
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009 805

Model-Based Clustering by Probabilistic
Self-Organizing Maps

Shih-Sian Cheng, Hsin-Chia Fu, Member, IEEE, and Hsin-Min Wang, Senior Member, IEEE

Abstract—In this paper, we consider the learning process of a
probabilistic self-organizing map (PbSOM) as a model-based data
clustering procedure that preserves the topological relationships
between data clusters in a neural network. Based on this concept,
we develop a coupling-likelihood mixture model for the PbSOM
that extends the reference vectors in Kohonen’s self-organizing
map (SOM) to multivariate Gaussian distributions. We also derive
three expectation–maximization (EM)-type algorithms, called
the SOCEM, SOEM, and SODAEM algorithms, for learning
the model (PbSOM) based on the maximum-likelihood crite-
rion. SOCEM is derived by using the classification EM (CEM)
algorithm to maximize the classification likelihood; SOEM is
derived by using the EM algorithm to maximize the mixture like-
lihood; and SODAEM is a deterministic annealing (DA) variant
of SOCEM and SOEM. Moreover, by shrinking the neighbor-
hood size, SOCEM and SOEM can be interpreted, respectively,
as DA variants of the CEM and EM algorithms for Gaussian
model-based clustering. The experimental results show that the
proposed PbSOM learning algorithms achieve comparable data
clustering performance to that of the deterministic annealing EM
(DAEM) approach, while maintaining the topology-preserving
property.

Index Terms—Classification expectation–maximization (CEM)
algorithm, deterministic annealing expectation–maximization
(DAEM) algorithm, expectation–maximization (EM) algo-
rithm, model-based clustering, probabilistic self-organizing map
(PbSOM), self-organizing map (SOM).

I. INTRODUCTION

I N model-based clustering, data samples are grouped by
learning a mixture model (usually a Gaussian mixture

model) in which each mixture component represents a group or
cluster. There are two major learning methods for model-based
clustering: the mixture-likelihood approach, where the likeli-
hood of each data sample is a mixture of all the component
likelihoods of the data sample, and the classification-likelihood
approach, where the likelihood of each data sample is generated
by its winning component only [1]–[9]. In both approaches,
when the globally optimal estimation of the model parameters

Manuscript received November 01, 2007; revised November 30, 2008; ac-
cepted January 02, 2009. First published March 31, 2009; current version pub-
lished May 01, 2009. This work was supported in part by the National Science
Council of Taiwan under Grants NSC96-2628-E-001-024-MY3 and NSC96-
3113-H-001-012.

S.-S. Cheng is with the Department of Computer Science, National Chiao
Tung University, Hsinchu, Taiwan and also with the Institute of Information
Science, Academia Sinica, Taipei, Taiwan (e-mail: sscheng@iis.sinica.edu.tw).

H.-C. Fu is with the Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan (e-mail: hcfu@csie.nctu.edu.tw).

H.-M. Wang is with the Institute of Information Science, Academia Sinica,
Taipei, Taiwan (e-mail: whm@iis.sinica.edu.tw).

Digital Object Identifier 10.1109/TNN.2009.2013708

cannot be obtained analytically, iterative learning algorithms
that only guarantee obtaining locally optimal solutions are usu-
ally employed. The expectation–maximization (EM) algorithm
for mixture-likelihood learning [10], [11] and the classification
EM (CEM) algorithm for classification-likelihood learning
[8] are two such algorithms. However, a critical aspect of the
EM and CEM algorithms is that their learning performance is
very sensitive to the initial conditions of the model’s param-
eters. To address this issue, Ueda and Nakano [12] proposed
a deterministic annealing EM (DAEM) algorithm that tackles
the initialization issue via a deterministic annealing process,
which performs robust optimization based on an analogy to the
cooling of a system in statistical physics. Some heuristic-like
learning algorithms have also been proposed. For example, in
[13], the authors propose an algorithm that finds the appropriate
initial conditions for EM learning by using split and merge
operations. Another method, proposed in [14], overcomes the
initialization issue of EM by iteratively splitting the mixture
components using the Bayesian information criterion as the
splitting validity measure.

In addition to the initialization issue of the learning al-
gorithms, conventional model-based clustering suffers from
another limitation in that it cannot preserve the topological
relationships among clusters after the clustering procedure.
To overcome this shortcoming, the clustering task can be
performed by using Kohonen’s self-organizing map (SOM)
[15], [16], a well-known neural network model for data clus-
tering and visualization. After the clustering procedure, the
topological relationships among data clusters can be preserved
(or visualized) on the network, which is usually a 2-D lattice.
Kohonen’s sequential and batch SOM learning algorithms
have proved successful in many practical applications [15],
[16]. However, they also suffer from some shortcomings, such
as the lack of an objective (cost) function, a general proof of
convergence, and a probabilistic framework [17]. The following
are some related works that have addressed these issues. In
[18] and [19], the behavior of Kohonen’s sequential learning
algorithm was studied in terms of energy functions, based
on which, Cheng [20] proposed an energy function for SOM
whose parameters can be learned by a -means-type algo-
rithm. Luttrell [21], [22] proposed a noisy vector quantization
model called the topographic vector quantizer (TVQ), whose
training process coincides with the learning process of SOM.
The cost function of TVQ represents the topographic distortion
between the input data and the output code vectors in terms
of Euclidean distance. Graepel et al. [23], [24] derived a soft
topographic vector quantization (STVQ) algorithm by applying
a deterministic annealing process to the optimization of TVQ’s
cost function. Based on the topographic distortion concept,

1045-9227/$25.00 © 2009 IEEE

806 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Heskes [25] applied a different DA implementation from that of
STVQ, and obtained an algorithm identical to STVQ when the
quantization error is expressed in terms of Euclidean distance.
In [26], Chow and Wu proposed an online algorithm for STVQ;
later, motivated by STVQ, they proposed a data visualization
method that integrates SOM and multidimensional scaling [27].
Based on the Bayesian analysis of SOMs in [28], Anouar et
al. [29] proposed a probabilistic formalism for SOM, where
the parameters are learned by a -means-type algorithm.
To help users select the correct model complexity for SOM
by probabilistic assessment, Lampinen and Kostiainen [30]
developed a generative model in which the SOM is trained by
Kohonen’s algorithm. Meanwhile, Van Hulle [31] developed a
kernel-based topographic formation in which the parameters are
adjusted to maximize the joint entropy of the kernel outputs. He
subsequently developed a new algorithm with heteroscedastic
Gaussian mixtures that allows for a unified account of vector
quantization, log likelihood, and Kullback–Leibler divergence
[32]. Another probabilistic formulation is proposed in [33],
whereby a normalized neighborhood function of SOM is used
as the posterior distribution in the E-step of the EM algorithm
for a mixture model to enforce the self-organizing of the
mixture components. Sum et al. [34] interpreted Kohonen’s
sequential learning algorithm in terms of maximizing the local
correlations (coupling energies) between neurons and their
neighborhoods for the given input data. They then proposed an
energy function for SOM that reveals the correlations, and a
gradient-ascent learning algorithm for the energy function.

In Kohonen’s SOM architecture, neurons in the network as-
sociate with reference vectors in the data space. This contrasts
with a SOM whose neurons associate with reference models
that present probability distributions, such as the isotropic Gaus-
sians used in [33] and the heteroscedastic Gaussians used in
[29] and [32]. In this paper, we call the latter a probabilistic
SOM (PbSOM). Motivated by the coupling energy concept in
Sum et al.’s work [34], we develop a coupling-likelihood mix-
ture model for the PbSOM that uses multivariate Gaussian dis-
tributions as the reference models. In the proposed model, local
coupling energies between neurons and their neighborhoods are
expressed in terms of probabilistic likelihoods; and each mix-
ture component expresses the local coupling-likelihood between
one neuron and its neighborhood. Based on this model, we de-
velop CEM, EM, and DAEM algorithms for learning PbSOMs,
namely, the SOCEM, SOEM, and SODAEM algorithms, re-
spectively. Because they inherit the properties of the CEM and
EM algorithms, the proposed algorithms are characterized by re-
liable convergence, low cost per iteration, economy of storage,
and ease of programming. From our experiments on the or-
ganizing property, we observe that SOEM is less sensitive to
the initialization of the parameters than SOCEM when using a
small-fixed neighborhood, while SODAEM overcomes the ini-
tialization problem of SOCEM and SOEM through an annealing
process. Furthermore, we show that SOCEM and SOEM can be
interpreted, respectively, as deterministic annealing variants of
the CEM and EM algorithms for Gaussian model-based clus-
tering, where the neighborhood shrinking is interpreted as an
annealing process. We conducted experiments on data sets from
the University of California at Irvine (UCI) Machine Learning

Database Repository [35]. The experiment results show that the
proposed PbSOM learning algorithms achieve comparable data
clustering performance to the DAEM algorithm, while main-
taining the topology-preserving property.

