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大型天線陣列系統的秩值與複合通道估計及閉迴路傳收機之設計 
  

學生：陳科夆 

 

指導教授：蘇育德 

國立交通大學 

電信工程研究所碩士班 

摘 要       

 

    我們探討一個裝有大型天線陣列基地台(BS)來服務多個單天線用戶(UE)的

多輸入多輸出(MIMO)分時多工系統。此系統藉由上行(UL)的領航信號(pilot)來估

計包含大尺度衰減係數(LSFC)及小尺度衰減係數(SSFC)的通道狀態資訊(CSI)。

雖然在MU-MIMO或是分散式MIMO系統之運作，LSFC資訊是不可或缺的，然而

有關MIMO通道估計之研究往往被假設為已知或是被忽略。我們利用大型天線陣

列之通道硬化(channel-hardening)並能同時收到大量空間樣本的特性，在不需

SSFC資訊的前提下能有效的利用相對少量的領航符元精準地估計LSFC。 

 

至於SSFC的估計，我們利用降秩(rank-reduced, RR)通道模型來完成。由於這

種方法之降秩效應需選擇適當的基底並有準確的秩值估計，後者又需先知道通道

的空間相關矩陣。針對這三項議題我們首先分析了最佳先設(predetermined)基底

的選擇，證明兩種常用的基底之近優性(near-optimality)。接著我們探討秩值對

SSFC估計的性能影響、設計一套秩值決定的演算法，最後並發展了估計空間相

關矩陣的演算法。這些成果乃是以我們對SSFC估計法的均方誤差(mean squared 

error, MSE)性能的詳細分析為基礎。我們結合了大、小尺度衰減係數的估計並證

明在接收信號之入射角度擴散(AS)不大時，還可利用適當的RR模型來一併估計

平均的接收角度(AoA)。比起使用不含AoA資訊的模型之通道估計法，這種方法

不但可降低MSE而且所估得的角度資訊可用來形成下傳鏈路的波束。 
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最後，我們推導了上行領航信號的設計方式，並且在含括前述的複合通道估

計器後，提出了分別適用於分時多工和分頻多工模式的閉迴路傳收機(closed-loop 

transceiver)設計流程與細部演算法。由電腦實驗結果可以看出我們的複合通道估

計器、秩值決定及空間相關矩陣估計等演算法在大型天線陣列系統中的優異表

現。 

 



Rank Determination, Composite Channel

Estimation and Closed-loop Transceiver Design

for Massive MIMO Systems

Student : Ko-Feng Chen Advisor : Yu T. Su

Institute of Communications Engineering

National Chiao Tung University

Abstract

We consider a multiuser (MU) multiple-input multiple-output (MIMO) time-division

duplexing (TDD) system in which the base station (BS) is equipped with a large num-

ber of antennas for communicating with single-antenna mobile users. In such a system

the BS has to estimate the channel state information (CSI) that includes large-scale

fading coefficients (LSFCs) and small-scale fading coefficients (SSFCs) by uplink pi-

lots. Although information about the former FCs are indispensable in a MU-MIMO or

distributed MIMO system, they are usually ignored or assumed perfectly known when

treating the MIMO CSI estimation problem. We take advantage of the large spatial

samples of a massive MIMO BS to derive accurate LSFC estimates in the absence of

SSFC information and with a training overhead no larger than that required by con-

ventional LSFC estimators. With estimated LSFCs, SSFCs are then obtained using a

rank-reduced (RR) channel model.

We analyze the mean squared error (MSE) performance of the proposed compos-

ite channel estimator and prove that the separable angle-of-arrival (AoA) information

provided by the RR model is beneficial for enhancing the estimator’s performance, espe-

cially when the mean angle spread of the uplink signal is not too large. To fully exploit
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the RR channel model, we have to select a proper basis and determine associated rank

(modeling order). We solve these two issues by developing a rank-determination al-

gorithm based on two popular bases and verify the near-optimality through computer

simulations. We discuss uplink pilot design and suggest closed-loop transceiver design

flows for both TDD and FDD modes using the estimated AoA for downlink beamforming

and the LSFC information for power allocation.

Some computer experiment results are provided to validate the efficiencies of the

proposed estimators and the rank determination method.
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Chapter 1

Introduction

A cellular mobile network in which each base station (BS) is equipped with an M -

antenna array, is referred to as a large-scale multiple input, multiple output (MIMO)

system or a massive MIMO system for short if M � 1 and M � K, where K is the

number of active user antennas within its serving area. A massive MIMO system has

the potentiality of achieving transmission rate much higher than those offered by cur-

rent cellular systems with enhanced reliability and drastically improved power efficiency.

It takes advantage of the so-called channel-hardening effect [1] which implies that the

channel vectors seen by different users tend to be mutually orthogonal and frequency-

independent [2]. As a result, linear receiver is almost optimal in the uplink and simple

multiuser precoder are sufficient to guarantee satisfactory downlink performance. Al-

though most investigation consider the co-located BS antenna array scenario [1], the use

of a more general setting of massive distributed antennas has been suggested recently [4].

The Kronecker model [9], which assumes separable transmit and receive spatial statis-

tics, is often used in the study of massive MIMO systems [16]. The spatial channel

model (SCM) [7], which is adopted as the 3GPP standard, degenerates to the Kronecker

model [8] when the number of subpaths approaches infinity. This model also implies

that the distributions of angle of arrival (AoA) and angle of departure (AoD) are in-

dependent. In general such an assumption is valid if the antenna number is small and

large cellular system is in question. But if one side of a MIMO link consists of multi-
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ple single-antenna terminals, only the spatial correlation of the array side needs to be

taken into account and thus the reduced Kronecker model and other spatial correlated

channel models become equivalent. Throughout this paper our investigation focuses on

this practical scenario, i.e., we consider a massive MIMO system where K is equal to

the number of active mobile users.

We assume that the mobile users transmit orthogonal uplink pilots for the serving

BS to estimate CSI that includes both small-scale fading coefficients (SSFCs) and large-

scale fading coefficients (LSFCs). Besides data detection, CSI is needed for a variety

of link adaptation applications such as precoder, modulation and coding scheme selec-

tion. The LSFCs, which summarize the pathloss and shadowing effect, are proportional

to the average received signal strength (RSS) and are useful in power control, location

estimation, hand-over protocol and other applications. While most existing works focus

on the estimation of the channel matrix which ignores the LSFC [18] [29], it is desirable

to know SSFCs and LSFCs separately. LSFCs are long-term statistics whose estima-

tion is often more time-consuming than SSFCs estimation. Conventional MIMO CSI

estimators usually assume perfect LSFC information and deal solely with SSFCs [4–6].

For co-located MIMO systems, it is reasonable to assume that the corresponding LSFCs

remain constant across all spatial subchannels and the SSFC estimation can sometime

be obtained without the LSFC information. Such an assumption is no longer valid in

a multi-user MIMO system where the user-BS distances spread over a large range and

SSFCs cannot be derived without the knowledge of LSFCs.

The estimation of LSFC has been largely neglected, assuming somehow perfectly

known prior to SSFC estimation. When one needs to obtain a joint LSFC and SSFC

estimate, the minimum mean square error (MMSE) or least squares (LS) criterion is

not directly applicable. The expectation-maximization (EM) approach is a feasible al-

ternate [32, Ch. 7] but it requires high computational complexity and cannot guarantee

convergence. We propose an efficient algorithm for estimating LSFCs with no aid of
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SSFCs by taking advantage of the channel hardening effect and large spatial samples

available to a massive MIMO BS. Our LSFC estimator is of low computational com-

plexity, requires relatively small training overhead and yields performance far superior to

that of an EM-based estimator. Our analysis show that it is unbiased and asymptotically

optimal.

Estimation of SSFCs, on the other hand, is more difficult as the associated spatial

correlation is not as high as that among LSFCs. Nevertheless, given an accurate LSFC

estimator, we manage to derive a reliable SSFC estimator which exploits the spatial

correlation induced channel rank reduction and calls for estimation of much less channel

parameters than that required by conventional method [29] when the angle spread (AS)

of the uplink signals is small. The proposed SSFC estimator provides excellent perfor-

mance and offer additional information about the average angle of arrival (AoA) which

is very useful in designing a downlink precoder.

In this thesis we present a method to obtain estimates for both LS- and SSFCs. We

first propose a uplink-pilot-based LSFC estimator for a massive MU-MIMO TDD system

that requires a small training overhead. Based on the facts that i) the user channels tend

to be mutually orthogonal and ii) the resolution of massive MIMO antenna array is high,

thus the AoA spread (AS) at the BS from each uplink channel is small, we use the esti-

mated LSFCs obtained in the first step to derive an efficient estimator incorporating the

SSFC and mean AoA estimation through a rank-reduced (RR) channel model similar to

that proposed in [12]. When considering SSFC estimator with RR channel modeling, [12]

suggest the use of polynomial basis. Nevertheless, by connecting the basis selection issue

here with that of image signal processing, we show that the Karhunen-Loève transfor-

mation (KLT) basis is optimal in terms of its outstanding energy compaction property;

furthermore, type-2 discrete cosine transform (DCT-II) basis is the best approximation

of KLT basis whereas has low computational complexity. Simulation results are con-

ducted to show the superiority of our estimators in massive MU-MIMO system. Finally,
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an low complexity iterative modeling order decision algorithm is investigated.

The rest of this thesis is organized as follows. In Chapter 2, we describe a massive

MU-MIMO channel model that takes into account spatial correlations and large-scale

fading. In Chapter 3, a novel uplink-pilot-based LSFC estimator is proposed and in

Chapter 4, we devise an SSFC estimator by using the estimated LSFCs. After that,

we analysis the effect of modeling order on SSFC estimation, and based on the analysis

results, we propose a rank determination algorithm. Finally, we introduce the closed-

loop transceiver design including the uplink pilot design issue for both TDD and FDD

mode in Chapter 5. Our main contributions are summarized in Chapter 6.

The following notations are used throughout the thesis: upper case bold symbols

denote matrices and lower case bold symbols denote vectors. (·)T , (·)H , and (·)∗ represent

the transpose, conjugate transpose, and conjugate of the enclosed items, respectively.

vec(·) is the operator that forms one tall vector by stacking columns of the enclosed

matrix, whereas Diag(·) translate a vector into a diagonal matrix with the vector entries

being the diagonal terms. While E{·}, ‖·‖, ‖·‖2, and ‖·‖F denote the expectation, vector

`2-norm, matrix spectral norm and Frobenius norm of the enclosed items, respectively,

⊗ and � respectively denote the Kronecker and Hadamard product operator. Denote

by IL, 1L, and 0L respectively the L × L identity matrix and L-dimensional all-one

and all-zero column vectors, whereas 1L×S, and 0L×S are the matrix counterparts of the

latter two. ei and Eij are all-zero vector and matrix except for their ith and (i, j)th

element being 1, respectively.
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Chapter 2

Preliminaries

2.1 Conventional MIMO System Model

Multiple input and multiple output antenna systems, or commonly referred as MIMO

system, is a system with spatial separated antennas. Under suitable channel fading con-

ditions, the MIMO channel provides an additional spatial dimension for communication

and yields a degree-of-freedom gain [38]. These additional degree of freedom can be

utilized by spatially multiplexing several data streams onto the MIMO channel, and

increase the capacity.

2.1.1 Single-user MIMO System

For conventional single-user (SU) MIMO, the channel between transmitter and re-

ceiver at time k can be modeled as

H(k, τ) =
L∑

m=1

Hm(k)δ(t− τm), (2.1)

where L is the total number of paths between one antenna pair. τm is the delay of

mth path, and δ is the Dirac delta function. This representation reduce to a NR ×NT

single-tap fading channel matrix as we consider a narrowband flat-fading MIMO channel

with NT transmit (Tx) antenna and NR received (Rx) antennas. The NR × 1 received
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signal vector is then given by

y = Hx + n, (2.2)

where x is the data vector transmitted, and H is the Rayleigh-fading channel. The

elements of H are independent and identically distributed (i.i.d.), zero-mean circularly

symmetric complex Gaussian random variables. n is the additive white Gaussian noise

(AWGN) vector, whose entries are of zero-mean and with σ2
z variance.

2.1.2 Multiuser MIMO System

Now we cast into a single-cell uplink (UL) multiuser MIMO (MU-MIMO) system

having an M -antenna BS and K single-antenna mobile stations (MSs) as illustrated in

Fig. 2.1. When referring to one of the K MSs, we focus on the “one-ring” model shown

in Fig. 2.2 while the other channel models introduced in [12] are also considered. In such

a MIMO setup, MS is surrounded by local scatterers and waveforms impending from the

MS are richly scattered. On the other hand, BS is often unobstructed by local scatterers

and has a mean angle of arrival (AoA) and small angle spread (AS) with respect to the

transmitter. The clustered channel setup is typical in urban environments, and has been

validated through field measurements [12].

The most apparent difference between SU-MIMO and MU-MIMO is that in addition

to small-scale fading, the transmitted signals (from MSs) also suffer from different large-

scale fading caused by pathloss and shadowing effect. The M × 1 Rx signal vector can

be written as

y =
K∑

k=1

√
βkhkxk + n = HD

1
2
βx + n (2.3)

where H = [h1, · · · ,hK ] ∈ CM×K and Dβ = Diag(β) contain respectively the SSFCs and

LSFCs that characterize the K uplink channels, and n is the noise vector whose entries

are distributed according to CN (0, 1). The vector β = [β1, · · · , βK ]T whose elements

βk = skd
−α
k describes the shadowing effect, parameterized by independent identically
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distributed (i.i.d.) sk’s with 10 log10(sk) ∼ N (0, σ2
s ), and the pathloss which depends on

the distance between the BS and MS k, dk, with α > 2. We called HD
1
2
β in (2.3) the

composite fading channel matrix.

Figure 2.1: A co-located MU-MIMO system with an M -antenna BS and K single-
antenna MSs.

2.2 Effect of Massive MIMO System

Massive MIMO, very-large MIMO, large-scale MIMO all refer to a system where

the BS has an enormous number of antennas larger than the number of Rx antennas,

that is, NT � NR in SU-MIMO system and M � K in MU-MIMO system. [1] and [16]

say that M is about the magnitude of several hundreds but within a thousand.

Several observations on the effect of massive MIMO are given in the following sub-

sections.
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Figure 2.2: “One-ring” model with M transmit antennas and a single-antenna MS. The
angle spread (AS) and mean angle of arrival (AoA) is depicted.
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2.2.1 Channel Hardening Effect

Massive MIMO takes advantage of the channel hardening effect which says if the

UL channel matrix representing the SSFCs between M transmit antennas and K single-

antenna MSs, M � K, is H = [hij], whose entries are i.i.d. zero-mean circularly

symmetric complex Gaussian random variables with unit variance, hij ∼ CN (0, 1), then

1

M
HHH a.s.−→ I and

K∑

`=1

λ2` = ||H||2F
a.s.−→MK as M −→∞

where λ` is the `th singular value of H. This effect tell us that the channel gain is inde-

pendent of frequency, thus, we can assign full bandwidth for all users, and no frequency

domain scheduling is needed.

Moreover, the corresponding achievable sum rate is given by

R = E

{
log2 det

(
I +

P

M
HHH

)}
(2.4)

=
K∑

l=1

log2

(
1 +

P

M
λ2`

)
(2.5)

a.s.−→ K log2

(
1 +

PM

K

)
(2.6)

which means ideally, thermal noise, interference all vanish asymptotically and to main-

tain a fixed sum rate, BS power can be scaled as 1
M

. It also implies that instead of

reducing the cell size one can increase the system capacity by simply putting more an-

tennas on the existing base stations [3]. Marzetta further showed that [3] the channel

vectors seen by different users become mutually orthogonal and the simplest precoders–

detectors, i.e., eigen beamforming (BF) and matched filter (MF), are asymptotically

optimal. Furthermore, a simple regularized zero-forcing (RZF) precoding scheme can

achieve the same performance as BF with one order of magnitude fewer antennas in

both uncorrelated and correlated fading channels.
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2.2.2 TDD and FDD system

The pilot sequences are needed for channel estimation and other synchronization

purposes. Nevertheless, the time needed to transmit the DL pilot sequences to MSs

equals to M , which may exceed the channel coherent interval, and result in an inaccurate

estimation. Furthermore, as the CSI must be obtained through channel estimation, an

FDD system would require the downlink receivers to estimate multitude of channels

and feedback to the transmitter, costing immense overhead in bandwidth and power.

A TDD system can largely bypasses such a need assuming reciprocity does hold and

proper calibrations are readily available at the transmit side [19].

It is worth noting that the FDD option cannot become a serious contender unless

we can greatly reduce the CSI requirement and pilot transmission time. In this the-

sis, we propose some approach to reduce the pilot dimension and feedback overhead

simultaneously in FDD mode.

2.2.3 Large Antenna Aperture and Small Antenna Spacing

Owing to the large number of antennas, the beam resolution of massive antenna

array is high [1], thus, high energy efficiency and power efficiency is achieved. More

precisely, we have array power gain of M , hence the power per BS antenna can be scaled

as 1
M2 when the total power is fixed [1]. Also, due to the high beam resolution, AoA

spread at BS from each MS is small enough to helps us adopt the rank-reduced (RR)

channel representation [12] of SSFCs; measurement results in [2] also suggest that the

ASs from different users are small.

Due to the limited space that is available for BS installation, the implementation of

a large amount of antennas on a BS forces them to be packed tightly (small antenna

spacings). As a result, serious mutual coupling and spatial correlation may exist. Spatial

correlation among BS antennas also enables the use of an RR model [12] that effectively

decreases the number of SSFC parameters needed to be estimated.
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2.3 Spatial-Correlated Small-Scale Fading Channel

Models

2.3.1 Conventional Spatial-Correlated Channel Model

Consider a single-cell massive SU-MIMO system with an NT -antenna BS and an

NR-antenna UE, where NT � NR. The signal received by the UE can be expressed as

y = Hx + n (2.7)

where H = [hij] is the NR × NT SSFC channel matrix with complex Gaussian entries,

hij’s, x is the transmitted signal, and n ∼ CN (0, INR) represents the white noise.

