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一個網際網路端對端服務仲介之設計與雛型製作 

學生：劉榮智 指導教授：陳耀宗 博士

國立交通大學資訊工程研究所 

摘 要       

 
 網際網路協定第四版本 (Internet Protocol version 4)早在九零年代初期就被發

表出來，並且是目前在網際網路上被廣泛使用的通訊協定。但是隨著網際網路使用者的

迅速增加，IPv4 的位址數量早已不敷使用。NAT (Network Address Translator) 的使用

讓大量的網際網路使用者利用少量的 IPv4 address來連上 Internet 可以達到減緩 IPv4 

位址不夠用的問題。然而，NAT 雖然提供了連結 Internet 的便利性，它卻同時破壞了原

有的 Internet 架構，讓 NAT 外部的使用者無法透過 IPv4 address來定位 NAT 內部的使

用者，並且導致 NAT 內部的使用者無法對外提供網際網路服務 (Internet Services)。 

 網際網路協定第六版本 (Internet Protocol version 6) 在九零年代中晚期被發表

出來。它把位址的長度從 32 bits 擴展到 128 bits，同時徹底解決了位址不敷使用的問

題。然而，IPv6 的規格雖然目前被廣泛的討論，它的使用普及性卻是進展緩慢。在 IPv6

真正普及之前，IPv4 網路裡的 NAT 問題將持續存在。 

 本篇論文提出一個完整的系統架構來解決 NAT 內部的使用者無法對外提供 Internet 

Service 的問題。有鑑於現有的相關研究都因使用的不便利性而無法普及，本論文的系統

設計是針對使用的便利性做最佳化，並且引用點對點 (Peer to Peer) 網路架構來增進

效能。另外，本篇提出了 Passive TCP Splice 以及 Pure TCP Splice兩個 kernel layer

的實做方法來增進系統效能，在本文中將探討完整的實做方法。 

 本篇的系統架構亦可套用到解決 IPv4/IPv6 Translation 以及 Firewall Traversal

問題。另外，亦可支援連上家用網路的電腦周邊設備的使用，讓使用者在家用網路的 NAT

外部亦能使用 NAT 內部的電腦周邊設備。 
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Abstract 
 
 Internet Protocol version 4 (IPv4) was devised in early 90’s and is broadly used in Internet 

nowadays. However, the rapidly increasing number of Internet users leads to the insufficiency 

of IPv4 addresses. NAT (Network Address Translator) was later devised to allow many 

Internet users to access Internet simultaneously using one single IPv4 address. However, while 

providing the convenience of accessing the Internet, NAT also breaks the original Internet 

structure. Users outside NAT can not use IPv4 addresses to locate the users inside NAT, and 

users inside NAT can not provide Internet services to the users outside NAT.  

 Internet Protocol version 6 (IPv6) was devised in mid 90’s. IPv6 extends the IP address 

from 32 bits to 128 bits and completely solves the insufficiency of IP addresses. However, the 

transition to 128-bit IPv6 addresses has been proceeding slowly. The problem of NAT would 

remain until IPv6 become popular.  

 This thesis proposes a system to solve the problem of NAT. To avoid the inconvenience 

of the related work, the main guideline of this thesis is to make the system easier to be 

deployed. Furthermore, peer-to-peer network structure is introduced to this system to improve 

performance. In addition, this thesis proposes two new techniques: Passive TCP Splice and 

Pure TCP Splice to improve system performance.  



 iii

 This system can be applied to IPv4/IPv6 Translation and Firewall Traversal. Furthermore, 

it can support computer peripherals which connect to home network. Users can use this system 

to control their computer peripherals in their home network while travelling outside. 
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Chapter 1 

Introduction 

 

Internet Protocol (IP) was designed few decades ago. The dramatic growth on the 

population of the Internet in recent years showed that 32-bit IPv4 addresses have been rapidly 

depleted. However, the transition to 128-bit IPv6 addresses is proceeding slowly. A number of 

innovative solutions have been devised to work around this problem. In this chapter, we give a 

brief description and problem statement. Then, we introduce our system infrastructure shortly 

after the discussion of our motivation and contribution.  

1.1 Overview and Problem Statement 

Classless Inter-Domain Routing (CIDR) [1] is one of the initial solutions that alleviated 

the inefficiency in address space allocation to a certain extent. However, the alleviation from 

CIDR can only slow down the insufficiency tendency. Subsequently, a so-called Network 

Address Translator (NAT) [2] was devised to solve the problem. NAT allows a large number of 

hosts using private IP addresses to access the Internet via a single public IP address.  

NAT does IP Masquerading, in which packets from a local IP-port pair are mapped to a 

global IP-port pair. This mapping is sometimes referred to as source NAT. Since all local hosts 

are mapped to a single IP address (or one from a small pool of addresses), there is no way for a 

foreign host to directly locate an individual host which is behind a NAT box. 
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Another form of NAT called destination NAT may be used to forward traffic from a port 

on the global IP domain to a specific host on the local network. Destination NAT is often used 

for load-balancing servers, where only a single IP-port pair is visible to the Internet, but 

incoming requests are locally passed to different machines in a round-robin scheme. This 

allocation of server ports is typically static and is done by the administrator. 

While NAT provides many benefits, it also comes with many drawbacks. The most 

troublesome of those drawbacks is the fact that it breaks many existing rules of IP applications 

and makes it difficult to deploy new ones. With the rapidly increasing usage of peer-to-peer 

(P2P) applications such as File Sharing (i.e., Napster, eDonkey, Kazaa…) or VoIP (i.e., SIP 

Phone, Skype…), the Internet users establish network connections between two Internet nodes 

more and more frequently. Unfortunately, we can’t directly establish the connections between 

nodes which connect to Internet via the NATs. This is because the initiator of the connection 

doesn’t know how (where) to create this connection due to the lack of the receiver’s IP address. 

Nodes behind NATs use private IP addresses to access Internet, but nodes outside the NATs 

can’t use these private IP address to locate the nodes behind NATs.  

In this thesis, we call the above problem the NAT traversal problem, and the techniques 

which resolve the NAT traversal problem are NAT traversal techniques. These techniques 

feature NAT traversal capability, which is the ability to traverse NAT. The hosts that connect to 

Internet via a NAT box are called NATed hosts. 

1.2 Motivation and Contribution 

Many techniques have been proposed to resolve the NAT traversal problem. Session 

Initiation Protocol (SIP) [3] users use Application Layer Gateway (ALG), STUN, UPnP, etc. to 

enable voice traffic to traverse NAT. Some techniques statically assign NAT’s mapping table to 

enable incoming connection from outside to inside of NAT. Another technique requires the 
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modification to TCP/IP protocol stack of OS (Operating System) kernel code. These existing 

works requires either special hardware or special middle server or administrator privilege or 

modification to existing kernel code, and furthermore they are not suitable for various existing 

network applications. Due to such inconvenience, the usage of these techniques is suppressed. 

Consequently, there is no unique method that can provide a generic solution and well accepted 

by common network applications. 

In this thesis we propose an infrastructure to solve the NAT traversal problem. The main 

design guideline is to build an infrastructure which can be deployed as well as used easily. 

Besides, our design follows the following five principles: no configuration or modification to 

NAT, no modification to TCP/IP protocol stack of user host, no modification to existing 

network client applications (i.e., IE, outlook,…), no modification to existing network server 

applications (i.e., apache, sendmail,…) and must be compatible with existing network 

applications. In other words, this work tries to propose a general purpose solution for NAT 

traversal which allows the existing network applications still workable. To distinguish our 

infrastructure from traditional client-server model, we name the client of our system as service 

subscriber and the server as service provider.  

The basic concept we propose here is that a service provider runs an application layer 

daemon to forward client’s service request to a server process (i.e., apache, sendmail…). A 

service subscriber runs an application layer daemon to forward server’s service response to a 

client process (i.e., IE, outlook…). In the globally addressed Internet, we setup an Internet 

Service Broker (termed as ISB here after) to help the negotiation of service subscriber and 

service provider. In addition, we setup an Internet Service Translator (termed as IST later) to 

improve the throughput of user traffic between service subscriber and service provider. 

1.3 Organization of the Thesis 
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 The rest of this thesis is organized as follows. In Chapter 2, we review the related works 

and address the advantages and disadvantages of them. The proposed infrastructure and 

improved scheme are detailed in Chapter 3 and 4. In Chapter 5, we present the implementation 

and the evaluation of the system. Finally, Chapter 6 concludes the thesis and points out some 

future works. 
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Chapter 2 

Related Work 

 

In this chapter, we describe the related techniques which are devised to solve the NAT 

traversal problem, also we discuss techniques similar to our infrastructure in detail. These 

techniques feature two main characteristics: Middle Node Translation (MNT) and Local Side 

Alteration (LSA). In Section 2.1, we describe the techniques with LSA attribute. Techniques 

requiring modifications within the same Autonomous System (AS) are classified into this 

section. In Section 2.2, we present the techniques which demand MNT. Finally, we give a brief 

comparison of these techniques in Section 2.3. We use “service provider” and “service 

subscriber” to replace “server host” and “client host”, respectively. 

2.1 Local Side Alteration Scheme 

 The Local Side Alteration scheme here is used in the techniques that a service provider or 

a service subscriber has to modify the operating system kernel, or require some specific 

network devices beyond NAT, or need the administrator privilege of NAT. In this section, we 

describe the following four techniques: SOCKS [4], statically assign [5], call interception [6] 

and UPnP [7]. 