The remainder of this paper is organized as follows. In
Section II, we review the EM, CEM, and DAEM algorithms
for model-based clustering. Then, the proposed coupling-likeli-
hood mixture model, and the SOCEM, SOEM, and SODAEM
algorithms are described in Section III. The experimental
results are detailed in Section IV. The differences and relations
between the proposed algorithms and other ones are discussed
in Section V. We then present our conclusions in Section VI.

II. THE EM, CEM, AND DAEM ALGORITHMS FOR

MODEL-BASED CLUSTERING

A. The Mixture-Likelihood Approach and EM Algorithm

In the mixture-likelihood approach for model-based
clustering, it is assumed that the given data set

is generated by a set of indepen-
dently and identically distributed (i.i.d.) random vectors from
a mixture model

(1)

where is the mixing weight of the mixture component
, subject to for ;

; and denotes the parameter set of .
The maximum-likelihood estimate of the parameter set of the

mixture model
can be obtained by maximizing the following log-likelihood
function:

(2)

This is usually achieved by using the EM algorithm [10], [11].
After learning the mixture model, we derive a partition of ,

, by assigning each to the mix-
ture component that has the largest posterior probability for ,
i.e., if .

1) The EM Algorithm for Mixture Models: If the maximum-
likelihood estimation of the parameters cannot be accomplished
analytically, the EM algorithm is normally used as an alternative
approach when the given data is incomplete or contains hidden
information.

In the case of the mixture model, suppose that denotes
the current estimate of the parameter set, and is the hidden
variable that indicates the mixture component from which the
observation is generated. The E-step of the EM algorithm then
computes the following so-called auxiliary function:

(3)

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 807

where

(4)

and

(5)

denotes the posterior probability of the th mixture component
for with the given . Then, in the following M-step, the

that satisfies

(6)

is chosen as the new estimate of the parameter set. By itera-
tively creating the auxiliary function in (3) and performing the
subsequent maximization step, the EM algorithm guarantees to
converge to a local maximum of the log-likelihood function in
(2).

When cannot be maximized analytically,
the M-step is modified to find some such that

. This type of algorithm,
called generalized EM (GEM), is also guaranteed to converge
to a local maximum [10], [11].

B. The Classification-Likelihood Approach
and CEM Algorithm

In the classification-likelihood approach for model-based
clustering [6]–[8], instead of maximizing the log-likelihood
function of the mixture model in (2), the objective is to find
the partition of and the model
parameters that maximize

(7)

or

(8)

The relation between and is

(9)
where denotes the number of samples in . If all the mix-
ture components are equally weighted, be-
comes a constant, such that and are equivalent.

1) The CEM Algorithm for Mixture Models: Celeux and
Govaert [8] proposed the classification EM (CEM) algorithm
for estimating the parameter set and partition . Like the
EM algorithm, the CEM algorithm is also an iterative learning
approach. In each iteration, CEM inserts a classification step
(C-step) between the E-step and M-step of the EM algorithm. In
the E-step, the posterior probability of each mixture component

is calculated for each data sample. In the C-step, to obtain
the partition of the data samples, each sample is assigned
to the mixture component that yields the largest posterior
probability for that sample. In the M-step, the maximization
process is applied to individually for .
For example, if a multivariate Gaussian is used as the mixture
component, the reestimated mean vector and covariance matrix
are the mean vector and the covariance matrix of the data
samples in , respectively, while the reestimated mixture
weight is . From a practical point of view, CEM is a

-means-type algorithm that represents the prototypes with
probability distributions [8].

C. The DAEM Algorithm

In the DAEM algorithm for learning a mixture model [12], the
objective is to minimize the following system energy function
during the annealing process:

(10)

where corresponds to the temperature that controls the an-
nealing process. The auxiliary function in this case is

(11)

where

(12)

is the posterior probability derived by using the maximum en-
tropy principle.

Ueda and Nakano [12] showed that can be itera-
tively minimized by iteratively minimizing . When
using DAEM to learn a mixture model, is initialized with a
small value (less than 1) such that the energy function itself is
simple enough to be optimized. Then, the value of is gradu-
ally increased to 1. During the learning process, the parameters
learned in the current learning phase are used as the initial pa-
rameters of the next phase.1 In the case of ,
and are the negatives of the log-likelihood function
in (2) and the -function in (3), respectively, thus, minimizing

is equivalent to maximizing the log-likelihood func-
tion.

According to [12], (10) can be rewritten as

(13)

where

(14)

1Each � value corresponds to a learning phase. The algorithm proceeds to the
next phase after it converges in the current phase.

808 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

and

(15)

is the entropy of the posterior distribution. When , the
rational function approximates to a zero-one func-
tion; thus, the entropy term In this case,
is equivalent to the negative of the objective function for CEM in
(8). Therefore, DAEM can be viewed as a DA variant of CEM.

III. THE EM-TYPE ALGORITHMS FOR LEARNING PBSOMS

A. Formulation of the Coupling-Likelihood Mixture Model

In this paper, we define a PbSOM as a SOM that consists of
neurons in a network with a neighbor-
hood function that defines the strength of lateral interaction
between two neurons and , for ; and
each neuron associates with a reference model that repre-
sents some probability distribution in the data space.

Sum et al. [34] interpreted Kohonen’s sequential SOM
learning algorithm in terms of maximizing the local corre-
lations (coupling energies) between the neurons and their
neighborhoods with the given input data. Given a data sample

, the local coupling energy be-
tween and its neighborhood is defined as

(16)

where denotes the response of neuron to , which
is modeled by an isotropic Gaussian density. Then, the coupling
energy over the network for is defined as

(17)

and the energy function to be maximized is

(18)

In (16), the term can be considered as the
neighborhood response of , where the conjunction between
the neuron responses is implemented using the summing
operation.

In this study, we express the neuron response as a
multivariate Gaussian distribution as follows:

(19)

for , and formulate the neighborhood response
of as

(20)

where the conjunction between the neuron responses in the
neighborhood of is implemented using the multiplicative
operation. Then, for a given , we define the local coupling
energy between and its neighborhood as the following
coupling likelihood:

(21)

where is the set of reference models, and denotes the given
neighborhood function.2 Then, we define the coupling likeli-
hood of over the network as the following (unnormalized)
mixture likelihood:

(22)

where for is fixed at . Note that,
theoretically, the mixture weights can be learned automatically.
When maximizing the local coupling likelihood
for each neuron , , the topological order
between neuron and its neighborhood for the given data
sample is learned in the learning process; therefore, we use
equal mixture weights in the mixture model to take account of
the topological order learning induced by the neurons faithfully
(with equal prior importance). In fact, this is important for
learning an ordered map. From our experimental analysis, if
the mixture weights are updated in the learning process, the
learning of topological order is frequently dominated by some
particular mixture components, which makes it difficult to ob-
tain an ordered map. For details, one can refer to the Appendix.

Comparing the network structure of the proposed coupling-
likelihood mixture model in (22) with that of the Gaussian mix-
ture model (GMM), as shown in Fig. 1, the proposed model
inserts a coupling-likelihood layer between the Gaussian-like-
lihood layer and the mixture-likelihood layer to take account
of the coupling between the neurons and their neighborhoods.
When the neighborhood size is reduced to zero (i.e.,),
the coupling-likelihood mixture model becomes a GMM with
equal mixture weights.

Note that other probability distributions are possible for
in the formulation of the coupling-likelihood mixture

model, although we use the multivariate Gaussian distribution
in this paper.

2From (21), it is obvious that, in our formulation, the coupling between � and
its neighboring neurons is considered jointly, whereas Sum et al.’s formulation
considers it in a pairwise manner, as shown in (16). Note that we use the term
“coupling likelihood” instead of “coupling energy” for two reasons: 1) (21) is a
coupling of Gaussian likelihoods; and 2) using “coupling-likelihood” can help
describe the link between our proposed approaches and model-based clustering.

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 809

Fig. 1. (a) Network structure of a Gaussian mixture model, and (b) the proposed
coupling-likelihood mixture model. Here, � �� � ��� � denotes the multivariate
Gaussian distribution described in (19).

B. The SOCEM Algorithm

The self-organizing process of PbSOM can be described as
a model-based data clustering procedure that preserves the spa-
tial relationships between the clusters in a network. Based on
the classification-likelihood criterion for data clustering [8], the
computation of the coupling likelihood of a data sample is re-
stricted to its winning neuron. Thus, the goal is to estimate the
partition of , , and the set of reference
models , so as to maximize the accumulated classification log
likelihood over all the data samples as follows:

(23)

As for is fixed at , the objective
function can be rewritten as

(24)
Similar to the derivation of the CEM algorithm for model-based
clustering in [8], the CEM algorithm for the proposed PbSOM,
i.e., the SOCEM algorithm, is derived as follows.

— E-step: Given the current reference model set , com-
pute the posterior probability of each mixture component
of for each as follows:

(25)

for , and .
— C-step: Assign each to the cluster whose corresponding

mixture component has the largest posterior probability for
, i.e., if .