Let Φ, ΦT, and ΦR be the spatial correlation matrices of vec(H)

Φ
def
= E

{
vec(H)vec(H)H

}
, (2.8)

and those of the Tx and Rx antennas, respectively.

In general, a spatial-correlated Rayleigh fading MIMO channel can be modeled as

vec(H) = Φ
1
2 vec(Hw), (2.9)

where Hw is NR ×NT with i.i.d., zero-mean, unit-variance complex Gaussian entries.

For a massive MU-MIMO channel where the receiving end consists of many single-

antenna receivers at various locations, the above model must be modified in an user-

by-user sense. The small-scale fading channel seen by user k can in general be written

as

hk = Φ
1
2
k h̃k, (2.10)

where Φk is the transmit spatial correlation matrix with respect to the kth user and

h̃k ∼ CN (0M , IM).
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2.3.2 Kronecker Model

Kronecker model [9] is commonly used which assumes that the spatial correlations

among Tx antennas and those among Rx antennas are separable so that

Φ = ΦT ⊗ΦR = Φ
1
2 (Φ

1
2 )H , (2.11)

where the square root matrix Φ
1
2 has a similar decomposition

Φ
1
2 = Φ

1
2
T ⊗Φ

1
2
R (2.12)

and therefore yields

H = Φ
1
2
RHw

(
Φ

1
2
T

)H
. (2.13)

This model is reasonable accurate only when the main scattering is locally rich at

the transmitter and receiver sides, respectively [?]. There are many field measurements

and experiments that report inconsistencies with this model.

For a massive MU-MIMO channel where the receiving end consists of K single-

antenna MSs, the Kronecker model is equivalent to conventional spatial-correlated chan-

nel model in 2.10.

2.3.3 Virtual Channel Representation

To solve the deficiencies of the Kronecker model, Sayeed [?] suggested a so-called

virtual channel representation that takes the Tx-Rx cross-correlation into account. This

model expands the spatial correlations by unitary matrices, ΦT, ΦR, relate the Tx and

Rx spatial modes by a coupling matrix. Using the Fourier basis, one obtains

H = FR(Ω�Hw)FH
T , (2.14)

where FR and FT are DFT matrices of dimension NR and NT and Ω is the coupling

matrix. However, this model is only applicable for single-polarized ULAs and the Fourier

basis is far from the optimal choice.
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2.3.4 Weichselberger Model

An obvious optimal choice of basis that incurs no approximation error can be readily

obtained by performing eigen-decomposition on the spatial correlation matrices. Weich-

selberger et al. therefore suggested the model [?]

H = UR

(
Ω̃�Hw

)
UH

T , (2.15)

where UT and UR are the eigenbases of ΦT, and ΦR, respectively, i.e.,

ΦR = URΛRUH
R , ΦT = UTΛTUH

T . (2.16)

with ΛR and ΛT being the diagonal matrices consist of the (nonnegative) eigenvalues

of ΦR and ΦT. Ω̃ is the element-wise square root of the coupling matrix Ω = [ωij] in

which each entry specifies the average energy coupled from a transmit eigenmode to a

receiver eigenmode [?].

Let uR,i and uT,j be the ith and jth column vector of UR and UT, respectively. Then

ωij = E
{∣∣uHR,iHuT,j

∣∣2
}
, i = 1, · · · , NR, j = 1, · · · , NT (2.17)

The Weichselberger model is perhaps more convenient to generate the SSFC matrix

H and for evaluating the channel capacity of correlated MIMO channels as the coefficient

matrix has independent entries. It is also useful to analyze MIMO system performance.

However, it is not suitable for channel estimation applications because the number of

parameters, including the unknown eigenbases, is even larger than that of H.

2.3.5 Rank-reduced Channel Representation

The rank-reduced (RR) model introduced in [12] is reviewed in this section. Singular

value decomposition (SVD) of H gives

H = UΛVH , (2.18)
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Let Q1 and Q2 be two predefined unitary matrices. Then

Q1 = UP1, Q2 = VP2, (2.19)

where Λ is a NR × NT rectangular diagonal matrix with nonnegative entries and both

P1 and P2 are also unitary. This unitary transform leads to

H = Q1P
−1
1 Λ(P−12 )HQH

2 = Q1CQH
2 , (2.20)

with a random matrix C characterizing the cross-coupling effect. It can be verified that

all the aforementioned models are special cases of (2.20) which is valid for all slow-varying

narrowband MIMO channels without any attached pre-assumptions needed.

It is equivalent to the Kronecker model if C satisfies

vec(C) = (ΞT ⊗ΞR)vec(Hω), (2.21)

where ΞT and ΞR are obtained via Gram-Schmidt orthonormalization with Φ
1
2
T = Q2ΞT

and Φ
1
2
R = Q1ΞR.

If Q1 and Q2 are chosen to be composed of columns of DFT matrices, this generalized

model is compatible with the virtual channel representation [?]. Finally, the RR model

is related to the Weichselberger model via

UT = Q2P
H
T , UR = Q1P

H
R (2.22)

with PT and PR being the eigenbasis matrices of E{CCH} and E{CTC∗} whose eigen-

values are the same as those of E{HHH} and E{HTH∗}.

The use of pre-determined basis matrices avoids the need for the channel estimator

to perform the extra work of determining the eigenbasis (matrices) and provides a con-

venient way for RR representation. Furthermore, when the AoD spread is small, we can

show that (2.20) can be expressed as

H = QRCQH
T W, (2.23)
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where W = Diag[w1, w2, . . . , wM ] and wi = exp(−j2π (i−1)ξ
λ

sinφ), ξ being the distance

between neighboring elements at the BS linear array, and φ is the mean AoD.

As UL MU-MIMO introduced in Section 2.1.2 being considered, we can summarize

the SSFC matrix (2.20) and (2.23) into the lemma below:

Lemma 2.3.1 (RR representations). The channel vector seen by kth user can be repre-

sented by

h = Q(I)
m c(I) (2.24)

or alternately by

h = W(φ)Q(II)
m c(II) (2.25)

where Q
(I)
m ,Q

(II)
m ∈ RM×m are predetermined (unitary) basis matrices and c(I), c(II) ∈

Cm×1 are the channel vectors with respect to bases Q
(I)
m and Q

(II)
m for the user k-BS

link and W(φ) is diagonal with unit magnitude entries. The two equalities hold only

if m = M and become approximations if m < M . Furthermore, if the AS is small,

[W(φ)]ii = exp
(
−j2π (i−1)ξ

λ
sinφ

)
with ξ and λ being the antenna spacing and signal

wavelength and φ is the mean AoA.

That is, Lemma 2.3.1 suggests that the mean AoA (which is close to the incident

angle of the strongest path) of each user is extractable if its AS is small. In addition, due

to the large aperture massive MIMO antenna array has offered, good AoA resolution

and thus accurate mean value extraction are guaranteed [1].

2.4 Antenna Selection

Antenna selection (ANS) is useful in lessening the RF and baseband implementation

complexity. For conventional MIMO systems, the number of antennas is usually relative

small and ANS is not a particular concern although proper ANS does save hardware cost
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and power consumption. For massive, however, it becomes an important design consid-

eration, as the associated number of RF chains reduction can be significant. Moreover,

it not always a good policy to use more antennas if the number of antennas used is

already large enough; employing more antennas may lead to degraded performance.

An outstanding low-complexity ANS scheme is especially important for massive

MIMO systems as it can significantly reduce the hardware requirement of a BS without

compromising performance. The solution, however, is challenging to say the least. This

can be easily seen by simply counting the number of possible combinations
(
100
50

)
≈ 1029

in selecting 50 out of 100 antennas that maximizes the system sum rate.

We will consider first the basic setting of an SU-MIMO system with large-scale BS

antenna array and then extend the investigation to an MU-MIMO scenario. Further-

more, we focus the ANS study on the DL case, where a massive MIMO BS acts as the

transmitter. The UL scenario can be similarly treated with some minor modifications.

2.4.1 ANS for Massive SU-MIMO systems

Consider a DL massive SU-MIMO system with NT Tx antennas and NR Rx antennas

whose received vector is given by (2.38) and NT � NR.

In such a system, H is known by the receiver but unknown to the transmitter. The

ergodic capacity is given by [21]

R(H) = log2 det

(
INT +

P

NT

HHH

)

≈
NR∑

j=1

log2

(
1 +

P

NT

‖hj‖2
)
. (2.26)

To facilitate subsequent discussion, we need the following definition [23].

Definition 2.4.1. Let f be a function defined as f : U → R+. Then f is called monotone

if f(S ∪ {a})− f(S) ≥ 0, ∀a ∈ U , S ⊆ U , a /∈ S, and is called a sub-modular function

if f(S ∪ {a})− f(S) ≥ f(T ∪ {a})− f(T ), ∀a ∈ U , a /∈ T and S ⊆ T ⊆ U .
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A nesting property of R(H) has been derived in [21] when one tries to select one

more Rx antenna by a incremental capacity-based selection (CS) algorithm:

R(Hn+1) = R(Hn) + log2

(
1 +

P

M
αJ,n

)
(2.27)

≈ R(Hn) + log2

(
1 +

P

NT

‖hJ,n‖2
)

(2.28)

where Hn is the channel matrix after selecting n Rx antennas and αj,n = hHj

(
I + P

NT
HH
n Hn

)−1
hj

with hj being the channel seen by the jth user antenna. (2.28) implies that in an SU-

MIMO system, the channel capacity is sub-modular over Rx antenna set {1, 2, . . . , NR}.

Hence, the main design criterion of SU-MIMO Rx ANS is to reduce the hardware com-

plexity which is dominated by the number of radio-frequency (RF) chains. Given the set

of selected antennas, one selects, in each step, the Jth antenna that maximize ‖hJ,n‖ [21]

J = arg max
j
‖hj,n‖, (2.29)

which gives an important observation that the CS criterion is asymptotically equivalent

to the norm-based selection (NS) criterion. Thus, low-complexity NS criterion will be

good enough to retain the performance CS can achieve.

On the other hand, [22] and [23] reported that Hn is not sub-modular over the Tx

antenna set {1, 2, . . . , NT}. This means, for a massive MIMO downlink the use of all Tx

antennas may not offer better rate. In general, we have two Tx ANS selection criteria,

i.e., capacity maximization and feedback overhead reduction for FDD mode.

2.4.2 ANS for Massive MU-MIMO systems

Owing to the results of [24], we know that when M � K, user selection is unneces-

sary. Hence, we focus more on the Tx ANS in DL massive MU-MIMO system provided

that TDD mode is used.

For an MU-MIMO system with M BS antennas and K single-antenna MSs, M � K,

the composite forward link (downlink) channel matrix consists of SSFCs and LSFCs [1]
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is given by

G = D
1
2
βH. (2.30)

On the other hand, due to the channel reciprocity [19] in TDD mode, i.e., the forward

link and reverse link channel are symmetric, the reverse link (uplink) composite channel

matrix is simply the M×K matrix GT . Therefore, the DL system model is given by [42]

y = Gs + n = GWPx + n (2.31)

where s is the transmitted signal, x ∼ CN (0, IK) the uncoded data, W the M × K

precoding matrix, n ∼ CN (0, IK) the received noise and K×K matrix P diagonal with

its kth entry being the square root of power allocated to user k. Thus, the achievable

rate

R(H) = log2 det
(
IK + WHGHGWP2

)
, (2.32)

subject to a total power constraint P

tr
(
WP2WH

)
= ‖WP‖2F ≤ P, (2.33)

can be obtained. It has been proved that, as opposed to SU-MIMO, MU-MIMO using

linear precoding techniques, e.g., zero-forcing (ZF) and minimum mean square error

(MMSE) precoding, has sub-modular property R(H) over the Tx antenna set [42]. This

is because in MU-MIMO, MSs cannot cooperate and no post-detection signal processing

is allowed.

Assume decremental transmit antenna selection (TAS) algorithm [42] is used, the

capacity loss when getting rid of one more Tx antenna, indexed α, can be computed by

using (14) of [42]:

Lemma 2.4.2. Let S and S ′ be two Tx antenna sets in MU-MIMO system and S =

S ′ \ S = r, where S ⊂ S ′ ⊆ {1, · · · ,M} and |S| = 1. Then, the difference of the sum
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rate (throughput loss) between these two sets is given by

RD (r) ≡ RD (S ′)−RD (S) =

K log2


1 +

SNR
‖uHr (GSGH

S )−1‖22
1−uHr (GSGH

S )−1ur

[tr(TS′)]
2 + tr(TS′)

(
SNR +

‖uHr (GSGH
S )−1‖22

1−uHr (GSGH
S )−1ur

)




(2.34)

using a ZF precoder, where TS′ =
(
GS′G

H
S′
)−1

, GS is the composite fading channel given

the transmit antenna set S, u` is the channel vector seen by `th Tx antenna, SNR = P
σ2 ,

P is the total power constraint, and σ2 = 1 is the noise power.

Because RD (r) ≥ 0, we know that TAS in MU-MIMO system indeed has sub-

modularity [23], hence the purpose of TAS is to reduce the hardware complexity and

reduce the amount of feedback in FDD mode. Suppose that we want to select MF � K

out of M Tx antennas, the capacity-based selection (CS) algorithm can be summarized

in Algorithm 1.

Algorithm 1 Decremental CS algorithm
1: Let S = 1, 2, · · · ,M`;
2: while |S| > MF do
3: α = arg max

r∈S
RD (S − {r});

4: S = S − {α};
5: end while
6: The resulting set S is the desired transmit antenna set.

From Lemma 4 of [42], we obtain

α = arg max
r∈S

RD (S \ {r})

= arg min
r∈S

RD (r)

= arg min
r∈S

‖uHr (GSG
H
S )−1‖22

1− uHr (GSGH
S )−1ur

(2.35)
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Applying Lemma 3.3.1 to (2.35) and substituting GS = D
1/2
β HS yields

α = arg min
r∈S

‖uHr (GSG
H
S )−1‖22

1− uHr (GSGH
S )−1ur

a.s.
= arg min

r∈S

1
|S|‖u

H
r D−1β ‖22

1− 1
|S|u

H
r D−1β ur

= arg min
r∈S

‖D−1β ur‖22
|S| − ‖D−

1
2

β ur‖22
(2.36)

We call (2.36) generalized norm-based selection (GNS), since the form of its selection

metric is similar to norm-based selection (NS).

When the serving MSs are not far away from each other, or equivalently, Dβ ≈ βIK ,

which is in general the case because each RRH only serves the nearby users,

α = arg min
r∈S

‖D−1β ur‖22
|S| − ‖D−

1
2

β ur‖22

≈ arg min
r∈S

‖ur‖22
|S|β2 − β‖ur‖22

= arg min
r∈S
‖ur‖22

= arg min
r∈S
‖ur‖2 (2.37)

which is just the norm-based selection (NS).

Besides, [1] has shown that in massive MIMO system, ZF precoding is asymptoti-

cally equivalent to MF precoding, hence we can get the same result for the case of MF

precoding.

2.5 System Model

Throughout this thesis, we consider a single-cell MU-MIMO system having an M -

antenna BS and K single-antenna MSs, where M � K. For a muti-cell system, pilot

contamination [13] may become a serious design concern in the worst case when the

same pilot sequences (i.e., the same pilot symbols are placed at the same time-frequency

locations) happen to be used simultaneously in several neighboring cells and are per-

fectly synchronized in both carrier and time. In practice, there are frequency, phase and
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timing offsets between any pair of pilot signals and the number of orthogonal pilots is

often sufficient to serve mobile users in neighboring cells. Moreover, neighboring cells

may use the same pilot sequence but the pilot symbols are located in non-overlapping

time-frequency units [15], hence a pilot sequence is more likely be interfered by uncor-

related asynchronous data sequences whose average effect is not as serious as the worst

case and can be mitigated by proper inter-cell coordination, frequency planning and

some interference suppression techniques [14]. We will, however, focus on the single-cell

narrowband scenario throughout this thesis.

We assume a narrowband communication environment in which a transmitted signal

suffers from both large- and small-scale fading. The K uplink packets place their pilot

of length T at the same time-frequency locations so that, without loss of generality, the

corresponding received samples, arranged in matrix form, Y = [yij] at the BS can be

expressed as

Y =
K∑

k=1

√
βkhkp

H
k + N = HD

1
2
βP + N (2.38)

where N is the noise matrix whose entries are distributed according to CN (0, 1). The

K×T matrix is defined by P = [p1, · · · ,pK ]H , where T ≥ K and pk is the pilot sequence

sent by MS k and pHj pk = 0, ∀ j 6= k. The optimality of using orthogonal pilots has

been shown in [29].

We invoke the assumption that channels linking different users are independent as

they are relatively far (with respect to the wavelength) apart and the kth uplink channel

vector is

hk = Φ
1
2
k h̃k, (2.39)

where Φk is the transmit spatial correlation matrix with respect to the kth user and

h̃k ∼ CN (0M , IM). We assume that h̃k’s are i.i.d. and the SSFC H remains constant

during a pilot sequence period, i.e., the channel’s coherence time is greater than T , while

the LSFC β varies much slower.
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Chapter 3

Large-Scale Fading Coefficient
Estimation

Unlike previous works on MIMO channel matrix estimation which either ignore

LSFCs [18, 29] or assume perfect known LSFCs [4–6], we try to estimate H and Dβ

jointly. We first introduce an efficient LSFC estimator without SSFCs information in

this Chapter. We treat separately channels with and without spatial correlation at the

BS side and show that both cases lead to same estimators when the BS is equipped with

a large-scale linear antenna array.

3.1 Uncorrelated BS Antennas

It is known that if the BS antenna spacings are large enough, say greater than 5λ,

where λ is the signal wavelength, spatial mode correlation can be neglected and thus

Φk = IM , ∀k [9]. A statistic based on the received sample matrix Y and is asymptotically

independent of the SSFCs is derivable from the following property [31, Ch. 3]

Lemma 3.1.1. Let p,q ∈ CM×1 be two independent M-dimensional random vectors

whose elements are independent identically distributed (i.i.d.) according to CN (0, 1).

