FENASA G2 E - B E R

Single-camera Hand Gesture Recognition

for Human-Computer Interface

'S R ¥ &4

TESSRIER £ g

FENASAR 2 H - BB LSS
Single-camera Hand Gesture Recognition

for Human-Computer Interface

R S ¥ S Student : Cheng-Ming Chiang
hERE IR R Advisor : Prof. Sheng-Jyh Wang

i
A Thesis

Submitted to Department of Electronics Engineering and
Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering

August 2013

Hsinchu, Taiwan, Republic of China

li'aa;’\/ug&/‘mf H-JPLE

BABwme P AP/ - BES -

L

%
L 4

AN

erJ\’v—_k;}i/{-}h— o

(LL K=

ENNTLE I AN B

'

i E o R PR

FI%] B crRen BA A BT e a0 2
CRRE S AR RS S R SER S SR
LRI R CE R b e

AL P e Bt

B k] AR s

AR Fd - SRR - 54X
RFE TR

4o Arese GpEEEC 2
R TIEE
TIIEE L I OR

i

A~

B AL B R ey et 5l v

2t %g}»;u 590 Vi L R EERHRRAL ¢ 45

& e

fé?rﬂ

ehE NI E (LR B T o

-
7

o 4 4
adly ST O

L
i

4,
7 b

FALAR G AP 2 eniE R o

vL 212

PR AR EREDERE R -

RS- I TS LTS (e

s

B FH

¥4

LR R S

-~

T A G
LT LAEEs e

Mg A (Fenp e B

&

dofe fpt T il B 45 5

F\]]’3

SR B E ,;\‘.qﬂgi

AR B E T L R enip 3 8

230 3R] 3 LR

#—’FLE”‘ZE *}\L

S v £ kK b

BTV A £

Single-camera Hand Gesture Recognition

for Human-Computer Interface

Student : Cheng-Ming Chiang Advisor : Prof. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics
National Chiao Tung University

Abstract

In this thesis, we propose a novel hand gesture recognition technique for a remote-control
human computer interface (HCI) using a single visible-light camera. The system is mainly
composed of an image projector and a camera installed on the left side of the panel. We wish to
develop a human computer interface that-is not limited to finger touching on the board, but
allows remotely controlling the system: In this system, we develop our human computer
interface in order to find the hand location and to recognize human hand gesture in cluttered
backgrounds in real time. In our approach, we first use a simple calibration process to get the
initial position of the hand and the relation between image coordinates and the projected board
coordinates. After that, we develop a tracking algorithm to get the position of hand, with the
help of a hand detection algorithm. Next, we use a gesture recognition technique to recognize
the current gesture. We also integrate the detection algorithm with the tracking algorithm to
boost the performance. Finally, by projecting the detected hand position onto the projected

screen, we can replace the use of mouse and use hand gesture to control the system.

RARFLRRY F AR R LR ORE aE Y o X R
LA TG TR PSRBT o 5 - 2 o R EATBE LY AL
SEA I AR 2ok HEFS EREATH LT CREL VBT -3 2 304
EREARE L EfFL e B APPSR v @ s E R L AL
ol Bt 4 RB e RE I EEang s .

A RPHER E R RHRE SR B LI R D BE A F R MALT
Frip g v BE ~JE WA BT ORERER @ TR
o~ @ s A B Gk I FESBE AT RS R 3B FILG R
RADRLABL I RIZ D nE A B =itmkd AL 0 - FER A5
B AR 0 P E A e K F R E G RBGET R L AR R0
- BEFDRE o

Rtk R) P RBIE AR R F R A S SR KR
AN o RPEE) AN EER BANIIOETIE - E DR o

REL o R R * 2 A 0 f PR AR R IALE S BT

fé?]é—_"j@_f% ~'it_g/3§§j:@1i\o'§,]ff3{\m§x 4 Kk o

Content

Chapter 1 INtrOAUCTIONeeueeeeeeeiiieiiiciissnneeeeeeessseesssnnssesesssssessssssnnnessssssssssssssnnnssassssssssns 1
Chapter 2 Backgrounds and Related WOIKScccccvvveereeiiiiiiciiissnnneeeisesscccccsnneesesssssssenns 3
2.1 Remote-Control Human-Computer INterfacecooveeererereeiieiieeeseneneeeees 3
2.1.1 Color Glove by MIT Media Labccocveievieeeieieeeeeeeee e 3

2.1.2 MICIOSOTt KINECT ..c.veeueieiieeeieieee ettt 4

2.1.3 LEAP MOLION .ttt s 5

2.2 Hand Posture Recognition Technique for Large-scale Touch Panel...........c..cccc.c..... 7
2.2.1 SYSIEM OVEIVIBW ...ttt sttt ettt s s 7

2.2.2 Algorithm for Hand Detectionc.cceceeeevienienierenineneeeeeeeeeesee e 8

2.3 Related WOrKS in TraCKing......cccoieerererinieieieienesie et 10
2.3.1 Bayesian TraCKingccooerirerinirinieieeereste st 10

2.3.2 Tracking DY DEeCtiONcc.oceviririiniieiieieieeste et 12

(O gF=To] (cTaRC I =d o] oo 11=To VAN [o o]]] o 1SRN 14
3.1 SYStEM AIFCHITECIUIE ...t 14

I OF: 111 o] 7211 To] PO e OO STSPUPTURR 16

TG I o 100 B I Ut T PSR 18
3.3.1 Features for TraCKINg iieecee i cntionte st inre e sve et eete et e e ste e ae et e ae s e eanaa 19

3.3.2 Prediction of the Bounding BOX..........ccccomieiieieiieieceeseee et 23

3.4 Hand Detection and ClassifiCatiON it i eesesese ettt s 23
3.4.1 Features Extraction-and Random Forest Training..........ccccceeveeveevieseeseennens 24

3.4.2 Real-Time Hand Detection and Classification............cccceevevevenenenereennnnn 29

3.5 Integration of Tracking and DeteCtionccecuveieieeiiecieceece e 30

3.6 Hand Gesture RECOGNITIONc.ccovieiiiiierieeiecteeete et 33
3.6.1 Gesture DefinitioNccceveieriireniceceeeeeee e 33

3.6.2 GeStUre RECOGNITION........cciiieiicieeie ettt et aeere s 34

Chapter 4 Experimental RESUILS ...ccccevvuerriiiiiiiiiieeeeniniinsssnneenenssssssssssssssssssssnns 36
4.1 Hand DeteCtion RESUILS........coviiiiiiiieriere e 36

4.2 Results for the Overall AIgOrithmccveiieieiieeee e 39
Chapter 5 System APPlICATIONS .iiiiieiiirrnrreeeiiiiiiiissrnnreeetessssssssssnnesessessssssssssnssssssssssssns 42
5.1 Presentation SYSIEIMcccuieiiiiiiecieeiee sttt ettt e ae e sre e steesbe e s beesseeeareesreeenne 42

5.2 PUZZIE GAME SYSLEIM.....cciieiiieeiiecee ettt ettt re e sre e s te e e e be e ssaeeareesaeeenne 46

(O T 0] (=T G I 0] o Tod 1115] 1 48
R 1=] =] 00 49

List of Figures

Figure 1-1 (a) Large-scale touch device by Microsoft [2]. (b) The scene in the movie Minority

[E] o1 1 B 1< PO TSR P TSP TP PP 1
Figure 2-1 The glove designed DY [4]. ..o s 3
Figure 2-2 Pose estimation ProCess 1N [4]. ..c.ooeoiiiiiiiiieieeee s 4
Figure 2-3 The applications of Microsoft Kinect [8].ccccoereriiiriiiiiiieecece e 5
Figure 2-4 The hardware architecture of Kinect [8].........cccoeoiiiiiiiiiiiiee e 5
Figure 2-5 Appearance of the Leap MOTION. ... s 6
Figure 2-6 (a) The coordinates constructed by the Leap Motion. (b) Reconstructed 3-D hands6
Figure 2-7 (a) Proposed system in [1]. (b) Horizontal camera view [1].cccccoveiiiiieninnnnnn. 7
Figure 2-8 Flowchart of the hand posture recognition [1]. ... 7
Figure 2-9 System flow of generating training data [1].ccccooeiininiiniinieee e 8
Figure 2-10 The designed edge-sensitive FIlters [1]. ... 9
Figure 2-11 (a) Flowchart of generating pooling areas [1]. (b) The generated pooling cells.....9
Figure 2-12 Multi-class representation of different.orientations [1].ccccceoerineiininininninns 10
Figure 2-13 Illustration of Bayesian traCKing.c. it e 11
Figure 2-14 1dea of ensemble traCkiNg ...cccci i it it i 12
Figure 3-1 Flowchart of our algorithm. .. e 14
Figure 3-2 SyStem arChiteCTUNE. ... oot . it ettt 15
Figure 3-3 Calibration process for the start and the end. (2) Start. (b) End.ccccocerirnnnns 16
Figure 3-4 Calibration process for the TOUFCOINEIS it i eveieiee e 17
Figure 3-5 (a) Use “Zero” to end calibration process. (b) The trajectory map of the calibration
PIOCESS. <.ttt ete ettt ettt e ettt e e e Rt e e Rt e R e Rt R e Rt R e n e 18
Figure 3-6 The feature points and the bounding box at (a) frame t. (b) frame t+1.................. 20
Figure 3-7 The feature points obtained using Kalal’s algorithm. (a) Grid points. (b) Remaining
points at frame t. (c) Remaining points at frame t+1. ... 20
Figure 3-8 Flowchart of our tracking algorithm. ... 20
Figure 3-9 Illustration of building the patch model..............cccooiiiiiiiiiis 21
Figure 3-10 Filtering process of the feature POINTS.........cceveiiiiriieiireseseee e 22
Figure 3-11 Optical FIOW PrOCESS.ccviieiiiiiieiie sttt ene s 22
Figure 3-12 Illustration of TEAtUIe POINTS.ccoiiiiiiiiiieee e 23
Figure 3-13 Hand gestures (a) Five. (D) ZEr0. ...t 24
Figure 3-14 The edge filters and the corresponding edge maps for the image “Five”............. 25
Figure 3-15 Comparison between traditional grid cells and randomized pooling cells. 25
Figure 3-16 Flowchart of generating pooling areas............cccevververieresieeseese e see e seeseeeens 26
Figure 3-17 Pixel-wise view of the hand...........ccccco i 27
Figure 3-18 Illustration of the feature vectors and variable importance.c.c.cccccveveivennnne 28