— M-step: After the C-step, the partition of (i.e.,)
is formed, and the objective function defined in (24)
becomes

(26)

Similar to the derivation of the M-step of the EM algo-
rithm for learning a Gaussian mixture model [10], we can
obtain the reestimation formulas for the mean vectors and
covariance matrices by substituting (19) into (26), taking
the derivative of with respect to individual parameters,
and then setting it to zero. The reestimation formulas are
as follows:

(27)

(28)

for . When the neighborhood size is re-
duced to zero (i.e.,), SOCEM reduces to the

810 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

TABLE I
DAEM ALGORITHM FOR LEARNING GMMS WITH EQUAL MIXTURE WEIGHTS AND SOCEM ALGORITHM

CEM algorithm for learning GMMs with equal mixture
weights.

1) SOCEM—A DA Variant of CEM for GMM: Similar to Ko-
honen’s sequential or batch algorithm, the SOCEM algorithm
is applied in two stages. First, it is applied to a large neighbor-
hood to form an ordered map near the center of the data samples.
Then, the reference models are adapted to fit the distribution of
the data samples by gradually shrinking the neighborhood.

Without loss of generality, we suppose the neighborhood
function is the widely adopted (unnormalized) Gaussian kernel

(29)

where is the Euclidean distance between two neurons
and in the SOM network. Initially, SOCEM is applied with

a large value, which is reduced after the algorithm converges.
Then, we use the new value and the learned parameters as
the initial condition of the next learning phase. This process is
repeated until the value of is reduced to the predefined min-
imum value . The above shrinking of the neighborhood
(reduction of the value) can be interpreted as an annealing
process, where a large value corresponds to a high temper-
ature. Table I lists the learning rules of the DAEM algorithm
for learning GMMs with equal mixture weights [12] and the
SOCEM algorithm. To facilitate the interpretation, we rewrite
the objective function and reestimation formulae of SOCEM
in (24) and (27)-(28), respectively, with the new variable ,
which denotes the index of the winning neuron of . For sim-
plicity, we only list the reestimation formulas of the mean vec-
tors of the Gaussian components.

By analyzing these two algorithms carefully, one may view
as a kind of posterior probability of for in the

network domain. More precisely, is initially projected into
in the network domain; then, is applied to (29)

as an observation of the Gaussian kernel centered at to ob-
tain the value of . In both the DAEM and SOCEM algo-

rithms, when the temperature (or) is high, the posterior
distribution becomes almost uniform; hence, all the reference
models will be moved to locations near the center of the data
samples in this learning phase. By gradually reducing the tem-
perature, the influence of each becomes more localized, and
the reference models gradually spread out to fit the distribution
of the data samples. When the temperature approaches zero, the
probabilistic assignment strategy for the data samples becomes

the winners-take-all strategy, and the objective functions and
learning rules of DAEM and SOCEM are equivalent to those
of CEM. The major difference between DAEM and SOCEM
seems to be that the posterior distribution in SOCEM is con-
strained by the network topology, but DAEM does not have this
property.

To visualize the transition of the objective function, we
show a simulation on a simple one-dimension, two-component
Gaussian mixture problem in Fig. 2.3 The training data contains
200 observations drawn from

(30)

where the Gaussian means are , and the
Gaussian variances are .4 The PbSOM network
structure is a 1 2 lattice in . The two reference models are

and , where . The
objective function in (23) is calculated with different setups for

to form the log-likelihood surface. From Fig. 2, we ob-
serve that a larger for yields a simpler objective function
for optimization. The log-likelihood surface is symmetric along

because of the symmetric lattice structure and equal
weighting of the reference models. For the case of , the
log-likelihood value is close to the global maximum of the sur-
face when both and are close to the center of the data (2.39
in this case). With the reduction in the value of , the location of

for the global maximum moves toward and
.

2) Relation to Kohonen’s Batch Algorithm: There are two
differences between the SOCEM algorithm and Kohonen’s
batch algorithm. First, SOCEM considers the neighborhood
information when selecting the winning neuron, but Ko-
honen’s algorithm does not. Second, SOCEM extends the
reference vectors in Kohonen’s algorithm with multivariate
Gaussians. In other words, if we set in SOCEM to

, instead of the setting in (25),

3Visualization of how deterministic annealing EM/CEM works for function
optimization is illustrated in detail in [12].

4The data is generated using the function gmmsamp.m in Netlab software
from http://www.ncrg.aston.ac.uk/netlab/

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 811

Fig. 2. SOCEM’s objective function becomes more complex with the reduction of neighborhood size (� in �). (a) � � ���. (b) � � ���. (c) � � ���. (d)
� � � (i.e., � � �).

we obtain a probabilistic variant of Kohonen’s batch algorithm
(denoted as KohonenGaussian), where Kohonen’s winner se-
lection strategy is applied and the reference vectors are replaced
with multivariate Gaussians. Thus, we may view Kohonen-
Gaussian as an approximate implementation of SOCEM that
optimizes SOCEM’s objective function. Moreover, if we set
the covariance matrices in KohonenGaussian to be diagonal
with small, identical variances, KohonenGaussian is equivalent
to Kohonen’s batch algorithm. Therefore, we can interpret
the neighborhood shrinking of Kohonen’s algorithms as a
deterministic annealing process, and thereby explain why they
need to start with a large neighborhood size.

Recently, Zhong and Ghosh [3] interpreted the neighborhood
size of the SOM algorithms that apply Kohonen’s winner selec-
tion strategy as a temperature parameter in a deterministic an-
nealing process. However, their interpretations were not based
on the optimization of an objective function, which is the essen-
tial part of DA-based optimization. In contrast, in SOCEM, the
neighborhood shrinking leads to the transition of the objective
function from a simpler one to a more complex one, as illus-
trated in Fig. 2.

3) Computational Cost: It is clear from Table I that the com-
putational cost of DAEM is , where , , and are
the numbers of reference models, data samples, and learning

iterations, respectively. Compared to DAEM, SOCEM needs
additional multiplication and addition operations for
winner selection in each iteration, while KohonenGaussian
needs additional multiplications and additions.

C. The SOEM Algorithm

As is obvious from (23), in the formulation of the objective
function of the SOCEM algorithm, only the local coupling like-
lihoods associated with the winning neurons are considered. Al-
ternatively, we can compute the coupling likelihood of using
the mixture likelihood defined in (22) and apply the EM algo-
rithm to maximize the objective log-likelihood function

(31)

The steps of the EM algorithm for the proposed PbSOM, i.e.,
the SOEM algorithm, are as follows.

— E-step: With the mixture model in (22), we form the aux-
iliary function as

(32)

812 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

where is the same as (25). Since
, (32) can be rewritten as

(33)
As for is fixed at , by substi-
tuting (21) into (33), the auxiliary function can be rewritten
as

(34)

— M-step: By replacing the response in (34) with
the multivariate Gaussian density in (19) and setting the
derivative of with respect to individual mean vectors
and covariance matrices to zero, we obtain the following
reestimation formulas:

(35)

(36)

for . When the neighborhood size is re-
duced to zero (i.e.,), SOEM reduces to the EM
algorithm for learning GMMs with equal mixture weights.

There are two major differences between the SOCEM and
SOEM algorithms. First, they learn maps based on the classifi-
cation-likelihood criterion and the mixture-likelihood criterion,
respectively. Second, SOEM adapts the reference models in a
more global way than SOCEM. To explain this perspective, we
can consider the learning of SOCEM and SOEM in the sense of
sequential learning. As illustrated in Fig. 3, in the SOCEM algo-
rithm [cf., (27) and (28)], each data sample only contributes
to the adaptation of the winning reference model and its neigh-
borhood (i.e., only contributes to the learning of the topolog-
ical order between the winning reference model and its neigh-
borhood). However, in the SOEM algorithm [cf.. (35) and (36)],
each data sample contributes proportionally to the adaptation
of each reference model and its neighborhood according to the
posterior probabilities for .

1) SOEM—A DA Variant of EM for GMM: As with the
SOCEM algorithm, we can apply SOEM to a large neighbor-
hood and obtain different map configurations by gradually
reducing the neighborhood size. The term in (35)

Fig. 3. For each data sample � , the adaptation of the reference models in
SOCEM is restricted to the winning reference model and its neighborhood.
However, in SOEM, the winner is relaxed to the weighted winners by the pos-
terior probabilities � , for � � �� �� � � � � �. Each data sample � contributes
proportionally to the adaptation of each reference model and its neighborhood
according to the posterior probabilities. (a) SOCEM. (b) SOEM.

and (36) can be considered as a kind of posterior probability
of the reference model for , which is also

constrained by the neighborhood function. With a large value
in [see (29)], for , will be
nearly a uniform distribution due to the small variation in the
values of for , and the small variation in the
values of for , for each case of . Hence, all
the reference models will be moved to locations near the center
of the data samples. When the neighborhood size is reduced
to zero (i.e.,), the SOEM algorithm becomes the
EM algorithm for learning GMMs with equal mixture weights.
As with the annealing interpretation of SOCEM, SOEM can
be viewed as a topology-constrained deterministic annealing
variant of the EM algorithm for learning GMMs with equal
mixture weights.5

2) Computational Cost: Comparing (34)–(36) to (26)–(28),
we can see that, in each learning iteration, SOEM and SOCEM
have a similar computational cost in the E-step, but the former
needs additional multiplication and addition operations
for updating the model parameters in the M-step.