2.1.1 SOCKS 
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SOCKS [4] is an application-layer protocol-independent proxy. It requires specific 

application support to work for both inbound and outbound connections. Existing 

“SOCKSifiter” programs and libraries make SOCKS-unaware programs work in the way of 

library/DLL replacement which alters the behavior of original network API (i.e., bind ( ), listen 

( ), accept ( ), connect ( )…). Unfortunately, most commodity hardware routers such as those 

built into wireless access points or the so called “broadband routers” do not support SOCKS 

protocol. Therefore, a solution that works within the NAT framework may be preferable. 

2.1.2 Statically Assign 

 The statically assign mechanism was first devised in [5]. It is the most obvious and simple 

way to solve the NAT traversal problem. A service provider only needs to modify the NAT 

address-port mapping table, while a service subscriber just has to connect to the pre-allocated 

address and port. It doesn’t need any special application layer program or hardware, or any 

modification to TCP/IP protocol stack. However, the most troublesome drawback is that 

service providers are required to have the administrator privilege of the NAT, and every time 

when the service provider wants to provide service, he/she has to modify the NAT mapping 

table. 

2.1.3 Call Interception 

 Pai’s [6] proposes a transparent and dynamic system which has three components, the call 

interception module, the client daemon and the gateway daemon, to enable incoming 

connections to NATed hosts. When the service provider has an application trying to open a 

socket for incoming connections, the system call is intercepted and a message is sent to the 

client daemon. The client daemon then attempts to setup a forwarding rule on NAT gateway 

with the assistance of the gateway daemon. This is an automatic mechanism that the service 

 6



  

provider does not need any extra operation, and therefore, it is very convenient for users to use. 

However, there are still two drawbacks. First, the service provider needs to modify his/her OS 

kernel implementation to enable the intercept module, which means none of current OS can 

support this functionality without the modification. And the second one, an even more 

troublesome drawback, is that it has to implement a special functionality into NAT box to 

execute the gateway daemon. Unfortunately, almost all commodity hardware NATs do not have 

this dynamic adding on feature. 

2.1.4 UPnP 

 UPnP [7] is the abbreviation of “Universal Plug and Play”, which is developed by 

Microsoft Corporation and some other vendors. Although the original motivation of UPnP 

project is not mainly focus on enabling incoming connection to hosts behind NATs, UPnP 

provides a set of APIs, called “NAT traversal”, to enable NAT traversal. UPnP works like the 

call interception technique as mentioned above. Gateways which implement UPnP are called 

IGD (Internet Gateway Device). A service provider runs a program through the API provided 

by UPnP to negotiate with IGD, which provides the functionality for NAT, to modify the NAT 

mapping table. After modifying the NAT mapping table, the service provider can run the 

original server program to accept incoming connection.  

The main difference between call interception technique and UPnP is that UPnP 

standardizes the messages exchange between user host and IGD, and formalizes the behavior 

of IGD. Furthermore, a service provider needs to execute an additional program before execute 

the server program. The disadvantage of UPnP is similar to the call interception technique. 

2.2 Middle Node Translation Scheme 

 The “Middle Node Translation” scheme here is used by the techniques that require 
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administrators to setup one or multiple globally-addressable nodes to translate network traffic. 

In this section, we describe the following five category of techniques: IPNL [8], SIP Related 

techniques, Skype [9], VPN and Connection Splicer [10]. We give more detailed description of 

SIP related techniques, Skype and connection splicer due to some of their characteristics are 

used in our system infrastructure. 

2.2.1 IPNL 

 Francis’ [8] presents and analyzes IPNL (abbreviation for IP Next Layer), an 

NAT-extended Internet protocol architecture designed to solve the NAT traversal problem. In 

the NAT-extended architecture, hosts and NAT boxes are modified, and the IPv4 routers and 

supported protocols are kept untouched.  

 The IPNL architecture is performed by each privately addressed realm associating with 

one or more DNS zones. An additional packet header, which contains the Fully Qualified 

Domain Name (FQDN) of the destination host, is placed above IP header. IPNL users use 

FQDNs instead of IP address to locate the server host. Furthermore, NAT boxes are modified 

to route the packet using the information of the new header and FQDN. 

 The drawbacks of IPNL are obvious. Users of IPNL should modify their OS kernel code 

to place the additional header above the IP header, and NAT boxes should be modified to 

enable the routing functionality. These two drawbacks are complicated so that the deployment 

of IPNL is limited. 

2.2.2 SIP Related: ALG, Session Controller, STUN, and TURN 

 The Session Initiation Protocol (SIP) [3] is a middleware signaling protocol that allows 

Internet endpoints to negotiate how to communicate with each other. SIP negotiates various 

parameters including port numbers, IP addresses, whether to use unicast or multicast, IPv4 or 
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IPv6 (or some other network protocol), and details of the media stream such as encoding 

methods. When SIP sessions are established through an NAT, the IP address in IP header will 

be modified by NAT and thus this IP address differs from that in SIP message. Figure 2.1 

shows the NAT traversal problem of SIP. 

 

Figure 2.1:1NAT Traversal Problem of SIP. 
 

 There are several solutions for NAT traversal problem of SIP: Application Layer Gateway 

(ALG), Session Controller, STUN [14] and TURN [13]. Each of these techniques requires the 

assistance of a third party server.  

ALG detects the public IP address and port mapped by the NAT and modifies the SIP 

messages as shown in Figure 2.2. ALG modifies the “INVITE”, “Via”, “Contact”, “c”, and 

“m” fields in SIP and SDP message. Any field in SIP and SDP message which contains the 

information of private IP address are translated into public IP address, and port number in 

transport layer is also modified to an appropriate one. 
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Figure 2.2:2Solve NAT Traversal Problem of SIP using ALG. 
 

Session controller is the combination of SIP proxy and RTP proxy. SIP proxy handles SIP 

signaling message, and RTP proxy is responsible for forwarding RTP voice packets. When SIP 

messages are sent to a SIP proxy, the message is modified by adding a “Record-Route” header. 

Therefore, all the following SIP messages will pass through this SIP proxy, and the SIP proxy 

will be able to control the behavior of each SIP client. When SIP clients are behind NATs, SIP 

proxy will modify the SIP message to change the destination IP addresses of RTP connections 

to RTP proxy. RTP proxy forwards the RTP voice packets for both the caller and callee. Figure 

2.3 depicts the behavior of a session controller. 
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Figure 2.3:3Solves the NAT Traversal Problem of SIP by using Session Controller. 
 

STUN [14] allows a host to learn the global IP address and UDP port assigned by its 

outermost NAT box. This address can be subsequently conveyed by SIP to allow direct UDP 

connectivity between hosts. TURN [13] allows a host to select a globally-addressable TCP 

relay, which can subsequently be used to bridge a TCP connection between two NATed hosts. 

Unlike STUN, TURN does not allow direct connectivity between NATed hosts.  

These techniques can solve the NAT traversal problem of SIP. STUN, TURN and ALG 

can be used by many other applications for NAT traversal and for many other purposes. 

However, the session controller technique can only be used for SIP application. To fully prove 

these techniques, we will cite some characteristics of these techniques to design our system 

infrastructure. 

2.2.3 Skype 

 Skype [9] is a peer-to-peer VoIP application developed by KaZaa [11]. Skype claims that 
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it can work almost seamlessly across NATs and firewalls. It encrypts calls end-to-end, and 

stores user information in a decentralized fashion. Although the detailed mechanism of Skype 

was not made public, Baset’s [12] has finished the analyses of the Skype functions by carefully 

study the Skype network traffic. 

From the analyses of [12], there are two types of nodes in this overlay network: ordinary 

hosts and super nodes. Any node using a public IP address and having sufficient CPU, memory, 

and network bandwidth is a candidate to become a super node. An ordinary host must connect 

to a super node and must register itself with the centralized Skype login server for a successful 

login. It is conjectured that Skype client uses a variation of STUN and TURN protocols to 

determine the existence of NAT. Once the Skype Client discovers that it is behind a NAT, it 

creates a TCP connection to one super node. Afterward all voice traffic sent to this NATed 

Skype client was forwarded by the super node via this TCP connection.  

The Skype way for NAT traversal utilizes the nature of P2P system and provides excellent 

performance for Internet telephony. It is now popularly accepted to use third party relay to 

solve the NAT traversal problem. The main difference between Skype and session controller 

technique is that Skype utilizes the P2P infrastructure and disperses the bottleneck to super 

nodes which spread out in the whole Internet. The only shortcoming of the Skype way for NAT 

traversal is that it is suitable for the third party node to forward only the small-scale voice 

traffic. Since super nodes are also system users, they will not expect to exhaust their bandwidth 

to forward other people’s traffic. When applying to general solution for NAT traversal, some 

other techniques for performance improvement are required. 

2.2.4 VPN 

 VPN (abbreviation for Virtual Private Network) is a way to provide remote access to an 

organization’s network via the Internet. VPN clients send data over the public Internet through 
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secure “tunnels.” In addition to providing secure tunnels, VPN can also be viewed as another 

approach for NAT traversal. The VPN administrators can prepare a set of public IP addresses to 

the VPN server to allocate one public address to each VPN client, and the NATed VPN client 

connecting to this VPN server is considered as a host with public IP address. Since most 

current OSs have supported VPN, which may be the easiest way to solve the NAT traversal 

problem. The only drawback is that the NAT administrator should arrange a public IP address 

for each VPN client, and this drawback transfers the situation back to the insufficiency of IP 

address.  

