

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

隧 道 監 控 系 統 之 多 攝 影 機 車 輛 辨 識

Multi-Camera Vehicle Identification

in Tunnel Surveillance System

研 究 生：朱明初

指導教授：李素瑛 教授 、 陳華總 教授

中 華 民 國 一 百 零 二 年 七 月

i

隧道監控系統之多攝影機車輛辨識

研究生：朱明初 指導老師：李素瑛 教授

陳華總 教授

國立交通大學資訊科學與工程研究所

摘 要

 隧道內交通意外往往會造成巨大災害且難以處理，因此有大量監視攝影機裝

設於隧道中，可即時發現事故並監控路況。但通常並沒有足夠的人力來觀看大量

的監視器畫面，使得自動化監控系統的需求增加。本論文提出一種多攝影機車輛

辨識系統，利用隧道內多攝影機的監視器畫面追蹤行車在隧道內的位置。

 於單一監視器畫面中，使用 Haar-like 特徵偵測找出車輛，並取出

OpponentSIFT 影像特徵。接著，本論文提出的空間時間連續關係動態規劃(S2DP)

演算法，利用隧道內行車順序關係性，辨識前後兩台攝影機中所偵測到的車輛。

此外亦提供兩種進階辨識方法，包含即時運算(RT)方法以及非即時加強處理(OR)。

即時運算方法減少車輛配對之搜尋範圍，並快速比對兩攝影機內之車輛。而非即

時方法針對空間時間連續關係動態規劃演算法中無法有效配對的行車做進一步

處理。

 實驗結果顯示所提出之多攝影機車輛辨識系統可得到滿意的準確程度，並優

於其他相關演算法。

關鍵字：影像監控、隧道監控、多攝影機車輛辨識、智慧交通系統

ii

Multi-Camera Vehicle Identification

in Tunnel Surveillance System

Student: Ming-Chu Chu Advisor: Prof. Suh-Yin Lee

Prof. Hua-Tsung Chen

Department of Computer Science,

National Chiao Tung University

Abstract

Surveillance cameras are widely equipped in tunnels to monitor the traffic

condition and traffic safety issues. Identifying vehicles from multiple cameras within

a tunnel automatically is essential to analyze traffic condition through the road. This

thesis proposes a multi-camera vehicle identification system for tunnel surveillance

videos.

Vehicles are detected using Haar-like feature detector and their image features

are extracted using OpponentSIFT descriptor in single camera. The proposed

Spatiotemporal Successive Dynamic Programming (S
2
DP) algorithm identifies

vehicles from two cameras by considering the ordering constraint in the tunnel

environment. Next, two methods Real-Time (RT) algorithm and Offline Refinement

(OR) algorithm are proposed for different requirements. The RT fast identifies

vehicles in real-time by searching a limited range of candidates, and the OR refines

the identification result from the S
2
DP.

Comprehensive experiments on various datasets demonstrate the satisfactory

iii

performance of the proposed multi-camera vehicle identification methods, which

outperform state-of-the-art algorithms.

Keyword: video surveillance, tunnel surveillance, multi-camera vehicle identification,

intelligent transportation system

iv

Acknowledgements

I would like to thank my advisor Prof. Suh-Yin Lee and Prof. Hua-Tsung Chen

who gave me strong advices, valuable comments and precious experiences on doing a

research and gave me the chance to work on my own. This thesis cannot be as

complete as now without their grateful assistance.

I would like to thank Mr. Chien-Li Chou for our extensive discussions on our

research topic every day. I also would like to thank all staff in the Information System

Laboratory, NCTU, for their support and encouragement.

Thanks to my father, my mother, and my brother. Thanks to my lovely family.

v

Table of Contents

Abstract (Chinese) .. i

Abstract (English) .. ii

Acknowledgements ... iv

Table of Contents ... v

List of Figures .. vii

List of Tables .. x

Chapter 1. Introduction .. 1

Chapter 2. Related Work .. 6

2.1 Video Surveillance Systems ... 6

2.2 Object Detection and Tracking .. 8

2.2.1 Object Detection ... 8

2.2.2 Object Tracking ... 10

2.3 Multi-Camera Object Identification and Tracking ... 10

Chapter 3. Multi-Camera Vehicle Identification .. 13

3.1 An Overview of the Proposed Framework... 13

3.2 Vehicle Detection and Tracking in Single Camera .. 16

3.2.1 Vehicle Detection .. 16

3.2.2 Vehicle Tracking ... 18

3.3 Feature Extraction .. 19

3.3.1 Image Intensity.. 20

3.3.2 Color Histograms .. 21

3.3.3 Haar-Like Feature Vector .. 22

vi

3.3.4 Keypoints Descriptors ... 22

3.4 Multi-Camera Vehicle Groups Matching ... 25

3.4.1 Spatiotemporal Successive Dynamic Programming (S
2
DP)............... 26

3.5 Real-Time and Offline Vehicle Identification .. 31

3.5.1 Real-Time Identification ... 33

3.5.2 Offline Refinement ... 37

Chapter 4. Experiments .. 39

4.1 Datasets .. 39

4.2 Feature Selection .. 41

4.3 Multi-Camera Vehicle Groups Matching ... 44

4.4 Real-Time and Offline Vehicle Identification .. 50

4.4.1 Real-Time Identification ... 50

4.4.2 Offline Refinement ... 54

4.5 Discussions .. 56

4.5.1 Miss-Match Penalty .. 56

4.5.2 More Datasets ... 60

Chapter 5. Conclusion and Future Work .. 63

Bibliography .. 65

vii

List of Figures

Figure 1-1. An example of a tunnel surveillance system. ... 3

Figure 3-1. System framework. ... 14

Figure 3-2. Haar-like features. Each feature is the difference between sums of

intensities of two rectangle region. ... 17

Figure 3-3. The cascading scheme of Haar-like feature detector. 17

Figure 3-4. Detection fails using Mixture of Gaussians (MoG) background subtraction.

Reflections on walls are treated as detected objects. 18

Figure 3-5. Examples of four vehicles in four different cameras. The size, pose, color,

and reflections on windows are different in different cameras. 20

Figure 3-6. A general illustration of keypoints descriptors. .. 23

Figure 3-7. Assignment problem in multi-camera vehicle identification. 26

Figure 3-8. An example scenario on multi-camera vehicle identification. Assume each

capital letter represents an individual vehicle. .. 27

Figure 3-9. An illustration of S
2
DP algorithm... 29

Figure 3-10. Decision of miss-match penalty 𝜖. From location A to B in the cost

function 𝐹, the total cost will add two 𝜖 or one assignment cost. 30

Figure 3-11. A scenario without Non-Spatiotemporal-Successiveness (NS
2
) penalty 𝜆

(dotted path). ... 31

Figure 3-12. The order of vehicle B and vehicle C in camera C1 are changed in another

camera C2. S
2
DP algorithm can only assign one of them. 33

Figure 3-13. The Real-Time (RT) algorithm. .. 35

Figure 3-14. An example of RT. Each capital letter represents one vehicle, and the table

viii

is the distance matrix. Only the distance values of candidates are computed

and presented using numbers. ... 35

Figure 3-15. An example of error propagation if popping-candidate is allowed. In the

beginning vehicle W is detected in C2 and erroneous matched vehicle X in

C1. Next vehicle X is detected in C2, but X has already been removed from

candidates thus cannot obtain correct result. .. 36

Figure 3-16. Example of the OR. The order of vehicle B and E changed, the S
2
DP

algorithm can only assign one of them. The OR can re-assign B and E. .. 38

Figure 4-1. Five surveillance videos in Hsuehshan tunnel, Taiwan. 40

Figure 4-2. Examples of HSTunnel and HSTunnel_NO_MISS. The X symbol

represents miss detection. If one vehicle is miss-detected in one camera, it

is removed from HSTunnel_NO_MISS, for example, vehicle 005. 40

Figure 4-3. Average performance on different feature descriptors. 43

Figure 4-4. Example of an assignment result on (C1, C2). The first row is the candidate

queue contains detections in camera C1, the second row in the second

camera C2, and the third row is an example of execution result. 45

Figure 4-5. Experimental result of vehicle groups matching algorithms on HSTunnel.

The x-axis is the number of vehicles in C2 assigned, and y-axis is the

accuracy. .. 48

Figure 4-6. Experimental result of vehicle groups matching algorithms on

HSTunnel_NO_MISS. The x-axis is the number of vehicles in C2 assigned,

and y-axis is the accuracy. ... 49

Figure 4-7. Average accuracy of multi-camera vehicle groups matching algorithms. 50

Figure 4-8. Example of real-time experiments on HSTunnel. The solid lines represent

number of vehicles in the S
2
DP and dotted lines for the RT. Assume camera

C1 starts at vehicle index i and C2 at j. .. 51

ix

Figure 4-9. An example of distance matrix. Most distance values are greater than those

matched ones. .. 57

Figure 4-10. Experiments on miss-match penalty 𝜖 of two datasets. The x-axis is the

value of penalty, the y-axis is corresponding accuracy. 58

Figure 4-11. Examples of datasets HSTunnel2 and BGTunnel................................... 60

Figure 4-12. Overall performance of all methods in datasets HSTunnel, HSTunnel2,

and BGTunnel. The x-axis is the datasets and the y-axis is the average

accuracy. .. 62

x

List of Tables

Table 4-1. Properties of dataset HSTunnel. ... 41

Table 4-2. Average performance on CMC values of different feature descriptors. 43

Table 4-3. Experimental settings of the real-time methods. .. 51

Table 4-4. Average accuracy of real-time methods on HSTunnel. 53

Table 4-5. Average accuracy of real-time methods on HSTunnel_NO_MISS. 54

Table 4-6. Comparison of average accuracy using different offline methods. 56

Table 4-7. Comparison on the average-distance strategy and the best case of

miss-match penalty 𝜖 on HSTunnel. .. 59

Table 4-8. Comparison on the average-distance strategy and the best case of

miss-match penalty 𝜖 on HSTunnel_NO_MISS. 60

Table 4-9. Average identification accuracy on HSTunnel2 and BGTunnel datasets. .. 61

1

Chapter 1. Introduction

In recent years, video cameras are equipped everywhere in our daily life due to

the affordable price and easy installation of devices. People can record a mass amount

of events passing though the scene by storing the data within videos. However, most

of videos contain a lot of redundancies. What we care about is only very small subsets

or portions of the videos with semantic meanings. For example, in a traffic

surveillance system, what we are interested in is the traffic density of a road section [1]

or whether an incident happened [2], and then we can select other path to avoid those

sections. For cameras set on streets, we would like to know how many pedestrians

passed [3] or if there is any unusual activity [4]; in our living room, system may send

alarms if elderly people fall on floor or some dangerous events occur [5]. Therefore,

methods to retrieve and summarize useful data efficiently are essential for handling

the huge amount of videos.

Research topics on surveillance systems have been discussed in the last decades,

for example, object detection, tracking and identification, scene understanding, and

event detection [6] [7] [8] [9]. Although different applications are developed for

different scenarios, many basic techniques can be applied to most of the surveillance

videos. Object detection is usually the first step of a surveillance system to locate the

region of interests (ROI), precisely, the object within a scene. After a sequence of

video frames is processed, we need to know whether two detected objects from two

frames are the same one. This is called object identification or object tracking.

Trajectories and paths of detected objects are collected after tracking objects in a

period of time. We can use the information to retrieve high-level semantics, such as

2

the number of vehicles passed by and events, car accidents for example.

