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Nonlinear Dynamics of Semiconductor Lasers Under
Repetitive Optical Pulse Injection

Fan-Yi Lin, Member, IEEE, Shiou-Yuan Tu, Chien-Chih Huang, and Shu-Ming Chang

Abstract—In this paper, nonlinear dynamics of semiconductor
lasers under repetitive optical pulse injection are studied numer-
ically. Different dynamical states, including pulsation and oscilla-
tion states, are found by varying the intensity and the repetition
rate of the injection pulses. The laser is found to enter the chaotic
pulsation (CP) states and chaotic oscillation (CO) states through
individual period-doubling routes. Mapping and corresponding
Lyapunov exponents of these dynamical states are plotted and ex-
amined in the parameter space. Moreover, the bandwidths of the
chaos states found are investigated, where the bandwidths of the
CP states observed at the strong injection regime are two to four
times broader than the bandwidths of the CO states found at the
weak injection regime. In this paper, frequency-locked states with
different winding numbers, the ratio of the oscillation frequency,
and the repetition frequency of the injection pulses are also studied.
Both the cases for repetition frequency above and below the relax-
ation oscillation frequency are examined. The winding numbers
of the frequency-locked states reveal a Devil’s staircase structure,
where a Farey tree showing the relations between the neighboring
states is constructed.

Index Terms—Chaos, nonlinear systems, semiconductor lasers.

I. INTRODUCTION

ONLINEAR dynamical characteristics of semiconductor

lasers have been studied intensively in recent years. Di-
verse dynamical states found have been proposed to be uti-
lized in various applications such as radar [1], lidar [2], [3],
radio-over-fiber communications [4], and chaotic communica-
tions [5]—[8]. For an optically injected laser with a master—slave
configuration, bandwidth enhancement [9], [10], linewidth re-
duction [11], [12], and noise suppression [13] phenomena have
been observed. By controlling the injection strength and the
frequency detuning between the master and the slave lasers, in-
duced periodic oscillations and chaotic oscillations (COs) have
been obtained [14], [15]. Both period doubling [16] and breakup
of two tori [17] routes to chaos have been reported. However,
although many efforts have been made to understand the char-
acteristics of an optically injected semiconductor laser [18], re-
searches are limited to the condition where the laser is injected
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Fig. 1. Schematic setup of a semiconductor laser under repetitive optical pulse

injection. The variable attenuator is used to adjust the injection strength and the
optical isolator is used to prevent the unwanted feedback.

with an optical signal of constant intensity. Few studies have
been done on the nonlinear dynamics of a semiconductor laser
subject to a nonconstant optical injection.

Nonconstant optical injection is important when a
transmitter—receiver or a cascaded laser system is considered,
in which the dynamical output of a transmitter laser can opti-
cally inject into a receiver laser inevitably or even intentionally.
With a chaotic optical injection, high-frequency broadband sig-
nal generation has been demonstrated [19]. By injecting optical
pulses at a subharmonic of the cavity round-trip frequency, a
long-cavity-multisection semiconductor laser oscillating at its
resonant frequency has been observed [20]. Repetitive pulses
with twice the period have been observed in a Fabry—Perot laser
subject to optical pulse injection [21]. Mode locking in broad-
area semiconductor lasers by injecting optical pulses repeated
at subharmonics of the lateral mode separation has been demon-
strated [22]. In this paper, we study the complex dynamics of
a semiconductor laser induced by optical pulses. By injecting a
laser with a train of repetitive pulses, various dynamical states
are shown and routes to chaos are identified. The dynamical
mapping of the states is plotted and the bandwidths of the chaos
states are investigated. Moreover, frequency locking phenomena
driven by the pulse injection are also examined.

II. SIMULATION MODEL

The schematic setup of an optical-pulse-injected semicon-
ductor laser is shown in Fig. 1. The laser is injected by a train
of optical pulses, where the repetition rate and the intensity of
the pulse train are varied as the controllable parameters. The
dynamics of the injected laser are simulated using the model
described in [23] with the following normalized dimensionless
rate equations:
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where « is the normalized field, ¢ is the optical phase, n is
the normalized carrier density, b is the linewidth enhancement
factor, . is the cavity decay rate, , is the spontaneous carrier
decay rate, v, is the differential carrier relaxation rate, -, is
the nonlinear carrier relaxation rate, and J is the normalized
dimensionless injection current parameter. The dimensionless
injection parameter &; (t) = n|A; (t)|/ (.| Ao|) is the normalized
strength of the injection field received by the injected laser,
where 7) is the coupling rate, A;(t) is the complex amplitude of
the injection field, and Ay is the complex field amplitude of the
injected laser at free running. The frequency detuning €2 is the
frequency difference between the pulsed laser and the injected
laser at free running.

