

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

一個網際網路端對端服務仲介之設計與雛型製作

Design and Prototyping of an Internet P2P Service

Broker for NAT Traversal

研 究 生：劉榮智

指導教授：陳耀宗 教授

中 華 民 國 九 十 四 年 六 月

一個網際網路端對端服務仲介之設計與雛型製作

Design and Prototyping of an Internet P2P Service

Broker for NAT Traversal

研 究 生：劉榮智 Student：Rung-Jr Liu

指導教授：陳耀宗 Advisor：Yaw-Chung Chen

國 立 交 通 大 學
資 訊 科 學 系
碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

In partial Fulfillment of the Requirements

for the Degree of Master

in

Computer Science and Information Engineering

June 2005
Hsinchu, Taiwan, Republic of China

中華民國九十四年六

Design and Implementation of an Internet P2P

Service Broker for NAT Traversal

Student：Rung-Jr Liu

Advisor：Yaw-Chung Chen

A Thesis

Submitted to Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

In partial Fulfillment of the Requirements

for the Degree of Master

in

Computer Science and Information Engineering

Hsinchu, Taiwan, Republic of China

June 2005

一個網際網路端對端服務仲介之設計與雛型製作

學生：劉榮智 指導教授：陳耀宗 博士

國立交通大學資訊工程研究所

摘 要

 網際網路協定第四版本 (Internet Protocol version 4)早在九零年代初期就被發

表出來，並且是目前在網際網路上被廣泛使用的通訊協定。但是隨著網際網路使用者的

迅速增加，IPv4 的位址數量早已不敷使用。NAT (Network Address Translator) 的使用

讓大量的網際網路使用者利用少量的 IPv4 address來連上 Internet 可以達到減緩 IPv4

位址不夠用的問題。然而，NAT 雖然提供了連結 Internet 的便利性，它卻同時破壞了原

有的 Internet 架構，讓 NAT 外部的使用者無法透過 IPv4 address來定位 NAT 內部的使

用者，並且導致 NAT 內部的使用者無法對外提供網際網路服務 (Internet Services)。

 網際網路協定第六版本 (Internet Protocol version 6) 在九零年代中晚期被發表

出來。它把位址的長度從 32 bits 擴展到 128 bits，同時徹底解決了位址不敷使用的問

題。然而，IPv6 的規格雖然目前被廣泛的討論，它的使用普及性卻是進展緩慢。在 IPv6

真正普及之前，IPv4 網路裡的 NAT 問題將持續存在。

 本篇論文提出一個完整的系統架構來解決 NAT 內部的使用者無法對外提供 Internet

Service 的問題。有鑑於現有的相關研究都因使用的不便利性而無法普及，本論文的系統

設計是針對使用的便利性做最佳化，並且引用點對點 (Peer to Peer) 網路架構來增進

效能。另外，本篇提出了 Passive TCP Splice 以及 Pure TCP Splice兩個 kernel layer

的實做方法來增進系統效能，在本文中將探討完整的實做方法。

 本篇的系統架構亦可套用到解決 IPv4/IPv6 Translation 以及 Firewall Traversal

問題。另外，亦可支援連上家用網路的電腦周邊設備的使用，讓使用者在家用網路的 NAT

外部亦能使用 NAT 內部的電腦周邊設備。

 i

 ii

Design and Prototyping of an Internet P2P Service Broker for

NAT Traversal

Student: Rung-Jr Liu Advisors: Dr. Yaw-Chung Chen

Institute of Computer Science and Information Engineering
National Chiao Tung University

Abstract

 Internet Protocol version 4 (IPv4) was devised in early 90’s and is broadly used in Internet

nowadays. However, the rapidly increasing number of Internet users leads to the insufficiency

of IPv4 addresses. NAT (Network Address Translator) was later devised to allow many

Internet users to access Internet simultaneously using one single IPv4 address. However, while

providing the convenience of accessing the Internet, NAT also breaks the original Internet

structure. Users outside NAT can not use IPv4 addresses to locate the users inside NAT, and

users inside NAT can not provide Internet services to the users outside NAT.

 Internet Protocol version 6 (IPv6) was devised in mid 90’s. IPv6 extends the IP address

from 32 bits to 128 bits and completely solves the insufficiency of IP addresses. However, the

transition to 128-bit IPv6 addresses has been proceeding slowly. The problem of NAT would

remain until IPv6 become popular.

 This thesis proposes a system to solve the problem of NAT. To avoid the inconvenience

of the related work, the main guideline of this thesis is to make the system easier to be

deployed. Furthermore, peer-to-peer network structure is introduced to this system to improve

performance. In addition, this thesis proposes two new techniques: Passive TCP Splice and

Pure TCP Splice to improve system performance.

 iii

 This system can be applied to IPv4/IPv6 Translation and Firewall Traversal. Furthermore,

it can support computer peripherals which connect to home network. Users can use this system

to control their computer peripherals in their home network while travelling outside.

 iv

Acknowledgement

 I would like to express my sincere thanks to my advisor, Prof. Yaw-Chung Chen

for his enthusiastic guidance and perspicacious advice throughout the research. In

addition, I am grateful to my good friends and lab-mates, especially Dr. Yi-Cheng Chan

and Cheng-Yuan Ho, for their useful suggestions and valuable comments.

 Finally, I would express my indebtedness to my dear parents, and my lovely girl

friend, I-Hsuan Lu, for their love, inspiration and continuous support.

 v

Table of Contents

Abstract (Chinese)……………………………………………………………………………….i

Abstract (English) .. ii

Acknowledgement .. iv

Table of Contents ... v

List of Figures ... viii

List of Tables.. x

Chapter 1 Introduction .. 1

1.1 Overview and Problem Statement ... 1

1.2 Motivation and Contribution.. 2

1.3 Organization of the Thesis ... 3

Chapter 2 Related Work.. 5

2.1 Local Side Alteration Scheme.. 5

2.1.1 SOCKS.. 5

2.1.2 Statically Assign.. 6

2.1.3 Call Interception.. 6

2.1.4 UPnP ... 7

2.2 Middle Node Translation Scheme.. 7

2.2.1 IPNL.. 8

2.2.2 SIP Related: ALG, Session Controller, STUN, and TURN 8

2.2.3 Skype... 11

2.2.4 VPN... 12

2.2.5 Connection Splicer.. 13

2.3 Comparison .. 15

Chapter 3 Proposed System Architecture ... 19

3.1 Design Guidelines.. 19

3.2 System Components... 21

3.3 Mechanism Outside the NAT... 22

3.4 Mechanism Inside the NAT ... 25

3.4.1 Basic Scheme .. 25

3.4.2 Enhanced Scheme ... 27

3.5 Message Exchange... 31

3.6 Deployment Issues of ISB and IST.. 31

3.6.1 Deployment of IST ... 32

3.6.2 Deployment of ISB ... 33

3.6.3 Providing IST Functionality on NATed Host.. 34

3.7 Discussion .. 36

3.7.1 Firewall Traversal ... 36

3.7.2 IPv4 / IPv6 Translation ... 37

3.7.3 Multicast ... 38

3.7.4 Computer Peripheral Applications.. 38

Chapter 4 Passive and Pure TCP Splice.. 40

4.1 Application Layer Proxy.. 40

4.2 TCP Splice ... 42

4.3 Passive TCP Splice .. 43

4.4 Pure TCP Splice ... 46

Chapter 5 Implementation and Emulation Results ... 49

5.1 Implementation of Application Layer User Daemon and Internet Service Broker 49

5.2 Implementation of Internet Service Translator in OS Kernel 50

5.3 Emulation Platform.. 55

5.4 Emulation Result.. 57

 vi

Chapter 6 Conclusion.. 64

Reference ... 66

 vii

List of Figures

Figure 2.1: NAT Traversal Problem of SIP. ... 9

Figure 2.2: Solve NAT Traversal Problem of SIP using ALG.. 10

Figure 2.3: Solves the NAT Traversal Problem of SIP by using Session Controller. 11

Figure 2.4: TCP connection setup of connection splicer.. 14

Figure 3.1: Basic components in deployment.. 21

Figure 3.2: Persistant connections between the users and the ISB. ... 23

Figure 3.3: The service connection process via ISB and IST. ... 24

Figure 3.4: The service connection setup process via ISB only .. 25

Figure 3.5: Actions of the application layer daemon on user hosts. .. 26

Figure 3.6: ALG is combined with daemon when traversing one NAT..................................... 29

Figure 3.7: ALG is combined with daemon when traversing two NATs. 30

Figure 3.8: Message Exchanged between ISB, IST and Daemons.. 31

Figure 3.9: Decentralized operation of ISB and IST.. 34

Figure 3.10: ISB test the type of NAT.. 36

Figure 3.11: Login process of IPv4/IPv6 translation using ISB and IST................................... 37

Figure 3.12: Service negotiation of IPv4/IPv6 translation using ISB and IST. 38

Figure 3.13: IST supports multicast... 38

Figure 3.14: Applied to computer peripherals. .. 39

Figure 4.1: The path of packet traversing an application layer proxy.. 41

Figure 4.2: The path of packet traversing a TCP splicer.. 42

Figure 4.3: The path of packets traversing a passive TCP splicer. .. 44

Figure 4.4: Splice TCP three-way handshake. ... 45

Figure 4.5: Implementation of passive TCP splice on IST. ... 46

Figure 4.6: The path of packet traversing a pure TCP splicer.. 47

Figure 4.7: Port negotiation of Pure TCP Splice.. 48

 viii

Figure 5.1: Original TCP state transition diagram. .. 51

Figure 5.2: Modified TCP state transition diagram for splicing TCP connection. 53

Figure 5.3: Block diagram of Intel IXP425 network processor. .. 56

Figure 5.4: Emulation Topologies. (A): Forwarder, NAT and IST. (B): Direct Connect........... 58

Figure 5.5: Comparison of Round Trip Time. ... 59

Figure 5.6: Comparison of TCP throughput. ... 60

Figure 5.7: Magnification of TCP throughput comparison.. 60

Figure 5.8: Comparison of UDP loss rate with 1Kbyte packet size. ... 61

Figure 5.9: Comparison of UDP loss rate with 6Kbyte packet size. ... 62

Figure 5.10: Comparison of UDP loss rate with variable packet sizes...................................... 62

 ix

List of Tables

Table 2.1: Connection Setup for Connection Splicer... 15

Table 2.2: Comparison of NAT traversal techniques: Additional Requirements. 16

Table 2.3: Advantages and Disadvantages of NAT traversal techniques. 17

Table 4.1: The fields need to be modified by TCP splicer. .. 43

Table 4.2: The fields need to be modified by passive TCP splicer. ... 45

Table 4.3: The fields need to be modified by pure TCP splicer. .. 48

 x

Chapter 1

Introduction

Internet Protocol (IP) was designed few decades ago. The dramatic growth on the

population of the Internet in recent years showed that 32-bit IPv4 addresses have been rapidly

depleted. However, the transition to 128-bit IPv6 addresses is proceeding slowly. A number of

innovative solutions have been devised to work around this problem. In this chapter, we give a

brief description and problem statement. Then, we introduce our system infrastructure shortly

after the discussion of our motivation and contribution.

