
760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 5, MAY 2009

A Low-Power and Bandwidth-Efficient Motion Estimation IP Core
Design Using Binary Search

Shih-Hao Wang, Shih-Hsin Tai, and Tihao Chiang, Senior Member, IEEE

Abstract— A new architecture design for motion estimation
using binary matching criterion is proposed to achieve low
power and bus bandwidth efficiency. Low power and high bus
bandwidth efficiency are the two key issues for portable video
applications. To address such issues, we first study an efficient
algorithm called all binary motion estimation (ABME), and
analyze its architecture issues in operational flow and bus access.
Then, we propose an architecture for ABME with four new
features: 1) macroblock level pre-processing; 2) efficient binary
pyramid search structure; 3) parallel processing of 8 × 88 × 88 × 8 and
16 × 1616 × 1616 × 16 block searches; 4) parallel processing of bi-directional
search. Such architecture leads to a superior performance in bus
access, speed, and power. Our experiments show that the power
consumption is as low as 763μμμW for IPPPP CIF 30 frames/s and
896μμμW for IPBPB CIF 30 frames/s. The bus bandwidth savings
are 54.3%%% for P-frame search and 67.1%%% for B-frame search.

Index Terms— Bandwidth efficient, low power, motion estima-
tion (ME), MPEG-4.

I. INTRODUCTION

MOTION ESTIMATION (ME) is the most computa-
tionally expensive module in multimedia compression

standards such as MPEG-1/2/4 and H.26x. For portable video
applications, low power and efficient bus access are two major
design goals.

As compared to the prior low power ME designs [1]–[4],
binary search [5], [6] has both advantages of low computa-
tional complexity and low bus bandwidth requirement. The
reason is it reduces the pixel representation from eight bits to
one bit for pattern matching. Such a search strategy can also
be viewed as a kind of feature matching with binary images.
Therefore, we develop our low-power and bandwidth-efficient
ME design based on a binary pyramid search algorithm called
all binary motion estimation (ABME) [7].

ABME [7] is a low-complexity and bandwidth-efficient
algorithm, but not well optimized for VLSI implementation.
The hardware design challenges are in 1) image preprocessing
to form the binary image, 2) low power and bus bandwidth
efficient architecture for binary pyramid search, and 3) support
of bi-directional (or called B-frame) and 8×8 block searches.
These design issues are addressed with three new features.
First, a macroblock (MB) level preprocessing flow is proposed

Manuscript received November 6, 2006; revised August 26, 2007. First
version published March 16, 2009; current version published June 10, 2009.
This work was supported by the National Science Council under Grant NSC
95-2221-E-009 -074 -MY3. This paper was recommended by Associate Editor
M. Comer.

The authors are with the Department of Electronics Engineer-
ing, National Chiao Tung University, 30010, Hsinchu, Taiwan (e-mail:
shwang.ee90g@nctu.edu.tw; tchiang@mail.nctu.edu.tw).

Digital Object Identifier 10.1109/TCSVT.2009.2017416

to replace the original frame level for the removal of the
repeated bus access. Second, the data flow in the three layers
of binary pyramid search structure is optimized for the data
dependency removal and the efficient operations in the second
layer of search. Finally, we address the design issues in
B-frame search scheme and optimize the hardware architecture
to enhance the processing throughput.

The contributions of this paper include the following.

1) Modified ABME algorithm for efficient VLSI imple-
mentation. We modify the ABME in the binary image
generation and search method for efficient VLSI imple-
mentation. The power consumption for CIF 30 frames/s
encoding only needs less than 1 mW.

2) MB level pipelining architecture for efficient bus ac-
cess. The new processing flow integrates both binary
image generation and binary motion search using MB
level pipelining to avoid repeated bus access. The bus
bandwidth saving achieved can be up to 67.1%.

3) Parallel B-frame search architecture. It reuses the same
current search data to save on-chip memory access and
power. Thanks to the simple binary image matching, the
gate counts have increased twice but not as much as the
conventional 8-bit designs.

