and 5.1, we can also devise the approx-
imated ML detector with partial CSI obtained by decision-directed channel estimation.

Recall that the data block k is detected with the channel estimates of the previous block

A

H(k — 1). Therefore, the likelihood function aimed to be maximized becomes
Ngr
P(Y(k:)]X(k;),H(k - 1)) ~ HP(YT(k)|X(k:), T, (k — 1)). (5.10)
r=1
Invoking the Lemma with z! =Y, (k) and

2 Y (k= 1) = Ho(k — 1)G1(k — 1) + Z,(k — 1)Gao(k — 1),
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where G (k) 2 X (k)X1t(k) and Ga(k) ¢ XI (k)G (k), we have

S = X" (k)®rX(k) + 0215,
212 = ,OT(l)XH(k?)@TGl(kZ — 1)7

where approximation X (k)X (k) ~ E{X (k)X (k)} = I, is applied in the last line.

Thus, given X (k) and H,(k — 1), Y, (k) has mean and covariance respectively

2 55, 21 = pr(DH,(k — 1)(®7 + 021) ' @1 X (k)
S - SIS = o2, 4+ X (k) (I ~ pr(1)2® (D1 + 0—31)—1)%}((/@

“ k).
The AML detector is then given by

X(k) = argmin Nglogdet C(k)
[XL‘]'EAA{U{U}

+tr{ (Y(k) — pr(DH(k —1) (®7 + 0°Ty,) " <I>TX>C‘1(k)

.<Y(k:) — pr(DH(k — 1) (®7 + 0°Ty,) <I>TX>H}. (5.11)

Similarly, the approximation (5.10) becomes exact when ®7 = Iy, and thus

~ 1) N\ -~
X (k) = argmin o¢2Nglogdet C(k) + tr (Y(k;) _ pr )2H(k; _ 1)X>C_1(k;)
(X];;€An {0} 1+o

z

.<Y(l<:) _ e g 1)5<)H} (5.12)

1+o‘§

where C(k) % (IB + <M>XH(I<:)X(I¢)>.
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5.2.2 Complexity-Aware AML M-PSK SM Detector

First, for SM system with PSK A,;, the detector can be simplified as

X(k) = argmin Nglogdet(E,C(k))

§;€Awm, ng]L

tr { (YWSH — pr(V)H(k — 1)(®5 + aglNT)—1q>T13>é—1(k)

v ve o )’

where C(k) < Z1, + L” (INT — pr(1)2®(®r + o—glNT)—l)cI»TIL. Again, with X (k) =

L(k)S(k) and DD channel estimates, the two-step complexity-reduced AML detector for

SM with PSK A;; mandates

~

L(k) = argmin Nplogdet(E,C(k)) + tr{M(k)C " (k)M" (k)}

and

where M(k) = pr(1)H(k—1)(®7402Iy, ) ' ®7L, J(k) = C (k) (Y7 (k)Y (k))*, b(k)
equals to the diagonal of Y (k)M (k)C~'(k), and §(L) = Qy,, <E5(l~)T(/€)j_1(/€))H :

5.3 Simulation Results

In this section, we compare the BER performance of the derived Approximated ML
(AML) SM signal detectors and that of the mismatched detectors. We are interested

in operating these detectors in two scenarios: i) time-correlated channel with decision-
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directed channel estimation; ii) channel with time-spatial correlation being estimated by
the decision-directed method and model-based method. Throughout the simulation in
this section, we adopt the system model described in Section 2.3 with B = Np = N =4
and equispaced transmit and receive antennas and choose the time-spatial correlation to

follow [29] with carrier frequency f. = 2 GHz and symbol time Ty = 0.1 ms. Specifically,

pr(k — 0) = Jo(2n fplk — (| BT,) (5.14)

ps(i—m,j —n) = Jo2r|(i —m)[£/A)Jo(2m|(j —n)|E/A), (5.15)

where fp is the maximum Doppler frequency, £ the antenna spacing, A the wavelength,
and Jo(-) the zeroth-order Bessel function of the first kind. The frame structure is as
depicted in Fig. 3.1, thus the effective transmission rate is (N — 1)/N the claimed rate.
Note that bit power Ey = E;/m and E, /Ny = 1/Nj.