1.1 Overview and Problem Statement

Classless Inter-Domain Routing (CIDR) [1] is one of the initial solutions that alleviated

the inefficiency in address space allocation to a certain extent. However, the alleviation from

CIDR can only slow down the insufficiency tendency. Subsequently, a so-called Network

Address Translator (NAT) [2] was devised to solve the problem. NAT allows a large number of

hosts using private IP addresses to access the Internet via a single public IP address.

NAT does IP Masquerading, in which packets from a local IP-port pair are mapped to a

global IP-port pair. This mapping is sometimes referred to as source NAT. Since all local hosts

are mapped to a single IP address (or one from a small pool of addresses), there is no way for a

foreign host to directly locate an individual host which is behind a NAT box.

 1

Another form of NAT called destination NAT may be used to forward traffic from a port

on the global IP domain to a specific host on the local network. Destination NAT is often used

for load-balancing servers, where only a single IP-port pair is visible to the Internet, but

incoming requests are locally passed to different machines in a round-robin scheme. This

allocation of server ports is typically static and is done by the administrator.

While NAT provides many benefits, it also comes with many drawbacks. The most

troublesome of those drawbacks is the fact that it breaks many existing rules of IP applications

and makes it difficult to deploy new ones. With the rapidly increasing usage of peer-to-peer

(P2P) applications such as File Sharing (i.e., Napster, eDonkey, Kazaa…) or VoIP (i.e., SIP

Phone, Skype…), the Internet users establish network connections between two Internet nodes

more and more frequently. Unfortunately, we can’t directly establish the connections between

nodes which connect to Internet via the NATs. This is because the initiator of the connection

doesn’t know how (where) to create this connection due to the lack of the receiver’s IP address.

Nodes behind NATs use private IP addresses to access Internet, but nodes outside the NATs

can’t use these private IP address to locate the nodes behind NATs.

In this thesis, we call the above problem the NAT traversal problem, and the techniques

which resolve the NAT traversal problem are NAT traversal techniques. These techniques

feature NAT traversal capability, which is the ability to traverse NAT. The hosts that connect to

Internet via a NAT box are called NATed hosts.

1.2 Motivation and Contribution

Many techniques have been proposed to resolve the NAT traversal problem. Session

Initiation Protocol (SIP) [3] users use Application Layer Gateway (ALG), STUN, UPnP, etc. to

enable voice traffic to traverse NAT. Some techniques statically assign NAT’s mapping table to

enable incoming connection from outside to inside of NAT. Another technique requires the

 2

modification to TCP/IP protocol stack of OS (Operating System) kernel code. These existing

works requires either special hardware or special middle server or administrator privilege or

modification to existing kernel code, and furthermore they are not suitable for various existing

network applications. Due to such inconvenience, the usage of these techniques is suppressed.

Consequently, there is no unique method that can provide a generic solution and well accepted

by common network applications.

In this thesis we propose an infrastructure to solve the NAT traversal problem. The main

design guideline is to build an infrastructure which can be deployed as well as used easily.

Besides, our design follows the following five principles: no configuration or modification to

NAT, no modification to TCP/IP protocol stack of user host, no modification to existing

network client applications (i.e., IE, outlook,…), no modification to existing network server

applications (i.e., apache, sendmail,…) and must be compatible with existing network

applications. In other words, this work tries to propose a general purpose solution for NAT

traversal which allows the existing network applications still workable. To distinguish our

infrastructure from traditional client-server model, we name the client of our system as service

subscriber and the server as service provider.

The basic concept we propose here is that a service provider runs an application layer

daemon to forward client’s service request to a server process (i.e., apache, sendmail…). A

service subscriber runs an application layer daemon to forward server’s service response to a

client process (i.e., IE, outlook…). In the globally addressed Internet, we setup an Internet

Service Broker (termed as ISB here after) to help the negotiation of service subscriber and

service provider. In addition, we setup an Internet Service Translator (termed as IST later) to

improve the throughput of user traffic between service subscriber and service provider.

1.3 Organization of the Thesis

 3

 The rest of this thesis is organized as follows. In Chapter 2, we review the related works

and address the advantages and disadvantages of them. The proposed infrastructure and

improved scheme are detailed in Chapter 3 and 4. In Chapter 5, we present the implementation

and the evaluation of the system. Finally, Chapter 6 concludes the thesis and points out some

future works.

 4

Chapter 2

Related Work

In this chapter, we describe the related techniques which are devised to solve the NAT

traversal problem, also we discuss techniques similar to our infrastructure in detail. These

techniques feature two main characteristics: Middle Node Translation (MNT) and Local Side

Alteration (LSA). In Section 2.1, we describe the techniques with LSA attribute. Techniques

requiring modifications within the same Autonomous System (AS) are classified into this

section. In Section 2.2, we present the techniques which demand MNT. Finally, we give a brief

comparison of these techniques in Section 2.3. We use “service provider” and “service

subscriber” to replace “server host” and “client host”, respectively.

2.1 Local Side Alteration Scheme

 The Local Side Alteration scheme here is used in the techniques that a service provider or

a service subscriber has to modify the operating system kernel, or require some specific

network devices beyond NAT, or need the administrator privilege of NAT. In this section, we

describe the following four techniques: SOCKS [4], statically assign [5], call interception [6]

and UPnP [7].

2.1.1 SOCKS

 5

SOCKS [4] is an application-layer protocol-independent proxy. It requires specific

application support to work for both inbound and outbound connections. Existing

“SOCKSifiter” programs and libraries make SOCKS-unaware programs work in the way of

library/DLL replacement which alters the behavior of original network API (i.e., bind (), listen

(), accept (), connect ()…). Unfortunately, most commodity hardware routers such as those

built into wireless access points or the so called “broadband routers” do not support SOCKS

protocol. Therefore, a solution that works within the NAT framework may be preferable.

2.1.2 Statically Assign

 The statically assign mechanism was first devised in [5]. It is the most obvious and simple

way to solve the NAT traversal problem. A service provider only needs to modify the NAT

address-port mapping table, while a service subscriber just has to connect to the pre-allocated

address and port. It doesn’t need any special application layer program or hardware, or any

modification to TCP/IP protocol stack. However, the most troublesome drawback is that

service providers are required to have the administrator privilege of the NAT, and every time

when the service provider wants to provide service, he/she has to modify the NAT mapping

table.

2.1.3 Call Interception

 Pai’s [6] proposes a transparent and dynamic system which has three components, the call

interception module, the client daemon and the gateway daemon, to enable incoming

connections to NATed hosts. When the service provider has an application trying to open a

socket for incoming connections, the system call is intercepted and a message is sent to the

client daemon. The client daemon then attempts to setup a forwarding rule on NAT gateway

with the assistance of the gateway daemon. This is an automatic mechanism that the service

 6

provider does not need any extra operation, and therefore, it is very convenient for users to use.

However, there are still two drawbacks. First, the service provider needs to modify his/her OS

kernel implementation to enable the intercept module, which means none of current OS can

support this functionality without the modification. And the second one, an even more

troublesome drawback, is that it has to implement a special functionality into NAT box to

execute the gateway daemon. Unfortunately, almost all commodity hardware NATs do not have

this dynamic adding on feature.

2.1.4 UPnP

 UPnP [7] is the abbreviation of “Universal Plug and Play”, which is developed by

Microsoft Corporation and some other vendors. Although the original motivation of UPnP

project is not mainly focus on enabling incoming connection to hosts behind NATs, UPnP

provides a set of APIs, called “NAT traversal”, to enable NAT traversal. UPnP works like the

call interception technique as mentioned above. Gateways which implement UPnP are called

IGD (Internet Gateway Device). A service provider runs a program through the API provided

by UPnP to negotiate with IGD, which provides the functionality for NAT, to modify the NAT

mapping table. After modifying the NAT mapping table, the service provider can run the

original server program to accept incoming connection.

The main difference between call interception technique and UPnP is that UPnP

standardizes the messages exchange between user host and IGD, and formalizes the behavior

of IGD. Furthermore, a service provider needs to execute an additional program before execute

the server program. The disadvantage of UPnP is similar to the call interception technique.

2.2 Middle Node Translation Scheme

 The “Middle Node Translation” scheme here is used by the techniques that require

 7

administrators to setup one or multiple globally-addressable nodes to translate network traffic.

In this section, we describe the following five category of techniques: IPNL [8], SIP Related

techniques, Skype [9], VPN and Connection Splicer [10]. We give more detailed description of

SIP related techniques, Skype and connection splicer due to some of their characteristics are

used in our system infrastructure.

2.2.1 IPNL

 Francis’ [8] presents and analyzes IPNL (abbreviation for IP Next Layer), an

NAT-extended Internet protocol architecture designed to solve the NAT traversal problem. In

the NAT-extended architecture, hosts and NAT boxes are modified, and the IPv4 routers and

supported protocols are kept untouched.

 The IPNL architecture is performed by each privately addressed realm associating with

one or more DNS zones. An additional packet header, which contains the Fully Qualified

Domain Name (FQDN) of the destination host, is placed above IP header. IPNL users use

FQDNs instead of IP address to locate the server host. Furthermore, NAT boxes are modified

to route the packet using the information of the new header and FQDN.

 The drawbacks of IPNL are obvious. Users of IPNL should modify their OS kernel code

to place the additional header above the IP header, and NAT boxes should be modified to

enable the routing functionality. These two drawbacks are complicated so that the deployment

of IPNL is limited.

2.2.2 SIP Related: ALG, Session Controller, STUN, and TURN

 The Session Initiation Protocol (SIP) [3] is a middleware signaling protocol that allows

Internet endpoints to negotiate how to communicate with each other. SIP negotiates various

parameters including port numbers, IP addresses, whether to use unicast or multicast, IPv4 or

 8

IPv6 (or some other network protocol), and details of the media stream such as encoding

methods. When SIP sessions are established through an NAT, the IP address in IP header will

be modified by NAT and thus this IP address differs from that in SIP message. Figure 2.1

shows the NAT traversal problem of SIP.

Figure 2.1:1NAT Traversal Problem of SIP.

 There are several solutions for NAT traversal problem of SIP: Application Layer Gateway

(ALG), Session Controller, STUN [14] and TURN [13]. Each of these techniques requires the

assistance of a third party server.

