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隧道監控系統之多攝影機車輛辨識 

 

研究生：朱明初 指導老師：李素瑛 教授 

陳華總 教授 

國立交通大學資訊科學與工程研究所 

 

摘 要 

 隧道內交通意外往往會造成巨大災害且難以處理，因此有大量監視攝影機裝

設於隧道中，可即時發現事故並監控路況。但通常並沒有足夠的人力來觀看大量

的監視器畫面，使得自動化監控系統的需求增加。本論文提出一種多攝影機車輛

辨識系統，利用隧道內多攝影機的監視器畫面追蹤行車在隧道內的位置。 

    於單一監視器畫面中，使用 Haar-like 特徵偵測找出車輛，並取出

OpponentSIFT 影像特徵。接著，本論文提出的空間時間連續關係動態規劃(S2DP)

演算法，利用隧道內行車順序關係性，辨識前後兩台攝影機中所偵測到的車輛。

此外亦提供兩種進階辨識方法，包含即時運算(RT)方法以及非即時加強處理(OR)。

即時運算方法減少車輛配對之搜尋範圍，並快速比對兩攝影機內之車輛。而非即

時方法針對空間時間連續關係動態規劃演算法中無法有效配對的行車做進一步

處理。 

    實驗結果顯示所提出之多攝影機車輛辨識系統可得到滿意的準確程度，並優

於其他相關演算法。 

 

關鍵字：影像監控、隧道監控、多攝影機車輛辨識、智慧交通系統 
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Abstract 

Surveillance cameras are widely equipped in tunnels to monitor the traffic 

condition and traffic safety issues. Identifying vehicles from multiple cameras within 

a tunnel automatically is essential to analyze traffic condition through the road. This 

thesis proposes a multi-camera vehicle identification system for tunnel surveillance 

videos.  

Vehicles are detected using Haar-like feature detector and their image features 

are extracted using OpponentSIFT descriptor in single camera. The proposed 

Spatiotemporal Successive Dynamic Programming (S
2
DP) algorithm identifies 

vehicles from two cameras by considering the ordering constraint in the tunnel 

environment. Next, two methods Real-Time (RT) algorithm and Offline Refinement 

(OR) algorithm are proposed for different requirements. The RT fast identifies 

vehicles in real-time by searching a limited range of candidates, and the OR refines 

the identification result from the S
2
DP.  

Comprehensive experiments on various datasets demonstrate the satisfactory 
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performance of the proposed multi-camera vehicle identification methods, which 

outperform state-of-the-art algorithms.  

 

Keyword: video surveillance, tunnel surveillance, multi-camera vehicle identification, 

intelligent transportation system 
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Chapter 1.  Introduction 

 

In recent years, video cameras are equipped everywhere in our daily life due to 

the affordable price and easy installation of devices. People can record a mass amount 

of events passing though the scene by storing the data within videos. However, most 

of videos contain a lot of redundancies. What we care about is only very small subsets 

or portions of the videos with semantic meanings. For example, in a traffic 

surveillance system, what we are interested in is the traffic density of a road section [1] 

or whether an incident happened [2], and then we can select other path to avoid those 

sections. For cameras set on streets, we would like to know how many pedestrians 

passed [3] or if there is any unusual activity [4]; in our living room, system may send 

alarms if elderly people fall on floor or some dangerous events occur [5]. Therefore, 

methods to retrieve and summarize useful data efficiently are essential for handling 

the huge amount of videos. 

 

Research topics on surveillance systems have been discussed in the last decades, 

for example, object detection, tracking and identification, scene understanding, and 

event detection [6] [7] [8] [9]. Although different applications are developed for 

different scenarios, many basic techniques can be applied to most of the surveillance 

videos. Object detection is usually the first step of a surveillance system to locate the 

region of interests (ROI), precisely, the object within a scene. After a sequence of 

video frames is processed, we need to know whether two detected objects from two 

frames are the same one. This is called object identification or object tracking. 

Trajectories and paths of detected objects are collected after tracking objects in a 

period of time. We can use the information to retrieve high-level semantics, such as 
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the number of vehicles passed by and events, car accidents for example. 

 

A traffic surveillance system can reveal various kinds of information. We can 

monitor the traffic condition by analyzing the videos collected from cameras installed 

along roads and highways. Intuitively, traffic data like the level of driving speed or the 

number of vehicles passing by can be provided to drivers or used in navigation 

systems to avoid congestion areas. Another type of information is whether a specific 

event happens, like traffic accidents or traffic rule violation. The police nearby can 

receive alarms from the control center and come to the location quickly. For long-time 

monitoring, traffic data are stored in databases and we can discuss issues on a road 

section about congestion or retrieve historic records about some specific vehicles 

driven by criminals. 

 

In recent years, researchers focus on tunnel surveillance since accidents in a 

tunnel may cause serious problems [10]. The traffic agency monitors the traffic 

condition of a tunnel using multiple surveillance cameras and tries to discover unusual 

events in real-time. However, that is not an easy task since in most of time monitoring 

is nothing interesting and makes workers hard to concentrate on the screens. Another 

shortcoming is that sometimes there are not enough cameras to cover the whole tunnel 

scene. There are temporal and spatial gaps between videos. Therefore, it is necessary 

to develop a computer system that can automatically provide precise and brief 

information. Figure 1-1 shows an example of a tunnel surveillance system that 

contains multiple cameras. Many surveillance systems on day-time traffic can be 

directly applied to tunnels because major features are the same as in tunnels. However, 

more challenges such as poor illumination conditions are present. It is worth 

considering more aspects on tunnels than on day-time traffic to achieve better 
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performance.   

 

 
Figure 1-1. An example of a tunnel surveillance system. 

 

There are several difficulties for traffic surveillance: low resolution, less frame 

rate, limited view, and camera sensor noises. Since we have to install a huge number 

of cameras and to store a mass amount of video data, the price of camera is relatively 

low and the size of data should be as small as possible. That lowers the quality of 

videos and makes the analysis of videos more challenging. In addition, there are some 

differences between surveillance systems on highways and on tunnels. Most systems 

on road can only work in day-time. In this case, many basic algorithms can be applied 

due to sufficient light. However, illumination effects usually exist in tunnels, 

producing more noise and unpredictable troubles. Fortunately, there are still some 

benefits in the environments of tunnels, like fewer lanes, more strict driving 

constraints, and the 24-hour system with the same lighting condition. 
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Another issue is that many traffic surveillance systems do not consider about 

information between two or more cameras. As a car is driven on a road through 

multiple cameras, we would first like to know whether two vehicles in two videos are 

the same. This task is called multi-camera object tracking or multi-camera object 

identification. It is more challenging than tracking in a single camera, because the 

view points, poses and lightings are different. These differences may make the visual 

appearances of an object different in different cameras. Sometimes we cannot track a 

vehicle across cameras because there are time and space gaps in between. However, 

we can still identify them by considering the features of each vehicle. A naïve method 

to identify vehicles between cameras is obtaining the unique license plate number 

using license plate recognition. However, it is usually not available in a surveillance 

system due to the poor quality of videos. Hence the robust image features are needed 

for multi-camera object identification. 

 

In this thesis, we propose a multi-camera vehicle identification system in tunnels. 

First vehicle detection and tracking are performed in single tunnel surveillance video 

using Haar-feature-based cascade detector [11]. After images of vehicles are collected 

from videos, the visual features of images are then extracted. Features such as color 

histograms, Haar-like feature vector, SIFT-based feature points and template matching 

in pixel domain are studied and evaluated by experiments. Next we propose a 

multi-camera vehicle identification method to identify vehicles between two 

non-overlapping views of different cameras using calculated feature vectors. The first 

step is the Spatiotemporal Successive Dynamic Programming (S
2
DP) algorithm that 

matches vehicles in two cameras. And then two different algorithms for real-time 

tracking and offline refinement are proposed for different requirements: the 

Real-Time (RT) and the Offline Refinement (OR) algorithms following S
2
DP, 



 

5 
 

respectively. Finally the experiments and discussions on proposed methods are 

presented in this thesis.   

 

The remaining of this thesis is organized as follows. In Chapter 2, we introduce the 

related work about surveillance video analysis. Chapter 3 describes the proposed 

tunnel surveillance system and the multi-camera vehicle identification methods. The 

experiment settings and experimental results are presented and discussed in Chapter 4. 

Finally, conclusions and discussions of future work are in Chapter 5. 
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Chapter 2.  Related Work 

 

In this chapter, we review the related literatures of video surveillance systems.  

A survey on methods of object detection, tracking, and multi-camera object 

identification is presented.  

 

2.1 Video Surveillance Systems 

 

Video surveillance systems are widely used nowadays since cameras are installed 

everywhere. Applications can be briefly divided by their operating environments, like 

in-door or out-door and for vehicles or pedestrians. Nevertheless most systems share 

similar characteristics and require common techniques.  

 

Excellent video processing and computer vision techniques are necessary for a 

video surveillance system. Researchers try to retrieve useful information and 

understand the semantics from videos since it is intuitive for human obtaining 

information from what we see. Buch et al. [12] review the state-of-the-art computer 

vision techniques for urban traffic system. The common challenges include poor 

quality of data, wide range of operational conditions and environments, and real-time 

processing. Key techniques to establish a video-based traffic system are foreground 

segmentation, shadow removal, feature selection, object classification, and tracking, 

which are common research topics in computer vision. Zhang et al. [13] survey recent 

research on data-driven intelligent transportation systems (ITS). The main 

components of data are from videos, because people are more familiar with visual 

information. Applications like vehicles or pedestrian detection and tracking, behavior 
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analysis, incident detection, density estimation are discussed often. And systems can 

be extended by mixing data from different sensors like global positioning system 

(GPS), laser or infrared radars. 

 

A traffic surveillance system can provide not only real-time processing like 

vehicle tracking or event detection, but also offline analysis, traffic condition 

investigation or database indexing for example. Feris et al. [6] propose a system for 

large-scale indexing of vehicles in a video surveillance system. The idea is providing 

a database of vehicles in urban environment, with semantic attributes like time, color, 

size, etc. This can help police easily search for suspicious vehicles and reduce efforts 

in criminal investigation process. They use some easy but strict constraints to 

automatically collect and generate a large amount of training patches for vehicle 

detectors of Haar-based features. Then attributes like time, color, driving direction, 

color, size, speed, are retrieved for each detected vehicles, and the information is 

stored into a database.  