Then by the law of large number,

1

M
pHp

a.s.−→ 1 and
1

M
pHq

a.s.−→ 0 as M →∞.
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For a massive MIMO system with M � T ≥ K, we have, as M →∞, 1
M

HHH
a.s.−→

IK , 1
M

NHN
a.s.−→ IT , 1

M
HHN

a.s.−→ 0K×T , and thus

1

M
YHY − IT = PHDβP +

1

M
NHN− IT

+ PHD
1
2
β

(
1

M
HHH− IK

)
D

1
2
βP

+
2

M
R
{

PHD
1
2
βHHN

}

a.s.−→ PHDβP (3.1)

(3.1) indicates that the additive noise effect is reduced and the estimation of LSFCs

can be decoupled from that of the SSFCs. Using the identity, vec(A · Diag(c) · F) =
(
(1S ⊗A)� (FT ⊗ 1T )

)
c with A ∈ CT×K , F ∈ CK×S, and c ∈ CK×1, we simplify

[12](3.1) as

vec

(
1

M
YHY − IT

)
a.s.−→

((
1T ⊗PH

)
�
(
PT ⊗ 1T

))
β

This equation suggests that we solve the following unconstrained convex problem

min
β

∥∥∥∥vec

(
1

M
YHY − IT

)
−
((

1T ⊗PH
)
�
(
PT ⊗ 1T

))
β

∥∥∥∥
2

, (3.2)

to obtain the LSFC estimate

β̂ = Diag
(
‖p1‖−4, · · · , ‖pK‖−4

)
·
(
(1TT ⊗P)� (P∗ ⊗ 1TT )

)
vec

(
1

M
YHY − IT

)
. (3.3)

This LSFC estimator is of low complexity as no matrix inversion is needed when or-

thogonal pilots are used and does not require any knowledge of SSFCs. Furthermore,

the configuration of massive MIMO makes the estimator robust against noise, which is

verified numerically later in Section 3.4.

3.2 Correlated BS Antennas

In practice, the spatial correlations are non-zero and Y is of the form

Y = Φ̃




h̃1 · · · 0
...

. . .
...

0 · · · h̃K


D

1
2
βP + N

def
= Φ̃H̃D

1
2
βP + N
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where Φ̃ = [Φ
1
2
1 , · · · ,Φ

1
2
K ]. Following [16,17], we assume that

Assumption 1. The spatial correlation at BS antennas seen by a user satisfies

lim sup
M→∞

‖Φ
1
2
k ‖2 <∞, ∀k;

or equivalently,

lim sup
M→∞

‖Φk‖2 <∞, ∀k.

Therefore, (3.1) becomes

1

M
YHY − IT

a.s.−→ PHDβP +
2

M
R
{

PHD
1
2
βH̃HΦ̃HN

}

+ PHD
1
2
β

(
1

M
H̃HΦ̃HΦ̃H̃− IK

)
D

1
2
βP

def
= PHDβP + N′

where N′ is zero-mean with seemingly non-diminishing variance due to the spatial cor-

relation. Nonetheless, we proved in Appendix A that

Theorem 3.2.1. If lim sup
M→∞

sup
1≤k≤K

‖Φ
1
2
k ‖2 <∞, then

1

M
H̃HΦ̃HΦ̃H̃

a.s.−→ IK , (3.4)

1

M
H̃HΦ̃HN

a.s.−→ 0K×T (3.5)

as M →∞.

This theorem implies that although the non-zero spatial correlation does cause the

increase of variance of N′, the channel hardening effect still exist and N′ is asymptotically

diminishing provided that Assumption 1 holds. In this case, LS criterion also mandates

the same estimator as (3.3). Several remarks are worth mentioning.
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Remark 1. If J consecutive coherence blocks in which the LSFCs remain constant are

available, our estimator can be easily extended to

β̂ = Diag
(
‖p1‖−4, · · · , ‖pK‖−4

) [(
1TT ⊗P

)
�
(
P∗ ⊗ 1TT

)]
· vec

(
1

MJ

J∑

i=1

YH
i Yi −

1

J
IT

)
(3.6)

where Yi is the ith received block. Moreover, the noise reduction effect becomes more

evident as more received samples become available.

Remark 2. The proposed LSFC estimators (3.3) and (3.6) render element-wise expres-

sions as

β̂k =
pHk YHYpk −M‖pk‖2

M‖pk‖4
, ∀k, (3.7)

β̂k =

∑J
i=1 pHk YH

i Yipk −MJ‖pk‖2

MJ‖pk‖4
, ∀k. (3.8)

Although these new expressions imply the same computational complexity, they are

shown to be useful in Section 5.2 when designing uplink pilots.

Remark 3. After the LSFC estimates are got, we can use the conventional least squares

(LS) estimator presented in [29] to estimate the SSFCs:

Ĥ = YPHDiag

(
1

γ̂1
, · · · , 1

γ̂K

)
, (3.9)

where γ̂` =

√
β̂`‖p`‖2, or more desirable, adopt the SSFC estimator introduced later in

Chapter 4.

3.3 Performance Analysis

As LSFC estimator (3.7) is unbiased because

E
{
β̂k

}
=

pHk (MPHDβP +MIK)pk −M‖pk‖2

M‖pk‖4

=
Mβk‖pk‖4 +M‖pk‖2 −M‖pk‖2

M‖pk‖4

= βk, ∀k, (3.10)
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the mean squared error (MSE) of β̂k is thus

E
{∣∣∣β̂k − βk

∣∣∣
2
}

= Var
{
β̂k

}
. (3.11)

Lemma 3.3.1 (Lemma 4 of [16]). Let A ∈ CM×M and p and q be two vectors with

i.i.d. elements drawn from CN (0, 1). If lim sup
M→∞

‖A‖2 <∞, then

pHAp
a.s.−→ tr(A) and

1

M
pHAq

a.s.−→ 0 as M →∞.

Remark 4. Using [39, Lemma B.26], we can prove that the convergence rates in the

aforementioned asymptotic formulae follow O(‖A‖F/M). More precisely,

E
{∣∣∣∣

pHAp− tr(A)

M

∣∣∣∣
}

= O(‖A‖F/M) (3.12)

E
{∣∣∣∣

pHAq

M

∣∣∣∣
}

= O(‖A‖F/M). (3.13)

By reformulating (3.7) as

β̂k = βk +
pHk (NHN−MIK)pk

M‖pk‖4︸ ︷︷ ︸
r1

+
βk(h

H
k hk −M)

M︸ ︷︷ ︸
r2

+

√
βk
(
2R
{
hHk Npk

})

M‖pk‖2︸ ︷︷ ︸
r3

,

and invoking Assumption 1, Lemmas 3.1.1 and 3.3.1, and the fact that hk = Φ
1
2
k h̃k, we

conclude that r1, r2, r3
a.s.−→ 0 as M →∞, and thus

Var
{
β̂k

}
= E

{
|r1 + r2 + r3|2

} a.s.−→ 0. (3.14)

As pk,N and hk are uncorrelated, we have

E
{
|r1 + r2 + r3|2

}
≈ E

{
|r1|2

}
+ E

{
|r2|2

}
+ E

{
|r3|2

}

(3.15)
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Lemma 3.3.2. When the pilot length is T = K, the MSE convergence rates for E {|r1|2},

E {|r2|2} and E {|r3|2} follow O
(

β2
k

T ·SNR2
k

1
M

)
, O

(
β2
k
‖Φk‖2F
M2

)
and O

(
4β2
k

T ·SNRk

1
M

)
, respec-

tively, where SNRk
def
= βk‖pk‖2

T
. Thus the convergence rate of Var{β̂k} is dominated by

E {|r2|2}.

Proof.

E
{
|r1|2

}
=

1

‖pk‖8
E

{
tr

(
pkp

H
k

(
NHN−MIK

M

))2
}

≤ 1

‖pk‖8
E

{
tr
(
pkp

H
k

)2
tr

(
NHN−MIK

M

)2
}

=
1

‖pk‖4
E

{(
tr

(
NHN−MIK

M

))2
}

=
1

‖pk‖4
E





(
K∑

i=1

nHi ni −M
M

)2




=
1

‖pk‖4
K∑

i=1

E

{(
nHi ni −M

M

)2
}

= O

(
K

‖pk‖4
1

M

)
= O

(
β2
k

T · SNR2
k

1

M

)
(3.16)

E
{
|r2|2

}
= β2

kE





∣∣∣∣∣
h̃Hk Φkh̃k −M

M

∣∣∣∣∣

2




= O

(
β2
k

‖Φk‖2F
M2

)

� O

(
β2
k

M

M2

)
= O

(
β2
k

1

M

)
(3.17)
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E
{
|r3|2

}
=

4βk
‖pk‖4

E





∣∣∣∣∣
K∑

i=1

pkiR{hHk ni}
M

∣∣∣∣∣

2




=
4βk
‖pk‖4

K∑

i=1

p2kiE

{∣∣∣∣
R{hHk ni}

M

∣∣∣∣
2
}

=
4βk
‖pk‖4

K∑

i=1

p2kiE





∣∣∣∣∣
R{h̃Hk Φ

1
2
kni}

M

∣∣∣∣∣

2




=
4βk
‖pk‖2

O

(
‖Φ

1
2
k ‖2F
M2

)
= O

(
4βk
‖pk‖2

1

M

)

= O

(
4β2

k

T · SNRk

1

M

)
, (3.18)

Lemma 3.3.3. The LSFC estimators (3.3) and (3.6) approach the minimum mean

square error (MMSE) estimator with asymptotically diminishing MSE as M →∞.

Remark 5 (Fisher Information Matrix). Denote θT =
[√
βk hTk

]
, the Fisher informa-

tion matrix for estimating θ is given by

I(θ) =




2‖pk‖2‖hk‖2
√
βk‖pk‖2hk1 · · ·

√
βk‖pk‖2hkM√

βk‖pk‖2h?k1 βk‖pk‖2 · · · 0
...

...
. . .

...√
βk‖pk‖2h?kM 0 · · · βk‖pk‖2


 . (3.19)

Moreover, the Cramér-Rao lower bound (CRLB) of estimating βk is given by

Var

{√
β̂
k

}
≥ [I(θ)]11 , (3.20)

thus, (3.14) means that our LSFC estimator asymptotically achieves the CRLB.

Remark 6. From Lemma 3.3.2, the only term related to spatial correlation in (3.15)

is E {|r2|2}, and thus, for cases with finite M , the MSE-minimizing spatial correlation

matrix Φ?
k is the solution of

min
A

E
{∣∣∣h̃Hk Ah̃k

∣∣∣
2
}
− tr(A)

s.t. [A]ii = 1, ∀ i. (3.21)
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Following the method of Lagrange multiplier, we obtain Φ?
k = IM . The convexity of (3.21)

implies that Var{β̂k} is an increasing function of ‖Φk − IM‖F , i.e., the variance of the

LSFC estimator decreases as the channel becomes less correlated; meanwhile, Lemma

3.3.2 says the error convergence rate also improves.

Remark 7 (Finite M scenarios). Low normalized MSE, in the order of 10−5 to 10−4, is

obtainable with not-so-large BS antenna numbers (e.g., 50). The above MSE performance

analysis is validated via simulation in Section 3.4.

3.4 Numerical Results and Discussion

Simulation results reported here using the channel generated by [40] whose spatial

correlation at the BS is related to AoA distribution and antenna spacings. In addi-

tion, the environment surrounding a user is of rich scattering with AoD’s uniformly

distributed in [−π, π) making spatial correlation at MSs negligible. This setting accu-

rate describes the environment where the BS with large-scale antenna array are mounted

on an elevated tower or building. Throughout this section, we assume that there are

8 uniformly distributed users in a circular cell of radius R with the mean AoAs equis-

paced within [−60◦, 60◦]. The other simulation parameters are listed in Table 3.1 unless

explicitly stated otherwise. We define average received signal-to-noise power ratio as

SNR
def
= βk‖pk‖2/T with k the index of farthest MS from the BS, and normalized mean

squared error (NMSE) as the MSE between the real and estimated vectors normalized

by the former’s dimension and entry variance.

First, in Fig. 3.1 we compare the performance of the proposed LSFC estimator (3.3)

with that of a conventional LS estimator [32, Ch. 8]

β̂ =
([

(AHA)−1AHvec(Y)
])2

(3.22)

where A = (1T ⊗H) �
(
PT ⊗ 1M

)
. As opposed to (3.3), the conventional estimator

needs to know SSFCs beforehand, hence a full knowledge of SSFCs is assumed for the
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Table 3.1: Simulation parameters
Parameters Values
Operating frequency 2.6 GHz [2]
Cell radius R 100 meters
Pathloss exponent α 3
Shadow fading variance σs 10 dB
Number of BS antennas M 100
BS antenna spacing ξ 0.5λ
Number of MSs K 8

latter. Figure 3.1 shows that our proposed estimator outperforms the conventional sig-

nificantly even if the latter has full knowledge of SSFCs. It is because the former takes

advantage of the noise reduction effect that massive MIMO systems have offered. More-

over, as antenna spacing increases, the channel decorrelates and thus the estimation

error due to spatial correlation decreases, which verifies Theorem 3.2.1. Figure 3.2 illus-

trates the effect of massive antennas to MSE. Owing to the fact that we have assumed

perfect SSFC knowledge for the conventional LSFC estimator, MSE decreases with in-

creasing sample amount as M increases. Unlike the conventional, the amount of known

information does not grow with M for the proposed LSFC estimator. However, it still

can be utilized to improve estimation and thus enables the proposed to outperform the

conventional. In addition, the proposed is robust to SNR degradation due to noise or

user-BS distance increment.

When comparing our proposed estimators with EM-based estimators, Fig. 3.3-3.7

shows the superiority of the proposed estimators. The details of EM approach is as

follows: (i)set the initial value of β̂;

(ii)evaluate the LMMSE estimator of SSFC,

v̂ec(H) = Diag
(

(Φ1 + ‖p1‖2β̂1IM)−1 · · · (ΦK + ‖pK‖2β̂KIM)−1
)(

D
1
2
βP? ⊗ IM

)
vec(Y);

(ii)evaluate the LMMSE estimator of LSFC,

√̂
β = E

{√
β
}

+
(
C−1√

β
√
β

+ AHA
)−1

AH
(

vec(Y)−AE
{√

β
})
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where A =
(
1T ⊗ Ĥ

)
�
(
PT ⊗ 1M

)
;

(iv)recursively compute until convergence occur.

Moreover, the modified EM (MEM) approach is obtained by replacing

AHA = (HHH)� (P?PT )
a.s.−→ Diag

(
M‖p1‖2 · · ·M‖pK‖2

)

in the EM approach.

The results in Figs. 3.8 and 3.9 demonstrate the large-system performance of the

proposed LSFC and full-order SSFC estimator. As can be seen, similar to the results in

Fig. 3.2, the accurate LSFC estimates due to large received samples make its compensa-

tion prior to the SSFC estimation reliable. Furthermore, such large sample size clearly

improves the performance of the SSFC estimators directly. In addition, the proposed

LSFC estimator has noise-robustness in the sense that the MSE performance is nearly

the same when SNR = 0 dB to 15 dB, which gives similar result as Fig. 3.2.
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Figure 3.1: MSE performance of the conventional and proposed LSFC estimator with
perfect SSFC knowledge assumed for the former, AS= 15◦.

After discussing some results about the average MSE performance of MSs, we recast

to compare the MSE performance of MSs at different locations, or equivalently, different
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Figure 3.2: MSE performance of the conventional and proposed LSFC estimator with
perfect SSFC knowledge assumed for the former, AS= 15◦.
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Figure 3.3: MSE performance comparison between the proposed estimators (LSFC,
SSFC) and the EM-based estimators (LSFC, SSFC) versus iteration number of EM-
based estimators, where AS= 7.2◦, SNR=10dB, and full modeling order is used. Initial
β̂ is chosen as E {β}.
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Figure 3.8: MSE performance of the proposed LSFC and SSFC estimator versus number
of BS antennas and received SNR, where AS= 7.2◦, and full modeling order is used.
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Figure 3.9: MSE performance of the proposed LSFC and SSFC estimator versus number
of BS antennas and received SNR, where AS= 15◦, and full modeling order is used.
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LSFC. Consider Fig. 3.10, the red lines with × represents the nearest MS while the

blue lines with ◦ represents the farthest MS from the BS. Assume the pilot power is

such that the received SNR from farthest MS at BS equals to 10.22dB for left figure

and 20.22dB for right figure. It can be seen clearly that the pilot power has little effect

on the MSE performance of LSFC estimator due to the robustness of our estimator to

noise. Nevertheless, when considering the full-order SSFC estimator, the nearest MS

indeed has better MSE performance.
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Figure 3.10: MSE performance of the proposed LSFC and SSFC estimator versus number
of BS antennas with different user location, hence different received SNR at BS (indicated
in the legend), where AS= 15◦, and full modeling order is used.
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Chapter 4

Estimation of Small-Scale Fading
Coefficients

Since the SSFC estimation scheme is valid for any user-BS link, for the sake of

brevity, we omit the user index k in the ensuing discussion.