ALG detects the public IP address and port mapped by the NAT and modifies the SIP

messages as shown in Figure 2.2. ALG modifies the “INVITE”, “Via”, “Contact”, “c”, and

“m” fields in SIP and SDP message. Any field in SIP and SDP message which contains the

information of private IP address are translated into public IP address, and port number in

transport layer is also modified to an appropriate one.

 9

Figure 2.2:2Solve NAT Traversal Problem of SIP using ALG.

Session controller is the combination of SIP proxy and RTP proxy. SIP proxy handles SIP

signaling message, and RTP proxy is responsible for forwarding RTP voice packets. When SIP

messages are sent to a SIP proxy, the message is modified by adding a “Record-Route” header.

Therefore, all the following SIP messages will pass through this SIP proxy, and the SIP proxy

will be able to control the behavior of each SIP client. When SIP clients are behind NATs, SIP

proxy will modify the SIP message to change the destination IP addresses of RTP connections

to RTP proxy. RTP proxy forwards the RTP voice packets for both the caller and callee. Figure

2.3 depicts the behavior of a session controller.

 10

Figure 2.3:3Solves the NAT Traversal Problem of SIP by using Session Controller.

STUN [14] allows a host to learn the global IP address and UDP port assigned by its

outermost NAT box. This address can be subsequently conveyed by SIP to allow direct UDP

connectivity between hosts. TURN [13] allows a host to select a globally-addressable TCP

relay, which can subsequently be used to bridge a TCP connection between two NATed hosts.

Unlike STUN, TURN does not allow direct connectivity between NATed hosts.

These techniques can solve the NAT traversal problem of SIP. STUN, TURN and ALG

can be used by many other applications for NAT traversal and for many other purposes.

However, the session controller technique can only be used for SIP application. To fully prove

these techniques, we will cite some characteristics of these techniques to design our system

infrastructure.

2.2.3 Skype

 Skype [9] is a peer-to-peer VoIP application developed by KaZaa [11]. Skype claims that

 11

it can work almost seamlessly across NATs and firewalls. It encrypts calls end-to-end, and

stores user information in a decentralized fashion. Although the detailed mechanism of Skype

was not made public, Baset’s [12] has finished the analyses of the Skype functions by carefully

study the Skype network traffic.

From the analyses of [12], there are two types of nodes in this overlay network: ordinary

hosts and super nodes. Any node using a public IP address and having sufficient CPU, memory,

and network bandwidth is a candidate to become a super node. An ordinary host must connect

to a super node and must register itself with the centralized Skype login server for a successful

login. It is conjectured that Skype client uses a variation of STUN and TURN protocols to

determine the existence of NAT. Once the Skype Client discovers that it is behind a NAT, it

creates a TCP connection to one super node. Afterward all voice traffic sent to this NATed

Skype client was forwarded by the super node via this TCP connection.

The Skype way for NAT traversal utilizes the nature of P2P system and provides excellent

performance for Internet telephony. It is now popularly accepted to use third party relay to

solve the NAT traversal problem. The main difference between Skype and session controller

technique is that Skype utilizes the P2P infrastructure and disperses the bottleneck to super

nodes which spread out in the whole Internet. The only shortcoming of the Skype way for NAT

traversal is that it is suitable for the third party node to forward only the small-scale voice

traffic. Since super nodes are also system users, they will not expect to exhaust their bandwidth

to forward other people’s traffic. When applying to general solution for NAT traversal, some

other techniques for performance improvement are required.

2.2.4 VPN

 VPN (abbreviation for Virtual Private Network) is a way to provide remote access to an

organization’s network via the Internet. VPN clients send data over the public Internet through

 12

secure “tunnels.” In addition to providing secure tunnels, VPN can also be viewed as another

approach for NAT traversal. The VPN administrators can prepare a set of public IP addresses to

the VPN server to allocate one public address to each VPN client, and the NATed VPN client

connecting to this VPN server is considered as a host with public IP address. Since most

current OSs have supported VPN, which may be the easiest way to solve the NAT traversal

problem. The only drawback is that the NAT administrator should arrange a public IP address

for each VPN client, and this drawback transfers the situation back to the insufficiency of IP

address.

2.2.5 Connection Splicer

 NUTSS [10] proposes a SIP-based approach to both UDP and TCP network connectivity.

Furthermore, NTUSS constructs a mechanism, called Connection Splicer, to avoid the third

party forwarder. It establishes a protocol, called STUNT, to extend STUN to include TCP

functionality.

 At the initial stage, hosts A and B establish their intent to communicate with each other

via a proxy (as depicted in Figure 2.4). The proxy is the combination of connection splicer and

STUNT server. Host A and B predicts their NAT’s behavior to get the mapping of global IP

address and the transport port mapping on their NATs by performing Port Prediction with the

assistance of the STUNT server.

Afterward host A sends it’s global address and global port to B via the connection splicer

and likewise receives B’s global mappings. Upon receiving B’s global mapping, A initiates a

TCP three-way handshake with it. Each host must also open a RAW socket so that it can see a

copy of the first TCP SYN packet (packet 3) of the three-way handshake. This SYN packet

must have a sufficiently low TTL that the packet is dropped between host A and host B. Host A

then encapsulates the content of this TCP SYN (heard via the RAW socket) and sends it to host

 13

B via the connection splicer (packet 4). Likewise, host A receives the contents of host B’s TCP

SYN via the connection splicer. Host A then constructs a message containing both its and host

B’s SYNs, and sends the message (packet 5) to STUNT server. From these two SYNs, the

STUNT server is able to construct the SYNACKs (packet 6) that host A, host B and their NATs

expect to see. This SYNACK is transmitted by the STUNT server to host A’s NAT, spoofing

the source address so that it appears to have come from host B via host B’s NAT. Table 1 shows

the source and destination IP address of these packets.

Figure 2.4:4TCP connection setup of connection splicer.

Host A’s NAT finds the SYNACK it is expecting to see and translates the destination

address to A’s private address and routes it accordingly. The packet is then received by host A,

and therefore the three-way handshake is completed.

 14

Table 2.1:1Connection Setup for Connection Splicer.

The performance of connection splicer mechanism is excellent. Since it doesn’t need a

third party forwarder, the performance of this mechanism is equal to the best throughput which

is based on the IP routing protocol. However, it still has some drawbacks. First, it needs to

perform the Port Prediction which features some uncertainty. Second, the connection splicer

needs to perform IP address spoofing which would not work when the spoofing packet is

routed across the routers which perform ingress filter. Third, although RAW socket is

implemented in almost all current OSs, some OSs require super-user privilege to grant access

to RAW socket.

2.3 Comparison

 In this section, we give a brief comparison of the NAT traversal techniques discussed

above. Table 2.2 shows the additional requirements of these NAT traversal techniques, which

can be categorized into “Modification of Application”, “Modification of NAT”, “Modification

of Kernel” and “Third Party Server”.

The modification of application mentioned here means that users need to either modify

their computer programs or adjust some information in their computer programs to enable the

NAT traversal capability. “Connection Splicer” belongs to the former type because computer

programs should be modified to set the TTL of IP header to a small value. “SOCKS” and “SIP

 15

Related” belong to the latter type because users should give the information of either SOCKS

server or STUN server to their computer programs. “Statically Assign” and “UPnP” do not

require the modification of applications because users perform some operations to setup NAT

box or Internet Gateway Device (IGD) before they execute their computer programs. “IPNL”

and “Call Interception” don’t need the modification of applications because they transfer this

requirement to the modification of kernel. “Skype” uses P2P infrastructure and is a specific

application, therefore it doesn’t need the modification of applications.

Requirements
Techniques

Modification
of Application

Modification
of Kernel

Modification
of NAT

Third Party
Server

SOCKS Y N N Y
Statically Assign N N N N
Call Interception N Y Y N

UPnP N N Y N
IPNL N Y Y Y

SIP Related Y N N Y
Skype N N N Y
VPN N N N Y

Connection Splicer Y N N Y
Table 2.2:2Comparison of NAT traversal techniques: Additional Requirements.

 “Call Interception”, “UPnP” and “IPNL” require the modification of NAT box. “Call

Interception” modifies NAT box such that it can automatically alter NAT mapping table.

“UPnP” modifies NAT box to perform UPnP protocol. “IPNL” modifies NAT boxes to route

packets according to the IP next layer header. The ALG technique we describe in “SIP Related”

doesn’t need modification of NAT because it is not restricted to associate with NAT and can be

deployed in globally-addressable Internet.

 Most techniques we discussed in this thesis require the assistance of third party server.

“SOCKS” need a SOCKS server. “IPNL” needs other modified NATs to route users’ packets.

“SIP Related” requires ALG, Session Controller, STUN and TURN. “Skype” demands third

party super nodes. “VPN” needs VPN server. “Connection Splicer” needs STUNT and

 16

connection splicer. The common characteristic of these techniques is that all the third party

servers use public IP addresses. Advantages and disadvantages of the aforementioned NAT

traversal techniques are listed in Table 2.3.

 Advantages Disadvantages
---Local Side Alternation---

SOCKS Has been carried out for many
years, and many existing
applications support SOCKS.

Applications should be modified
to perform SOCKS protocol.

--
Statically Assign Doesn’t need any modification of

application or kernel code or any
assistance of third party node.

Requires administrator privilege
of NAT box.

--
Call Interception Provides an automatic mechanism

which is very easy to use.
Needs modification of OS kernel
code and NAT boxes.

--
UPnP Supported by Microsoft, and

therefore, is much easier to be
popularized.

NAT boxes should be modified to
carry out UPnP protocol, and is
not well accepted by other
UNIX-like OSs.

---Middle Side Translation---
IPNL The performance is better than that

traffic forwarded by global third
party node.

The functionality requires users to
modify their OS kernel, which
means it would not work on some
OSs.

--
SIP Related Most popularly accepted, and

many of them are standards.
Some of them are only suitable
for SIP, and there is no well
designed solution for general
purpose.

--
Skype Utilizes the P2P structure and

doesn’t have the bottleneck of
global third party node.

When it is applied to general
purpose, it consumes super
nodes’, which are also system
users, bandwidth to forward other
users’ traffic.

--
VPN Easy to use. All the user has to do

is just connecting to a VPN server.
Requires a public IP address for
each VPN client.

--
Connection Splicer Doesn’t need third party node to

forward traffic, which provides the
best point to point throughput.

Performs IP address spoofing
which would be dropped by some
routers.
Some OSs require administrator
privilege of client host to perform
this mechanism.

Table 2.3:3Advantages and Disadvantages of NAT traversal techniques.