A traffic surveillance system can reveal various kinds of information. We can

monitor the traffic condition by analyzing the videos collected from cameras installed

along roads and highways. Intuitively, traffic data like the level of driving speed or the

number of vehicles passing by can be provided to drivers or used in navigation

systems to avoid congestion areas. Another type of information is whether a specific

event happens, like traffic accidents or traffic rule violation. The police nearby can

receive alarms from the control center and come to the location quickly. For long-time

monitoring, traffic data are stored in databases and we can discuss issues on a road

section about congestion or retrieve historic records about some specific vehicles

driven by criminals.

In recent years, researchers focus on tunnel surveillance since accidents in a

tunnel may cause serious problems [10]. The traffic agency monitors the traffic

condition of a tunnel using multiple surveillance cameras and tries to discover unusual

events in real-time. However, that is not an easy task since in most of time monitoring

is nothing interesting and makes workers hard to concentrate on the screens. Another

shortcoming is that sometimes there are not enough cameras to cover the whole tunnel

scene. There are temporal and spatial gaps between videos. Therefore, it is necessary

to develop a computer system that can automatically provide precise and brief

information. Figure 1-1 shows an example of a tunnel surveillance system that

contains multiple cameras. Many surveillance systems on day-time traffic can be

directly applied to tunnels because major features are the same as in tunnels. However,

more challenges such as poor illumination conditions are present. It is worth

considering more aspects on tunnels than on day-time traffic to achieve better

3

performance.

Figure 1-1. An example of a tunnel surveillance system.

There are several difficulties for traffic surveillance: low resolution, less frame

rate, limited view, and camera sensor noises. Since we have to install a huge number

of cameras and to store a mass amount of video data, the price of camera is relatively

low and the size of data should be as small as possible. That lowers the quality of

videos and makes the analysis of videos more challenging. In addition, there are some

differences between surveillance systems on highways and on tunnels. Most systems

on road can only work in day-time. In this case, many basic algorithms can be applied

due to sufficient light. However, illumination effects usually exist in tunnels,

producing more noise and unpredictable troubles. Fortunately, there are still some

benefits in the environments of tunnels, like fewer lanes, more strict driving

constraints, and the 24-hour system with the same lighting condition.

4

Another issue is that many traffic surveillance systems do not consider about

information between two or more cameras. As a car is driven on a road through

multiple cameras, we would first like to know whether two vehicles in two videos are

the same. This task is called multi-camera object tracking or multi-camera object

identification. It is more challenging than tracking in a single camera, because the

view points, poses and lightings are different. These differences may make the visual

appearances of an object different in different cameras. Sometimes we cannot track a

vehicle across cameras because there are time and space gaps in between. However,

we can still identify them by considering the features of each vehicle. A naïve method

to identify vehicles between cameras is obtaining the unique license plate number

using license plate recognition. However, it is usually not available in a surveillance

system due to the poor quality of videos. Hence the robust image features are needed

for multi-camera object identification.

In this thesis, we propose a multi-camera vehicle identification system in tunnels.

First vehicle detection and tracking are performed in single tunnel surveillance video

using Haar-feature-based cascade detector [11]. After images of vehicles are collected

from videos, the visual features of images are then extracted. Features such as color

histograms, Haar-like feature vector, SIFT-based feature points and template matching

in pixel domain are studied and evaluated by experiments. Next we propose a

multi-camera vehicle identification method to identify vehicles between two

non-overlapping views of different cameras using calculated feature vectors. The first

step is the Spatiotemporal Successive Dynamic Programming (S
2
DP) algorithm that

matches vehicles in two cameras. And then two different algorithms for real-time

tracking and offline refinement are proposed for different requirements: the

Real-Time (RT) and the Offline Refinement (OR) algorithms following S
2
DP,

5

respectively. Finally the experiments and discussions on proposed methods are

presented in this thesis.

The remaining of this thesis is organized as follows. In Chapter 2, we introduce the

related work about surveillance video analysis. Chapter 3 describes the proposed

tunnel surveillance system and the multi-camera vehicle identification methods. The

experiment settings and experimental results are presented and discussed in Chapter 4.

Finally, conclusions and discussions of future work are in Chapter 5.

6

Chapter 2. Related Work

In this chapter, we review the related literatures of video surveillance systems.

A survey on methods of object detection, tracking, and multi-camera object

identification is presented.

2.1 Video Surveillance Systems

Video surveillance systems are widely used nowadays since cameras are installed

everywhere. Applications can be briefly divided by their operating environments, like

in-door or out-door and for vehicles or pedestrians. Nevertheless most systems share

similar characteristics and require common techniques.

Excellent video processing and computer vision techniques are necessary for a

video surveillance system. Researchers try to retrieve useful information and

understand the semantics from videos since it is intuitive for human obtaining

information from what we see. Buch et al. [12] review the state-of-the-art computer

vision techniques for urban traffic system. The common challenges include poor

quality of data, wide range of operational conditions and environments, and real-time

processing. Key techniques to establish a video-based traffic system are foreground

segmentation, shadow removal, feature selection, object classification, and tracking,

which are common research topics in computer vision. Zhang et al. [13] survey recent

research on data-driven intelligent transportation systems (ITS). The main

components of data are from videos, because people are more familiar with visual

information. Applications like vehicles or pedestrian detection and tracking, behavior

7

analysis, incident detection, density estimation are discussed often. And systems can

be extended by mixing data from different sensors like global positioning system

(GPS), laser or infrared radars.

A traffic surveillance system can provide not only real-time processing like

vehicle tracking or event detection, but also offline analysis, traffic condition

investigation or database indexing for example. Feris et al. [6] propose a system for

large-scale indexing of vehicles in a video surveillance system. The idea is providing

a database of vehicles in urban environment, with semantic attributes like time, color,

size, etc. This can help police easily search for suspicious vehicles and reduce efforts

in criminal investigation process. They use some easy but strict constraints to

automatically collect and generate a large amount of training patches for vehicle

detectors of Haar-based features. Then attributes like time, color, driving direction,

color, size, speed, are retrieved for each detected vehicles, and the information is

stored into a database.

Sometimes we would like to know the semantic of a scene instead of a specific

object, which leads to the topic of scene understanding. For example, the system can

automatically discover the moving directions of crowds [8], or the driving paths of

vehicles in a scene [14]. The trajectories and motion flows of moving objects can

provide features of regular activities. Hence we can discover unusual events by

analyzing outliers and anomalies. Atev et al. [14] and Morris and Trivedi [7] try to

model the driving behaviors of a road scene in a surveillance video. Since a vast

amount of cameras have already been set on road sections and activities might change

often, it is necessary to develop an unsupervised way to build the model automatically.

By collecting the trajectories of vehicles passing through the scene, both methods

8

apply clustering algorithms and treat each cluster as a usual activity. Morris and

Trivedi [7] then train a Hidden Markov Model (HMM) for each activity that can be

used as a trajectory classifier. Finally when a new trajectory is obtained, its distance to

each cluster can be calculated and abnormal events can be detected. In another aspect,

the normal behavior of a road scene can help object detection and tracking. Additional

information could assist to predict where the object might be and where it would

possibly move to.

2.2 Object Detection and Tracking

A surveillance video contains both specific objects that we are interested in and

other unrelated regions, and therefore object detection is usually the first step in a

system. As objects are detected in each frame, we need to know whether two

detections from two consecutive frames belong to the same object. This requires

tracking of each object. Usually both steps are required in a video surveillance system

to provide information for further processing.

2.2.1 Object Detection

Sometimes the objects might move, and background subtraction [15] [16] [17]

can be applied to videos to obtain those moving objects. Still there are some object

detection algorithms in image processing domain like face detection [11] and

pedestrian detection [18] techniques, which can also be applied to surveillance video

[9] [19] .

9

Background subtraction is a scheme to detect moving objects in videos from

static cameras [15], which computes the difference between current frame and a

background model, considering the idea that an object is likely different from the

background. This is widely applied to surveillance systems since cameras usually are

static, and the computation cost is relatively lower than object detection methods. The

commonly used approaches include running Gaussian average [20] and Mixture of

Gaussians (MoG) [17], which consider the background model as a normal distribution

or a mixture of them in pixel domain and detecting foreground object if it is different

from the distribution. Brutzer et al. [16] evaluate commonly used and

state-of-the-art background subtraction algorithms. The testing scenarios contain

dynamic background, darkening, light switch, noise, shadow, and recommended some

state-of-the-art algorithms. However, they also state that most background subtraction

methods would fail in conditions like noisy night and sudden lighting change, which

are quite common in tunnel environments.

Another approach is appearance-based object detection, where the desired

objects share common characteristics in an image. Examples include Haar-like feature

with cascade classifier [11] and Histogram of Oriented Gradient (HoG) [18], which

are widely used in video surveillance systems [6] [10] [19]. Unlike background

subtraction methods that usually consider the changes between frames,

appearance-based methods treat a video as individual images, not related to neighbor

frames. They often require a training step to obtain the common property between

objects, and then use sliding window approach to scan the frame and verify whether

the region is an object. Appearance-based object detection often needs more

computation cost since it requires exhaustive search on the image, but the accuracy is

better because it can only find objects similar to the training set.

10

2.2.2 Object Tracking

Object tracking is to figure out where the object is in a video, and the sequence

of tracking results can be arranged into a trajectory that presents the history of the

movement. An intuitive way is to group detections from two consecutive frames that

are in nearby locations. However, there might be noises around the observation.

Hence Bayesian tracking [21] can be applied to tracking process. By applying

probability formulation, we can track objects more precisely. The common solutions

for Bayesian tracking are Kalman Filter and Particle Filter, which constantly update

the tracker by taking new observations. Breitenstein et al. [19] propose a multi-person

tracking framework using Particle Filter. It is very challenging for object tracking

using simple grouping methods in a complex environment because detection cannot

perform well. Therefore, filters are necessary in this case. The confidence of detected

objects is considered for detections and this solves data association for multi-person

tracking.

2.3 Multi-Camera Object Identification and Tracking

 An area usually contains multiple surveillance cameras, and it is necessary to

mix data from two or more places to obtain more complex information. However,

multiple camera processing is far more difficult than single camera processing. For

example, lighting, viewpoints, and background in two cameras can be different. Wang

[22] reviews recent researches in multi-camera video surveillance. Key technologies

in multi-camera systems are multi-camera calibration, computing topology of camera

network, tracking, re-identification, and activity analysis. All of them face challenges

11

including various configurations, limited topology, large changes of viewpoints, and

illumination conditions. Some of the technologies can be jointly solved. Just as in this

thesis, we try to solve the object re-identification problem to achieve multi-camera

tracking.

When tracking an object across non-overlapping views of two cameras, two

major problems should be solved. Information may not be continuous because there

are time and space gaps between two cameras, and the visual appearance changes due

to different view angle and lighting of different cameras. Lian et al. [23] propose a

method of tracking pedestrians across two cameras using only visual appearance.

They calculate the CI-DLBP, the enhanced distance-based local binary pattern (LBP)

features that include color information, for each pedestrian. And then match

pedestrians from two cameras using the feature vectors to achieve multi-camera

tracking. Instead of considering only LBP that describes structural information, color

is also an important feature for matching objects from different camera views. They

encode a detection of a pedestrian to a histogram of LBP in color space and match

two histograms from two different cameras using Chi-square distance, and apply

cumulative brightness transfer function (CBTF) to reduce the illumination effect in

pre-processing steps.