4.1 Reduced-Rank Channel Modeling

In [12], two analytic correlated MIMO channel models were proposed. These models

generalize and encompass as special cases, among others, the Kronecker [9, 40], virtual

representation [11] and Weichselberger [10] models. They often admit flexible reduced-

rank representations. Moreover, if the angle spread (AS) of the transmit signal is small,

which, as reported in a recent measurement campaign [2], is the case when a large

uniform linear array (ULA) is used at the BS, one of the models can provide angle of

arrival (AoA) information. In other words, since the ASs from uplink users in a massive

MIMO system are relatively small (say, less than 15◦), the following RR model is easily

derivable from [12, Proposition 1]

Lemma 4.1.1 (RR representations). The channel vector seen by kth user can be repre-

sented by

h = Q(I)
m c(I) (4.1)
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or alternately by

h = W(φ)Q(II)
m c(II) (4.2)

where Q
(I)
m ,Q

(II)
m ∈ RM×m are predetermined (unitary) basis matrices and c(I), c(II) ∈

Cm×1 are the channel vectors with respect to bases Q
(I)
m and Q

(II)
m for the user k-BS

link and W(φ) is diagonal with unit magnitude entries. The two equalities hold only

if m = M and become approximations if m < M . Furthermore, if the AS is small,

[W(φ)]ii = exp
(
−j2π (i−1)ξ

λ
sinφ

)
with ξ and λ being the antenna spacing and signal

wavelength and φ is the mean AoA.

This Lemma suggests that the mean AoA (which is approximately equal to the

incident angle of the strongest path) of each user link is extractable if the associated AS

is small. Having a large aperture, a massive MIMO antenna array may provide fine AoA

resolution and a channel estimator based on the model (4.2) can therefore offer accurate

mean AoA information [1].

Remark 8. The estimated mean AoAs can be used by the BS to perform downlink

beamforming. The use of predetermined basis matrices, as the virtual representation [11],

avoids the need of the spatial correlation information required by [10].

Remark 9. For large-scale ULAs, the spatial correlation can be high, small modeling

order m may be sufficient to capture the spatial variance of the SSFCs.

4.2 SSFC Estimation

We begin with the channel model (4.1) and denote by ε̃ the modeling error. Let

γ =
√
β‖p‖2 and assume for the moment that LSFCs are known. Then

Yp =
√
β‖p‖2h + Np

= γ
(
Q(I)
m c(I) + ε̃

)
+ Np (4.3)
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which brings about the following LS problem

min
c

∥∥Yp− γQ(I)
m c(I)

∥∥2 (4.4)

The optimal solution can be shown as

ĉ(I) =
1

γ

(
Q(I)
m

)H
Yp. (4.5)

Replacing γ by γ̂ = β̂
1
2‖p‖2 for the case when LSFCs have to be estimated, we have

ĥ(I) = Q(I)
m ĉ(I) =

1

γ
Q(I)
m

(
Q(I)
m

)H
Yp. (4.6)

On the other hand, if (4.2) is the channel model and ε is the corresponding modeling

error, then

Yp =
√
β‖p‖2h + Np

= γ
(
W(φ)Q(II)

m c(II) + ε
)

+ Np (4.7)

which suggests the LS formulation

min
φ,c

∥∥Yp− γW(φ)Q(II)
m c(II)

∥∥2

s.t. W(φ) = Diag (ω1(φ), · · · , ωM(φ)) ,

ωi(φ) = exp

(
−j2π (i− 1)ξ

λ
sinφ

)
. (4.8)

With Fm(φ)
def
= W(φ)Q

(II)
m and A†

def
= (AHA)−1AH , the optimal solution to (4.8) is

given as

φ̂ = arg max
φ∈[−π

2
,π
2
]

pHYHFm(φ)F†m(φ)Yp

= arg max
φ∈[−π

2
,π
2
]

∥∥∥
(
Q(II)
m W(φ)

)H
Yp
∥∥∥
2

. (4.9)

ĉ(II) =
1

γ
F†m(φ̂)Yp =

1

γ

(
Q(II)
m

)H
WH(φ̂)Yp, (4.10)

When the true LSFCs are not available we use their estimates, γ̂ = β̂
1
2‖p‖2, and obtain

the SSFCs estimate

ĥ(II) = W(φ̂)Q(II)
m ĉ(II). (4.11)
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Both (4.9) and (4.10) require no matrix inversion while φ̂ can be easily found by a simple

line search. However, in Section 4.5 we show

Theorem 4.2.1. The (4.2)-based channel estimator ĥ(II) defined by (4.11), which com-

bines the mean AoA estimate φ̂ and the RR representation vector estimate ĉ, yields

better MSE performance than that provided by ĥ(I), which is based on (4.1). In other

words,

MSEm(ĥ(I)) > MSEm(ĥ(II)) (4.12)

where MSEm(·) stands for the MSE of the enclosed estimate with modeling order m.

Because of the superiority of ĥ(II) we henceforth discuss the properties of this SSFC

estimator only; the superscript (II) is omitted.

As estimation performance depends on the basis matrix Qm and the modeling order

m used, we address related issues prior to the performance analysis.

4.3 Basis Selection for RR Channel Modeling

Define the rotated channel vector by r = WH(φ)h with the covariance matrix given

by

C
def
= E

{
WH(φ)hhHW(φ)

}
= WH(φ)ΦW(φ)

and can be shown to be close to a real matrix. Denote by U(M) the unitary group of

degree M , which consists of all M ×M unitary matrix, and Q
def
= QM the complete

basis matrix. With Q ∈ U(M), we perform a unitary transform on the rotated channel

vector r and obtain the so-called transformed channel vector

u = QHr = QHWH(φ)h (4.13)

which is equal to c(II) in (4.2) when m = M . For a reason to become clear later we call

its covariance matrix

B
def
= E

{
QHrrHQ

}
= QHCQ. (4.14)
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the bias matrix, which is the separable two-dimensional (2D) unitary transform of the

covariance matrix C.

As an unitary transform is energy preserving

M∑

`=1

σ2
` = tr(B) = tr(QHCQ) =

M∑

`=1

[C]`` = M (4.15)

where σ2
`

def
= [B]`` and we have use the identity

[C]`` = tr(eHi WH(φ)ΦW(φ)ei) = tr(ΦE``) = [Φ]`` = 1.

the transformation Q in effect redistributes the energy (or variance) of and decorrelates

r.

To accurately describe a spatially-correlated channel via (4.2) with minimal modeling

order m, we have to find a unitary transform that distributes most of the power of r

in a subspace of minimal dimension. To this end, we make use of the notion of energy

compactness of an unitary transform in image processing [34, 35, 41] which is measured

by the (subband) coding gain [34, Ch.1]. In other words, by maximizing the coding gain,

τ(Q), of the unitary transform Q defined as

τ(Q) =
1
M

∑M
`=1 σ

2
`(∏M

i=1 σ
2
`

) 1
M

=
1

(∏M
`=1 σ

2
`

) 1
M

. (4.16)

or, equivalently, by solving the minimization problem

min
Q∈U(M)

(
M∏

i=1

σ2
`

) 1
M

. (4.17)

We obtain the unitary transform with highest energy compactness. The optimal solution,

which depends on C, is called Karhunen-Loève transformation (KLT) and satisfies

BKL = QH
KLCQKL = Diag(λ1, · · · , λM) (4.18)

where λ1 ≥ · · · ≥ λM are the eigenvalues of C and QKL
def
= [v1, · · · ,vM ] with v` being

the eigenvector corresponding to λ` [34, 35].
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Corollary 4.3.1. The use of KLT basis guarantees

τ(QKL)
∣∣
M1

> τ(QKL)
∣∣
M2

(4.19)

if BS antenna array sizes M1 > M2.

QKL [34] is optimal in energy-compaction as it minimizes the truncation error

εm
def
=

1

M
E
{∥∥u− u(m)

∥∥2
}

(4.20)

where u(m) is the truncated version of u by nulling the last M−m elements of the latter.

Remark 10. The truncation error εm is equivalent to the normalized mean squared

error, i.e.,

εm =
1

M
E
{∥∥W(φ)Q

(
u− u(m)

)∥∥2
}

=
1

M
E
{∥∥∥h− ĥ

∥∥∥
2
}

(4.21)

Corollary 4.3.2 (Coding gain upper bound [35]). For a massive MIMO system with

array size M → ∞, the corresponding coding gain, which is also the coding gain upper

bound due to the strictly monotonic increasing nature of Corollary 4.3.1, can be written

as

lim
M→∞

τ(Q) =
1
2π

∫ π
−π Sr (ejω) dω

exp
{

1
2π

∫ π
−π log (Sr (ejω)) dω

} ≥ 1, (4.22)

where Sr (ejω), assumed nonzero, is the power spectral density (PSD) of the rotated

channel vector r. The equality is achieved when r is white and the asymptotic coding

gain, whose reciprocal is a measure of the spectral flatness, increases as the spectrum

becomes less and less flat [35], i.e., as the degree of spatial correlation increases.

The above two corollaries say that the efficiency of the RR channel model can in-

creases with M and/or spatial correlation. [18, Lemma 2] also obtains a similar but more

explicit result on the spatial correlation case.
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However, KLT is computationally expensive and nonflexible in that QKL is channel

dependent and one needs to collect sufficient observations before SSFC estimation to

compute the spatial correlation matrix C, which is then eigen-decomposed to derive

the basis matrix. Even worse, there is no fast algorithm for the KLT. Our channel

model (4.2) uses a predetermined signal-independent basis Qm which requires far less

complexity. Two candidate bases are of special interest to us for their proximity to the

KL basis.

4.3.1 Polynomial Basis [12]

As the BS antenna spatial correlation is often reasonably smooth, polynomial basis

of dimension m < M may be sufficient to track the channel variation. To construct an

orthonormal discrete polynomial basis we perform standard QR decomposition P = QR,

where [P]ij = (i− 1)j−1, ∀i, j = 1, · · · ,M , Since the polynomial degree of each column

of Q are arranged in an ascending order, the RR basis Qm is obtained by keeping the

first m columns.

4.3.2 Type-2 Discrete Cosine Transform (DCT) Basis [41]

DCT, especially Type-2 DCT (DCT-2 or simply DCT), is a widely used for image

coding for its excellent energy compaction capability [36,41]. For a smooth finite-length

sequence, its DCT is often energy-concentrated in lower-indexed coefficients. Hence the

DCT basis matrix

[Qm]ij = qj cos

(
π(2i− 1)(j − 1)

2M

)
, (4.23)

for 1 ≤ i ≤M and 1 ≤ j ≤ m, where 1 ≤ m ≤M and

qj =

{ √
1/M, j = 1;√
2/M, j = 2, · · · ,M.

(4.24)

is an excellent candidate RR basis for our channel estimation purpose. Some comments

on the predetermined basis selection are provided [34,35].
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Remark 11. The complexity of computing KLT, O(M2), is much greater than that of

DCT’s O(M log2M).

Remark 12. The fact that the energy compaction efficiency of DCT is near-optimal

make it the closest KLT approximation in the high correlation regime among the following

unitary transforms: Walsh-Hadamard, Slant, Haar, and discrete Legendre transform.

The last one is equivalent to a polynomial-based transform and is slightly inferior to

DCT in energy compaction capability.

The above claims have been verified in the context of image compression [34, 35]. In

terms of RR MIMO channel representation, we show in Section 4.8 that, for the same

modeling order m, the DCT basis does outperform the polynomial basis in MS channel

estimation error regardless of the correlation level.

4.4 Optimal SSFC Modeling Order Determination

With the aforementioned basis matrices Q, we analyze the performance of the

proposed SSFC estimator and its RR capability, assuming perfectly known LSFCs and

mean AoAs. We first substitute (4.10) into (4.11) to obtain

ĥ =
1

γ
W(φ)QmQH

mWH(φ)Yp

=
1

γ
W(φ)QmQH

mWH(φ)(γh + Np)

= W(φ)QmQH
mWH(φ)h + ν (4.25)

where ν = 1
γ
W(φ)QmQH

mWH(φ)Np, and the decomposition

MSEm(ĥ) = E
{∥∥∥ĥ− h

∥∥∥
2
}

= E
{∥∥∥ĥ− E{ĥ}

∥∥∥
2
}

︸ ︷︷ ︸
def
= Var{ĥ}

+E
{∥∥∥E{ĥ} − h

∥∥∥
2
}

︸ ︷︷ ︸
def
= b(ĥ)

(4.26)
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Var{ĥ} and b(ĥ) represent respectively the variance and bias of estimator ĥ. For these

two error terms we prove in Appendix B

Theorem 4.4.1 (Proposed SSFC Estimator MSE). For SSFC estimator ĥ based on the

representation (4.2),

Var
{

ĥ
}

=
m

β‖p‖2
, (4.27)

b(ĥ) = tr (DmB) (4.28)

where Dm = Diag
([

01×m 11×(M−m)

]T)
and B the bias matrix defined by (4.14) with

nonnegative diagonal entries.

Remark 13. The estimation bias b(ĥ) is equal to the sum of the last M −m diagonal

terms of the positive semidefinite matrix B, i.e.,

b(ĥ) =
M∑

`=m+1

[B]``.

and is minimized by the semiunitary Q
(m)
KL associated with the KLT of C. That is, if

we denote by U(M,m) the set of all M × m semiunitary matrices, and by Q(m) the

semiunitary matrix obtained by deleting the rightmost M − m columns of the M ×M

unitary matrix Q, then we have

arg min
Q∈U(M,m)

b(ĥ) = arg min
Q∈U(M,m)

E
{∥∥u− u(m)

∥∥2
}

= Q
(m)
KL .

Corollary 4.4.2 (Effect of M on RR estimation [34, Ch. 1]). For two BS antenna array

sizes M1 > M2 and a fixed m, the biases associated with the channel estimator (4.11)

satisfy

1

M1

tr(DmB)
∣∣
M1

<
1

M2

tr(DmB)
∣∣
M2
. (4.29)

if Q
(m)
KL is used. The normalized MSE (NMSE) also has the monotonicity property:

NMSEm(ĥ)
∣∣
M1

def
=

1

M1

MSEm(ĥ)
∣∣
M1

< NMSEm(ĥ)
∣∣
M2

(4.30)
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If full rank model is used, we have

Lemma 4.4.3. The combined SSFC estimator, Ĥ = [ĥk]
K
k=1, is equivalent to the con-

ventional unbiased LS estimator given in [29]

Ĥ = YPHDiag

(
1

γ1
, · · · , 1

γK

)
(4.31)

when γl =
√
βl‖p‖2 and the full modeling order, m = M , is used.

Proof. The proposed SSFC estimator (4.11) is biased when m < M , since with (4.25)

we have

E
{

ĥk

}
= W(φk)QmQH

mWH(φk)hk. (4.32)

However, when m = M , the fact that QmQH
m = W(φk)W

H(φk) = IM makes the

estimator unbiased and

Ĥ =
[
ĥ1, · · · , ĥK

]
= Y [p1, · · · ,pK ] Diag

(
1

γ1
, · · · , 1

γK

)

= YPHDiag

(
1

γ1
, · · · , 1

γK

)
, (4.33)

a same result given in [29].

In the following, we analyze the estimator’s MSE performance for both uncorrelated

and correlated channels.

Definition 4.4.4. The optimal modeling order m? is the one that minimizes MSEm(ĥ).

4.4.1 Uncorrelated Channels

Let SNR be the (normalized) signal-to-noise power ratio (SNR) with user k’s signal at

the BS.

MSEm(ĥ) =
m

β‖p‖2
+ tr(Dm) = M −m

(
1− 1

T · SNR

)
(4.34)

where the first equality is due to the zero spatial correlation assumption (B = IM) and

SNR = β‖p‖2/T . Obviously, for this case, MSE improves with increasing modeling

order m if β‖p‖2 > 1. We conclude that
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Figure 4.1: An illustration of the σ2
` distribution with respect to ` for M = 100.

Corollary 4.4.5. The optimal modeling order for uncorrelated channels is M if the

symbol SNR is greater than 1.

Note that (4.34) also predicts that, for low symbol SNR (β‖p‖2 < 1), higher modeling

order does help even for uncorrelated spatial channels as we are just trying to fit more

parameters to noise-dominant observations.

4.4.2 Correlated Channels

As indicated by (4.26)–(4.28) and the discussion on basis selection, to minimize MSE we

have to consider the energy compactness of B. Recall that [B]`` = 1 when Φ = IM and,

for a given basis, the diagonal terms becomes more and more ‘nonflat’ with increasing

spatial correlation.

Fig. 4.1 exemplifies a plausible distribution of [B]`` = σ2
` as a function of the index

`. As can be seen, most of the bias power lies in the region ` ≤ m̂?, with m̂? located

at the bottom of the water-fall curve. The dominant subspace of the column space of

the bias matrix is that spanned by the first m̂? columns of Q. We define the optimal

modeling order as
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Definition 4.4.6. The optimal modeling order m̂? for the threshold η satisfies

min
m

m

s.t. [B]`` < η, ∀ ` ≥ m. (4.35)

As optimal modeling order m? needs to be acquired via exhaustively searching over all

m’s, m̂? eases such burden and is shown to be near-optimal in the rest of this subsection

with a proper choice of η.

Corollary 4.4.7. Modeling order m̂? decreases with increasing spatial correlation or

decreasing rank(Φ).

Proof. With λ`’s being the ordered eigenvalues of Φ and

B = QH
KLW(φ)HΦW(φ)QKL = Diag(λ1, · · · , λM),

the fact that rank(B) = rank(Φ) implies that increasing spatial correlation reduces the

rank of B and thus m̂?.

As mentioned in Remark 12 that DCT is near-optimal, it can be shown that DCT

basis exhibits the same behavior trend. On the other hand, since spatial waveforms

smoothen with increasing correlation and can be reproduced by lower order polynomials,

modeling order m̂? decreases accordingly.