2.2.5 Connection Splicer 

 NUTSS [10] proposes a SIP-based approach to both UDP and TCP network connectivity. 

Furthermore, NTUSS constructs a mechanism, called Connection Splicer, to avoid the third 

party forwarder. It establishes a protocol, called STUNT, to extend STUN to include TCP 

functionality.  

 At the initial stage, hosts A and B establish their intent to communicate with each other 

via a proxy (as depicted in Figure 2.4). The proxy is the combination of connection splicer and 

STUNT server. Host A and B predicts their NAT’s behavior to get the mapping of global IP 

address and the transport port mapping on their NATs by performing Port Prediction with the 

assistance of the STUNT server.  

Afterward host A sends it’s global address and global port to B via the connection splicer 

and likewise receives B’s global mappings. Upon receiving B’s global mapping, A initiates a 

TCP three-way handshake with it. Each host must also open a RAW socket so that it can see a 

copy of the first TCP SYN packet (packet 3) of the three-way handshake. This SYN packet 

must have a sufficiently low TTL that the packet is dropped between host A and host B. Host A 

then encapsulates the content of this TCP SYN (heard via the RAW socket) and sends it to host 
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B via the connection splicer (packet 4). Likewise, host A receives the contents of host B’s TCP 

SYN via the connection splicer. Host A then constructs a message containing both its and host 

B’s SYNs, and sends the message (packet 5) to STUNT server. From these two SYNs, the 

STUNT server is able to construct the SYNACKs (packet 6) that host A, host B and their NATs 

expect to see. This SYNACK is transmitted by the STUNT server to host A’s NAT, spoofing 

the source address so that it appears to have come from host B via host B’s NAT. Table 1 shows 

the source and destination IP address of these packets. 

 

Figure 2.4:4TCP connection setup of connection splicer. 
 

Host A’s NAT finds the SYNACK it is expecting to see and translates the destination 

address to A’s private address and routes it accordingly. The packet is then received by host A, 

and therefore the three-way handshake is completed.  
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Table 2.1:1Connection Setup for Connection Splicer. 
 

The performance of connection splicer mechanism is excellent. Since it doesn’t need a 

third party forwarder, the performance of this mechanism is equal to the best throughput which 

is based on the IP routing protocol. However, it still has some drawbacks. First, it needs to 

perform the Port Prediction which features some uncertainty. Second, the connection splicer 

needs to perform IP address spoofing which would not work when the spoofing packet is 

routed across the routers which perform ingress filter. Third, although RAW socket is 

implemented in almost all current OSs, some OSs require super-user privilege to grant access 

to RAW socket. 

2.3 Comparison 

 In this section, we give a brief comparison of the NAT traversal techniques discussed 

above. Table 2.2 shows the additional requirements of these NAT traversal techniques, which 

can be categorized into “Modification of Application”, “Modification of NAT”, “Modification 

of Kernel” and “Third Party Server”.  

The modification of application mentioned here means that users need to either modify 

their computer programs or adjust some information in their computer programs to enable the 

NAT traversal capability. “Connection Splicer” belongs to the former type because computer 

programs should be modified to set the TTL of IP header to a small value. “SOCKS” and “SIP 
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Related” belong to the latter type because users should give the information of either SOCKS 

server or STUN server to their computer programs. “Statically Assign” and “UPnP” do not 

require the modification of applications because users perform some operations to setup NAT 

box or Internet Gateway Device (IGD) before they execute their computer programs. “IPNL” 

and “Call Interception” don’t need the modification of applications because they transfer this 

requirement to the modification of kernel. “Skype” uses P2P infrastructure and is a specific 

application, therefore it doesn’t need the modification of applications.  

 

Requirements 
Techniques 

Modification  
of Application

Modification 
of Kernel 

Modification 
of NAT 

Third Party 
Server 

SOCKS Y N N Y 
Statically Assign N N N N 
Call Interception N Y Y N 

UPnP N N Y N 
IPNL N Y Y Y 

SIP Related Y N N Y 
Skype N N N Y 
VPN N N N Y 

Connection Splicer Y N N Y 
Table 2.2:2Comparison of NAT traversal techniques: Additional Requirements. 

 
 “Call Interception”, “UPnP” and “IPNL” require the modification of NAT box. “Call 

Interception” modifies NAT box such that it can automatically alter NAT mapping table. 

“UPnP” modifies NAT box to perform UPnP protocol. “IPNL” modifies NAT boxes to route 

packets according to the IP next layer header. The ALG technique we describe in “SIP Related” 

doesn’t need modification of NAT because it is not restricted to associate with NAT and can be 

deployed in globally-addressable Internet.  

 Most techniques we discussed in this thesis require the assistance of third party server. 

“SOCKS” need a SOCKS server. “IPNL” needs other modified NATs to route users’ packets. 

“SIP Related” requires ALG, Session Controller, STUN and TURN. “Skype” demands third 

party super nodes. “VPN” needs VPN server. “Connection Splicer” needs STUNT and 
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connection splicer. The common characteristic of these techniques is that all the third party 

servers use public IP addresses. Advantages and disadvantages of the aforementioned NAT 

traversal techniques are listed in Table 2.3. 

 Advantages Disadvantages 
-----------------------------------------Local Side Alternation---------------------------------------------

SOCKS Has been carried out for many 
years, and many existing 
applications support SOCKS. 

Applications should be modified 
to perform SOCKS protocol. 

------------------------------------------------------------------------------------------------------------------
Statically Assign Doesn’t need any modification of 

application or kernel code or any 
assistance of third party node. 

Requires administrator privilege 
of NAT box.  

------------------------------------------------------------------------------------------------------------------
Call Interception Provides an automatic mechanism 

which is very easy to use. 
Needs modification of OS kernel 
code and NAT boxes. 

------------------------------------------------------------------------------------------------------------------
UPnP Supported by Microsoft, and 

therefore, is much easier to be 
popularized. 

NAT boxes should be modified to 
carry out UPnP protocol, and is 
not well accepted by other 
UNIX-like OSs. 

-----------------------------------------Middle Side Translation------------------------------------------- 
IPNL The performance is better than that 

traffic forwarded by global third 
party node. 

The functionality requires users to 
modify their OS kernel, which 
means it would not work on some 
OSs.  

------------------------------------------------------------------------------------------------------------------
SIP Related Most popularly accepted, and 

many of them are standards.  
Some of them are only suitable 
for SIP, and there is no well 
designed solution for general 
purpose. 

------------------------------------------------------------------------------------------------------------------
Skype Utilizes the P2P structure and 

doesn’t have the bottleneck of 
global third party node.  

When it is applied to general 
purpose, it consumes super 
nodes’, which are also system 
users, bandwidth to forward other 
users’ traffic. 

------------------------------------------------------------------------------------------------------------------
VPN Easy to use. All the user has to do 

is just connecting to a VPN server.
Requires a public IP address for 
each VPN client. 

------------------------------------------------------------------------------------------------------------------
Connection Splicer Doesn’t need third party node to 

forward traffic, which provides the 
best point to point throughput.  

Performs IP address spoofing 
which would be dropped by some 
routers.  
Some OSs require administrator 
privilege of client host to perform 
this mechanism. 

Table 2.3:3Advantages and Disadvantages of NAT traversal techniques. 
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 Each of the NAT traversal techniques described above has some disadvantages and 

inconveniences. In Chapter 3, we propose a general purpose solution for NAT traversal to 

alleviate these disadvantages and inconveniences. Although it is also inevitable that our 

solution still has some drawbacks, our approach provides a much simpler infrastructure to be 

utilized and popularized for NAT traversal and hence can be applied to any kind of existing 

network applications. 
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Chapter 3 

Proposed System Architecture 

 

 In this chapter, we propose an infrastructure for NAT traversal. The main objective of our 

design is to provide a solution which is easier to be popularized. In Section 3.1, we describe the 

design guidelines of our solution and based on these guidelines we make our solution much 

easier to be deployed. From Section 3.2 to 3.5, we discuss our infrastructure and mechanisms 

for NAT traversal. Section 3.7 discusses the deployment issue of our infrastructure. And finally 

in Section 3.8, we address the performance issues and additional capabilities of our solution. 

3.1 Design Guidelines 

The prerequisites of the existing techniques discussed in Chapter 2 are listed as follows.  

♦ NAT boxes need to be revised. 

♦ The existing client applications should be modified. 

♦ The existing server applications should be modified. 

♦ The original TCP/IP protocol stacks need to be revised. 

♦ The OS kernel implementation or network API or libraries need to be revised.  

♦ Does not provide a general purpose solution which can be applied to any kind of 

existing network applications. 

♦ The demand of third party forwarder reduces the throughput between service 
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subscribers and service providers. 

 

These annoying prerequisites of the existing techniques lead to the fact that none of 

them

equired for NAT boxes. 

of user 

3. ations (i.e., IE browser, putty, outlook…). 

ting 

 

uideline 1 and 2 keep the NAT boxes and the TCP/IP protocol stack of user hosts 

unto ersal 

 ensure the compatibility to the existing applications. As a consequence, 

our p

 solution, which means any kind of 

exist

o obtain 

 are popularly accepted for NAT traversal. To overcome these inconvenience, we 

setup five design guidelines for our solution as follows.  

1. Neither re-configuration nor administrator privilege r

2. No re-configuration to “TCP/IP protocol stack” and “kernel implementation” 

host. 