 17

 Each of the NAT traversal techniques described above has some disadvantages and

inconveniences. In Chapter 3, we propose a general purpose solution for NAT traversal to

alleviate these disadvantages and inconveniences. Although it is also inevitable that our

solution still has some drawbacks, our approach provides a much simpler infrastructure to be

utilized and popularized for NAT traversal and hence can be applied to any kind of existing

network applications.

 18

Chapter 3

Proposed System Architecture

 In this chapter, we propose an infrastructure for NAT traversal. The main objective of our

design is to provide a solution which is easier to be popularized. In Section 3.1, we describe the

design guidelines of our solution and based on these guidelines we make our solution much

easier to be deployed. From Section 3.2 to 3.5, we discuss our infrastructure and mechanisms

for NAT traversal. Section 3.7 discusses the deployment issue of our infrastructure. And finally

in Section 3.8, we address the performance issues and additional capabilities of our solution.

3.1 Design Guidelines

The prerequisites of the existing techniques discussed in Chapter 2 are listed as follows.

♦ NAT boxes need to be revised.

♦ The existing client applications should be modified.

♦ The existing server applications should be modified.

♦ The original TCP/IP protocol stacks need to be revised.

♦ The OS kernel implementation or network API or libraries need to be revised.

♦ Does not provide a general purpose solution which can be applied to any kind of

existing network applications.

♦ The demand of third party forwarder reduces the throughput between service

 19

subscribers and service providers.

These annoying prerequisites of the existing techniques lead to the fact that none of

them

equired for NAT boxes.

of user

3. ations (i.e., IE browser, putty, outlook…).

ting

uideline 1 and 2 keep the NAT boxes and the TCP/IP protocol stack of user hosts

unto ersal

 ensure the compatibility to the existing applications. As a consequence,

our p

 solution, which means any kind of

exist

o obtain

 are popularly accepted for NAT traversal. To overcome these inconvenience, we

setup five design guidelines for our solution as follows.

1. Neither re-configuration nor administrator privilege r

2. No re-configuration to “TCP/IP protocol stack” and “kernel implementation”

host.

No modification to existing client applic

4. No modification to existing server applications (i.e., httpd, sshd, pop3d…).

5. Must provide general purpose solution and can be applied to all sorts of exis

network applications.

G

uched. Without such requirements related to NAT boxes, users can perform NAT trav

transparently through NAT boxes. Furthermore, guideline 2 allows users to have NAT traversal

capability without the administrator privilege of localhost, since it achieves the independency

of operating systems.

Guideline 3 and 4

roposed solution is feasible for commercialization.

Finally, guideline 5 aims to provide a general purpose

ing network applications can be supported by our solution. We use the term “any kind”

here due to the fact that some network applications’ behavior differs from the normal

client-server model, in which client creates one TCP or UDP connection to the server t

the service. Some network applications (i.e., FTP, Netperf [15] …) require consequent

 20

connections after the first service connection from subscriber (client) to provider (serve

Some network applications which run SIP protocol would transmit their private IP address

SIP messages and finally result in failure (discussed in Section 2.2.2). Our solution is designed

for supporting these kinds of network applications and, furthermore, we expect to support all

sorts of network services in the future.

r).

in

3.2 System Components

 in our NAT traversal infrastructure.

.

ervice Provider and Service Subscriber reside in each user’s host. Each user can be a

Serv ces,

There are three main components

♦ Internet Service Broker (ISB).

♦ Service Provider.

♦ Service Subscriber

S

ice Provider or a Service Subscriber or both. When users want to provide network servi

they become Service Providers. On the other hand, when users want to subscribe services, they

become Service Subscriber. User hosts can be either NATed or not NATed. The connectivity

between NATed Service Provider and NATed Service Subscriber was carried out with the

assistance of ISB and IST. Figure 3.1 shows the basic components in deployment.

Figure 3.1:5Basic components in deployment.

 21

ISB is built in advance in globally-addressable Internet. The main function

tion between the service subscriber and service provider

ture needs to login to ISB. When a user tries either

services, they should negotiate with other users via ISB, which maintains the profile

Another functionality of ISB is to forward the traf

. To improve the forwarding performa

ality of ISB is

to help the negotia . Each user wants to

use this infrastruc to provide or subscribe

information of users. fic between a service

provider and a service subscriber nce, we can setup an

additional host, Interne ing task. IST can be

eployed anywhere in globally-addressable Internet, and multiple ISTs can be deployed to

impr

n

 a

t Service Translator (IST), to perform the forward

d

ove the system performance. In the rest of this thesis, we discuss the scenarios which the

forwarding job is performed by IST, and the functionality of ISB is only to help the negotiation

between the service subscriber and service provider. ISB and IST exist in individual hosts.

3.3 Mechanism Outside the NAT

 Both Internet Service Broker (ISB) and Internet Service Translator (IST) are deployed i

globally-addressable Internet in advance. ISB maintains system users’ profiles and those who

want to use the system have to login to ISB. The login process can be accomplished through

TCP connection. After the completion of login, users keep the TCP connection persistent for

the future negotiation. Figure 3.2 shows the connection mechanism.

 22

Figure 3.2:6Persistant connections between the users and the ISB.

To keep the TCP connection persistent, User A and User B can turn on the “keepalive”

option of Berkley Socket or WinSock implementation, or send hello messages to ISB

periodically.

After system users login to ISB, they can check all available on-line services provided by

other users. Furthermore, they can submit a request to ISB for subscribing services. ISB then

checks this request and forwards it to the corresponding service providers via the persistent

TCP connections between ISB and each system user host. Upon reception of the request, the

service provider negotiates with the subscriber via ISB. We call this process as Service

Negotiation.

If both service provider and service subscriber are NATed hosts, after the service

negotiation finishes, ISB tries to find an appropriate IST which is close to either the service

subscriber or the service provider. Furthermore, ISB sends a splice request to IST and instructs

IST to create an UDP or TCP socket to listen to the port and be ready to splice connections

from service provider and service subscriber. Finally, ISB tells both service provider and

service subscriber the configuration of IST. The service provider and service subscriber then

create a connection to IST and these two connections will be spliced into one single connection.

Figure 3.3 depicts the scenario which assumes that the service subscriber creates the

 23

connection before the service provider does it.

Figure 3.3:7The service connection process via ISB and IST.

If only the service subscriber is NATed, our system can be viewed as a service discovery

system. Service providers use our system to announce services they provide, and service

subscribers perform service negotiation with the service provider via ISB and directly connect

to the service provider to access the service. Therefore, under this situation, we don’t need an

IST to forward network traffic.

On the other hand, Figure 3.4 depicts the situation while only the service provider is

NATed. The service negotiation is also accomplished via ISB and it again doesn’t need an IST

to forward network traffic, however, the service connection is created by the service provider.

Each service subscriber or service provider needs to run an application layer daemon to

execute this mechanism, and we discuss this daemon in Section 3.4.

 24

Figure 3.4:8The service connection setup process via ISB only

After accomplish the connection setup, the service subscriber and the service provider are

considered to have an end-to-end connection, and the service subscriber can send service

request through it, while the service provider can reply through this connection also. In the next

section, we describe the mechanism performed on those user hosts behind the NAT boxes.

3.4 Mechanism Inside the NAT

 We describe the basic scheme in Section 3.4.1 and then the enhanced scheme for SIP NAT

Traversal and other special applications in Section 3.4.2.

3.4.1 Basic Scheme

 The login process and connecting to IST are performed by an application layer daemon

running on the user host. Each user runs an application layer daemon to login and maintain the

persistent connection to ISB, and this daemon maintains the behavior of subscribing service

and providing service. Figure 3.5 shows the action of this application layer daemon when users

on NATed hosts try to subscribe or provide services.

 The actions in Figure 3.5 are performed after login and service negotiation. The user host

A wants to subscribe service and the user host B likes to provide service. The daemons at both

 25

sides create a connection to IST. Besides connecting to IST, the daemon on host B also creates

a connection to localhost port to which server process is listening. The main task of the daemon

now is to forward messages between these two connections.

Figure 3.5:9Actions of the application layer daemon on user hosts.

Besides connecting to IST, the daemon on host A also listens to a TCP or UDP port. When

users on host A intend to access the internet service provided by host B user, they have to go

through their client application (i.e., IE browser, FTP browser …) to setup connecting and send

request to localhost port to which the daemon is listening. Upon receiving the request, the

daemon on host A forwards it to the service provider via IST.

Take the web service as an example, the host B user provides a web service and the host A

user subscribes this service. After the service negotiation is done and connecting to IST is

established, the host A user can open the browser and key in the localhost IP address (127.0.0.1)

and a TCP port number (get from the daemon). The browser will send an http service request

(i.e., “GET /”) to a TCP port of localhost. Then the daemon forwards this service request to

service provider via IST. The daemon on host B will then receive the service request from IST

 26

and forward it to the httpd on the localhost. The httpd then replies a service response to the

daemon and the daemon forwards it to service subscriber via IST. Finally, the daemon on host

A receives the service response and then forwards it to browser and the whole scenario is

finished.

Instead of connecting to IST, if only one of the service provider and service subscriber is

NATed and the other one is globally-addressable host, the application layer daemon on the

NATed host can connect directly to the globally-addressable host. Therefore, the performance

can be improved by reducing the latency and throughput limitation of the third party forwarder.

In addition, our system can also utilize the benefit of P2P structure to improve system

scalability. Section 3.6.3 describes the utilization of P2P structure.

3.4.2 Enhanced Scheme

 As indicated in Section 3.1, our solution should be suitable for any kind of network

applications. Some network service may not be accessed by a single TCP or UDP connection,

some may requires multiple connections; therefore, we propose the enhanced scheme to make

our solution suitable for various applications. The main ideas are to combine the Application

Layer Gateway (ALG) with our daemon or to pre-define the behavior for special applications.

 Take Netperf [15] as an example, it is a benchmark that can be used to measure various

aspects of networking performance. When executing Netperf client, the first thing that will

happen is the establishment of a control connection to the remote Netperf server. This

connection will be used to pass test configuration information and results to and from the

remote Netperf server. Once a control connection is setup and configuration information has

been passed, a separate connection will be opened for the measurement using the appropriate

APIs and protocols for the test.

If we like to make our system architecture suitable for Netperf, our daemon needs to know

 27

in advance that the service is Netperf. Furthermore, the daemon should negotiate with ISB to

create two splices on IST. The use scenario is that a service provider and a subscriber

accomplish the negotiation and create two splices on IST, and the daemons on both sides will

fork two processes to handle the connection control and test of Netperf. When a service

subscriber execute Netperf client to connect to localhost, Netperf client will automatically

create another TCP connection to a specific port number on the localhost. The daemon on

service subscriber host should forward the traffic of these two connections to the service

provider.

