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Abstract

The state-of-art interactive image .segmentation algorithms often have difficulty in
correctly extracting the foreground objects from cluttered background with limited user’s
guidance. For automatic foreground object detection, constrained background models are
critical. In this thesis, we propose a low-cost automatic. foreground/background separation
system that can be applied to outdoor: scenes. Based on a Gaussian mixture model, together
with the inclusion of non-linear tone mapping and multi-view image constraint to further
eliminate shadow effect, we formulate an optimization problem to deal with the foreground
extraction problem by using more robust image features in the image matting technique.

The proposed method exhibits many desired properties of an effective foreground
segmentation algorithm, including automatically extraction of foreground regions, the ability
to produce smooth and accurate boundary contour, and the ability to handle severe color
variations in an outdoor environment with relaxed background constraints. The whole system
can achieve fully automatic foreground object extraction with satisfactory accuracy for a multi-

camera system.
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Chapter 1 Introduction

Virtual studio, which can combine real actors or objects with synthesized scenes, is a
powerful tool for the production of TV programs or movies. To generate seamless combination,
accurate foreground extraction is the key. In many computer algorithms such as video editing,
photo stitching, digital panoramas, space carving for 3D modeling, target tracking, and so on,
extracting foreground region from background is the first requirement in single-view or
multiple-view systems. A classical approach for foreground extraction is to build up a
constrained background model which usually assumes the background is stationary without
illumination changes. The foreground objects are then extracted by excluding the background
regions. Chroma-keying approaches belong to this category and assume a uniform background,
which is usually blue or green. Unfortunately, this kind of background modeling methods is
usually limited to indoor environments. For an outdoor environment, how to maintain a
consistent background model is much more complicated.

Video segmentation is another method to extract foreground regions [1]. This kind of
methods detect moving object based on temporal difference of two consecutive frames,
followed by a boundary fine-tuning process based on spatial information or temporal
information. Several drawbacks exist in the change-detection-based approach. The detection
results may have broken shape if the speed of the object moves fast in the video sequence. The
poor quality of the segmentation process may not provide enough information for the following
process, like object segmentation, tracking and recognition.

In order to achieve accurate foreground extraction, various supervised approaches have
been proposed in the literature, such as Graph Cut-based methods [2], Random Walk method
[3], Geodesic methods [4] [5] and Image matting method [6]. In these supervised approaches,
foreground regions are identified by incorporating some additional guidance offered by the user.

That is, the user has to define parts of the interested regions first. After that, these algorithms



formulate the foreground/background separation process as an optimization problem based on
the guidance, together with some extra constraints over the image. Two popular image
constraints are the smoothness constraint and the color consistency constraint. However, these
supervised approaches may not always achieve satisfactory results in an outdoor environment,
where the variations of color and lightness are far more complicated than that in an indoor
environment.

In this thesis, we present an automatic foreground/background separation algorithm for a
multiple-camera system. In order to deal with outdoor scenes, the proposed method adopts a
non-linear tone mapping process to reduce the impact of illumination variations. Besides, we
include the multi-view perspective to reduce the impact of background variations by combining
foreground information from multiple images.and use homography constraint to remove the
shadow effect by assuming the shadow is shone on the ground. To further obtain smoother
foreground boundaries, we adopt an-active contour model to refine the foreground regions.
Finally, we present a modified image matting method to derive finely carved foreground regions
by including more robust image features.into the computations of the matting affinity. The
proposed framework can not only automatically identify the foreground objects for a multi-
camera system but also accurately and effectively perform foreground/background separation
in an outdoor scene with relaxed background constraints.

Important features of the approach are as follows: 1) robust to outdoor background and the
final foreground region is smooth with precise boundary, 2) the proposed method is fully
automatic and does not need the color consistency for foreground and background. In the latter
case, cameras do not need to be color-calibrated since color consistency is not enforced among
different viewpoints. This fact makes the proposed approach suitable for outdoor scenes.

The outline of this thesis is organized as follows. In Chapter 2, we review related works.
In Chapter 3, the proposed framework is presented. Finally, in Chapters 4 and 5, experimental

results and conclusions are given.



Chapter 2 Related Works

Many foreground extraction techniques have been proposed in the past few years. In this
chapter, we will introduce some related work about foreground extraction. We will classify
these works to single-view based and multi-view based foreground extraction techniques,
depending on the number of camera views. In Section 2.1 and Section 2.2, some relevant works

about single-view and multi-view foreground extraction will be introduced, respectively.

2.1 Single-View Foreground Extraction

In single-view based foreground extraction, there are two main classifications: background
modeling and interactive image segmentation. For background modeling, foreground regions
are extracted by assuming that the background model is known beforehand and by extracting
foreground region which are different from the background model. In contrast, interactive
image segmentation algorithm, which can separate the desired foreground from the background
region by incorporating user’s involvement which defines some of the interested areas
beforehand. Based on color similarity, the algorithm label the remaining pixels in the image to

be either foreground or background. We will describe the details in the following sections.