The remainder of this paper is organized as follows.
Section II depicts the algorithm, and its hardware architecture
is proposed in Section III. In Section IV, experiments show
the improved performance in power consumption and bus
bandwidth loading. Section V gives the conclusions.

II. ALGORITHM

A. Review of ABME

ABME algorithm is composed of two major components:
1) frame level of pre-processing; 2) three layers of binary
pyramid search. They are described as below.

1) Frame Level of Preprocessing: The frame level of pre-
processing is used to generate binary images for the current
frame. The original image IM×N is downsampled by two
twice to be I(M/2)×(N/2) and I(M/4)×(N/4). These original and
downsampled images are then binarized to be three binary
images ĨM×N (referred to as LV3), Ĩ(M/2)×(N/2), (referred to
as LV2), and Ĩ(M/4)×(N/4) (referred to as LV1) for search.

The binarization process contains two steps: filtering and
comparator. The filtering operation adopts a 3 × 3 two-
dimensional filter HA as shown in (1). The comparator
constructs the three layers of binary pyramid data as shown

1051-8215/$25.00 © 2008 IEEE

WANG et al.: A LOW-POWER AND BANDWIDTH-EFFICIENT MOTION ESTIMATION IP CORE DESIGN USING BINARY SEARCH 761

Frame
Pre-processng

Check 6
candidates

Best candidate
with minimal distortion

LV3

Best candidate
with minimal distortion

Macroblock
Pre-processng

LV1 search
± (SR/4-1)

LV3± 2
search 8x8 & 16x16

± 2 Search

Block 8x8
± 2 search

4 MV 8x8

MV 16x16 4 MV 8x8

± 1 search

± 1 search for 4
candidates

LV1 search
± (SR/4-1)

(b)(a)

MV 16x16

LV2

Fig. 1. Processing procedure of ABME algorithm: (a) original flow in [7];
(b) modified ABME flow.

in (2)

HA = 1

4
·
⎡
⎣ 0 1 0

1 0 1
0 1 0

⎤
⎦ (1)

ĨM×N (x, y) =
{

1 if HA(IM×N (x, y)) ≥ IM×N (x, y))
0 otherwise.

(2)

2) Three Layers of Binary Pyramid Search: The ABME
processing flow as shown in Fig. 1(a) adopts a three-layer
binary pyramid search structure. The first layer and third
layer implement a small range of full search. The second
layer performs the multiple candidates check first followed by
another ±1 full search based on the selected candidate. The
matching criterion is simplified from sum absolute difference
(SAD) to sum of difference (SOD) as in (3) with equal results
due to the binary data format

SO D =
L−1∑
y=0

L−1∑
x=0

∣∣ ĨC (x, y) ⊕ ĨR(x + x0, y + y0)
∣∣ (3)

where the symbol IC is the current frame, the symbol IR is
the reference frame, the symbol ⊕ denotes the XOR operation,
and L is 16 for LV3, 8 for LV2, and 4 for LV1.

B. Modified ABME Algorithm

Although ABME [7] is a low-complexity and bandwidth-
efficient algorithm, it is not well optimized for hardware
implementation. The modified ABME algorithm addresses
its design issues as below. Fig. 1(b) shows the processing
procedure of modified ABME algorithm. The first modification
is to replace the original frame preprocessing with macroblock
level preprocessing. The second modification is to simplify
the LV2 search flow of ABME. The third modification is to
support parallel processing of 8 × 8 and 16 × 16 LV3 block
search.

(a)

(b)

30x30

18x18

16x16 LV3
Binary pattern

14x14 6x6

9x9 6x6

6x610x10

4x4 LV1
Binary pattern

8x8 LV2
Binary pattern

Binarization

Binarization

Fig. 2. Preprocessing flow in macroblock preprocessing unit. (a) K = 30
(b) K = 18 (The shaded area is padding pixels).