 

Sometimes we would like to know the semantic of a scene instead of a specific 

object, which leads to the topic of scene understanding. For example, the system can 

automatically discover the moving directions of crowds [8], or the driving paths of 

vehicles in a scene [14]. The trajectories and motion flows of moving objects can 

provide features of regular activities. Hence we can discover unusual events by 

analyzing outliers and anomalies. Atev et al. [14] and Morris and Trivedi [7] try to 

model the driving behaviors of a road scene in a surveillance video. Since a vast 

amount of cameras have already been set on road sections and activities might change 

often, it is necessary to develop an unsupervised way to build the model automatically. 

By collecting the trajectories of vehicles passing through the scene, both methods 
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apply clustering algorithms and treat each cluster as a usual activity.  Morris and 

Trivedi [7] then train a Hidden Markov Model (HMM) for each activity that can be 

used as a trajectory classifier. Finally when a new trajectory is obtained, its distance to 

each cluster can be calculated and abnormal events can be detected. In another aspect, 

the normal behavior of a road scene can help object detection and tracking. Additional 

information could assist to predict where the object might be and where it would 

possibly move to. 

 

2.2 Object Detection and Tracking 

 

A surveillance video contains both specific objects that we are interested in and 

other unrelated regions, and therefore object detection is usually the first step in a 

system. As objects are detected in each frame, we need to know whether two 

detections from two consecutive frames belong to the same object. This requires 

tracking of each object. Usually both steps are required in a video surveillance system 

to provide information for further processing. 

 

2.2.1 Object Detection 

 

Sometimes the objects might move, and background subtraction [15] [16] [17] 

can be applied to videos to obtain those moving objects. Still there are some object 

detection algorithms in image processing domain like face detection [11] and 

pedestrian detection [18] techniques, which can also be applied to surveillance video 

[9] [19] . 
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Background subtraction is a scheme to detect moving objects in videos from 

static cameras [15], which computes the difference between current frame and a 

background model, considering the idea that an object is likely different from the 

background. This is widely applied to surveillance systems since cameras usually are 

static, and the computation cost is relatively lower than object detection methods. The 

commonly used approaches include running Gaussian average [20] and Mixture of 

Gaussians (MoG) [17], which consider the background model as a normal distribution 

or a mixture of them in pixel domain and detecting foreground object if it is different 

from  the distribution. Brutzer et al. [16] evaluate commonly used and 

state-of-the-art background subtraction algorithms. The testing scenarios contain 

dynamic background, darkening, light switch, noise, shadow, and recommended some 

state-of-the-art algorithms. However, they also state that most background subtraction 

methods would fail in conditions like noisy night and sudden lighting change, which 

are quite common in tunnel environments. 

 

Another approach is appearance-based object detection, where the desired 

objects share common characteristics in an image. Examples include Haar-like feature 

with cascade classifier [11] and Histogram of Oriented Gradient (HoG) [18], which 

are widely used in video surveillance systems [6] [10] [19]. Unlike background 

subtraction methods that usually consider the changes between frames, 

appearance-based methods treat a video as individual images, not related to neighbor 

frames. They often require a training step to obtain the common property between 

objects, and then use sliding window approach to scan the frame and verify whether 

the region is an object. Appearance-based object detection often needs more 

computation cost since it requires exhaustive search on the image, but the accuracy is 

better because it can only find objects similar to the training set. 
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2.2.2 Object Tracking 

 

Object tracking is to figure out where the object is in a video, and the sequence 

of tracking results can be arranged into a trajectory that presents the history of the 

movement. An intuitive way is to group detections from two consecutive frames that 

are in nearby locations. However, there might be noises around the observation. 

Hence Bayesian tracking [21] can be applied to tracking process. By applying 

probability formulation, we can track objects more precisely. The common solutions 

for Bayesian tracking are Kalman Filter and Particle Filter, which constantly update 

the tracker by taking new observations. Breitenstein et al. [19] propose a multi-person 

tracking framework using Particle Filter. It is very challenging for object tracking 

using simple grouping methods in a complex environment because detection cannot 

perform well. Therefore, filters are necessary in this case. The confidence of detected 

objects is considered for detections and this solves data association for multi-person 

tracking. 

 

2.3 Multi-Camera Object Identification and Tracking 

 

 An area usually contains multiple surveillance cameras, and it is necessary to 

mix data from two or more places to obtain more complex information. However, 

multiple camera processing is far more difficult than single camera processing. For 

example, lighting, viewpoints, and background in two cameras can be different. Wang 

[22] reviews recent researches in multi-camera video surveillance. Key technologies 

in multi-camera systems are multi-camera calibration, computing topology of camera 

network, tracking, re-identification, and activity analysis. All of them face challenges 
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including various configurations, limited topology, large changes of viewpoints, and 

illumination conditions. Some of the technologies can be jointly solved. Just as in this 

thesis, we try to solve the object re-identification problem to achieve multi-camera 

tracking.  

 

When tracking an object across non-overlapping views of two cameras, two 

major problems should be solved. Information may not be continuous because there 

are time and space gaps between two cameras, and the visual appearance changes due 

to different view angle and lighting of different cameras. Lian et al. [23] propose a 

method of tracking pedestrians across two cameras using only visual appearance. 

They calculate the CI-DLBP, the enhanced distance-based local binary pattern (LBP) 

features that include color information, for each pedestrian. And then match 

pedestrians from two cameras using the feature vectors to achieve multi-camera 

tracking. Instead of considering only LBP that describes structural information, color 

is also an important feature for matching objects from different camera views. They 

encode a detection of a pedestrian to a histogram of LBP in color space and match 

two histograms from two different cameras using Chi-square distance, and apply 

cumulative brightness transfer function (CBTF) to reduce the illumination effect in 

pre-processing steps.  

 

Cabrera et al. [9] propose a method of multi-camera vehicle 

tracking-by-identification in a tunnel surveillance system. Like [6], they use Haar-like 

feature to detect vehicles in a single camera and obtain a feature vector with binary 

values of weak classifiers for all detections. Next they use Hamming distance to find 

the best matched pairs for each vehicle in both single camera tracking and 

multi-camera identification. The two major advantages of this method are: the 
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computation of Haar-like features can be efficiently obtained, and the lower cost in 

passing and comparing feature vectors with binary values. The authors state that color 

is not reliable in tunnels because it may be affected by lighting. However we think 

that color is still a strong feature for vehicles especially when the resolution is quite 

low in surveillance video. Some practical issues have not been discussed, such as 

system initialization and error handling, which is presented in this thesis.  
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Chapter 3.  Multi-Camera Vehicle Identification 

 

In this chapter, we illustrate the multi-camera vehicle identification framework in 

detail. An overview will be given in Section 3.1 and single-camera vehicle detection 

and tracking is described in Section 3.2. Next, possible image features for 

identification is presented in Section 3.3. The proposed multi-camera vehicle 

identification method and the real-time and offline identification are illustrated in 

Section 3.4 and 3.5, respectively.  

 

3.1 An Overview of the Proposed Framework 

 

Figure 3-1 shows the framework of the proposed system. Starting from a single 

camera, we first extract vehicles passing through the scene by object detection and 

tracking. After a period of time we can collect a set of vehicle patches. The number of 

detected vehicles in the first camera is always more than the number in the next 

camera, since there are vehicles passing the first camera but not the second one. In 

other words, when a vehicle is presented in the second camera, multi-camera 

tracking/identification is to search for the corresponding detection in the first camera 

that represents the same vehicle. 
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Figure 3-1. System framework. 

 

In a single camera, all passing vehicles are discovered using Haar-like feature 

detector [11] for each frame. And within a small interval of a video sequence, vehicles 

are tracked by considering the location in the image of detections from consecutive 

video frames. As vehicles in tunnel travel in sequence, we can use a queue to store all 

tracked vehicles to preserve the order. Single-camera vehicle detection and tracking 

will be discussed in Section 3.2 in detail and a dataset of the detection results with 

five cameras are presented in Section 4.1. 

 

For object recognition and identification, we extract features from the object 

images. Color and visual structure information are important features for vehicle 

identification in a low resolution surveillance video. Section 3.3 discusses some 

commonly used feature descriptors that encode the visual features, and Section 4.2 

evaluates these descriptors.  
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After a period of time, we can collect a set of queues with detected vehicles from 

several cameras in the same tunnel. We need to initialize the system first to verify 

which vehicle is the first one that exists in all queues. Because there may be vehicles 

between two cameras, and when we start recording multiple cameras at the same time, 

there may be vehicles in latter cameras that do not appear in the previous ones. One 

solution is to start recording multiple cameras in different time, however it is still hard 

to correctly make one vehicle become the first entity in all detection queues, unless 

there is no vehicle in the tunnel. We accomplish the task by considering the ordering 

constraint within a tunnel. That is, one vehicle is behind another most of the time and 

the order rarely changes, as well as lane changing is often prohibited in a tunnel. 

Therefore, a multi-camera identification method is proposed based on the ordering 

constraints of vehicles. In the beginning the Spatiotemporal Successive Dynamic 

Programming (S
2
DP) algorithm matches vehicles from two cameras. Next, the 

Real-Time (RT) algorithm can be applied after S
2
DP for real-time vehicle tracking, 

and the Offline Refinement (OR) algorithm can further achieve higher accuracy from 

the results of S
2
DP. 

 

The S
2
DP algorithm matches vehicles in two detection queues, and thus achieves 

multi-camera identification. However, it has to check a group of detections at the 

same time and cannot run in real-time. The RT can accomplish the identification task 

in real-time, picking up the most similar one in a small search window of the 

detection queue. Nevertheless, real-time algorithm usually shows lower accuracy, and 

is sometimes not suitable for database applications, which do not require real-time 

processing but the accuracy need to be assured. In this case we propose another 

offline identification method, OR, which is used to achieve higher accuracy by 

refining the results from S
2
DP. The real-time and offline algorithms are discussed in 
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Section 3.5 and experiments are presented in Section 4.4. 

 

3.2 Vehicle Detection and Tracking in Single Camera 

 

The first step of the system is to obtain information from cameras independently, 

thus we will discuss single-camera vehicle detection and tracking method in this 

section. We use Haar-like feature detector [11], which is commonly used in face 

detection, to detect vehicles in a tunnel surveillance video. And the same method is 

used in [6] and [10] for vehicle detection. For a sequence of detections from 

consecutive video frames, we group them by considering the location of detections in 

x-y coordinate of frames to achieve vehicle tracking.  