No modification to existing client applic

4. No modification to existing server applications (i.e., httpd, sshd, pop3d…). 

5. Must provide general purpose solution and can be applied to all sorts of exis

network applications.  

G

uched. Without such requirements related to NAT boxes, users can perform NAT trav

transparently through NAT boxes. Furthermore, guideline 2 allows users to have NAT traversal 

capability without the administrator privilege of localhost, since it achieves the independency 

of operating systems. 

Guideline 3 and 4

roposed solution is feasible for commercialization.  

Finally, guideline 5 aims to provide a general purpose

ing network applications can be supported by our solution. We use the term “any kind” 

here due to the fact that some network applications’ behavior differs from the normal 

client-server model, in which client creates one TCP or UDP connection to the server t

the service. Some network applications (i.e., FTP, Netperf [15] …) require consequent 
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connections after the first service connection from subscriber (client) to provider (serve

Some network applications which run SIP protocol would transmit their private IP address 

SIP messages and finally result in failure (discussed in Section 2.2.2). Our solution is designed

for supporting these kinds of network applications and, furthermore, we expect to support all 

sorts of network services in the future.  

r). 

in 

 

3.2 System Components 

 in our NAT traversal infrastructure.  

. 

 

ervice Provider and Service Subscriber reside in each user’s host. Each user can be a 

Serv ces, 

There are three main components

♦ Internet Service Broker (ISB). 

♦ Service Provider. 

♦ Service Subscriber

S

ice Provider or a Service Subscriber or both. When users want to provide network servi

they become Service Providers. On the other hand, when users want to subscribe services, they 

become Service Subscriber. User hosts can be either NATed or not NATed. The connectivity 

between NATed Service Provider and NATed Service Subscriber was carried out with the 

assistance of ISB and IST. Figure 3.1 shows the basic components in deployment. 

 

Figure 3.1:5Basic components in deployment.  
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ISB is built in advance in globally-addressable Internet. The main function

tion between the service subscriber and service provider

ture needs to login to ISB. When a user tries either 

services, they should negotiate with other users via ISB, which maintains the profile 

Another functionality of ISB is to forward the traf

. To improve the forwarding performa

ality of ISB is 

to help the negotia . Each user wants to 

use this infrastruc to provide or subscribe 

information of users. fic between a service 

provider and a service subscriber nce, we can setup an 

additional host, Interne ing task. IST can be 

eployed anywhere in globally-addressable Internet, and multiple ISTs can be deployed to 

impr

n 

 a 

t Service Translator (IST), to perform the forward

d

ove the system performance. In the rest of this thesis, we discuss the scenarios which the 

forwarding job is performed by IST, and the functionality of ISB is only to help the negotiation 

between the service subscriber and service provider. ISB and IST exist in individual hosts.  

3.3 Mechanism Outside the NAT 

 Both Internet Service Broker (ISB) and Internet Service Translator (IST) are deployed i

globally-addressable Internet in advance. ISB maintains system users’ profiles and those who 

want to use the system have to login to ISB. The login process can be accomplished through

TCP connection. After the completion of login, users keep the TCP connection persistent for 

the future negotiation. Figure 3.2 shows the connection mechanism. 
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Figure 3.2:6Persistant connections between the users and the ISB. 

 

To keep the TCP connection persistent, User A and User B can turn on the “keepalive” 

option of Berkley Socket or WinSock implementation, or send hello messages to ISB 

periodically.  

After system users login to ISB, they can check all available on-line services provided by 

other users. Furthermore, they can submit a request to ISB for subscribing services. ISB then 

checks this request and forwards it to the corresponding service providers via the persistent 

TCP connections between ISB and each system user host. Upon reception of the request, the 

service provider negotiates with the subscriber via ISB. We call this process as Service 

Negotiation. 

If both service provider and service subscriber are NATed hosts, after the service 

negotiation finishes, ISB tries to find an appropriate IST which is close to either the service 

subscriber or the service provider. Furthermore, ISB sends a splice request to IST and instructs 

IST to create an UDP or TCP socket to listen to the port and be ready to splice connections 

from service provider and service subscriber. Finally, ISB tells both service provider and 

service subscriber the configuration of IST. The service provider and service subscriber then 

create a connection to IST and these two connections will be spliced into one single connection. 

Figure 3.3 depicts the scenario which assumes that the service subscriber creates the 
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connection before the service provider does it.  

 

Figure 3.3:7The service connection process via ISB and IST. 
 

If only the service subscriber is NATed, our system can be viewed as a service discovery 

system. Service providers use our system to announce services they provide, and service 

subscribers perform service negotiation with the service provider via ISB and directly connect 

to the service provider to access the service. Therefore, under this situation, we don’t need an 

IST to forward network traffic. 

On the other hand, Figure 3.4 depicts the situation while only the service provider is 

NATed. The service negotiation is also accomplished via ISB and it again doesn’t need an IST 

to forward network traffic, however, the service connection is created by the service provider. 

Each service subscriber or service provider needs to run an application layer daemon to 

execute this mechanism, and we discuss this daemon in Section 3.4. 
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Figure 3.4:8The service connection setup process via ISB only 
 

After accomplish the connection setup, the service subscriber and the service provider are 

considered to have an end-to-end connection, and the service subscriber can send service 

request through it, while the service provider can reply through this connection also. In the next 

section, we describe the mechanism performed on those user hosts behind the NAT boxes. 

3.4 Mechanism Inside the NAT 

 We describe the basic scheme in Section 3.4.1 and then the enhanced scheme for SIP NAT 

Traversal and other special applications in Section 3.4.2. 

3.4.1 Basic Scheme 

 The login process and connecting to IST are performed by an application layer daemon 

running on the user host. Each user runs an application layer daemon to login and maintain the 

persistent connection to ISB, and this daemon maintains the behavior of subscribing service 

and providing service. Figure 3.5 shows the action of this application layer daemon when users 

on NATed hosts try to subscribe or provide services. 

 The actions in Figure 3.5 are performed after login and service negotiation. The user host 

A wants to subscribe service and the user host B likes to provide service. The daemons at both 
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sides create a connection to IST. Besides connecting to IST, the daemon on host B also creates 

a connection to localhost port to which server process is listening. The main task of the daemon 

now is to forward messages between these two connections. 

 

Figure 3.5:9Actions of the application layer daemon on user hosts.  
 

Besides connecting to IST, the daemon on host A also listens to a TCP or UDP port. When 

users on host A intend to access the internet service provided by host B user, they have to go 

through their client application (i.e., IE browser, FTP browser …) to setup connecting and send 

request to localhost port to which the daemon is listening. Upon receiving the request, the 

daemon on host A forwards it to the service provider via IST. 

Take the web service as an example, the host B user provides a web service and the host A 

user subscribes this service. After the service negotiation is done and connecting to IST is 

established, the host A user can open the browser and key in the localhost IP address (127.0.0.1) 

and a TCP port number (get from the daemon). The browser will send an http service request 

(i.e., “GET /”) to a TCP port of localhost. Then the daemon forwards this service request to 

service provider via IST. The daemon on host B will then receive the service request from IST 
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and forward it to the httpd on the localhost. The httpd then replies a service response to the 

daemon and the daemon forwards it to service subscriber via IST. Finally, the daemon on host 

A receives the service response and then forwards it to browser and the whole scenario is 

finished. 

Instead of connecting to IST, if only one of the service provider and service subscriber is 

NATed and the other one is globally-addressable host, the application layer daemon on the 

NATed host can connect directly to the globally-addressable host. Therefore, the performance 

can be improved by reducing the latency and throughput limitation of the third party forwarder. 

In addition, our system can also utilize the benefit of P2P structure to improve system 

scalability. Section 3.6.3 describes the utilization of P2P structure. 

3.4.2 Enhanced Scheme 

 As indicated in Section 3.1, our solution should be suitable for any kind of network 

applications. Some network service may not be accessed by a single TCP or UDP connection, 

some may requires multiple connections; therefore, we propose the enhanced scheme to make 

our solution suitable for various applications. The main ideas are to combine the Application 

Layer Gateway (ALG) with our daemon or to pre-define the behavior for special applications. 

 Take Netperf [15] as an example, it is a benchmark that can be used to measure various 

aspects of networking performance. When executing Netperf client, the first thing that will 

happen is the establishment of a control connection to the remote Netperf server. This 

connection will be used to pass test configuration information and results to and from the 

remote Netperf server. Once a control connection is setup and configuration information has 

been passed, a separate connection will be opened for the measurement using the appropriate 

APIs and protocols for the test.  

If we like to make our system architecture suitable for Netperf, our daemon needs to know 
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in advance that the service is Netperf. Furthermore, the daemon should negotiate with ISB to 

create two splices on IST. The use scenario is that a service provider and a subscriber 

accomplish the negotiation and create two splices on IST, and the daemons on both sides will 

fork two processes to handle the connection control and test of Netperf. When a service 

subscriber execute Netperf client to connect to localhost, Netperf client will automatically 

create another TCP connection to a specific port number on the localhost. The daemon on 

service subscriber host should forward the traffic of these two connections to the service 

provider. 

 Another type of special network service is SIP phone. A SIP phone application creates a 

RTP connection to transmit voice data after the SIP negotiation. As discussed in Section 2.2.2, 

the information of how to create this RTP connection is encapsulated in SIP message. If we like 

to make our system architecture suitable for SIP phone application, we should combine our 

daemon with an Application Layer Gateway (ALG). 
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Figure 3.6:10 ALG is combined with daemon when traversing one NAT. 