2.1.1 Background Modeling

Background modeling is a way to separate foreground objects from the static background.
In [7], Piccardi et al. have reviewed several popular approaches for background subtraction.
These methods typically operate at the pixel level. A straightforward method is to directly
subtract the static background image via median filtering or to take into account photometric
information such as gray level, color space, texture, or image gradient. Chroma-keying
approaches belong to this category which assume a uniform background that is usually green

or blue, as shown in Figure 2-1.



Figure 2-1 Classical Chroma-keying Environment.

For non-uniform backgrounds, statistical models are usually used to describe the
background model in order to deal with more complicated backgrounds. Statistical models are
precomputed for pixels and the foreground pixels are then identified by comparing the current
values to the model values. Several statistical. models have been proposed for that purpose; for
example, a non-parametric model [8] is proposed to identify cluttered or not completely static
backgrounds. Normal distribution are used in conjunction with Mahalanobis distance or a
mixture of Gaussian models is considered [21]. Other method use neural network based
estimation [9]. These background subtraction methods have been widely used in the area of
real-time surveillance system, although they require a learning step to obtain the knowledge of

background color distribution.

2.1.2 Interactive Image Segmentation

Interactive image segmentation algorithms, which incorporates a small amount of user
interaction to define the desired to-be-extracted contents, has received much attention in recent
years. Many interactive image segmentation algorithms have been proposed in the literature. In
general, interactive image segmentations can be classified into two categories: region-based
approaches and boundary-based approaches. For example, some region-based approaches, like
the Graph Cut-based methods [2], Random Walk method [3], Geodesic methods [4] [5] and the

image matting method in [6], use iterative optimization to identify the foreground objects based



on user’s guidance. All these methods basically treat an image as a weighted graph with nodes
corresponding to pixels in the image and edges being placed between neighboring pixels. They
minimize a certain energy function on this graph to produce a segmentation result.

In interactive image segmentation, the user is often asked to draw two types of strokes to
label some pixels as either foreground or background. After that the algorithm label all the
remaining pixels. In Figure 2-2 (a), we show the manually selected scribbles for the image. In
image matting, the algorithm compute every pixels with their affinity, or called similarity, as
vertices to build up the whole graphical model. Based on the affinity, image decomposition is
performed to get the final result that separates foreground from background as shown in Figure

2-2 (b).

(a)
Figure 2-2 Image Matting (a) Manually selected scribbles. (b) Matting Result based on (a)

In image matting model, the affinity are computed by Matting Laplacian, which is usually
computed only in the RGB color space. These approach are typically unsuitable for practical
systems, such as surveillance cameras and outdoors scenes, because of severe color variations,

such as sunlight change. An example shown in Figure 2-3, where the arm shone by sun is



brighter than the other parts of the arm. For this case, the matting result is pretty bad if with

only a small amount of user input.

(@) (b)

(d)
Figure 2-3 Severe color variation in outdoor scene. (a) Originaliimage. (b) Manually selected scribbles.

(c) Matting result based on (b). (d) Zoom in.of (c).

Another drawback of the original image matting method is the possible color similarity
between foreground and background. The matting result will mix with background without
smooth foreground boundary. An example is shown in Figure 2-4. If we only draw a small
amount of user inputs to define foreground and background, the classification of the remaining

pixels will be less accurate.



(b)

(©) (d)
Figure 2-4 Color similarity between foreground and background. (a) Original image. (b) Manually selected
scribbles. (c) Matting result based on (b).«(d).Zoom'in of (c).

Considering boundary-based approaches,-the classical contour model in [10], [11] is
originally proposed to segment the desired object by local contour adjustment to improve the
smoothness of object boundary. Considering that the boundary-based approaches require great
efforts to specify the boundary area or the boundary points, especially for complex shapes, most
recent interactive image segmentation algorithms take regional information as the input. The
active contour without edge model [12] adds in regional information and removes the
dependency on edge detection. However, this method often gets dissatisfactory result due to
non-convex modeling and may have local minima. Recently, the convex active contour

proposed in [13] is able to find global optimize solution which can be generally formulized as:

min (f gbIVuIdx+/1J hrudx>, (2-1)
Q Q

O<us<il

where



1) u(®) is a function on the image domain Q, whose value is constrained to the interval
[0,1]. Once the optimal solution of Equation (2-1) is formed, the segmented region is
found by thresholding the function u(-) to get

Q = {x|u(x) > T} (2-2)

2) Function go(*) is a non-negative boundary function. One common choice for the edge

detection function is

1 (2-3)

gp(x) =m,

where 1(x) is the intensity of the image pixel x.
3) Function h(*) is a region function that measures the inside and outside of the
segmented region, as defined in [12].

By varying the tradeoff factor A, we can balanced two terms called boundary term and
region term in Equation (2-1). The boundary term ensures segmentation with boundaries along
areas with smooth gradients. The second term favors the segmentation result that conforms with
the object coherence criteria defined in function hy.

Several approaches have been proposed to-solve Equation (2-1) for a given he(+) . Recently,
Goldstein et al. [14] proposed to use the Split Bregman method to solve Equation 2-1. The Split
Bregman method is a general solution for L1-regularized problem with convexity and is a much

faster minimization method.