We first compare the detector performance for time-correlated channels in Figs. 5.1
and 5.2, where BPSK modulation is used to achieve a rate of 3 bits/transmission with
frame size 5, 40, respectively and @, = ®r = Iy,. As can be seen, the proposed detector
XPPML (1) utperforms XMM (k) significantly in all cases, especially when the channel
variation is serious. This is because in such case, the channel estimated by treating the
data detected by XMM(k) as pilot is not reliable and may continue to affect the following
data detection. In addition, what also can be seen is that a shorter frame helps receiver
to get rid of this error propagation phenomenon the decision-directed method inherits
at the cost of higher rate loss. The result using a higher modulation order is given in
Fig. 5.3.

Next, we consider another scenario, spatial-time correlated channel. The BER per-
formance of AML detector and Mismatched detector with DD estimator are compared
in Figs. 5.4-5.5. The frame size is 5 with 3 bits/transmission for using BPSK, and the

antenna spacing are 1\, 5\, respectively. we can see that the proposed approximated ML
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Figure 5.1: BER performance comparison of the Approx. ML and mismatched
detectors using decision-directed channel estimator in time-correlated channel; 3
bits/transmission, N = 5.
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Figure 5.2: Performance of various detectors with decision-directed channel estimate in
time-correlated channel; 3 bits/transmission, N = 40.
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Figure 5.3: BER of Approx. ML and mismatched detectors using decision-directed
channel estimate in channel with time correlation only; 6 bits/transmission, N = 5.

is out performance the conventional detector, although the high channel correlation will
cause performance degradation to either the proposed ML detector or the conventional
ML.

Next, the BER performance of AML, ML and mismatched detectors with MB and DD
channel estimators are compared in Figs. 5.6-5.9 with different antenna spacing, where
both spatial and time channel correlation is considered. In Figs. 5.6-5.7, the model-
based estimation is applied to capture channel variation. Performance improvement is
observed by using the proposed AML detector. We can see that the velocity influence
more on MB channel estimator than on DD one. And the performance improvement of
proposed AML detector is larger when the antenna spacing is small, i.e. high channel
correlation.

Furthermore, we also show the BER performance of AML detector with MB channel

estimator and estimated channel spatial correlation coefficient which is obtained in [27].
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Figure 5.4: BER comparison of the Approx. ML and mismatched detectors using
decision-directed channel estimator in channel with time-spatial correlation; & = 1A,
3 bits/transmission, N = 5.
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Figure 5.5: BER comparison of the Approx. ML and mismatched detectors using

decision-directed channel estimator in channel with time-spatial correlation; & = 5\,
3 bits/transmission, N = 5.
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Figure 5.6: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; £ = 0.1, 4 bits/transmission, N = 10 in 4 x 4
SM MIMO system.
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Figure 5.7: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; £ = 1A, 4 bits/transmission, N = 10 in 4 x 4 SM
MIMO system.
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Figure 5.8: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; £ = 1\, 4 bits/transmission, N = 10 in 4 x 4
SM MIMO system.
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Figure 5.9: Performance of the various detectors with decision-directed channel estimate
in time- and spatial- correlated channel; & = 5\, 4 bits/transmission, N = 10 in 4 x 4
SM MIMO system.

o4



10 T T T ]
f::::ﬁﬁfﬁﬁ::::ﬁﬁff:::ffﬁﬁ::::ﬁﬁfﬁbeiZﬁOﬁ.OﬁS'l'foﬁf:::ﬁf
S
. . ~ X \' i
S _
% L0 h N N \fDTs_OO'?>7c
C e NIRRT
e —, S N NCA ]
..... —— Approx. ML T VN
.... — A - Mismatched| . D's Ng. . N
=—0— perfect CSI : :
..... B— R £t
107 ' * - =
0 5 10 15 20 25

Eb/No

Figure 5.10: BER comparison of the approximated ML and mismatched detectors using
model-based channel estimator in channel with time-spatial correlation; & = 0.1\, 4
bits/transmission, N = 10.

The performance is a little degradation due to the estimation error of correlation coef-
ficients, but still better than the conventional mismatched detector.