5SOEM yielded a similar result on the one-dimension, two-component
Gaussian mixture problem in Fig. 2; however, we do not present it here to avoid
redundancy.

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 813

D. The SODAEM Algorithm

Similar to the derivation of the DAEM algorithm for learning
GMMs [12], we developed a DAEM algorithm for the proposed
PbSOM, called the SODAEM algorithm. With the mixture like-
lihood defined in (22), DAEM first derives the posterior den-
sity in the E-step using the principle of maximum entropy. Fol-
lowing the derivation of the posterior probability in [12] with
the current model’s parameter set , we obtain the posterior
probability of the th mixture component for as follows:

(37)

Then, the auxiliary function to be minimized is

(38)

and the reestimation formulas for the mean vectors and covari-
ance matrices are

(39)

(40)

for .
Note that the reestimation formulas for SODAEM are the

same as those for SOEM, except that is replaced by .
corresponds to the temperature that controls the annealing

process, in which a high temperature is applied initially. Then,
the system is cooled down by gradually reducing the temper-
ature. When , the SODAEM algorithm becomes the
SOEM algorithm; however, when , it is equivalent
to the SOCEM algorithm. In other words, SODAEM can be
viewed as a deterministic annealing variant of SOEM and
SOCEM.

By considering certain cases and approximations of SO-
DAEM, SOEM, and SOCEM, we summarize the family
of EM-based approaches for Gaussian model-based clus-
tering discussed in this section in Fig. 4. Both EM under the
mixture-likelihood criterion and CEM under the classifica-
tion-likelihood criterion are widely used model-based data
clustering methods. SOEM (SOCEM) can be applied instead
of EM (CEM) in model-based clustering if we want to preserve
the spatial relationships between the resulting data clusters
on a network. Since SODAEM is a DA variant of SOEM and

Fig. 4. Family of Gaussian model-based clustering algorithms derived from
the SODAEM, SOEM, and SOCEM algorithms. � � � if � � �; otherwise,
� � �.

SOCEM, it can be applied in model-based data clustering under
both mixture-likelihood and classification-likelihood criteria.

1) Computational Cost: Comparing (39)-(40) to (35)-(36),
we can see that SODAEM and SOEM have similar computa-
tional costs in each learning iteration.

IV. EXPERIMENTAL RESULTS

A. Experiments on the Organizing Property

Data Set Description: We conducted experiments on two
types of data: a synthetic data set and a real-world data set. The
synthetic data set consisted of 500 points uniformly distributed
in a unit square. For the real-world data set, we used the training
set of class “0” in the “Pen-Based Recognition of Handwritten
Digits” database (denoted as PenRecDigits_C0) in the UCI Ma-
chine Learning Database Repository [35]. The data set con-
sists of 802 16-dimensional vectors. To demonstrate the map-
learning process, we used the first two dimensions of the fea-
ture vectors as data for simulations. As a preprocessing step, we
scaled down each element of the vectors in PenRecDigits_C0 to
1/100 of its original value to avoid numerical traps.

Experimental Setup: In the experiments, an 8 8 equally
spaced square lattice in a unit square was used as the structure
of the SOM network. For the neighborhood function, we used
the Gaussian kernel in (29).

We evaluated SOCEM, SOEM, SODAEM, and Kohonen-
Gaussian (Kohonen’s batch algorithm that uses Gaussian ref-
erence models) in 20 independent random initialization trials
and two setups for in . For each trial, data samples were
randomly selected from the data set as the initial mean vec-
tors, , of the reference models, which were mul-
tivariate Gaussians with full covariance matrices. The initial co-
variance matrix was set as , where

, for . To avoid the singularity problem,
we applied the variance limiting step to the covariance matrices
during the learning process. If the value of any element of the
covariance matrix was less than 0.001, it was set at 0.001.

814 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Fig. 5. Map-learning process obtained by running the SOCEM algorithm on the synthetic data. (a) and (b) Simulation 1: When SOCEM is run with the random
initialization in (a) and � � ����, it converges to the unordered map in (b). (a) and (c)-(f) Simulation 2: SOCEM starts with � � ��� and the random initialization
in (a). Then, the value of � is reduced to 0.15 in 0.15 decrements. (a) Random initialization. (b) � � ���� with random initialization. (c) � � ��� with random
initialization. (d) � � ����. (e) � � ���. (f) � � ����.

1) Results Using the Synthetic Data: We first demonstrate
the map-learning processes of SOCEM, SOEM, and SODAEM
using one of the 20 random initializations by showing the con-
figurations of the Gaussian means on the maps, and then sum-
marize the overall results of all the initializations.

Simulations Using SOCEM: Fig. 5 shows two simulations
using the SOCEM algorithm. In the first simulation, SOCEM is
run with the random initialization in Fig. 5(a) and a fixed of
0.15 in . As shown in Fig. 5(b), the algorithm’s learning con-
verges to an unordered map. In the second simulation, SOCEM
starts with the same random initialization as that in Fig. 5(a),
but with a larger of 0.6. When it converges at the current
value, is reduced by 0.15. Then, the algorithm is applied again
with the new value and the reference models obtained in the
previous phase. This process continues until SOCEM converges
at . Fig. 5(c)–(f) depicts the maps obtained when

and , respectively. We can explain the
second simulation in terms of annealing (cf., Section III-B1).
When using SOCEM, we start with a larger value (a higher
temperature) so that the objective function is simple enough to
be optimized. Then, we obtain the target map configuration by
gradually reducing the value of (the temperature). Though the
reduction in produces a more complex objective function for
optimization, SOCEM can still learn well because the reference
models obtained at the larger value provide a sound initializa-
tion for the next learning phase at the smaller value.

Simulations Using SOEM: We conducted two similar sim-
ulations using the SOEM algorithm. In the first simulation,
SOEM was run with the random initialization in Fig. 6(a) [the
same as that in Fig. 5(a)] and a fixed of 0.15. As shown in
Fig. 6(b), the learning of SOEM converged to an unordered

map. In the second simulation, SOEM started with the random
initialization in Fig. 6(a) and a larger of 0.6. Then, the
value of was gradually reduced to 0.15 in 0.15 decrements.
Fig. 6(c)–(f) depicts the maps obtained when SOEM con-
verges at and , respectively. Similar to
SOCEM, we can interpret the reduction of in SOEM as an
annealing process (cf., Section III-C1), which overcomes the
initialization issue. Comparing Fig. 6(c)-(d) to Fig. 5(c)-(d), we
observe that the map obtained by SOEM is more concentrated
than that obtained by SOCEM for the same value. This may
be because SOEM learns the map in a more global manner than
SOCEM, as noted in Section III-C. In other words, each data
sample contributes to all the neurons in a more global manner
in SOEM than in SOCEM.

Simulations Using SODAEM: Fig. 7 depicts the simulations
using the SODAEM algorithm with the same random initial-
ization as that in Figs. 5(a) and 6(a). The value of is also
fixed at 0.15, and the initial value of is set to 0.16. When SO-
DAEM converges at a value, it is applied again with

and the reference models obtained in the previous phase.
We stop the learning process at . In our experi-
ence, it is appropriate to set the maximum value of within
the range 10–20 for practical applications. When ,
the temperature is high enough to ensure a smooth objective
function. Therefore, according to the parameter update rules of
SODAEM, the reference models form a compact ordered map
via lateral interactions near the center of the data samples, even
though the neighborhood size is small (in this case).
When and , SODAEM is almost equivalent
to SOEM and SOCEM, respectively. In these two cases, SO-
DAEM converges to the ordered maps in Fig. 7(f) and (i), re-

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 815

Fig. 6. Map-learning process obtained by running the SOEM algorithm on the synthetic data. (a) and (b) Simulation 1: When SOEM is run with the random
initialization in (a) and � � ����, it converges to the unordered map in (b). (a) and (c)-(f) Simulation 2: SOEM starts with � � ��� and the random initialization
in (a). Then, the value of � is reduced to 0.15 in 0.15 decrements. (a) Random initialization. (b) � � ���� with random initialization. (c) � � ��� with random
initialization. (d) � � ����. (e) � � ���. (f) � � ����.

TABLE II
RESULTS OF SIMULATIONS USING KOHONENGAUSSIAN, SOCEM, SOEM,
AND SODAEM IN 20 INDEPENDENT RANDOM INITIALIZATION TRIALS ON

THE SYNTHETIC DATA. THE ALGORITHMS WERE RUN WITH TWO SETUPS

FOR � IN � . WHEN � � ����, KOHONENGAUSSIAN SUCCEEDED IN

CONVERGING TO AN ORDERED MAP IN ONE RANDOM INITIALIZATION

CASE (S:1), BUT FAILED IN THE REMAINING CASES (F:19)

spectively. However, as shown in Figs. 5(a)-(b) and 6(a)-(b),
SOCEM and SOEM do not converge to an ordered map when

, which demonstrates that the annealing process of
SODAEM overcomes the initialization problem of SOCEM and
SOEM when . Note that SODAEM may not be able to
obtain any ordered map during the annealing process if the value
of is too small to form an ordered map at a small value.