 Another type of special network service is SIP phone. A SIP phone application creates a

RTP connection to transmit voice data after the SIP negotiation. As discussed in Section 2.2.2,

the information of how to create this RTP connection is encapsulated in SIP message. If we like

to make our system architecture suitable for SIP phone application, we should combine our

daemon with an Application Layer Gateway (ALG).

 28

Figure 3.6:10 ALG is combined with daemon when traversing one NAT.

As discussed in Section 2.2.2, User1 in Figure 3.6 (left side) can create a RTP connection

to User2 (right side) but User2 can not connect to User1 because User1 uses private IP address.

Our solution is to combine the application layer daemons with ALGs. The ALG can be a new

application layer program or just a function call in the daemon program. After the service

negotiation of daemons, User1 send the SIP invite message to localhost which be forwarded to

User2. The ALG on User2 host modifies the SIP message to change the field “c” of IP address

and RTP port to localhost and the port which the daemon is listening to. Therefore, the RTP

connection of User2 connects to localhost daemon and voice data is forwarded to the service

subscriber via IST. In this scenario, we need to setup two splices on IST, one is for SIP

message, and the other one is for RTP connection from User2 to User1.

 Figure 3.7 is another example of SIP phone problem which is a little more complex than

 29

that in Figure 3.6. In Figure 3.7, both User1 and User2 are behind NAT. The main difference of

ALG actions in Figure 3.6 and Figure 3.7 is that we need to setup three splices on IST, one is

for SIP message, and the other two are for RTP connections in both directions.

Figure 3.7:11 ALG is combined with daemon when traversing two NATs.

 Based on the method of combining with ALG and the method of pre-defining the behavior,

we believe that our solution could be applied to all sorts of network applications. The main

disadvantage is that we should write an ALG or pre-define the behavior for each special

application. The ALG is either an individual application layer program or just a function call,

and we need to update our system software when a new application is to be deployed. However,

we consider this as an inevitable overhead for solutions which provides an automatic

mechanism. Without this drawback, our solution is very simple to use. All the system users

have to do is executing an application layer daemon and the daemon will automatically

 30

perform the service negotiation.

3.5 Message Exchange

The messages exchanged between ISB, IST and Daemons are shown in Figure 3.8. The

ISB and IST can be integrated into a single host. The forked daemon process and the original

daemon process are combined into ISB Daemon in Figure 3.8.

Figure 3.8:12Message Exchanged between ISB, IST and Daemons.

3.6 Deployment Issues of ISB and IST

 In this section, we discuss the deployment issues of ISB and IST. Multiple ISTs can be

deployed on the edge routers of ISP (Internet Service Provider) to achieve a better system

performance. In Section 3.6.1, the deployment of IST is addressed. Moreover, we can deploy

 31

multiple ISBs to build up a P2P structure in the globally-addressable Internet to improve

performance of service negotiation. In Section 3.6.2, we discuss the deployment issue of ISB.

Finally, in Section 3.6.3, we address the method which allows NATed users to act as an IST.

Combining all techniques discussed in this chapter, globally-addressable users are able to

perform the functionalities of both ISB and IST to form a P2P infrastructure, and our proposed

system would feature good scalability.

3.6.1 Deployment of IST

 The main functionality of IST is to splice connections from service providers and service

subscribers. When both service subscriber and service provider are NATed, all service request

messages and service response messages will pass through IST. It is obvious that IST will be

the bottleneck of system performance. In this thesis, we propose two approaches to minimize

the bottleneck effect. One is to enhance the performance of IST which we discuss in Chapter 4.

The other is to consider the deployment issues of IST and ISB, and we discuss this part here.

 We can deploy multiple ISTs in globally-addressable Internet. Multiple ISTs can be

considered as load sharing of the packet forwarding task, therefore, the more the ISTs we

deploy the better performance we can achieve. However, when we deploy multiple ISTs in the

Internet, a new problem may arise. After service providers and service subscribers finish their

service negotiation, ISB has to choose an appropriate IST to forward their service traffic. The

term “appropriate” here is that the IST should be located on the shortest path or best routing

path between the service provider and service subscriber. The selection method of IST is out of

this thesis’s scope, and we regard this topic as our future work.

 An obvious way of IST deployment is to install it along with the edge routers of ISP

(Internet Service Provider). Since the user traffic of an ISP would go through the ISP edge

router, the hop count between a service provider and a service subscriber in our system is the

 32

hop count of the best routing path plus one, so the extra overhead of routing a packet through

our proposed system could be minimized.

3.6.2 Deployment of ISB

 The main functionality of Internet Service Broker (ISB) is to maintain the profile

information of system users and help them accomplish the service negotiation. If we deploy

multiple ISTs in the Internet, the ISB is also required to find out the most appropriate IST for a

service subscriber and a service provider.

 Ws can deploy multiple ISBs in globally-addressable Internet to improve the performance

of user login and service negotiation. Although the overhead of ISB tasks is not heavy, we can

still deploy multiple ISBs for scalability. Once we have a large number of users who frequently

provide and subscribe services, the deployment of multiple ISBs would become necessary.

Another interesting idea is that we can deploy multiple ISBs in Internet to form a P2P

network. Each ISB provides the functionality of IST. The profile information database can be

divided into several smaller parts and spread into the ISB P2P system. Furthermore, users who

are globally-addressable also can provide the functionalities of ISB and IST. Then our system

would become well scalable because the task of original ISB and IST are decentralized and

distributed to P2P system users. Figure 3.9 shows the configuration. There are several existing

works devised to form P2P network structure [24, 25 and 17], therefore we don’t discuss the

details of how to form the P2P network structure in this thesis.

 33

Figure 3.9:13Decentralized operation of ISB and IST.

 Some may raise the question that why nodes with public IP addresses want to use our

system because our system is originally designed for NAT traversal. The reason is that nodes

which like to subscribe services from NATed host are required to participate in our system.

They can access the services of NATed host only through participating the system and perform

the service negotiation via ISB. When more and more globally-addressable nodes participate in

our system and form a large P2P structure, the overall system performance would be improved.

3.6.3 Providing IST Functionality on NATed Host

 In this section, we describe the approach to perform the IST function on NATed hosts. The

RFC 3489 defines four types of NAT behavior, and NATed host can perform the functionality

of IST if they are using specific kind of NATs. We redefine these four types of NAT behavior

as follows.

♦ Full Cone: The NAT mapping table records NATed host’s source IP address (internal

address), source port (internal port), NAT’s external source IP address (external

address) and external source port (external port). No two entries have the same pair

of internal address and internal port.

 34

♦ Restricted Cone: The NAT mapping table records internal address, internal port,

external address, external port and destination host’s IP address (destination address).

No two entries have the same pair of internal address and internal port.

♦ Port Restricted Cone: The NAT mapping table records internal address, internal

port, external address, external port, destination address and destination host’s port

(destination port). No two entries have the same pair of internal address and internal

port.

♦ Symmetric: The NAT mapping table records internal address, internal port, external

address, external port, destination address and destination port. There will be some

entries which have the same pair of internal address and internal port.

As long as the system users’ NAT type is “Full Cone”, it is able to perform the function of

IST. This is done by that ISB learns the source IP address and source port then check the type

of NAT, as shown in Figure 3.10. When ISB receive the first login packet from a NATed host,

it records the source IP address and source TCP port. Then, ISB uses another Network Interface

Card or another IP address to send a test packet to the source IP address and source TCP port of

NATed host. If the NATed host receives the test packet, he can make sure that his NAT is “Full

Cone”. The NATed host then replies a message to inform ISB his NAT is “Full Cone”. Then,

ISB and the NATed host negotiate regarding whether to perform the IST function on the

NATed host..

If the NAT type is not “Full Cone”, we can use “Port Prediction” technique in [10] to

perform the IST function on the user host. However, port prediction features some kind of

uncertainty.

 35

Figure 3.10:14ISB test the type of NAT.

 If we can perform the IST function on each user’s host, the infrastructure would become

well scalable. Furthermore, we can combine the functionality of the user daemon into a home

gateway (in fact, this violates our system design guideline in Section 3.1), which is a network

device running as a gateway of home network. The advantages of combining the IST and user

daemon into home gateway are two folds: good system scalability and persistent connection to

ISB. Since the nature of a home gateway is always on-line, persistent login to ISB allows the

home network users access to the resource of his/her home network while travel outside. In

addition, these advantages are great help for the deployment of our proposed infrastructure.

3.7 Discussion

 In this section, we discuss four additional issues: firewall traversal, IPv4/IPv6 translation,

multicast and computer peripheral applications.

3.7.1 Firewall Traversal

Our solution can be also applied to firewall traversal. As long as the system users have the

capability to connect to an ISB and an IST, they can use our system and the firewall can be

 36

viewed as a special type of NAT box. The firewall here is a filter which is deployed at the edge

of Autonomous System (AS) of Internet. A firewall filters packets based on the information in

packet headers. If the connections to an ISB and an IST are not filtered by the firewall, users

behind the firewall would be able to use our system for firewall traversal.

3.7.2 IPv4 / IPv6 Translation

 Our system can also be applied to IPv4/IPv6 translation. Either an ISB or an IST has at

least two network interfaces, one connects to IPv4 network and the other one connects to IPv6

network. The functionalities of ISB and IST keep unchanged. The only required modifications

are to assign the ISB to handle login and negotiation from both IPv4 and IPv6 networks, and to

assign the IST to forward the traffic from both IPv4 and IPv6 network, as depicted in Figure

3.11 and Figure 3.12.

Figure 3.11:15 Login process of IPv4/IPv6 translation using ISB and IST.

 37

Figure 3.12:16Service negotiation of IPv4/IPv6 translation using ISB and IST.

3.7.3 Multicast

 Our system can also support multicast as shown in Figure 3.13. NATed user could use this

system to act as a source node of multicast.

Figure 3.13:17IST supports multicast.

3.7.4 Computer Peripheral Applications

 In addition to network services, the service providers can also provide the control of their

computer peripherals. Figure 3.14 depicts the situation that there are many computer

 38

peripherals connecting with PC through home networks, which can be Ethernet or 802.11

series or some alternatives. Once the daemon on a service provider host receives the service

request from a subscriber via IST, the daemon can forward the service request to a computer

peripheral instead of forward to server process on localhost. As long as the computer peripheral

can recognize the service request and reply effectively, the service subscriber is considered to

have the control of this computer peripheral.

Figure 3.14:18Applied to computer peripherals.

