
 

國 立 交 通 大 學 

電控工程研究所 

博 士 論 文 

 

基於多秩訊號模型之語音純化        

波束形成與多通道後濾波 
 

Beamforming and Multi-Channel Post-Filtering  

for Speech Enhancement Based on      

Multi-Rank Signal Models 

 

 

研 究 生：李明唐 

指導教授：胡竹生 教授 

 

 

中 華 民 國 一百零二 年 九 月 



基於多秩訊號模型之語音純化        

波束形成與多通道後濾波 

 

Beamforming and Multi-Channel Post-Filtering for      

Speech Enhancement Based on Multi-Rank Signal Models 

研 究 生：李明唐          Student：Ming-Tang Lee 

指導教授：胡竹生          Advisor：Jwu-Sheng Hu 

國 立 交 通 大 學 

電 控 工 程 研 究 所 

博 士 論 文 

 

A Dissertation 

Submitted to Institute of Electrical Control Engineering 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

Institute of Electrical Control Engineering 

September 2013 

Hsinchu, Taiwan, Republic of China 

 

中華民國一百零二年九月



 i

基於多秩訊號模型之語音純化        

波束形成與多通道後濾波 

研究生：李明唐        指導教授：胡竹生 博士 

國立交通大學電控工程研究所博士班 

摘要 

波束形成(Beamforming)與多通道後濾波(multi-channel post-filtering)為麥克風

陣列語音純化應用之兩項主要技術。在傳統的演算法中，聲源相對於麥克風間的

空間資訊通常是以兩兩麥克風之間的延遲或是相對轉移函數來描述，以上方式描

述的聲源模型侷限於單一秩(rank-1)的空間關係中。然而，實際聲源在傳遞至麥克

風陣列過程中，受到區域性散射、波前不規則變動、或是迴響等影響，往往空間

關係是多秩的。因此，本論文利用多秩訊號模型提出波束形成及多通道後濾波等

技術，用來降低壓抑雜訊時過度刪減到目標聲源的現象，藉此提升語音品質。 

在波束形成技術上，本論文引入了多秩(multi-rank)訊號模型與範數限制(norm 

constraint)來降低傳統最小變異無失真響應 (minimum variance distortionless 

response)設計下對陣列不確定性的影響。本論文經由虛擬觀測(pseudo-observation)

的技巧，將問題轉換到狀態空間，並使用一階、二階擴展卡爾曼濾波器(extended 

Kalman filter)以及非察覺型卡爾曼濾波器(unscented Kalman filter)來實現以上非線

性問題。此外，本論文針對範數限制值的選擇進行完整分析。由模擬結果可看出，

相較於使用對角加載(diagonal loading)，使用範數限制對於未知訊號能量、模型誤

差等更具有強健性。 

在多通道後濾波技術上，我們定義了一種新的空間相干量度(spatial coherence 

measure)並首度引入多秩訊號模型到後濾波的發展中。此相干量度透過兩功率頻譜

密度(power spectral density)矩陣來描述兩聲場之間的相似度。此相干量度可用於設

計一種新的多通道濾波器。基於此相干量度，本論文分析了由目標聲場及雜訊聲

場造成的偏離(bias)，並提出另一套偏離補償的多通道濾波器。此多通道濾波器在

偏離或是雜訊功率頻譜密度矩陣被正確估測下，等同於理想的維納濾波器(Wiener 

filter)。本論文透過理論以及實驗證實在使用更正確的訊號模型下，本論文提出之

偏離補償後的多通道濾波器可提供較佳的語音品質。 
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Beamforming and Multi-Channel Post-Filtering for 

Speech Enhancement Based on            

Multi-Rank Signal Models 

Graduate Student: Ming-Tang Lee          Advisor: Dr. Jwu-Sheng Hu 

Institute of Electrical Control Engineering 
National Chiao-Tung University 

Abstract 

Beamforming and multi-channel post-filtering are two major techniques in 

microphone array speech enhancement. In conventional algorithms, the relationship 

between a source to the microphones is usually described by delays or relative transfer 

functions (RTFs) of each microphone pair. The description of the source model is 

limited to the rank-1 spatial correlation. However, in the real sound propagation of the 

source, the spatial correlation is typically multi-rank due to local scattering, wavefront 

fluctuation, or reverberation. Thus, this dissertation proposes the beamforming and 

multi-channel post-filtering algorithms based on multi-rank signal models. The 

proposed algorithms can alleviate the self-cancellation phenomenon of the desired 

source during noise reduction and improve the speech quality. 

For the proposed beamforming algorithms, multi-rank signal models and norm 

constraint are introduced into the minimum variance distortionless response (MVDR) 

beamforming problem for reducing the sensitivity of the design against array 

uncertainties. Based on the pseudo-observation method, the beamforming problems are 
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transformed into state spaces and solved by the first- and second-order extended 

Kalman filters (EKF) and the unscented Kalman filter (UKF). In addition, the selection 

of the norm constraint value is completely studied. The simulations show that the usage 

of the norm constraint is more robust to the unknown signal powers and model errors 

compared to the usage of the diagonal loading (DL) technique.  