Cabrera et al. [9] propose a method of multi-camera vehicle

tracking-by-identification in a tunnel surveillance system. Like [6], they use Haar-like

feature to detect vehicles in a single camera and obtain a feature vector with binary

values of weak classifiers for all detections. Next they use Hamming distance to find

the best matched pairs for each vehicle in both single camera tracking and

multi-camera identification. The two major advantages of this method are: the

12

computation of Haar-like features can be efficiently obtained, and the lower cost in

passing and comparing feature vectors with binary values. The authors state that color

is not reliable in tunnels because it may be affected by lighting. However we think

that color is still a strong feature for vehicles especially when the resolution is quite

low in surveillance video. Some practical issues have not been discussed, such as

system initialization and error handling, which is presented in this thesis.

13

Chapter 3. Multi-Camera Vehicle Identification

In this chapter, we illustrate the multi-camera vehicle identification framework in

detail. An overview will be given in Section 3.1 and single-camera vehicle detection

and tracking is described in Section 3.2. Next, possible image features for

identification is presented in Section 3.3. The proposed multi-camera vehicle

identification method and the real-time and offline identification are illustrated in

Section 3.4 and 3.5, respectively.

3.1 An Overview of the Proposed Framework

Figure 3-1 shows the framework of the proposed system. Starting from a single

camera, we first extract vehicles passing through the scene by object detection and

tracking. After a period of time we can collect a set of vehicle patches. The number of

detected vehicles in the first camera is always more than the number in the next

camera, since there are vehicles passing the first camera but not the second one. In

other words, when a vehicle is presented in the second camera, multi-camera

tracking/identification is to search for the corresponding detection in the first camera

that represents the same vehicle.

14

Figure 3-1. System framework.

In a single camera, all passing vehicles are discovered using Haar-like feature

detector [11] for each frame. And within a small interval of a video sequence, vehicles

are tracked by considering the location in the image of detections from consecutive

video frames. As vehicles in tunnel travel in sequence, we can use a queue to store all

tracked vehicles to preserve the order. Single-camera vehicle detection and tracking

will be discussed in Section 3.2 in detail and a dataset of the detection results with

five cameras are presented in Section 4.1.

For object recognition and identification, we extract features from the object

images. Color and visual structure information are important features for vehicle

identification in a low resolution surveillance video. Section 3.3 discusses some

commonly used feature descriptors that encode the visual features, and Section 4.2

evaluates these descriptors.

15

After a period of time, we can collect a set of queues with detected vehicles from

several cameras in the same tunnel. We need to initialize the system first to verify

which vehicle is the first one that exists in all queues. Because there may be vehicles

between two cameras, and when we start recording multiple cameras at the same time,

there may be vehicles in latter cameras that do not appear in the previous ones. One

solution is to start recording multiple cameras in different time, however it is still hard

to correctly make one vehicle become the first entity in all detection queues, unless

there is no vehicle in the tunnel. We accomplish the task by considering the ordering

constraint within a tunnel. That is, one vehicle is behind another most of the time and

the order rarely changes, as well as lane changing is often prohibited in a tunnel.

Therefore, a multi-camera identification method is proposed based on the ordering

constraints of vehicles. In the beginning the Spatiotemporal Successive Dynamic

Programming (S
2
DP) algorithm matches vehicles from two cameras. Next, the

Real-Time (RT) algorithm can be applied after S
2
DP for real-time vehicle tracking,

and the Offline Refinement (OR) algorithm can further achieve higher accuracy from

the results of S
2
DP.

The S
2
DP algorithm matches vehicles in two detection queues, and thus achieves

multi-camera identification. However, it has to check a group of detections at the

same time and cannot run in real-time. The RT can accomplish the identification task

in real-time, picking up the most similar one in a small search window of the

detection queue. Nevertheless, real-time algorithm usually shows lower accuracy, and

is sometimes not suitable for database applications, which do not require real-time

processing but the accuracy need to be assured. In this case we propose another

offline identification method, OR, which is used to achieve higher accuracy by

refining the results from S
2
DP. The real-time and offline algorithms are discussed in

16

Section 3.5 and experiments are presented in Section 4.4.

3.2 Vehicle Detection and Tracking in Single Camera

The first step of the system is to obtain information from cameras independently,

thus we will discuss single-camera vehicle detection and tracking method in this

section. We use Haar-like feature detector [11], which is commonly used in face

detection, to detect vehicles in a tunnel surveillance video. And the same method is

used in [6] and [10] for vehicle detection. For a sequence of detections from

consecutive video frames, we group them by considering the location of detections in

x-y coordinate of frames to achieve vehicle tracking.

3.2.1 Vehicle Detection

 We use Haar-like feature detector [11] to detect vehicles in a video frame. The

Haar-like features are a set of binary values which consists of the differences between

two or more sums of intensities in rectangle regions of a grayscale image, as shown in

Figure 3.2. Since there are various sizes of rectangles, a 24*24 resolution image,

which is the size of our training images, can obtain a great amount of features in the

exhaustive set of rectangle regions. As the visual structures of vehicles are similar in

surveillance videos, vehicles share the same subset of Haar-like features, which do not

appear in other regions of the videos. Therefore, we can discover those shared

Haar-like features by applying machine learning algorithms and obtain a vehicle

detector/classifier for videos. The learning algorithm uses a cascade of Adaboost

classifiers to choose proper weak classifiers, the Haar-like features, and forms a

stronger classifier. The cascade consists of a number of stages that reject negative

17

examples. Finally if an image passing all cascading stages, the detector will classify it

as positive detection. Figure 3.3 illustrates the cascading scheme. The method uses

integral images to fast calculate features, considers only a small subset of all possible

Haar-like features, and rejects negatives in a short time by cascading stages. As the

result, the algorithm can be used in real-time detection.

Figure 3-2. Haar-like features. Each feature is the difference between sums of

intensities of two rectangle region.

Figure 3-3. The cascading scheme of Haar-like feature detector.

The traditional method for object detection in surveillance video is background

subtraction, because the objects usually move in the video. In fact, the vehicles always

18

move on the roads. However, reflections of headlights and taillights often exist on the

wall of tunnels and those reflection regions might be treated as foreground objects in

background subtraction methods. Another problem is that one vehicle may be

occluded by another vehicle such that the algorithm may produce one big object

instead of two. Figure 3-4 shows an example of problems in background subtraction

using Mixture of Gaussians (MoG) [17] method, where the light reflections on walls

are treated as objects. Hence, we choose feature detectors instead of background

subtraction algorithms to achieve higher accuracy.

Figure 3-4. Detection fails using Mixture of Gaussians (MoG) background

subtraction. Reflections on walls are treated as detected objects.

3.2.2 Vehicle Tracking

 The goal of vehicle tracking is to find the corresponding detections of the same

vehicle in different frames. Detection contains the image features, coordinates of the

bounding box in image, detected time, and other related properties. We can keep track

of detections which have similar properties. That is, if two detections from two

consecutive frames have similar properties, these two detections present the same

19

vehicle. Since the detection is not accurate all the time and contains noise, it is

common to apply Kalman Filter or Particle Filter [21] to predict the actual state of the

object.

As vehicles always drive forward in tunnels, we simply take the coordinates of

detections in an image as the properties for tracking. If two detections from two

frames are in similar location within the image, we treat them as a single object. After

one object is tracked in five consecutive frames, where the frames per second (FPS)

of our video is about 10 and the vehicle is around the middle position of the video, the

image of this object in the fifth frame is stored into the detection queue of the camera.

Each camera maintains a queue of tracked vehicles, so that the ordering of passing

vehicles can be recorded. The tracking step can also help us remove wrong detections

because noises usually do not move. Every image stored in detection queue is resized

to 40*40 pixels for further processing.

3.3 Feature Extraction

 As we obtain a vehicle from one camera, we need to transfer the image patch

into a feature vector that is proper for object identification. The goal is to select the

best feature that can clearly identify whether two detections from two different

cameras belong to the same one or not using distance metric. In this section we will

introduce four possible feature descriptors for our multi-camera identification

application. Experiments will be presented in Section 4.2.

The feature should minimize the effects on visual appearances in multi-camera

identification: poses, color, illumination and noises. Figure 3-5 illustrates these

20

challenges. Another problem is that the images are in small resolution such that the

details of a vehicle are hard to describe by features. Nevertheless we can take

advantage of shorter computation time. In conclusion we choose Harris corner

detection with OpponentSIFT [24] as our selected feature.

Figure 3-5. Examples of four vehicles in four different cameras. The size, pose, color,

and reflections on windows are different in different cameras.

3.3.1 Image Intensity

To calculate the distance between two images, the simplest way is to obtain the

sum of squared difference (SSD) of intensities between every pixel in them. In our

application, the resolution of our detected vehicle is 40*40 for all images and the

distance can be calculated in one pass for each color channel. Consider the application

in RGB color space, and the image intensities (int) distance between two images 𝐼1

and 𝐼2 is

𝑑𝑖𝑛𝑡(𝐼1, 𝐼2) = ∑ ∑(𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦))
2

𝑥,𝑦𝑅,𝐺,𝐵

21

where 𝐼𝑖(𝑥, 𝑦) is the intensity of image 𝑖 at (𝑥, 𝑦), and sum the values of all RGB

channels.

3.3.2 Color Histograms

Histograms describe the distribution of intensities for an image. Here we tested

histograms in three different color spaces: RGB, hue, and opponent color space. RGB

histogram is a basic way to describe an image, since the input image is in RGB color

space. Because color is one of the important features of vehicles, another selected

color space is hue which describes the color distribution of an image. Hue is

converted from RGB by

𝐻𝑢𝑒 = {

60(𝐺 − 𝐵)/(𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛⁡(𝑅, 𝐺, 𝐵)) 𝑖𝑓𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) = 𝑅

120 + 60(𝐵 − 𝑅)/(𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛⁡(𝑅, 𝐺, 𝐵)) 𝑖𝑓𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) = 𝐺

240 + 60(𝑅 − 𝐺)/(𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)) 𝑖𝑓𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) = 𝐵

Finally we choose histograms in opponent color space. The color space consists

of three channels, the first two channels represent relation between RGB information

and the third channel represents the grayscale intensity. Opponent color space can be

converted from RGB using

(
𝑂1
𝑂2
𝑂3

) = (

(𝑅 − 𝐺)/√2

(𝑅 + 𝐺 − 2𝐵)/√6

(𝑅 + 𝐺 + 𝐵)/√3

)

For every histogram, we extract 64 bins for each channel, therefore the RGB and

opponent histogram has 192 bins and hue histogram has 64 bins. The distance

between two histograms is the Chi-square distance

𝑑𝐶𝐻(𝐻1, 𝐻2) =∑
(𝐻1(𝑗) − 𝐻2(𝑗))

2

𝐻1(𝑗)
𝑗

where 𝐻𝑖(𝑗) is the value of bin 𝑗 in histogram 𝐻𝑖.

22

3.3.3 Haar-Like Feature Vector

Haar-like feature vector is obtained from the vehicle detector. It is a set of binary

values with 143 dimensions, where we have 143 selected features in our trained

detector. Cabrera et al. [10] stated that this feature can be used in multi-camera

identification, without additional steps of feature calculation. Figure 3-2 shows an

example of the feature. Hamming distance is used as distance metric since the feature

vector contains only binary values, and the same vehicle would have similar result in

the vector. The Hamming distance is computed by

𝑑𝐻𝑉(𝑇1, 𝑇2) =∑|𝑇1(𝑗) − 𝑇2(𝑗)|

𝑗

where 𝑇𝑖 is the binary vector of image 𝑖, and 𝑇𝑖(𝑗) is the value of the 𝑗th element.