Discussion: The experiment results obtained by the three
proposed algorithms and KohonenGaussian for the 20 random
initializations are summarized in Table II. Several conclusions
can be drawn from the results. First, SOEM often converges to
an ordered map even at a small, fixed value (in
the experiments), but KohonenGaussian and SOCEM seldom
do so. This may be because SOEM learns the map in a more
global way, as noted in Section III-C; hence, it is less sensitive

to the initialization of the parameters when is small. The re-
sults for KohonenGaussian and SOCEM are similar. This may
be because they only differ in the winner selection strategy.
Second, the initialization issue of KohonenGaussian, SOCEM,
and SOEM can be overcome by using a larger value (0.6
in the experiments) initially, and then gradually reducing the
value to the target value (0.15 in the experiments). The re-
duction of can be interpreted as an annealing process (cf.,
Sections III-B1, III-B2, and III-C1). Third, the experiment re-
sults show that SODAEM overcomes the initialization issue of
SOCEM and SOEM at a small value (0.15 in the experiments)
using the annealing process, which is controlled by the temper-
ature parameter .

2) Results Using PenRecDigits_C0: We also conducted
experiments on real-world data using the setups for the
neighborhood function described in Section IV-A1. Table III
summarizes the results obtained by the four PbSOM learning
algorithms. From the results, we can draw the same conclusions
as those made for the experiment results on the synthetic data.
Figs. 8–10 demonstrate, respectively, the map-learning pro-
cesses of SOCEM, SOEM, and SODAEM using one of the 20
random initializations. Comparing Figs. 8–10, we observe that
these three algorithms obtain rather different results. SOCEM
and SOEM usually obtain different maps because they learn the
maps based on different clustering criteria (classification like-
lihood versus mixture likelihood). SODAEM and SOEM (or
SOCEM) usually obtain different results because SODAEM’s
annealing is achieved by increasing the value, while SOEM’s
(or SOCEM’s) annealing is achieved by decreasing the value.
Comparing Figs. 9(f) and 10(f), although SODAEM becomes
equivalent to SOEM when the value of is increased to 1.04,

816 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Fig. 7. Map-learning process obtained by running the SODAEM algorithm on the synthetic data. The value of � is fixed at 0.15, while value of � is initialized
at 0.16 and increased in multiples of 1.6 up to 17.592. (a) Random initialization. (b) � � ����� � � ����. (c) � � ����� � � �����. (d) � � ����� � � �����.
(e) � � ����� � � �����. (f) � � ����� � � ����. (g) � � ����� � � ���	. (h) � � ����� � � ��	
�. (i) � � ����� � � �
����.

their search paths on the objective function surface are different
because they have rather different seed models [Fig. 10(e)
versus Fig. 9(e)]. Therefore, they converge to different local
maxima of the objective function and obtain different maps.
Likewise, although SODAEM becomes equivalent to SOCEM
when the value of is increased to 17.592, they converge to
different local maxima of the objective function and obtain
different maps [Fig. 10(i) versus Fig. 8(f)].

B. Experiments to Evaluate the Performance of Data
Clustering and Visualization

Data Set Description: In this section, we evaluate the per-
formance of data clustering and visualization of the proposed
algorithms on two data sets from the UCI Machine Learning
Database Repository [35]: the test set of the “image segmen-
tation” database (denoted as ImgSeg), which consists of 2100
19-dimensional feature vectors, and the Ecoli data set (denoted
as Ecoli), which consists of 336 8-dimensional feature vectors.
Here, we used the full vector, rather than only two dimensions,
in the experiments. As a preprocessing step, we scaled down

each element of the data vectors in ImgSeg to 1/100 of its orig-
inal value to avoid numerical traps.

Experimental Setup: To avoid the singularity problem that
often occurs when using CEM or EM to learn full covariance
GMMs, we used diagonal covariance Gaussians in the experi-
ments. We also applied the variance limiting step, in which the
minimum value for a variance was set at 0.01.

For the PbSOM learning algorithms, we used five configu-
rations for the network structure; they are 3 3, 4 4, 5 5,
6 6, and 7 7 lattices equally spaced in a unit square. We used
the Gaussian kernel in (29) as the neighborhood function.

To avoid ambiguity, when the DAEM and SODAEM
algorithms are applied in data clustering based on the clas-
sification-likelihood criterion, they are denoted as DAEM_C
and SODAEM_C; and they are denoted as DAEM_M and
SODAEM_M when applied in data clustering based on the
mixture-likelihood criterion.

All the algorithms discussed here were run with random
initializations generated in the same way described in
Section IV-A.

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 817

Fig. 8. Map-learning process obtained by running the SOCEM algorithm on PenRecDigits_C0. (a) and (b) Simulation 1: When SOCEM is run with the random
initialization in (a) and � � ����, it converges to the unordered map in (b). (a) and (c)-(f) Simulation 2: SOCEM starts with � � ��� and the random initialization
in (a). Then, the value of � is reduced to 0.15 in 0.15 decrements. (a) Random initialization. (b) � � ���� with random initialization. (c) � � ��� with random
initialization. (d) � � ����. (e) � � ���. (f) � � ����.

Fig. 9. Map-learning process obtained by running the SOEM algorithm on PenRecDigits_C0. (a) and (b) Simulation 1: When SOEM is run with the random
initialization in (a) and � � ����, it converges to the unordered map in (b). (a) and (c)-(f) Simulation 2: SOEM starts with � � ��� and the random initialization
in (a). Then, the value of � is reduced to 0.15 in 0.15 decrements. (a) Random initialization. (b) � � ���� with random initialization. (c) � � ��� with random
initialization. (d) � � ����. (e) � � ���. (f) � � ����.

1) Experiments on ImgSeg by Using SOCEM and SO-
DAEM_C: First, we evaluated the data clustering performance
of KohonenGaussian, SOCEM, and SODAEM_C in terms of
the classification log likelihood defined in (7). The performance

was compared with that of CEM and DAEM_C. The setting for
each algorithm was as follows.

• DAEM_C: The value of was set at 0.2 initially, and in-
creased to 10 by the formula .

818 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Fig. 10. Map-learning process obtained by running the SODAEM algorithm on PenRecDigits_C0. The value of � is fixed at 0.15, while value of � is initialized
at 0.16 and increased in multiples of 1.6 up to 17.592. (a) Random initialization. (b) � � ����� � � ����. (c) � � ����� � � �����. (d) � � ����� � � �����.
(e) � � ����� � � �����. (f) � � ����� � � ����. (g) � � ����� � � ���	. (h) � � ����� � � ��	
�. (i) � � ����� � � �
����.

• SOCEM: The value of in was set at 0.7 initially, and
reduced to 0 (i.e.,) in 0.02 decrements.

• SODAEM_C: Both the values of and in were set
at 0.2 initially. To perform data clustering using the classi-
fication-likelihood criterion, the value of was increased
to 10 by the formula first; then, the value
of was reduced to 0 in 0.02 decrements.

• KohonenGaussian: The value of in was set at 0.7
initially, and reduced to 0 in 0.02 decrements every 30
learning iterations.6

We ran the algorithms except CEM with 20 independent trials
using 9, 16, 25, 36, and 49 Gaussian components. To conduct
a fair comparison of CEM and the proposed approaches, we
ran CEM many trials until the accumulated execution time was
close to that of one SOCEM trial. The mean and standard de-
viations (error bars) of the classification log-likelihood values
over the trials for each algorithm and the best results of CEM
(denoted as CEM-best) are shown in Fig. 11. Note that, in the
figure, we slightly separate the results associated with a specific
Gaussian component number in order to distinguish between

6In our implementation for SOCEM, SOEM, and SODAEM, the phase tran-
sition occurs when the likelihood increase is below a threshold or the number
of learning iterations exceeds 30 in the current phase. However, KohonenGaus-
sian does not have the convergence property; thus, we ran 30 iterations for each
phase of the algorithm.

Fig. 11. Data clustering performance of CEM, DAEM_C, SOCEM, SO-
DAEM_C, and KohonenGaussian on ImgSeg in terms of the classification log
likelihood.

them. From the figure, we observe that the clustering perfor-
mance of SOCEM, SODAEM_C, and KohonenGaussian is
close to that of DAEM_C. Moreover, they obtain larger and

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 819

Fig. 12. Data visualization for ImgSeg by running KohonenGaussian (b), SOCEM (c) and (d), and SODAEM_C (e) and (f) with the random initialization in (a).
The network structure is a 7� 7 equally spaced square lattice in a unit square. (a) Random initialization. (b) KohonenGaussian �� � ��. (c) SOCEM �� � �����.
(d) SOCEM �� � ��. (e) SODAEM_C �� � ��� � � �����. (f) SODAEM_C �� � ��� � � ��.

more stable classification log likelihoods than CEM. These
results are rational since SOCEM is a topology-constrained DA
variant of the CEM algorithm, and SODAEM_C is an annealing
variant of SOCEM with the settings for and here.