2.2 Multi-View Foreground Extraction

In a virtual studio, there are often several cameras to take images or videos. The
aforementioned background subtraction methods and foreground object segmentation methods
only address the foreground/background separation problem in a single image. However,
foreground regions over different viewpoints should exhibit the same 3D zone region with

spatial coherence. In other words, foreground regions over different viewpoints should exhibit



spatial coherence in the form of a common 3D space zone. In this section, we will introduce
some approaches to extract foreground region in the multi-view perspect.

Early attempts has been made in [15], where depth information obtained from stereo
images is combined with photometric information to segment foreground regions from
background regions. Kolmogorov et al. in [15] proposed a real-time segmentation method that
preserves the foreground object boundaries, under background changes, by combining stereo
and color information. Incorporating depth information improves segmentation results over
single camera view. As shown in Figure 2-5. Nevertheless, such methods are designed for short-

baseline stereo systems and cannot easily be extended to multi-camera systems.

(c) (d) (e) (f)
Figure 2-5 Segmentation by stereo-pairs. (a) input left view (b) input right view (c) data(left image) (d)

Segmentation based on stereo (e) segmentation based on color (f) The method fuses color, contrast and stereo

to achieve a more accurate segmentation.

For multiple camera systems, there is some manner which exploits spatial coherence, or
called silhouette coherence, through a spatial region instead of locally through pixel depths.
Again, consistent foreground image regions give rise to a single 3D space region. Conversely,

this region should project entirely on foreground regions in image domain; otherwise, it would



mean that there are space regions that correspond to foreground with respect to some viewpoints
but correspond to background with respect to others. A few approaches exploit such a fact in
various scenarios. Zeng and Quan [16] proposed intersection consistency and projection
consistency by iteratively performing space carving with respect to the color consistency in
each image. The result of [16] are shown in figure 2-6. This approach increases spatial
consistency from one to another viewpoint; however, it only approximates spatial coherence,

which should be enforced over all viewpoints simultaneously.

"Boyl n 3 "Boyzil

Figure 2-6 Results of Silhouette Extraction Algorithm: (a) Input images, (b) Segmentations, (c) Output

silhouettes.

In another work, Sormann et al. [17] proposed graph cut based method to separate
foreground from background. Spatial coherence is enforeced over different viewpoints by
minimizing the difference between silhouette regions in two images at successive iterations.

This approach uses color information, combined with shape prior got from multiple views, to

10



segment silhouettes with coherent shape. While improving over monocular approaches, this
scheme relies on a strong assumption about the silhouette similarities between two neighboring
views. This assumption is hardly satisfied even with small camera motion.

Wonwoo et al. [18] also use graph cut based method to extract foreground based on two
assumption: 1) region of interest appears entirely in all images and 2) background colors are
consistent in each image. That is, background colors are different from foreground colors but
they are homogeneous over background pixels. They iteratively segment each image so that
the background color satisfies color consistency constraints and all foreground regions
correspond to the same space zone. To initiate this iterative process, Wonwoo exploits the first
assumption to identify regions in the images that have to belong to background. Such
background regions are the image regions that are outside the projection of the observation
volume seen by all considered viewpoints. These initial regions are then grown iteratively by
estimating each pixel’s occupancy based on its color-and spatial consistency. This iterative
operation can update foreground.-and background model parameters with latent variables.
Denoting the remaining pixel belongto fereground.or background, the image are segmented in
a subsequent step using the new model parameters. The flow chart of their system is shown in
Figure 2-7. Even through this approach outperforms these single-view approaches, this scheme

relies on a strong assumption that is not suitable for wide-baseline systems.
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Figure 2-7 Flow chart of Wonwoo et al. in [18]. Iteratively update background and foreground

model parameters and segmented each image in a subsequent step.
Our primary motivation is to propose a method that automatically identifies foreground
regions in several images without-user’s interaction.. The foreground region can be extracted

accurately even in an outdoor environment.
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Chapter 3 Proposed Algorithm

The goal of our work is to accurately extract foreground regions with smooth boundary.
After we extract the foreground regions, we can combine computer-generated environment or
interested background with the foreground regions in a seamless manner. Our foreground
detection method requires only to distinct foreground from background which is obtained using
the standard Mixture of Gaussian background modeling technique. Combining foreground
regions with multi-view spatial constraints would allow us to automatically and simultaneously
segment foreground and background regions in a multiple camera system. We further overcome
the drawbacks of the background modeling method in outdoor scenes when illumination
changes a lot. We use a nonlinear tone mapping, termed Matching by Tone Mapping [19], to
evaluate the distance between suspected foreground-and.background pixels.

We propose to apply continuous-domain convex-active contour with the distance between
suspected foreground and background pixels to generate the initial foreground. The convex
active contour is then applied in the:second step to optimize the contour. After that, we exploit
the image matting model to obtain the final foreground segmentation. Unlike the traditional
way that calculates the matting laplacain in RGB color space, we extend the element of the
matting laplacian to a higher dimension to get more accurate foreground. In Figure 3-1, we

show the flow chat of our system. In this chapter, the details of our method will be introduced.