For the repetitive injection pulse train, a Gaussian shape
of &(t) with a peak injection strength &,, a repetition fre-
quency frep, and a pulsewidth of 75 ps are considered. Fol-
lowing experimentally measured intrinsic dynamical parame-
ters of a high-speed semiconductor laser [24] are used in the
simulation: v, = 2.4 x 10! s7!, v, = 1.458 x 10?571, ~, =
3J x 10°s71, 4, = 3.6J x 10°s™!, and b = 4, while zero de-
tuning (2 = 0) is assumed. The lasers are biased at a value
of J=1 /3, and the relaxation oscillation frequency [f, =
(YeYn + 7sYp) /% /27] of the laser is about 2.5 GHz with
the aforementioned parameters. Second-order Runge—Kutta
method with a sampling time of 2.38 ps is used to solve the
coupled rate equations.

III. RESULTS
A. Nonlinear Dynamical States

When a laser is injected by a single optical pulse, induced
oscillations in the laser output field are expected and the laser
tends to relax back to its free-running state gradually if no
successive pulse is further injected. However, if a train of optical
pulses is injected into the laser with the time separation between
each successive pulse being shorter than the relaxation time
of the laser, the relaxed oscillation will be interrupted while
the injected pulses perturb the optical field and phase abruptly.
Hence, the nonlinear dynamics of an optical pulse injection
system is expected to be strongly influenced by the intensity
and the repetition frequency of the injected pulses.

Fig. 2 shows the time series, phase portraits, and power spec-
tra of the dynamical states found in the optical pulse injection
system. The dashed curves in the time series are the corre-
sponding waveforms of the injected pulses showing the timing
of injection, which are scaled for clarity. The phase diagrams
in the second column are constructed by plotting the peak

values of intensities of the Nth peak [P(/N)] to the (N + 1)th
peak [P(N + 1)] taken from the time series shown in the first
column, which reveals the complex attractors of the states as
time evolves. As can be seen in Fig. 2(a), for peak injection
strength &, and repetition frequency fi., (in gigahertz) of
(&, frep) = (0.01,3.0), a period-1 oscillation (P10) state is
found and a single dot is shown in the phase diagram. The
laser oscillates at the same frequency (3 GHz) as the repetition
frequency fep of the injected pulses. Compared to the oscilla-
tion frequencies of the similar P10 states found in a laser with
constant continuous-wave (CW) injection that increases as the
injection strength increases, the oscillation frequencies of the
P10 states found in our study are not affected by the injection
strength (before the laser enters into another state) but are locked
to the repetition frequency of the pulse injected. When &, and
frep are both increased to (§,, frep) = (0.02,3.5), as shown in
Fig. 2(b), a period-2 oscillation (P20) state is obtained and two
dots are observed in the phase diagram. As can be seen, the laser
now oscillates at about 2.33 GHz and an envelope in the time se-
ries with a subharmonic frequency of the oscillation frequency
is found. Further increases in &, and f,., drive the laser into a
period-4 oscillation (P40O) and CO states, as shown in Fig. 2(c)
and (d), respectively. Clearly, the laser follows a period-doubling
route into chaos when the parameters of the injected pulses are
varied.