 

As discussed in Section 2.2.2, User1 in Figure 3.6 (left side) can create a RTP connection 

to User2 (right side) but User2 can not connect to User1 because User1 uses private IP address. 

Our solution is to combine the application layer daemons with ALGs. The ALG can be a new 

application layer program or just a function call in the daemon program. After the service 

negotiation of daemons, User1 send the SIP invite message to localhost which be forwarded to 

User2. The ALG on User2 host modifies the SIP message to change the field “c” of IP address 

and RTP port to localhost and the port which the daemon is listening to. Therefore, the RTP 

connection of User2 connects to localhost daemon and voice data is forwarded to the service 

subscriber via IST. In this scenario, we need to setup two splices on IST, one is for SIP 

message, and the other one is for RTP connection from User2 to User1. 

 Figure 3.7 is another example of SIP phone problem which is a little more complex than 
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that in Figure 3.6. In Figure 3.7, both User1 and User2 are behind NAT. The main difference of 

ALG actions in Figure 3.6 and Figure 3.7 is that we need to setup three splices on IST, one is 

for SIP message, and the other two are for RTP connections in both directions. 

 

Figure 3.7:11 ALG is combined with daemon when traversing two NATs. 
 

 Based on the method of combining with ALG and the method of pre-defining the behavior, 

we believe that our solution could be applied to all sorts of network applications. The main 

disadvantage is that we should write an ALG or pre-define the behavior for each special 

application. The ALG is either an individual application layer program or just a function call, 

and we need to update our system software when a new application is to be deployed. However, 

we consider this as an inevitable overhead for solutions which provides an automatic 

mechanism. Without this drawback, our solution is very simple to use. All the system users 

have to do is executing an application layer daemon and the daemon will automatically 
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perform the service negotiation. 

3.5 Message Exchange 

The messages exchanged between ISB, IST and Daemons are shown in Figure 3.8. The 

ISB and IST can be integrated into a single host. The forked daemon process and the original 

daemon process are combined into ISB Daemon in Figure 3.8. 

 

Figure 3.8:12Message Exchanged between ISB, IST and Daemons. 
 

3.6 Deployment Issues of ISB and IST  

 In this section, we discuss the deployment issues of ISB and IST. Multiple ISTs can be 

deployed on the edge routers of ISP (Internet Service Provider) to achieve a better system 

performance. In Section 3.6.1, the deployment of IST is addressed. Moreover, we can deploy 
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multiple ISBs to build up a P2P structure in the globally-addressable Internet to improve 

performance of service negotiation. In Section 3.6.2, we discuss the deployment issue of ISB. 

Finally, in Section 3.6.3, we address the method which allows NATed users to act as an IST. 

Combining all techniques discussed in this chapter, globally-addressable users are able to 

perform the functionalities of both ISB and IST to form a P2P infrastructure, and our proposed 

system would feature good scalability. 

3.6.1 Deployment of IST 

 The main functionality of IST is to splice connections from service providers and service 

subscribers. When both service subscriber and service provider are NATed, all service request 

messages and service response messages will pass through IST. It is obvious that IST will be 

the bottleneck of system performance. In this thesis, we propose two approaches to minimize 

the bottleneck effect. One is to enhance the performance of IST which we discuss in Chapter 4. 

The other is to consider the deployment issues of IST and ISB, and we discuss this part here. 

 We can deploy multiple ISTs in globally-addressable Internet. Multiple ISTs can be 

considered as load sharing of the packet forwarding task, therefore, the more the ISTs we 

deploy the better performance we can achieve. However, when we deploy multiple ISTs in the 

Internet, a new problem may arise. After service providers and service subscribers finish their 

service negotiation, ISB has to choose an appropriate IST to forward their service traffic. The 

term “appropriate” here is that the IST should be located on the shortest path or best routing 

path between the service provider and service subscriber. The selection method of IST is out of 

this thesis’s scope, and we regard this topic as our future work. 

 An obvious way of IST deployment is to install it along with the edge routers of ISP 

(Internet Service Provider). Since the user traffic of an ISP would go through the ISP edge 

router, the hop count between a service provider and a service subscriber in our system is the 
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hop count of the best routing path plus one, so the extra overhead of routing a packet through 

our proposed system could be minimized. 

3.6.2 Deployment of ISB 

 The main functionality of Internet Service Broker (ISB) is to maintain the profile 

information of system users and help them accomplish the service negotiation. If we deploy 

multiple ISTs in the Internet, the ISB is also required to find out the most appropriate IST for a 

service subscriber and a service provider.  

 Ws can deploy multiple ISBs in globally-addressable Internet to improve the performance 

of user login and service negotiation. Although the overhead of ISB tasks is not heavy, we can 

still deploy multiple ISBs for scalability. Once we have a large number of users who frequently 

provide and subscribe services, the deployment of multiple ISBs would become necessary. 

Another interesting idea is that we can deploy multiple ISBs in Internet to form a P2P 

network. Each ISB provides the functionality of IST. The profile information database can be 

divided into several smaller parts and spread into the ISB P2P system. Furthermore, users who 

are globally-addressable also can provide the functionalities of ISB and IST. Then our system 

would become well scalable because the task of original ISB and IST are decentralized and 

distributed to P2P system users. Figure 3.9 shows the configuration. There are several existing 

works devised to form P2P network structure [24, 25 and 17], therefore we don’t discuss the 

details of how to form the P2P network structure in this thesis. 

 

 33



  

 

Figure 3.9:13Decentralized operation of ISB and IST. 
 

 Some may raise the question that why nodes with public IP addresses want to use our 

system because our system is originally designed for NAT traversal. The reason is that nodes 

which like to subscribe services from NATed host are required to participate in our system. 

They can access the services of NATed host only through participating the system and perform 

the service negotiation via ISB. When more and more globally-addressable nodes participate in 

our system and form a large P2P structure, the overall system performance would be improved.  

3.6.3 Providing IST Functionality on NATed Host 

 In this section, we describe the approach to perform the IST function on NATed hosts. The 

RFC 3489 defines four types of NAT behavior, and NATed host can perform the functionality 

of IST if they are using specific kind of NATs. We redefine these four types of NAT behavior 

as follows.  

♦ Full Cone: The NAT mapping table records NATed host’s source IP address (internal 

address), source port (internal port), NAT’s external source IP address (external 

address) and external source port (external port). No two entries have the same pair 

of internal address and internal port. 
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♦ Restricted Cone: The NAT mapping table records internal address, internal port, 

external address, external port and destination host’s IP address (destination address).  

No two entries have the same pair of internal address and internal port. 

♦ Port Restricted Cone: The NAT mapping table records internal address, internal 

port, external address, external port, destination address and destination host’s port 

(destination port). No two entries have the same pair of internal address and internal 

port. 

♦ Symmetric: The NAT mapping table records internal address, internal port, external 

address, external port, destination address and destination port. There will be some 

entries which have the same pair of internal address and internal port. 

 

As long as the system users’ NAT type is “Full Cone”, it is able to perform the function of 

IST. This is done by that ISB learns the source IP address and source port then check the type 

of NAT, as shown in Figure 3.10. When ISB receive the first login packet from a NATed host, 

it records the source IP address and source TCP port. Then, ISB uses another Network Interface 

Card or another IP address to send a test packet to the source IP address and source TCP port of 

NATed host. If the NATed host receives the test packet, he can make sure that his NAT is “Full 

Cone”. The NATed host then replies a message to inform ISB his NAT is “Full Cone”. Then, 

ISB and the NATed host negotiate regarding whether to perform the IST function on the 

NATed host.. 

If the NAT type is not “Full Cone”, we can use “Port Prediction” technique in [10] to 

perform the IST function on the user host. However, port prediction features some kind of 

uncertainty. 
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Figure 3.10:14ISB test the type of NAT. 
 

 If we can perform the IST function on each user’s host, the infrastructure would become 

well scalable. Furthermore, we can combine the functionality of the user daemon into a home 

gateway (in fact, this violates our system design guideline in Section 3.1), which is a network 

device running as a gateway of home network. The advantages of combining the IST and user 

daemon into home gateway are two folds: good system scalability and persistent connection to 

ISB. Since the nature of a home gateway is always on-line, persistent login to ISB allows the 

home network users access to the resource of his/her home network while travel outside. In 

addition, these advantages are great help for the deployment of our proposed infrastructure. 

3.7 Discussion 

 In this section, we discuss four additional issues: firewall traversal, IPv4/IPv6 translation, 

multicast and computer peripheral applications. 

3.7.1 Firewall Traversal 

Our solution can be also applied to firewall traversal. As long as the system users have the 

capability to connect to an ISB and an IST, they can use our system and the firewall can be 
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viewed as a special type of NAT box. The firewall here is a filter which is deployed at the edge 

of Autonomous System (AS) of Internet. A firewall filters packets based on the information in 

packet headers. If the connections to an ISB and an IST are not filtered by the firewall, users 

behind the firewall would be able to use our system for firewall traversal. 

3.7.2 IPv4 / IPv6 Translation 

 Our system can also be applied to IPv4/IPv6 translation. Either an ISB or an IST has at 

least two network interfaces, one connects to IPv4 network and the other one connects to IPv6 

network. The functionalities of ISB and IST keep unchanged. The only required modifications 

are to assign the ISB to handle login and negotiation from both IPv4 and IPv6 networks, and to 

assign the IST to forward the traffic from both IPv4 and IPv6 network, as depicted in Figure 

3.11 and Figure 3.12. 