Shadow
Detection

Background Multi-view 4
Model Constraint Boundary

- Term
Background

Image
Matting

Active Contour Model

Figure 3-1 Flowchart of our algorithm
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3.1 Background Modeling

Background modeling and foreground detection is a way to detect foreground objects in
Images acquired by static cameras. The importance of such methods has given rise the birth of
approaches. According to [20], one of the most effective and popular method is the one
proposed by Stauffer and Grimson [21] which models the appearance of each image pixel as a
mixture of Gaussians. These gaussian functions are combined to provide a multimodal density
function. They can be employed to model the color of an object in order to perform tasks such
as real-time color-based tracking and segmentation. These tasks may be made more robust by
generating a mixture model corresponding to background colors in addition to the foreground
model, and by employing Bayes' theorem to perform pixel classification. Mixture models are a
semi-parametric alternative to non-parametric histograms and can provide greater flexibility
and precision in modelling the underlying statistics of the sample data. They are able to smooth
over gaps resulting from sparse sample data and provide tighter constraints in assigning object
membership to color-space regions. Such precision is necessary to obtain the best results
possible from color-based pixel classification for qualitative segmentation requirements. Given
a sequence of images, the background model is estimated from a training time. Each pixel is

modeled asa K component Gaussian Mixture Model (GMM) given by

1 —
Py X1k, ;) = —a— e 270 2 Xm0 ang (3-1)
(2m)2|x|2
Py(X10) = YX=Xp(k) Py (X |k, 6),), (3-2)

where the mixing parameter p(k) corresponds to the prior probability that the pixel X is
generated by component k, and the sum of p(k) equals to one. Each mixture component is
a Gaussian with the mean u and the covariance matrix X. Once a model is generated,
conditional probabilities can be computed.

In our method, we also adopt this approach as the basis of our foreground detection module.

14



After the foreground detection step, an initial mask is generated. However, the existence of
camera noise and irregular background object motion and the illumination variations in outdoor
scene may degrade the performance of foreground detection. In figure 3-2, we show an example
of initial foreground mask got from GMM background modeling by directly subtracting the
background image. Here, the background image is got form median filter, which assumes the
background is static. By filtering a sequence of images via median filter, we can filter out
moving objects and remain the static background image. We can see in Figure 3-2 (b) that the
result is full of background noise because of the cloudy weather. In contrast, the GMM
background modeling can handle this situation in a more robust way but may still have some

noise due to severe background variations. We will eliminate the noise in the next section.

e @l

Figure 3-2 Comparison the foreground detection. (a) Original image (b) Foreground detection from directly

subtraction (c) Foreground detection from GMM background modeling

3.2 Spatial Consistency for multi-view

Asimple way to remove the noise regions after background modeling is to use morphology

operations. The “close” operation or the connected component analysis is effective for
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eliminating the background noise. However, the size of the structure element is important. To
remove large noise region, a larger structure element should be used. However, the use of a
large structuring element may cause the loss of the foreground information and degrade the
precision of object boundary. Figure 3-3 shows the foreground degradation example by using a
morphological process. As shown in Figure 3-3(b), though the noise is totally eliminated by the
morphology filter, the foreground regions in the armpit and the belly is also filtered out due to

the narrow connections between the foreground regions.

(d)

Figure 3-3 Traditional way to eliminate background noise by using morphology operator. (a) GMM background

modeling of Figure 2-3(a). (b) Denoise by morphology operator result of (a). (c)Zoom in of (a). (d)Zoom in of
(b).

In this section, we propose a method which combines multi-view constraints to eliminate
the background noise while remaining the foreground regions mostly. By assuming the shadow
areas locate on the ground, we can use the homography geometry constraint to remove shadows

and to extract more accurate foreground regions. The homography geometry constraint will be
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discuss in section 3-5.

In fact, foreground regions should have the property that there exists a 3D region that
projects onto several camera views. This is known as spatial coherence or called silhouette
consistency constraint [22]. A set of silhouettes defines a visual hull [23], which is the
interaction of the backprojection of silhouettes into the 3D space. Placing a cube in 3D region
and checking what is outside the object silhouette, anything outside is carved away. The
silhouette calibration ratio define in [22] is a purely geometric measure that tells whether a pixel
belongs to a foreground region according to the other foreground regions from different
viewpoints. Similar to this concept, we adopt a silhouette consistency constraint to remove these
noisy regions. In this constraint, we assume the foreground object shall appear in all image
views. We build up the fundamental matrix between the reference image and other images.
Fundamental matrix is a 3 X 3 matrix, which relates corresponding points in a pair of image
views. In epipolar geometry, with-Xrand Xg, representing corresponding points in an image
pair, F-X. describes a line (an epipolar line) on which the corresponding point Xr on the other
image must lie. That means, all pairs of corresponding points hold x'Fx = 0. An epipolar

geometry is shown in Figure 3-4 (a).
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Figure 3-4 Epipolar Geometry (a) Image pair with fundamental-matrix related to a point mapping to other

image is a line (b) input image (view 1) (c) input image (view 2)