 

3.2.1 Vehicle Detection 

 

 We use Haar-like feature detector [11] to detect vehicles in a video frame. The 

Haar-like features are a set of binary values which consists of the differences between 

two or more sums of intensities in rectangle regions of a grayscale image, as shown in 

Figure 3.2. Since there are various sizes of rectangles, a 24*24 resolution image, 

which is the size of our training images, can obtain a great amount of features in the 

exhaustive set of rectangle regions. As the visual structures of vehicles are similar in 

surveillance videos, vehicles share the same subset of Haar-like features, which do not 

appear in other regions of the videos. Therefore, we can discover those shared 

Haar-like features by applying machine learning algorithms and obtain a vehicle 

detector/classifier for videos. The learning algorithm uses a cascade of Adaboost 

classifiers to choose proper weak classifiers, the Haar-like features, and forms a 

stronger classifier. The cascade consists of a number of stages that reject negative 
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examples. Finally if an image passing all cascading stages, the detector will classify it 

as positive detection. Figure 3.3 illustrates the cascading scheme. The method uses 

integral images to fast calculate features, considers only a small subset of all possible 

Haar-like features, and rejects negatives in a short time by cascading stages. As the 

result, the algorithm can be used in real-time detection. 

 

 

Figure 3-2. Haar-like features. Each feature is the difference between sums of 

intensities of two rectangle region.  

 

 

Figure 3-3. The cascading scheme of Haar-like feature detector.  

 

The traditional method for object detection in surveillance video is background 

subtraction, because the objects usually move in the video. In fact, the vehicles always 
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move on the roads. However, reflections of headlights and taillights often exist on the 

wall of tunnels and those reflection regions might be treated as foreground objects in 

background subtraction methods. Another problem is that one vehicle may be 

occluded by another vehicle such that the algorithm may produce one big object 

instead of two. Figure 3-4 shows an example of problems in background subtraction 

using Mixture of Gaussians (MoG) [17] method, where the light reflections on walls 

are treated as objects. Hence, we choose feature detectors instead of background 

subtraction algorithms to achieve higher accuracy. 

 

 
Figure 3-4. Detection fails using Mixture of Gaussians (MoG) background 

subtraction. Reflections on walls are treated as detected objects. 

 

3.2.2 Vehicle Tracking 

 

 The goal of vehicle tracking is to find the corresponding detections of the same 

vehicle in different frames. Detection contains the image features, coordinates of the 

bounding box in image, detected time, and other related properties. We can keep track 

of detections which have similar properties. That is, if two detections from two 

consecutive frames have similar properties, these two detections present the same 
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vehicle. Since the detection is not accurate all the time and contains noise, it is 

common to apply Kalman Filter or Particle Filter [21] to predict the actual state of the 

object.  

 

As vehicles always drive forward in tunnels, we simply take the coordinates of 

detections in an image as the properties for tracking. If two detections from two 

frames are in similar location within the image, we treat them as a single object. After 

one object is tracked in five consecutive frames, where the frames per second (FPS) 

of our video is about 10 and the vehicle is around the middle position of the video, the 

image of this object in the fifth frame is stored into the detection queue of the camera. 

Each camera maintains a queue of tracked vehicles, so that the ordering of passing 

vehicles can be recorded. The tracking step can also help us remove wrong detections 

because noises usually do not move. Every image stored in detection queue is resized 

to 40*40 pixels for further processing.  

 

3.3 Feature Extraction 

 

 As we obtain a vehicle from one camera, we need to transfer the image patch 

into a feature vector that is proper for object identification. The goal is to select the 

best feature that can clearly identify whether two detections from two different 

cameras belong to the same one or not using distance metric. In this section we will 

introduce four possible feature descriptors for our multi-camera identification 

application. Experiments will be presented in Section 4.2.  

 

The feature should minimize the effects on visual appearances in multi-camera 

identification: poses, color, illumination and noises. Figure 3-5 illustrates these 
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challenges. Another problem is that the images are in small resolution such that the 

details of a vehicle are hard to describe by features. Nevertheless we can take 

advantage of shorter computation time. In conclusion we choose Harris corner 

detection with OpponentSIFT [24] as our selected feature.  

 

 
Figure 3-5. Examples of four vehicles in four different cameras. The size, pose, color, 

and reflections on windows are different in different cameras. 

 

3.3.1 Image Intensity 

 

To calculate the distance between two images, the simplest way is to obtain the 

sum of squared difference (SSD) of intensities between every pixel in them. In our 

application, the resolution of our detected vehicle is 40*40 for all images and the 

distance can be calculated in one pass for each color channel. Consider the application 

in RGB color space, and the image intensities (int) distance between two images 𝐼1 

and 𝐼2 is  

𝑑𝑖𝑛𝑡(𝐼1, 𝐼2) = ∑ ∑(𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦))
2

𝑥,𝑦𝑅,𝐺,𝐵
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where 𝐼𝑖(𝑥, 𝑦) is the intensity of image 𝑖 at (𝑥, 𝑦), and sum the values of all RGB 

channels. 

 

3.3.2 Color Histograms 

 

Histograms describe the distribution of intensities for an image. Here we tested 

histograms in three different color spaces: RGB, hue, and opponent color space. RGB 

histogram is a basic way to describe an image, since the input image is in RGB color 

space. Because color is one of the important features of vehicles, another selected 

color space is hue which describes the color distribution of an image. Hue is 

converted from RGB by 

𝐻𝑢𝑒 = {

60(𝐺 − 𝐵)/(𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛⁡(𝑅, 𝐺, 𝐵)) 𝑖𝑓𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) = 𝑅

120 + 60(𝐵 − 𝑅)/(𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛⁡(𝑅, 𝐺, 𝐵)) 𝑖𝑓𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) = 𝐺

240 + 60(𝑅 − 𝐺)/(𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)) 𝑖𝑓𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) = 𝐵

 

Finally we choose histograms in opponent color space. The color space consists 

of three channels, the first two channels represent relation between RGB information 

and the third channel represents the grayscale intensity. Opponent color space can be 

converted from RGB using 

(
𝑂1
𝑂2
𝑂3

) = (

(𝑅 − 𝐺)/√2

(𝑅 + 𝐺 − 2𝐵)/√6

(𝑅 + 𝐺 + 𝐵)/√3

) 

For every histogram, we extract 64 bins for each channel, therefore the RGB and 

opponent histogram has 192 bins and hue histogram has 64 bins. The distance 

between two histograms is the Chi-square distance 

𝑑𝐶𝐻(𝐻1, 𝐻2) =∑
(𝐻1(𝑗) − 𝐻2(𝑗))

2

𝐻1(𝑗)
𝑗

 

where 𝐻𝑖(𝑗) is the value of bin 𝑗 in histogram 𝐻𝑖. 
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3.3.3 Haar-Like Feature Vector 

 

Haar-like feature vector is obtained from the vehicle detector. It is a set of binary 

values with 143 dimensions, where we have 143 selected features in our trained 

detector. Cabrera et al. [10] stated that this feature can be used in multi-camera 

identification, without additional steps of feature calculation. Figure 3-2 shows an 

example of the feature. Hamming distance is used as distance metric since the feature 

vector contains only binary values, and the same vehicle would have similar result in 

the vector. The Hamming distance is computed by  

𝑑𝐻𝑉(𝑇1, 𝑇2) =∑|𝑇1(𝑗) − 𝑇2(𝑗)|

𝑗

 

where 𝑇𝑖 is the binary vector of image 𝑖, and 𝑇𝑖(𝑗) is the value of the 𝑗th element.  

 

3.3.4 Keypoints Descriptors 

 

Keypoints descriptors are commonly used in object recognition. Generally, some 

points in an image contain rich information. Those points are called keypoints, 

interesting points, or corners. Keypoints are extracted from the image, and then each 

point is represented with a specific descriptor. One of the famous keypoint extraction 

methods is Scale-Invariant Feature Transform (SIFT) [25], which is a powerful tool in 

many computer vision applications. SIFT finds keypoints using 

Difference-of-Gaussians (DoG) and describes each point using a histogram with 

orientation information around that point. The method can achieve high accuracy but 

the computation speed is relatively low if the image is large. Our selected keypoints 

descriptors are SIFT, ORB [26], and Harris corner detection with OpponentSIFT 

descriptor [24]. Figure 3-6 illustrates the keypoints descriptor algorithms. 
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Figure 3-6. A general illustration of keypoints descriptors. 

 

Oriented BRIEF (ORB) [26] tries to reduce the computation time while not 

reducing much of accuracy compared with SIFT. The algorithm starts by detecting 

FAST [27] keypoints in an image, which considers the intensity differences between 

one center pixel and its neighbors in a circular ring. Next ORB uses BRIEF [28] 

descriptors to encode each detected keypoint into a bit string. The orientation and 

rotation properties of an image are considered in both keypoint detection and 

description processes. The whole processing time is much faster than SIFT, since both 

keypoints detection and description methods are simpler. However, the performance is 

not as superior as SIFT. 

  

 Van de Sande et al. [24] evaluate different features for object recognition. They 

analyze the invariant properties of different color descriptors, histograms, moments, 

and SIFT descriptors, with test on public datasets. The authors state that 

OpponentSIFT, which computes SIFT descriptor in opponent color space, is 

recommended since it outperforms other descriptors and is invariant to light intensity 

changes and shifts. Although our application is a little bit different from the 
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experiments in their work, Section 4.2 shows similar result that OpponentSIFT has 

higher accuracy than other methods described in this section. In their detection 

process they use Harris-Laplace corner detector to obtain more accurate points 

without unnecessary points. Since our input image is far smaller and the object is 

located in the center, we use only Harris corner to reduce computation time.  