3.3.4 Keypoints Descriptors

Keypoints descriptors are commonly used in object recognition. Generally, some

points in an image contain rich information. Those points are called keypoints,

interesting points, or corners. Keypoints are extracted from the image, and then each

point is represented with a specific descriptor. One of the famous keypoint extraction

methods is Scale-Invariant Feature Transform (SIFT) [25], which is a powerful tool in

many computer vision applications. SIFT finds keypoints using

Difference-of-Gaussians (DoG) and describes each point using a histogram with

orientation information around that point. The method can achieve high accuracy but

the computation speed is relatively low if the image is large. Our selected keypoints

descriptors are SIFT, ORB [26], and Harris corner detection with OpponentSIFT

descriptor [24]. Figure 3-6 illustrates the keypoints descriptor algorithms.

23

Figure 3-6. A general illustration of keypoints descriptors.

Oriented BRIEF (ORB) [26] tries to reduce the computation time while not

reducing much of accuracy compared with SIFT. The algorithm starts by detecting

FAST [27] keypoints in an image, which considers the intensity differences between

one center pixel and its neighbors in a circular ring. Next ORB uses BRIEF [28]

descriptors to encode each detected keypoint into a bit string. The orientation and

rotation properties of an image are considered in both keypoint detection and

description processes. The whole processing time is much faster than SIFT, since both

keypoints detection and description methods are simpler. However, the performance is

not as superior as SIFT.

 Van de Sande et al. [24] evaluate different features for object recognition. They

analyze the invariant properties of different color descriptors, histograms, moments,

and SIFT descriptors, with test on public datasets. The authors state that

OpponentSIFT, which computes SIFT descriptor in opponent color space, is

recommended since it outperforms other descriptors and is invariant to light intensity

changes and shifts. Although our application is a little bit different from the

24

experiments in their work, Section 4.2 shows similar result that OpponentSIFT has

higher accuracy than other methods described in this section. In their detection

process they use Harris-Laplace corner detector to obtain more accurate points

without unnecessary points. Since our input image is far smaller and the object is

located in the center, we use only Harris corner to reduce computation time.

 For all keypoint descriptors, we compute the Euclidean distance between feature

vectors of two images 𝐼1 and 𝐼2. First, we extract 10 keypoints, which are enough

for our detected images with size of 40*40 pixels, in each image. And the feature

vector is obtained using descriptors introduced before. For each point, SIFT descriptor

is a vector of integers with 128 dimensions of orientation histogram, where ORB has

256 dimensions and OpponentSIFT has 3*128 dimensions of three channels in

opponent color space. Next we use brute-force method to assign a corresponding

point in 𝐼2 with smallest Euclidean distance for a point in 𝐼1. Therefore, we can

obtain 10 distance values since there are 10 keypoints in an image, and one point in

𝐼2 may have chance being assigned more than once. For 𝐼2, we again use the same

method to obtain 10 distance values corresponding to 𝐼1. Finally the distance between

the two images is the average value of the 20 distance values. The method can be

formulated as

𝑑𝐾𝐷(𝑃
𝐼1 , 𝑃𝐼2) =

1

2
(
(∑ min

𝑗
𝑑𝑖𝑠𝑡(𝑃𝑖

𝐼1 , 𝑃𝑗
𝐼2)𝑖)

|𝑃𝐼1|
+
(∑ 𝑚𝑖𝑛

𝑖
𝑑𝑖𝑠𝑡(𝑃𝑗

𝐼2 , 𝑃𝑖
𝐼1)𝑗)

|𝑃𝐼2|
)

where 𝑃𝑖
𝐼1 is the 𝑖th keypoint descriptor of image 𝐼1 and 𝑃𝑗

𝐼2 is the 𝑗th keypoint

descriptor of image 𝐼2 . 𝑃𝐼1 = {𝑃1
𝐼1 , … , 𝑃𝑛

𝐼1} and 𝑃𝐼2 = {𝑃1
𝐼2 , … , 𝑃𝑚

𝐼2} is the set of

keypoint descriptors of 𝐼1 and 𝐼2, respectively. The |⁡∙⁡| represents the number of

elements in a set. The 𝑑𝑖𝑠𝑡(𝑃𝑖
𝐼1 , 𝑃𝑗

𝐼2) is the distance between 𝑃𝑖
𝐼1 and 𝑃𝑗

𝐼2. Note that

25

the Euclidean distance is applied on SIFT and OpponentSIFT descriptors, and

Hamming distance is for ORB descriptors.

 As our experimental result in Section 4.2, OpponentSIFT outperforms other

features and is selected for further processing.

3.4 Multi-Camera Vehicle Groups Matching

 This section illustrates the problem of multi-camera vehicle identification and

describes the proposed algorithms for tunnel application. We collect vehicles from

cameras as described in Section 3.2, and compute the feature vector for each vehicle

in Section 3.3. Each camera maintains a queue of detected vehicles with computed

feature vectors. Now, we can identify vehicles from different camera by matching

feature vectors in two queues. This is called multi-camera identification, object

re-identification [22], object matching [23], or multi-camera

tracking-by-identification [9].

For each camera, we keep a queue of detected vehicle patches ordered by time.

Different cameras are also ordered by time since they are set on road that vehicles

must pass in order. If we focus on only two cameras, the identification is reduced to

an assignment problem. That is, finding all matched pairs of vehicles from two queues

with the smallest sum of distances, and every vehicle can be assigned only once. In

Figure 3-7, assume that we have to assign three vehicles from camera C1 and C2. First

we can compute the distance matrix using feature vectors described before, and then

apply greedy method or some well-known solutions such as Hungarian algorithm [29]

to find matching pairs of vehicles.

26

Figure 3-7. Assignment problem in multi-camera vehicle identification.

 The major difficulties are the problems in appearance changing of the same

vehicle in different cameras, which would be solved by using OpponentSIFT.

However, vehicles may look similar or are of the same type that exists in the tunnel

within a small period of time. Matching vehicles using only appearance information

may have errors sometimes. In other words, matching pairs of vehicles using only the

distance matrix obtained by visual features, Figure 3-7 for example, cannot achieve

suitable performance, especially when the distance matrix is quite large. Besides,

there is a time gap between two cameras, so we can only roughly guess when a

vehicle might pass the second camera. This requires a certain number of vehicles to be

considered at the same time since we cannot know the exact time a vehicle passed by.

3.4.1 Spatiotemporal Successive Dynamic Programming (S
2
DP)

The Spatiotemporal Successive Dynamic Programming (S
2
DP) algorithm is

proposed to solve the identification problem in tunnels by considering the ordering

27

constraint. Given a distance matrix of detected vehicles in two cameras, the S
2
DP

finds one vehicle from the first camera for each vehicle in the second camera.

Ordering constraint [30] exists in road that all vehicles are in some kinds of

successive sequence, especially when lane changing is prohibited in long tunnels for

traffic safety. More specifically, a car is possibly behind another one during the whole

driving in the tunnel. The proposed methods take advantages of the ordering

constraint in tunnels. Figure 3-8 illustrates the multi-camera identification problem by

considering the ordering constraint. The detection queue of the first camera C1 is

always equal to or larger than the queue of the second camera C2. The problem is to

search one or a small group of vehicles in C2 from candidates in C1, and the number

of candidates is greater than the number of matched objects. The number of

candidates is determined by the actual distance on road between two cameras. More

detected cars are stored if two cameras are far away from each other.

Figure 3-8. An example scenario on multi-camera vehicle identification. Assume each

capital letter represents an individual vehicle.

In the beginning, we are not sure where the exact position of the desired

candidate is in the queue, so we need to search in a window of proper size and

position, with respect to the detection queue of previous camera. The size of the

28

window is important since the more the candidates are included, the more the noises

are contained, which affects the performance. Therefore, the first thing to do is to find

the proper location of the search window in the queue of first camera, and then we

will have the ability to minimize the size of the window. We call this step as an

initialization problem. As illustrated in Figure 3-8, the first vehicle A need to be

correctly identified, thus vehicle B can be easily found by considering the ordering

constraint. If, unfortunately, vehicle A in camera C2 is matched to vehicle H in camera

C1, then vehicle B in C2 can never find a correct matching since B is not behind H.

Therefore, the initialization problem is an important issue when the ordering of

objects is taken into account.

It is worth noting that not all vehicles in the second camera can find a

corresponding detection in the first camera, and vice versa. Because the vehicle

detection cannot certainly reach 100% of accuracy, there are always miss detections in

all cameras. In addition, when each camera passes information to the central server

using the Internet, there may have packet losses or disconnections sometimes that

implicitly yield miss detections. Consequently the algorithm must incorporate the

miss detection problem.

 Since the ordering constraint is an important characteristic and the miss detection

problem needs to be considered, we propose a dynamic programming algorithm S
2
DP

to solve the assignment problem. Assume that we have a 𝑁1
𝐶 ×𝑁2

𝑐 distance matrix

𝐷 where the two axes contain 𝑁1
𝐶 and 𝑁2

𝐶 vehicles in camera 𝐶1 and 𝐶2 ,

respectively. 𝐷(𝑖, 𝑗) = 𝑑𝐾𝐷(𝑃
𝐼𝑖 , 𝑃𝐼𝑗) is the distance between two feature vectors of

vehicle 1 ≤ 𝑖 ≤ 𝑁1
𝐶 in 𝐶1 and vehicle 1 ≤ 𝑗 ≤ 𝑁2

𝐶 in 𝐶2 using keypoints

descriptor described in Section 3.3. The dynamic programming cost function 𝑓 is

29

defined as

𝑓(𝑖, 𝑗) = 𝑚𝑖𝑛 {

𝑓(𝑖 − 1, 𝑗 − 1) + 𝐷(𝑖, 𝑗) + 𝜆 ∗ 𝑠𝑡𝑒𝑝

𝑓(𝑖 − 1, 𝑗) + 𝜖

𝑓(𝑖, 𝑗 − 1) + 𝜖

where 𝜖 is the miss-match penalty, 𝜆 is the Non-Spatiotemporal-Successiveness

(NS
2
) penalty, and 𝑠𝑡𝑒𝑝 is the number of steps from the last assignment. 𝐷(𝑖, 𝑗) is

added to 𝑓 if 𝑖 is assigned to 𝑗, which is the first statement of the 𝑚𝑖𝑛⁡ function.

Otherwise, a penalty 𝜖 is added to 𝑓 for miss detection. After scanning the distance

matrix 𝐷 once using the cost function 𝑓 , a corresponding cost matrix and a

backtrack table can be obtained. The assignment results can be found by tracing the

shortest path from 𝑓(𝑁1
𝐶 , 𝑁2

𝐶) to 𝑓(0,0) using the backtrack table.

Figure 3-9 shows an example of the S
2
DP algorithm. In the dynamic

programming backtrack table, we can find a minimum-cost path from the last element,

which corresponds to row F and column C in Figure 3-9, to 𝑓(0,0) easily. The

horizontal and vertical paths represent miss detections and diagonal paths are matched

vehicle pairs. The algorithm is similar to the longest common subsequence problem.

Figure 3-9. An illustration of S
2
DP algorithm

30

The value of the miss-match penalty 𝜖 is determined by both the distance

function 𝑑𝐾𝐷 and the proper threshold to claim miss detections. The total cost 𝑓

will add 𝜖 twice if one assignment is skipped since one element in row and one in

column have to be added to move to the same position. As illustrated in Figure 3-10,

two 𝜖 or one assignment cost from location A to location B will be added to the cost

function 𝑓. Therefore, we set 𝜖 as half of the maximum-allowed matching distance

(threshold). We use a fixed value for all datasets in our experiments, and the

discussion of this parameter will be presented in Section 4.5 with recommendations

for default value.