While these oscillation states have also been observed in an
injected laser subject to constant injection, pulsation states are
also found in this pulse-injected laser system. Fig. 3 shows
the time series, phase portraits, and power spectra of the pul-
sation states observed. The dashed curves in the time series
are the corresponding waveforms of the injected pulses show-
ing the timing of injection, which are scaled for clarity. With
(&, frep) = (0.13,3.0), Fig. 3(a) shows the regular pulsing
[period-2 pulsation (P1P)] state, in which the laser pulses repet-
itively at the frequency of f,.,. When f;¢,, decreases, a period-2
pulsation (P2P) state that has a subharmonic envelope in the
time series is observed. Further reducing f;., drives the laser
pulses with the fourth harmonic frequency [period-4 pulsation
(P4P)] and goes into chaotic pulsing state [chaotic pulsation
(CP)] eventually through a similar period-doubling route as in
the oscillation counterpart. These pulsation states are clearly
distinguishable from the oscillation states such that the peak
intensity of the pulsation states is higher and it drops to zero
between each subsequent pulse. Note that with repetitive pulse
injection, these states, shown in Figs. 2 and 3, are not tran-
sient states but states with dynamical stability. Moreover, while
all the spectral harmonics of the injected pulses inevitably affect
the laser dynamics implicitly, the lower harmonics, especially
the first harmonic frequency fr.p,, predominate due to both their
larger amplitudes and higher responses near the relaxation os-
cillation frequency of the laser.

To show the regions of different dynamical states (as shown
in Figs. 2 and 3) occupied in the parameter space, a mapping is
plotted in Fig. 4(a). As can be seen, regions of different dynam-
ical states are identified, while the period-doubling routes for
the oscillation states and the pulsation states can be traced. As
shown in the mapping, the oscillation states are generally found
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Time series, phase portraits, and power spectra of different oscillation states with (£, frep). (@) P10 (0.01, 3.0). (b) P20 (0.02, 3.5). (c) P40 (0.03, 3.8).

(d) CO (0.04, 4.0). The dashed curves in the time series are the corresponding waveforms of the injected pulses showing the timing of injection, which are scaled

for clarity.

in the weak injection regime (£, < 0.1), while the pulsation
states are observed in the stronger injection regime (&, > 0.1).
As &, increases, the laser output gradually transforms from os-
cillations into pulsations as the duty cycle of the waveforms
decreases. Note that a belt of complex dynamical states, namely
the CO and the CP states, is found stretching from the regime of
weak injection-high repetition rate (>2.5 GHz) to the regime
of strong injection—low repetition rate (<2.5 GHz). Within the
belt, the CO states gradually transform into the CP states as &,
increases. To quantify the complexity of these states, Fig. 4(b)
plots the corresponding largest Lyapunov exponents. As can
be seen, while the PIP states in the upper right corner have
negative Lyapunov exponents, positive Lyapunov exponents are
found for the states showing complex dynamics seen in Fig. 4(a).
Within the belt, CO states found in the upper left corner have the

largest Lyapunov exponents and thus reveal their high complex-
ities. While the behaviors and nonlinear dynamical character-
istics for different frequency detunings are generally different,
for simplicity, we show only the dynamical states and the cor-
responding mapping obtained with a single frequency detuning
Q) = 0, and emphasize the effects of the repetition frequency
and the injection strength of the injected pulses. In all aspects,
however, frequency detuning is, no doubt, a significant param-
eter affecting the laser dynamics as one would expect in a CW
optical injection case. Detailed investigation on the effect of
frequency detuning in a pulse-injected laser will be reported
separately.

While some applications utilize chaos states to take the ad-
vantages of their high complexities for security reasons [5], [6],
other applications, such as CLIDAR [2] and CRADAR [1],
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Time series, phase portraits, and power spectra of different pulsation states with (&, frep). (@) P1P (0.13, 3.0). (b) P2P (0.15, 2.8). (c) P4P (0.16, 2.7).

(d) CP (0.17, 2.3). The dashed curves in the time series are the corresponding waveforms of the injected pulses showing the timing of injection, which are scaled

for clarity.

solely demand large-amplitude random signals with continu-
ous broad bandwidths. As can be seen in Figs. 2(d) and 3(d),
chaotic signals with continuous broad bandwidths can be in-
duced through optical pulse injection. The bandwidths of these
chaos states, CO and CP, found in the dynamical mapping are
therefore examined. Fig. 5 plots the bandwidths of the chaos
states with different parameters of the injected pulses. Due to
the noise-like nature of the chaos states, the bandwidth of a
chaos state is defined as the frequency span such that 80% of
the energy is contained within. As can be seen, the bandwidths
of the chaos states increase as &, increases. Compared with the
CO states found at the weak injection regime, the bandwidths
of the CP states observed at the strong injection regime have
bandwidths that are two to four times broader. For &, = 0.3,
chaos states with bandwidths as high as 14 GHz can be obtained
for the laser with f, = 2.5 GHz.