As shown in Figure 3-4 (b)(c), we can see the points along the line corresponding to the
same line to the other image. Using this epipolar constraint, even we have elliminated some
points on the line, there still are other points which can map to the same line in the other image.
Hence, after camera calibration, we first eliminate most noise on different camera views by
projecting all candidate foreground regions into the same reference camera view and only keep
the intersection region. Figure 3-5 illustrates this concept. We can effectively remove most
background noise and the foreground region is remained completely. Figure 3-6 shows another
case of multi-view constraint to eliminate the background. The difference between Figure 3-5
and Figure 3-6 is that the camera positions in Figure 3-5 are greatly rotated and placed far away

between each other
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Extrinsic parameters (world-centered)

Camera 4(Refer:e,r§1cé~' ew) . Camera 3
@3 :

(a)
(b) (c) (d)
(e) (f) (9)
(h) (1) ()
(k) (1) (m)
(n) (o)
Figure 3-5 Multi-view constraint for denoising (Take view 4 for reference view). (a) Camera postion. (b) View
1 (c) View 2 (d) View 3 (e) View 4 (f) View 5 (g) View 6 (h) GMM modeling of (b). (i) GMM modeling of (c).
(1) GMM modeling of (d). (k) Denoise of (h). (I) Denoaise of (i). (m) Denoise of (j). (n) Viewing-ray interaction.
(0) Output of multi-view constraint.
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Extrinsic parameters (world-centered
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Figure 3-6 Multi-view constraint for denoising (Take view 3 for reference view). (a) Camera postion. (b) View
1 (c) View 2 (d) View 3 (e) View 4 (f) View 5 (g) View 6 (h) GMM modeling of (b). (i) GMM modeling of (e).
(1) GMM modeling of (f). (k) Denoise of (h). (I) Denoise of (i). (m) Denoise of (j). (n) Viewing-ray interaction.

(o) Output of multi-view constraint.
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Using epipolar geometry, we are no longer restricted to short base-line multiple-camera
systems, but can handle wide base-line multiple-camera system. As shown in Figure 3-5 and
Figure 3-6, the more far away the cameras are placed, the better the denoising result is.
However, there may still remain some noise because of the dramatic color variation in the
outdoor scene. Such noise can be suppressed by adding more image views. Considering the
number of viewpoints are generally fixed in practice, we will propose more processes to

eliminate this noise in the next section.

3.3 Convex Active Contour Model

The scheme described in the previous section discriminates background from foreground
regions in a multi-view system. However, it still remains some noisy regions which are caused
by sudden sunlight change, cloudy weather or irregular background variation. In this section,
we use the convex active contour model described in Equation 2-1 to generate the initial
foreground segmentation. This model can find the global minimum solution and can be used
for automatic image segmentation. As expressed in Equation 2-1, the active contour model
consist of two terms: a regional term and a boundary term. Next we will discuss how to design

these two terms to get the initial foreground segmentation.

3.3.1 Region Term Formulation

After GMM background modeling, some background noise remains. We assume that no
matter in a sunny day or a cloudy day the structural content (namely, textures and edges) in
those noisy regions does not change, but only their illumination changes.

To overcome background noise, we assume there is a nonlinear tone mapping between the
suspected pixels and background pixels; namely, the spatial neighboring of a suspected pixel in
the current frame is a result of a nonlinear tone mapping of the corresponding spatial location

in the background image. Unlike linear tone mapping, which can deal with the Normalized
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Cross Correlation (NCC) metric, the nonlinear mapping does not restrict the transformation
within the background noise of the image. This nonlinear mapping can thus model any tone
mapping (including non-monotonic mappings). Hence, we use Matching by tone Mapping
(MTM) distance metric to measure the difference between suspected patch and background

patch, which is proposed by Hel Or et al. [19] as shown in Figure 3-7

(@) (b)

Figure 3-7 MTM distance measure between input. image ‘and. background image patch by patch. (a)

background image (b) input image

MTM distance measure can-distinguish between the-suspected pixels and background
pixels. This distance metric can be used.to distinguish foreground objects from background
noise which only have non-linear illumination change. The MTM metric compensates for the
nonlinear mapping which exists in the suspected pixels and results in a small distance value. If
foreground pixels greatly differ from the background pixels, the MTM measure produces a large
distance value. The MTM measure is robust for different scenes. The MTM measure can also
handle low-quality images and complex lighting conditions. The MTM measure defined as

follows:

M) = wl|”
m - var(w)

(3-3)

D(p,w) mlvi[n{ 1

where peR™ and weR™ are the two patches to be compared. The function M:R - R is a
tone mapping function. MTM distance measure is tone-scale invariant because the denominator
is a normalization factor. That is, D(p,w)=D(p,aw) for any a. This can avoid trivial solution if

w is a flat patch. However, searching over all possible tone mappings is infeasible.
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In a recent study [19], Hel Or et al. [19] proposed an efficient method to compute MTM

using piecewise-constant mapping approximation. which has the closed form follows:

1 2 1 X 2
D(p;W)=m |Iwl| —ZW(P]'W) ) (3-4)

where the range of p is divided into k bins and k binary “slices” of p are produced. Denoting
the j™" slice by p', each of which representing the pixels belonging to this respective bin. The
details are described in [19]. Based on its definition, MTM can distinct two patches by
producing a “distance map”, where small values relate to noisy regions whereas high values
indicate a different content, namely, foreground pixels regardless of brightness and contrast

changes.