TABLE I

COMPARISON OF DIFFERENT K VALUES FOR MACROBLOCK-BASED

PREPROCESSING UNIT

Block size (K × K) 16 × 16 18 × 18 20 × 20 30 × 30
Required data (bits) 256 324 400 900
PSNR loss (dB) −0.50 −0.14 −0.10 −0.00

1) Macroblock Preprocessing Unit (MBPPU): The MBPPU
removes the repeated bus access. As opposed to frame-level
implementation of the preprocessing module, the MBPPU is
integrated with the binary search module to generate MB-
level binary search block for the current frame. The three
layers of binary search blocks are then stored back to external
memory as reference picture for the next frame. To integrate
the preprocessing module with the MB-level pipelining, a
straightforward approach is to implement at macroblock level
as shown in Fig. 2(a). This approach needs to transmit 30×30
image data to generate the 4×4 LV1 binary block due to HA,
a 3 × 3 down-sampling filter. An alternative approach is to
replace the 30 × 30 image data with smaller K × K image
data and pad the missing image pixels. The value of K has
no effect on the search range because such a simplification
is applied for the current search block. Fig. 2(b) shows an
example for K = 18. We pad the boundary pixels to fill the
missing pixels at LV2 and LV1 to generate three layers of
binary search blocks. We experiment with various K values,
and Table I shows the PSNR results. From this Table, K = 18
is selected, as it has a PSNR loss around 0.1dB which is a
tolerable penalty in quality.

2) Efficient LV2 Search: The modified LV2 search is to
remove the redundant on-chip memory access in the LV2 flow
of the original ABME algorithm. In Fig. 1(a), the original LV2
flow is a software-efficient flow that checks six candidates
sequentially and then performs ±1 search from the best
candidate with minimal distortion. Repeated on-chip memory
access happens for the first candidate if the first candidate
is selected for ±1 search finally. The modified LV2 flow
is efficient for hardware as shown in Fig. 1(b). It reduces
the number of checked candidates to avoid longer processing
cycles. It also removes the conditional check of the candidates

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 5, MAY 2009

I/O Bus

Bus IFMBPPU

AG address

CTRL

VG

MV cost

output
selector

C1 C2 C3 S01

SOD1 SOD2

Comparator

Backward MV Forward MV

S02 S03 S11 S12 S13

Fig. 3. System architecture for the modified ABME.

to improve parallelism and avoid repeated on-chip memory
access for the selected candidate.

3) Parallel Processing of 8×8 and 16×16 Block Searches:
In our MPEG-4 software [8], ±2 of 8 × 8 block search
is performed after 16 × 16 search is completed at integer
pixel resolution. To support 8 × 8 block search, the memory
bandwidth will be increased by 17%1 while it is beneficial for
area with complex motion. To balance the tradeoff between
quality and bus bandwidth, a modified search method is used.
To minimize bus access, we restrict the 8 × 8 block search to
start at the same search center as the 16 × 16 LV3 search so
that the search range is still within [−16,+15]. It enhances
parallelism, and only suffers PSNR loss of at most 0.1dB.

III. HARDWARE ARCHITECTURE

Fig. 3 shows the system architecture of the proposed design
that implements the modified ABME algorithm with the
parallel hardware support for B-frame search as described in
Section II. For B-frame search, two sets of hardware are used
to enable forward and backward search in parallel. The 8-bit
data of current search block is passed to the preprocessing
module (MBPPU) to generate three layers of binary search
blocks. The three layers of binary data are stored in the
on-chip memories C1–C3. The binary data of forward
and backward reference frames are stored in two on-chip
memories S01–S03 and S11–S13, respectively. The memory
blocks of C1, S01, and S11 are for LV1. The memory blocks
of C2, S02, and S12 are for LV2. The memory blocks of C3,
S03, and S13 are for LV3.