 

Figure 3.11:15 Login process of IPv4/IPv6 translation using ISB and IST. 
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Figure 3.12:16Service negotiation of IPv4/IPv6 translation using ISB and IST. 

3.7.3 Multicast 

 Our system can also support multicast as shown in Figure 3.13. NATed user could use this 

system to act as a source node of multicast. 

 

Figure 3.13:17IST supports multicast. 
 

3.7.4 Computer Peripheral Applications 

 In addition to network services, the service providers can also provide the control of their 

computer peripherals. Figure 3.14 depicts the situation that there are many computer 

 38



  

peripherals connecting with PC through home networks, which can be Ethernet or 802.11 

series or some alternatives. Once the daemon on a service provider host receives the service 

request from a subscriber via IST, the daemon can forward the service request to a computer 

peripheral instead of forward to server process on localhost. As long as the computer peripheral 

can recognize the service request and reply effectively, the service subscriber is considered to 

have the control of this computer peripheral. 

 

Figure 3.14:18Applied to computer peripherals. 
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Chapter 4 

Passive and Pure TCP Splice 

 

 Since the IST is the potential bottleneck of our system, we propose methods to improve 

the performance of IST in this chapter. Due to the rapid advance in computing power of PC, 

the overhead of forwarding packets by daemon is considered as small, we assume that 

nowadays users’ PCs have sufficient capability to provide the functionalities of the user 

daemon. Therefore, we focus on the forwarding performance in globally-addressable Internet. 

In Section 4.1, we depict the easiest way to implement the forwarding function on IST. Section 

4.2 describes an existing work “TCP Splice” which is commonly deployed by proxies for 

performance improvement. In Section 4.3 and 4.4, we introduce our proposed method to 

improve the forwarding performance on IST. 

4.1 Application Layer Proxy 

 The easiest way to implement the forwarding function on IST is to build it as an 

application layer proxy program. It is often used by the simple proxy which is responsible for 

light traffic.  

This application program creates a socket and listens to the incoming connection request. 

When a connection request arrives, it creates a section connection to another destination host. 

All the actions of this application program are accomplished by calling the APIs provided by 
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OS, and afterward these APIs make certain system calls, which results in frequently context 

switching between kernel process and application process, and hence produces a very large 

overhead. Furthermore, the overhead of memory copy is also huge. When an incoming packet 

arrives at the proxy’s NIC (Network Interface Card), the NIC generates a hardware interrupt 

and then the kernel process copies the packet from NIC’s buffer to the kernel buffer. When the 

application layer proxy program invokes the receiving system call, the packet payload was 

copied again into the application buffer. Then the application layer proxy program sends the 

packet to the destination host, this requires another two memory copies; from application 

buffer to kernel buffer and from kernel buffer to NIC buffer. Therefore, it needs four memory 

copies for each byte of packet payload when the application layer proxy wants to forward the 

packet. 

 

Figure 4.1:19The path of packet traversing an application layer proxy. 
 

As Figure 4.1 shows, client A creates a connection to the proxy and then the proxy

another connection to client B. Each packet traverses the proxy across four layers. Wh

applying the proxy to IST, the IST would listen to two connections and both client A an

B create a connection to IST. 

Application Layer

Active Connection 

Backward Traffic 
Client A Proxy

Transport Layer

Network Layer 

A

A

O
S

  
K

er
ne

l 

Link Layer 

 41
Client B
 creates 

en 

d client 



  

4.2 TCP Splice 

 The idea of TCP splicing was developed by researchers at IBM [16]. The main concept of 

TCP splice is to forward the packets between two connections without letting the packets 

traverse across application layer. As Figure 4.2 shows, packets don’t touch the application layer 

and only reach the transport layer. It needs only two memory copies for a TCP splicer to 

forward a packet; from NIC buffer to kernel buffer and kernel buffer to NIC buffer.   

 

Figure 4.2:20The path of packet traversing a TCP splicer. 
 

To implement TCP splicer we have to modify the TCP/IP protocol stack in kernel

Whenever the TCP splicer receives an incoming TCP connection request and finishes t

three-way handshake, it immediately creates a second TCP connection to another host 

maintains a sequence number table to record the offset of the sequence numbers of thes

connections. When a packet comes from one of these two connections, the TCP splicer

modifies the TCP sequence number and acknowledgement number based on the sequen

number table and updates TCP checksum. Finally, the packet is transmitted via the othe

connection. Table 4.1 shows the fields of packet header which need to be modified by T
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splicer. The underlined fields need modification. 

 

Table 4.1:4The fields need to be modified by TCP splicer. 
 

 In addition to both sequence number and acknowledgement number, TCP splicer also 

modifies source port, destination port, source address and destination address. These four fields 

are used to identify a unique connection. Finally, TCP splicer updates the checksum of both IP 

header and TCP header, and transmits this new packet to the other connection.  

The main advantage of using TCP Splice is that copying packets would stay in OS 

without touching the application layer, and therefore, it needs only two memory copies to 

forward a packet; from NIC buffer to kernel buffer and vice versa. Furthermore, comparing 

with application layer proxy, TCP Splice reduces the overhead of performing TCP congestion 

control and flow control of two connections between client hosts and the proxy. 

4.3 Passive TCP Splice 

 We propose a new mechanism for performance improvement of our IST, which is very 

like TCP Splice, and we call it Passive TCP Splice. Figure 4.3 shows the packet traversal path 

of a passive TCP splicer. Similar to TCP splicer, the path of packets traversing a passive TCP 
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splicer would not touch the application layer, and all the activities are performed by OS kernel 

processes. 

 

Figure 4.3:21The path of packets traversing a passive TCP splicer. 

 

Instead of modifying the sequence number of each packet based on the sequence 

table, passive TCP splicer neither modify the sequence number nor change acknowledg

number of TCP header. It splices two three-way handshakes. As Figure 4.4 shows, the 

TCP splicer sends SYNACK, which is the second packet of TCP three-way handshake

client A using client B’s sequence number and sends SYNCACK to client B using clie

sequence number. Thus, when forwarding packets, passive TCP splicer doesn’t have to

the sequence number and acknowledgement number of TCP header.  
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Figure 4.4:22Splice TCP three-way handshake. 
 

 

Table 4.2:5The fields need to be modified by passive TCP splicer. 
 

The main difference between TCP Splice and Passive TCP Splice is that Passive TCP 

Splice listens to two active TCP connections from two client hosts, while TCP Splice creates 

another active connection after an incoming connection request. In addition, Passive TCP 

Splice does not modify the sequence and acknowledgement numbers in TCP header. The 

underlined fields in Table 4.2 need to be modified by passive TCP splicer. 

Figure 4.5 depicts the sequence of message exchange when an IST implements Passive 

TCP Splice. Comparing with Figure 3.5, the main difference is that IST uses passive TCP 

splicer instead of application layer forwarding between service subscriber and service provider. 
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Figure 4.5:23Implementation of passive TCP splice on IST. 
 

4.4 Pure TCP Splice 

 We propose another performance improvement scheme for IST which is called Pure TCP 

Splice. Refined from Passive TCP Splice, Pure TCP Splice does not modify the TCP header 

except TCP checksum. Since TCP header fields except checksum are kept changeless, we 

consider that the Pure TCP Splice operates below transport layer. As Figure 4.6 shows, packet 

traversing a pure TCP splicer only touches network layer and link layer. 

The pure TCP splicer is realized with a prerequisite. Only when one of the clients can 

assign the source port of its TCP connection and the other user knows this source port, then the 

splicer can perform Pure TCP Splice. Take Figure 4.5 as an example, client A uses source port 

X and destination port Y, and client B uses source port Y and destination port X to connect to 

the pure TCP splicer. Afterward, the pure TCP splicer can splice these two connections without 
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modifying TCP port numbers. 

 

Figure 4.6:24The path of packet traversing a pure TCP splicer. 

 

As Figure 4.7 shows, client B can assign the source port of his TCP connection 

A cannot. Before creating the connections to IST, client B tells client A in advance th

use P1 as his source port. However, client A responses to client B that it does not has

to assign the source port of its connection. Then, client A connects to IST port P1, an

waits for pure TCP splicer to tell it the source port number of client A. When client B

that the source port of client A is P2, it connects to port P2 of IST. Finally, pure TCP 

obtains sufficient information of the sequence number of each user and is able to spli

three-way handshakes.  

Table 4.3 depicts the fields of packet header which needs to be modified. When

performing Pure TCP Splice, the only field needs to be modified in TCP header is the

checksum. Since the source and destination addresses in IP header would be modifie

TCP splicer and the TCP checksum contains a IP pseudo header, therefore, the splice

modifies the TCP checksum. 
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Figure 4.7:25Port negotiation of Pure TCP Splice. 
  

 

Table 4.3:6The fields need to be modified by pure TCP splicer. 
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Chapter 5 

Implementation and Emulation Results 

 

 In this chapter, we describe the implementation of our system components and emulation 

results. The system components include the user daemon, Internet Service Broker in 

application layer and the Internet Service Translator in OS kernel. It is not difficult to 

implement application layer ISB and user daemon. Section 5.1 gives a brief description of 

them. In Section 5.2, we present the implementation of Passive TCP Splice and Pure TCP 

Splice in OS kernel. The implementation in the kernel involves in the modification to TCP 

state transition. Our implementation is done on Intel IXP425 network processor running 

MontaVista Linux. Section 5.3 and Section 5.4 shows the emulation environment and results. 