Figure 3-19 Pooling cells of the “Five-Background” detector.ccovvvveiveieiiieivese e 28

Figure 3-20 Comparison between the synthesized images and the realistic images. 29
Figure 3-21 Illustration of resizing the pooling Cells. ... 30
Figure 3-22 Example of exXiSting hands.cccvoeiieiiiic e 31
Figure 3-23 Illustration of the refinement of the hand.cccco oo, 32
Figure 3-24 Illustration of MoViNg the CUISO..........ccceii i 33
Figure 3-25 Illustration of the “Click” and “Drag and Drop” proCesses.........c.ccevverrerruerearunns 34
Figure 3-26 Illustration of the voting MechaniSm.ccccoeiiiie i 35
Figure 4-1 Testing images for different illumination.cccocceiveie i 38
Figure 4-2 Image frames for determining the presence of the hand...............cccccooviiiiiienn 40
Figure 4-3 Image frames for tracking the gesture “Five”.........cccocvviiiiiinininieiene e 40
Figure 4-4 Image frames for the “Click™ aCtON.ccviiiiiieieiee e 41
Figure 4-5 Image frames for the “drag and drop” action.ccccceceveriiriiniinrenene e 41
Figure 5-1 Interface of the presentation SYStEM.cccccvviiiieiiiiie i 42
Figure 5-2 “View all SIdes” INTEITACE.cviiiiiiiiiiiiiisisieie et 43
Figure 5-3 The interaCtive CUISOr ICONS.ccveitieieiee e eeestee e eeesteeste e steeste e sraesresneesraeee s 44
Figure 5-4 The image frames for controlling the-cursor in our demo video.cccceevrennne 45
Figure 5-5 The image frames for the “‘view all slides” action in our demo video................... 45
Figure 5-6 The interface of the puzzle game SYSIEM. 1. .. cvcueeveieie e 46
Figure 5-7 The image frames for the “drag and drop” action in our demo video. 47

vi

List of Tables

Table 4-1 The detection results of the classifiers in our algorithm...........ccccccoevveviiie i, 36
Table 4-2 The detection results for different edge filters and training parameter..................... 37
Table 4-3 The comparison results for different sensitivity edge filters.c.ccccocviieiveiennnn, 38
Table 4-4 The detection results for different illumination images.ccccooceviveveiie i cce e 39

vii

Chapter 1 Introduction

Human-computer interface (HCI) plays an important role in our daily life. Computers and
machines can do lots of things for us. How to interact with them is what we are interested in.
Keyboard and mouse are the commonest HCIs. As Computer Vision and Machine Learning
algorithms become more and more powerful, computers can communicate with human more
directly. Today, we can use HCIs more conveniently and intuitively, such as the use of a multi-
touch system or a remote-control system.

Multi-touch technologies has been widely used in smart phones and tablets. However, for
a large-scale human-computer interface, the cost is still a main issue. Furthermore, this multi-
touch system can only detect the position of objects or fingers when the objects and fingers
touch the screen [2]. This system restricts the operation zone to the front area of the touch screen.
It is sometimes inconvenient to touch all the locations of a large-scale device. Hence, a human-
computer interface that allows remote-control has become more and more useful. For this type
of HCI systems, we can use intuitive gestures to interact with the computer and the operation

zone is no longer restricted to a small region.

Figure 1-1 (a) Large-scale touch device by Microsoft [2]. (b) The scene in the movie Minority Report [3].

In this thesis, we propose a hand gesture recognition algorithm and apply this algorithm to
remote-control human computer interface. Hence, we develop two applications to demonstrate
the feasibility of this system. One application is a jigsaw puzzle game system and the other is a

slide presentation system. Since the variation of the hand is quite dramatic and the operation

zone is not restricted to the board, how to find the hand in an image and how to recognize its
gesture precisely are the main issues of this thesis. For a convenient HCI, computer should
understand what the user conveys as soon as the user uses a gesture. Hence, the other issue we
concern is the processing time. Moreover, we aim to solve these problems with the use of one
visible-light camera.

In our algorithm, to interact with the computer, we first use a simple calibration process to
get the relation between the image and the projected screen. We find the location of the hand
using a tracking algorithm initially. We propose an integrator that can automatically revise the
location of hand using a detection technique if the tracking result is not precise enough. This
mechanism can also detect the presence of the hand so it needs not track the hand in every frame.
With the precise location of the hand, we recognize the current gesture. Finally, the computer
acts based on the detected gesture.

The thesis is organized as follows. In Chapter 2, we first introduce some recent famous
remote-control HCI systems. We also introduce the tracking and detection algorithms that relate
to our work. Next, we describe the propesed algorithm in detail for a remote-control human-
computer interface in Chapter 3. Experimental Results are shown in Chapter 4. In Chapter 5,
we describe two applications of our hand gesture recognition algorithm. Finally, we give

conclusions in Chapter 6.

Chapter 2 Backgrounds and Related Works

There are many HCIs nowadays which allow users to control the computer with hands and
the users can keep a distance from the computer. In Section 2.1, we will discuss some famous
HCls. For our work, we need hand detection and tracking algorithms. Hence, we will describe

the related works of these algorithms in Section 2.2 and in Section 2.3.

2.1 Remote-Control Human-Computer Interface

In this section, we introduce three famous HCIs in time order which are all remote-control
systems. We describe the hardware of these systems and then describe the adopted algorithms.
We also discuss their advantages and disadvantages. Finally, we compare our proposed human-

computer interface with theses HCIs.

2.1.1 Color Glove by MIT Media Lab

In 2009, Wang and Popovi¢ proposed an easy-to-use and inexpensive interface that can
estimate hand pose at interactive rates [4]. The'user needs to wear a color glove for interaction.
The glove is designed with a specific color pattern, as shown in Figure 2-1. There are twenty

colored patches with ten distinct colors on the glove.

Figure 2-1 The glove designed by [4].
The authors construct a database of hand poses in advance which contains the sign
language alphabets, common hand gesture, and random jiggling of fingers. Each image in the

database is resized to a tiny image (40 x 40). As shown in Figure 2-2, once a color pattern in

single image is detected, they normalize the image into a tiny image. After that, in order to find
the most likely hand pose, they use this tiny image as the query to search the pose database with
the nearest neighbor method. Finally, the authors propose a few algorithms to improve the speed
and accuracy in searching the database. They also improve the temporal smoothness to reduce

jitters.

b i e A -

B 4 T ‘i -y

Camera input image Tiny image Database nearest neighbors Nearest neighbor pose

Figure 2-2 Pose estimation process in [4].
The advantages of their system are that it needs only one camera and thus it is cheap and
easy to use. However, wearing a specific glove is somewhat inconvenient for general interaction.
As a result, we want to design a bare-hand gesture recognition algorithm that has the advantages

of low cost and easy to use.

2.1.2 Microsoft Kinect

Microsoft developed a remarkable device, Kinect, in 2010. The device can recognize the
gestures of human body and the voice of the user. Users do not have to hold a controller like
Nintendo Wii [5]. The use of Kinect is not only for the video game console Xbox 360, but it
also allows the developers to write their own applications. Kinect is a powerful device to
develop user interface of gesture recognition or speech recognition, as shown in Figure 2-3.

The hardware architecture is shown in Figure 2-4. There are three camera lenses on Kinect,
an RGB camera and a pair of an infrared emitter and sensor. The infrared pair can generate a
depth image using the “Light Coding” technique [6] [7]. The infrared emitter projects pre-
defined infrared patterns into the surroundings. The infrared sensor captures the image of the

distorted patterns reflected from the objects. The device estimates the depth map of the scene

by measuring the distortion rate of those specific patterns. With the depth map, it is easier to
recognize gestures by using 3-D information. Moreover, based on the depth image, Kinect can
rapidly and accurately predict the 3-D positions of body joints and then detect the skeleton of

the user. The detailed algorithm is described in [9].