For each layer of block search, the address generator (AG)
controls the access of C0–C3, S01–S03, and S11–S13 to
provide the necessary reference and target block data to the
shared SOD processing units for block matching (SOD1 for
forward and SOD2 for backward). The shared processing
units first decide which layer of binary data to be used for
calculation according to the control signal from controller
(CTRL). Then, it computes the SOD between the selected
current and reference search blocks. The matching results

1(18 · 2 + 16)2/(16 · 2 + 16)2 = 117%.

TABLE II

COMPARISON FOR SERIAL AND PARALLEL ARCHITECTURE

Architecture Serial Parallel

8-bit 1-bit 8-bit 1-bit

Memory
size

(8 · M) M 2 · (8 · M) 2 · M

Memory
bandwidth

8 · (B1 +
B2)

(B1 + B2) 8 · (B1 +2 ·
B2)

(B1 + 2 ·
B2)

Running
cycles

2 · C 2 · C C C

Hardware
cost

8 · Q Q 8 · (2 · Q) 2 · Q

are sent to the comparator for final motion vector selection
considering motion vector cost input from the motion vector
generator module (VG).

For the forward-only P-frame search, the parallel architec-
ture leaves half the hardware idle. Such an issue is addressed
with a parallel P-frame search scheme. In the parallel P-
frame search mode, the forward search data from S01–S03
are mirrored to S11–S13. The original forward search path
through SOD1 module handles search for the odd positions,
while the backward search path through SOD2 module handles
search for the even positions. The AG/CTRL/VG/Comparator
modules will send appropriate addresses and signals for each
path. Thus, both paths are busy with half execution cycles.

Compared to the serial architecture, which processes for-
ward and backward search sequentially, this parallel architec-
ture enjoys five major advantages.

1) Less on-chip memory access: Parallel architecture reuses
the current block search data, removes redundant on-
chip memory access, and thus saves power. This is
particularly important for the pyramid search structure
since the current block data are changed for each layer
of search.

2) Higher overall hardware utilization: In addition to full
hardware utilization for ME, all the other modules in the
pipeline enjoy higher utilization. Typically ME module
takes the longest execution cycles as compared to other
modules such as transform or motion compensation
(MC), so it can become the design critical path in the
overall system. The execution cycles are doubled for
B-frame search, which leads to more idle cycles for
the other modules such as entropy coding or transform.
Thus, parallel architecture can not only halve the ME
execution cycles but also reduce the idling of other
modules. Compared to serial architecture, our parallel
architecture decreases execution cycles for both P-frame
search and B-frame search.

3) Lower working frequency: Lower working frequency is a
key factor leading to a low-power design. Similar to the
previous item, the B-frame ME search is typically the
slowest module. In that case, it is the dominant factor
to decide the system frequency. The parallel B-frame
architecture, as opposed to serial architecture, improves
the worst case scenario leading to the lowest system
frequency. Combined with the voltage scaling technique,
parallel architecture can achieve further power reduction.

WANG et al.: A LOW-POWER AND BANDWIDTH-EFFICIENT MOTION ESTIMATION IP CORE DESIGN USING BINARY SEARCH 763

4) Less penalty in hardware cost: It is less expensive to use
parallel architecture for the binary search. If the system
were to use full pixel (8-bit) for matching, parallel
architecture suffers from more increase of hardware.
Although the increase in percentage is the same, the
binary search algorithm has smaller increase of hardware
cost.

5) Flexibility for joint optimization of B-frame search: Joint
optimization of B-frame search is a widely used encod-
ing technique that jointly considers cost and distortion
based on the forward and backward search results to
provide better motion vectors. For a serial architecture,
it needs to finish the forward and backward searches
first. Then, the joint optimization can start. Parallel
architecture can save cycles and the memory for storing
first-pass results.