5.1 Implementation of Application Layer User Daemon and 

Internet Service Broker 

 The main functionality of ISB is to maintain the profile information of system users and 

help the negotiation between service providers and service subscribers. Since ISB runs at 

application layer, all functions are implemented by invoking system APIs and libraries. The 

ISB listens to a well known TCP port for client login messages. Clients create a TCP 

connection to login into ISB and keep this connection alive. Therefore, if there are n on-line 

users, ISB should maintain n persistent TCP connections. Then, ISB uses these connections to 
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communicate with each client. ISB helps the service provider and service subscriber negotiate 

for accessing the services. We implement ISB on Linux host using Berkley socket APIs and 

ordinary system libraries. 

 The main functionality of the user daemon is to provide a user interface in our system. 

Users use the daemon to login into ISB and communicate with it for provisioning service to 

subscribers. The user daemon can intercept each message between system users and ISB. 

Therefore, when a user wants to either provide service or subscribe service, the user daemon 

can automatically creates a socket and listens on localhost for connection splicing. The user 

daemon of our implementation runs on Linux host using Berkley socket APIs and ordinary 

system libraries.  

5.2 Implementation of Internet Service Translator in OS Kernel 

 We have described Passive TCP Splice and Pure TCP Splice in Section 4.3 and Section 

4.4 respectively. In this section we describe the implementation of them in OS kernel. Although 

packets traversing a passive TCP splicer would touch transport layer, from the view point of 

kernel implementation we can implement it in network layer, and only when splicing the 

three-way handshake the packets would touch transport layer. Likewise, packets traversing a 

pure TCP splicer would only touch the network layer, and in kernel implementation the packets 

would touch transport layer when splicing three-way handshake. 

 Figure 5.1 from Steven’s [18] shows the original TCP state transition diagram. The start 

state is “CLOSED.” When a host starts to listen to an incoming connection request, the state 

transits from “CLOSED” to “LISTEN”. Once the host receives the first packet (SYN) of 

three-way handshake, it should immediately send back the second packet (SYNACK) of 

three-way handshake and the state transits from “LISTEN” to “SYN_RCVD”. If the remote 

host sends an ACK packet later, the three-way handshake is completed and the state transits 
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from “SYN_RCVD” to “ESTABLISHED”.  

Figure 5.1:26Original TCP state transition diagram. 
 

The termination of a TCP connection can be bidirectional. Ether localhost or remote host 

sends a FIN packet to terminate the connection in one direction. The other host can continually 

send data, and the TCP connection is terminated when this host sends a FIN packet later. When 

a localhost wants to stop sending message first, a FIN packet is sent to the remote host and the 

state transits from “ESTABLISHED” to “FIN_WAIT_1” to keep receiving message from the 

remote host. Otherwise, if the remote host wants to terminate first, localhost would receive a 
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FIN and the state changes from “ESTABLISHED” to “CLOSE_WAIT”. Finally, after 

accomplishing the termination mechanisms, the state goes back to “CLOSED”. The detail state 

transition mechanism is depicted in Steven’s [18].  

Figure 5.2 shows the modified TCP state transition diagram of IST for splicing TCP 

connections. We add four new states which are in gray color. When the TCP state is “LISTEN” 

and a SYN is received, the kernel checks the port number to determine whether this packet is 

for the IST. If it is for IST, the TCP state changes from “LISTEN” to “IST_SYN_LOOKUP”, 

and the IP addresses, TCP ports and sequence number are kept in an IST table. Subsequently, 

when another SYN arrives and it is also for IST, its IP address, TCP port and sequence number 

will be kept in the IST table. Then two SYNACK are built based on the information in the IST 

table and sent back to the remote hosts, and the TCP state transits from “IST_SYN_LOOKUP” 

to “IST_SYN_RCVD”. If IST receives two ACKs later, the connection splicing is successful 

and the TCP state changes from “IST_SYN_RCVD” to “ESTABLISHED”. To support this 

mechanism, we need to modify the tcp_rcv_state_process ( ), tcp_conn_request ( ) and 

tcp_v4_do_rcv ( ) functions of Linux kernel to change the behavior of connection 

establishment; all these functions are performed in transport layer. 

The “ESTABLISHED” state is modified to forward message for spliced connections. In 

kernel implementation, we need only to modify the ip_local_deliver_finish ( ) function which 

is the final function of ip_input procedure. When ip_local_deliver_finish ( ) receives a packet, 

it check the IST table and updates both IP header and TCP header, then calculates the 

checksum and sends the packet out. All mechanisms are performed in the network layer, 

therefore, the packet would not touch the transport layer. 
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Figure 5.2:27Modified TCP state transition diagram for splicing TCP connection. 

 

When IST receives a FIN packet, it changes the TCP state from “ESTABLISHED” to 

“IST_CLOSE_WAIT” and stops forwarding message from the remote host. When the other 

host also sends a FIN packet to the IST, the IST changes the TCP state from 

“IST_CLOSE_WAIT” to “IST_TIME_WAIT” and stops forwarding message except the final 

FINACK. After waiting for 2MSL, the state goes back to “CLOSED”. 

The kernel implementation for Passive TCP Splice and Pure TCP Splice is the same 

except that Pure TCP Splice does not modify source and destination ports in the TCP header. 

The information of addresses and ports is obtained from IST table, and we implement this IST 

table using hash. The checksum of both IP header and TCP header should be recalculated. It is 
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a large overhead to go through the whole IP header and payload to recalculate IP checksum and 

TCP checksum. The theorem of checksum and checksum modification method and pseudo 

code are described in [19, 20, 21].  

The RFC recommends the following equation for computing the updated checksum C’ 

from the original checksum C, and m, m’ are the old and new field values respectively. The 

values of m in our system are old IP address and old TCP port, while the values of m’ are new 

IP address and new TCP port.  

C’ = C + (m’ – m)            (5.1) 

Although the equation above is correct, it is not very useful for incremental updates since 

the equation above updates the checksum C, rather than the 1's complement of the checksum 

~C, which is the value stored in the checksum field. The useful calculation for checksum 

modification is:  

~C’ = ~(C + (-m) + m') = ~C + (m - m') = ~C + m + ~m'    (5.2) 

Equation 5.2 means that the new value of checksum field is the old checksum plus the old 

field value plus one’s complement of the new field value. We implement this equation in our 

IST kernel code to update IP and TCP checksum. Since the IP addresses and TCP ports are fix 

values in IST table, we can pre-calculate the value of m + ~m’ to speedup checksum 

modification.  

There is another implementation issue of our IST: the TCP timeout period is 21 seconds 

(in Microsoft Windows XP implementation). TCP timeout means that the first user sends a 

SYN to IST and waits for response, however, it waits longer than the TCP timeout period and 

the other user does not send a SYN to IST. Therefore, IST does not send back SYNACKs and 

the first remote host will encounter TCP timeout. The TCP timeout period is dependent of TCP 

implementation in OS and maybe longer or shorter than 21 seconds. Since less than few 
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seconds a packet can traverse the whole Internet and the overhead of IST splicing three-way 

handshake is not heavy, we believe that it is sufficient for most TCP implementations in 

various OSs to use our mechanism. 

 The implementation of UDP forwarding in OS kernel is almost the same as TCP 

forwarding except that the three-way handshake can be ignored. We modify the udp_rcv ( ) 

function to keep the information of IP addresses and UDP ports in an IST table. The whole 

UDP forwarding functionalities are implemented in ip_input procedure in network layer, it is 

like TCP forwarding discussed above. 

5.3 Emulation Platform 

 We use Intel IXP425 network processor [22] for emulation and the software is running on 

MontaVista Linux [23]. There are two reasons for choosing IXP425 for our emulation. One is 

that IXP425 is an embedded processor commonly used for small network device. Section 3.6.3 

describes that we can get great benefit from combining home gateway box with the 

functionalities of user daemon and IST. The other reason is that IXP425 has limited computing 

resource, and the performance improvement of our Passive TCP Splice and Pure TCP Splice 

would be more obvious on IXP425. 

 Intel IXP425 network processor is a highly integrated, versatile single-chip processor that 

can be used in variety of products that need network connectivity and high performance. It has 

an XScale core processor operating at 533 MHz, two integrated 10/100 Base-T Ethernet MACs, 

33/66 MHz PCI v2.2 bus, SDRAM controller supports from 8 to 256 Mbytes of SDRAM 

memory and many other functionalities as shown in Figure 5.3. We use IXP425 develop 

platform (IXDP425) to implement our system which has 256 Mbytes memory, PCI slots and 

two on-board Ethernet PHYs.  
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Figure 5.3:28Block diagram of Intel IXP425 network processor. 
 

 As shown in Figure 5.3, there are two on-chip Ethernet MAC on IXP425. These two 

Ethernet MACs connect to XScale processor via 133 MHz Advanced High-Performance Bus 

and a Queue Manager. A PCI Controller also connects to this High-Performance Bus; we can 

plug in additional PCI NICs to extend the number of ports of IXDP425. From the emulation 

experience, we observe that if the IST is implemented in kernel layer and forwards the traffic 

between two on-chip Ethernet MACs, the throughput would be kept as high as the full line 

speed which is about 98Mbps. This result means that the XScale processor and the 

High-Performance Bus are capable of handling all traffic without discarding packets. If the IST 

forwards traffic between one on-chip Ethernet MAC and a PCI Ethernet NIC, some packets 

would be discarded. The main reason for these two different results may be due to the on-chip 

Ethernet MAC which has faster response time and higher interrupt priority than PCI NIC. 