Remark 14. Let η = 1. For a channel of moderate-to-high correlation, the use of

polynomial or DCT basis matrix guarantees the diagonal entries [B]`` that are greater

than or equal to η be concentrated at the lower indices `. More precisely, for m > m̂?,

∑M
`=m+1[B]``

M
� 1, (4.36)

and thus bias b(ĥ)� 1. For more details, see Appendix C.
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Consequently, the MSE performance is dominated by Var{ĥ} and

Remark 15. The increase of modeling order m beyond m̂? cannot improve or, even

worse, can do harm to the MSE performance. This is because for m > m̂?, the MSE of

the RR channel estimate

MSEm(ĥ) ≈ Var{ĥ} =
m

β‖p‖2
(4.37)

approximately grows linearly with m. Therefore, if m̂? < m1 < m2, then

MSEm1(ĥ) < MSEm2(ĥ). (4.38)

Remark 16. On the other hand, for moderate to high SNRs, catastrophic MSE perfor-

mance degradation is induced with m decreasing towards 0. This is due to the fact that

the MSE is bias-dominated for m < m̂? and thus

MSEm(ĥ) ≈
m̂?∑

`=m+1

[B]``

︸ ︷︷ ︸
>m̂?−m

+
M∑

`=m̂?+1

[B]``

︸ ︷︷ ︸
≈0

≈
m̂?∑

`=m+1

[B]`` > m̂? −m. (4.39)

Thus, if m1 < m2 < m̂?, then

MSEm1(ĥ)−MSEm2(ĥ) =

m2∑

`=m1+1

[B]`` > m2 −m1 � 0 (4.40)

where the last inequality is owing to the energy compaction property of the basis used.

Verified via simulation (see Section 4.8), for practical correlated channels, similar

convergence outcome is attained with any η ∈ [0.5, 1].

4.5 RR Model I Based Performance Analysis

Theorem 4.2.1 says that separate estimation of mean AoA matrix W(φ) and RR

representation vector c using RR Model II (4.2) outperforms ĥ(I) based on Model I (4.1)

which estimates only c. We now prove this claim.
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We called the estimator based on the Model I the SSFC-2 estimator. When the

LSFCs are known and ε̃ is the modeling error, we have

Yp =
√
β‖p‖2h + Np = γh + Np

= γ (Qmc + ε̃) + Np (4.41)

which brings about the following LS problem

min
c
‖Yp− γQmc‖2 (4.42)

The optimal solution is shown by [32, Ch. 8] as

ĉ(I) =
1

γ
QH
mYp. (4.43)

Finally, replace γ as γ̂ =

√
β̂‖p‖2 for the cases where LSFCs have to be estimated

beforehand. The channel estimates ∀k are retained via

ĥ(I) = Qmĉ(I) =
1

γ
QmQH

mYp, (4.44)

where ĥ(I) is the SSFC-2 estimator.

Suppose perfect LSFCs and mean AoAs estimates, we obtain

Theorem 4.5.1 (Proposed SSFC-2 Estimator MSE). For SSFC estimator based on

Form-I RR model ĥ(I),

Var
{

ĥ(I)
}

=
m

β‖p‖2
, (4.45)

b(ĥ(I)) = tr
(
DmB̃

)
(4.46)

where Dm = Diag
([

01×m 11×(M−m)

]T)
and B̃ = QHΦQ ∈ CM×M the bias matrix with

non-negative diagonal entries.

Proof. See Appendix D.

50



Although the variance term in MSE is exactly the same as that of SSFC estimator in

(4.11), the bias term in MSE is different from that in (4.11). Obviously, the only differ-

ence lies in the form of bias matrix. For SSFC estimator, B = QHW(φ)HΦW(φ)Q ∈

CM×M while for SSFC-2, B̃ = QHΦQ ∈ CM×M . Hence, we firstly explain Theorem

4.2.1 by the viewpoint of bias matrix. We introduce the definition of “reverse modeling

order” beforehand.
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m
r m̂�

Figure 4.2: An illustration of the [B̃]`` distribution with respect to ` when M = 100.

Definition 4.5.2. Denote by η a prescribed threshold, say η = 1. Define the “reverse

modeling order”, mr, as the index of first entry larger than η on the diagonal of B̃. In

more detail, mr is the index m satisfies

max
m

m

s.t. [B̃]`` < η, ∀` < m. (4.47)

Similar to Remark 14, we have to discuss the distribution of diagonal entries in B̃ to

obtain
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Remark 17. Let η = 1. For a channel of moderate-to-high correlation, the use of

polynomial or DCT basis matrix guarantees the diagonal entries [B̃]`` that are greater

than or equal to η be concentrated at some medium indices `. In other words,

1−
∑m̂?

`=mr−1[B̃]``

M
� 1 (4.48)

with m̂? −mr �M .

We illustrate this property in Fig. 4.2. For more details, see Appendix E.

Verified via simulation (see Section 4.8), for practical correlated channels, similar

convergence outcome is attained with any η ∈ [0.5, 1].

In accordance with Remark 17, because of the frequency translation property , we

know that the (estimated) optimal modeling order, m̂?, of SSFC-2 estimator must be

larger than that of SSFC estimator, which verifies Theorem 4.2.1.

Finally, we would like to proof Theorem 4.2.1 mathematically.

Lemma 4.5.3. Denote B and B̃ the bias matrices of SSFC estimator and SSFC-2

estimator, respectively. Then the bias term in MSE satisfies

tr(DmB̃) ≥ tr(DmB) (4.49)

where Dm =

[
Om Om×(M−m)

O(M−m)×m IM−m

]
∈ RM×M

Proof. See Appendix F.

Since the variance term in MSE are the same for both SSFC and SSFC-2 estimator,

Lemma 4.5.3 suggests that separately estimate W(φ) and c using SSFC estimator results

in smaller MSE than estimate c only using SSFC-2 estimator, hence proves Theorem

4.2.1.

4.6 SNR Effect on Modeling Order

As MSE is also a function of received SNR, we shall investigate its influence on the

optimal modeling order.
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Lemma 4.6.1. For SNR1 < SNR2, the optimal modeling order

m1 < m2 (4.50)

where

mj = arg min
m

MSEm(ĥ)
∣∣
SNRj

. (4.51)

Proof. Since MSEm1(ĥ)
∣∣
SNR1

< MSEm2(ĥ)
∣∣
SNR1

,

m1

T · SNR1

+
M∑

`=m1+1

[B]`` <
m2

T · SNR1

+
M∑

`=m2+1

[B]``

which can be reduced to

m2 −m1

T · SNR1

>
M∑

`=m1+1

[B]`` −
M∑

`=m2+1

[B]`` =

{ ∑m2

`=m1+1[B]``, if m1 < m2;
−
∑m1

`=m2+1[B]``, if m1 > m2.
(4.52)

For SNR2, MSEm2(ĥ)
∣∣
SNR2

< MSEm1(ĥ)
∣∣
SNR2

gives

m2 −m1

T · SNR2

<

{ ∑m2

`=m1+1[B]``, if m1 < m2;
−
∑m1

`=m2+1[B]``, if m1 > m2.
(4.53)

Thus, we have





SNR1 <
m2 −m1

T
∑m2

`=m1+1[B]``
< SNR2, if m1 < m2;

SNR2 <
m1 −m2

T
∑m1

`=m2+1[B]``
< SNR1, if m1 > m2.

(4.54)

While the case m1 < m2 results in a contradiction to our assumption that SNR1 < SNR2,

the other is true. We can conclude that m1 < m2.

We may see later via simulation that the optimal modeling order m?(0 dB) when

SNR = 0 dB, is indeed smaller than m̂?, which is optimal when SNR ≈ 10 dB.

Remark 18. Since Var{ĥ} = m/(T · SNR), we have

Var{ĥ}
∣∣
SNR1

> Var{ĥ}
∣∣
SNR2

, (4.55)
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for SNR1 < SNR2. In addition, as bias b(ĥ) is independent of SNR, the extent that

MSE is dominated by Var{ĥ} aggravates with decreasing SNR in the low SNR regime

for any m. Therefore, as m decreases, Var{ĥ}
∣∣
SNR1

loses its dominance slower than

Var{ĥ}
∣∣
SNR2

.

4.7 Rank Determination

In Section 4.4, the RR estimation performance with respect to modeling order m̂?

(given in Definition 4.4.6) is analyzed assuming perfectly known bias matrix B or at least

[B]``’s. This is not the case in practice. We investigate the case when only the spatial

correlation is known and proposed a (channel) rank (modeling order) determination

method on which the estimates for mean AoA and RR channel SLFCs are based.

Lemma 4.7.1. The optimal modeling order for an uplink user channel is a decreasing

function of the mean AoA to the BS (with respect to the array broadside). That is to

say, if 0 ≤ |φ2| < |φ1| ≤ π
2
, then m?(φ1) < m?(φ2), where m?(φ) denotes the optimal

modeling order with mean AoA being φ.

As φ and thus B = QHWH(φ)ΦW(φ)Q are still unknown, except when φ = 0, we

propose the iterative modeling order determination (IMOD) algorithm which initializes

φ̂ as 0 and accordingly the maximal possible m̂? = m̂?(0) and finds the modeling order

m̂? recursively. The following steps are executed sequentially:

1. (Initialization) Initialize φ̂ = 0.

2. (Updating bias matrix) Calculate

B̂ = QHWH(φ̂)ΦW(φ̂)Q (4.56)

and solve (4.35) with B = B̂ to obtain the estimate m̂?.

3. (Updating mean AoA) With m = m̂?, find φ̂ via (4.9).
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4. (Recursion) Go to Step 2); Terminate and output m̂? if the stopping criterion is

met.

while once the modeling order is determined, we can proceed to the estimation of RR

SSFC representations with the mean AoA φ̂ obtained here. Two remarks are given to

conclude this section.

Remark 19. The modeling order m̂? obtained via IMOD algorithm requires much less

complexity yet achieves near-optimal performance as compared with m? via exhaustive

search [12] or some SVD-based methods [26] [27]. This is because it does not need to

know the perfect SSFC matrix (which is impossible) nor the eigen-structure of spatial

correlation matrix, and the energy compaction nature of the basis used guarantees fast

convergence. In addition, IMOD algorithm is basis-independent while SVD-based meth-

ods can only apply to KLT basis case. It is shown in Section 4.8 that the algorithm can

achieve convergence within two iterations.

Remark 20. If the system requirement mandates all user channel vectors be estimated

with a single modeling order m̂?, we choose to minimize the error of the user who is

the most sensitive to the modeling order mismatch. As suggested by Remark 16, the

performance suffers more from insufficient than redundant order.

m̂? = max
k
m?
k. (4.57)

Remark 21. As a matter of fact, the correlation matrix used in IMOD algorithm is

not perfect, we should doing correlation estimation before apply IMOD algorithm. It is

worth noting that sufficient samples from different OFDM subcarriers help to improve

the estimation accuracy. The spatial correlation matrix can be written as

Φ =
1

γ2
(
E{YppHYH} − ‖p‖2IM

)
(4.58)

where the term E{YppHYH} def= Ψ can be accurately estimated by either ML estimation

Ψ̂ =
1

n− 1

n∑

`=1

Y`ppHYH
` (4.59)
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or shrinkage estimation method introduced in [20], where ` denotes the subcarrier index

and n is the number of subcarriers.

4.8 Numerical Results and Discussion

In this section, we present the performance of our SSFC estimator and investigate

the effect of modeling order as well as basis matrices. Assume the same simulation

scenario as Section 3.4 is used here, wherein parameters are listed in Table 3.1 unless

explicitly stated otherwise. Recall that the discussion in this chapter does not vary

from user to user, so we focus only on an MS here, and define the average Rx SNR as

SNR
def
= β‖p‖2/T . Besides, the mean AoA is assumed to be uniformly distributed in

[−60◦, 60◦].

We study the SSFC estimation performance with respect to modeling order and basis

matrix with estimated or perfectly-known β. Since the spatial correlation increases with

reducing AS, the spatial waveform of a user is anticipated to be smoother. As a result,

in the case where AS is comparatively small, the estimation performance due to over-

modeling a channel not only cannot improve, but also may degrade because the number

of parameters to be estimated grows with the same amount of available data. As can be

observed in Fig. 4.3, the estimation accuracy with polynomial basis degrades as modeling

order increases from 20 to 100 for SNR smaller than 9 dB. Besides, the optimal modeling

order increases with SNR, e.g., optimal order at SNR = 5 and 10 dB are respectively

20 and 30. This is because in the low SNR regime, MSE performance is noise-limited

as suggested in Section 4.6, while modeling error shows its importance for high SNRs.

Similar trend is also observed with DCT basis in Fig. 4.5. Figure 4.6 shows that for

15◦ angle spread and SNR smaller than 8 dB, the MSE performance deteriorates as

modeling order goes up from 30 to 100.

All the three cases mentioned above verify Remark 15 in previous discussion, however,

it shall be noted that as polynomial basis is used and the angle spread is 15◦, the best
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MSE performance happened when full modeling order is used as depicted in Fig. 4.4.

This is owing to the fact that when AS goes large from 7.2◦ to 15◦, the spatial correlation

dropped and hence steepen the spatial waveform, for which higher modeling order (in

this case, 100) is needed. In other words, mc defined in Definition 4.4.6 gets large toward

100 when spatial correlation reduced, which also verifies Remark 4.4.7. Furthermore,

Section 4.4.2 has shown that DCT-II outperforms polynomial basis in sense of energy

compaction capability, thus, a smaller optimal modeling order must be found in Fig. 4.6

compared to that in Fig. 4.4, which is equal to 100.

For the sake of finding the optimal modeling order more precisely, we use the exhaus-

tive search method similar in [12], which needs the exact SSFC information for all users,

to calculate the NMSE for all possible modeling orders, and depict them in Fig. 4.7 and

Fig. 4.8 for a fixed SNR, 10dB. The simulation results are obviously consistent with that

in Fig. 4.3 to 4.6. Moreover, we observe that when angle spread is 7.2◦ (large spatial

correlation), the optimal modeling order when using DCT-II basis, which is about 15, is

only slightly inferior to that when using polynomial basis, which is around 25, as claimed

in [35]; however, the performance gap between using respectively the two bases becomes

large when angle spread is 15◦ (small spatial correlation), that is, 30 for the former and

100 for the latter.

We then turn into investigating the impact of different SNR on modeling order, and

then validate Lemma 4.6.1. When polynomial basis is used, Fig. 4.3 and Fig. 4.7

shows that when angle spread equals to 7.2◦, the optimal modeling order is about 20 as

SNR = 9 dB while larger than 20 as SNR > 9 dB. As DCT-II basis is used, Fig. 4.5

and 4.7 shows that the optimal modeling order at SNR = 5 and 16 dB are respectively

15 and 25 when angle spread is 7.2◦; besides, Fig. 4.6 and 4.8 shows that the optimal

modeling order at SNR = 10 and 16 dB are respectively 30 and 40 when angle spread

is 15◦. This is because in low SNR regime, MSE performance is noise-dominant, while

modeling error shows its importance for high SNRs as we have discussed.
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Note that the proposed SSFC (and SSFC-2) estimators with order 100 gives the

identical performance that a conventional LS estimator in (4.31) can offer as presented

in Lemma 4.4.3, and depicted in Fig. 4.7-4.8. Although, in the case where AS= 15◦

and polynomial basis is used, (4.10) and (4.9) fail to give better performance than that

of the conventional LS estimator as depicted in Fig. 4.8, the proposed estimator offers

direct performance-complexity and/or performance-feedback rate trade-off.

Succeedingly, we inspect the effect of modeling order on spatial waveform of ULA as

DCT-II basis being chosen, mean AoA being π
21

and AS being 7.2◦. Fig. 4.9-4.12 show

the spatial waveform (real part) of ĥ(I), ĥ(II), and exact h when modeling order is 5,

15, 80 and 100, respectively. It is clear that modeling order of 15, being correspond to

the optimal modeling order, is sufficient to capture all channel behavior, while modeling

order of 80 and 100 over-model the channel behavior, and modeling order of 5 is not

enough to represent the spatial waveform. Furthermore, the SSFC-2 estimator is always

insufficient to model the channel aside from using full modeling order.

The comparison of ĥ(I) and ĥ(II) are illustrated in Fig. 4.7-4.8. As being proved in

Section 4.5, no matter what modeling order we used and how angle spread is, the MSE

performance of SSFC-2 estimator is indeed much worse than that of SSFC estimator (ex-

cept for the case when full modeling order is used, they both equivalent to conventional

LS estimator).

Fig. 4.13-4.18 show the diagonal entries of bias matrix, when KLT, DCT-II and

polynomial basis is used respectively. The solid line represents diagonal distribution of

B (SSFC estimator being used) while the dotted line represents diagonal distribution of

B̃ (SSFC-2 estimator being used). Firstly, we focus on the solid lines in the figures, when

using the KLT basis, diagonal terms larger than η = 1 are indeed concentrated at (low)

indices smaller than 15 and 29 (which are exactly the optimal modeling orders found by

IMOD algorithm) when AS is 7.2◦ and 15◦, respectively; thus, energy compaction nature

of optimal KLT basis is verified. Nonetheless, when DCT-II basis is used, diagonal terms
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larger than η = 1 are also concentrated at indices smaller than 15 and 29 when AS is

7.2◦ and 15◦, respectively, which guarantees that the energy compaction capability of

DCT-II basis is really near-optimal. On the other hand, the optimal modeling order of

polynomial basis, is slight larger than that of DCT-II basis (23 > 15) when AS is 7.2◦, yet

much larger than DCT-II basis (100� 29) when AS is 15◦; this observation is consistent

with what we have in Fig. 4.7-4.8. Secondly, we turn to inspect the dotted lines in the

figures, whose energy compaction parts are frequency-shifted to some medium orders as

we shown in Remark 17. Recall we have proves in Section 4.7 that the energy compaction

property of each solid line becomes more apparent while the mean AoA increases, we

depict this phenomenon in Fig. 4.19-4.21. However, dotted lines in these figures also

illustrate the fact that the energy compaction part is frequency-shifted to higher orders

when the mean AoA increases, we have also shown this in Remark 17. After that, by

comparing the solid lines and dotted lines, we can make the same conclusion as Fig.

4.7-4.8, that is to say, SSFC estimator outperforms SSFC-2 estimator a lot.

Fig. 4.22 investigate the convergence speed of our IMOD algorithm given DCT-II

basis is used, SNR= 10 dB and η = 1. It is clear that IMOD algorithm converge within

two iterations regardless of how large the AS is. Furthermore, we can seen in Table 4.1

that the convergence is quite accurate on account of the fact that when η = 0.5 ∼ 1,

IMOD algorithm achieves almost the same optimal modeling order compared with the

exhaustive search (or brute force) methods, which is optimal, used in [12]. Besides, the

iteration number needed for convergence seems to have little to do with the choice of η.