Table II summarizes the difference between the serial archi-
tecture and our parallel architecture. From this table, it shows
the binary parallel search architecture has great advantages
in memory size, memory bandwidth, running cycles, and
hardware cost.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Rate-Distortion (R-D) Performance Evaluation

Table III shows the R-D performance comparison for full
search (FS), prior ABME work [6] (ABME1), and modified
ABME (ABME2). Five commonly used MPEG test sequences
are tested with group of pictures (GOP) structures of IPPPP
and IPBPB. The search range is [−16,+15]. From this table,
the PSNR loss for the modified ABME algorithm is up to
0.45 dB for IPPPP and 0.75 dB for IPBPB compared to full
search. Compared with ABME1, up to 0.14 dB PSNR loss is
observed for IPBPB.

B. Hardware Design Performance

The hardware gate count is 62.6 kilogates and the on-chip
memory size is 8.64 kilobits using TSMC 0.18μm CMOS
technology. For CIF 30 frames/s with GOP of IPPPP, the
working frequency is 1.67 MHz and the power consumption is
763μW measured by Synopsys PrimePower. The power con-
sumption for CIF 30 frames/s with GOP of IPBPB is 896μW
with a working frequency of 1.94 MHz. The functionality of
this IP core design has been verified on FPGA.

To compare with the state-of-the-art designs, the proposed
design shows the advantage in power consumption. Table IV
summarizes the design information for [1], [2], [4], [6].
Considering the designs with different CMOS technology,
frequency, voltage, etc., the normalized power [9]

normalized power = power × 0.182

Process2 × 1.82

Voltage2 (4)

is provided. From this table, it shows the proposed design can
provide very low power consumption.

C. Bus Bandwidth Analysis

The bus bandwidth has been the bottleneck for modern SoC
design, especially for data-intensive designs such as video. The
8-bit ME designs need whole search window to complete the

TABLE III

R-D PERFORMANCE FOR FULL SEARCH (FS), ABME ALGORITHM

(ABME1) [6], AND THE MODIFIED ABME (ABME2) ALGORITHM AT

THE BITRATE OF 512 KILO BPS (N = 300)

Sequence Method IPPP 30 frames/s(M = 1) IBPBP 30 frames/s (M = 2)
PSNR_Y
(dB)

�PSNR PSNR_Y
(dB)

�PSNR

Foreman FS 34.18 34.62
ABME1 33.82 −0.36 34.01 −0.61
ABME2 33.79 −0.39 33.87 −0.75

Akiyo FS 43.33 43.47
ABME1 43.31 −0.02 43.39 −0.08
ABME2 43.33 −0.00 43.52 +0.05

Flower FS 26.11 26.56
ABME1 25.75 −0.36 26.29 −0.27
ABME2 25.66 −0.45 26.30 −0.26

Mobile FS 26.18 27.69
ABME1 26.10 −0.08 27.59 −0.10
ABME2 26.07 −0.11 27.33 −0.36

Tempete FS 28.78 29.89
ABME1 28.78 −0.00 29.67 −0.22
ABME2 28.79 +0.01 29.55 −0.34

motion search such as in [1], [2], [4]. They propose solutions
to reduce gate counts or on-chip memory bandwidth, but not
the bus bandwidth. In our case, the required data for movement
are as follows and are also summarized in Table V.

1) Input current block data: 16 × 16 × 8 bits.
2) Input reference block data: For search range of

[−S R,+(S R − 1)], we have the following.

a) (16 + 2 × S R) × (16 + 2 × S R) × 8 bits if search
window reuse is not considered.

b) 16× (16+2× S R)×8 bits if search window reuse
is considered.

c) 16×(16+2×(S R+2))×8 bits if one reuses search
window and applies 8 × 8 block search with ±2
range. If B-frame search is supported, it is doubled;

3) Output motion vectors: 80 bits for five pairs of motion
vectors if 16 bits are assumed for a pair of motion
vectors.

The total needed data movement for one block search is 8784
bits for P-search and 14 336 for B-search under S R is 16.