Next, we evaluated the data visualization ability of Koho-
nenGaussian, SOCEM, and SODAEM_C. To visualize the data
clusters on the network, each data sample was assigned to its
winning reference model, and then randomly plotted within

the neuron that associates to the reference model [36]. Here,
the winner selection strategy for SODAEM_C was the same
as that of SOCEM (i.e., the C-step of SOCEM). Fig. 12 shows
the projections of the data samples on 7 7 lattices obtained
by different algorithms. The ImgSeg data set comprises seven
classes, namely, brickface: B, sky: S, foliage: F, cement: C,
window: W, path: P, and grass: G; each class consists of 300
data samples. Fig. 12(a) depicts the initial mapping of the data

820 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

TABLE III
RESULTS OF SIMULATIONS USING KOHONENGAUSSIAN, SOCEM, SOEM,
AND SODAEM IN 20 INDEPENDENT RANDOM INITIALIZATION TRIALS ON

PENRECDIGITS_C0. THE ALGORITHMS WERE RUN WITH TWO SETUPS FOR �

IN � . WHEN � � ����, KOHONENGAUSSIAN SUCCEEDED IN CONVERGING

TO AN ORDERED MAP IN ONE RANDOM INITIALIZATION CASE (S:1), BUT

FAILED IN THE REMAINING CASES (F:19)

Fig. 13. Learning a Gaussian mixture model by applying EM, DAEM_M,
SOEM, and SODAEM_M to ImgSeg.

obtained with a random initialization for the reference models.
As we can see from the figure, the data clusters are randomly
projected to the neurons (lattice nodes) and the network does
not preserve the topological (spatial) relationships among the
clusters. Fig. 12(b)–(f) shows the results of the three PbSOM
learning algorithms obtained with the random initialization in
Fig. 12(a). We see that they can preserve the topological rela-
tionships among the data clusters on the network. Moreover, it
seems that the data samples of classes “S,” “G,” “P,” and “C”
are more distinguishable and well grouped on the network than
those of the other classes. In particular, from Fig. 12(b)–(d),
we see that only class “S” is separated from the other classes
with empty nodes; thus, we may infer that the separability
between “S” and the other classes is higher than that between
the remaining classes.

For SOCEM, as shown in Fig. 12(c) and (d), the network con-
tains less empty nodes at than at . This may
be because in the former case the lateral interactions have van-
ished, and thus the reference models are adapted to better fit the
data distribution than the latter case. Comparing Fig. 12(b) to
Fig. 12(d), we see that the data projection results of Kohonen-
Gaussian and SOCEM are rather different although they obtain

similar classification log likelihoods in Fig. 11. However, we can
draw similar observations from the two figures. For example,
the data samples of class “S” are more close to those of class
“C” and “P” than those of class “G.” Fig. 12(e) and (f) shows
the results obtained by SODAEM_C. We see that the result in
Fig. 12(f) is rather different from that in Fig. 12(d) although SO-
DAEM_C has become equivalent to SOCEM when .
This may be because these two approaches search on the ob-
jective function surface along different paths and converge to
different local maxima, as the explanation for the difference of
Figs. 9(f) and 10(f) shows in Section IV-A2.

2) Experiments on ImgSeg by Using SOEM and SO-
DAEM_M: First, we evaluated the performance of SOEM
and SODAEM_M in learning a Gaussian mixture model with
equal mixture weights. The objective function was the log
mixture-likelihood function in (2) with equal mixture weights.
We compared the performance with that of EM and DAEM_M.
The setting for each algorithm was as follows.

• DAEM_M: The value of was set at 0.2 initially, and in-
creased to 1 by the formula .

• SOEM: The value of in was set at 0.6 initially, and
reduced to 0 (i.e.,) in 0.02 decrements.

• SODAEM_M: Both the values of and in were set at
0.2 initially. To perform data clustering using the mixture-
likelihood criterion, the value of was increased to 1 by
the formula first; then, the value of was
reduced to 0 in 0.02 decrements.

We ran DAEM_M, SOEM, and SODAEM_M with 20 inde-
pendent random initialization trials. Similar to the experiments
on CEM, we ran EM many trials until the accumulated exe-
cution time was close to that of one SOEM trial. The mean
and standard deviations (error bars) of the log mixture-likeli-
hood values over the trials for each algorithm and the best re-
sults of EM (denoted as EM-best) are shown in Fig. 13. From
the figure, it is clear that DAEM_M, SOEM, and SODAEM_M
achieve similar performance. Moreover, they obtain larger and
more stable log mixture-likelihoods than EM. The results are
rational since SOEM is a topology-constrained DA variant of
the EM algorithm, and SODAEM_M is an annealing variant of
SOEM with the settings for and here.

Next, we evaluated the data visualization ability of SOEM
and SODAEM_M. We ran these two algorithms with a 7 7 lat-
tice and the initial reference models used in Section IV-B1 for
evaluating SOCEM; therefore, the initial projection of the data
was the same as that shown in Fig. 12(a). When clustering the
data samples, each sample was assigned to its winning reference
model using SOCEM’s winner selection strategy. From Fig. 14,
we observe that these two algorithms can preserve topological
relationships among data clusters (samples). Similar to the re-
sults revealed by Fig. 12, data samples of classes “S,” “G,” “P,”
and “C” are more distinguishable than those of the other classes.

Comparing Fig. 14(b) to Fig. 12(b) and (d), it is clear that
SOEM produces less empty nodes than KohonenGaussian and
SOCEM when the value of is reduced to zero. It may be ex-
plained as follows. For KohonenGaussian and SOCEM, in the
case of , they become the CEM (-means-type) algo-
rithm where each data sample only adapts its winner. However,
when , SOEM becomes the EM algorithm where each

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 821

Fig. 14. Data visualization for ImgSeg by running SOEM (a) and (b) and SODAEM_M (c) and (d) with the random initialization in Fig. 12(a). The network struc-
ture is a 7� 7 equally spaced square lattice in a unit square. (a) SOEM �� � �����. (b) SOEM �� � ��. (c) SODAEM_M �� � �� � � �����. (d) SODAEM_M
�� � �� � � ��.

data sample adapts all the reference models according to their
posterior probabilities; thus, the models are more adapted to fit
the data than the models of the other two algorithms.

3) Experiments on Ecoli: We conducted experiments on
Ecoli using the algorithms applied to ImgSeg in Sections IV-B1
and IV-B2. Fig. 15(a) and (b) shows the data clustering per-
formance of each algorithm in terms of the classification log
likelihood and the log mixture likelihood, respectively. Similar
to the results on ImgSeg, the PbSOM learning algorithms also
achieve decent data clustering performance on Ecoli.

In Fig. 16, for each algorithm, we show the result at the
value that the class separability can be best visualized on the
network. The Ecoli data set comprises eight classes, namely,
cp: C, im: I, pp: P, imU: U, om: O, omL: M, imL: L, and imS:
S. The numbers of data samples are 143, 77, 52, 35, 20, 5, 2,
and 2, respectively. From the figure, we can see that topological
relationships among data clusters are preserved well and data
classes can be roughly separated on the network.

V. RELATION TO OTHER ALGORITHMS

In this section, we explore the differences and relations be-
tween the proposed algorithms and other related algorithms.

A. For SOCEM

In [37], Ambroise and Govaert proposed a topology pre-
serving EM (TPEM) algorithm that introduces topological
constraints in the CEM algorithm. If Kohonen’s winner se-
lection strategy is applied, SOCEM is equivalent to TPEM
whose mixture weights are equally fixed. In SOCEM, the co-
variance matrix of a Gaussian component can have different
parameterizations for different geometric interpretations [1].
When for (where is a small positive
constant and denotes the identity matrix), the clusters are
spherical and of equal volume. In this case, the SOCEM algo-
rithm is equivalent to the TVQ algorithm in [22], which was
developed for noisy vector quantization. It is also equivalent
to the batch SOM learning algorithm described in [20], which
employs an energy function in the learning phase of a SOM.
However, SOCEM was developed from a different perspec-
tive. We consider the learning of a PbSOM as a model-based
clustering process. By this perspective, a coupling-likelihood
mixture model is developed first, and an objective function is
then formulated based on the classification-likelihood criterion.
Moreover, the connection between the coupling-likelihood
mixture model and the Gaussian mixture model helps interpret

822 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Fig. 15. Data clustering performance on Ecoli in terms of (a) the classification log likelihood and (b) the log mixture likelihood.

SOCEM as a topology-constrained DA variant of the CEM
algorithm for GMM.