Figure 3-10. Decision of miss-match penalty 𝜖. From location A to B in the cost

function 𝐹, the total cost will add two 𝜖 or one assignment cost.

Another parameter is the Non-Spatiotemporal-Successiveness (NS
2
) penalty 𝜆

for successive assignments. Assuming that we do not have enough detections in the

camera 𝐶2, Figure 3-11 shows a scenario when 𝜆 equals zero. This scenario occurs

when two cameras are far away from each other in the initialization step. The total

cost between the solid path and the dotted path are nearly the same, thus we may have

chance to choose the dotted one, which is wrong, instead of the solid one when noise

is included. If the number of elements in one axis is much less than the other, then the

assignment may not be successive since the distance cannot provide enough

information due to noise of visual features in the distance matrix. Here, the successive

assignment means that assigned elements are next to each other, which satisfies the

31

ordering constraint that vehicles go through the tunnel in order and cannot disappear.

Therefore, we select the path that assignments are more successive with the

consideration of ordering constraint. For each assignment, we add the NS
2
 penalty 𝜆

to the distance, multiplied by the number of steps from previous assignment. If the

𝑓(𝑖, 𝑗) is far away from previous assignment, then the penalty is big enough to make

miss match as final decision. We define 𝜆 = 𝛼𝜖 that is related to 𝜖 and 𝛼 is the

weight. In our experiments 𝛼 = 0.01 is enough to accomplish the task.

Figure 3-11. A scenario without Non-Spatiotemporal-Successiveness (NS
2
) penalty 𝜆

(dotted path).

3.5 Real-Time and Offline Vehicle Identification

 This section describes our real-time and offline identification process. The first

step is S
2
DP presented in Section 3.4. However, two problems show up in the S

2
DP:

cannot run in real-time, and cannot assign order-changed vehicles. We employ two

additional algorithms to solve the two problems after the S
2
DP.

32

 First, the S
2
DP cannot run in real-time since it requires a number of vehicles

appear in both camera queues. For example, at least 15 vehicles are required to

achieve reasonable accuracy in our experimental result in Section 4.2. Sometimes we

would like to identify a vehicle immediately when it appears in the second camera,

just like multi-camera vehicle tracking. If the initialization problem is solved by S
2
DP,

we can lower the size of the search window and identify the corresponding vehicle

with a small number of candidates in the queue.

Another problem is that, if one vehicle changed its order in two cameras, the

S
2
DP would fail to assign this vehicle. Figure 3-12 shows an example of the situation.

Vehicle C is in front of vehicle B in the second camera and B cannot find proper

assignment because the ordering constraint does not allow B in C2 to assign the one

prior to C in C1. Hence B in C2 will get a “no-match” result. The problem will occur

in two situations: one vehicle overtakes another one, or multiple driving lanes are in

the video and the driving speed of one lane is faster than that of another one. Although

in many tunnels overtaking of vehicles is not allowed, there are still vehicles not

obeying the traffic rules. And in our dataset, we do not record which driving lane a

detected vehicle was to make our work more flexible. Hence the problem is

considered in this section. In fact the methods automatically detecting driving lanes in

a surveillance video [14] [7] can be applied to our system for better vehicle detection.

33

Figure 3-12. The order of vehicle B and vehicle C in camera C1 are changed in

another camera C2. S
2
DP algorithm can only assign one of them.

The remaining sections are organized as follows: in Section 3.5.1 we will describe

the Real-Time (RT) algorithm for fast assignment of a proper candidates using sliding

window approach. If real-time processing is not required, another Offline Refinement

(OR) algorithm to solve the problem with higher identification accuracy is presented

in Section 3.5.2.

3.5.1 Real-Time Identification

Assume we finish the S
2
DP algorithm that all vehicles in the second camera are

assigned. Then, if a new vehicle shows up in the second camera, we can assign a

candidate to this vehicle in real time. Instead of considering a group of vehicles from

two cameras in S
2
DP, the Real-Time (RT) algorithm only takes one vehicle in the

latter camera for identification. RT does not have to wait for a number of vehicles

passing by, thus achieve real-time processing. This section describes a simple greedy

algorithm that achieves real-time processing of the identification problem.

Given the computation result of the S
2
DP and a feature vector of one newly

detected vehicle in the second camera, the RT assigns one candidate vehicle to the

newly detected one. As we finish the initialization step using S
2
DP, a newly detected

34

vehicle in the second camera is possibly next to the last assigned one in the first

camera. This property suggests us of using a sliding window approach to solve the

problem.

The Real-Time (RT) algorithm runs as follows. First set a search window in the

detection queue of the first camera just around the last assigned vehicle in the S
2
DP,

since a newly detected vehicle in latter camera is probably behind it according to the

ordering constraint. Considering the example in Figure 3.8, the S
2
DP matches vehicle

A to vehicle D. As vehicle E is detected in camera C2, the desired matching candidate

in C1 is probably around vehicle D. The size of the window is limited to a small value

for real-time processing, for example, five vehicles in our experiments. Notice that the

detection queue of the first camera always contains unassigned vehicles since it is

prior than the second camera. If a vehicle appears in the second camera, we calculate

the feature vector of the detection and compute the distance to all vehicles in the

search window of the first camera. The one in the first camera with the smallest

distance is picked up and treated as the assignment result. If all distance values are

greater than the matching threshold, which is greater than 2𝜖 in S
2
DP, a no-match is

assigned. Finally we slide the search window to the next one in the detection queue of

the first camera, and this process loops again. Figure 3-13 describes the RT algorithm

in detail. As an execution example shown in Figure 3-14, only five candidates in C1

are considered when vehicle E is detected in camera C2. The candidate with smallest

distance is matched. Next five candidates are changed using sliding window approach

for the next detected vehicle F in C2. Note that only the candidates in the search

window are taken into consideration. The distance values of others, for example,

candidate J, are not computed and are represented using dots.

35

Figure 3-13. The Real-Time (RT) algorithm.

Figure 3-14. An example of RT. Each capital letter represents one vehicle, and the

table is the distance matrix. Only the distance values of candidates are computed and

presented using numbers.

The RT algorithm allows one candidate in the first camera being matched to two

or more new detections in the second camera. It is strange and erroneous that one

vehicle became two in another camera. However in our experiments, we found that

error may propagate if we do not enforce the property and produces poor

identification results. Consider the scenario in Figure 3-15 that vehicle X in the first

• Assume 𝑁 candidates in the search window of the first camera

• For each newly detected vehicle in the second camera

– Calculates the distances to 𝑁 candidates

– Picks up the candidate with the smallest distance value

– Outputs the selected one if the distance is less than threshold

• Otherwise assign a no-match

– Shifts the search window in the first camera

36

camera C1 is assigned to vehicle W in the second camera C2, which is an incorrect

assignment. The algorithm would delete X from the candidate queue if we do not

allow re-assignment. Next vehicle X in C2 was detected, however X in the candidate

queue had already been erased and the assignment would certainly incorrect. If X in

C2 still got another false assignment, then this error propagated. Therefore an

incorrect assignment will possibly produce at least two errors in the final result.

Figure 3-15. An example of error propagation if popping-candidate is allowed. In the

beginning vehicle W is detected in C2 and erroneous matched vehicle X in C1. Next

vehicle X is detected in C2, but X has already been removed from candidates thus

cannot obtain correct result.

Another characteristic is that the last assignment in the first camera has to be a

correct assignment. Otherwise the initial position of the sliding window would be

inappropriate and the correct candidate would never appear in the search window.

Hence the whole real-time identification results would be wrong. To make sure the

algorithm can correctly find the location of the sliding window, we discard the last

three results in the S
2
DP and re-assign them in the RT. Using the S

2
DP algorithm can

37

make all assigned candidates close to each other by considering the NS
2
 penalty.

However, the vehicles in the end of the matched group cannot be matched correctly

since the last few vehicles of the group have too little information to be matched.

Consequently, we discard the last three assignments and re-assign them in the RT.

Finally, to enhance the effect of ordering constraint 𝜆 ∗ 𝑠𝑡𝑒𝑝 is added to all

distance values, where 𝜆 is the NS
2
 penalty and 𝑠𝑡𝑒𝑝 is number of steps from

previous assignment.

3.5.2 Offline Refinement

The RT algorithm can run in real-time, but the performance is limited because it

only considers one vehicle for one assignment. As stated in the S
2
DP, the ordering

constraint is an important feature and we should consider a group of vehicles instead

of one. Therefore, we develop another algorithm Offline Refinement (OR) achieve

higher accuracy. Another problem is that the S
2
DP algorithm cannot properly assign

order-changed vehicles.

We propose the Offline Refinement (OR) algorithm to solve these problems. We

found that order-changed vehicles can be solved using a second pass assignment.

Figure 3-16 shows an example that vehicle B and E are order-changed vehicles and

cannot be assigned by S
2
DP. As vehicle B and vehicle E are both missed in camera C1

and C2, we can re-assign the missed vehicles. In fact all order-changed vehicles will

possibly leave un-assigned in S
2
DP. We can simply apply Hungarian algorithm to the

vehicles that are missed in the S
2
DP. That is, vehicle B and vehicle E in Figure 3-16

are matched using optimal assignment algorithm.

38

Figure 3-16. Example of the OR. The order of vehicle B and E changed, the S
2
DP

algorithm can only assign one of them. The OR can re-assign B and E.

The penalty 𝜆 ∗ 𝑠𝑡𝑒𝑝 is added to each element in the distance matrix, where 𝜆

is NS
2
 penalty, and 𝑠𝑡𝑒𝑝 is the number of detections between two vehicles, just like

in S
2
DP and RT. Similarly, after applying Hungarian algorithm in the OR, we will

check the distance values of each assignment, and report miss detections if the value

is greater than threshold 2𝜖, the same threshold value as in S
2
DP.

39

Chapter 4. Experiments

 This chapter presents the experiments on our proposed methods. First, we will

introduce the manually labeled datasets for experiments in Section 4.1. Experiments

on feature selection, the S
2
DP multi-camera identification, and real-time and offline

methods are presented in Section 4.2, 4.3 and 4.4, respectively. Finally the discussions

on the threshold 𝜖 in our algorithm and the performance on other datasets are

discussed in Section 4.5.

4.1 Datasets

 The surveillance videos from five cameras in Hsuehshan tunnel, Taiwan [31] are

collected. Every vehicle drives through five cameras from camera C1 to camera C5

and the driving distance between each camera is one kilometer in average. We

manually label 195, 195, 148, 150, 173 vehicles in C1 to C5, respectively, and each

labeled vehicle is a colored image of size 40*40. Assume that all vehicles are

presented in C1 and C2, and C3, C4, C5 including miss detections. The detection rate in

each camera is 100%, 100%, 76%, 77%, and 89%, respectively. The numbers of

order-changed vehicles in C1 to C5 with respect to C1 is 0, 6, 10, 12, and 19. Here we

call this dataset as HsuehShanTunnel (HSTunnel).

Another dataset HSTunnel_NO_MISS is a subset of HSTunnel. All five cameras

contain 124 vehicles respectively, which is the intersection of all cameras in

HSTunnel. Assume there is no miss detection in this dataset. The numbers of

order-changed vehicles with respect to C1 are 0, 0, 5, 4, and 8 in C1 to C5, respectively.

HSTunnel_NO_MISS can give us the best performance of our experiments since one

major issue, miss detection, is removed. Figure 4-1 shows the examples of each

40

camera in HSTunnel, and the resolution is 352*240. Table 4-1 summarizes the

properties of the two datasets, and sample images are presented in Figure 4-2. The X

symbol represents miss detection in Figure 4-2.