Figure 2-3'The applications-of Microsoft Kinect [8].

IR Emitter Color Sensor

IR Depth Sensor
Tilt Motor
~ _—

Microphone Array

Figure 2-4 The hardware architecture of Kinect [8].
Without doubt, Kinect is an excellent device. Developers can create many creative and
convenient user interface with the help of Kinect. However, the price of Kinect is not affordable
for every user. Consequently, the goal of our thesis is to develop a cheap user interface that can

recognize hand gestures.
2.1.3 Leap Motion

The Leap Motion, released in 2012, is able to detect hands, fingers and pen-like objects

very precisely. The company [10] claims that the Leap Motion has the precision up to 0.01mm

which excels Microsoft Kinect. On the other hand, unlike Kinect, the operation zone for the
Leap Motion is limited. It is suitable for close interaction, like above the device for about 25

mm to 600 mm. The appearance of the Leap Motion is shown in Figure 2-5.

Figure 2-5 Appearance of the Leap Motion.
(a) Outward appearance [10]. (b) Inward appearance [11].

The Leap Motion is composed of two CCD cameras and three infrared LEDs. It can
reconstruct the 3-D coordinates above the device, as shown in figure 2-6 [11]. The x-axis is
parallel to the device, pointing toward-the right side of the screen. The y-axis points upward
and the z-axis, which represents the depth-information, points away from the screen. Using a
powerful mathematical algorithm, the Leap Motion can track hands, fingers and pointable
objects and record the motion information.

A

+Y

Figure 2-6 (a) The coordinates constructed by the Leap Motion. (b) Reconstructed 3-D hands

Despite the high precision of hand tracking, the Leap Motion is not suitable to be applied
to a large-scale HCI due to its restriction of the operation zone. Hence, we want to develop a

hand gesture recognition HCI that is not limited to laptops or PCs.

2.2 Hand Posture Recognition Technique for Large-scale Touch Panel

The work of our thesis follows the work in [1]. In this section, we introduce what have
been done and what we want to improve in the previous work. At first, we introduce the whole
system which is a vision-based large-scale touch panel. After that, we describe the main hand

posture recognition algorithm on which our thesis is based.

2.2.1 System Overview

In [1], they propose a hand posture recognition algorithm for large-scale touch panel. They
use a pair of visible-light cameras, installed on the top corners of the board, to detect the touch
location [12], as shown in Figure 2-7. Before detecting the touch location, the most important
thing is to find the hand in the image, as shown in the flowchart in Figure 2-8. The algorithm is

to be discussed later.

Figure 2-7 (a) Proposed system in [1]. (b) Horizontal camera view [1].

i Robust
- Classifier

DifferentScale Fixed Scale
Different Orientation Fixed Orientation

Interest point ’
Filter p

Figure 2-8 Flowchart of the hand posture recognition [1].

2.2.2 Algorithm for Hand Detection

In this section, we focus on the hand detection algorithm that are closely related to our
work. They use a machine learning technique called “Random Forest [13]”, with the idea of
randomized pooling area [14], to train classifiers. They use these trained classifiers to recognize
hand postures.

Generating a lot of training data is a prerequisite thing for training. However, it is not easy
to obtain a large data set. Hence, they use synthesized data for training. Using background
removal method, they get the foreground hand images and then merge these hand images with
possible background images. However, the merged images may look abnormal due to the sharp
edges on the boundaries of the hands. They apply a Gaussian smoothing filter over those merged
images to make them look more realistic. In.order to detect hands with different orientations,
they also rotate the hands in various pre-defined orientations. The above process, as shown in

Figure 2-9, can generate thousands of training data, which makes the training of classifiers more

reliable.
Adaptive
Background Gaussian
subtraction Background images filter

result

P
 $—F—yn

Visible-lightimage Cropped finger Merge image Training images

RN WX /

Figure 2-9 System flow of generating training data [1].

How to describe the features of the images is an important issue in computer vision. In [1],
they design edge-sensitive filters to generate edge maps, as shown in Figure 2-10. For the
purpose of fast computational speed, they use the pre-defined filters to extract edges, rather than

the commonly used Histogram of Orientated Gradient (HOG) [15] descriptor.

olo|o|o|o o|loflo|o|- o|lo|o|-1]0
11|11 o|-1|-1|-1]0 o|-1|-12|0 |+
olo|lo|o]o -1l o0|ofo|+1 o|-1|o0|+1| o0
+1 | +1 | 41|41 | +1 o |+1|+1|+1| 0 1|l o|+1|+2| 0
olo|lo|o]|o +1/0 oo o o|+1|lo|o | o

0 degree sensitive 22.5 degrees sensitive 45 degrees sensitive

Figure 2-10 The designed edge-sensitive filters [1].

After extracting edges from the images, we need to determine the pooling areas to compute
the final descriptors of the images. In previous works, SIFT [16] and HOG [15] use rectangular
pooling areas. The work in [17] uses rectangular pooling areas of pyramidal structure so as to
gain information of different scales. However, the pre-defined pooling areas may not describe
the object precisely. Hence, [18] proposes randomized pooling areas, which may have better
performance than pre-defined ones._In the previous work in [1], they propose an algorithm to

score pooling areas and pick the most suitable ones for the classifiers. The flowchart is shown

in Figure 2-11(a).

Initialize
* Spatial pyramlcl

Calculate Variable
Importance

Eliminate Weak Variables

=

NIOEEENEASED
AOEEEENEE
BT ENRLOEN
NI R-R-F B-0 B=N
EEOESEEED
("N B. 0 N-E=R_0 &
ErfrSDQUSEE
ODONECEEEQS

Figure 2-11 (a) Flowchart of generating pooling areas [1]. (b) The generated pooling cells

First, they use two-level spatial pyramid rectangular grids as the pooling areas, together
with some randomized rectangular grids. Using these pooling areas to calculate feature vectors,
they use Random Forest to train the classifier. In the training process, Random Forest structure

can tell us the score of relative importance among variables called “variable importance”. Hence,

they use this information to discard the weakest 20-percent pooling areas and regenerate the
rectangular girds randomly. After that, they use these new pooling areas to train the Random
Forest structure iteratively. After 200 iterations, the remaining pooling areas represent the more
important features of the object, as shown in Figure 2-11(b).

As mentioned above, they generate training data with different orientations. They regard
these orientations as different classes. Hence, it is actually a multi-class training problem, as

shown in Figure 2-12.

Figure 2-12 Multi-class representation of different orientations [1].

2.3 Related Works in Tracking

In this section, we introduce. two. categories-of tracking algorithms: Bayesian tracking
approach and tracking-by-detection approach. The former one uses probabilistic model to
predict the location of the object and then uses the latest measurement to refine the location.
The latter one treats tracking as a binary classification problem and trains an online classifier

to find the object.

2.3.1 Bayesian Tracking

For the problem of tracking, we need to define two models [19]: system model (dynamic
model) and measurement model (observation model), as expressed in Equation 2-1 and 2-2,
respectively:

Xk = fre(Xp-1, V1) and (2-1)
Zx = Ry (xy, n), (2-2)
where {x,,k € N} represents the state sequence, and k is time index. {v,_;,k € N} isani.i.d.

process noise sequence and {ny, k € N} isan i.i.d. measurement noise sequence. f, and h,

10

are possibly nonlinear functions. Figure 2-13 illustrates the idea of Bayesian tracking.

. /""\ [
predict () S
TN update™=
- _;,f-\‘
&
Sefarch region

Figure 2-13 Illustration of Bayesian tracking.

(a) Prediction step using the system model. (b) Update step using the measurement model.

From a Bayesian perspective, given the observed data z,.,, we want to calculate the state

X, at time k. It means that we have to construct the pdf p(xx|z;.). The pdf is calculated via
two steps: prediction step and update step [19].

Pl Z1k-1) = [DX 1) PCks | 21— 1) A Xp—4 (2-3)

Equation 2-3 shows the prior pdf-of the state-at time k, where p(x;|x,_,) is defined by the

system model (Equation 2-1). Once the measurement z; at time k is available, it is used to

update the prior pdf by Equation 2-3.

P(Zie| X1)p(Xpe|Z 11— 1) (2-4)

p(xklzl:k) = p(Zk|Z1:k—1)

Equation 2-4 shows the equation of the update step, where

P2l Z1k-1) = [p(Zi|)P (Xk| Z1:0-1) d (2-5)
is the normalizing constant. Here, p(z,|x)) is defined by the measurement model (Equation
2-2).

Using Equation 2-3 and Equation 2-4 iteratively, we can form the optimal solution for
Bayesian tracking. However, it is a conceptual solution only. In general, it cannot be solved
analytically unless for some restrictive cases, such as Kalman filter [20]. We can also use some
approximation algorithms to approximate the optimal solution, such as extended Kalman filters

[21] and particle filters [22].