 39

Chapter 4

Passive and Pure TCP Splice

 Since the IST is the potential bottleneck of our system, we propose methods to improve

the performance of IST in this chapter. Due to the rapid advance in computing power of PC,

the overhead of forwarding packets by daemon is considered as small, we assume that

nowadays users’ PCs have sufficient capability to provide the functionalities of the user

daemon. Therefore, we focus on the forwarding performance in globally-addressable Internet.

In Section 4.1, we depict the easiest way to implement the forwarding function on IST. Section

4.2 describes an existing work “TCP Splice” which is commonly deployed by proxies for

performance improvement. In Section 4.3 and 4.4, we introduce our proposed method to

improve the forwarding performance on IST.

4.1 Application Layer Proxy

 The easiest way to implement the forwarding function on IST is to build it as an

application layer proxy program. It is often used by the simple proxy which is responsible for

light traffic.

This application program creates a socket and listens to the incoming connection request.

When a connection request arrives, it creates a section connection to another destination host.

All the actions of this application program are accomplished by calling the APIs provided by

 40

OS, and afterward these APIs make certain system calls, which results in frequently context

switching between kernel process and application process, and hence produces a very large

overhead. Furthermore, the overhead of memory copy is also huge. When an incoming packet

arrives at the proxy’s NIC (Network Interface Card), the NIC generates a hardware interrupt

and then the kernel process copies the packet from NIC’s buffer to the kernel buffer. When the

application layer proxy program invokes the receiving system call, the packet payload was

copied again into the application buffer. Then the application layer proxy program sends the

packet to the destination host, this requires another two memory copies; from application

buffer to kernel buffer and from kernel buffer to NIC buffer. Therefore, it needs four memory

copies for each byte of packet payload when the application layer proxy wants to forward the

packet.

Figure 4.1:19The path of packet traversing an application layer proxy.

As Figure 4.1 shows, client A creates a connection to the proxy and then the proxy

another connection to client B. Each packet traverses the proxy across four layers. Wh

applying the proxy to IST, the IST would listen to two connections and both client A an

B create a connection to IST.

Application Layer

Active Connection

Backward Traffic
Client A Proxy

Transport Layer

Network Layer

A

A

O
S

K

er
ne

l

Link Layer

 41
Client B
 creates

en

d client

4.2 TCP Splice

 The idea of TCP splicing was developed by researchers at IBM [16]. The main concept of

TCP splice is to forward the packets between two connections without letting the packets

traverse across application layer. As Figure 4.2 shows, packets don’t touch the application layer

and only reach the transport layer. It needs only two memory copies for a TCP splicer to

forward a packet; from NIC buffer to kernel buffer and kernel buffer to NIC buffer.

Figure 4.2:20The path of packet traversing a TCP splicer.

To implement TCP splicer we have to modify the TCP/IP protocol stack in kernel

Whenever the TCP splicer receives an incoming TCP connection request and finishes t

three-way handshake, it immediately creates a second TCP connection to another host

maintains a sequence number table to record the offset of the sequence numbers of thes

connections. When a packet comes from one of these two connections, the TCP splicer

modifies the TCP sequence number and acknowledgement number based on the sequen

number table and updates TCP checksum. Finally, the packet is transmitted via the othe

connection. Table 4.1 shows the fields of packet header which need to be modified by T

Application Layer

Active Connection

Backward Traffic

Transport Layer

Network Layer

Link Layer

Client A Splicer

A

A

O
S

K

er
ne

l

 42
Client B

.

he

and

e two

ce

r TCP

CP

splicer. The underlined fields need modification.

Table 4.1:4The fields need to be modified by TCP splicer.

 In addition to both sequence number and acknowledgement number, TCP splicer also

modifies source port, destination port, source address and destination address. These four fields

are used to identify a unique connection. Finally, TCP splicer updates the checksum of both IP

header and TCP header, and transmits this new packet to the other connection.

The main advantage of using TCP Splice is that copying packets would stay in OS

without touching the application layer, and therefore, it needs only two memory copies to

forward a packet; from NIC buffer to kernel buffer and vice versa. Furthermore, comparing

with application layer proxy, TCP Splice reduces the overhead of performing TCP congestion

control and flow control of two connections between client hosts and the proxy.

4.3 Passive TCP Splice

 We propose a new mechanism for performance improvement of our IST, which is very

like TCP Splice, and we call it Passive TCP Splice. Figure 4.3 shows the packet traversal path

of a passive TCP splicer. Similar to TCP splicer, the path of packets traversing a passive TCP

 43

splicer would not touch the application layer, and all the activities are performed by OS kernel

processes.

Figure 4.3:21The path of packets traversing a passive TCP splicer.

Instead of modifying the sequence number of each packet based on the sequence

table, passive TCP splicer neither modify the sequence number nor change acknowledg

number of TCP header. It splices two three-way handshakes. As Figure 4.4 shows, the

TCP splicer sends SYNACK, which is the second packet of TCP three-way handshake

client A using client B’s sequence number and sends SYNCACK to client B using clie

sequence number. Thus, when forwarding packets, passive TCP splicer doesn’t have to

the sequence number and acknowledgement number of TCP header.

Application Layer

Transport Layer

Network Layer

Active Connection

Backward Traffic
BClient A Splicer

A

A

O
S

K

er
ne

l

Link Layer

 44
Client
number

ement

passive

, to

nt A’s

 modify

Figure 4.4:22Splice TCP three-way handshake.

Table 4.2:5The fields need to be modified by passive TCP splicer.

The main difference between TCP Splice and Passive TCP Splice is that Passive TCP

Splice listens to two active TCP connections from two client hosts, while TCP Splice creates

another active connection after an incoming connection request. In addition, Passive TCP

Splice does not modify the sequence and acknowledgement numbers in TCP header. The

underlined fields in Table 4.2 need to be modified by passive TCP splicer.

Figure 4.5 depicts the sequence of message exchange when an IST implements Passive

TCP Splice. Comparing with Figure 3.5, the main difference is that IST uses passive TCP

splicer instead of application layer forwarding between service subscriber and service provider.

 45

Figure 4.5:23Implementation of passive TCP splice on IST.

4.4 Pure TCP Splice

 We propose another performance improvement scheme for IST which is called Pure TCP

Splice. Refined from Passive TCP Splice, Pure TCP Splice does not modify the TCP header

except TCP checksum. Since TCP header fields except checksum are kept changeless, we

consider that the Pure TCP Splice operates below transport layer. As Figure 4.6 shows, packet

traversing a pure TCP splicer only touches network layer and link layer.

The pure TCP splicer is realized with a prerequisite. Only when one of the clients can

assign the source port of its TCP connection and the other user knows this source port, then the

splicer can perform Pure TCP Splice. Take Figure 4.5 as an example, client A uses source port

X and destination port Y, and client B uses source port Y and destination port X to connect to

the pure TCP splicer. Afterward, the pure TCP splicer can splice these two connections without

 46

modifying TCP port numbers.

Figure 4.6:24The path of packet traversing a pure TCP splicer.

As Figure 4.7 shows, client B can assign the source port of his TCP connection

A cannot. Before creating the connections to IST, client B tells client A in advance th

use P1 as his source port. However, client A responses to client B that it does not has

to assign the source port of its connection. Then, client A connects to IST port P1, an

waits for pure TCP splicer to tell it the source port number of client A. When client B

that the source port of client A is P2, it connects to port P2 of IST. Finally, pure TCP

obtains sufficient information of the sequence number of each user and is able to spli

three-way handshakes.

Table 4.3 depicts the fields of packet header which needs to be modified. When

performing Pure TCP Splice, the only field needs to be modified in TCP header is the

checksum. Since the source and destination addresses in IP header would be modifie

TCP splicer and the TCP checksum contains a IP pseudo header, therefore, the splice

modifies the TCP checksum.

Application Layer

Active Connection

Backward Traffic

Transport Layer

Network Layer

BClient A Splicer

A

A

O
S

K

er
ne

l

Link Layer

 47
Client
but client

at it would

 the ability

d client B

 knows

splicer

ce the

d by pure

r also

Figure 4.7:25Port negotiation of Pure TCP Splice.

Table 4.3:6The fields need to be modified by pure TCP splicer.

 48

Chapter 5

Implementation and Emulation Results

 In this chapter, we describe the implementation of our system components and emulation

results. The system components include the user daemon, Internet Service Broker in

application layer and the Internet Service Translator in OS kernel. It is not difficult to

implement application layer ISB and user daemon. Section 5.1 gives a brief description of

them. In Section 5.2, we present the implementation of Passive TCP Splice and Pure TCP

Splice in OS kernel. The implementation in the kernel involves in the modification to TCP

state transition. Our implementation is done on Intel IXP425 network processor running

MontaVista Linux. Section 5.3 and Section 5.4 shows the emulation environment and results.

5.1 Implementation of Application Layer User Daemon and

Internet Service Broker

 The main functionality of ISB is to maintain the profile information of system users and

help the negotiation between service providers and service subscribers. Since ISB runs at

application layer, all functions are implemented by invoking system APIs and libraries. The

ISB listens to a well known TCP port for client login messages. Clients create a TCP

connection to login into ISB and keep this connection alive. Therefore, if there are n on-line

users, ISB should maintain n persistent TCP connections. Then, ISB uses these connections to

 49

communicate with each client. ISB helps the service provider and service subscriber negotiate

for accessing the services. We implement ISB on Linux host using Berkley socket APIs and

ordinary system libraries.

 The main functionality of the user daemon is to provide a user interface in our system.

Users use the daemon to login into ISB and communicate with it for provisioning service to

subscribers. The user daemon can intercept each message between system users and ISB.

Therefore, when a user wants to either provide service or subscribe service, the user daemon

can automatically creates a socket and listens on localhost for connection splicing. The user

daemon of our implementation runs on Linux host using Berkley socket APIs and ordinary

system libraries.

5.2 Implementation of Internet Service Translator in OS Kernel

 We have described Passive TCP Splice and Pure TCP Splice in Section 4.3 and Section

4.4 respectively. In this section we describe the implementation of them in OS kernel. Although

packets traversing a passive TCP splicer would touch transport layer, from the view point of

kernel implementation we can implement it in network layer, and only when splicing the

three-way handshake the packets would touch transport layer. Likewise, packets traversing a

pure TCP splicer would only touch the network layer, and in kernel implementation the packets

would touch transport layer when splicing three-way handshake.

 Figure 5.1 from Steven’s [18] shows the original TCP state transition diagram. The start

state is “CLOSED.” When a host starts to listen to an incoming connection request, the state

transits from “CLOSED” to “LISTEN”. Once the host receives the first packet (SYN) of

three-way handshake, it should immediately send back the second packet (SYNACK) of

three-way handshake and the state transits from “LISTEN” to “SYN_RCVD”. If the remote

host sends an ACK packet later, the three-way handshake is completed and the state transits

 50

from “SYN_RCVD” to “ESTABLISHED”.