The original MTM distance measures the input image and background patch by patch.
Since the patch in input image may contain both foreground regions and background regions,
the distance measurement may not be able to separate them. The proposed method use MTM
measurement to measure the distance value only in the -multi-view constrained GMM mask
instead of searching the entire images. Note that we use a small structuring element to remove
small regions before MTM distance measurement. Figure 3-8 shows the result with MTM
distance measurement. As shown in Figure 3-8 (f), the shadow area and the noisy region is
highly related to the background image through a non-linear tone mapping. Hence, the MTM
distance measure is small. By using MTM distance measure, we can separate foreground
regions from background rergions, including the shadow area. In order to make sure the region
is consistent in foreground region, we typically use a large window size in MTM distance
measurement. Though the noisy region may be indistinct because the window around
foreground may also contain foreground region as shown in Figure 3-8 (e), we can use the
boundary term in the active contour model to optimize the foreground contour. This can

eliminate the noise around foreground region. Moreover, the background reference image is
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obtained by applying the median filter over a sequence of background images, in which the

background is static. Figure 3-9 shows more examples of MTM distance measurement.

@ (b)

(e) ®)

Figure 3-8 The MTM distance measure map. (a) Original image (b) Search entire image with window size
300 (c) Search entire image with window size 200 (d) GMM mask through multi-view constraint and simple
morphology operator () MTM measure of (d) with window size 300. (f) MTM measure of (d) with window
size 200.

We incorporate this regional information derived from MTM into the region term of the

convex active contour model as

h(x) =1-D(p,w), (3-5)
where x denotes an image pixel and p and w denote the image patches around x on the

background reference image and the current image. This definition of hy ensures that the active
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contour evolves toward the one complying with the MTM measure. For instance, for a pixel, if
D(p,w) is low and h; becomes larger, u(x) tends to increase during the energy minimization in

(1) in order to get contour evolution. This leads to a u(x) value beneath the threshold T and the

pixel is classified as background.

(@) (b)

(c) (d)

Figure 3-9 The MTM distance map. (a) MTM measure of Figure 3-5(0). (b) MTM measure of Figure 3-6(0).
(c) Input image. (d) GMM mask through multi-view constraint. (¢€) MTM measure of (d) with window size
300. (f) MTM measure of (d) with window size 300.

3.3.2 Boundary Term Formulation

Second, we discuss the boundary term in the convex active contour model. As shown in
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Equation (2-1), the boundary term fQ gp|Vul|dx isessentially a weighted variation of function

u, where the gy, plays an important role. The definition of g}, in Equation (2-3) encourages
the segmentation along the curves where the value of edge detection function is small so the
variation of the function u is minimal. However, there may exist lots of noisy edge since the
background is a non-uniform outdoor scene. Hence, in this thesis, we propose a simple method
to reduce noisy edge shown in outdoor background. The input images and background image
are filtered by a gradient filter. After that, we take the difference between them. That is, we
define the gy value at pixel x as:
go(x) = [VF ()| = [Vr(x)], (3-6)

where V denotes the gradient operation and f(x) and r(x) represent the pixel value at the input
image and the background reference image, respectively. Figure 3-10 compares the result with
and without incorporating the edge detection of the background image. It can be seen from
Figure 3-10 that the inclusion of |Vi(x)| enhances the conventional edge detection result and
leads to a more accurate boundary contour to reduce the effect of noisy edge. Note the edge
detection function returns a value between 0 to-1; a small value of g, corresponds to a possible
edge.

Based on the MTM distance map in the region term and the refinement gn(x) image in
Figure 3-10, we obtain the u(x) image by solving Equations (3-1) based on the convex active

contour method.
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Figure 3-10 Comparison of the results with and without' | Vr(x)| in edge detection function.
(a)Result using | V(x)|. (b) Result using | ¥ (x)]. (c) Resultusing Equation (3-6).

The initial foreground segmentation results are shown in Figure 3-11, which can be seen that
the foreground object has been automatically identified with reasonable precision, even with a

challenging outdoor environment.

Figure 3-11 Result of active contour output. (a) Active contour output of Figure 3-5 (0). (a) Active contour

output of Figure 3-6 (0).

Combining the convex active model leads to more accurate boundary contours.

27



Segmentation result will be further fine-tuned based on the image matting method.