11

2.3.2 Tracking by Detection

Recently, many people consider tracking not just as posterior density estimation. Instead,
they use a detection algorithm to help the tracking algorithm to discriminate the object from the
background. There are two remarkable papers which inspire our work: “Ensemble Tracking
[23]” and “Tracking-Learning-Detection [24]”. Typically, a traditional particle filter algorithm
may be restricted to working with histograms. However, for high-dimensional feature space, it
requires large memory storage. The tracking-learning-detection method is no longer restricted
to these limitations. Moreover, the histogram can be updated over time, rather than using the
pre-defined one all the time. In the next paragraph, we will briefly introduce the idea of
“Ensemble Tracking”.

In [23], Avidan treats tracking.as a binary classification problem. They train an online
Adaboost [25] classifier composed of weak classifiers and a strong classifier to distinguish the
object from the background. Each-pixel in‘the image.is regarded as a training example. Weak
classifiers represent the hyperplanes-in the feature space. The strong classifier generates a

confidence map for the image, as shown in Figure 2-14.

Hyperplanes,
Hackground, Weak classifiers

Negative examples \1\\
: "
\ie =

g \ o+
i +ZA.0

Image ObJeCt Feature space Confidence map

Positive examples

Figure 2-14 Idea of ensemble tracking

For each video frame, they use the strong classifier to create a confidence map and then

use the mean-shift algorithm [26] to find the peak value of the confidence map. Based on the

12

peak, the new bounding box of the object is obtained. Next, they label the pixels within the
bounding box as positive examples while the others as negative examples. They test all the
weak classifiers and keep the K best ones. Finally, they train new T - K classifiers and update
the strong classifier, where T is the total number of weak classifiers. The above iterative process

gives a robust and low-computational cost tracker.

13

Chapter 3 Proposed Algorithm

In this chapter, we explain our algorithms in detail. First, we show our system architecture
and explain the design consideration of our system in Section 3.1. In Section 3.2, we provide a
novel and simple calibration method to get the initial position of the hand and the information
between image coordinates and projected-board coordinates. After that, in Section 3.3, we
present the tracking algorithm which tracks the hand in an image and predict the hand location.
Next, Section 3.4 explains the hand detection algorithm which we use to determine the hand
gesture in our system. After that, we provide a combination of tracking and detection algorithm
to complement each other to get a better performance in Section 3.5. In Section 3.6, we define
some intuitive and useful continuous gestures and present how to recognize these gestures in

order to replace the mouse. Figure 3-1 shows the flowchart of our algorithm.

Bounding box location

Corresponding

action

: : : Gesture
Calibration Integration or —]
Recognition

Image frames

Figure 3-1 Flowchart of our algorithm.

3.1 System Architecture

Derived from [1], our system is based on a 70-inch projection-based surface (shown in
Figure 3-2(a)) and a projector. The main purpose of our system is that we want to change from
the touch panel system into a remote-control system. In the proposed system, the user can

interact with this remote-control human-computer interface (HCI) about 1.5 meters to 2.0

14

meters in front of the panel. Our HCI is designed mainly for the presentation, such as giving a
lecture or meeting. Hence, the users should not occlude the view of the board, but have to stand

sideways instead, as shown in Figure 3-2(c).

PROGRESS REPORT

©))
Figure 3-2 System architecture.
(a) Our large-scale projection-based panel. (b) Camera installed on the left side (left side view).

(c) The look of the system. (d) The image captured by the camera.

To keep our system as simple as possible, unlike the special device needed as mentioned
in Section 2.1, we use only one visible-light camera. As shown in Figure 3-2(b), the camera is
mounted on the left side of the board, with the principal axis pointing toward the front of the
board.

With the use of a single visible-light camera and the requirement that the operation is no
longer limited to touching on the board, we have several challenges. One is that we need to find
the hand location in the cluttered background in image coordinates and then project the location

onto the projected board. The other is that there are not only in-plane rotation but also out-of-

15

plane rotation and scale changes. Besides, we have to recognize different gestures in this

situation. In the subsequent sections, we will present a process to solve these problems.

3.2 Calibration

The ultimate goal of our system is to replace mouse by hand. Hence, the user can use
his/her hand to control the cursor. For the detected hand in the image (Figure 3-3(a)), we must
find its corresponding position on the projected board, as shown in Figure 3-2(c). Because of
using only one visible-light camera, we do not have the depth information and cannot build the
3-D world coordinates. Hence, we regard this as a 2-D to 2-D mapping problem and we design
a simple calibration process to solve this problem.

First, after the user standing in the operation zone, the user points his/her hand toward the
specified rectangle, as show in Figure 3-3. Once the gesture “Five” is detected by the system,
the calibration will start automatically. The hand detection algorithm will be described in detail
in Section 3.4. Next, the system will use a tracking algorithm described in Section 3.3 to track
the hand. After that, the user moves the hand to point toward the four corners of the projected
screen, upper left, lower left, lower right and upper right, as shown in Figure 3-4. As moving
the hand to point toward the four corners, we will get a trajectory map of the hand (Figure 3-
5(b)). The trajectory map has a shape like a rectangle which indicates the operation zone of the
hand seen from the camera. Finally, the user uses the gesture “Zero” to finish the calibration

process, as shown in Figure 3-3(b).

Figure 3-3 Calibration process for the start and the end. (a) Start. (b) End.

16

Figure 3-4 Calibration process for the four corners

(2)(b)(c)(d) The hand positions as pointing toward the four corners.

(e)(f)(g)(h) The corresponding image views.

The main purpose of our calibration process is that we want to find the relationship
between this operation zone in the image and the projected screen; that is, the mapping from
the rectangle of the operation zone (Figure 3-5(b)) to the rectangle of the projected screen
(Figure 3-2(c)). We define the ratio of the projected screen to the operation zone as

ratioy = widthyrsjected screen/Widthoperating region, and (3-1)

ratioy, = heighty,,ojected screen/heightoperating region- (3-2)
We also define X;in, Ymin Xmax and Yimax @S the position of the left, top, right and bottom
boundaries of the operation zone respectively. Hence, for each detected hand location
(Ximager Yimage) 1IN the image coordinates, we can find the corresponding location
(Xscreen» Yscreen) 1N the projected screen coordinates using the following equations:

Xscreen = (¥image = Xmin) * Tatioy, and (3-3)

YVscreen = (yimage - ymin) -ratioy. (3'4)

17

Figure 3-5 (a) Use “Zero” to end calibration process. (b) The trajectory map of the calibration process.

3.3 Hand Tracking

Our goal is to develop a hand gesture recognition algorithm for human-computer interface.
We want to modify the previous work [1] for large-scale touch panel into a remote-control
system. One main challenge for the human-computer interface is the processing time. Roughly
speaking, the frame rate of the algorithm-has to be at least 10 to 15 frames per second to reach
real-time performance. However, the frame rate in the previous work [1] is only about 2~4
frames/sec. The most time consuming part is the sliding window process for hand detection. If
considering temporal information, we can reduce a lot of time on searching the best window.
Hence, we introduce a tracking algorithm into our hand gesture recognition system. The related
works for tracking have been described previously in Section 2.3. Here, we adopt the tracking-
by-detection method. The idea of our tracking algorithm is originated from [24] proposed by Z.
Kalal. However, in [24], it has several limitations. One is that it cannot deal with non-convex
objects. The other one is that the bounding box of the object must not contain the background
parts. Otherwise, the learning component will learn the background. Hence, we modify this
tracking algorithm in order to deal with non-convex objects, such as the different views of the
hand images.

We will introduce the proposed tracking method in the succeeding sections. Section 3.3.1

introduces how we choose the features for tracking. With these features, we describe the method

18

to predict the bounding box of the object in Section 3.3.2.

3.3.1 Features for Tracking

In [24] and [27], Z. Kalal et al use sparse grid points as the feature points to represent the
object. They use the sparse feature points at frame I, to predict the feature points at frame I,,,.
These feature points at the consecutive frames are used to predict the object location at frame
I 1, as shown in Figure 3-6. The method to predict the bounding box is described in Section
3.3.2. There are equally spacing sampled grid points within the bounding box at frame I, as
shown in Figure 3-7(a). Obviously, these grid points are not reliable enough, so they propose
an algorithm called “Median Flow” to get reliable points. First, they use Lucas-Kanade tracker
[28] to track these grid points in the subsequent frame I, ;. After that, they estimate the errors
of the motion flow between I, and .., and filter ‘out unreliable points. There are two
measurements they use: Forward-Backward (FB) error and Normalized Correlation Coefficient
(NCC). For the FB error, “forward” means that they track-the points from I, to I,;. On the
other hand, tracking those points from Iz, to I, _means “backward”. The distances between
the original points and the tracked points in frame I, represent the FB error. Roughly speaking,
the FB error of a reliable point must be small. Hence, they discard the point with FB error larger
than the median of all FB errors. For the other measurement, they extract a patch near the
corresponding pair of points in frame I, and frame I, ,. The patches near both points need to

be similar. NCC measures the similarity between patches:

NCC — %Zx‘y (I(X,J/)—I_)(T(x'Y)—T)’ (3_5)

ajor
where I,T,0; and or are the average and standard deviation of the patches I(x,y) and
T(x,y), respectively. If the point has similarity measurement smaller than the median of all
similarity measurements, this point is regarded as an unreliable point and is discarded. After the

two filtering processes, the remaining points are used to estimate the new position of the

19

bounding box, as shown in Figure 3-7(a)(b).