B. Frequency Locking Phenomenon

Frequency locking can occur in nonlinear systems when a
driving frequency is an integer multiple or submultiple of an
intrinsic frequency. If the two competing frequencies are, how-
ever, incommensurate, quasi-periodic oscillations are present
instead. For semiconductor lasers, frequency locking has been
found in dc-modulated self-pulsing lasers [25] and external cav-
ity lasers [26], where the pulsation frequency and the resonant
frequency of the external cavity are locked to an RF modula-
tion frequency, respectively. By feeding back the laser output
optoelectronically through the bias current, harmonic frequency
locking phenomenon has also been observed [27].

While all these previous studies involve electronic modula-
tions through the bias current of the lasers, the phenomenon
of semiconductor lasers subject to optical pulse injection is
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explored the first time. Instead of locking a laser by sending
a modulation frequency through the bias current electronically,
frequency locking driven by injecting optical pulses is inves-
tigated. Without the limitation of electronic bandwidths, the
regions where the repetition frequency of the optical pulses is
below and above the relaxation oscillation frequency of the laser
are both examined.
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Fig. 6 shows the time series and power spectra of the output
of a semiconductor laser under repetitive optical pulse injec-
tion with the normalized peak injection strength &, fixed at
0.02, while the repetition frequency fc, is varied from 1 to
3 GHz. Here, f, is determined both from the highest peak
seen in the power spectrum and the oscillation time inter-
val shown in the time series. For f.., = 1 GHz, as shown in
Fig. 6(a), a frequency-locked oscillation with an oscillation fre-
quency f, = 3 GHz is observed. The winding number, defined
as p = f,/ frep, has a rational value p/q = 3/1 meaning that
the oscillation frequency (f,) of the laser output locks to the
third harmonic of the repetition frequency (3 f,e,) of the in-
jected pulses. The variables p and ¢ are, respectively, integer
numbers defining the order of harmonics of f, and fp, in terms
of the integer multiples of the lowest frequency peak seen in the
spectrum. By increasing f., to 1.5 and 1.65 GHz, frequency-
locked oscillations with p = 2/1 and 3/2, as shown in Fig. 6(b)
and (c), are found. Further increasing f, to 3 GHz drives the
laser into a P10 state with p = 1/1, as shown in Fig. 6(d), in
which the laser oscillates sinusoidally at fi.,. In this system,
the repetition frequency is interacting and competing with the
intrinsic relaxation oscillation frequency of the laser through the
injected pulses. While the repetition frequency is a hard fixed
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value determined by the external injected pulses, the oscillation
frequency of the laser is rather flexible. In a frequency-locked
condition, f, can be either pulled or pushed away from the
intrinsic relaxation oscillation frequency f, of the free-running
condition and maintains commensurate to f..,, with a Farey frac-
tion within a certain tuning range. Nonetheless, the laser shows
the tendency to oscillate in a frequency near f, (2.5 GHz in our
case). As a result, for different f..p,, frequency-locked states of
different winding numbers are observed where f, tends to lock
to the harmonics of f,., while staying close to f,. at the same
time.

Unlike the modulation frequency of a current-modulated
semiconductor laser, which is inevitably limited by the mod-
ulation bandwidth, the repetition frequency of the injected op-
tical pulses can exceed the relaxation oscillation frequency of
the laser without the constraint. Fig. 7 shows that the time series
and power spectra of the frequency-locked oscillations found for
frep vary from 3 to 7 GHz. For f.., = 3.5 GHz, a frequency-
locked state with p = 2/3 is observed. Frequency-locked states
of p =3/5,1/2, and 2/6 (1/3) are also shown in Fig. 7(b)-(d),
respectively, where f, is the subharmonic of f,,. As can be
seen in Fig. 7(c), a P10 is observed where f, is exactly one-
half of f., for the injected pulses. For f.,, as high as 7 GHz,
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Fig. 8.  (a) Order of harmonics of fr¢, (opened circle) and f, (closed circle)

and (b) winding numbers of the frequency-locked oscillation states found for
different repetition frequencies, where the widths of the intervals represent the
ranges of locking. The upper right corner of (b) shows the Farey tree constructed
by the Farey fractions of the corresponding frequency-locked states observed.