Therefore, we assume η = 1 henceforth.

Remember that

NMSEm(ĥ)
∣∣
M

=
m

MT · SNR
+

1

M
tr (DmB) . (4.60)

To compare the NMSE given different BS antenna number, M , we want to emphasize

here that the bias term 1
M

tr (DmB) is almost equal for any M if we choose the optimal

modeling order, m?, by IMOD algorithm. Thus, a simplified metric to measure the
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NMSE of different M is m?

M
. Table 4.2-4.3 presents the effect of large system to optimal

modeling order found by IMOD algorithm given DCT-II and KLT basis is used, and

verifies Corollary 4.4.2 since the NMSE metric, m
?

M
, becomes smaller when the number of

BS antennas M gets larger. Moreover, we see again that the DCT-II basis gives almost

the same optimal modeling order as KLT basis whatever M we used. On the other

hand, [18, Lemma 2.] has derived the upper bound of NMSE metric, m?

M
, as M → ∞,

being 0.0187 and 0.0386 when AS= 7.2◦ and AS= 15◦, respectively.

We than consider the impact of imperfect (estimated) spatial correlation matrix

to our IMOD algorithm. The energy distribution of rotated channel vector, which is

just the diagonal distribution of bias matrix B, is depicted in Fig. 4.23-4.30 when

the number of subcarriers is 100, 50, 30 or 2 and AS is 7.2◦ or 15◦, respectively. It

is clear that when the number of subcarriers larger than the true optimal modeling

order, than KLT and DCT-II basis yields almost the same estimated dominant rank

as the true one. However, when the number of subcarriers reduced to 2, the estimated

dominant rank equals to the number of subcarriers while remains the same (29 for 15◦

AS and 15 for 7.2◦ AS) when KLT and DCT-II basis are used respectively. The reason

why this is so is due to the fact that when DCT-II basis is used, we can find out the

largest frequency components even if the number of samples (subcarriers) are small,

this phenomenon can also be observed when using polynomial basis; on the other hand,

KLT basis is irregular with the number of nonzero terms on the diagonal of B less or

equals to the number of samples (subcarriers), hence, when using KLT basis, we need

sufficient samples to accurately estimate the dominant rank, which is called the “sample-

deficient problem”. It is worth mentioning that common SVD-based methods [26] [27] is

equivalent to the KLT basis case, thus, they also suffer from the sample-deficient problem

when number of subcarriers are smaller than the true optimal modeling order. Last but

not least, the shrinkage correlation estimation seems to be unnecessary when doing rank

determination, since from the above simulation results, it performs not better than ML
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estimation while a heavy-tail problem is discovered, which may influence the accuracy

of rank determination. We summarize in Table 4.4 and Table 4.5 the effect of imperfect

spatial correlation matrix estimated by ML estimator (4.59) to optimal modeling order

found by IMOD algorithm when using KLT, DCT-II or polynomial basis.

Finally, Fig. 4.31 shows the effectiveness of the large aperture of the ULA to resolve

user AoAs even when the ASs of different MSs overlap.
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Figure 4.3: MSE performance of the proposed SSFC estimator versus received SNR and
modeling order with estimated and perfect LSFC, where AS= 7.2◦, and polynomial basis
is used.
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Figure 4.4: MSE performance of the proposed RR SSFC estimator versus received SNR
and modeling order with estimated and perfect LSFC, where AS= 15◦, and polynomial
basis is used.
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Figure 4.5: MSE performance of the proposed SSFC estimator versus received SNR and
modeling order with estimated and perfect LSFC, where AS= 7.2◦, and DCT-II basis is
used.
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Figure 4.6: MSE performance of the proposed RR SSFC estimator versus received SNR
and modeling order with estimated and perfect LSFC, where AS= 15◦, and DCT-II
basis is used.
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Figure 4.7: MSE performance of the proposed SSFC estimators, ĥ(I) and ĥ(II), versus
modeling order when using respectively DCT-II and polynomial basis, where AS= 7.2◦,
SNR= 10 dB, and imperfect LSFC is used.
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Figure 4.8: MSE performance of the proposed SSFC estimators, ĥ(I) and ĥ(II), versus
modeling order when using respectively DCT-II and polynomial basis, where AS= 15◦,
SNR= 10 dB, and imperfect LSFC is used.
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Figure 4.9: Spatial waveform (real part) of the proposed SSFC estimators, ĥ(I) and ĥ(II),
compared with true (exact) spatial waveform when DCT-II basis being chosen, where
AS= 7.2◦, modeling order=5, SNR= 10 dB, mean AoA= π

21
, and imperfect LSFC is

used.
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Figure 4.10: Spatial waveform (real part) of the proposed SSFC estimators, ĥ(I) and ĥ(II),
compared with true (exact) spatial waveform when DCT-II basis being chosen, where
AS= 7.2◦, modeling order=15, SNR= 10 dB, mean AoA= π

21
, and imperfect LSFC is

used.
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Figure 4.11: Spatial waveform (real part) of the proposed SSFC estimators, ĥ(I) and ĥ(II),
compared with true (exact) spatial waveform when DCT-II basis being chosen, where
AS= 7.2◦, modeling order=80, SNR= 10 dB, mean AoA= π

21
, and imperfect LSFC is

used.
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Figure 4.12: Spatial waveform (real part) of the proposed SSFC estimators, ĥ(I) and
ĥ(II), compared with true (exact) spatial waveform when DCT-II basis being chosen,
where AS= 7.2◦, modeling order=100, SNR= 10 dB, mean AoA= π

21
, and imperfect

LSFC is used.
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Figure 4.13: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 7.2◦, mean AoA= π

21
, SNR= 10 dB and KLT basis

is used.
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Figure 4.14: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 15◦, mean AoA= π

21
, SNR= 10 dB and KLT basis

is used.
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Figure 4.15: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 7.2◦, mean AoA= π

21
, SNR= 10 dB and DCT-II

basis is used.
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ĥ(I)

Figure 4.16: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 15◦, mean AoA= π

21
, SNR= 10 dB and DCT-II

basis is used.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
AS=7.2o

Index �

[B
] �

�
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Figure 4.17: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 7.2◦, mean AoA= π

21
, SNR= 10 dB and polynomial

basis is used.
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Figure 4.18: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 15◦, mean AoA= π

21
, SNR= 10 dB and polynomial

basis is used.
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Figure 4.19: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 15◦, mean AoA= 3π

21
, SNR= 10 dB and DCT-II

basis is used.
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Table 4.1: Convergence speed and accuracy of proposed IMOD algorithm for different
choice of η assume DCT-II basis is used and SNR= 10dB.

AS = 15◦ η = 0.1 η = 0.5 η = 1.0
m̂? 32 29 29

Iteration Number 2 2 2
Exhaustive Search 30 30 30

AS = 7.2◦ η = 0.1 η = 0.5 η = 1.0
m̂? 19 16 15

Iteration Number 1 2 1
Exhaustive Search 15 15 15
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Figure 4.20: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 15◦, mean AoA= 5π

21
, SNR= 10 dB and DCT-II

basis is used.
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Figure 4.21: Diagonal distribution of the bias matrix, B, with respect to the SSFC
estimators, ĥ(I) and ĥ(II), where AS= 15◦, mean AoA= 7π

21
, SNR= 10 dB and DCT-II

basis is used.
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Figure 4.22: Convergence speed of proposed IMOD algorithm. Iteration number “Full”
represents the full modeling order and “Initialized” means the initialization. Assume
DCT-II basis is used, SNR= 10 dB and η = 1.
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Figure 4.23: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-II,
and polynomial basis, where AS= 7.2◦, mean AoA= π

21
, SNR= 10 dB and number of

subcarriers is 100. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.
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Figure 4.24: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-
II, and polynomial basis, where AS= 7.2◦, mean AoA= π

21
, SNR= 10 dB and number

of subcarriers is 50. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.
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Figure 4.25: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-
II, and polynomial basis, where AS= 7.2◦, mean AoA= π

21
, SNR= 10 dB and number

of subcarriers is 30. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.
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Figure 4.26: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-
II, and polynomial basis, where AS= 7.2◦, mean AoA= π

21
, SNR= 10 dB and number

of subcarriers is 2. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.
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Figure 4.27: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-II,
and polynomial basis, where AS= 15◦, mean AoA= π

21
, SNR= 10 dB and number of

subcarriers is 100. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.
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Figure 4.28: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-
II, and polynomial basis, where AS= 15◦, mean AoA= π

21
, SNR= 10 dB and number

of subcarriers is 50. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.

74



10 20 30 40 50 60 70 80 90 100
0

5

10
KLT, AS=15o

[B
] �

�

 

 
True
ML
Shrinkage

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8 DCT

10 20 30 40 50 60 70 80 90 100
0

1

2

3 poly.

index

Figure 4.29: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-
II, and polynomial basis, where AS= 15◦, mean AoA= π

21
, SNR= 10 dB and number

of subcarriers is 30. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.
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Figure 4.30: Diagonal distribution of the bias matrix, B, with respect to KLT, DCT-
II, and polynomial basis, where AS= 15◦, mean AoA= π

21
, SNR= 10 dB and number

of subcarriers is 2. Assume imperfect spatial correlation matrix estimated by ML or
shrinkage [20] method is used here.
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Table 4.2: Effect of large system to optimal modeling order found by IMOD algorithm
given DCT-II or KLT basis is used. Assume SNR= 10dB, AS= 7.2◦ and η = 1.

M 30 50 100 200 300 400
m̂?(DCT) 6 9 15 28 40 54
m̂?(KLT) 6 9 15 28 40 53
m̂?(KLT)

M
0.2 0.18 0.15 0.14 0.133 0.1325

Table 4.3: Effect of large system to optimal modeling order found by IMOD algorithm
given DCT-II or KLT basis is used. Assume SNR= 10dB, AS= 15◦ and η = 1.

M 30 50 100 200 300 400
m̂?(DCT) 10 16 29 55 81 107
m̂?(KLT) 10 15 28 54 80 106
m̂?(KLT)

M
0.333 0.3 0.28 0.27 0.2667 0.265

Table 4.4: Effect of imperfect spatial correlation matrix estimated by ML estimator
(4.59) to optimal modeling order found by IMOD algorithm when using KLT, DCT-II
or polynomial basis. Assume that SNR= 10dB, AS= 7.2◦, η = 1 and that there are
total n subcarriers.

n 2 10 30 50 100 perfect
m̂?(KLT) 2 10 14 15 15 15
m̂?(DCT) 15 15 15 15 15 15
m̂?(Poly.) 22 21 21 21 21 21

Table 4.5: Effect of imperfect spatial correlation matrix estimated by ML estimator
(4.59) to optimal modeling order found by IMOD algorithm when using KLT, DCT-II
or polynomial basis. Assume that SNR= 10dB, AS= 15◦, η = 1 and that there are total
n subcarriers.

n 2 10 30 50 100 perfect
m̂?(KLT) 2 10 21 29 29 29
m̂?(DCT) 29 29 29 29 29 29
m̂?(Poly.) 100 100 100 100 100 100

76



0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Modeling order m

N
M

S
E

 

 

AS=15°

AS=7.2°

Figure 4.31: Performance of the estimated mean AoA (in radians) with different ASs
versus modeling order, where SNR= 10 dB, and polynomial basis is used.

77



Chapter 5

Closed-Loop Transceiver Design

5.1 Distributed Massive MIMO

 

Central Processing 

BS 

RRH1
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RRH

RRH n

UE

UE

UE

UE

Figure 5.1: Illustration of Distributed Massive MIMO System.

We now present closed-loop transceiver design for large-scale MIMO systems in both

TDD and FDD modes based on the proposed LSFC and SSFC estimators, where a same

frequency band is shared by both UL and DL transmission for TDD mode. First, we

generalize the co-located multiantenna scenario to one that distributes its M BS anten-

nas into clusters (remote radio heads, RRHs) within the coverage area. The distributed
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antennas are linked via optical fiber-based backhaul to the central BS (CBS) responsible

for joint signal processing [4]; this scenario is illustrated in Fig. 5.1. Nevertheless, the

proposed application is different from [4] in twofold: i) A total of N clusters are assumed

in the serving cell of which the nth cluster is equipped with Mn � K antennas; ii) The

selection of clusters and antennas within is employed to reduce computational complex-

ity. This is especially true for the systems operating in FDD mode for the reason that

a great amount of CSI must be fed back for higher sum rate.

As a result, each cluster serves only its nearby rather than all users in the cell. Denote

by Kn the number of UEs served by RRH n. To this end, knowledge of LSFCs may

be useful for selecting serving RRHs [4]. As for the transmit antenna selection (TAS)

for an RRH, we consider an MU-MIMO system employing maximum ratio transmission

(MRT) or zero-forcing (ZF) precoding. Denote by S a set of selected transmit antennas.

A decremental antenna selection scheme aims at removing antennas one by one based

on either the generalized norm- (GNS) or capacity-based selection (CS) until reaching a

prescribed number of active antennas. Among them, the CS turns off transmit antenna

s based on

s = arg max
i∈S

RD (S \ {i}) , (5.1)

where RD(S) stands for the sum rate with selected antennas S, and GNS removes

s = arg min
i∈S

‖D−1β ui‖2

|S| − ‖D−
1
2

β ui‖2
, (5.2)

with ui being the SSFC channel seen by antenna i.

Lemma 5.1.1. For an RRH n performing decremental TAS, if all its served UEs are

closely located, then both the GNS and CS converges to

s = arg min
i∈Sn

‖ui‖ (5.3)

almost surely as Mn →∞, where Sn is a selected set.
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Proof. It follows directly from Section 2.4.2.

While [1] has shown that the performance of MRT asymptotically achieves that of

ZF and MMSE precoding, shown in the following lemma, for practical array size M ,

MRT is far from achieving ZF precoder.

Lemma 5.1.2. For M
K
< ∞, the SINR performance and thus the achievable sum rate

of MRT is strictly inferior than ZF precoder.

Proof. See Appendix G.

5.2 Uplink Pilot Design

To minimize the required training period, we let T = K and thus have square P’s.

Besides, as the derivation of the aforementioned estimators relies on the use of mutually

orthogonal uplink pilot sequences for their optimality, we will focus on the design of

such category of pilots [29]. With fixed transmission power, the MSE performance

of the estimators using different orthogonal pilots are shown to the same, provided

that the pilot power ‖pk‖2 is fixed, in Section 3.3 and Theorem 4.4.1. Therefore, the

main objective of pilot sequence design falls into the minimization of computational

complexity.

Definition 5.2.1 ( [30, Ch. 2]). A Hadamard matrix is a square matrix whose rows (or

columns) are mutually orthogonal and of ±1 entries. It is conjectured that a Hadamard

matrix of order 4n exists ∀n ∈ N.

Remark 22 (Hadamard Matrix-Based Pilots). By choosing a Hadamard matrix as the

pilot matrix P, the computation effort can be reduced significantly due to the fact that

the calculation of Ypk in (3.7), (4.10), and (4.9) involves only column additions and

subtractions of Y.
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Remark 23 (Diagonal Matrix-Based Pilots). An alternative choice of pilot matrix is it

being diagonal, specifically, P = Diag(s1, · · · , sK), which is able to simplify (3.7) as

β̂k =
sky

H
k yksk −Ms2k
Ms4k

=
‖yk‖2 −M

Ms2k
, (5.4)

where Y = [y1, · · · ,yK ]. This estimator coincides with our intuition in that the instan-

taneous received signal strength minus the noise power, ‖yk‖2 − M , is approximately

equal to the strength of the desired signal and thus fairly reflects the gain provided by

large-scale fading if it is divided by Ms2k, the total power emitted by user k times the

number of copies received at the BS. On the other hand, for SSFC estimation:

ĉk =
1√
β̂ksk

QH
mWH(φ̂k)yk

φ̂k = arg max
φ∈[−π

2
,π
2
]

s2ky
H
k W(φ)QmQH

mW(φ)Hyk

= arg max
φ∈[−π

2
,π
2
]

yHk W(φ)QmQH
mW(φ)Hyk

Remark 24. Although diagonal matrix-based pilots give lower computational burden

then the ones being Hadamard, the requirement that an MS needs to transmit all pilot

power in a time slot to achieve the same performance shows a risk of disobeying the

maximum user output power constraint. For instance, [25] defines the maximum output

power for any transmission bandwidth within the channel bandwidth to be 23 dBm. In

other words, the decision of a suitable uplink pilot pattern is a trade-off between the

computational complexity and maximum user output power.

5.3 TDD Mode

Throughout this section, we devise a transceiver procedure for the massive MIMO

operating in TDD mode assuming UL-DL channel reciprocity holds [1]; see also Fig. 5.2

for illustration. The downlink channel is thus D
1
2
βHT for the reason that UL and DL

transmission are via the same frequency band.
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Figure 5.2: The flow chart of closed-loop transceiver design in TDD mode. Colored
blocks are done by MSs while others done by BS.
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T1 All K UEs broadcast their mutually orthogonal pilot sequences to all N RRHs

simultaneously.

T2 All N RRHs estimate K LSFCs with (3.7) and forward these estimates to the

CBS.

T3 The CBS performs cluster selection algorithm given in [4] with the gathered esti-

mates.

T4 Each selected RRH chooses a basis (DCT or polynomial-based) for RR SSFC

estimation.

T5 Each selected RRH n determines the modeling order for all Kn serving UEs via

the IMOD algorithm and obtains their RR channel and mean AoA estimates using

(4.10)–(4.11) with this order.

T6 RRHs determine whether or not to perform antenna selection with (5.3).

T7 Each RRH performs either MRT or ZF precoding with LSFC and SSFC estimates

obtained in T2 and T5, respectively.

T8 Each RRH doing power allocation via compensating the LSFCs for all serving UEs.