Figure 3-6 The feature points and the bounding box at (a) frame t. (b) frame t+1.

Figure 3-7 The feature points obtained using Kalal’s algorithm.

(a) Grid points. (b) Remaining points at frame t. (¢) Remaining points at frame t+1.

In their work, the major problemis-that the some reliable points may belong to the
background unless the bounding box contains only the object without background. However,
in our case, the hand is a non-convex and non-rigid object. The rectangular bounding box may
not contain the object only. Hence, we propose a method which finds the reliable feature points
and avoids the interference of the background. Figure 3-8 shows the flowchart of our tracking

algorithm.

Detectcorners
and calculate
feature vectors

Filter out Predictthe

unreliable points

Build a patch

model bounding box

Figure 3-8 Flowchart of our tracking algorithm.

In the calibration process, we get the hand image and we build a patch model for this hand
image. Figure 3-9 shows the process of building the patch model. We use a famous corner

detector [29] to find the feature points instead of grid points. For each detected corner, we

20

extract a 9 x 9 patch centered on the detected point. We describe the patches using the edge
information which will be discussed in detail in Section 3.4. Hence, each detected corner is
represented by a feature vector. The patch model stores those feature vectors. Although there
are some background points in the patch model, we use a motion estimation method to filter

out these background points.

The image in the

g ~
calibration process Use the corner Extract a Calculate edge | The patch model
detector | patch foreach responses for
point each patch

The detected corners

The feature vectors of the patches

Illustration of the patches

Figure 3-9 Hlustration of building the patch model.

Assume that we have the boundingbox at frame t. We want to find the meaningful feature
points at frame t and frame t+1 and then predict the bounding box at frame t+1. For the frame
t, we first find the corners using corner detector (Figure 3-10(a)). With the detected corners, we
use a 3-stage filtering process to filter out unreliable points and background points. The first
stage filter out non-hand points. We extract a patch for each detected corners and then compute
the edge responses of the extracted patches. We calculate the correlation coefficient corr
between the feature vector of each detected patch and the feature vectors of all the patches in

the model. The correlation coefficient is defined as

corr =

Y, (xXi=%) (yi=) -
n)2 n v 2' (3 6)
\/zlzlcxl %) \/zlzlcyl)

We find the maximum correlation between the detected patch and all the patches in the model.

If the maximum correlation is smaller than a threshold, the corresponding detected corner is

discarded (Figure 3-10(b)). The second stage filter out the deformed points. We filter out the

21

points with lower similarity (NCC) as mentioned previously (Figure 3-10(c)). Note that we set
the threshold of similarity to 0.85, instead of the median in [27]. The final stage filters out the
background points. We use an optical flow method proposed by Horn and Schunck [30] to find
the moving areas, as shown in Figure 3-11. We also use a morphological opening to reduce
noise. Finally, we retain the feature points which lie in the moving region (Figure 3-10(d)).
After these process, the remaining points are used to estimate the new position of the bounding

box. Figure 3-6 shows the remaining points at frame t and frame t+1.

Figure 3-10 Filtering process of the feature points.
(a) Detected corners. (b) Filtered by correlation. (c) Filtered by similarity. (d) Filtered by optical flow.

() The image at frame t. (b) The image at frame t+1.

(c) Optical flow. (d) After thresholding. (e) After morphological operation.

22

3.3.2 Prediction of the Bounding Box

With the reliable feature points (Figure 3-6), we use the Median Flow method [27] to
estimate the bounding box. Using the Lucas-Kanade tracker, we can get the motion vector
between two consecutive frames. For each feature point (x;,y;) inthe previous frame, we have
the predicted points (%£;,9;) in the next frame. (diy, diy) = (£ — x;,9; — ¥;) denotes the
motion vector, as show in Figure 3-12. For the center of the previous bounding box,
(Xo1d» Yora) the center of the new bounding box, (Xpew, Ynew), IS €Stimated by

Xnew = Xo1qa + median(diy, doy, ..., dyy) and (3-7)
Ynew = Yoia + median(dly, dyy, ...,dny), (3-8)

where n is the number of feature points.

. ‘ @ featurepoints (x;, ;) inthe previousframe
‘..~ @ predictedpoints (X, ¥.).in the next frame

N ¢ ® ™\ motion vector(di, diy)

Figure 3-12 Illustration of feature points.

In [27], they also provide a method to resize the bounding box. However in our case, we
track the hand with different gestures and the shape may be slightly changed. This resizing
strategy is not robust to different and non-rigid objects. To deal with this problem, we use a
hand detection algorithm to find the proper size of the hand which will be discussed in Section

3.4.

3.4 Hand Detection and Classification

In this section, we propose an algorithm to detect and classify the hands based on the work

introduced in Section 2.2. In our algorithm, we train a “Five-Zero” classifier which can classify

23

two types of the hand gestures, “Five” and “Zero”, as shown in Figure 3-13. We also train two
detectors, “Five-Background” and “Zero-Background”, which are able to determine the

presence of the two gestures in the image.

Figure 3-13 Hand gestures (a) Five. (b) Zero.
The detection algorithm is composed of two parts. Section 3.4.1 describes the feature
extraction and Random Forest training process. After that, with the pre-trained model, we

introduce real-time hand gesture detection and classification in Section 3.4.2.

3.4.1 Features Extraction and Random Forest Training

As mentioned in Section 2.2, the previous work convolve the image with pre-defined edge
filters to generate the edge maps. They quantize 180 degrees into 8 bins. The step size is 22.5°
and there are 8 edge filters. However, this information may not be sufficient to describe an
object. Taking Figure 3-13(b) as an example,.both.the right side and the left side of the fist have
vertical edges. Using 180°-orientation edge filters, we cannot discriminate the difference
between these two edges even though the two edges represent different orientations. To solve
this problem, we use 360°-orientation edge filters rather than 180° to generate the edge maps.
We quantize 360 degrees into 8 bins. The step size is 45°. Ideally, using 16 bins with 22.5° step
size is better than using 8 bins with 45° step size. However, with the double edge filters and
edge maps, the processing time is also doubled. To keep the processing time as short as possible,
we use 45° step size filters instead of 22.5°. The final edge filters used in our algorithm are
(45 x k)°,k = 0,1, ...,7 sensitive. The edge filters and the result of the edges maps are shown
in Figure 3-14. Certainly, 22.5°-sensitive filters are better than 45°-sensitive filters, but the
difference in the detection accuracy is not too large. Later in Chapter 4, we will make a detailed

comparison.

24

olo|lo]o]|o olo|lo|-1]0 o|l-1|l0|+1| 0 o|+1|o|o]o
11112 oO|-1|-1|0 |+1 o|l-1|l0|+1]| 0 -1 o0 |+1|+1| O
olo|lo|o]o o|l-1]o0|+1]| o0 o|l-1|lo|+1| 0 o|l-1|lo0|+1]| 0
+1 | +1 | +1 | +2 | +2 1|0 |+1|+1] 0 o|-1|l0|+1| 0 Of|-1|-1]0 |+1
olo|lo|o]|o o|+1]o|o|o o|-1|o0of|+1] o0 olof|lo|-1]0
(a) 0°-sensitive. (b) 45°-sensitive. (d) 135°-sensitive.
olo|lo|o]o o|lo|o|+1]| o0 o|+1|o|-1]0 o|-1|l0|o0o]o
+1|+1 | +1|+1 | +2 o |+1|+1]| 0 |1 of|+1|lo|-1]0 +1|0|-2]-12|0
olo|lo|o]o o|l+1|lo|-1]o0 o|l+1|o|-1]o0 o|+1|o|-1]o0
11212 +1lo0o|-1|-1]0 o|+1|lo|-2]o0 o |+1|+1| 0 | -1
olo|lo|o]o 0 o|o o} ;1] 0 0 +1]| 0

(e) 180°-sensitive. (f) 225°-sensitive. (g) 270°-sensitive. (h) 315°-sensitive.

Figure 3-14 The edge filters and the corresponding edge maps for the image “Five”.

i/
i

The feature vector of the im

(@) MHlustration of the grid pooling cells.

(b) MHlustration of the randomized pooling cells.
Figure 3-15 Comparison between traditional grid cells and randomized pooling cells.