Considering our proposed design, the required data for
movement are summarized in Table V. The input current block
data are (18 × 18 × 8) bits for ABME2 and (30 × 30 × 8) for
ABME1. The input reference block data with a reuse scheme
are 16×(16 + 2×S R)×1 bits for LV3, 8×(8 + 2×(S R/2))×1
bits for LV2, and 4 × (4 + 2 × (S R/4)) × 1 bits for LV1.
If B-frame search is supported, the total bits are doubled.
For outputting binarized data as reference picture for the next
frame, there are 4 × 4 bits for LV1, 8 × 8 bits for LV2, and
16 × 16 bits for LV3. The output motion vectors (MV) are 80
bits for the five motion vectors if 16 bits are used for a pair
of motion vectors. For the B-frame search, the MV bits are
doubled due to the forward and backward directions.

In our design, the required data movement for one MB
search is 4016 bits, which is 45.7% of the bandwidth for the
8-bit ME designs for the P-frame search. For the B-frame
search, the data movement is 5104 bits, which is 32.9% of
the bandwidth for 8-bit ME designs. Table V summarizes the
bandwidth analysis results. It shows that the bus bandwidth

764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 5, MAY 2009

TABLE IV

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART DESIGNS

Design FS [4] GME [2] GDS [1] ABME1 [6] ABME2
Architecture 1-D systolic Global elimination Gradient search Binary search Parallel Binary search
Cycle/MB 4096 1784 568 283 148(P) 177(B)
On-chip memory (kilobits) n.a.1 24.08 40 9.80 8.64
PSNR loss (dB) 0.00 0.08 0.10 0.19 0.23
Search range [−16,+15.5] [−16,+15] [−16,+15.5] [−16,+15] [−16,+15]
Search block size 8 × 8 and 16 × 16 8 × 8 and 16 × 16 8 × 8 and 16 × 16 16 × 16 8 × 8 and 16 × 16
Process (μm) 0.60 0.35 0.13 0.18 0.18
Gate count (kilogates) 66.8 89.39 250 68.5 62.6
Power (mW)2 353 160 2.5 2.21 0.763
Normalized power (mW)3 4.12 12.59 15.53 2.20 0.763

1not available.
2mW for CIF 30 frames/s.
3normalized power = power × (0.182/Process2) × (1.82/Voltage2) [9].

TABLE V

BUS BANDWIDTH ANALYSIS FOR 8-BIT ME SCHEME AND THE PROPOSED

DESIGN (SEARCH RANGE = [−16,+15])

Scheme In/out data 8-bit AMBE1 [6] ABME2
P-frame Current block 2048 7200 2592

Ref. block 6656 1032 1008
Binarized data 0 336 336
Motion vectors 80 80 80
Bandwidth1 8784 8648 4016
Percentage2 100% 98.5% 45.7%

B-frame Current block 2048 7200 2592
Ref. block 13312 2064 2016
Binarized data 0 336 336
Motion vectors 160 160 160
Bandwidth 15520 9760 5104
Percentage 100% 62.9% 32.9%

1Data in bits for one MB search.
(=cur. block + ref. block + binarized data + motion vectors)

2Bandwidth of this paper/Bandwidth of 8-bit design.

savings for the proposed design are 54.3% and 67.1% for P-
frame and B-frame searches, respectively.

D. Summary

The proposed architecture leads to a superior performance
in bus access and power consumption.

The low-power advantage is attributed to the following:

1) the low complexity using binary SOD in ABME;
2) hardware efficient binary pyramid search structure, es-

pecially the hardware oriented LV2 search;
3) parallel processing of 8 × 8 and 16 × 16 LV3 block

searches to minimize additional search cycles for 8 × 8
block search;

4) hardware support of B-frame parallel processing to reuse
the current search block data and remove repeated on-
chip memory access.