Figure 4-1. Five surveillance videos in Hsuehshan tunnel, Taiwan.

Figure 4-2. Examples of HSTunnel and HSTunnel_NO_MISS. The X symbol

represents miss detection. If one vehicle is miss-detected in one camera, it is removed

from HSTunnel_NO_MISS, for example, vehicle 005.

41

Table 4-1. Properties of dataset HSTunnel.

Dataset Camera #Vehicles Detection Rate #order-changed w.r.t. C1

HSTunnel C1 195 100% 0

C2 195 100% 6

C3 148 76% 10

C4 150 77% 12

C5 173 89% 19

HSTunnel

_NO

_MISS

C1 124 100% 0

C2 124 100% 0

C3 124 100% 5

C4 124 100% 4

C5 124 100% 8

It is worth noting that this work is focused on multi-camera identification. We

assume that the vehicle detection and tracking processes have already executed.

Therefore, the datasets in our experiments contain only manually detected vehicle

images from different cameras, instead of raw videos. Experiments on single-camera

vehicle detection and tracking can be found in [6] and [9], which use similar methods

as in our system.

4.2 Feature Selection

To choose a proper feature descriptor for multi-camera vehicle identification,

HSTunnel_NO_MISS dataset is selected to evaluate the distinctiveness of each

feature described in Section 3.3. All vehicles in the dataset exist in all cameras. That is,

no miss detection occurs in this dataset. First, we choose two out of five cameras in

HSTunnel_NO_MISS dataset and calculate the 124*124 visual distance matrix. Next,

for each row of the distance matrix, we can obtain the rank of the vehicle (row). Rank

42

𝑖 means the corresponding vehicle in the next camera (column) is the 𝑖th smallest

distance value in the row. For example, rank 1 means the corresponding vehicle in the

next camera has the smallest distance value with respect to all others in the row,

which is the best result. Rank 2 means the correct vehicle has the second smallest

distance value, and so on. Therefore, the HSTunnel_NO_MISS contains five cameras

and each feature can obtain ten execution results by exhaustively choosing two

cameras out.

Same as the experiments in [23], we obtain the cumulative matching

characteristic (CMC) curve. Assume that we have 𝑁 vehicles presented as

𝑉 = {𝑉1, … , 𝑉𝑁} , and the 𝑟𝑎𝑛𝑘(𝑉𝑖) means the rank value of vehicle 𝑉𝑖 where

1 ≤ 𝑟𝑎𝑛𝑘(𝑉𝑖) ≤ 𝑁. The 𝐶𝑀𝐶(𝑟) of rank value 𝑟 can be defined as:

𝐶𝑀𝐶(𝑟) =
#{𝑉𝑖|𝑟𝑎𝑛𝑘(𝑉𝑖) ≤ 𝑟}

𝑁

where #{ ∙} denotes the number of elements satisfying the condition. For 1 ≤ 𝑟 ≤

𝑁, we can obtain the CMC curve.

For the Haar-like feature [11] used in feature extraction, we manually collect 900

grayscale images of vehicles from eight tunnel videos as positive set, which is

different from dataset HSTunnel, and 1800 negative samples randomly sampled from

20 background images inside tunnels without vehicles. The resolution of training

images is 24*24, where the resolution of our video is 352*240 pixels. The number of

cascading stages is 10 and the total number of weak classifiers obtained from the

training algorithm is 143. The trained detector is only used in the experiments of

feature selection.

43

Figure 4-3. Average performance on different feature descriptors.

Table 4-2. Average performance on CMC values of different feature descriptors.

Feature Descriptor CMC(1) CMC(3) CMC(5) CMC(10)

Image Intensity 32 44 50 60

Haar-Features 14 20 24 33

RGB Histogram 8 11 14 21

Hue Histogram 7 13 14 23

Opponent Histogram 5 10 11 17

SIFT 39 50 51 60

ORB 16 25 27 36

OpponentSIFT 55 67 70 79

Figure 4-3 depicts the average performances over the CMC value and different

rank values, and Table 4-2 shows the CMC values with some rank value. The selected

features are image intensity, Haar-like feature vector, color histograms, and keypoints

descriptors. For color histograms, RGB, hue, and opponent color space are used in the

0

20

40

60

80

100

1 11 21 31 41 51 61 71 81 91 101 111 121

C
M

C

Rank

OpponentSIFT

Image Intensity

SIFT

ORB

HaarFeature

HueHistogram

RGBHistogram

OpponentHistogram

44

experiments. And for keypoints descriptors, SIFT, ORB, and OpponentSIFT are tested.

We can clearly observe that OpponentSIFT outperforms other feature descriptors in

Figure 4-3. The result is similar to the recommendation in [24]. In conclusion, we

choose OpponentSIFT as our feature descriptor.

For tunnel surveillance, OpponentSIFT outperforms SIFT since OpponentSIFT

considers color information but SIFT does not. As described in the previous section,

the color and structure information of a vehicle are powerful visual information that

should be considered.

All color histogram descriptors perform poor in the experiments. Color is a

strong feature in vehicles. However, many vehicles are mostly in the same color,

especially in our experiments that we look at 124 vehicles at the same time. Therefore,

using only color information is not sufficient for multi-camera identification.

Finally, the Haar-feature vector used in [9] cannot achieve good result in CMC

value of the experiment. It is used in vehicle classifier, which means all vehicles share

the similar characteristics. The Haar-feature vector we trained contains only 148

dimensions with binary values, and it is not sufficient to describe all vehicles since

most of the values are the same.

4.3 Multi-Camera Vehicle Groups Matching

This section presents the experiments on the multi-camera vehicle groups

matching algorithms. By using the OpponentSIFT as feature descriptor, the

assignment algorithms can be applied to match vehicles from two cameras.

45

Assume that we have 𝑁1
𝐶 vehicles in the first camera and 𝑁2

𝐶 vehicles in the

second camera and 𝑁2
𝐶 ≤ 𝑁1

𝐶 . In the following experiments, we set 𝑁1
𝐶 as 50 and

𝑁2
𝐶 from 1 to 50. Considering the order constraint in tunnels, the larger 𝑁2

𝐶 is, the

higher accuracy can be achieved. For each vehicle in the second camera, a vehicle in

the first camera is assigned to it or is assigned as “no-match” if all candidates are not

suitable. The accuracy is the percentage of correct assignments over all 𝑁2
𝐶 vehicles

in the second camera.

Figure 4-4 shows an example of assignment result. The first two rows are the

detected ID of vehicles in capital letters, and the third row is the output from some

algorithm. For every vehicle in C2, the algorithm chooses one best-match vehicle from

C1. The first four results are correct. The 3
rd

 result is correct because vehicle C is not

in camera C1 and the algorithm assigns a no-match to it. Finally, the last two results

are examples of incorrect assignment: vehicle F in C2 matches vehicle E, and vehicle

G in C2 is claimed as no-match in C1 but vehicle G does exist. Therefore, the accuracy

of this example is 4/6 = 67% . The experiments on these two cameras are

represented as (C1, C2), where C1 is the first camera and C2 is the second camera.

Figure 4-4. Example of an assignment result on (C1, C2). The first row is the

candidate queue contains detections in camera C1, the second row in the second

camera C2, and the third row is an example of execution result.

46

The experiments proceed as follows. First we randomly set a number as the

starting index in two cameras, the following 𝑁1
𝐶 vehicles in the first camera and 𝑁2

𝐶

vehicles in the second camera are used in the experiment. It is necessary because the

order of vehicles in our dataset cannot change, and the number of vehicles is greater

than 𝑁1
𝐶 . We randomly select 15 starting index and run 15 times independently, and

take the average accuracy as the final result. After that we increase the value of 𝑁2
𝐶

by one, and randomly execute 15 times again. Finally 𝑁2
𝐶 is tested from 5 to 50, and

𝑁2
𝐶 is incremented by one after each iteration.

Three methods are evaluated in the following experiments: S
2
DP, S

2
DP without

NS
2
 penalty, and Hungarian algorithm. To evaluate the effectiveness of NS

2
 penalty,

we include the result that NS
2
 penalty 𝜆 is set to zero. As a common solution of

assignment problems, the Hungarian algorithm is selected as the baseline for

performance comparison. The miss-match penalty 𝜖 in S
2
DP is set to 450 in all

experiments, where discussions on the value of 𝜖 are presented in Section 4.5.1.

Both HSTunnel and HSTunnel_NO_MISS are tested in the experiments.

Figure 4-5 and Figure 4-6 show the results on every camera setting in HSTunnel

and HSTunnel_NO_MISS, respectively. The x-axis is the value of 𝑁2
𝐶 and the y-axis

is the corresponding accuracy. In HSTunnel, all methods perform poor in camera (C3,

C5) and (C4, C5) when 𝑁2
𝐶 is small. Table 1 shows that camera C5 contains 173

vehicles, whereas camera C3 contains only 148 vehicles. In other words, in total 25

vehicles in the second camera (C5) cannot find corresponding candidates in the first

camera (C3) because of miss detections. Therefore, the performance on (C3, C5) may

decrease if the number of vehicles in second camera is not enough, same as in (C4, C5).

Camera (C2, C3) does not have such problem even there are 47 vehicles miss in C3

47

since miss-detected vehicles in C3 are not candidates. The algorithms do not execute

on miss-detected vehicles in the second camera, as illustrates in Figure 4-4, thus the

performance on (C2, C3) does not have significant differences compared with (C3, C5).

Figure 4-6 on HSTunnel_NO_MISS does not have this effect since there is no miss

detection in HSTunnel_NO_MISS.

Figure 4-7 shows the results on HSTunnel and HSTunnel_NO_MISS. The x-axis

is the value of 𝑁2
𝐶 and the y-axis is the accuracy. All methods achieve higher

accuracy in HSTunnel_NO_MISS than HSTunnel since there is no miss detection in

HSTunnel_NO_MISS. The Hungarian algorithm does not work well because the

visual feature is not robust enough to provide sufficient information. With NS
2
 penalty,

the S
2
DP algorithm can achieve higher accuracy when 𝑁2

𝐶 is below 45 in

HSTunnel_NO_MISS and 39 in HSTunnel, respectively, and achieves similar

performance when 𝑁2
𝐶 value is near 𝑁1

𝐶 . The S
2
DP algorithm can reach 90% and

80% accuracy when 𝑁2
𝐶 is greater than 6 and 30 in HSTunnel, respectively. Note that

in HSTunnel the performance of S
2
DP drops when 𝑁2

𝐶 is greater than 45, because

more order-changed vehicles are included. As described in Section 3.5, the S
2
DP

cannot correctly identify order-changed vehicles.

48

Figure 4-5. Experimental result of vehicle groups matching algorithms on HSTunnel.

The x-axis is the number of vehicles in C2 assigned, and y-axis is the accuracy.

49

Figure 4-6. Experimental result of vehicle groups matching algorithms on

HSTunnel_NO_MISS. The x-axis is the number of vehicles in C2 assigned, and y-axis

is the accuracy.

50

Figure 4-7. Average accuracy of multi-camera vehicle groups matching algorithms.

4.4 Real-Time and Offline Vehicle Identification

We evaluate the proposed real-time and offline identification algorithms in this

section. In the first step we collect a set of vehicles in the second camera and run the

S
2
DP algorithm to solve the initialization problem. Next we can apply the proposed

real-time assignment or offline refinement algorithms.