 

 For all keypoint descriptors, we compute the Euclidean distance between feature 

vectors of two images 𝐼1 and 𝐼2. First, we extract 10 keypoints, which are enough 

for our detected images with size of 40*40 pixels, in each image. And the feature 

vector is obtained using descriptors introduced before. For each point, SIFT descriptor 

is a vector of integers with 128 dimensions of orientation histogram, where ORB has 

256 dimensions and OpponentSIFT has 3*128 dimensions of three channels in 

opponent color space. Next we use brute-force method to assign a corresponding 

point in 𝐼2 with smallest Euclidean distance for a point in 𝐼1. Therefore, we can 

obtain 10 distance values since there are 10 keypoints in an image, and one point in 

𝐼2 may have chance being assigned more than once. For 𝐼2, we again use the same 

method to obtain 10 distance values corresponding to 𝐼1. Finally the distance between 

the two images is the average value of the 20 distance values. The method can be 

formulated as 

𝑑𝐾𝐷(𝑃
𝐼1 , 𝑃𝐼2) =

1

2
(
(∑ min

𝑗
𝑑𝑖𝑠𝑡(𝑃𝑖

𝐼1 , 𝑃𝑗
𝐼2)𝑖 )

|𝑃𝐼1|
+
(∑ 𝑚𝑖𝑛

𝑖
𝑑𝑖𝑠𝑡(𝑃𝑗

𝐼2 , 𝑃𝑖
𝐼1)𝑗 )

|𝑃𝐼2|
) 

where 𝑃𝑖
𝐼1 is the 𝑖th keypoint descriptor of image 𝐼1 and 𝑃𝑗

𝐼2 is the 𝑗th keypoint 

descriptor of image 𝐼2 . 𝑃𝐼1 = {𝑃1
𝐼1 , … , 𝑃𝑛

𝐼1} and 𝑃𝐼2 = {𝑃1
𝐼2 , … , 𝑃𝑚

𝐼2} is the set of 

keypoint descriptors of 𝐼1 and 𝐼2, respectively. The |⁡∙⁡| represents the number of 

elements in a set. The 𝑑𝑖𝑠𝑡(𝑃𝑖
𝐼1 , 𝑃𝑗

𝐼2) is the distance between 𝑃𝑖
𝐼1 and 𝑃𝑗

𝐼2. Note that 
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the Euclidean distance is applied on SIFT and OpponentSIFT descriptors, and 

Hamming distance is for ORB descriptors.  

 

 As our experimental result in Section 4.2, OpponentSIFT outperforms other 

features and is selected for further processing.  

 

3.4 Multi-Camera Vehicle Groups Matching 

 

 This section illustrates the problem of multi-camera vehicle identification and 

describes the proposed algorithms for tunnel application. We collect vehicles from 

cameras as described in Section 3.2, and compute the feature vector for each vehicle 

in Section 3.3. Each camera maintains a queue of detected vehicles with computed 

feature vectors. Now, we can identify vehicles from different camera by matching 

feature vectors in two queues. This is called multi-camera identification, object 

re-identification [22], object matching [23], or multi-camera 

tracking-by-identification [9]. 

 

For each camera, we keep a queue of detected vehicle patches ordered by time. 

Different cameras are also ordered by time since they are set on road that vehicles 

must pass in order. If we focus on only two cameras, the identification is reduced to 

an assignment problem. That is, finding all matched pairs of vehicles from two queues 

with the smallest sum of distances, and every vehicle can be assigned only once. In 

Figure 3-7, assume that we have to assign three vehicles from camera C1 and C2. First 

we can compute the distance matrix using feature vectors described before, and then 

apply greedy method or some well-known solutions such as Hungarian algorithm [29] 

to find matching pairs of vehicles.  
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Figure 3-7. Assignment problem in multi-camera vehicle identification. 

 

    The major difficulties are the problems in appearance changing of the same 

vehicle in different cameras, which would be solved by using OpponentSIFT. 

However, vehicles may look similar or are of the same type that exists in the tunnel 

within a small period of time. Matching vehicles using only appearance information 

may have errors sometimes. In other words, matching pairs of vehicles using only the 

distance matrix obtained by visual features, Figure 3-7 for example, cannot achieve 

suitable performance, especially when the distance matrix is quite large. Besides, 

there is a time gap between two cameras, so we can only roughly guess when a 

vehicle might pass the second camera. This requires a certain number of vehicles to be 

considered at the same time since we cannot know the exact time a vehicle passed by. 

 

3.4.1 Spatiotemporal Successive Dynamic Programming (S
2
DP) 

 

The Spatiotemporal Successive Dynamic Programming (S
2
DP) algorithm is 

proposed to solve the identification problem in tunnels by considering the ordering 
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constraint. Given a distance matrix of detected vehicles in two cameras, the S
2
DP 

finds one vehicle from the first camera for each vehicle in the second camera. 

 

Ordering constraint [30] exists in road that all vehicles are in some kinds of 

successive sequence, especially when lane changing is prohibited in long tunnels for 

traffic safety. More specifically, a car is possibly behind another one during the whole 

driving in the tunnel. The proposed methods take advantages of the ordering 

constraint in tunnels. Figure 3-8 illustrates the multi-camera identification problem by 

considering the ordering constraint. The detection queue of the first camera C1 is 

always equal to or larger than the queue of the second camera C2. The problem is to 

search one or a small group of vehicles in C2 from candidates in C1, and the number 

of candidates is greater than the number of matched objects. The number of 

candidates is determined by the actual distance on road between two cameras. More 

detected cars are stored if two cameras are far away from each other.  

 

 

Figure 3-8. An example scenario on multi-camera vehicle identification. Assume each 

capital letter represents an individual vehicle. 

 

In the beginning, we are not sure where the exact position of the desired 

candidate is in the queue, so we need to search in a window of proper size and 

position, with respect to the detection queue of previous camera. The size of the 
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window is important since the more the candidates are included, the more the noises 

are contained, which affects the performance. Therefore, the first thing to do is to find 

the proper location of the search window in the queue of first camera, and then we 

will have the ability to minimize the size of the window. We call this step as an 

initialization problem. As illustrated in Figure 3-8, the first vehicle A need to be 

correctly identified, thus vehicle B can be easily found by considering the ordering 

constraint. If, unfortunately, vehicle A in camera C2 is matched to vehicle H in camera 

C1, then vehicle B in C2 can never find a correct matching since B is not behind H. 

Therefore, the initialization problem is an important issue when the ordering of 

objects is taken into account. 

 

It is worth noting that not all vehicles in the second camera can find a 

corresponding detection in the first camera, and vice versa. Because the vehicle 

detection cannot certainly reach 100% of accuracy, there are always miss detections in 

all cameras. In addition, when each camera passes information to the central server 

using the Internet, there may have packet losses or disconnections sometimes that 

implicitly yield miss detections. Consequently the algorithm must incorporate the 

miss detection problem. 

 

 Since the ordering constraint is an important characteristic and the miss detection 

problem needs to be considered, we propose a dynamic programming algorithm S
2
DP 

to solve the assignment problem. Assume that we have a 𝑁1
𝐶 ×𝑁2

𝑐  distance matrix 

𝐷  where the two axes contain 𝑁1
𝐶  and 𝑁2

𝐶  vehicles in camera 𝐶1  and 𝐶2 , 

respectively. 𝐷(𝑖, 𝑗) = 𝑑𝐾𝐷(𝑃
𝐼𝑖 , 𝑃𝐼𝑗) is the distance between two feature vectors of 

vehicle 1 ≤ 𝑖 ≤ 𝑁1
𝐶  in 𝐶1  and vehicle 1 ≤ 𝑗 ≤ 𝑁2

𝐶  in 𝐶2  using keypoints 

descriptor described in Section 3.3. The dynamic programming cost function 𝑓 is 
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defined as 

𝑓(𝑖, 𝑗) = 𝑚𝑖𝑛 {

𝑓(𝑖 − 1, 𝑗 − 1) + 𝐷(𝑖, 𝑗) + 𝜆 ∗ 𝑠𝑡𝑒𝑝

𝑓(𝑖 − 1, 𝑗) + 𝜖

𝑓(𝑖, 𝑗 − 1) + 𝜖

 

where 𝜖  is the miss-match penalty, 𝜆 is the Non-Spatiotemporal-Successiveness 

(NS
2
) penalty, and 𝑠𝑡𝑒𝑝 is the number of steps from the last assignment. 𝐷(𝑖, 𝑗) is 

added to 𝑓 if 𝑖 is assigned to 𝑗, which is the first statement of the 𝑚𝑖𝑛⁡ function. 

Otherwise, a penalty 𝜖 is added to 𝑓 for miss detection. After scanning the distance 

matrix 𝐷  once using the cost function 𝑓 , a corresponding cost matrix and a 

backtrack table can be obtained. The assignment results can be found by tracing the 

shortest path from 𝑓(𝑁1
𝐶 , 𝑁2

𝐶) to 𝑓(0,0) using the backtrack table.  

 

Figure 3-9 shows an example of the S
2
DP algorithm. In the dynamic 

programming backtrack table, we can find a minimum-cost path from the last element, 

which corresponds to row F and column C in Figure 3-9, to 𝑓(0,0) easily. The 

horizontal and vertical paths represent miss detections and diagonal paths are matched 

vehicle pairs. The algorithm is similar to the longest common subsequence problem.  

 

Figure 3-9. An illustration of S
2
DP algorithm 
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The value of the miss-match penalty 𝜖 is determined by both the distance 

function 𝑑𝐾𝐷 and the proper threshold to claim miss detections. The total cost 𝑓 

will add 𝜖 twice if one assignment is skipped since one element in row and one in 

column have to be added to move to the same position. As illustrated in Figure 3-10, 

two 𝜖 or one assignment cost from location A to location B will be added to the cost 

function 𝑓. Therefore, we set 𝜖 as half of the maximum-allowed matching distance 

(threshold). We use a fixed value for all datasets in our experiments, and the 

discussion of this parameter will be presented in Section 4.5 with recommendations 

for default value.  

 

Figure 3-10. Decision of miss-match penalty 𝜖. From location A to B in the cost 

function 𝐹, the total cost will add two 𝜖 or one assignment cost. 

 

Another parameter is the Non-Spatiotemporal-Successiveness (NS
2
) penalty 𝜆 

for successive assignments. Assuming that we do not have enough detections in the 

camera 𝐶2, Figure 3-11 shows a scenario when 𝜆 equals zero. This scenario occurs 

when two cameras are far away from each other in the initialization step. The total 

cost between the solid path and the dotted path are nearly the same, thus we may have 

chance to choose the dotted one, which is wrong, instead of the solid one when noise 

is included. If the number of elements in one axis is much less than the other, then the 

assignment may not be successive since the distance cannot provide enough 

information due to noise of visual features in the distance matrix. Here, the successive 

assignment means that assigned elements are next to each other, which satisfies the 
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ordering constraint that vehicles go through the tunnel in order and cannot disappear. 