Figure 5.1:26Original TCP state transition diagram.

The termination of a TCP connection can be bidirectional. Ether localhost or remote host

sends a FIN packet to terminate the connection in one direction. The other host can continually

send data, and the TCP connection is terminated when this host sends a FIN packet later. When

a localhost wants to stop sending message first, a FIN packet is sent to the remote host and the

state transits from “ESTABLISHED” to “FIN_WAIT_1” to keep receiving message from the

remote host. Otherwise, if the remote host wants to terminate first, localhost would receive a

 51

FIN and the state changes from “ESTABLISHED” to “CLOSE_WAIT”. Finally, after

accomplishing the termination mechanisms, the state goes back to “CLOSED”. The detail state

transition mechanism is depicted in Steven’s [18].

Figure 5.2 shows the modified TCP state transition diagram of IST for splicing TCP

connections. We add four new states which are in gray color. When the TCP state is “LISTEN”

and a SYN is received, the kernel checks the port number to determine whether this packet is

for the IST. If it is for IST, the TCP state changes from “LISTEN” to “IST_SYN_LOOKUP”,

and the IP addresses, TCP ports and sequence number are kept in an IST table. Subsequently,

when another SYN arrives and it is also for IST, its IP address, TCP port and sequence number

will be kept in the IST table. Then two SYNACK are built based on the information in the IST

table and sent back to the remote hosts, and the TCP state transits from “IST_SYN_LOOKUP”

to “IST_SYN_RCVD”. If IST receives two ACKs later, the connection splicing is successful

and the TCP state changes from “IST_SYN_RCVD” to “ESTABLISHED”. To support this

mechanism, we need to modify the tcp_rcv_state_process (), tcp_conn_request () and

tcp_v4_do_rcv () functions of Linux kernel to change the behavior of connection

establishment; all these functions are performed in transport layer.

The “ESTABLISHED” state is modified to forward message for spliced connections. In

kernel implementation, we need only to modify the ip_local_deliver_finish () function which

is the final function of ip_input procedure. When ip_local_deliver_finish () receives a packet,

it check the IST table and updates both IP header and TCP header, then calculates the

checksum and sends the packet out. All mechanisms are performed in the network layer,

therefore, the packet would not touch the transport layer.

 52

Figure 5.2:27Modified TCP state transition diagram for splicing TCP connection.

When IST receives a FIN packet, it changes the TCP state from “ESTABLISHED” to

“IST_CLOSE_WAIT” and stops forwarding message from the remote host. When the other

host also sends a FIN packet to the IST, the IST changes the TCP state from

“IST_CLOSE_WAIT” to “IST_TIME_WAIT” and stops forwarding message except the final

FINACK. After waiting for 2MSL, the state goes back to “CLOSED”.

The kernel implementation for Passive TCP Splice and Pure TCP Splice is the same

except that Pure TCP Splice does not modify source and destination ports in the TCP header.

The information of addresses and ports is obtained from IST table, and we implement this IST

table using hash. The checksum of both IP header and TCP header should be recalculated. It is

 53

a large overhead to go through the whole IP header and payload to recalculate IP checksum and

TCP checksum. The theorem of checksum and checksum modification method and pseudo

code are described in [19, 20, 21].

The RFC recommends the following equation for computing the updated checksum C’

from the original checksum C, and m, m’ are the old and new field values respectively. The

values of m in our system are old IP address and old TCP port, while the values of m’ are new

IP address and new TCP port.

C’ = C + (m’ – m) (5.1)

Although the equation above is correct, it is not very useful for incremental updates since

the equation above updates the checksum C, rather than the 1's complement of the checksum

~C, which is the value stored in the checksum field. The useful calculation for checksum

modification is:

~C’ = ~(C + (-m) + m') = ~C + (m - m') = ~C + m + ~m' (5.2)

Equation 5.2 means that the new value of checksum field is the old checksum plus the old

field value plus one’s complement of the new field value. We implement this equation in our

IST kernel code to update IP and TCP checksum. Since the IP addresses and TCP ports are fix

values in IST table, we can pre-calculate the value of m + ~m’ to speedup checksum

modification.

There is another implementation issue of our IST: the TCP timeout period is 21 seconds

(in Microsoft Windows XP implementation). TCP timeout means that the first user sends a

SYN to IST and waits for response, however, it waits longer than the TCP timeout period and

the other user does not send a SYN to IST. Therefore, IST does not send back SYNACKs and

the first remote host will encounter TCP timeout. The TCP timeout period is dependent of TCP

implementation in OS and maybe longer or shorter than 21 seconds. Since less than few

 54

seconds a packet can traverse the whole Internet and the overhead of IST splicing three-way

handshake is not heavy, we believe that it is sufficient for most TCP implementations in

various OSs to use our mechanism.

 The implementation of UDP forwarding in OS kernel is almost the same as TCP

forwarding except that the three-way handshake can be ignored. We modify the udp_rcv ()

function to keep the information of IP addresses and UDP ports in an IST table. The whole

UDP forwarding functionalities are implemented in ip_input procedure in network layer, it is

like TCP forwarding discussed above.

5.3 Emulation Platform

 We use Intel IXP425 network processor [22] for emulation and the software is running on

MontaVista Linux [23]. There are two reasons for choosing IXP425 for our emulation. One is

that IXP425 is an embedded processor commonly used for small network device. Section 3.6.3

describes that we can get great benefit from combining home gateway box with the

functionalities of user daemon and IST. The other reason is that IXP425 has limited computing

resource, and the performance improvement of our Passive TCP Splice and Pure TCP Splice

would be more obvious on IXP425.

 Intel IXP425 network processor is a highly integrated, versatile single-chip processor that

can be used in variety of products that need network connectivity and high performance. It has

an XScale core processor operating at 533 MHz, two integrated 10/100 Base-T Ethernet MACs,

33/66 MHz PCI v2.2 bus, SDRAM controller supports from 8 to 256 Mbytes of SDRAM

memory and many other functionalities as shown in Figure 5.3. We use IXP425 develop

platform (IXDP425) to implement our system which has 256 Mbytes memory, PCI slots and

two on-board Ethernet PHYs.

 55

Figure 5.3:28Block diagram of Intel IXP425 network processor.

 As shown in Figure 5.3, there are two on-chip Ethernet MAC on IXP425. These two

Ethernet MACs connect to XScale processor via 133 MHz Advanced High-Performance Bus

and a Queue Manager. A PCI Controller also connects to this High-Performance Bus; we can

plug in additional PCI NICs to extend the number of ports of IXDP425. From the emulation

experience, we observe that if the IST is implemented in kernel layer and forwards the traffic

between two on-chip Ethernet MACs, the throughput would be kept as high as the full line

speed which is about 98Mbps. This result means that the XScale processor and the

High-Performance Bus are capable of handling all traffic without discarding packets. If the IST

forwards traffic between one on-chip Ethernet MAC and a PCI Ethernet NIC, some packets

would be discarded. The main reason for these two different results may be due to the on-chip

Ethernet MAC which has faster response time and higher interrupt priority than PCI NIC.

When traffic comes from one on-chip Ethernet MAC and goes to one PCI Ethernet NIC, the

 56

smaller response time and higher interrupt priority of on-chip Ethernet MAC and the CPU

processing latency would lead to packet loss in kernel buffer because packets come in faster

than they go out. If the traffic is in the opposite direction, packets would be dropped on PCI

NIC buffer due to the lower interrupt priority and longer response time and the CPU processing

latency. In this thesis, the emulation results are all performed by forwarding traffic between one

on-chip Ethernet MAC and a PCI Ethernet NIC. This is to emphasize our implementation

which reduces CPU processing latency and features better performance than the normal

implementation. And the emulation of forwarding traffic between two on-chip Ethernet MACs

is not conducted because that throughput is equal to the maximal line speed.

5.4 Emulation Result
 We compare the performance of IST implemented in application layer as well as in kernel

layer. Since application layer forwarding requires at least four memory copies to forward a

packet and TCP Splice in OS kernel only needs two memory copies, the latter would obviously

feature better performance than the former. The main purpose of this emulation is to show how

much improvement our method can achieve on a network device with limited computing

power.

 We estimate the improvement of our method by performing the emulation in five phases:

Direct Connect, Forwarder, NAT, IST in Application Layer and IST in OS Kernel. The

topologies are shown in Figure 5.4. Host A and host B are normal PCs which have 256 Mbytes

memory and operate at 568 MHz. We test Direct Connect performance by measuring the

maximal throughput between host A and host B. The forwarder here is the forwarding

functionality in Linux kernel. Once the functionality is turned on, Linux will forward packets

from each NIC to all NICs. We test the performance of Linux forwarder to get the maximal

throughput that IXP425 can achieve. The third phase is NAT. We turn on the NAT ability of

Linux kernel to test its maximal throughput. Since the Linux kernel is finely tuned, we

 57

consider the throughput of Linux NAT as the best throughput a forwarder can achieve when it

needs to check some information in a table while forwarding a packet. The fourth and fifth

phases are implementation of IST in application layer and kernel layer respectively. We

compare the results of these two phases to show the improvement of our method. Since the

implementation of IST in application layer is similar to Skype [9], we can consider the

emulation result of phase four as the performance of Skype when applying to general purpose

solution.

Figure 5.4:29Emulation Topologies. (A): Forwarder, NAT and IST. (B): Direct Connect

 Figure 5.5 shows the comparison of round trip time of five phases. The results are

measured by a UDP Ping-Pong program. The Direct Connect phase has the lowest RTT. The

RTT of forwarder and NAT phases is more than one hundred nano-seconds longer than that of

Direct Connect. This result shows that the forwarder and NAT implementation of Linux Kernel

is well tuned and the IXP425 processor is capable of doing this job, because it needs only

about one hundred nano-seconds to duplicate and transmit a packet. The RTT of our IST

implementations in application layer and kernel layer are about 498 and 423 nano-seconds. The

long latency of IST in application layer is obvious since it requires at least four memory copies.

 58

However, the RTT of IST in kernel layer is still up to 425 nano-seconds which may be

considered as too long. We believe the long RTT of IST in kernel layer is due to our kernel

code that has not been finely tuned. If we carefully tune our kernel code, the best RTT of IST

in kernel maybe reduced to equal to the RTT of NAT.

134

247 278

498
423

0

100

200

300

400

500

600
Nano Seconds

Direct

Connect

Forward NAT IST -

Application

Layer

IST - Kernel

Layer

Figure 5.5:30Comparison of Round Trip Time.