After generating the edge maps, we use the structure of randomized pooling cells to
calculate feature vectors. Figure 3-15(a) illustrates the traditional grid cells. The image is
partitioned into equally spacing grid cells. After that, we extract the edge information in each
cell. The final feature vector of the image is concatenated by the feature vectors in all the grid
cells. Figure 3-15(b) shows the idea of randomized pooling cells. The feature vector of the
image is obtained by extracting the edge information in the randomized pooling cells. Ideally,
the randomized pooling cells convey more meaningful information than the traditional grid

cells. We show the flowchart of the overall training algorithm for the randomized pooling cells

Initialize
Spatial pyramid

Mfeature vectors

Random Forest Training
.

feature vectors

Calculate Variable
Importance

in Figure 3-16.

Eliminate Weak Cells
L
Random Pooling Cells

Figure 3-16 Flowchart of generating pooling areas.

The randomized pooling cells are trained in an iterative process. Initially, we use a three-
level spatial pyramid to initialize the pooling cells. In addition to the spatial pyramid cells, we
also generate pooling cells randomly. We use 120 pooling cells in our algorithm. We add some
restrictions on the randomized pooling cells. One is the size of the cells. In [1], they make a
restriction that

widtheey > 0.1 X widthipgge and (3-9)

heightcey > 0.1 X heightimqge- (3-9)

26

We find that this threshold may be too small. For example, the hand image in our system is
about 50 x 50, which means the threshold is 5 pixels. However, the object may be a little
shifted in the location in different images. The 5-pixel wide cell may contain the edge
information in one image, but may contain no information in another image. Hence, we loosen
the restriction to 9 pixels so that we can solve the shifting problem. Figure 3-17 illustrates the
edge information in a pixel-wise view. The other restriction is on the similarity. For the
randomly generated pooling cells, as seen in Figure 2-11(b), some cells are very similar. In this
instance, it seems useless to generate so many cells. It may also overemphasize some specific
features. Hence, in the process of randomly generating pooling cells, if the generated cell is

similar to the existing cells, we will re-generate the cell until no similarity.

Figure 3-17 Pixel-wise view of the hand.

With these pooling cells, we can calculate feature vectors as illustrated in Figure 3-15(b).
We use the integral image [31] to speed up. With integral images, the computations to extract
the edge responses for the cells is just simple additions and subtractions. Here, we extract 8
edge responses for each cell. Hence, the dimension of the feature vector for each image is 8 X
120 = 960, as shown in Figure 3-18. Note that we randomly pick 3 cells as a group in order to
deal with the normalization problem as described in [1]. We normalize the edge responses in
each group. Next, the feature vectors of all the training images are fed into Random Forest [13]

to train a forest model. In the training process, Random Forest is able to calculate the relative

27

importance of each feature variable. We sum up the importance scores in each group (24 feature
variables). By comparing the scores of the groups, we can determine which groups of the
pooling cells are important. The important cells of the groups are retained, while the other cells
of the groups are eliminated. The eliminated cells are re-generated randomly with the restriction
mentioned above. With these new cells, we can calculate the feature vectors using the new cells.
After that, the feature vectors are fed into Random Forest again. After many iterations, we can
get the final forest model and the randomized pooling cells. Figure 3-19 shows the half pooling
cells for the “Five-Background” detector. As expected, there are many long pooling cells which

look like fingers.

Feature Size = g60 (8*120)

v

Training Data

Cell importance

Figure 3-18 Illustration of the feature vectors and variable importance.

GO EUNAIDNCASELAYYOEOJdn
MESEIrofE i ES LU FCES0ONE
EECIAFEAEArNrGdiUENMEEEONNE

Figure 3-19 Pooling cells of the “Five-Background” detector.

In our system, we train two detectors “Five-Background” and “Zero-Background”. They
can discriminate between the specified gestures and backgrounds. We also train a “Five-Zero”

classifier, which can recognize the gestures. Training data is very important in many machine

28

learning techniques. We do not use the synthesized training images for the gestures “Five” and
“Zero” in our algorithm. The appearance may be somewhat different between the synthesized
images and the realistic images, as shown in Figure 3-20. The training images that we use are
all realistic images. The realistic gesture images are obtained using the tracking algorithm. We
track the hand and crop the image of the bounding box. The training images of the “Background”
are randomly sampled from the possible background images. The size of the “Zero” images is
50 x 50. The size of the “Five” images is 70 X 60. Before calculating the feature vectors, we

resize all the images to the same size 50 x 50.

pessEEERY
EEEFE R NE

Figure 3-20 Comparison'between the synthesized images and the realistic images.

The three cases are all considered as hinary classification problem. The ratio of the positive

training data to the negative training data is'1:1."The numbers of training images of the gesture
“Five”, “Zero” and backgrounds are all 38669. As shown in Figure 3-18, although the viewpoint
change of the hand images is wide, our algorithm can still well classify the gestures.

The important parameters in Random Forest training are the number of trees in the forest,
the depth of a tree, and the minimum sample counts in a tree. In our algorithm, we use 70 trees
in the forest. The depth and minimum sample counts in a tree are 30 and 30, respectively. We

will make a comparison and discuss the influence of the parameters in Chapter 4.

3.4.2 Real-Time Hand Detection and Classification

Once the classifiers are trained, we use these models to do the task of detection and

classification. For the testing stage of Random Forest, the feature vectors are passed to every

29

trees. In the nodes of the tree, it is just a simple comparison with the threshold. Each tree gives
a posterior of the classification result. The final result is obtained by averaging all the posteriors.
Hence, the classification speed is fast.

Scaling is an important issue in detection. In conventional methods, they resize the
candidate testing image at every candidate position and use different sizes of the image to find
the best one. However, it is a time consuming task and may be impractical for real-time
applications. Since we have trained the pooling cells in the training stage, we resize these
pooling cells in advance instead of resizing the testing images, as shown in Figure 3-21. As a
result, we test the pooling cells with different sizes to find the most appropriate one. This is a

more efficient way to deal with the scaling issue.

Figure 3-21 Illustration of resizing the pooling cells.
3.5 Integration of Tracking and Detection

In this section, we propose an integration method that combines the tracking and detection
algorithm to form a robust system. There are two major problems that we are interested in.
One is the presence of the hand. The other is the precise location of the hand. The method of
the integrator is summarized in Algorithm 1.

For the first issue, we can determine the presence of the hand in every frame. For every
image frame, we use the detectors to detect the presence of the hand for the region near the
previous bounding box. We test both detectors of “Five” and “Zero”. If both detectors does not
find the positive patch, it means that there is no hand in the operation zone. Figure 3-22

illustrates the existence of the hand.

30

Not exist

framet +1

Exists
v" do tracking

frame t

framet +1

Figure 3-22 Example of existing hands.

For the second issue, we want to find the precise location of the hand with the help of the
detectors. In our tracking algorithm, we can track-the hand in the next frame. However, there
may be some problems in the tracking algorithm. One is thatthe tracking result is not guaranteed
to be perfect. The other problem is for the filteringprocess in the tracking algorithm. In fact,
there may be too few points to predict the location of the hand. Hence, we use the detectors to
solve both problems. First, if there are enough points to predict the bounding box, the hand is
tracked using the tracking algorithm initially. After that, we use the detector to detect the hand
location for refinement. We do not do the refinement in every frame since it is a little time
consuming. Moreover, using detectors to predict the bounding box, the trajectory may oscillate
as the time advances. It is inconvenient for the users. We want a smoother trajectory. As a result,
we refine the prediction for every 5 frames. Second, if there are too few points to predict the
hand location, we use the detector to find the hand location directly. Figure 3-23 illustrates the

refinement for the tracking result.

31

Enough points
v for every 5 frames, use the
detectors to refine the result

framet +1

ot enough points
v" detection for the moving region

Figure 3-23 Illustration of the refinement of the hand.

Algorithm 1. Integrator
If hand does not exist in the operation zone:
If there is moving object:
1.) Use the detectors-to find the hand.
Output.location.

Else:
2.) No action.
Else:
If there is enough feature points:
3.) Tracking.
For every 5 frames, if posterioriracked patcn < threshold:
(@) Use the detectors to refine prediction.
Output location.
Else:
(b) Output location using the tracking result.
Else:
If there is moving object:
(@) Use the detectors to find the hand.
Output location.
Else:
(b) No action.

Check existence.

32

3.6 Hand Gesture Recognition

The purpose of our thesis is to develop a useful and intuitive gesture recognition algorithm,
which is able to replace the use of mouse. The system needs not to contact with the device
directly. It is a remote-control human-computer interface. With the help of tracking and
detection method, we can define some simple and intuitive gestures and recognize them to
perform some tasks. Hence, in Section 3.5.1, we define the gestures and the corresponding tasks.

In Section 3.5.2, we introduce the gesture recognition method.

3.6.1 Gesture Definition

As mentioned in Section 3.4.1, we train the classifiers which can detect “Five” and “Zero”
and discriminate these two gestures. We use-them to design some simple gestures that can
control the cursor of the computer and perform basic functionality. First, we use the gesture
“Five” to represents the cursor. Moving the hand is like moving the cursor, as shown in Figure
3-24(a). The position of the cursor on-the.screen is.calculated by Equation (3-3) and (3-4). As
shown in Figure 3-24(b), the eyes, hand and the cursor are on a straight line. It is intuitively to

control the cursor.