Therefore, we select the path that assignments are more successive with the 

consideration of ordering constraint. For each assignment, we add the NS
2
 penalty 𝜆 

to the distance, multiplied by the number of steps from previous assignment. If the 

𝑓(𝑖, 𝑗) is far away from previous assignment, then the penalty is big enough to make 

miss match as final decision. We define 𝜆 = 𝛼𝜖 that is related to 𝜖 and 𝛼 is the 

weight. In our experiments 𝛼 = 0.01 is enough to accomplish the task. 

 

 

Figure 3-11. A scenario without Non-Spatiotemporal-Successiveness (NS
2
) penalty 𝜆 

(dotted path). 

 

3.5 Real-Time and Offline Vehicle Identification 

 

 This section describes our real-time and offline identification process. The first 

step is S
2
DP presented in Section 3.4. However, two problems show up in the S

2
DP: 

cannot run in real-time, and cannot assign order-changed vehicles. We employ two 

additional algorithms to solve the two problems after the S
2
DP. 
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 First, the S
2
DP cannot run in real-time since it requires a number of vehicles 

appear in both camera queues. For example, at least 15 vehicles are required to 

achieve reasonable accuracy in our experimental result in Section 4.2. Sometimes we 

would like to identify a vehicle immediately when it appears in the second camera, 

just like multi-camera vehicle tracking. If the initialization problem is solved by S
2
DP, 

we can lower the size of the search window and identify the corresponding vehicle 

with a small number of candidates in the queue. 

 

Another problem is that, if one vehicle changed its order in two cameras, the 

S
2
DP would fail to assign this vehicle. Figure 3-12 shows an example of the situation. 

Vehicle C is in front of vehicle B in the second camera and B cannot find proper 

assignment because the ordering constraint does not allow B in C2 to assign the one 

prior to C in C1. Hence B in C2 will get a “no-match” result. The problem will occur 

in two situations: one vehicle overtakes another one, or multiple driving lanes are in 

the video and the driving speed of one lane is faster than that of another one. Although 

in many tunnels overtaking of vehicles is not allowed, there are still vehicles not 

obeying the traffic rules. And in our dataset, we do not record which driving lane a 

detected vehicle was to make our work more flexible. Hence the problem is 

considered in this section. In fact the methods automatically detecting driving lanes in 

a surveillance video [14] [7] can be applied to our system for better vehicle detection. 
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Figure 3-12. The order of vehicle B and vehicle C in camera C1 are changed in 

another camera C2. S
2
DP algorithm can only assign one of them. 

 

The remaining sections are organized as follows: in Section 3.5.1 we will describe 

the Real-Time (RT) algorithm for fast assignment of a proper candidates using sliding 

window approach. If real-time processing is not required, another Offline Refinement 

(OR) algorithm to solve the problem with higher identification accuracy is presented 

in Section 3.5.2. 

 

3.5.1 Real-Time Identification 

 

Assume we finish the S
2
DP algorithm that all vehicles in the second camera are 

assigned. Then, if a new vehicle shows up in the second camera, we can assign a 

candidate to this vehicle in real time. Instead of considering a group of vehicles from 

two cameras in S
2
DP, the Real-Time (RT) algorithm only takes one vehicle in the 

latter camera for identification. RT does not have to wait for a number of vehicles 

passing by, thus achieve real-time processing. This section describes a simple greedy 

algorithm that achieves real-time processing of the identification problem.  

 

Given the computation result of the S
2
DP and a feature vector of one newly 

detected vehicle in the second camera, the RT assigns one candidate vehicle to the 

newly detected one. As we finish the initialization step using S
2
DP, a newly detected 
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vehicle in the second camera is possibly next to the last assigned one in the first 

camera. This property suggests us of using a sliding window approach to solve the 

problem.  

 

The Real-Time (RT) algorithm runs as follows. First set a search window in the 

detection queue of the first camera just around the last assigned vehicle in the S
2
DP, 

since a newly detected vehicle in latter camera is probably behind it according to the 

ordering constraint. Considering the example in Figure 3.8, the S
2
DP matches vehicle 

A to vehicle D. As vehicle E is detected in camera C2, the desired matching candidate 

in C1 is probably around vehicle D. The size of the window is limited to a small value 

for real-time processing, for example, five vehicles in our experiments. Notice that the 

detection queue of the first camera always contains unassigned vehicles since it is 

prior than the second camera. If a vehicle appears in the second camera, we calculate 

the feature vector of the detection and compute the distance to all vehicles in the 

search window of the first camera. The one in the first camera with the smallest 

distance is picked up and treated as the assignment result. If all distance values are 

greater than the matching threshold, which is greater than 2𝜖 in S
2
DP, a no-match is 

assigned. Finally we slide the search window to the next one in the detection queue of 

the first camera, and this process loops again. Figure 3-13 describes the RT algorithm 

in detail. As an execution example shown in Figure 3-14, only five candidates in C1 

are considered when vehicle E is detected in camera C2. The candidate with smallest 

distance is matched. Next five candidates are changed using sliding window approach 

for the next detected vehicle F in C2. Note that only the candidates in the search 

window are taken into consideration. The distance values of others, for example, 

candidate J, are not computed and are represented using dots.  
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Figure 3-13. The Real-Time (RT) algorithm. 

 

 

Figure 3-14. An example of RT. Each capital letter represents one vehicle, and the 

table is the distance matrix. Only the distance values of candidates are computed and 

presented using numbers. 

 

The RT algorithm allows one candidate in the first camera being matched to two 

or more new detections in the second camera. It is strange and erroneous that one 

vehicle became two in another camera. However in our experiments, we found that 

error may propagate if we do not enforce the property and produces poor 

identification results. Consider the scenario in Figure 3-15 that vehicle X in the first 

• Assume 𝑁  candidates in the search window of the first camera 

• For each newly detected vehicle in the second camera 

– Calculates the distances to 𝑁  candidates 

– Picks up the candidate with the smallest distance value 

– Outputs the selected one if the distance is less than threshold 

• Otherwise assign a no-match 

– Shifts the search window in the first camera 
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camera C1 is assigned to vehicle W in the second camera C2, which is an incorrect 

assignment. The algorithm would delete X from the candidate queue if we do not 

allow re-assignment. Next vehicle X in C2 was detected, however X in the candidate 

queue had already been erased and the assignment would certainly incorrect. If X in 

C2 still got another false assignment, then this error propagated. Therefore an 

incorrect assignment will possibly produce at least two errors in the final result.  

 

 

Figure 3-15. An example of error propagation if popping-candidate is allowed. In the 

beginning vehicle W is detected in C2 and erroneous matched vehicle X in C1. Next 

vehicle X is detected in C2, but X has already been removed from candidates thus 

cannot obtain correct result. 

 

Another characteristic is that the last assignment in the first camera has to be a 

correct assignment. Otherwise the initial position of the sliding window would be 

inappropriate and the correct candidate would never appear in the search window. 

Hence the whole real-time identification results would be wrong. To make sure the 

algorithm can correctly find the location of the sliding window, we discard the last 

three results in the S
2
DP and re-assign them in the RT. Using the S

2
DP algorithm can 
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make all assigned candidates close to each other by considering the NS
2
 penalty. 

However, the vehicles in the end of the matched group cannot be matched correctly 

since the last few vehicles of the group have too little information to be matched. 

Consequently, we discard the last three assignments and re-assign them in the RT.  

 

Finally, to enhance the effect of ordering constraint 𝜆 ∗ 𝑠𝑡𝑒𝑝  is added to all 

distance values, where 𝜆 is the NS
2
 penalty and 𝑠𝑡𝑒𝑝 is number of steps from 

previous assignment.  

 

3.5.2 Offline Refinement 

 

The RT algorithm can run in real-time, but the performance is limited because it 

only considers one vehicle for one assignment. As stated in the S
2
DP, the ordering 

constraint is an important feature and we should consider a group of vehicles instead 

of one. Therefore, we develop another algorithm Offline Refinement (OR) achieve 

higher accuracy. Another problem is that the S
2
DP algorithm cannot properly assign 

order-changed vehicles.  

 

We propose the Offline Refinement (OR) algorithm to solve these problems. We 

found that order-changed vehicles can be solved using a second pass assignment. 

Figure 3-16 shows an example that vehicle B and E are order-changed vehicles and 

cannot be assigned by S
2
DP. As vehicle B and vehicle E are both missed in camera C1 

and C2, we can re-assign the missed vehicles. In fact all order-changed vehicles will 

possibly leave un-assigned in S
2
DP. We can simply apply Hungarian algorithm to the 

vehicles that are missed in the S
2
DP. That is, vehicle B and vehicle E in Figure 3-16 

are matched using optimal assignment algorithm. 
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Figure 3-16. Example of the OR. The order of vehicle B and E changed, the S
2
DP 

algorithm can only assign one of them. The OR can re-assign B and E. 

 

The penalty 𝜆 ∗ 𝑠𝑡𝑒𝑝 is added to each element in the distance matrix, where 𝜆 

is NS
2
 penalty, and 𝑠𝑡𝑒𝑝 is the number of detections between two vehicles, just like 

in S
2
DP and RT. Similarly, after applying Hungarian algorithm in the OR, we will 

check the distance values of each assignment, and report miss detections if the value 

is greater than threshold 2𝜖, the same threshold value as in S
2
DP.  
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Chapter 4.  Experiments 

 This chapter presents the experiments on our proposed methods. First, we will 

introduce the manually labeled datasets for experiments in Section 4.1. Experiments 

on feature selection, the S
2
DP multi-camera identification, and real-time and offline 

methods are presented in Section 4.2, 4.3 and 4.4, respectively. Finally the discussions 

on the threshold 𝜖  in our algorithm and the performance on other datasets are 

discussed in Section 4.5. 

 

4.1 Datasets 

 

 The surveillance videos from five cameras in Hsuehshan tunnel, Taiwan [31] are 

collected. Every vehicle drives through five cameras from camera C1 to camera C5 

and the driving distance between each camera is one kilometer in average. We 

manually label 195, 195, 148, 150, 173 vehicles in C1 to C5, respectively, and each 

labeled vehicle is a colored image of size 40*40. Assume that all vehicles are 

presented in C1 and C2, and C3, C4, C5 including miss detections. The detection rate in 

each camera is 100%, 100%, 76%, 77%, and 89%, respectively. The numbers of 

order-changed vehicles in C1 to C5 with respect to C1 is 0, 6, 10, 12, and 19. Here we 

call this dataset as HsuehShanTunnel (HSTunnel).  