When traffic comes from one on-chip Ethernet MAC and goes to one PCI Ethernet NIC, the 
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smaller response time and higher interrupt priority of on-chip Ethernet MAC and the CPU 

processing latency would lead to packet loss in kernel buffer because packets come in faster 

than they go out. If the traffic is in the opposite direction, packets would be dropped on PCI 

NIC buffer due to the lower interrupt priority and longer response time and the CPU processing 

latency. In this thesis, the emulation results are all performed by forwarding traffic between one 

on-chip Ethernet MAC and a PCI Ethernet NIC. This is to emphasize our implementation 

which reduces CPU processing latency and features better performance than the normal 

implementation. And the emulation of forwarding traffic between two on-chip Ethernet MACs 

is not conducted because that throughput is equal to the maximal line speed.  

5.4 Emulation Result 
 We compare the performance of IST implemented in application layer as well as in kernel 

layer. Since application layer forwarding requires at least four memory copies to forward a 

packet and TCP Splice in OS kernel only needs two memory copies, the latter would obviously 

feature better performance than the former. The main purpose of this emulation is to show how 

much improvement our method can achieve on a network device with limited computing 

power. 

 We estimate the improvement of our method by performing the emulation in five phases: 

Direct Connect, Forwarder, NAT, IST in Application Layer and IST in OS Kernel. The 

topologies are shown in Figure 5.4. Host A and host B are normal PCs which have 256 Mbytes 

memory and operate at 568 MHz. We test Direct Connect performance by measuring the 

maximal throughput between host A and host B. The forwarder here is the forwarding 

functionality in Linux kernel. Once the functionality is turned on, Linux will forward packets 

from each NIC to all NICs. We test the performance of Linux forwarder to get the maximal 

throughput that IXP425 can achieve. The third phase is NAT. We turn on the NAT ability of 

Linux kernel to test its maximal throughput. Since the Linux kernel is finely tuned, we 
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consider the throughput of Linux NAT as the best throughput a forwarder can achieve when it 

needs to check some information in a table while forwarding a packet. The fourth and fifth 

phases are implementation of IST in application layer and kernel layer respectively. We 

compare the results of these two phases to show the improvement of our method. Since the 

implementation of IST in application layer is similar to Skype [9], we can consider the 

emulation result of phase four as the performance of Skype when applying to general purpose 

solution. 

 

Figure 5.4:29Emulation Topologies. (A): Forwarder, NAT and IST. (B): Direct Connect 
 

 Figure 5.5 shows the comparison of round trip time of five phases. The results are 

measured by a UDP Ping-Pong program. The Direct Connect phase has the lowest RTT. The 

RTT of forwarder and NAT phases is more than one hundred nano-seconds longer than that of 

Direct Connect. This result shows that the forwarder and NAT implementation of Linux Kernel 

is well tuned and the IXP425 processor is capable of doing this job, because it needs only 

about one hundred nano-seconds to duplicate and transmit a packet. The RTT of our IST 

implementations in application layer and kernel layer are about 498 and 423 nano-seconds. The 

long latency of IST in application layer is obvious since it requires at least four memory copies. 
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However, the RTT of IST in kernel layer is still up to 425 nano-seconds which may be 

considered as too long. We believe the long RTT of IST in kernel layer is due to our kernel 

code that has not been finely tuned. If we carefully tune our kernel code, the best RTT of IST 

in kernel maybe reduced to equal to the RTT of NAT. 
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Figure 5.5:30Comparison of Round Trip Time. 
 

 We test the TCP throughput of five phases above. One host creates one TCP connection, 

ten TCP connections, twenty TCP connections … one hundred TCP connections to the other 

host via either a direct link or a forwarder and sends huge volume of data. Furthermore, the 

sender estimates the total number of data it sends in a time period as transmission throughput; 

and the receiver estimates the total number of data it receives in a time period as receiving 

throughput. Finally we average these two throughputs as the final result. Figure 5.6 shows the 

results of TCP throughput. It is obvious that only IST in application layer phase has poor 

performance, while IST in kernel layer phase performs as well as first three phases. The main 

reason of IST in application layer phase has such poor performance may be due to the fact that 

it requires additional two memory copies (kernel layer to application layer and application 

layer to kernel layer). This emulation result also shows that if we use Skype to transmit normal 
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application data instead of voice data, we would get very poor performance.  
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Figure 5.6:31Comparison of TCP throughput. 
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Figure 5.7:32Magnification of TCP throughput comparison. 
 

Figure 5.7 magnifies Figure 5.6 and shows that Direct Connect phase has the best 

throughput. There is a trend that IST in kernel layer would perform better than NAT when the 

number of connections increases. This maybe due to that NAT needs to lookup its NAT 

mapping table to forward a packet. When the mapping table becomes bigger, it may require a 

little more table lookup time to lookup this table. Our IST kernel implementation uses hash 

table to maintain the connection splicing information. When the number of connections 

becomes larger, the table lookup time would not increase. With the trend that TCP throughput 

increases with the number of connections, IST kernel implementation performs better than 
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NAT when the number of connections is bigger than 70. 

 We test the UDP performance by using one host sending variable data rate to another host 

and measure the packet loss rate. The emulation experience shows an interesting phenomenon, 

the packet size plays an important role when measuring the UDP loss rate. When the packet 

size is bigger than a certain threshold, the UDP loss rate is kept persistent no matter how light 

the sending rate is. 
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Figure 5.8:33Comparison of UDP loss rate with 1Kbyte packet size. 
 

 Figure 5.8 shows the UDP loss rate of variable sending rate when packet size equals 1 

Kbytes. Only IST implementation in application layer would drop packets, while IST kernel 

implementation would not. This result shows that IXP425 is sufficient to perform the 

functionality of IST when it runs MontaVista Linux kernel. However, when the packet size 

increases up to 6 Kbytes, NAT phase and IST kernel layer phase drop packet when the sending 

rate is larger than 63 Mbps. The overhead of memory copy is so enormous and IST application 

layer phase drops almost all packets no matter what the data rate is. 

 61



  

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

UDP Transmission Speed(Mbps) (packet size = 6k)

L
os
s 
R
at
e 
(%
)

Direct Connect

Forward

NAT

IST - App.

IST - Kernel

Figure 5.9:34Comparison of UDP loss rate with 6Kbyte packet size. 
 

 Figure 5.10 shows the UDP loss rate with variable packet sizes and UDP is sending at full 

line speed. Direct Connect phase and Forward phase perform well and never drop packets. The 

performance of IST kernel implementation is similar to NAT since they do almost the same job 

(modification to packet header and recalculate checksum). The performance of IST application 

layer implementation is the worst due to the overhead of memory copies. 
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Figure 5.10:35Comparison of UDP loss rate with variable packet sizes. 
 

It is interesting that when packet size is less than 1 Kbytes the UDP loss rate increases 

rapidly. We consider the reason of this phenomenon is similar to the “Live Lock” problem of 

operating system. Since the emulation is performed by sending UDP packets with maximal rate, 

the IXP425 needs to handle too many small packets at the same time and finally drops some of 

them. This figure also shows that Linux kernel is optimized for handling packets with size 
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around 1 Kbytes. Linux kernel adjusts its data structures and default buffer size to optimize it 

whole system performance. 

When packet size is bigger than 1KB, the UDP loss rate also increases. We consider it is 

due to the overhead of memory copies. The bigger the packet size is, the more memory copy 

latency would be required. 

 Since the default Ethernet MTU (Maximum Transmission Unit) of most OSs are 1500 

bytes, we can consider that our IST kernel implementation on IXP425 network processor is 

very capable of performing the functionalities of IST. And we can deploy ISTs to each system 

users’ home network as their home gateway to improve the whole system performance. 
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Chapter 6 

Conclusion and Future Work 

 

 In this thesis, we design and implement the infrastructure of Internet Service Broker for 

NAT traversal. There are many related techniques devised to NAT traversal problem. However, 

each of them has some drawbacks or inconvenience. We propose an infrastructure of Internet 

Service Broker to overcome these disadvantages and provide a general purpose solution which 

can be applied to all sorts of existing network applications. The key design guideline is to make 

our solution feasible for deployment. Users of our system only need to execute an application 

layer daemon and login to the Internet Service Broker located in globally-addressable Internet, 

and existing network applications can get the capability of NAT traversal without any 

modification. In addition, our system can be also applied to Firewall Traversal and IPv4 / IPv6 

translation.  

We propose Passive TCP Splice and Pure TCP Splice to improve the forwarding 

performance of third party node for our system. Furthermore, our system can utilize P2P 

structure to improve scalability. The emulation result shows that we can apply our TCP Splice 

mechanisms to the computing power limited network device and achieve satisfactory 

performance.  

 Since the emulation result only demonstrates that our Internet Service Translator can be 

implemented to achieve good performance and achieve better system scalability, it still can not 
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guarantee the whole system performance when there are huge number of system users. Our 

future work is to implement our system in P2P structure. The main objective is to let every 

system users to perform the functionalities of centralized servers. In addition, we have to 

propose an algorithm for Internet Service Broker to help system users find the closest Internet 

Service Translator. Once these works were accomplished, our system can provide the 

guaranteed quality of service.  
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