B. For SOEM and SODAEM

In SODAEM, when for , SODAEM
is equivalent to the STVQ algorithm [23], which learns the pa-
rameters by maximizing their density function predicted by the
maximum entropy principle. In STVQ, the inverse temperature

is the Lagrange multiplier introduced for the constrained op-
timization induced by the maximum entropy principle. Heskes
[25] extends TVQ’s cost function to an expected quantization
error. Then, an objective function is obtained by weighting the
quantization error with the inverse temperature and pulsing it
to an entropy term that introduces the annealing process. With
the resulting objective function, Heskes obtained an algorithm
identical to STVQ. The implementations for deterministic an-
nealing in STVQ and Heskes’ algorithm can also be found in
[38] and [39], where the DA is applied for vector quantization.

SODAEM differs from Graepel et al.’s STVQ and Heskes’
algorithm in the following ways. First, the deterministic an-
nealing processes are implemented differently. SODAEM is a
DAEM algorithm developed to learn the mixture models with
a deterministic annealing process, which is implemented based
on predicting the posterior distribution in the E-step using the
maximum entropy principle. Second, the case of was
not well addressed in Graepel et al.’s and Heskes’ papers. This
may be because their original goal was to develop a DA learning
for TVQ. When is fixed at 1, however, SODAEM becomes
the SOEM algorithm. Moreover, the connection between the
proposed coupling-likelihood mixture model and the Gaussian
mixture model helps interpret SOEM as a topology-constrained
DA variant of the EM algorithm for GMM.

VI. CONCLUSION

Considering the learning of a PbSOM as a model-based clus-
tering process, we develop a coupling-likelihood mixture model

for PbSOM, and derive three EM-type learning algorithms,
namely, the SOCEM, SOEM, and SODAEM algorithms,
for learning the model (PbSOM). The proposed algorithms
improve Kohonen’s learning algorithms by including a cost
function, an EM-based convergence property, and a proba-
bilistic framework.

In addition, the proposed algorithms provide some insights
into the choice of neighborhood size that would ensure topo-
graphic ordering. From the experiment results, we observe that
the learning performance of SOCEM is very sensitive to the
initial setting of the reference models when the neighborhood
is small. Conversely, it is not sensitive to the initial condition
when the neighborhood is sufficiently large. To deal with the
initialization problem, we first run SOCEM with a large neigh-
borhood, and then gradually reduce the neighborhood size until
the learning converges to the desired map. When using a small
neighborhood, SOEM is less sensitive to the initialization than
SOCEM. However, to learn an ordered map, SOEM still needs
to start with a large neighborhood. In both SOCEM and SOEM,
the neighborhood shrinking can be interpreted as an annealing
process that overcomes the initialization issue. Alternatively, we
can apply SODAEM, which is a deterministic annealing variant
of SOCEM and SOEM, to learn a map. In our experiments,
SODAEM overcomes the initialization issue of SOCEM and
SOEM via the annealing process controlled by the temperature
parameter. Moreover, through the comparison of SOCEM and
Kohonen’s batch algorithm, we can also apply the DA interpre-
tation of neighborhood shrinking to Kohonen’s algorithms to
explain why they need to start with a large neighborhood size.

We have also shown that the SOCEM and SOEM algorithms
can be interpreted, respectively, as topology-constrained de-
terministic annealing variants of the CEM and EM algorithms
for Gaussian model-based clustering. The experimental results
show that our proposed PbSOM learning algorithms achieve
an effective data clustering performance, while maintaining the
topology-preserving property.

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 823

Fig. 16. Data visualization for Ecoli by running (b) KohonenGaussian, (c) SOCEM, (d) SOEM, (e) SODAEM_C, and (f) SODAEM_M with the random ini-
tialization in (a). The network structure is a 7� 7 equally spaced square lattice in a unit square. (a) Random initialization. (b) KohonenGaussian �� � �����.
(c) SOCEM �� � �����. (d) SOEM �� � �����. (e) SODAEM_C �� � ��� � � ����. (f) SODAEM_M �� � �� � � ����.

APPENDIX

Theoretically, the mixture weights of the coupling-likelihood
mixture model in (22) can be learned automatically. Following
the derivations of the SOCEM, SOEM, and SODAEM algo-
rithms in Sections III-B–III-D, the learning rules for the mixture
weights are derived as follows.

• Posterior distribution:

— for SOCEM and SOEM

(41)

824 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Fig. 17. Map-learning process obtained by running the SOCEM algorithm on the synthetic data with an ordered initialization in (a). (a)–(e) Simulation 1: The
mixture weights are initialized at 1/16, and updated in the learning process; the algorithm starts with the initialization in (a) and converges to the unordered map
in (e). (a) and (f) Simulation 2: SOCEM is performed with equal mixture weights throughout the learning process; the algorithm starts with the initialization in (a)
and converges to the map in (f). The network structure is a 4� 4 square lattice; the value of � is set at 0.4. (a) Initialization. (b) Weights are updated, ���� � �.
(c) Weights are updated, ���� � ��. (d) Weights are updated, ���� � �	. (e) Weights are updated, ���� � �
. (f) Fixed equal weights.

TABLE IV
THE MIXTURE WEIGHTS LEARNED BY SOCEM WITH THE INITIALIZATION IN FIG. 17(A). THE MIXTURE WEIGHTS ARE INITIALIZED AT 1/16

— for SODAEM

(42)

• Reestimation formulas:
— for SOCEM

(43)

— for SOEM

(44)

— for SODAEM

(45)

The mean vectors and covariance matrices in SOCEM,
SOEM, and SODAEM algorithms are updated using (27)-(28),
(35)-(36), and (39)-(40), respectively, where and are
computed by (41) and (42), respectively.

However, in our experience, if the mixture weights are
learned in the three algorithms, the learning of topological
order is frequently dominated by some particular mixture
components, which makes it difficult to obtain an ordered
map. As an example, we applied SOCEM to the synthetic
data set, which consisted of 500 points uniformly distributed
in a unit square. The network structure was a 4 4 equally
spaced square lattice in a unit square. All the mixture weights

CHENG et al.: MODEL-BASED CLUSTERING BY PROBABILISTIC SELF-ORGANIZING MAPS 825

were set at 1/16 initially. The value of in the neighborhood
function [i.e., (29)] was set at 0.4. The results are shown in
Fig. 17(a)–(e). From the figures, we observe that the map
shrinks to near a line after the algorithm converges (with 18
iterations). This phenomenon can be verified by inspecting
the values of mixture weights during the learning process. As
shown in Table IV, after the algorithm converges, most of the
mixture weights become zero and the learning only maximizes
the local coupling likelihoods of neurons 4 and 13, whose
mixture weights are 0.504 and 0.496, respectively. In contrast,
as shown in Fig. 17(f), if the mixture weights are equally fixed
at 1/16 throughout the learning process, SOCEM converges to
an ordered map. For SOEM and SODAEM, we obtained the
similar results.

REFERENCES

[1] C. Fraley and A. E. Raftery, “How many clusters? Which clustering
method? Answers via model-based cluster analysis,” Comput. J., vol.
41, pp. 578–588, 1998.

[2] C. Fraley and A. E. Raftery, “Model-based clustering, discriminant
analysis, and density estimation,” J. Amer. Statist. Assoc., vol. 97, no.
458, pp. 611–631, 2002.

[3] S. Zhong and J. Ghosh, “A unified framework for model-based clus-
tering,” J. Mach. Learn. Res., vol. 4, no. 6, pp. 1001–1037, 2003.

[4] C. Fraley and A. E. Raftery, “Bayesian regularization for normal mix-
ture estimation and model-based clustering,” J. Classification, vol. 24,
no. 2, pp. 155–181, 2007.

[5] M. S. Oh and A. E. Raftery, “Model-based clustering with dissimilari-
ties: A Bayesian approach,” J. Comput. Graph. Statist., vol. 16, no. 3,
pp. 559–585, 2007.

[6] M. J. Symons, “Clustering criteria and multivariate normal mixture,”
Biometrics, vol. 37, pp. 35–43, 1981.

[7] S. Ganesalingam, “Classification and mixture approach to clustering
via maximum likelihood,” Appl. Statist., vol. 38, no. 3, pp. 455–466,
1989.

[8] G. Celeux and G. Govaert, “A classification EM algorithm for clus-
tering and two stochastic versions,” Comput. Statist. Data Anal., vol.
14, no. 3, pp. 315–332, 1992.

[9] J. D. Banfield and A. E. Raftery, “Model-based Gaussian and non-
Gaussian clustering,” Biometrics, vol. 49, no. 3, pp. 803–821, 1993.

[10] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its applica-
tion to parameter estimation for Gaussian mixture and hidden Markov
models,” Int. Comput. Sci. Inst., Berkeley, CA, Tech. Rep. TR-97-021,
1998.

[11] G. J. McLachlan and T. Krishnan, The EM Algorithm and Exten-
sions. New York: Wiley, 1997.