4.4.1 Real-Time Identification

Similar to the experiments in Section 4.3, we randomly select one starting point

and apply the real-time RT algorithm, as described in Section 3.5.1. The final result is

the average accuracy of the 15 rounds of execution with random starting points.

Table 4-3 summarizes the experimental settings and Figure 4.8 illustrates an

example of experiments on HSTunnel. In Figure 4.8, the solid lines represent the

number of vehicles used in the S
2
DP, and the dotted lines for the RT. Assume that

51

camera C1 starts at vehicle index i and C2 at j, where each vehicle is given an index

numbered from 0 to 194 in HSTunnel (see Table 4-1). The S
2
DP algorithm identifies

𝑗 th to (𝑗 + 29) th
 vehicles in C2, and the RT identifies (𝑗 + 27) th

 to (𝑗 + 59) th

vehicles. The (𝑗 + 27)th to (𝑗 + 29)th are re-identified in RT. Finally, in total 60

vehicles are identified.

Table 4-3. Experimental settings of the real-time methods.

Dataset S
2
DP RT Total

matched #vehicle

in C1

#vehicle

in C2

#vehicle

in C1

#vehicle

in C2

HSTunnel 50 30 35 33 60

HSTunnel

_NO_MISS

50 20 30 28 45

Figure 4-8. Example of real-time experiments on HSTunnel. The solid lines represent

number of vehicles in the S
2
DP and dotted lines for the RT. Assume camera C1 starts

at vehicle index i and C2 at j.

We use different settings on HSTunnel and HSTunnel_NO_MISS in the

experiments, since the performances of S
2
DP are different in the two dataset in

52

Section 4.3. For HSTunnel, the S
2
DP will assign 30 vehicles in the second camera

from 50 candidates in the first camera, where the accuracy reached 80% in the

experiments as described in Section 4.3. Next, in the RT, we assign the 28
th

 to 60
th

vehicles in the second camera from 35 candidates. Note that our RT algorithm

re-assigns the last three vehicles in the S
2
DP, and therefore the S

2
DP assigns 30

vehicles and the RT starts on the 28
th

 one. For candidates in the first camera, the RT

starts with the one that is assigned to the 28
th

 vehicle of the second camera, and the

following 35 candidates are searched in the RT. Finally, 60 vehicles are assigned in

both S
2
DP and RT, and all of the 60 vehicles are taken into consideration when

computing the accuracy. For HSTunnel_NO_MISS, the S
2
DP assigns 20 vehicles

from 50 candidates, and the RT assigns 18
th

 to 45
th

 vehicles from 30 candidates. The

accuracy considers for all 45 vehicles. For HSTunnel_NO_MISS, the S
2
DP assigns 20

vehicles from 50 candidates, and the RT assigns 18
th

 to 45
th

 vehicles from 30

candidates.

To demonstrate the effect on different properties of RT algorithm, some parts are

removed from RT in the experiments. Three properties in RT are: NS
2
 penalty 𝜆,

re-assignment of the last three results from S
2
DP, and multiple assignments on one

candidate. Therefore, we introduce three variants of RT algorithm. The first one is

RT-w1 which sets NS
2
 penalty 𝜆 to zero so the effect on this penalty is discarded.

Next the RT-w2 further discards the multiple-assignments property from RT-w2 and

one candidate can be assigned only once. Finally, the RT-w3 discards all the three

properties.

Table 4-4 and Table 4-5 show the performances of different methods on

HSTunnel and HSTunnel_NO_MISS, respectively. Each value in the table is average

53

accuracy of vehicle identification of two cameras (column) using different method

(row). Note that the Hungarian algorithm, which is the baseline method, is an offline

method. In both HSTunnel and HSTunnel _NO_MISS, all RT methods outperform

Hungarian algorithm. The performance of real-time RT outperforms RT-w1, -w2, and

-w3 methods. Note that camera settings (C3, C5) and (C4, C5) perform poor in

HSTunnel. The reason is the same as mentioned in Section 4.3, where a number of

miss detections exist in candidates of C3 and C4. Especially the RT in (C3, C5), most

desired candidates are not in the search window, only 16% correctness can be

obtained.

Table 4-4. Average accuracy of real-time methods on HSTunnel.

Method HSTunnel

C1,

C2

C1,

C3

C1,

C4

C1,

C5

C2,

C3

C2,

C4

C2,

C5

C3,

C4

C3,

C5

C4,

C5

Avg

Hungarian

algorithm
0.64 0.39 0.35 0.60 0.37 0.48 0.68 0.68 0.42 0.53 0.51

S
2
DP

+ RT-w3
0.70 0.76 0.66 0.63 0.73 0.72 0.61 0.64 0.20 0.49 0.61

S
2
DP

+ RT-w2
0.74 0.78 0.71 0.70 0.76 0.74 0.74 0.65 0.21 0.54 0.66

S
2
DP

+ RT-w1
0.90 0.83 0.72 0.71 0.82 0.75 0.77 0.58 0.24 0.51 0.68

S
2
DP

+ RT
0.92 0.86 0.76 0.80 0.84 0.78 0.78 0.65 0.37 0.60 0.74

54

Table 4-5. Average accuracy of real-time methods on HSTunnel_NO_MISS.

Method HSTunnel_NO_MISS

C1,

C2

C1,

C3

C1,

C4

C1,

C5

C2,

C3

C2,

C4

C2,

C5

C3,

C4

C3,

C5

C4,

C5

Avg

Hungarian

algorithm
0.72 0.64 0.55 0.60 0.56 0.73 0.75 0.83 0.61 0.78 0.68

S
2
DP

+ RT-w3
0.65 0.57 0.51 0.56 0.51 0.61 0.61 0.79 0.52 0.60 0.59

S
2
DP

+ RT-w2
0.77 0.73 0.67 0.70 0.61 0.80 0.73 0.83 0.65 0.71 0.72

S
2
DP

+ RT-w1
0.91 0.83 0.80 0.83 0.73 0.86 0.78 0.91 0.75 0.83 0.82

S
2
DP

+ RT
0.93 0.87 0.88 0.84 0.80 0.88 0.85 0.92 0.75 0.84 0.86

4.4.2 Offline Refinement

Our offline algorithm OR is compared with Hungarian algorithm, S
2
DP, and the

state-of-the-art algorithm, Hungarian Voting (HV) [9], for multi-camera vehicle

identification in tunnels.

The Hungarian Voting algorithm [9] for multi-camera identification runs as

follows. In the beginning, it pushes 𝑁𝐻 detected vehicles into respective queues for

two cameras, and obtains the 𝑁𝐻 × 𝑁𝐻 distance matrix. Next the Hungarian

algorithm is applied to the distance matrix, and the assigned row-column pairs are

treated as votes of valid results. The matched pair (of vehicles from two cameras)

with highest votes is returned as result and the two corresponding elements are

removed from queues. Finally two following detections in two cameras are pushed

into two queues and loop the process. We set 𝑁𝐻 = 10 in our experiments which has

reasonable performance.

55

In addition, the Hungarian Voting algorithm cannot solve the initialization

problem described in Section 3.5. HV performs poorly in HSTunnel which requires

solving the problem first. Therefore, we apply the S
2
DP algorithm in the first step,

followed by HV for offline assignments. This method is called S
2
DP+HV and is used

in HSTunnel dataset. S
2
DP+HV is not included in experiments on

HSTunnel_NO_MISS since this dataset does not require solving the initialization

problem, and the performance is the same as HV.

Similar to the experiments in Section 4.3, we leave 𝑁1
𝐶 candidates in the first

camera and assigned by 𝑁2
𝐶 vehicles in the second camera. Here 𝑁1

𝐶 is set as 65,

and 𝑁2
𝐶 is set as 60. Table 4-6 shows the experimental results on HSTunnel and

HSTunnel_NO_MISS, respectively. The tested methods are S
2
DP, Hungarian

algorithm, OR, Hungarian-voting from related work, and S
2
DP+HV.

As shown in Table 4-6, OR outperforms S
2
DP and Hungarian Voting. As stated

before, the performance of Hungarian-voting drops dramatically in HSTunnel, and it

is even worse than baseline Hungarian algorithm. The Hungarian Voting does not

include the initialization problem, so that proper candidates would not present in the

search window in the whole processing. The result of the refined S
2
DP+HV method is

shown in the last column of Table 4-6, yet our proposed method still outperforms

S
2
DP+HV.

56

Table 4-6. Comparison of average accuracy using different offline methods.

Dataset Hungarian

algorithm

Hungarian

voting (HV)

S
2
DP+HV S

2
DP OR

HSTunnel
0.524 0.320 0.718 0.865 0.820

HSTunnel

_NO_MISS
0.630 0.848 N/A 0.939 0.971

4.5 Discussions

The parameter settings of our proposed algorithms are discussed in this section.

In addition, two more datasets are included to further verify our methods.

4.5.1 Miss-Match Penalty

The miss-match penalty 𝜖 plays an important role in our algorithm. Section

3.4.2 describes the semantic meaning of 𝜖 that the value is around half of the

matching (assignment) distance threshold. However, it is still difficult to determine

the maximum distance in applications.

Take a look at the example of the distance matrix in Figure 4-9. Ideally the

algorithm will assign vehicles at (1, 3), (2, 4) and (3, 5) since the three distance values

are smaller than others. In fact, most values in the distance matrix are greater than

those matched points. This gives us inspiration to use the average value of the

distance matrix as matching threshold, which equals to 2𝜖. The detail of miss-match

penalty is discussed in Section 3.4.1.

57

Figure 4-9. An example of distance matrix. Most distance values are greater than

those matched ones.

We test our S
2
DP with different values of 𝜖. The experiment assigns 30 vehicles

in the second camera from 65 candidates in the first camera by increasing the value of

ϵ by 10 each time. The result is the average accuracy of 15 iterations of random

starting points.

Figure 4-10 shows the experimental results on HSTunnel and HSTunnel

_NO_MISS, where the x-axis is miss-match penalty 𝜖 and the y-axis is the average

accuracy. In HSTunnel_NO_MISS, the 𝜖 value greater than 440 gets similar

performance since there is no miss detection. The best 𝜖 value is 430 in HSTunnel

and the performance reduces when 𝜖 becomes larger. Because HSTunnel contains

miss detections, the algorithm cannot claim misses if the 𝜖 is too large and thus

decreases accuracy. Especially in both (C3, C5) and (C4, C5) which contain many miss

detections, the accuracy drops when 𝜖 is greater than 450.

58

Figure 4-10. Experiments on miss-match penalty 𝜖 of two datasets. The x-axis is the

value of penalty, the y-axis is corresponding accuracy.

59

Table 4-7 and Table 4-8 show the performance on using half of average distance

of distance matrix as 𝜖 and one of the best result in Figure 4-10. The first column is

the tested cameras, the second and the third columns show the half value of average

distance in the distance matrix and the corresponding accuracy using this value. The

fourth and fifth columns are the best result in Figure 4-10. Finally the last column

shows the difference between the third and the fifth column. Although the

performance drops when using average distance as 2𝜖, the average differences in

accuracy are 0.042 and 0.060 in HSTunnel_NO_MISS and HSTunnel, respectively.

As a result, we can use average value in distance matrix as 2𝜖 with at most 6%

accuracy loss. Besides, we can use the half value of average distance in the distance

matrix as initial condition and find the best value manually.

Table 4-7. Comparison on the average-distance strategy and the best case of

miss-match penalty 𝜖 on HSTunnel.