 

Another dataset HSTunnel_NO_MISS is a subset of HSTunnel. All five cameras 

contain 124 vehicles respectively, which is the intersection of all cameras in 

HSTunnel. Assume there is no miss detection in this dataset. The numbers of 

order-changed vehicles with respect to C1 are 0, 0, 5, 4, and 8 in C1 to C5, respectively. 

HSTunnel_NO_MISS can give us the best performance of our experiments since one 

major issue, miss detection, is removed. Figure 4-1 shows the examples of each 
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camera in HSTunnel, and the resolution is 352*240. Table 4-1 summarizes the 

properties of the two datasets, and sample images are presented in Figure 4-2. The X 

symbol represents miss detection in Figure 4-2. 

 

 
Figure 4-1. Five surveillance videos in Hsuehshan tunnel, Taiwan. 

 

 

Figure 4-2. Examples of HSTunnel and HSTunnel_NO_MISS. The X symbol 

represents miss detection. If one vehicle is miss-detected in one camera, it is removed 

from HSTunnel_NO_MISS, for example, vehicle 005. 
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Table 4-1. Properties of dataset HSTunnel. 

Dataset Camera #Vehicles Detection Rate #order-changed w.r.t. C1 

HSTunnel C1 195 100% 0 

C2 195 100% 6 

C3 148 76% 10 

C4 150 77% 12 

C5 173 89% 19 

HSTunnel 

_NO 

_MISS 

C1 124 100% 0 

C2 124 100% 0 

C3 124 100% 5 

C4 124 100% 4 

C5 124 100% 8 

 

It is worth noting that this work is focused on multi-camera identification. We 

assume that the vehicle detection and tracking processes have already executed. 

Therefore, the datasets in our experiments contain only manually detected vehicle 

images from different cameras, instead of raw videos. Experiments on single-camera 

vehicle detection and tracking can be found in [6] and [9], which use similar methods 

as in our system. 

 

4.2 Feature Selection 

 

To choose a proper feature descriptor for multi-camera vehicle identification, 

HSTunnel_NO_MISS dataset is selected to evaluate the distinctiveness of each 

feature described in Section 3.3. All vehicles in the dataset exist in all cameras. That is, 

no miss detection occurs in this dataset. First, we choose two out of five cameras in 

HSTunnel_NO_MISS dataset and calculate the 124*124 visual distance matrix. Next, 

for each row of the distance matrix, we can obtain the rank of the vehicle (row). Rank 
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𝑖 means the corresponding vehicle in the next camera (column) is the 𝑖th smallest 

distance value in the row. For example, rank 1 means the corresponding vehicle in the 

next camera has the smallest distance value with respect to all others in the row, 

which is the best result. Rank 2 means the correct vehicle has the second smallest 

distance value, and so on. Therefore, the HSTunnel_NO_MISS contains five cameras 

and each feature can obtain ten execution results by exhaustively choosing two 

cameras out.   

 

Same as the experiments in [23], we obtain the cumulative matching 

characteristic (CMC) curve. Assume that we have 𝑁  vehicles presented as 

𝑉 = {𝑉1, … , 𝑉𝑁} , and the 𝑟𝑎𝑛𝑘(𝑉𝑖)  means the rank value of vehicle 𝑉𝑖  where 

1 ≤ 𝑟𝑎𝑛𝑘(𝑉𝑖) ≤ 𝑁. The 𝐶𝑀𝐶(𝑟) of rank value 𝑟 can be defined as: 

𝐶𝑀𝐶(𝑟) =
#{𝑉𝑖|𝑟𝑎𝑛𝑘(𝑉𝑖) ≤ 𝑟}

𝑁
 

where #{ ∙} denotes the number of elements satisfying the condition. For 1 ≤ 𝑟 ≤

𝑁, we can obtain the CMC curve.  

 

For the Haar-like feature [11] used in feature extraction, we manually collect 900 

grayscale images of vehicles from eight tunnel videos as positive set, which is 

different from dataset HSTunnel, and 1800 negative samples randomly sampled from 

20 background images inside tunnels without vehicles. The resolution of training 

images is 24*24, where the resolution of our video is 352*240 pixels. The number of 

cascading stages is 10 and the total number of weak classifiers obtained from the 

training algorithm is 143. The trained detector is only used in the experiments of 

feature selection. 
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Figure 4-3. Average performance on different feature descriptors. 

 

Table 4-2. Average performance on CMC values of different feature descriptors. 

Feature Descriptor CMC(1) CMC(3) CMC(5) CMC(10) 

Image Intensity 32 44 50 60 

Haar-Features 14 20 24 33 

RGB Histogram 8 11 14 21 

Hue Histogram 7 13 14 23 

Opponent Histogram 5 10 11 17 

SIFT 39 50 51 60 

ORB 16 25 27 36 

OpponentSIFT 55 67 70 79 

 

Figure 4-3 depicts the average performances over the CMC value and different 

rank values, and Table 4-2 shows the CMC values with some rank value. The selected 

features are image intensity, Haar-like feature vector, color histograms, and keypoints 

descriptors. For color histograms, RGB, hue, and opponent color space are used in the 

0

20

40

60

80

100

1 11 21 31 41 51 61 71 81 91 101 111 121

C
M

C
 

Rank 

OpponentSIFT

Image Intensity

SIFT

ORB

HaarFeature

HueHistogram

RGBHistogram

OpponentHistogram



 

44 
 

experiments. And for keypoints descriptors, SIFT, ORB, and OpponentSIFT are tested. 

We can clearly observe that OpponentSIFT outperforms other feature descriptors in 

Figure 4-3. The result is similar to the recommendation in [24]. In conclusion, we 

choose OpponentSIFT as our feature descriptor.  

 

For tunnel surveillance, OpponentSIFT outperforms SIFT since OpponentSIFT 

considers color information but SIFT does not. As described in the previous section, 

the color and structure information of a vehicle are powerful visual information that 

should be considered.  

 

All color histogram descriptors perform poor in the experiments. Color is a 

strong feature in vehicles. However, many vehicles are mostly in the same color, 

especially in our experiments that we look at 124 vehicles at the same time. Therefore, 

using only color information is not sufficient for multi-camera identification.  

 

Finally, the Haar-feature vector used in [9] cannot achieve good result in CMC 

value of the experiment. It is used in vehicle classifier, which means all vehicles share 

the similar characteristics.  The Haar-feature vector we trained contains only 148 

dimensions with binary values, and it is not sufficient to describe all vehicles since 

most of the values are the same. 

 

4.3 Multi-Camera Vehicle Groups Matching 

 

This section presents the experiments on the multi-camera vehicle groups 

matching algorithms. By using the OpponentSIFT as feature descriptor, the 

assignment algorithms can be applied to match vehicles from two cameras. 
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Assume that we have 𝑁1
𝐶  vehicles in the first camera and 𝑁2

𝐶  vehicles in the 

second camera and 𝑁2
𝐶 ≤ 𝑁1

𝐶 . In the following experiments, we set 𝑁1
𝐶  as 50 and 

𝑁2
𝐶  from 1 to 50. Considering the order constraint in tunnels, the larger 𝑁2

𝐶  is, the 

higher accuracy can be achieved. For each vehicle in the second camera, a vehicle in 

the first camera is assigned to it or is assigned as “no-match” if all candidates are not 

suitable. The accuracy is the percentage of correct assignments over all 𝑁2
𝐶  vehicles 

in the second camera.  

 

Figure 4-4 shows an example of assignment result. The first two rows are the 

detected ID of vehicles in capital letters, and the third row is the output from some 

algorithm. For every vehicle in C2, the algorithm chooses one best-match vehicle from 

C1. The first four results are correct. The 3
rd

 result is correct because vehicle C is not 

in camera C1 and the algorithm assigns a no-match to it. Finally, the last two results 

are examples of incorrect assignment: vehicle F in C2 matches vehicle E, and vehicle 

G in C2 is claimed as no-match in C1 but vehicle G does exist. Therefore, the accuracy 

of this example is 4/6 = 67% . The experiments on these two cameras are 

represented as (C1, C2), where C1 is the first camera and C2 is the second camera.  

 

 
Figure 4-4. Example of an assignment result on (C1, C2). The first row is the 

candidate queue contains detections in camera C1, the second row in the second 

camera C2, and the third row is an example of execution result. 
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The experiments proceed as follows. First we randomly set a number as the 

starting index in two cameras, the following 𝑁1
𝐶  vehicles in the first camera and 𝑁2

𝐶  

vehicles in the second camera are used in the experiment. It is necessary because the 

order of vehicles in our dataset cannot change, and the number of vehicles is greater 

than 𝑁1
𝐶 . We randomly select 15 starting index and run 15 times independently, and 

take the average accuracy as the final result. After that we increase the value of 𝑁2
𝐶  

by one, and randomly execute 15 times again. Finally 𝑁2
𝐶  is tested from 5 to 50, and 

𝑁2
𝐶  is incremented by one after each iteration. 

 

Three methods are evaluated in the following experiments: S
2
DP, S

2
DP without 

NS
2
 penalty, and Hungarian algorithm. To evaluate the effectiveness of NS

2
 penalty, 

we include the result that NS
2
 penalty 𝜆 is set to zero. As a common solution of 

assignment problems, the Hungarian algorithm is selected as the baseline for 

performance comparison. The miss-match penalty 𝜖 in S
2
DP is set to 450 in all 

experiments, where discussions on the value of 𝜖 are presented in Section 4.5.1. 

Both HSTunnel and HSTunnel_NO_MISS are tested in the experiments.  

 

Figure 4-5 and Figure 4-6 show the results on every camera setting in HSTunnel 

and HSTunnel_NO_MISS, respectively. The x-axis is the value of 𝑁2
𝐶  and the y-axis 

is the corresponding accuracy. In HSTunnel, all methods perform poor in camera (C3, 

C5) and (C4, C5) when 𝑁2
𝐶  is small. Table 1 shows that camera C5 contains 173 

vehicles, whereas camera C3 contains only 148 vehicles. In other words, in total 25 

vehicles in the second camera (C5) cannot find corresponding candidates in the first 

camera (C3) because of miss detections. Therefore, the performance on (C3, C5) may 

decrease if the number of vehicles in second camera is not enough, same as in (C4, C5). 