3.4 Image Matting Model

The last stage of our proposed method is to apply an image matting model to get the final
segmentation result. In the literature, supervised image matting is based on the similarity of
colors between the unknown pixels and some samples of foreground pixels and background
pixels. In the image matting model, the color of a pixel can be expressed as a linear combination
of the corresponding foreground and background colors; that is,

Ii = aiFl- + (1 - ai)Bi' (3'7)

Red

Green

Figure 3-12 Image matting'model

Equation (3-7) can be pictured as illustrated-in Figure 3-12, where we need to compute the
alpha matte based on the matting model. As expected, the more alpha value is, the more likely
the pixel belongs to the foreground object. For supervised image matting in [6], Levin et al.
assume the alpha matte may be represented locally as a linear combination of the image color
channels. They introduce the use of matting Laplacian (ML) to compute the alpha matte without
explicitly estimating the foreground and background colors in Equation (3-7). ML can be

expressed as

1 € -1
8y =~ (14 Ui =) (Bt = h) (=), (39)
~ Wl | W]

k| (@ j)ewy

where 1; and ljare the color values of the input image, u, isa 3 x 1 mean color vectors in

the window wy,, X, isa 3 X 3 covariance matrix, and I; isthe 3 x 3 identify matrix. One
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drawback of ML is that it may have incorrect propagation across foreground regions because
of the use of low quality outdoor surveillance cameras and the severe color variations in outdoor

SCENeSs.

The first thing in supervised image matting is to label two types of strokes as foreground
pixels and background pixels. However, even though this ML approach can achieve quite
impressive performance for foreground object extraction, it has difficulty in handling outdoor
scenes under dramatic brightness variations or color variations. In Figure 2-3(b) and Figure 2-
4(b), we show the manually selected scribbles for the image in Figure 2-3(a) and 2-4(a). Based
on the scribbles, the corresponding matting result generated by the ML method is shown in

Figure 2-3(c) and Figure 2-4(c).

Instead of using manually selected scribbles, our.system can automatically generate the
required trip-map for the ML method. This tri-map is obtained by the initial foreground
segmentation got from the active contour model. As expressed in Equation (2-2), the tri-map is
obtained by taking a threshold over the u(x) image. Above the threshold T1, we define the region
as a foreground region; otherwise, it should be a background region if the value of u(x) is
beneath the threshold T». After that, a morphological erosion operation is applied over both the

foreground regions and the background regions to obtain the unknown regions, as shown in

Figure 3-13.

Figure 3-13 Automatically generated tri-map based on active contour model.
More specifically, for each pixel in unknown regions, the matting algorithm is the process

of extracting a foreground object from an image. Based on this tri-map and the color similarity

29



between the unknown pixel and the samples foreground and background samples, the alpha
value of the unknown pixel is estimated. We can obtain a much better matting result as shown
in Figure 3-14(a).

To further improve the matting result, we add in more information in the computation of
the affinity values. In the original ML method, they only consider the RGB color values in the
computation of the affinity value to reduce foreground region propagation across background
and to produce a smooth and accurate boundary contour. Instead of the original ML which only
considers the RGB color space to separate foreground regions from background regions, here,
we include extra image features: the absolute value of the difference image between the input
image and the background reference image. The extra features can help in generating more
accurate boundaries between the foreground,objects and the background. In Figure 3-14, we

further show the comparison between the supervise e matting method and the proposed

automatic method in the embedd g
seen that, except the shadow part, th pm‘ﬁ

result. The removal of shadows will b

(b)
Figure 3-14 Modified ML comparison. (a) Original matting result. (b) Modified ML result.
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3.5 Shadow Removal

The proposed method can extract foreground objects with reasonable precision, but the
shadow is also extracted. In some applications, the synthesized image may look absurb and
unnatural because of the shadow, as shown in Figure 3-15. We will discuss and remove the

shadow in this section.

Figure 3-15 Shadow effect in synthesized image caused contrived result.

Shadow in many applications, such as-object tracking, video surveillance, may appear as
foreground objects. The inability to distinguish between foreground objects and shadows can
cause some problems, such as weird synthesized image in virtual studio and failure of
identification. Hence, shadow detection and removal is an important task.

To remove shadows, we assume the shadow areas are on the ground. Consider a scene
containing a reference plane being viewed by a set of wide-baseline stationary cameras. The
background models in each view are available. Any scene point lying inside the foreground
zone in the scene will be projected to a foreground pixel in every view. Instead of using the
fundamental matrix, we reduce the dimension in the fundamental matrix. We only concentrate
our attention on the ground plane, which is called homography constraint, as shown in Figure

3-16. After reducing the dimension in fundamental matrix, we can map a point in one view to
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a point in another view. The homography matrix warps a pixel from image to another on a

reference scene plane 7 .
X Ri1 Riz Ruid[X
Y[=|R21 Rzz Ras||Y
1 R31 Rz R3all1
Homography matrix

Figure 3-16 Homography constraint show that a pixel in one view are warping to another view by a reference

plane (ground).

Let ®i1,d2, ..., Dnbe the images.of the scene obtained from n calibrated cameras. H;_,
is homography of the reference plane 7z between the reference plane and any other view i.
Using homography matrix H;_,., pixel as suspected foreground pixels in all the other images
are warped to the reference image: The warping result are thresholded to get categorized as a

shadow area, where can write this term as:

Il

6(x) = {(1) , Tz (3-8)

otherwise

In Equation (3-8), |C| is the number of cameras. Typically we set the threshold to be a half

of the camera number. The results of shadow detection are shown in Figure 3-17.
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Figure 3-17 Shadow detection. (a) Shadow on the ground. (b) MTM distance measure.