5.4 FDD Mode

As suggested in [1] and [16], massive MIMO operating in the FDD mode is unrealistic

due to the fact that: i) a DL pilot of duration equals to the RRH antenna number is

called for; ii) a vector CSI of the same length needs to be fed back from each UE. In this

subsection, we develop an RR DL SSFC estimator and its corresponding pilot design

that makes significant amount of feedback reduction possible.

While shadow fading is frequency-invariant [43]– [46], unlike in the TDD mode,

there is no reciprocity between UL and DL pathloss in the FDD mode. Fortunately, a

translation can be done to obtain DL pathloss with the estimated UL ones.
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Figure 5.3: The flow chart of closed-loop transceiver design in FDD mode. Colored
blocks are done by MSs while others done by BS.
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Remark 25. Suppose the frequency bands used for UL and DL transmission are respec-

tively ωUL and ωDL. The frequency dependence of pathloss is approximately characterized

by

PL(ωUL)

PL(ωDL)
[dB] ≈ −20 log

(
ωUL

ωDL

)
. (5.5)

Therefore, for a same link using different bands,

βUL

βDL
≈ ω2

DL

ω2
UL

. (5.6)

Besides, the fact that UE k’s UL mean AoA φk and SSFC modeling order mk equal

to the DL counterparts enables RR DL SSFC estimation and even feedback reduction.

Specifically, UE k receives the pilot Pk ∈ CMn×T emitted by its serving RRH n:

xHk =
√
βDL
k gHk Pk + nHk

=
√
βDL
k

(
bHk QH

mk
WH(φk) + εHk

)
Pk + nHk ,

where gHk ≈ bHk QH
mk

WH(φk) is the RR approximation of DL channel gHk , εk the modeling

error, and noise nk ∼ CN (0T , IT ), and performs LS channel estimation:

b̂k =
1√
βDL
k

(
PH
k W(φk)Qmk

)†
xk. (5.7)

However, as βDL
k and φk are not known to UE k, the following DL pilot structure is

proposed with T = mk:

Pk =
1√
βDL
k

W(φk)Qmk (5.8)

which results in b̂k = xk, simply the received signal that requires minimal extra com-

putation. Note that in (5.8), the multiplication of W(φk) can be regarded as RRH

beamforms DL pilot (or signal) to the φk direction for better signal power concentra-

tion. This RR DL SSFC estimate potentially reduce the amount of CSI needed to be fed

back since vector gk of dimension M is represented by length-m b̂k. While for practical

systems as LTE, vector quantization (or codeword selection) is done to the feedback
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vector [28], we assume in the following that the vector is fed back without quantization

and, furthermore, via a noise-free channel.

F1 All K UEs broadcast their mutually orthogonal pilot sequences to all N RRHs

simultaneously.

F2 All N RRHs estimate K UL LFSCs with (3.7) and translate them into

β̂DL = β̂ULω
2
UL

ω2
DL

, (5.9)

information intended for the CBS.

F3 The CBS performs cluster selection algorithm given in [4] with the gathered DL

LSFC estimates.

F4 Each selected RRH chooses a basis (DCT or polynomial-based) for RR UL SSFC

estimation.

F5 Each selected RRH determines the modeling order m̂?
k for each served UE k via

the IMOD algorithm and obtains its RR UL SSFC and mean AoA estimates using

(4.10)–(4.11) with this order.

F6 RRHs determine whether or not to perform antenna selection with (5.3).

F7 Each RRH beamforms the DL pilot intended for a served UE to AoD φ̂k obtained

in F4 and compensate for the DL LSFC β̂DL
k in F2, i.e., (5.8).

F8 All served UEs feed their received signal xk back to serving RRHs.

F9 RRHs recover DL SSFC estimates via

ĝHk = xHk QH
m̂?k

WH(φ̂k). (5.10)

F10 Each RRH performs either MRT or ZF precoding with DL LSFC and SSFC esti-

mates obtained in F2 and F9, respectively.

F11 Each RRH doing power allocation via compensating the LSFCs for all serving UEs.
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5.5 Numerical Results and Discussion

In this section, we present the simulation results about sum rate performance of

antenna selection algorithms (CS and GNS) and different precoding methods (ZF and

MRT). Here we denote MT the total number of RRH antennas and MF the number of

selected RRH antennas. From Fig. 5.4-5.5, we can see that when MF is about more

than two times larger than K with K the number of MSs, GNS algorithm has almost

the same sum rate performance as CS as we have discussed in Lemma 5.1.1. In other

words, we only have to use low complexity GNS algorithm to do TAS in massive MIMO

system. Moreover, both figures tell us the fact that when MF is finite, or MF

K
<∞, the

achievable sum rate of MRT is strictly inferior than ZF precoder, as we have shown in

Lemma 5.1.2.
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Figure 5.4: Sum rate performance of antenna selection algorithms (CS and GNS) versus
MT provided that ZF and MRT precoding are used, where MT = 3MF represents the
number of RRH antennas, MF is the number of selected antennas, number of users is 4,
and SNR= 11.76 dB.
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Figure 5.5: Sum rate performance of antenna selection algorithms (CS and GNS) versus
MF provided that ZF and MRT precoding are used, where MT = 200 represents the
number of RRH antennas, MF is the number of selected antennas, number of users is 4,
and SNR= 11.76 dB.
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Chapter 6

Conclusion

Due to the effect of noise reduction in massive MIMO systems, a novel LSFC es-

timator for both i.i.d. and spatial correlated channel is proposed. This estimator can

extended to the one considering multiple pilot blocks to improve performance. Advan-

tages of the proposed LSFC estimator includes: low complexity and no prior knowledge

of SSFCs and spatial correlation is needed. Furthermore, it can be shown that the

proposed LSFC estimator has asymptotically zero-MSE and hence approaches to the

MMSE estimator when the number of BS antennas is large. The fact that it even sig-

nificantly outperforms the conventional LSFC estimator with known SSFCs is revealed

by the simulation results.

By using the estimated LSFCs, a estimator incorporating individual estimation of

mean AoA and SSFC combined with rank-reduced channel model is also presented. The

estimated mean AoA is helpful for downlink beamforming, while the RR characteristics

enables us to reduce the amount of feedback overhead, pilot dimension and hence pilot

transmission time in FDD mode. We analysis the effect of modeling order on MSE

performance of the proposed estimator by mathematical approaches and find out that the

“bias matrix” is an important metric in modeling order selection. Moreover, we present

some candidate for basis selection as KLT, DCT, and polynomial basis, after connecting

the RR model to image signal processing, we show that the DCT-II basis is a practical,

low computational complexity and near-optimal choice owing to the so-called energy
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compaction property. Eventually, IMOD algorithm is devised to determine the optimal

modeling order used in the SSFC estimator, it offers a low computational-complexity

approach to quickly determine the optimal modeling order (or, rank indicator) for each

user as shown in our simulation results.

Numerical results show the effectiveness of the proposed estimator to enhance accu-

racy by reducing the number of parameters needed to be estimated and that an optimal

modeling order is related to the value of AS and SNR. In addition, massive MIMO

system is shown to be helpful in terms of reducing the NMSE of the proposed SSFC

estimator. After that, with the aid of the large aperture offered by a massive MIMO

BS, a precise estimation of mean AoA is seen, even when the AS is not small.

Finally, we present a closed-loop transceiver design of distributed massive MIMO sys-

tem for both TDD and FDD mode. The transceiver combines the estimators proposed in

the previous sections with a practical MIMO system including antenna selection, cluster

selection and transmit beamforming. With the aid of massive number of antennas, the

antenna selection metric has been simplified a lot even if we consider the LSFC and

spatial correlation into this metric. Finally, we show that in FDD mode, all MSs need to

do is to feedback their received signal instead of doing channel estimation and a limited

feedback effect can help us to construct a smaller codebook.
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Appendix A

Proof of Theorem 3.2.1

Lemma 3.3.1 implies that if

lim sup
M→∞

sup
1≤i,j≤K

‖Φ
1
2
i Φ

1
2
j ‖2 <∞, (A.1)

we have

1

M
H̃HAH̃ =

1

M




h̃H1 Φ
1
2
1 Φ

1
2
1 h̃1 · · · h̃H1 Φ

1
2
1 Φ

1
2
Kh̃K

...
. . .

...

h̃HKΦ
1
2
KΦ

1
2
1 h̃1 · · · h̃HKΦ

1
2
KΦ

1
2
Kh̃K




a.s.−→ IK ,

(A.2)

and if lim sup
M→∞

sup
1≤i≤K

‖Φ
1
2
i ‖2 <∞, or equivalently

lim sup
M→∞

sup
1≤i≤K

‖Φi‖2 < ∞, (A.3)

1

M
H̃HΦ̃HN =

1

M




h̃H1 Φ
1
2
1 n1 · · · h̃H1 Φ

1
2
1 nK

...
. . .

...

h̃HKΦ
1
2
Kn1 · · · h̃HKΦ

1
2
KnK




a.s.−→ 0K×T .

Note that Assumption 1 is equivalent to condition (A.3) and can imply condition (A.1)

because if ∀i, ‖Φ
1
2
i ‖2 <∞,

‖Φ
1
2
i Φ

1
2
j ‖2≤‖Φ

1
2
i ‖2‖Φ

1
2
j ‖2 < ∞, ∀1 ≤ i, j ≤ K.
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Appendix B

Proof of Theorem 4.4.1

We first derive the variance term in MSE. Substitute (4.32) into (4.25) yields

ĥ = E
{

ĥ
}

+
1

γ
W(φ)QmQH

mWH(φ)Np

thus,

Var{ĥ} = E
{
‖ĥ− E

{
ĥ
}
‖2
}

= E
{
‖1

γ
W(φ)QmQH

mWH(φ)Np‖2
}

=
1

γ2
E
{
pHNHW(φ)QmQH

mWH(φ)Np
}

=
1

γ2
pHE

{
NHW(φ)QmQH

mWH(φ)N
}

p

(a)
=

1

γ2
pH(tr

(
W(φ)QmQH

mWH(φ)
)

IK)p

(b)
=

1

γ2
pHtr

(
QmQH

mWH(φ)W(φ)
)

p

(c)
=

1

γ2
pHtr

(
QH
mQm

)
p

(d)
=

1

γ2
pH(mIK)p

=
m

γ2
‖p‖2 =

m

β‖p‖22
(B.1)
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where step (a) follows from the fact that

E
{
NHAN

}
=

M∑

i=1

M∑

j=1

aijE
{
xix

H
j

}

=
M∑

i=1

aiiE
{
xix

H
i

}

=
M∑

i=1

aiiIK

= tr(A)IK (B.2)

with N = [x1, · · · ,xM ]H and any square matrix A = [aij]; step (b) follows from the

property that the matrices in a trace of a product can be switched, step (c) follows

from the equality W(φ)WH(φ) = IM , and step (d) utilizes the orthogonality of a basis

matrix.

The bias term, (4.26), renders

b(ĥ) = E
{
‖E
{

ĥ
}
− h‖2

}

(a)
= E

{
‖(W(φ)QmQH

mWH(φ)− IM)h‖2
}

= E
{
hH(W(φ)QmQH

mWH(φ)− IM)2h
}

(b)
= E

{
tr(hH(W(φ)QmQH

mWH(φ)− IM)2h)
}

(c)
= E

{
tr((W(φ)QmQH

mWH(φ)− IM)2hhH)
}

= tr((W(φ)QmQH
mWH(φ)− IM)2E

{
hhH

}
)

(B.3)

In the above derivation, step (a) is obtained by substituting (4.32) into (4.26), step (b)

follows from the fact that trace of a scalar is equal to the scalar itself and step (c) invokes

the property that the vectors (matrices) in a trace of a product are commutative.

Since

E
{
hhH

}
= Φ

1
2E
{

h̃h̃H
}

Φ
1
2 = Φ, (B.4)
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(B.3) can be simplified as

b(ĥ) = tr((W(φ)QmQH
mWH(φ)− IM)2Φ)

def
= tr(AΦ) (B.5)

Note that when full modeling order is used, m = M , and A = OM and the estimator

becomes an unbiased estimator, which is consistent with Lemma 4.4.3. Nevertheless, for

the general case that m ≤M , we use the decomposition

QmQH
m = Q

[
Im

O(M−m)×m

] [
Im O(M−m)×m

]
QH

= Q

[
Im Om×(M−m)

O(M−m)×m O(M−m)

]
QH (B.6)

where Q ∈ CM×M the “complete” basis matrix (i.e. no rank reduction), to express A as

A = (W(φ)QmQH
mWH(φ)− IM)2

= (IM −W(φ)QmQH
mWH(φ))2

= (W(φ)Q

(
IM −

[
Im Om×(M−m)

O(M−m)×m O(M−m)

])

︸ ︷︷ ︸
Dm

QHWH(φ))2

= W(φ)QDmQHWH(φ)W(φ)QDmQHWH(φ)

= W(φ)QD2
mQHWH(φ) (B.7)

The matrix Dm is an orthogonal projection and idempotent matrix since

Dm =

(
IM −

[
Im Om×(M−m)

O(M−m)×m O(M−m)

])

=

[
Om Om×(M−m)

O(M−m)×m IM−m

]
∈ RM×M

and

D2
m =

[
Om Om×(M−m)

O(M−m)×m IM−m

]2

=

[
Om Om×(M−m)

O(M−m)×m IM−m

]

= Dm (B.8)
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Suppose ei is an all-zero vector except for the ith entry being 1, and W is a subspace

of RM that is spanned by the orthonormal set of vectors em+1, · · · , eM , that is, W =

span

{[
Om×(M−m)

IM−m

]}
, then Dm is clearly the orthogonal projection matrix on W .

Hence, (B.7) and (B.5) can be further simplified as

A = W(φ)QDmQHWH(φ)

and

b(ĥ) = tr(AΦ)

= tr(W(φ)QDmQHWH(φ)Φ)

= tr(DmQHWH(φ)ΦW(φ)Q)

def
= tr(DmB) (B.9)

where the bias matrix B is a positive semi-definite matrix because of the facts that

BH = QHWH(φ)ΦW(φ)Q = B

and

xHBx = xHQHWH(φ)ΦW(φ)Qx

= xHQHWH(φ)Φ
1
2 Φ

1
2 W(φ)Qx

= ‖Φ
1
2 W(φ)Qx‖22 ≥ 0, ∀ x (B.10)

When substituting ei, ∀ 1 ≤ i ≤ M into the above x, it is obvious that all diagonal

entries in B are non-negative. Furthermore, the definition of Frobenius inner product [33,

Ch. 10.4] implies that

b(ĥ) = tr(DmB) = 〈Dm,B〉F (B.11)

where 〈·〉F denotes Frobenius inner product. The two equivalent expressions conclude

that the bias term is the sum of the last (M −m) diagonal terms (which are all non-

negative) of B.
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Appendix C

On Remark 14

If the mean AoA is not 0◦, the spatial correlation matrix is a complex matrix, that is,

Φ ∈ CM×M . However, [12] has shown that when the AoA spread is small (say, less than

15◦),

Φ ≈W(φ)Φ̄WH(φ) (C.1)

where Φ̄ ∈ RM×M is a real matrix with
[
Φ̄ij

]
= J0(|i − j|2πd

λ
∆ cosφ), ∆ being the

AS, λ being the wavelength and d being the antenna spacing. Hence, we can treat

WH(φ)ΦW(φ) as an operation that rotate the phase of Φ to make it a real matrix.

From the “energy compaction property” [36] [41] of DCT-2, if we transform a length-

M real sequence (or, real vector), x, by DCT-2, then in frequency domain, the larger

coefficients (or strictly speaking, coefficients larger than a benchmark, η = 1) must be

more highly concentrated at low indices much smaller than M . More specifically,

1−
∑m̂?

`=1 xl∑M
`=1 xl

� 1 (C.2)

with m̂? �M being defined as the index of first entry smaller than η on x, and all entries

whose index larger than m̂? are also smaller than η. Note that DCT-2 is a separable

transform [34, Ch. 4], or, to put it in another way, multidimensional DCT-2 can be

decomposed into successive application of one-dimensional DCT-2 in the appropriate

directions.
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Since B = QHWH(φ)ΦW(φk)Q, we can use a two-step interpretation to describe

B:

Step 1 Phase-rotating Φ to be a real matrix, WH(φ)ΦW(φ).

Step 2 Using two-dimensional DCT-2, applied subsequently to rows and columns of

the real matrix WH(φ)ΦW(φ), to transform it into frequency domain, B, where

1−
∑m̂?

`=1[B]``∑M
`=1[B]``

= 1−
∑m̂?

`=1[B]``
M

� 1 (C.3)

where m̂? << M , owing to the energy compaction property [36, Ch. 8] [41] of

DCT-2.

Besides, the concept of using polynomial basis is to approximate the smooth spatial

waveform by a polynomial with lower order, m, than the full order, M . When the

polynomial basis is used, we can replace Step 2 as

Step 2 Using two polynomial to describe respectively the rows and columns of the

smooth real matrix WH(φ)ΦW(φ). Because the spatial waveform (either along

rows or columns of WH(φ)ΦW(φ)) is smooth, the larger coefficients are also highly

concentrated at low polynomial orders (i.e. low indices), while the coefficients

corresponds to higher polynomial order are all small than η (since we do not need

such high-order polynomial to describe the smooth spatial waveform). In other

words,

1−
∑m̂?

`=1[B]``∑M
`=1[B]``

= 1−
∑m̂?

`=1[B]``
M

� 1 (C.4)

where m̂? << M .