Camera (C2, C3) does not have such problem even there are 47 vehicles miss in C3 
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since miss-detected vehicles in C3 are not candidates. The algorithms do not execute 

on miss-detected vehicles in the second camera, as illustrates in Figure 4-4, thus the 

performance on (C2, C3) does not have significant differences compared with (C3, C5). 

Figure 4-6 on HSTunnel_NO_MISS does not have this effect since there is no miss 

detection in HSTunnel_NO_MISS.  

 

Figure 4-7 shows the results on HSTunnel and HSTunnel_NO_MISS. The x-axis 

is the value of 𝑁2
𝐶  and the y-axis is the accuracy. All methods achieve higher 

accuracy in HSTunnel_NO_MISS than HSTunnel since there is no miss detection in 

HSTunnel_NO_MISS. The Hungarian algorithm does not work well because the 

visual feature is not robust enough to provide sufficient information. With NS
2
 penalty, 

the S
2
DP algorithm can achieve higher accuracy when 𝑁2

𝐶  is below 45 in 

HSTunnel_NO_MISS and 39 in HSTunnel, respectively, and achieves similar 

performance when 𝑁2
𝐶  value is near 𝑁1

𝐶 . The S
2
DP algorithm can reach 90% and 

80% accuracy when 𝑁2
𝐶  is greater than 6 and 30 in HSTunnel, respectively. Note that 

in HSTunnel the performance of S
2
DP drops when 𝑁2

𝐶  is greater than 45, because 

more order-changed vehicles are included. As described in Section 3.5, the S
2
DP 

cannot correctly identify order-changed vehicles. 

 



 

48 
 

 
Figure 4-5. Experimental result of vehicle groups matching algorithms on HSTunnel. 

The x-axis is the number of vehicles in C2 assigned, and y-axis is the accuracy. 
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Figure 4-6. Experimental result of vehicle groups matching algorithms on 

HSTunnel_NO_MISS. The x-axis is the number of vehicles in C2 assigned, and y-axis 

is the accuracy. 
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Figure 4-7. Average accuracy of multi-camera vehicle groups matching algorithms. 

 

4.4 Real-Time and Offline Vehicle Identification 

 

We evaluate the proposed real-time and offline identification algorithms in this 

section. In the first step we collect a set of vehicles in the second camera and run the 

S
2
DP algorithm to solve the initialization problem. Next we can apply the proposed 

real-time assignment or offline refinement algorithms.  

 

4.4.1 Real-Time Identification 

 

Similar to the experiments in Section 4.3, we randomly select one starting point 

and apply the real-time RT algorithm, as described in Section 3.5.1. The final result is 

the average accuracy of the 15 rounds of execution with random starting points.  

 

Table 4-3 summarizes the experimental settings and Figure 4.8 illustrates an 

example of experiments on HSTunnel. In Figure 4.8, the solid lines represent the 

number of vehicles used in the S
2
DP, and the dotted lines for the RT. Assume that 
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camera C1 starts at vehicle index i and C2 at j, where each vehicle is given an index 

numbered from 0 to 194 in HSTunnel (see Table 4-1). The S
2
DP algorithm identifies 

𝑗 th to (𝑗 + 29) th
 vehicles in C2, and the RT identifies (𝑗 + 27) th

 to (𝑗 + 59) th
 

vehicles. The (𝑗 + 27)th to (𝑗 + 29)th are re-identified in RT. Finally, in total 60 

vehicles are identified. 

 

Table 4-3. Experimental settings of the real-time methods. 

Dataset S
2
DP RT Total 

matched #vehicle 

in C1 

#vehicle 

in C2 

#vehicle 

in C1 

#vehicle 

in C2 

HSTunnel 50 30 35 33 60 

HSTunnel 

_NO_MISS 

50 20 30 28 45 

 

 

Figure 4-8. Example of real-time experiments on HSTunnel. The solid lines represent 

number of vehicles in the S
2
DP and dotted lines for the RT. Assume camera C1 starts 

at vehicle index i and C2 at j. 

 

We use different settings on HSTunnel and HSTunnel_NO_MISS in the 

experiments, since the performances of S
2
DP are different in the two dataset in 
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Section 4.3. For HSTunnel, the S
2
DP will assign 30 vehicles in the second camera 

from 50 candidates in the first camera, where the accuracy reached 80% in the 

experiments as described in Section 4.3. Next, in the RT, we assign the 28
th

 to 60
th

 

vehicles in the second camera from 35 candidates. Note that our RT algorithm 

re-assigns the last three vehicles in the S
2
DP, and therefore the S

2
DP assigns 30 

vehicles and the RT starts on the 28
th

 one. For candidates in the first camera, the RT 

starts with the one that is assigned to the 28
th

 vehicle of the second camera, and the 

following 35 candidates are searched in the RT. Finally, 60 vehicles are assigned in 

both S
2
DP and RT, and all of the 60 vehicles are taken into consideration when 

computing the accuracy. For HSTunnel_NO_MISS, the S
2
DP assigns 20 vehicles 

from 50 candidates, and the RT assigns 18
th

 to 45
th

 vehicles from 30 candidates. The 

accuracy considers for all 45 vehicles. For HSTunnel_NO_MISS, the S
2
DP assigns 20 

vehicles from 50 candidates, and the RT assigns 18
th

 to 45
th

 vehicles from 30 

candidates. 

 

To demonstrate the effect on different properties of RT algorithm, some parts are 

removed from RT in the experiments. Three properties in RT are: NS
2
 penalty 𝜆, 

re-assignment of the last three results from S
2
DP, and multiple assignments on one 

candidate. Therefore, we introduce three variants of RT algorithm. The first one is 

RT-w1 which sets NS
2
 penalty 𝜆 to zero so the effect on this penalty is discarded. 

Next the RT-w2 further discards the multiple-assignments property from RT-w2 and 

one candidate can be assigned only once. Finally, the RT-w3 discards all the three 

properties.  

 

Table 4-4 and Table 4-5 show the performances of different methods on 

HSTunnel and HSTunnel_NO_MISS, respectively. Each value in the table is average 
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accuracy of vehicle identification of two cameras (column) using different method 

(row). Note that the Hungarian algorithm, which is the baseline method, is an offline 

method. In both HSTunnel and HSTunnel _NO_MISS, all RT methods outperform 

Hungarian algorithm. The performance of real-time RT outperforms RT-w1, -w2, and 

-w3 methods. Note that camera settings (C3, C5) and (C4, C5) perform poor in 

HSTunnel. The reason is the same as mentioned in Section 4.3, where a number of 

miss detections exist in candidates of C3 and C4. Especially the RT in (C3, C5), most 

desired candidates are not in the search window, only 16% correctness can be 

obtained. 

 

Table 4-4. Average accuracy of real-time methods on HSTunnel. 

Method HSTunnel 

C1, 

C2 

C1, 

C3 

C1, 

C4 

C1, 

C5 

C2, 

C3 

C2, 

C4 

C2, 

C5 

C3, 

C4 

C3, 

C5 

C4, 

C5 

Avg 

Hungarian 

algorithm 
0.64 0.39 0.35 0.60 0.37 0.48 0.68 0.68 0.42 0.53 0.51 

S
2
DP 

+ RT-w3 
0.70 0.76 0.66 0.63 0.73 0.72 0.61 0.64 0.20 0.49 0.61 

S
2
DP 

+ RT-w2 
0.74 0.78 0.71 0.70 0.76 0.74 0.74 0.65 0.21 0.54 0.66 

S
2
DP 

+ RT-w1 
0.90 0.83 0.72 0.71 0.82 0.75 0.77 0.58 0.24 0.51 0.68 

S
2
DP 

+ RT 
0.92 0.86 0.76 0.80 0.84 0.78 0.78 0.65 0.37 0.60 0.74 
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Table 4-5. Average accuracy of real-time methods on HSTunnel_NO_MISS. 

Method HSTunnel_NO_MISS 

C1, 

C2 

C1, 

C3 

C1, 

C4 

C1, 

C5 

C2, 

C3 

C2, 

C4 

C2, 

C5 

C3, 

C4 

C3, 

C5 

C4, 

C5 

Avg 

Hungarian 

algorithm 
0.72 0.64 0.55 0.60 0.56 0.73 0.75 0.83 0.61 0.78 0.68 

S
2
DP 

+ RT-w3 
0.65 0.57 0.51 0.56 0.51 0.61 0.61 0.79 0.52 0.60 0.59 

S
2
DP 

+ RT-w2 
0.77 0.73 0.67 0.70 0.61 0.80 0.73 0.83 0.65 0.71 0.72 

S
2
DP 

+ RT-w1 
0.91 0.83 0.80 0.83 0.73 0.86 0.78 0.91 0.75 0.83 0.82 

S
2
DP 

+ RT 
0.93 0.87 0.88 0.84 0.80 0.88 0.85 0.92 0.75 0.84 0.86 

 

4.4.2 Offline Refinement 

 

Our offline algorithm OR is compared with Hungarian algorithm, S
2
DP, and the 

state-of-the-art algorithm, Hungarian Voting (HV) [9], for multi-camera vehicle 

identification in tunnels. 

 

The Hungarian Voting algorithm [9] for multi-camera identification runs as 

follows. In the beginning, it pushes 𝑁𝐻 detected vehicles into respective queues for 

two cameras, and obtains the 𝑁𝐻 × 𝑁𝐻  distance matrix. Next the Hungarian 

algorithm is applied to the distance matrix, and the assigned row-column pairs are 

treated as votes of valid results. The matched pair (of vehicles from two cameras) 

with highest votes is returned as result and the two corresponding elements are 

removed from queues. Finally two following detections in two cameras are pushed 

into two queues and loop the process. We set 𝑁𝐻 = 10 in our experiments which has 

reasonable performance.  
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In addition, the Hungarian Voting algorithm cannot solve the initialization 

problem described in Section 3.5. HV performs poorly in HSTunnel which requires 

solving the problem first. Therefore, we apply the S
2
DP algorithm in the first step, 

followed by HV for offline assignments. This method is called S
2
DP+HV and is used 

in HSTunnel dataset. S
2
DP+HV is not included in experiments on 

HSTunnel_NO_MISS since this dataset does not require solving the initialization 

problem, and the performance is the same as HV.  