In Figure 3-17(a), the shadow areas which assume to be on the ground are marked in black.
Though the shadow areas can be well detected, some foreground objects like the shoes near the
ground may also get detected. If we directly remove the area on the ground, the result will be
poor because of the foreground region near the ground. By using the MTM distance measure

mentioned before, we can distinguish the exact foreground regions from the shadow regions,
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as shown in Figure 3-17 (b). Note that we use a smaller window to measure the ground (marked
as black) region patch by patch to get a more accurate separation. By combining the active
contour model and the image matting method, we can get the final segmentation result as shown

in Figure 3-18.

Figure 3-18-Shadow removed result.

In fact, the result of Figure 3-18 still have some shadows left around the outer shadow area
because the shadow area detected byv homography constraint is smaller than the GMM
background modeling This leads to imperfect result. The problem can be solved by applying
multi-view constraint mentioned in Section 3-2 to further eliminate the shadow area. We can
first use the homography constraint to detect the shadow area and then apply MTM distance
measure to separate foreground from the ground. After that, we project all detected shadow
regions to the reference view and the interaction region remains as the final result. The use of

multi-vOiew constraint to remove shadow area is demonstrated in Figure 3-19.
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(b)

Figure 3-19 Multi-view constraint with shadow detection. (a) Original image. (b) GMM modeling of (a). (c)

Multi-view constraint with shadow removed.
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Chapter 4  Experimental Results

In Figure 4-1, we show more simulation results on the other camera views. It can be seen
that the foreground object can be effectively extracted in a quite accurate form, in spite of the
complicated background environments. Note in Figure 4-1, the homography constraint to

remove shadow is not included yet. It can be seen that, except the shadow part, the proposed

system can generate accurate and natural results.

(b)

(©)

(d)

Figure 4-1 More results on other camera views. (a) Original image. (b) Multi-view constraint. (c) Result of

convex active contour model. (d) Result of modified image matting method.
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In Figure 4-2, we show the comparison between the supervised image matting method and
the proposed automatic method in the embedding of the foreground object in a virtual scene. It
can be seen that, with the homography constraint to remove shadows, the final foreground

region has more accurate and smoother boundary.

Figure4-2 Comparison between the supervised image matting method and the proposed automatic method
(a) Manually selected scribbles. (b) Synthesized image based-on (a) and the original ML method. (c)

Automatically generated tri-map. (d) Synthesized image based on (c) and the modified ML method.

In Figure 4-3, we further show the comparison between the original image matting
methods which only considers RGB color values, and the modified image matting method. As
expressed before, the boundary of the foreground in Figure 4-2 (a) is mixed with the
background because of the dramatic color variations and the color similarity between
foreground regions and background regions. The modified ML method has more precise

boundary around the foreground object.
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Figure 4-3 Comparison between origin A igure 2-4(a). (a) Original ML method.

(b) Modified MI method.

In Figure 4-4 to Figure 4-6, we.s ow the com arison of the active contour model, the
image matting model methods which only cnsir RGB color values, and the modified image
matting method. The active contour model still has some broken foreground regions though the
foreground objects is accurately separated from the background image. Based on the active
contour model, the image matting model can accurately find the broken foreground. The
modified matting laplacian can separate foreground object from background precisely. Note
that even the foreground object is dressed in different colors, the proposed method can still

separate the foreground object from the background accurately.
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(b)

(©)

(d)

Figure 4-4 Compariosn of active contour model and image matting model. (a) Input image. (b) Active contour

model. (c) Original image matting. (d) Modified image matting.
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(b)

(©

(d)

Figure 4-5 Compariosn of active contour model and image matting model. (a) Input image. (b) Active contour

model. (c) Original image matting. (d) Modified image matting.
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(b)

(©)

(d)

Figure 4-6 Compariosn of active contour model and image matting model. (a) Input image. (b) Active contour

model. (c) Original image matting. (d) Modified image matting.
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In Figure 4-7, we show more embedding examples of the foreground object into virtual

scenes. The proposed method can accurately separate foreground from background in outdoor

SCENeSs.

(d) (€)
()

T.v8 mod.iginwww B B 50
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Figure 4-7 More result of the foreground object into the virtual scene. (a)(d)(9)(j) Input image. (b)(e)(h)(k)
Foreground extraction. (c)(f)(i)(I) Synthesized image.

In our experimental result to generate synthesized image, we smooth the object boundary
in order to generate more natural result in the embedding of the foreground object into computer
generated environments. To smooth the boundary we take the alpha value to be between 0.1 to

0.9.
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Chapter 5 Conclusion

In this thesis, we present a novel method to automatically separate foreground objects from
the background in an outdoor scene. To suppress the noise generated in the background
subtraction process, we include a multi-view constraint to combine information from different
camera views. We further build a convex active contour model to obtain more reliable object
boundaries. Finally, we propose a modified image matting method to get fine-tuned
segmentation results. Experimental results demonstrate that the proposed method can
outperform existing methods for outdoor-scene foreground/background separation without the

inclusion of user guidance.
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