Hand

Figure 3-24 Illustration of moving the cursor.

(a) Moving the cursor with gesture “Five”. (b) Relative position of eyes, hand and the cursor.

33

The second functionality is the “Click” function. When the gesture changes from “Five”
into “Zero”, it represents the pressing on the left button of the mouse. In this state, we can move
the hand with gesture “Zero” to drag some object. As we change the gesture from “Zero” back
to “Five”, it means releasing the left button of the mouse. Figure 3-25 illustrates the “Click”

and “Drag and Drop” processes.

\“ J Press i 4 _
_-— .
VT R e

Drag .
¥2. 4 Release W
‘ -_— 1
Drop ; J |

Figure 3-25 Illustration of the*“Click” and “Drag and Drop” processes.

3.6.2 Gesture Recognition

With the precise hand location, we only need to recognize the gestures “Five” and “Zero”.
We use the pre-trained classifier “Five-Zero” to discriminate these two gestures. As a matter of
fact, the detection rate of the classifiers cannot be perfect. For example, when moving the hand
with the gesture “Five”, there may be one or two frames classified as “Zero”. Under this
situation, there is a false alarm for the “Press” functionality. The false alarm is very inconvenient
for the users. Hence, we propose a voting mechanism to stabilize the recognition algorithm. We
use a sliding window in the temporal domain. The sliding window records the classification
result for each frame in the window. The current action is not altered until the majority of the
results changes from one gesture into the other gesture. Figure 3-26 illustrates the voting

mechanism. Using the voting mechanism increases not only the stability but also the recognition

34

time. In our system, the size of the temporal sliding window is 5 frames. It means that the
recognition process is a delayed action for 5 frames. Since our overall algorithm is performed

fast enough, this delayed action does not influence the use of the system.

consecutive 'y My Oy WM Ba Ba By By By B
frames .'dt .-dt .-d| -'dt ‘ ‘ ‘ ‘ ‘ ‘
e O Y)

currentframe
Temporal sliding window

Press Action

Figure 3-26 Illustration of the voting mechanism.

35

Chapter 4 Experimental Results

In this chapter, we show some results of our hand detection algorithm. In Section 4.1, we
make a comparison between 22.5°-sensitive and 45°-sensitive filters. We also test different
parameters in Random Forest training process. Moreover, we test our algorithm on images with
different illumination situations. Section 4.2 shows some image frames of our detection,

tracking and gesture recognition algorithms.
4.1 Hand Detection Results

In this section, we show the detection results of different edge filters, different training
parameters and different illumination images. We show the error rate and the average testing
time of three classifiers: “Five-Zero”, “Five-Background” and “Zero-Background”. We use
6196 testing images for the gesture “Five™and 5014 testing images for the gesture “Zero”. We
randomly sample 10000 background testing images from the indoor scenes.

Table 4-1 shows the final classifiers in our algorithm. The feature vectors are calculated

by eight 45°-sensitive edge filters. The number of trees in the forest is 70.

Table 4-1 The detection results of the classifiers in our algorithm.

70 trees / 8 edge filters (45°)
Number of images | Miss-classified | Error rate | Average testing time
Five 6196 10
0. 1427 % | 0.000686 seconds
Zero 5014 6
Five 6196 18
0.7162 % | 0.000714 seconds
Background 10000 98
Zero 5014 74
1.3987 % | 0.000680 seconds
Background 10000 136

36

As we can see in the above table, the classifier “Five-Zero” has the best performance. Since the
appearance of the gestures “Five” and “Zero” diverges greatly, this classifier outperforms the
others. The “Zero-Background” detector has the largest error rate since the feature of the gesture
“Zero” is not more distinct than the gesture “Five”.

In table 4-2, we show the detection results of using sixteen 22.5°-sensitive edge filters to

calculate feature vectors. We also show the detection results of using 50 trees in Random Forest.

Table 4-2 The detection results for different edge filters and training parameter.

70 trees / 16 edge filters (22.5°) 50 trees / 8 edge filters (45°)

Miss- Error Average Miss- Error Average
classified rate testing time | classified rate testing time

Five 12 0. 1517 0.001022 10 0. 1427 0.000646
Zero 5 % seconds 6 % seconds
Five 18 0.7039 | . '0.001203 16 0.7162 | 0.000735
Background 96 % seconds 100 % seconds
Zero 62 1.2322 0.001014 76 1.3454 0.000760
Background 123 % seconds 126 % seconds

The results of using 16 edge filters is as what we expected. If we use 16 edge filters, the
error rate decreases slightly. However, the processing time is about 1.5 times of the 8 edge
filters. Hence, we use 8 edge filters in our algorithm so as to reach real-time performance. In
our training process, increasing the number of trees reduces the training error rate. However, it
does not help a lot in reducing the testing error rate.

In [1], they quantize 180 degrees to 8 bins. The edge filters are 22.5°-sensitive. Instead,
we quantize 360 degrees to 8 bins. The edge filters are 45°-sensitive. We make a comparison of

these two filters in Table 4-3.

37

Table 4-3 The comparison results for different sensitivity edge filters.

70 trees / 8 edge filters (45°) 70 trees / 8 edge filters (22.5°)
Miss-classified Error rate Miss-classified Error rate
Five 10 22
0.1427 % 0. 4550 %
Zero 6 29
Five 18 12
0.7162 % 0.6113 %
Background 98 87
Zero 74 103
1.3987 % 1.9848 %
Background 136 195

The left side of table 4-3 shows the results using 45°-sensitive filters. The right side shows
the results of using 22.5°-sensitive filters. Obviously, the error rate of using 360° orientations
is lower than that by using 180° orientations. Hence, we use 360°-orientation filters to calculate
the feature vectors.

We change our testing images to different-illumination conditions to see whether our
algorithm is invariant to the illumination. Some testing images are shown in Figure 4-1. For
each type of the images, the left one is the brighter image. The middle one is the original image
used in Table 4-1. The right one is the darker image. Table 4-4 shows the testing results for the

brighter and darker images.

| FFTREE

Figure 4-1 Testing images for different illumination.

38

Table 4-4 The detection results for different illumination images.

Bright images Dark images
Miss-classified Error rate Miss-classified Error rate
Five 6 14
0.1427 % 0. 1338 %
Zero 10 1
Five 11 48
0.8891 % 0.7533 %
Background 133 74
Zero 66 183
1.4786 % 1.9915 %
Background 156 116

Table 4-4 shows that the illumination change has a little impact on the error rate. Averagely,
it does not influence our performance too much except for the dark images in the “Zero-
Background” case. For darker images, some edge information may get lost. Hence, the images

are difficult to be classified correctly.

4.2 Results for the Overall Algorithm

In this section, we show the results the overall algorithm. There are four types of results:
the presence of the hand, cursor tracking, clicking and drag-and-drop action. We show some
image frames for the four types of actions. The frames are extracted in a sequence with 1177
frames. Our algorithm is implemented using C++ code in Microsoft Visual Studio 2010. We
use OpenCV [32] library for some image processing and computer vision algorithms. The
hardware we use is Intel Core i5-3470 3.2 GHz CPU with 8GB memory.

Figure 4-2 shows the image frames for determining the presence of the hand. The red
rectangle represents the current gesture is “Five”. The blue rectangle means that there is no

hand near the previous bounding box.

39

(a) Frame 744,

(c) Frame 751.

(e) Frame 788. (f) Frame 820. (g) Frame 823. (h) Frame 826.
Figure 4-2 Image frames for determining the presence of the hand.

Figure 4-3 shows the results for tracking the gesture “Five”. As described in Section 3.6.1,

we use the gesture “Five” to represent the cursor.

(a) Frame 190.

(9) Frame 220. (h) Frame 225.

(i) Frame 230. (j) Frame 235. (k) Frame 240. (I) Frame 245.

Figure 4-3 Image frames for tracking the gesture “Five”.

40

Figure 4-4 shows the image frames for the “click” action. The action is performed when

changing the gestures. The green rectangle represents the gesture “Zero”

(b) Frame 510. (c) Frame 511.

(e) Frame 518. (f) Frame 523. (g) Frame 524. (h) Frame 527.

Figure 4-4 Image frames for the “click” action.

Figure 4-5 shows the “drag and drop” action which tracks the gesture “Zero”

(a) Frame 47. (b) Frame 53. (c) Frame 59. (d) Frame 65.

(f) Frame 77. (9) Frame 83. (h) Frame 89.

(i) Frame 95. (j) Frame 101. (k) Frame 1009. (I) Frame 112.

Figure 4-5 Image frames for the “drag and drop” action.

41

Chapter 5 System Applications

To confirm the feasibility of our algorithm, we design two human-computer interface
applications. One is the slide presentation system introduced in Section 5.1. We can use the
designed gestures to control the presentation slides intuitively. The other is a puzzle game
system, which is described in Section 5.2. These systems prove that our algorithm can reach
real-time performance and is easy to use. We also show some demo image frames in Section

5.1 and Section 5.2.