 We test the TCP throughput of five phases above. One host creates one TCP connection,

ten TCP connections, twenty TCP connections … one hundred TCP connections to the other

host via either a direct link or a forwarder and sends huge volume of data. Furthermore, the

sender estimates the total number of data it sends in a time period as transmission throughput;

and the receiver estimates the total number of data it receives in a time period as receiving

throughput. Finally we average these two throughputs as the final result. Figure 5.6 shows the

results of TCP throughput. It is obvious that only IST in application layer phase has poor

performance, while IST in kernel layer phase performs as well as first three phases. The main

reason of IST in application layer phase has such poor performance may be due to the fact that

it requires additional two memory copies (kernel layer to application layer and application

layer to kernel layer). This emulation result also shows that if we use Skype to transmit normal

 59

application data instead of voice data, we would get very poor performance.

35

45

55

65

75

85

95

1 10 20 30 40 50 60 70 80 90 100

Number of Connections

M
bp
s

Direct Connect
Forward
NAT
IST - App.
IST - Kernel

Figure 5.6:31Comparison of TCP throughput.

83

85

87

89

91

93

1 10 20 30 40 50 60 70 80 90 100

Number of Connections

M
bp
s

Direct Connect
Forward
NAT
IST - Kernel

Figure 5.7:32Magnification of TCP throughput comparison.

Figure 5.7 magnifies Figure 5.6 and shows that Direct Connect phase has the best

throughput. There is a trend that IST in kernel layer would perform better than NAT when the

number of connections increases. This maybe due to that NAT needs to lookup its NAT

mapping table to forward a packet. When the mapping table becomes bigger, it may require a

little more table lookup time to lookup this table. Our IST kernel implementation uses hash

table to maintain the connection splicing information. When the number of connections

becomes larger, the table lookup time would not increase. With the trend that TCP throughput

increases with the number of connections, IST kernel implementation performs better than

 60

NAT when the number of connections is bigger than 70.

 We test the UDP performance by using one host sending variable data rate to another host

and measure the packet loss rate. The emulation experience shows an interesting phenomenon,

the packet size plays an important role when measuring the UDP loss rate. When the packet

size is bigger than a certain threshold, the UDP loss rate is kept persistent no matter how light

the sending rate is.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

UDP Transmission Speed(Mbps) (packet size = 1k)

L
os
s
R
at
e
(%
)

Direct Connect

Forward

NAT

IST - App.

IST - Kernel

Figure 5.8:33Comparison of UDP loss rate with 1Kbyte packet size.

 Figure 5.8 shows the UDP loss rate of variable sending rate when packet size equals 1

Kbytes. Only IST implementation in application layer would drop packets, while IST kernel

implementation would not. This result shows that IXP425 is sufficient to perform the

functionality of IST when it runs MontaVista Linux kernel. However, when the packet size

increases up to 6 Kbytes, NAT phase and IST kernel layer phase drop packet when the sending

rate is larger than 63 Mbps. The overhead of memory copy is so enormous and IST application

layer phase drops almost all packets no matter what the data rate is.

 61

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

UDP Transmission Speed(Mbps) (packet size = 6k)

L
os
s
R
at
e
(%
)

Direct Connect

Forward

NAT

IST - App.

IST - Kernel

Figure 5.9:34Comparison of UDP loss rate with 6Kbyte packet size.

 Figure 5.10 shows the UDP loss rate with variable packet sizes and UDP is sending at full

line speed. Direct Connect phase and Forward phase perform well and never drop packets. The

performance of IST kernel implementation is similar to NAT since they do almost the same job

(modification to packet header and recalculate checksum). The performance of IST application

layer implementation is the worst due to the overhead of memory copies.

0

20

40

60

80

100

512 786 1024 2048 3072 4096 5120 6144

UDP Packet Size (Byte) (send at full speed)

L
os
s
R
at
e
(%
) Direct Connect

Forward

NAT

IST - App.

IST - Kernel

Figure 5.10:35Comparison of UDP loss rate with variable packet sizes.

It is interesting that when packet size is less than 1 Kbytes the UDP loss rate increases

rapidly. We consider the reason of this phenomenon is similar to the “Live Lock” problem of

operating system. Since the emulation is performed by sending UDP packets with maximal rate,

the IXP425 needs to handle too many small packets at the same time and finally drops some of

them. This figure also shows that Linux kernel is optimized for handling packets with size

 62

around 1 Kbytes. Linux kernel adjusts its data structures and default buffer size to optimize it

whole system performance.

When packet size is bigger than 1KB, the UDP loss rate also increases. We consider it is

due to the overhead of memory copies. The bigger the packet size is, the more memory copy

latency would be required.

 Since the default Ethernet MTU (Maximum Transmission Unit) of most OSs are 1500

bytes, we can consider that our IST kernel implementation on IXP425 network processor is

very capable of performing the functionalities of IST. And we can deploy ISTs to each system

users’ home network as their home gateway to improve the whole system performance.

 63

Chapter 6

Conclusion and Future Work

 In this thesis, we design and implement the infrastructure of Internet Service Broker for

NAT traversal. There are many related techniques devised to NAT traversal problem. However,

each of them has some drawbacks or inconvenience. We propose an infrastructure of Internet

Service Broker to overcome these disadvantages and provide a general purpose solution which

can be applied to all sorts of existing network applications. The key design guideline is to make

our solution feasible for deployment. Users of our system only need to execute an application

layer daemon and login to the Internet Service Broker located in globally-addressable Internet,

and existing network applications can get the capability of NAT traversal without any

modification. In addition, our system can be also applied to Firewall Traversal and IPv4 / IPv6

translation.

We propose Passive TCP Splice and Pure TCP Splice to improve the forwarding

performance of third party node for our system. Furthermore, our system can utilize P2P

structure to improve scalability. The emulation result shows that we can apply our TCP Splice

mechanisms to the computing power limited network device and achieve satisfactory

performance.

 Since the emulation result only demonstrates that our Internet Service Translator can be

implemented to achieve good performance and achieve better system scalability, it still can not

 64

guarantee the whole system performance when there are huge number of system users. Our

future work is to implement our system in P2P structure. The main objective is to let every

system users to perform the functionalities of centralized servers. In addition, we have to

propose an algorithm for Internet Service Broker to help system users find the closest Internet

Service Translator. Once these works were accomplished, our system can provide the

guaranteed quality of service.

 65

Reference

[1] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless Inter Domain Routing (CIDR): an

address assignment and aggregation strategy,” IETF RFC 1519, Sept. 1993.

[2] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Traditional

NAT),” IETF RFC 3022, January 2001.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley and E. Schooler, “SIP: Session Initiation Protocol,” IETF RFC 3261, June 2002.

[4] M. Leech, M. Ganis, Y. Lee, R. kuris, D. Koblas, and L. Jones, “SOCKS protocol version

5”, RFC 1928, April 1996.

[5] E.S. Lee, H.S. Chae, B.S. Park and M.R. Choi, “An Expanded NAT with Server

Connection Ability”, TECON 99, Proceedings of the IEEE Region 10 Conference, Volume:

2, pages 1391 - 1394, Sept. 1999.

[6] V. Pai and P. Rana, “A Transparent Framework for Enabling Incoming TCP Connections to

Hosts Behind a NAT Gateway,” IEEE Computer Communications and Networks, 2003.

ICCCN 2003. Proceedings. The 12th International Conference, pages 572 – 575, October

2003.

[7] Microsoft Corporation, UPnP – Universal Plug and Play Internet Gateway Device v1.01,

 66

Nov. 2001. Available online http://www.upnp.org/standardizeddcps/documents/

UPnP_IGD_1.0.zip. 30 April 2004.

[8] P. Francis and R. Gummadi, “IPNL: A NAT-Extended Internet Architecture,” ACM

SIGCOMM Computer Communication Review, Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer

communications, Volume 31 Issue 4, August 2001.

[9] Skype, http://www.skype.com.

[10] S. Guha, Y. Takeda and P. Francis, “NUTSS: A SIP-based Approach to UDP and TCP

Network Connectivity,” ACM SIGCOMM, Proceedings of the ACM SIGCOMM

workshop on Future directions in network architecture, pages 43 – 48, August 2004.

[11] KaZaa, http://www.kazaa.com.

[12] S.A. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer Internet

Telephony Protocol,” Available online http://arxiv.org/ftp/cs/papers/0412/0412017.pdf,

Sept. 2004.

[13] J. Rosenberg, R. Mahy, and C. Huitma, “TURN – Traversal Using Relay NAT,” IEEE

Internet draft, Feb. 2004.

[14] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN – Simple Traversal of

User Datagram Protocol (UDP) Through Network Address Translators (NATs),” IEEE

RFC 3489, Mar. 2003.

[15] Netperf, http://www.netperf.org/netperf/NetperfPage.html.

[16] D. Maltz and P. Bhagwat, “TCP Splicing for Application Layer Proxy Performance,” IBM

Research Report, Mar. 1998.

[17] B.Y. Zhao, J. Kubiatowicz and D. Joseph, “Tapestry: An Infrastructure for Fault-tolerant

Wide-area Location and Routing,” Selected Area in Communications, IEEE Journal on

Volume 22, Issue1, Jan. 2004.

 67

http://www.upnp.org/standardizeddcps/documents/ UPnP_IGD_1.0.zip
http://www.upnp.org/standardizeddcps/documents/ UPnP_IGD_1.0.zip
http://www.skype.com/
http://www.kazaa.com/
http://arxiv.org/ftp/cs/papers/0412/0412017.pdf
http://www.netperf.org/netperf/NetperfPage.html

[18] Richard Steven, “TCP/IP Illustrated Volume 1,” Addison Wesley.

[19] B. Braden, D. Borman and C. Partridge, “Computing the Internet Checksum,” IEEE RFC

1071, Sep. 1988.

[20] T. Mallory and A. Kullberg, “Incremental Updating of the Internet Checksum,” IEEE RFC

1141, Jan. 1990.

[21] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),” IEEE RFC 1631,

May 1994.

[22] Intel IXP425 Network Processor,

http://www.intel.com.tw/design/network/products/npfamily/ixp425.htm

[23] MontaVista Linux, http://www.mvista.com/

[24] I. Stoica, R. Morris, D. Karger, M. Frans and H. Balakrishnan, “Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications,” ACM SIGCOMM, Proceedings of

the ACM SIGCOMM, Volume 11, Issue 1, Feb. 2003.

[25] S. Ratnasamy, P. Francis, M. Handley and R. Karp, “A Scalable content-Addressable

Network,” ACM SIGCOMM, Proceedings of the ACM SIGCOMM, Volume 31, Issue 4,

Aug. 2001.

 68

http://www.intel.com.tw/design/network/products/npfamily/ixp425.htm
http://www.mvista.com/