Consequently, the diagonal entries in B must also be highly concentrated at low in-

dices much smaller than M as in the DCT-2 basis case. We can say that, the polynomial

basis we used, which is a discrete polynomial transform, also has the so-called “energy

compaction property”. And the compaction performance of it is only slightly worse than

that of DCT-2 owing to Remark 11.
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Appendix D

Proof of Theorem 4.5.1

Above all, we rewrite ĥ(I) in (4.44) as

ĥ(I) =
1

γ
QmQH

mYp

=
1

γ
QmQH

m(γh + Np)

= QmQH
mh +

1

γ
QmQH

mNp (D.1)

Take expectation to (4.44) yields

E
{

ĥ(I)
}

= QmQH
mh + E

{
1

γ
QmQH

mNp

}

= QmQH
mh (D.2)

Substituting (D.2) into (D.1), we rewrite ĥ(I) as

ĥ(I) = E
{

ĥ(I)
}

+
1

γ
QmQH

mNp.
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Thus,

Var{ĥ(I)} = E
{
‖ĥ(I) − E

{
ĥ(I)
}
‖2
}

=
1

γ2
E
{
pHNHQmQH

mNp
}

=
1

γ2
pHE

{
NHQmQH

mN
}

p

(a)
=

1

γ2
pH(tr

(
QmQH

m

)
IK)p

=
1

γ2
pHtr

(
QH
mQm

)
p

=
1

γ2
pH(mIK)p

=
m

γ2
‖p‖2 =

m

β‖p‖22
(D.3)

where step (a) follows from the property (B.2).

After that, the bias term in the MSE can be derived:

b(ĥ(I)) = E
{
‖E
{

ĥ
}
− h‖2

}

(a)
= E

{
‖(QmQH

m − IM)h‖2
}

= E
{
hH(QmQH

m − IM)2h
}

(b)
= E

{
tr(hH(QmQH

m − IM)2h)
}

(c)
= E

{
tr((QmQH

m − IM)2hhH)
}

= tr((QmQH
m − IM)2E

{
hhH

}
)

(d)
= tr((QmQH

m − IM)2Φ)

def
= tr(ÃΦ) (D.4)

in step (a), we substitute (D.2) into (4.26), step (b) follows from the fact that trace

of a scalar is equal to the scalar itself, step (c) utilizes the property that the vectors

(matrices) in a trace of a product can be switched, and step (d) is according to (B.4).
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Similar to (B.7), Ã can be rewritten as

Ã = (QmQH
m − IM)2

= (IM −QmQH
m)2

= (Q

(
IM −

[
Im Om×(M−m)

O(M−m)×m O(M−m)

])

︸ ︷︷ ︸
Dm

QH)2

= QDmQHQDmQH

= QD2
mQH

(a)
= QDmQH (D.5)

where step (a) uses the idempotent property of Dm in (B.8).

Accordingly, substitute (D.5) into (D.4) yield

b(ĥ) = tr(AΦ)

= tr(QDmQHΦ)

= tr(DmQHΦQ)

def
= tr(DmB̃), (D.6)

thus proves Theorem 4.5.1. It is worth mentioning that B̃ is the positive semi-definite

bias matrix of the SSFC-2 estimator.
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Appendix E

On Remark 17

If the mean AoA is not 0◦, Φ ∈ CM×M and, according to (C.1), can be regarded as a

phase-rotated version of a real matrix, Φ̄ ∈ RM×M .

As DFT{ejω0nx[n]} = X(ej(ω−ω0)), where X(ejω) =DFT{x[n]}, performing two-

dimensional (2D) DCT-2 on the phase-rotated matrix Φ, the η−support also shifted

to some medium frequency indices. In other words, suppose that x is a length-M com-

plex vector, and after transformed by the DCT-2,

1−
∑m̂?

`=mr−1 xl∑M
`=1 xl

� 1 (E.1)

with m̂? being defined as the index of first entry smaller than η on x, and all entries

whose index larger than m̂? are also smaller than η, mr being defined as the index of

first entry larger than η on x, and m̂? −mr �M .

Consequently, B̃ can be decomposed into the following two steps:

Step 1 Rotating the phase of a real matrix Φ̄ to obtain the phase-rotated complex

matrix, Φ.

Step 2 Using the two-dimensional DCT-2 (or discrete polynomial transform, applied

subsequently to rows and columns of the phase-rotated matrix W(φ)Φ̄WH(φ).

Owning to the energy compaction property of DCT-2 (or discrete polynomial

transform) [34, Ch. 4] [35, Ch. 2], the resulting frequency domain coefficients

larger than a fixed value, η = 1, are highly concentrated; however, they are mostly
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concentrated within some medium frequency indices due to the frequency transla-

tion property. More precisely,

1−
∑m̂?

`=mr−1[B̃]ll∑M
`=1[B̃]ll

= 1−
∑m̂?

`=mr−1[B̃]ll

M
� 1 (E.2)

with m̂? −mr �M .

Note that when the polynomial basis is used, we can treat it as a kind of discrete

polynomial transform which also has energy compaction property as mentioned in Ap-

pendix C, and the above interpretation is still valid. Therefore, it would lead to the

same result as the DCT-2 basis case.
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Appendix F

Proof of Lemma 4.5.3

Since

tr(DmB̃)− tr(DmB)

= tr(DmQHΦQ)− tr(DmQHW(φ)HΦW(φ)Q)

= tr(DmQH(Φ−W(φ)HΦW(φ))Q)

(a)
= tr(D2

mQH(Φ−W(φ)HΦW(φ))Q)

(b)
= tr(DmQH(Φ−W(φ)HΦW(φ))QDm) (F.1)

where step (a) utilizes the idempotent property of Dm in (B.8), and step (b) follows

from the fact that trace of product of matrices is commutative.

We need the following two lemmas from [32, Appendix 1].

Lemma F.0.1. A square matrix A ∈ CM×M is positive semi-definite if and only if the

principal minors are all nonnegative.

Lemma F.0.2. A square matrix A ∈ CM×M is positive semi-definite if and only if it

can be written as

A = ZZH (F.2)

where Z ∈ CM×M may not be full rank.

It is clear that the principal minors are all zero, hence nonnegative, due to the all-

zero diagonal terms of (Φ −W(φ)HΦW(φ)). (Φ −W(φ)HΦW(φ)) is thus positive
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semi-definite by Lemma F.0.1. Applying Lemma F.0.2 to (Φ −W(φ)HΦW(φ)), we

obtain

Φ−W(φ)HΦW(φ) = ZZH (F.3)

which, when substituting into (F.1), gives

tr(DmB̃)− tr(DmB) = tr(DmQHZZHQDm) = ‖ZHQDm‖2F ≥ 0 (F.4)

and completes the proof.
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Appendix G

Proof of Lemma 5.1.2

We focus on RRH-` and omit the superscript ` of M` and K` henceforth. Let S be the

current antenna set, and MF = |S|.

(Capacity of MF precoder)

Without loss of generality, we assume equal power allocation and denote by P , hH` ,

WS = GH
S , and x, the total power, `th row of HS , precoding matrix and transmitted

signal, respectively. We then have

√
pk =

√
P

tr(WH
S WS)

a.s.−→

√
P

Mtr(Dβ)

and the (composite) received signal from all K serving users is given by

y = GSWSPSx + n
a.s.−→

√
P

Mtr(Dβ)




√
β1h

H
1

...√
βKhHK


× (x1

√
β1h1 + · · ·+ xK

√
βKhK) + n

The signal received by the ith user is

yi
a.s.−→

√
P

Mtr(Dβ)
βih

H
i (xihi) +

√
P

Mtr(Dβ)

√
βih

H
i

×
(
x1
√
β1h1 + · · ·+ xi−1

√
βi−1hi−1 + xi+1

√
βi+1hi+1 + · · ·+ xK

√
βKhK

)
+ ni

with the corresponding SINR given on the top of next page.

SINRi,MF
a.s.−→

P
Mtr(Dβ)

β2
i ‖hi‖4|xi|2∣∣∣

√
P

Mtr(Dβ)

√
βihHi

(∑K
j=1,j 6=i xj

√
βjhj

)∣∣∣
2

+ 1

a.s.−→
PMβ2

i

tr(Dβ)

Pβi
Mtr(Dβ)

∣∣∣hHi
(∑K

j=1,j 6=i xj
√
βjhj

)∣∣∣
2

+ 1
(G.1)

105



Thus the capacity is given by

C =
∑

i

log(1 + SINRi,MF ) (G.2)

Theoretically, the hHi hj,∀j 6= i terms in (G.1), which are the non-diagonal terms of

HHH , approach to zero as M
K
→ ∞ in according with Lemma 3.3.1. However, our

numerical experiment indicates that even if M
K

= 1000000, and the there is no spatial

correlation, the non-diagonal terms of HHH are still large (about several hundreds to

several thousand). These large non-diagonal terms result in strong interference in (G.1),

thus, SINRi,MF becomes much smaller than expected.

SINRi,MF �
PMβ2

i

tr(Dβ)
=

PM

tr(Dβ)/β2
i

(G.3)

From the above derivation and simulation results, we conclude that in practice, MF

precoder is not a good precoder in massive MIMO system.

(Capacity of ZF precoder)

Similar to the MF case, we assume the system employs equal power allocation with

total power P . With the precoding matrix W̃S = G†S = GH
S (GSG

H
S )−1, we have

√
pk =

√
P

tr(W̃H
S W̃S)

a.s.−→
√

PM

tr(D−1β )

so that the (composite) received vector become

y = GSW̃SPSx + n

a.s.−→
√

PM

tr(D−1β )
x + n (G.4)

whose ith component represents the received signal of the ith user

yi
a.s.−→

√
PM

tr(D−1β )
xi + ni (G.5)

The corresponding SINR renders the asymptote

SINRi,ZF
a.s.−→ PM

tr(D−1β )
(G.6)
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The resulting capacity has a similar expression as (G.2).

As the LSFC for all K serving users are approximately equal due to the fact that an

RRH only serves the nearby MSs, we obtain from (G.3) and (G.6)

SINRi,MF

a.s.
� PM

tr(Dβ)/β2
i

≈ PM

K/βi
(G.7)

SINRi,ZF
a.s.−→ PM

tr(D−1β )
≈ PM

K/βi
, (G.8)

which causes

SINRi,MF

a.s.
� SINRi,ZF (G.9)

This means ZF precoding can remove all interference and offer an SINR much higher

than that achievable by using an MF precoder even in a practical massive MIMO system

where M
K
<∞.
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[20] J. Schäfer and K. Strimmer, “A Shrinkage Approach to Large Scale Covariance Ma-

trix Estimation and Implications for Functional Genomics,” Statistical Applications

in Genetics and Molecular Biology, vol. 4, no. 1, Article 32, 2005.

[21] M. Gharavi-Alkhansari and A. Gershman, “Fast antenna subset selection in MIMO

systems,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 339–347, Feb. 2004.

[22] C. Artigue and P. Loubaton, “On the precoder design of flat fading MIMO systems

equipped with MMSE receivers: a large-system approach,” IEEE Trans. Inf. Theory,

vol. 57, no. 7, pp. 4138–4155, Jul. 2011.

[23] R. Vaze, “Sub-modularity and antenna selection in MIMO systems”, IEEE Com-

mun. Lett., vol. 16, no. 9, pp. 1446–1449, Sep. 2012.

[24] S. Huang, H. Yin, H. Li, and V. C. M. Leung, “Decremental user selection for large-

scale multi-user MIMO downlink with zero-forcing beamforming,” IEEE Wireless

Commun. Lett., vol. 1, no. 5, pp. 480–483, Oct. 2012.

[25] “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

conformance specification; Radio transmission and reception; Part 1: Confor-

110



mance testing,” 3GPP TS 36.521-1 V11.0.1, Mar. 2013. [Online]. Available:

http://www.3gpp.org/ftp/Specs/html-info/36521-1.htm

[26] C. J. Zarowski, “The MDL criterion for rank determination via effective singular

values,” IEEE Trans. Signal Process., vol.46, no.6, pp.1741–1744, Jun 1998.

[27] J. J. Blanz, “Method and apparatus for reduced rank channel estimation in a com-

munications system,” U.S. Patent 6,907,270, issued June 14, 2005.

[28] C.-C. Cheng, Y.-C. Chen, Y. T. Su, and H. Sari, “Model-based channel estimation

and codeword selection for correlated MIMO channels,” in Proc. IEEE SPAWC, pp.

540–544, Jun. 2012.

[29] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a

study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal Pro-

cess., vol. 54, no.3, pp. 884–893, Mar. 2006.

[30] K. J. Horadam, Hadamard Matrices and Their Applications, Princeton, NJ: Prince-

ton University Press, 2007.

[31] R. Couillet and M. Debbah, Random Matrix Methods for Wireless Communications,

New York, NY, USA: Cambridge University Press, 2011.

[32] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Pren-

tice Hall, 1993.

[33] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook, Nov. 2008. [Online].

Available: http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

[34] K. R. Rao and P. C. Yip, The Transform and Data Compression Handbook, CRC

Press, Inc. Boca Raton, FL, USA, 2000.

[35] P. R. Haddad, A. N. Akansu, Multiresolution Signal Decomposition, Second Edition:

Transforms, Subbands, and Wavelets, Academic Press, Oct. 2000.

111



[36] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing: Third Edition,

Pearson, 2010.

[37] H. L. V. Trees, Optimum Array Processing: Part IV of Detection, Estimation, and

Modulation Theory, J. Wiley, New York, 2002.

[38] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge

University Press, 2005.

[39] Z. D. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random

Matrices, 2nd ed. Springer Series in Statistics, New York, NY, USA, 2009.

[40] D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and

its effect on the capacity of multielementantenna systems,” IEEE Trans. Commun.,

vol. 48, no. 3, pp. 502–513, Mar. 2000.

[41] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans.

Comput., 23, pp. 90–93, 1974.

[42] P.-H. Lin and S.-H. Tsai, “Performance analysis and algorithm designs for transmit

antenna selection in linearly precoded multiuser MIMO systems,” IEEE Trans. Veh.

Technol., vol. 61, no. 4, pp. 1698–1708, May 2012.

[43] D. I. Klaus, “Spatial Channel Characteristics for Adaptive Antenna Downlink

Transmission,” Ph.D. dissertation, Vienna University of Technology, Vienna, Aus-

tria, 2002.

[44] Y. Oda, R. Tsuchihashi, K. Tsunekawa and M. Hata, “Measured Path Loss and

Multipath Propagation Characteristics in UHF and Microwave Frequency Bands for

Urban Mobile Communications,” Proc. IEEE 53rd Vehicular Technology Conference

(VTC’2001 Spring), pp. 337-341, Rhodes, Greece, 2001.

112



[45] Y. Yu and D. Gu, “Enhanced MU-MIMO Downlink Transmission in the FDD-

Based Distributed Antennas System,” IEEE Commun. Lett., vol.16, no.1, pp.37–39,

January 2012.

[46] J. Zhang, P. Soldati, Y. Liang, L. Zhang and K. Chen, “Pathloss determination of

uplink power control for UL CoMP in heterogeneous network,” 2012 IEEE Globecom

Workshops (GC Wkshps), pp. 250–254, 3–7 Dec. 2012.

113



114 

作者簡歷 

一、 關於作者 

 

1988年，九月，秋分的日子，誕生於台北萬華。 

從小在熱鬧的都市裡長大，故對純樸的鄉下一直頗富好奇心。 

1995年，開始了長達十八年的學生生涯， 

喜歡做學問、追根究柢，對於別人的疑惑，也竭盡所能、盡心回答，時常對所學

的內容提出疑惑。也由於樂於主動吸收新知，培養了不錯的邏輯思辯能力。 

2007年，清大，首次離開家鄉台北， 

期間體會到大自然與樹林之美，四年的美好的回憶至今仍點滴在心頭。 

2011年盛夏，進入交大電信所，拜蘇育德教授為師， 

在老師的諄諄教誨下，除修習通信相關課程， 

也常參加大大小小的研討會及演講，皆使得我對最新的通訊技術有更深的認識。 

與聯發科技產學合作不啻增進我對學界理論和業界實際需求的看法，也讓自己更

加能夠努力克服各種挑戰。 

2013年初秋，在幾經波折後，終於完成了研究所兩年來的心血結晶， 

儘管過程或許不大平順，常遇到困難，但隨著經驗的累積， 

與同儕共同向上提昇，各方面能力都有顯著的進步，愈挫愈勇。 

即將邁入 2014年了，期許自己在未來也能秉持著做研究的態度，堅持到底。凡

事沒有最好，永遠都要不斷地求新、求變、終身學習，才能持續保有熱情，將會

是此生最受用的座右銘。 

 

二、 學歷 

高中 國立台北市立建國高級中學 2004/09-2007/06 

大學 國立清華大學 電機工程學系 2007/09-2011/06 

研究所 國立交通大學 電信工程研究所 2011/09-2013/08 

 

三、專長技能 

程式語言 Matlab 、 C/C++、Verilog 

相關證照 

Linux NCLA、Linux NCLP、Novell Data Center Technical 

Specialist、Novell Data Center Advanced Technical Specialist、

TQC 中英打、TQC WinXP 

得獎記錄 

大學五學期書卷獎、碩士兩學期書卷獎、林公熊徵學田獎學

金、電資院優秀學生獎學金、交大研究生獎學金、東光教育

基金會獎學金、新北市政府優秀學生獎學金、宋羅姍英才獎

學金、潘文淵文教基金會獎學金、新北市新莊區聯合奬助學

金 



115 

 

四、已修畢之相關課程 

專業課程類別 課程列表 

數理基礎課程 

微積分 微分方程 線性代數 

機率 普通物理 普通化學 

材料科學導論 工程力學 
偏微分方程與 

複變函數 

基礎專業課程(I) 

訊號與系統 電磁學 電路學 

電子學 
數位電路分析與 

設計 
邏輯設計 

基礎專業課程

(II) 

通訊概論 數位訊號處理概論 經濟學原理 

控制系統 類比電路設計入門 通訊系統 

電腦&實驗課程 

程式語言 計算機程式設計 計算機結構 

計算機網路概論 DSP 實驗 通訊系統實驗 

電子電路實驗 邏輯設計實驗 普通物理實驗 

研究所專業課程 

通訊之最佳化方法 數位通訊 數位訊號處理 

通訊之隨機程序 適應性訊號處理 計算機網路 

無線通訊之矩陣 

理論 
編碼理論 檢測與估計理論 

旁聽過課程 消息理論 高等編碼理論  

 