 

Similar to the experiments in Section 4.3, we leave 𝑁1
𝐶  candidates in the first 

camera and assigned by 𝑁2
𝐶  vehicles in the second camera. Here 𝑁1

𝐶  is set as 65, 

and 𝑁2
𝐶  is set as 60. Table 4-6 shows the experimental results on HSTunnel and 

HSTunnel_NO_MISS, respectively. The tested methods are S
2
DP, Hungarian 

algorithm, OR, Hungarian-voting from related work, and S
2
DP+HV.  

 

As shown in Table 4-6, OR outperforms S
2
DP and Hungarian Voting. As stated 

before, the performance of Hungarian-voting drops dramatically in HSTunnel, and it 

is even worse than baseline Hungarian algorithm. The Hungarian Voting does not 

include the initialization problem, so that proper candidates would not present in the 

search window in the whole processing. The result of the refined S
2
DP+HV method is 

shown in the last column of Table 4-6, yet our proposed method still outperforms 

S
2
DP+HV.  
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Table 4-6. Comparison of average accuracy using different offline methods. 

Dataset Hungarian 

algorithm 

Hungarian 

voting (HV) 

S
2
DP+HV S

2
DP OR 

HSTunnel 
0.524 0.320 0.718 0.865 0.820 

HSTunnel 

_NO_MISS 
0.630 0.848 N/A 0.939 0.971 

 

4.5 Discussions 

 

The parameter settings of our proposed algorithms are discussed in this section. 

In addition, two more datasets are included to further verify our methods. 

 

4.5.1 Miss-Match Penalty  

 

The miss-match penalty 𝜖 plays an important role in our algorithm. Section 

3.4.2 describes the semantic meaning of 𝜖 that the value is around half of the 

matching (assignment) distance threshold. However, it is still difficult to determine 

the maximum distance in applications.  

 

Take a look at the example of the distance matrix in Figure 4-9. Ideally the 

algorithm will assign vehicles at (1, 3), (2, 4) and (3, 5) since the three distance values 

are smaller than others. In fact, most values in the distance matrix are greater than 

those matched points. This gives us inspiration to use the average value of the 

distance matrix as matching threshold, which equals to 2𝜖. The detail of miss-match 

penalty is discussed in Section 3.4.1. 
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Figure 4-9. An example of distance matrix. Most distance values are greater than 

those matched ones. 

 

We test our S
2
DP with different values of 𝜖. The experiment assigns 30 vehicles 

in the second camera from 65 candidates in the first camera by increasing the value of 

ϵ by 10 each time. The result is the average accuracy of 15 iterations of random 

starting points.  

 

Figure 4-10 shows the experimental results on HSTunnel and HSTunnel 

_NO_MISS, where the x-axis is miss-match penalty 𝜖 and the y-axis is the average 

accuracy. In HSTunnel_NO_MISS, the 𝜖  value greater than 440 gets similar 

performance since there is no miss detection. The best 𝜖 value is 430 in HSTunnel 

and the performance reduces when 𝜖 becomes larger. Because HSTunnel contains 

miss detections, the algorithm cannot claim misses if the 𝜖 is too large and thus 

decreases accuracy. Especially in both (C3, C5) and (C4, C5) which contain many miss 

detections, the accuracy drops when 𝜖 is greater than 450.  
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Figure 4-10. Experiments on miss-match penalty 𝜖 of two datasets. The x-axis is the 

value of penalty, the y-axis is corresponding accuracy. 
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Table 4-7 and Table 4-8 show the performance on using half of average distance 

of distance matrix as 𝜖 and one of the best result in Figure 4-10. The first column is 

the tested cameras, the second and the third columns show the half value of average 

distance in the distance matrix and the corresponding accuracy using this value. The 

fourth and fifth columns are the best result in Figure 4-10. Finally the last column 

shows the difference between the third and the fifth column. Although the 

performance drops when using average distance as 2𝜖, the average differences in 

accuracy are 0.042 and 0.060 in HSTunnel_NO_MISS and HSTunnel, respectively. 

As a result, we can use average value in distance matrix as 2𝜖 with at most 6% 

accuracy loss. Besides, we can use the half value of average distance in the distance 

matrix as initial condition and find the best value manually.  

 

Table 4-7. Comparison on the average-distance strategy and the best case of 

miss-match penalty 𝜖 on HSTunnel. 

Camera AvgDistance 

÷2 as 𝜖 

Accuracy Best 𝜖 Accuracy Difference 

in accuracy 

(C1,C2) 427 0.957 530 0.976 0.019 

(C1,C3) 426 0.858 540 0.896 0.038 

(C1,C4) 427 0.702 540 0.789 0.087 

(C1,C5) 428 0.807 460 0.822 0.015 

(C2,C3) 430 0.807 450 0.915 0.108 

(C2,C4) 431 0.800 440 0.813 0.013 

(C2,C5) 430 0.764 460 0.833 0.069 

(C3,C4) 419 0.924 420 0.924 0.000 

(C3,C5) 429 0.656 420 0.873 0.217 

(C4,C5) 430 0.891 420 0.927 0.036 

Average N/A 0.817 N/A 0.877 0.060 
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Table 4-8. Comparison on the average-distance strategy and the best case of 

miss-match penalty 𝜖 on HSTunnel_NO_MISS. 

Camera AvgDistance 

÷2 as 𝜖 

Accuracy Best 𝜖 Accuracy Difference 

in accuracy 

(C1,C2) 425 0.976 460 0.998 0.022 

(C1,C3) 425 0.904 460 0.956 0.052 

(C1,C4) 426 0.924 450 0.962 0.038 

(C1,C5) 428 0.891 450 0.911 0.020 

(C2,C3) 430 0.824 480 0.971 0.147 

(C2,C4) 430 0.938 500 0.957 0.019 

(C2,C5) 430 0.864 440 0.916 0.052 

(C3,C4) 418 0.944 460 0.956 0.012 

(C3,C5) 429 0.876 440 0.922 0.046 

(C4,C5) 430 0.924 420 0.931 0.007 

Average N/A 0.907 N/A 0.948 0.042 

 

4.5.2 More Datasets 

 

We further test proposed algorithms on two more tunnel datasets. Figure 4-11 is 

some examples of datasets HSTunnel2 and BGTunnel. 

 

Figure 4-11. Examples of datasets HSTunnel2 and BGTunnel. 
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The HSTunnel2 contains two cameras in Hsuehshan tunnel, Taiwan [31], but in 

different driving direction of HSTunnel. We manually labeled 65 vehicles in the first 

camera and 60 in the second camera, and there is no miss detection and no 

order-changed vehicle included. The first five vehicles in the second camera are 

absent in the first camera, which satisfies the condition of initialization problem 

described in Section 3.4.1. The driving distance between two cameras is about two 

kilometers.  

 

The BaGuashanTunnel (BGTunnel) dataset contains two cameras in Baguashan 

tunnel, Taiwan [31], which contains 65 vehicles in the first camera and 60 vehicles in 

the second camera. Five miss detections and six order-changed vehicles are included. 

This dataset is more challenging than HSTunnel2 due to the different camera 

viewpoints. In addition, the color information is poor since every vehicle looks 

monotonic in the tunnel.  

 

Four methods are tested on HSTunnel2 and BGTunnel: real-time RT, offline OR, 

baseline Hungarian algorithm, and S
2
DP+HV modified from related work. Table 4-9 

shows that RT and OR outperform S
2
DP+HV and are superior to Hungarian algorithm 

in both HSTunnel2 and BGTunnel datasets.  

 

Table 4-9. Average identification accuracy on HSTunnel2 and BGTunnel datasets. 

Method HSTunnel2 BGTunnel 

RT (proposed) 0.933 0.700 

OR (proposed) 0.983 0.767 

Hungarian algorithm 0.695 0.317 

S
2
DP+HV (related work) 0.915 0.450 
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    Finally, the performance of all methods in dataset HSTunnel, HSTunnel2, and 

BGTunnel3 are summarized in Figure 4-12. The x-axis is the datasets with different 

methods and the y-axis is the average accuracy. The OR outperforms all other 

methods. The performances of RT and S
2
DP+HV are similar, but RT can run in 

real-time and S
2
DP+HV cannot.  

 

 

Figure 4-12. Overall performance of all methods in datasets HSTunnel, HSTunnel2, 

and BGTunnel. The x-axis is the datasets and the y-axis is the average accuracy. 
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Chapter 5.  Conclusion and Future Work 

 

 This thesis has proposed a system for multi-camera vehicle identification in 

tunnel surveillance videos. As vehicles drive through a tunnel, they appear in all 

surveillance cameras. By applying the proposed algorithms, vehicles from different 

cameras can be identified.  

 

In the beginning, vehicles are detected with Haar-like feature detector and 

transformed to a visual feature vector using OpponentSIFT descriptor in an individual 

camera video. After the system collects a set of vehicles in multiple cameras for a 

while, the proposed Spatiotemporal Successive Dynamic Programming (S
2
DP) 

algorithm is applied to identify vehicles across two cameras by considering the 

ordering constraint in a tunnel.  

 

Usually there are two major requirements in a multi-camera traffic system, 

real-time tracking and offline identification. Therefore, two algorithms are proposed 

for the two purposes, respectively. The Real-Time RT algorithm gives an assignment 

strategy for fast candidate selection and can be used in multi-camera 

tracking-by-identification. Another algorithm is the Offline Refinement OR that 

refines the result of the S
2
DP using Hungarian algorithm that achieves better 

performance. Meanwhile, practical issues such as initialization problem and error 

handling are taken into consideration in our proposed system.  

 

Comprehensive experiments on every part of the system are provided using three 

manually labeled tunnel surveillance datasets. The three datasets include not only 

labeled vehicles, but also miss detected vehicles and order-changed vehicles. The 
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proposed RT and OR algorithms demonstrate good performance on different datasets, 

and both outperform state-of-the-art algorithms.  

 

 Mixing information from more than two cameras is left for future work. A 

miss-detected vehicle in one camera can be recovered using the information from the 

cameras in behind. Alarms can be triggered if one vehicle is miss-detected in 

consecutive cameras, since vehicles must pass all cameras. In addition, we would like 

to extend the multi-camera vehicle identification system to regular highway traffic in 

the future. 
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