Camera AvgDistance

÷2 as 𝜖

Accuracy Best 𝜖 Accuracy Difference

in accuracy

(C1,C2) 427 0.957 530 0.976 0.019

(C1,C3) 426 0.858 540 0.896 0.038

(C1,C4) 427 0.702 540 0.789 0.087

(C1,C5) 428 0.807 460 0.822 0.015

(C2,C3) 430 0.807 450 0.915 0.108

(C2,C4) 431 0.800 440 0.813 0.013

(C2,C5) 430 0.764 460 0.833 0.069

(C3,C4) 419 0.924 420 0.924 0.000

(C3,C5) 429 0.656 420 0.873 0.217

(C4,C5) 430 0.891 420 0.927 0.036

Average N/A 0.817 N/A 0.877 0.060

60

Table 4-8. Comparison on the average-distance strategy and the best case of

miss-match penalty 𝜖 on HSTunnel_NO_MISS.

Camera AvgDistance

÷2 as 𝜖

Accuracy Best 𝜖 Accuracy Difference

in accuracy

(C1,C2) 425 0.976 460 0.998 0.022

(C1,C3) 425 0.904 460 0.956 0.052

(C1,C4) 426 0.924 450 0.962 0.038

(C1,C5) 428 0.891 450 0.911 0.020

(C2,C3) 430 0.824 480 0.971 0.147

(C2,C4) 430 0.938 500 0.957 0.019

(C2,C5) 430 0.864 440 0.916 0.052

(C3,C4) 418 0.944 460 0.956 0.012

(C3,C5) 429 0.876 440 0.922 0.046

(C4,C5) 430 0.924 420 0.931 0.007

Average N/A 0.907 N/A 0.948 0.042

4.5.2 More Datasets

We further test proposed algorithms on two more tunnel datasets. Figure 4-11 is

some examples of datasets HSTunnel2 and BGTunnel.

Figure 4-11. Examples of datasets HSTunnel2 and BGTunnel.

61

The HSTunnel2 contains two cameras in Hsuehshan tunnel, Taiwan [31], but in

different driving direction of HSTunnel. We manually labeled 65 vehicles in the first

camera and 60 in the second camera, and there is no miss detection and no

order-changed vehicle included. The first five vehicles in the second camera are

absent in the first camera, which satisfies the condition of initialization problem

described in Section 3.4.1. The driving distance between two cameras is about two

kilometers.

The BaGuashanTunnel (BGTunnel) dataset contains two cameras in Baguashan

tunnel, Taiwan [31], which contains 65 vehicles in the first camera and 60 vehicles in

the second camera. Five miss detections and six order-changed vehicles are included.

This dataset is more challenging than HSTunnel2 due to the different camera

viewpoints. In addition, the color information is poor since every vehicle looks

monotonic in the tunnel.

Four methods are tested on HSTunnel2 and BGTunnel: real-time RT, offline OR,

baseline Hungarian algorithm, and S
2
DP+HV modified from related work. Table 4-9

shows that RT and OR outperform S
2
DP+HV and are superior to Hungarian algorithm

in both HSTunnel2 and BGTunnel datasets.

Table 4-9. Average identification accuracy on HSTunnel2 and BGTunnel datasets.

Method HSTunnel2 BGTunnel

RT (proposed) 0.933 0.700

OR (proposed) 0.983 0.767

Hungarian algorithm 0.695 0.317

S
2
DP+HV (related work) 0.915 0.450

62

 Finally, the performance of all methods in dataset HSTunnel, HSTunnel2, and

BGTunnel3 are summarized in Figure 4-12. The x-axis is the datasets with different

methods and the y-axis is the average accuracy. The OR outperforms all other

methods. The performances of RT and S
2
DP+HV are similar, but RT can run in

real-time and S
2
DP+HV cannot.

Figure 4-12. Overall performance of all methods in datasets HSTunnel, HSTunnel2,

and BGTunnel. The x-axis is the datasets and the y-axis is the average accuracy.

63

Chapter 5. Conclusion and Future Work

 This thesis has proposed a system for multi-camera vehicle identification in

tunnel surveillance videos. As vehicles drive through a tunnel, they appear in all

surveillance cameras. By applying the proposed algorithms, vehicles from different

cameras can be identified.

In the beginning, vehicles are detected with Haar-like feature detector and

transformed to a visual feature vector using OpponentSIFT descriptor in an individual

camera video. After the system collects a set of vehicles in multiple cameras for a

while, the proposed Spatiotemporal Successive Dynamic Programming (S
2
DP)

algorithm is applied to identify vehicles across two cameras by considering the

ordering constraint in a tunnel.

Usually there are two major requirements in a multi-camera traffic system,

real-time tracking and offline identification. Therefore, two algorithms are proposed

for the two purposes, respectively. The Real-Time RT algorithm gives an assignment

strategy for fast candidate selection and can be used in multi-camera

tracking-by-identification. Another algorithm is the Offline Refinement OR that

refines the result of the S
2
DP using Hungarian algorithm that achieves better

performance. Meanwhile, practical issues such as initialization problem and error

handling are taken into consideration in our proposed system.

Comprehensive experiments on every part of the system are provided using three

manually labeled tunnel surveillance datasets. The three datasets include not only

labeled vehicles, but also miss detected vehicles and order-changed vehicles. The

64

proposed RT and OR algorithms demonstrate good performance on different datasets,

and both outperform state-of-the-art algorithms.

 Mixing information from more than two cameras is left for future work. A

miss-detected vehicle in one camera can be recovered using the information from the

cameras in behind. Alarms can be triggered if one vehicle is miss-detected in

consecutive cameras, since vehicles must pass all cameras. In addition, we would like

to extend the multi-camera vehicle identification system to regular highway traffic in

the future.

65

Bibliography

[1] B. Tian, Q. Yao, Y. Gu, K. Wang and Y. Li, "Video Processing Techniques for

Traffic Flow Monitoring: A Survey," in Proc. IEEE Int'l Conf. Intelligent

Transportation Systems, 2011.

[2] M. S. Shehata, J. Cai, W. M. Badawy, T. W. Burr, M. S. Pervez, R. J.

Johannesson and A. Radmanesh, "Video-Based Automatic Incident Detection for

Smart Roads: The Outdoor Environmental Challenges Regarding False Alarms,"

IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 2, pp.

349-360, Jun. 2008.

[3] P. Dollar, C. Wojek, B. Schiele and P. Perona, "Pedestrian Detection: An

Evaluation of the State of the Art," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, no. 4, pp. 743-761, Apr. 2012.

[4] T. Gandhi and M. M. Trivedi, "Pedestrian Protection Systems: Issues, Survey,

and Challenges," IEEE Transactions on Intelligent Transportation Systems, vol.

8, no. 3, pp. 413-130, Sep. 2007.

[5] C. Rougier, J. Meunier, A. St-Arnaud and J. Rousseau, "Robust Video

Surveillance for Fall Detection Based on Human Shape Deformation," IEEE

Transactions on Circuits and Systems for Video Technology, vol. 21, no. 5, pp.

611-622, May 2011.

[6] R. S. Feris, B. Siddiquie, J. Petterson, Y. Zhai, A. Datta, L. M. Brown and S.

Pankanti, "Large-Scale Vehicle Detection, Indexing, and Search in Urban

Surveillance Videos," IEEE Transactions on Multimedia, vol. 14, no. 1, pp.

28-42, Feb. 2012.

66

[7] B. T. Morris and M. M. Trivedi, "Trajectory Learning for Activity

Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach,"

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 11,

pp. 2287-2301, Nov. 2012.

[8] I. Saleemi, L. Hartung and M. Shah, "Scene Understanding by Statistical

Modeling of Motion Patterns," in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2010.

[9] R. R. Cabrera, T. Tuytelaars and L. Van Gool, "Efficient Multi-Camera Vehicle

Detection, Tracking, and Identification in a Tunnel Surveillance Application,"

Computer Vision and Image Understanding, vol. 116, no. 6, pp. 742-753, Jun.

2012.

[10] R. R. Cabrera, T. Tuytelaars and L. Van Gool, "Efficient Multi-Camera

Detection, Tracking, and Identification Using a Shared Set of Haar-Features," in

Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011.

[11] P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of

Simple Features," in Proc. IEEE CS. Conf. Computer Vision and Pattern

Recognition, 2001.

[12] N. Buch, S. A. Velastin and J. Orwell, "A Review of Computer Vision

Techniques for the Analysis of Urban Traffic," IEEE Transactions on Intelligent

Transportation Systems, vol. 12, no. 3, pp. 920-939, Sep. 2011.

[13] J. Zhang, F. Y. Wang, K. Wang, W. H. Lin and C. Chen, "Data-Driven Intelligent

Transportation Systems: A Survey," IEEE Transactions on Intelligent

Transportation Systems, vol. 12, no. 4, pp. 1624-1639, Dec. 2011.

[14] S. Atev, G. Miller and N. P. Papanikolopoulos, "Clustering of Vehicle

67

Trajectories," IEEE Transactions on Intelligent Transportation Systems, vol. 11,

no. 3, pp. 647-657, Sep. 2010.

[15] M. Piccardi, "Background subtraction techniques: a review," in Proc. IEEE Int'l

Conf. Systems, Man, Cybernetics, 2004.

[16] S. Brutzer, B. Hoferlin and G. Heidemann, "Evaluation of Background

Subtraction Techniques for Video Surveillance," in Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2011.

[17] C. Stauffer and W. E. L. Grimson, "Adaptive Background Mixture Models for

Real-Time Tracking," in Proc. IEEE CS. Conf. Computer Vision and Pattern

Recognition, 1999.

[18] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human

Detection," in Proc. IEEE CS. Conf. Computer Vision and Pattern Recognition,

2005.

[19] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier and L. Van Gool,

"Online Multiperson Tracking-by-Detection from a Single, Uncalibrated

Camera," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

33, no. 9, pp. 1820-1833, Sep. 2011.

[20] C. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, "Pfinder: Real-Time

Tracking of the Human Body," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 19, no. 7, pp. 780-785, Jul. 1997.

[21] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, "A Tutorial on Particle

Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking," IEEE

Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, Feb. 2002.

[22] X. Wang, "Intelligent Multi-Camera Video Surveillance: A Review," Pattern

68

Recognition Letters, vol. 34, no. 1, pp. 3-19, Jan. 2013.

[23] G. Lian, J. H. Lia, C. Y. Suen and P. Chen, "Matching of Tracked Pedestrians

Across Disjoint Camera Views Using CI-DLBP," IEEE Transactions on Circuits

and Systems for Video Technology, vol. 22, no. 7, pp. 1087-1099, Jul. 2012.

[24] K. E. A. van de Sande, T. Gevers and C. G. M. Snoek, "Evaluating Color

Descriptors for Object and Scene Recognition," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1582-1596, Sep. 2010.

[25] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints,"

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.

[26] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient

alternative to SIFT or SURF," in Proc. IEEE Int'l Conf. Computer Vision, 2011.

[27] E. Rosten and T. Drummond, "Machine Learning for High-Speed Corner

Detection," in Proc. European Conference on Computer Vision, 2006.

[28] M. Calonder, V. Lepetit, C. Strecha and P. Fua, "BRIEF: Binary Robust

Independent Elementary Features," in Proc. European Conference on Computer

Vision, 2010.

[29] H. W. Kuhn, "The Hungarian Method for the Assignment Problem," Naval

Research Logistics Quarterly, vol. 2, pp. 83-97, 1955.

[30] P. F. Felzenszwalb and R. Zabih, "Dynamic Programming and Graph Algorithms

in Computer Vision," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 4, pp. 721-740, Apr. 2011.

[31] "Taiwan Area National Freeway Bureau, MOTC," [Online]. Available:

http://www.freeway.gov.tw.