frequency-locked state can still be found where the oscillation
frequency is locked to the repetition frequency with p = 2/6
(=1/3). Different from a pure p = 1/3 state, the p = 2/6 state
shown in Fig. 7(d) has a subharmonic at 1 GHz, which doubles
the period of the oscillation cycle. Note that as the repetition
frequency of the injection pulses becomes higher, the behavior
of the injected laser gradually becomes similar to a laser injected
by high-frequency sinusoidal excitation. However, unlike small-
signal modulations, the laser is, in fact, under a high-frequency
modulation with a very large modulation depth, where the injec-
tion strength goes to almost zero between each successive pulse.
To the best of our knowledge, this is the first study on frequency
locking of semiconductor lasers with an external frequency ex-
ceeding the relaxation oscillation frequency. For these states,
the laser output still oscillates around the relaxation oscillation
frequency as that in the low-repetition-frequency cases shown
in Fig. 6.

To investigate the relation between each of these frequency-
locked states, Fig. 8(a) plots the order of harmonics of frcp
(opened circle) and f, (closed circle) for the frequency-locked
states observed. In the low-repetition-frequency regime, the or-
der of f, exceeds the order of f..,. As can be seen, when f,
exceeds about 3 GHz, the order of f;., exceeds the order of f,.
Orders as high as 8 for f.., and 5 for f, are obtained in our
study. For frequency-locked states with even higher orders, the
ranges of locking become very narrow. While the orders of f.qp,
and f, do not show a clear trend, their ratio (winding number
p) reveals the relation between each of the neighboring states.

Fig. 8(b) plots the winding number of the frequency-locked
states found for different repetition frequencies, where the
widths of the intervals represent the ranges of locking. As
can be seen, the locking states show a Devil’s staircase struc-
ture [28], [29], i.e., p decreases monotonically as f;, increases.
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A Farey tree containing the observed Farey fractions [26] is
also plotted in the upper right corner showing the relation be-
tween each state. For f,., below the relaxation oscillation fre-
quency of the laser, p = n + p/q withn = 1,2, and 3 are found.
For f..p above the relaxation oscillation frequency, frequency-
locked states with pure Farey fractions (n = 0) are obtained.

Note that while frequency-locked states with various orders
are widely found in the weak injection condition considered
(& = 0.02), finding frequency-locked states with higher order
becomes difficult when the injection is stronger. Fig. 9 shows
the regions occupied by the frequency-locked states of different
p with different £, and f.., for stronger injection (up to &, =
0.30). As can be seen, with stronger injection, the laser tends to
lock directly with the injected pulses so that the locking states
of p=1/1(f, = frep) dominate. High-order frequency-locked
states are hardly seen when &, > 0.1.

IV. CONCLUSION

We have numerically studied the nonlinear dynamics of a
semiconductor laser under repetitive optical pulse injection.
With the injection of a train of repetitive optical pulses, a semi-
conductor laser exhibits complex dynamics and it follows a
period-doubling route to chaos. Both CO states and CP states
are found, among which the CP states have broader bandwidths.
Bandwidths as high as 14 GHz have been obtained for the CP
states with §, = 0.30. By varying the repetition frequency of the
injected pulses, frequency-locked states with different winding
numbers have also been investigated. The winding numbers re-
veal a Devil’s staircase structure, and the Farey tree constructed
by the Farey fractions shows the relation between each neighbor-
ing frequency-locked state. For a wide range of repetition fre-
quency spanning from 1 to 7 GHz, the oscillation frequencies of
the frequency-locked states are found to remain bounded close
to the relaxation oscillation frequency of the laser. In the strong
injection region, the laser tends to synchronize with the injected
pulses and the frequency-locked states of p = 1/1 dominate.

For the states found in this pulse-injected laser, the chaos states
can be used in applications demanding broad bandwidths such
as ultra-wideband communications and precise range finding,
while the periodic oscillation states and the frequency locking
states can be used in applications such as clock generation and
recovery, wavelength conversion, and frequency stabilization.
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