5.1 Presentation System

Nowadays, when people give a speech or make a presentation, they usually use slides.
Most people use Microsoft PowerPoint as the presentation tool, with the aid of keyboard, mouse
the laser pointer. However, in a large meeting room, we may not have the keyboard or the mouse
at hand. Hence, the laser pointer iswidely used. Even though the laser pointer is convenient to
use, it is not intuitive and its functionality is restricted. Consequently, we design a presentation

system that can be controlled by using some intuitive gestures.

Single-camera
Hand Gesture Recognition
for Human-Computer Interface

Student: Cheng-Ming Chiang
Advisor: Prof. Sheng-JyhWang

@ Department of Electronics Engineering, National Chiao Tung University, Taiwan, R.O.C.
!\'/m Tmage Processing and Computer Vision Lab

Figure 5-1 Interface of the presentation system.

42

Figure 5-1 shows the interface of our presentation system. We design some useful buttons
on the right side, such as “Page Up” and “Page Down”. Sometimes the number of the slides is
very large. If we want to show a specific page, it is very inconvenient for the original
presentation system during the presentation time. Hence, as shown in Figure 5-2, we add a

button “View all Slides”, which shows all the slides and we can easily choose the slide we want.

R
—
®

@®

ithm cking - R Features | Tracking - P ocation i
- i 2 o Scroll Down
@-

[
Determine the Presence of Hands orithm
& k]

Figure 5-2 “View all Slides” interface.

We also introduce some meaningful cursor icons in the system. The icons reflect the
current state of the hand gestures, just like interacting with the computer. There are four types
of icons. As shown in Figure 5-3(a) and Figure 5-3(b), the cursor icon changes into “Five” or
“Zero” as the gesture change. If the hand does not exist in the operation zone, the cursor changes
to the normal icon “Arrow”, as shown in Figure 5-3(c). When the user wants to control the
cursor again, he/she just points his/her hand toward the cursor. That is to say, he/she makes the
cursor, his/her hand and his/her eyes on a straight line. During the tracking process, if the hand
moves outside the operation zone, the system will remind the user by the icon “Forbidden”, as

shown in figure 5-3(d).

43

acognition for e~camer'a.°.,5
iter Interface a Recognition for
nputer Interface

(@) The icon “Five” (b) The icon “Zero”

tion for
-erface

(¢) The icon “Arrow” (d) The icon “Forbidden”

Figure 5-3 The interactive cursor icons.

The subsequent figures show some image frames for the specific actions in our demo video
which contains 1599 frames. Figure 5-4 shows how we control the cursor as a pointer to present
the slides. As described previously, we use the icon “Five” to represent the cursor when the

gesture is “Five”.

44

(c) Frame 282.

(f) Frame 312.

(g) Frame 322. (h) Frame332. (i) Frame 342.

Figure 5-4 The image frames-for controlling the cursor in our demo video.

Figure 5-5 shows some image frames in which we use our system to perform the “view all

slides” action.

(d) Frame 1104. (e) Frame 1109. (f) Frame 1114.

Figure 5-5 The image frames for the “view all slides” action in our demo video.

45

5.2 Puzzle Game System

In addition to the presentation system, we also develop a puzzle game system. The user
can use some intuitive gestures to play the game. The key idea of controlling the system is the
“drag and drop” action. This action is accomplished by the gestures defined in Section 3.6.1.
Changing the gesture from “Five” into “Zero” means choosing the item. The user can move
his/her hand with the gesture “Zero” to drag the item. Finally, he/she changes his/her gesture
from “Zero” into “Five” to drop the item. Figure 5-6 shows the interface of our puzzle game
system. The left region of the interface is the puzzle pieces. The user drags the pieces to the
right-top region to accomplish the puzzle game. The original image of the puzzle is shown on

the right-bottom side.

“%‘
i i

Figure 5-6 The interface of the puzzle game system.

Start

Restart Puzzle

Figure 5-7 shows some image frames in our demo video for the puzzle game system. The

figure shows the “drag and drop” action.

46

(a) Frame 37. (c) Frame 57.

E‘“EW«W
1 B
i E

(d) Frame 67.

(h) Frame 117.

i1
NiEE K

(k) Frame 147.

(m) Frame 157. (n) Frame 162. (0) Frame 167.

Figure 5-7 The image frames for the “drag and drop” action in our demo video.

47

Chapter 6 Conclusion

We propose a hand gesture recognition algorithm for a human-computer interface. We
define some useful gestures to control the system in an intuitive way. In our algorithm, we use
the tracking algorithm to track the position of the hand initially. We also use the Random Forest
method to train the detectors and the randomized pooling cells. With the help of the detectors,
we can determine the presence of the hand and refine the position predicted by the tracker. After
the position of the hand is determined, we use the classifier to recognize the gestures.

We use our proposed algorithm to develop two system applications. One is the slide
presentation system. The users can use a few intuitive gesture to control the slides during
presentation. They do not need a mouse to control the computer. The other system is a puzzle
game system, in which our system is_used to play the puzzle game.

In our system, we need only one RGB camera, which is low cost and can be installed easily.
Moreover, the system can reach real-time performance. The flexibility of the system is higher
than multi-touch systems. We can-easily add some useful gestures to control the human-

computer interface.

48

References

[1] P. H. Chen., “Hand Posture Recognition Technique for Large-scale Touch Panel,” M.S.
thesis, Dept. Electronic Engineering, National Chiao Tung University, Hsinchu, Taiwan,
2012.

[2] http://www.microsoft.com/office/perceptivepixel/products/default.aspx

[3] http://movie.douban.com/photos/photo/2011595591

[4] R.Y.Wang, J. Popovi, “Real-time hand-tracking with a color glove,” ACM SIGGRAPH
2009 papers, pp. 1-8, 2009.

[5] http://www.nintendo.com/wii

[6] C. Albitar, P. Graebling, and C. Doignon, "Robust Structured Light Coding for 3D
Reconstruction,” IEEE 11th International Conference on Computer Vision, pp. 1-6, 2007.

[7] http://www.primesense.com/solutions/technology/

[8] http://www.microsoft.com/en-us/kinectforwindows/

[9] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and
A. Blake, "Real-time human pose recognition.in parts from single depth images," IEEE
Conference on Computer Vision.and Pattern Recognition, pp. 1297-1304, 2011.

[10] https://www.leapmotion.com/product

[11] http://www.zhihu.com/question/20252985

[12] R. Hartley, and A. Zisserman, “Multiple view geometry in computer vision”, 2nd ed.,
Cambridge, UK ; New York: Cambridge University Press, 2003.

[13] L. Breiman, "Random Forests,” Machine Learning, vol. 45, pp. 5-32, 2001.

[14] J. Yangqing, H. Chang, and T. Darrell, "Beyond spatial pyramids: Receptive field learning
for pooled image features,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3370-3377, 2012.

[15] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection,” IEEE
Conference on Computer Vision and Pattern Recognition, pp. 886-893 vol. 1, 2005.

[16] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, pp. 91-110, 2004.

[17] S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories,” IEEE Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 2169-2178, 2006

[18] J. Yangqing, H. Chang, and T. Darrell, "Beyond spatial pyramids: Receptive field learning
for pooled image features,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3370-3377, 2012.

[19] M. Sanjeev Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal
Processing, vol. 50, pp. 174-188, 2002.

49

[20] M. S. M. Asaari and S. A. Suandi, "Hand gesture tracking system using Adaptive Kalman
Filter,” International Conference on Intelligent Systems Design and Applications, pp. 166-
171, 2010.

[21] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems”,
SPIE Proceedings of Signal Processing, Sensor Fusion, and Target Recognition VI, pp.
182-193, 1997.

[22] C. Shan, T. Tan, and Y. Wei, "Real-time hand tracking using a mean shift embedded
particle filter,” Pattern Recognition, vol. 40, pp. 1958-1970, 2007.

[23] S. Avidan, "Ensemble Tracking,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, pp. 261-271, 2007.

[24] Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-Learning-Detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, pp. 1409-1422, 2012.

[25] Y. Freund and R. E. Schapire, "A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting," Journal of Computer and System Sciences, vol. 55, pp.
119-139, 1997.

[26] Y. Cheng, "Mean shift, mode seeking, and clustering,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol.- 17, pp..790-799, 1995.

[27] Z. Kalal, K. Mikolajczyk, and.J. Matas, "Forward-Backward Error: Automatic Detection
of Tracking Failures,” International Conference on Pattern Recognition, pp. 2756-2759,
2010.

[28] J.-Y. Bouguet, "Pyramidal implementation of the Lucas Kanade feature tracker," Intel
Corporation, Microprocessor Research Labs, 2000.

[29] S. Jianbo and C. Tomasi, "Good features to track,” IEEE Conference on Computer Vision
and Pattern Recognition, pp. 593-600, 1994,.

[30] B. K. P. Horn and B. G. Schunck, "Determining Optical Flow," Massachusetts Institute
of Technology, 1980.

[31] P. Viola and M. Jones, "Robust real-time object detection,” International journal of
computer vision, vol. 4, 2001.

[32] http://opencv.org/about.html

50