On the other hand, the high bandwidth efficiency is achieved
by the following:

1) binary search structure to use binary data instead of 8-bit
data for search;

2) MB level preprocessing unit to reduce the amount of
bus access for generation of the three layers of binary
pyramid structure;

3) parallel processing of 8 × 8 and 16 × 16 LV3 block
searches to save additional 17% bus bandwidth for
search range of [−16,+15].

V. CONCLUSION

In this paper, we have proposed new ME hardware archi-
tecture to achieve low power and high bandwidth efficiency.
The proposed design is developed from a very low complexity
ME algorithm called all binary motion estimation [7]. It
integrates several important features including: 1) MB based
pre-processing; 2) support of B-frame parallel search; 3)
parallel processing of 8 × 8 and 16 × 16 LV3 block searches;
4) shared processing units to reduce the hardware cost; 5)
efficient LV2 search to reduce the latency. We also analyze
how low power and high bandwidth efficiency can be achieved
with the proposed design. Experiments show that the power
consumption can reach as low as 763μW for IPPPP CIF
30 frames/s and 896μW for IPBPB CIF 30 frames/s. The bus
bandwidth saving that can be achieved is up to 54.3% for
P-frame only forward search and 67.1% for B-frame search.

REFERENCES

[1] M. Miyama, J. Miyakoshi, Y. Kuroda, K. Imamura, H. Hashimoto, M.
Yoshimoto, “A sub-mW MPEG-4 motion estimation processor core for
mobile video application,” IEEE J. Solid-State Circuits, vol. 39, no. 9,
pp. 1562–1570, Sep. 2004.

[2] Y.-W. Huang, S.-Y. Chien, B.-Y. Hsieh, and L.-G. Chen, “Global
elimination algorithm and architecture design for fast block matching
motion estimation,” IEEE Trans. Circuit and Syst. Video Technol., vol.
14, no. 6, pp. 898–907, Jun. 2004.

[3] H.-M. Jong, L.-G. Chen, and T.-D. Chiueh, “Parallel architectures for 3-
step hierarchical search block-matching algorithm,” IEEE Trans. Circuit
and Syst. Video Technol., vol. 4, no. 4, pp. 407–416, Aug. 1994.

[4] J.-F. Shen, T.-C. Wang, and L.-G. Chen, “A novel low-power full-search
block-matching motion estimation design for H.263+,” IEEE Trans.
Circuit and Syst. Video Technol., vol. 11, no. 7, pp. 890–897, Jul. 2001.

[5] M. M. Mizuki, U. Y. Desai, I. Masaki, and A. Chandrakasan, “A
binary block-matching architecture with reduced power consumption and
silicon area requirement,” in Proc. IEEE ICASSP, vol. 6. Atlanta, GA,
May 1996, pp. 3248–3251.

WANG et al.: A LOW-POWER AND BANDWIDTH-EFFICIENT MOTION ESTIMATION IP CORE DESIGN USING BINARY SEARCH 765

[6] S.-H. Wang, W.-L. Tao, C.-N. Wang, W.-H. Peng, T. Chiang,
“Platform-based design of all binary motion estimation with bus in-
terleaved architecture,” in Proc. IEEE Int. Symp. VLSI-DAT, Apr. 2005,
pp. 241–244.

[7] J.-H. Luo, C.-N. Wang, and T. Chiang, “A novel all-binary motion es-
timation (ABME) with optimized hardware architectures,” IEEE Trans.
Circuit and Syst. Video Technol., vol. 12, no. 8, pp. 700–712, Aug. 2002.

[8] Final Committee Draft, MPEG01/N4025, ISO/IEC 14496-5:2001.
[9] T.-C. Chen, Y.-H. Chen, S.-F. Tsai, S.-Y. Chien, L.-G. Chen, “Fast al-

gorithm and architecture design of low-power integer motion estimation
for H.264/AVC,” IEEE Trans. Circuit and Syst. Video Technol., vol. 17,
no. 5, pp. 568–577, May 2007.