Finally, let us see the performance of the complexity-reduced AML detector. In
Figs.5.13-Fig.5.15, we show the BER of complexity-reduced AML detector with MB
channel estimator. We can see that the BER of complexity-reduced AML have no
different from AML detector at different antenna spacing and velocity. This result is
similar to 4.8 and 4.9 that the complexity-reduced method cause nearly no performance

degradation to ML detector.
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Figure 5.11: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; £ = 1A, 4 bits/transmission, N = 10.
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Figure 5.12: Performance of the various detectors with model-based channel estimate in
time- and spatial- correlated channel; £ = 5\, 4 bits/transmission, N = 10.

26



10

fDTS:0.0519

00370

...................................................

BER
[Eny
o

fDTS:Q.0222

—A— Approx. ML
= A - Mismatched
—&— Approx. ML(reduced)
—©— Perfect CSI

10 1 1 N
0 5 10 15 20
EJ/N,

Figure 5.13: BER comparison of the approximated ML and the complexity-reduced
detector using model-based channel estimator in channel with time-spatial correlation;
¢ = 0.1\, 4 bits/transmission, N = 10.
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Figure 5.14: BER comparison of the approximated ML and the complexity-reduced
detector with model-based channel estimate in time- and spatial- correlated channel;
¢ = 1\, 4 bits/transmission, N = 10.
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Figure 5.15: BER comparison of the approximated ML and the complexity-reduced
detector with model-based channel estimate in time- and spatial- correlated channel;
¢ = 5\, 4 bits/transmission, N = 10.
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Chapter 6

Conclusion

In this thesis we investigated some issues associated with SM MIMO systems. We
first introduce the SM scheme and its optimal detector. Then, two kinds of channel
estimation have been introduced. The decision-directed estimator saves the pilot signal
overhead and thus retains the data rate but suffer from the error propagation problem.

We also propose two other kinds of decision-directed channel estimators that take
SNR into accounts to adjust the performance of estimator, the RLS and the LMS esti-
mator. These two detector update the channel coefficient, with a weighting factor called
forgetting factor, which is the linearly combination of the ’old’ channel coefficients and
the 'new’ channel coefficients estimated by LS method. The performance of RLS estima-
tor and LMS estimator are similar to decision-directed estimator due to the weighting
factor changing with the SNR.

To error propagation, we proposed a model-based channel estimator which uses a
polynomial to catch the channel variation. Model-based channel estimator keep the
pilot signal overhead ratio and prevent from the error propagation problem and update
channel coefficients every time index but there is a time delay from gather the enough
pilot to solve the coefficients of the polynomial. The higher the order of the polynomial

is, the larger the number of the polynomial coefficients is to be estimated causing longer
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delay time. But the interval of the pilot time can be adjusted to make the delay shorter.

We also analyzed the effect of imperfect CSIR over MIMO system and SM MIMO
system under different receiver strategies with time- and spatial-correlated fading chan-
nel.

By taking channel estimation into consideration, we derive the ML detector for
spatial-time correlated channel with model-based estimator and decision-directed es-
timator, and show the BER of ML detector using model-based channel estimator in
conventional MIMO system and in SM MIMO system. In both systems, the proposed
detectors outperform the convention mismatched detector. Furthermore, we reduced the
complexity of ML detector by maximize the likelihood function separately which causing
the dimension reduction in the exhausted search space, and the complexity-reduced ML
detector has the similar performance to the ML detector.

We also introduce another way to lower the complexity of ML detector. We derive
the approximated ML detector for time-correlated channel and spatial-time correlated
channel using decision-directed estimator and derive the approximated ML detector for
spatial-time correlated channel using model-based estimator. The detector for time-
correlation channel case using model-based estimator which we did not derive can easily
got by setting the correlation matrix R = I in the detector. All these detectors con-
sider the imperfect CSIR and spatial-time correlation thus outperform the conventional
mismatched detector and can be seen via the simulation results. In addition, we also
show the simulation results with estimated correlation matrix which is more practical
and only a little degeneration to the ideal value of correlation matrix. Note that for the
detectors using model-based estimator in this thesis are general form and can be used
for any spatial-time correlated channel MIMO system.

ML detector is similar to the approximated ML detector via simulation results
and would degenerate to the approximated ML detector when the channel is spatial-

uncorrelated.
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Finally, the fact that only one antenna is active at each time makes SM a promis-
ing scheme for data transmission in highly correlated channel. Nevertheless, channel
de-correlation, i.e., antenna spacing increment, improves the performance of both detec-

tors.
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