[12] N. Ueda and R. Nakano, “Deterministic annealing EM algorithm,”
Neural Netw., vol. 11, no. 2, pp. 271–282, 1998.

[13] N. Ueda, R. Nakano, Z. Ghahramani, and G. Hinton, “SMEM al-
gorithm for mixture models,” Neural Comput., vol. 12, no. 9, pp.
2109–2128, 2000.

[14] S. S. Cheng, H. M. Wang, and H. C. Fu, “A model-selection-based
self-splitting Gaussian mixture learning with application to speaker
identification,” EURASIP J. Appl. Signal Process., vol. 2004, no. 17,
pp. 2626–2639, 2004.

[15] T. Kohonen, Self-Organizing Maps. New York: Springer-Verlag,
2001.

[16] T. Kohonen, “The self-organizing maps,” Neurocomputing, vol. 21, pp.
1–6, 1998.

[17] C. Bishop, M. Svensén, and C. Williams, “The generative topographic
mapping,” Neural Comput., vol. 10, no. 1, pp. 215–234, 1998.

[18] V. V. Tolat, “An analysis of Kohonen’s self-organizing maps using a
system of energy functions,” Biol. Cybern., vol. 64, no. 2, pp. 155–164,
1990.

[19] E. Erwin, K. Obermayer, and K. Schulten, “Self-organizing maps: Or-
dering, convergence properties and energy functions,” Biol. Cybern.,
vol. 67, no. 1, pp. 47–55, 1992.

[20] Y. Cheng, “Convergence and ordering of Kohonen’s batch map,”
Neural Comput., vol. 9, no. 8, pp. 1667–1676, 1997.

[21] S. P. Luttrell, “Self-organization: A derivation from fist principles of
a class of learning algorithm,” in Proc. IEEE Int. Joint Conf. Neural
Netw., 1989, pp. II-495–II-498.

[22] S. P. Luttrell, “Code vector density in topographic mappings: Scalar
case,” IEEE Trans. Neural Netw., vol. 2, no. 4, pp. 427–436, Jul. 1991.

[23] T. Graepel, M. Burger, and K. Obermayer, “Phase transitions in
stochastic self-organization maps,” Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 56, no. 4, pp. 3876–3890, 1997.

[24] T. Graepel, M. Burger, and K. Obermayer, “Self-organizing maps:
Generalizations and new optimization techniques,” Neurocomputing,
vol. 21, pp. 173–190, 1998.

[25] T. Heskes, “Self-organizing maps, vector quantization, and mixture
modeling,” IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1299–1305,
Nov. 2001.

[26] T. W. S. Chow and S. Wu, “An online cellular probabilistic self-or-
ganizing map for static and dynamical data sets,” IEEE Trans. Circuit
Syst. I, Reg. Papers, vol. 51, no. 4, pp. 732–747, Apr. 2004.

[27] S. Wu and T. W. S. Chow, “PRSOM: A new visualization method by
hybridizing multidimensional scaling and self-organizing map,” IEEE
Trans. Neural Netw., vol. 16, no. 6, pp. 1362–1380, Nov. 2005.

[28] S. P. Luttrell, “A Bayesian analysis of self-organizing maps,” Neural
Comput., vol. 6, no. 5, pp. 767–794, 1994.

[29] F. Anouar, F. Badran, and S. Thiria, “Probabilistic self-organizing
map and radial basis function networks,” Neurocomputing, vol. 20,
pp. 93–96, 1998.

[30] J. Lampinen and T. Kostiainen, “Generative probability density model
in the self-organizing map,” in Self-Organizing Neural Networks: Re-
cent Advances and Applications, U. Seiffert and L. Jain, Eds. Berlin,
Germany: Physica Verlag, 2002, pp. 75–94.

[31] M. M. Van Hulle, “Joint entropy maximization in kernel-based topo-
graphic maps,” Neural Comput., vol. 14, no. 8, pp. 1887–1906, 2002.

[32] M. M. Van Hulle, “Maximum likelihood topographic map formation,”
Neural Comput., vol. 17, no. 3, pp. 503–513, 2005.

[33] J. J. Verbeek, N. Vlassis, and B. J. A. Kröse, “Self-organizing mixture
models,” Neurocomputing, vol. 63, pp. 99–123, 2005.

[34] J. Sum, C. S. Leung, L. W. Chan, and L. Xu, “Yet another algorithm
which can generate topography map,” IEEE Trans. Neural Netw., vol.
8, no. 5, pp. 1204–1207, Sep. 1997.

[35] Univ. California Irvine, UCI Machine Learning Repository, Irvine, CA
[Online]. Available: http://archive.ics.uci.edu/ml/

[36] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. New York: Springer-Verlag, 2001.

[37] C. Ambroise and G. Govaert, “Constrained clustering and Kohonen
self-organizing maps,” J. Classification, vol. 13, no. 2, pp. 299–313,
1996.

[38] K. Rose, E. Gurewitz, and G. C. Fox, “Vector quantization by determin-
istic annealing,” IEEE Trans. Inf. Theory, vol. 38, no. 4, pp. 1249–1257,
Jul. 1992.

[39] K. Rose, “Deterministic annealing for clustering, compression, classi-
fication, regression, and related optimization problems,” Proc. IEEE,
vol. 86, no. 11, pp. 2210–2239, Nov. 1998.

Shih-Sian Cheng received the B.S. degree in
mathematics from National Kaohsiung Normal
University, Kaohsiung, Taiwan, in 1999 and the M.S.
degree in computer science from National Chiao
Tung University, Hsinchu, Taiwan, in 2002. He is
currently working towards the Ph.D. degree at the
Department of Computer Science, National Chiao
Tung University.

In 2002, he joined the Spoken Language Group,
Chinese Information Processing Laboratory, In-
stitute of Information Science, Academia Sinica,

Taipei, Taiwan, as a Research Assistant. His research interests include machine
learning, pattern recognition, speech processing, and neural networks.

826 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Hsin-Chia Fu (S’79–M’80) received the B.S.
degree in electrical and communication engineering
from National Chiao Tung University, Hsinchu,
Taiwan, in 1972 and the M.S. and Ph.D. degrees
in electrical and computer engineering from New
Mexico State University, Las Cruces, in 1975 and
1981, respectively.

From 1981 to 1983, he was a Member of the
Technical Staff at Bell Laboratories. Since 1983,
he has been on the faculty of the Department of
Computer Science and Information Engineering,

National Chiao Tung University. Since 2003, he has also been the Taiwan
representative of TEI Consortium. Form 1987 to 1988, he served as the Director
of the Department of Information Management, Research Development and
Evaluation Commission, Executive Yuan, Taiwan. From 1988 to 1989, he
was a Visiting Scholar at Princeton University, Princeton, NJ. From 1989 to
1991, he served as the Chairman of the Department of Computer Science
and Information Engineering. From September to December 1994, he was a
Visiting Scientist at Fraunhofer Institute for Production Systems and Design
Technology (IPK), Berlin, Germany. He has authored more than 100 technical
papers, and two textbooks PC/XT BIOS Analysis (Taipei, Taiwan: Sun-Kung
Book, 1986) and Introduction to Neural Networks (Taipei, Taiwan: Third
Wave, 1991). His research interests include digital signal/image processing,
multimedia information processing, and neural networks.

Dr. Fu was the corecipient of the 1992 and 1993 Long-Term Best Thesis
Award with Koun Tem Sun and Cheng Chin Chiang, and the recipient of the
1996 Xerox OA paper Award. He has served as a founding member, Program
Co-Chair (1993), and General Co-Chair (1995) of the International Symposium
on Artificial Neural Networks. He has been the Technical Committee on Neural
Networks for Signal Processing of the IEEE Signal Processing Society from
1997 to 2000. He is a member of the IEEE Signal Processing and Computer So-
cieties, Phi Tau Phi, and the Eta Kappa Nu Electrical Engineering Honor Society.

Hsin-Min Wang (S’92–M’95–SM’04) received the
B.S. and Ph.D. degrees in electrical engineering from
National Taiwan University, Taipei, Taiwan, in 1989
and 1995, respectively.

In October 1995, he joined the Institute of Infor-
mation Science, Academia Sinica, Taipei, Taiwan, as
a Postdoctoral Fellow. He was promoted to Assistant
Research Fellow and then Associate Research Fellow
in 1996 and 2002, respectively. He was an Adjunct
Associate Professor at the National Taipei University
of Technology and the National Chengchi University.

His major research interests include speech processing, natural language pro-
cessing, spoken dialogue processing, multimedia information retrieval, and pat-
tern recognition.

Dr. Wang was a board member and chair of academic council of The
Association for Computational Linguistics and Chinese Language Processing
(ACLCLP). He currently serves as secretary-general of ACLCLP and as an
editorial board member of International Journal of Computational Linguistics
and Chinese Language Processing. He was a recipient of the Chinese Institute
of Engineers (CIE) Technical Paper Award in 1995. He is a life member of
ACLCLP and Institute of Information and Computing Machinery (IICM) and
a member of International Speech Communication Association (ISCA).