 For the proposed multi-channel post-filtering algorithms, a novel spatial coherence 

measure is defined and multi-rank signal models are firstly conducted into the 

post-filtering development. The spatial coherence measure evaluates the similarity 

between the measured signal fields using power spectral density matrices. A 

multi-channel post-filter is proposed based on this measure. Under this measure, the 

bias term due to the similarity of the desired signal field and the noise field is further 

investigated and a solution based on bias compensation is proposed. It can be shown 

that the compensated solution is equivalent to the optimal Wiener filter if the bias or the 

noise power spectral density matrix is perfectly measured. The theoretical and empirical 

results demonstrate that the proposed bias compensated post-filter provides better 

speech quality with a more accurate signal model. 
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Chapter 1 

Introduction 

1.1 Overview of Multi-Channel Speech Enhancement 

Multi-channel speech enhancement has attracted much attention in recent years. In 

the real world, desired speech signals are often corrupted by background noises, speech 

interferences, and reverberation. For more than two microphones, there are two main 

categories of speech enhancement approach: beamforming and multi-channel 

post-filtering. Beamforming has been applied to several narrow- or wide-band signals 

processes, which can be defined by a filter-and-sum process [1] in the conventional 

sense. A well-known designing strategy is to preserve the signal from the direction of 

interest while attenuating others, which can be achieved by the minimum variance 

distortionless response (MVDR) algorithm [1–3]. The MVDR beamforming (or 

so-called Capon beamforming) is optimal in the mean square error (MSE) sense when 

the interference-plus-noise power spectral density (PSD) matrix can be obtained and 

there is no mismatch on the presumed steering vector. Typically, adaptive filtering 

techniques are applied to estimate the PSD matrix and additional training processes or  
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Figure 1-1  Implementation of a beamformer with a multi-channel post-filter. 

a priori information of signal presence is needed for offline or online implementation 

[1–4]. On the other hand, the multi-channel post-filtering, which considers both the 

spatial information and the signal-to-noise ratio (SNR), can be designed in a more 

general way. Simmer et al. [5] show that the optimal minimum mean square error 

(MMSE) solution can be decomposed into an MVDR beamformer followed by a 

single-channel Wiener filter. This solution is also called a multi-channel Wiener filter. 

A typical implementation of a beamformer with a multi-channel post-filter is illustrated 

in Figure 1-1. 

1.1.1 Overview of Beamformers 

Beamformer is a spatial filter which can be defined by a filter-and-sum process. In 

the beamforming design, the major objective is to control the mainlobe, nulls, and the 

sidelobe level according to the spatial characteristics of the sound fields. Figure 1-2 

gives an illustration of the beam pattern. Fixed beamformers aim to design a filter for 

some desired spatial response. The commonly used delay-and-sum (DS) beamformer [1] 

is known to be optimal in an incoherent noise field with the point source model  
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Figure 1-2  An example of the beam pattern. 

assumption. In coherent fields, the spatial coherence is high at low frequencies due to 

the insufficient spatial sampling. Some beamformers are designed to keep the directivity 

[1] through frequencies such as constant directivity beamformers [6–8] and 

super-directive beamformers [9–11]. Besides, due to the uncertainty of steering error, 

some fixed beamformer aim to extend the bandwidth [1] of the mainlobe to reduce the 

sensitivity to the uncertainties. 

When the spatial information is unknown a priori or time-varying, adaptive 

beamformers are able to adjust their filter responses according to the defined 

optimization problem and the training data. The most popular optimization strategy is 

the MVDR problem [1–3]. Cox et al. [2] showed that the MVDR problem is equivalent 

to maximize the improvement in the signal-to-interference-plus-noise ratio (SINR) or 

the array gain. Under this problem, a famous method called generalized sidelobe 

canceller (GSC) [12–17] decomposes the MVDR beamformer into two mutually 

orthogonal subspaces follower by a noise canceller. Several algorithms follow this 

structure to design the null-space (or blocking matrix) of the given fixed beamformer 
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[16][17], or the noise canceler [17–19]. 

The major problem of the MVDR beamforming is the sensitivity to the array or 

propagation uncertainties in the presence of the desired signal. Shahbazpanahi et al. [20] 

investigated the MVDR problem with multi-rank signal models to reduce the model 

errors. Rather than using multi-rank models [20–22], several robust adaptive 

beamforming algorithms [2][23–28] have been designed to improve the robustness 

against uncertainties. One of the famous techniques is called diagonal loading (DL) 

[2][23][24]. The DL can be explained as imposing additional spatially white noise on 

the input covariance matrix. The other equivalent explanation is to add a norm 

constraint on the MVDR problem [2]. Several robust adaptive beamforming approaches 

can be categorized into this family [23–27]. The major drawback of DL is that it is not 

clear how to decide the diagonal loading level and the level depends on the unknown 

signal powers. 

1.1.2 Overview of Post-Filters 

Most post-filtering algorithms aim to enhance the estimation of the Wiener 

post-filter by a more accurate estimation of SNR. The SNR estimation for speech 

enhancement can be implemented based on the minimum statistics for the stationary 

noise [29–31], or the spatially pre-processed power [32][33]. Most of them are 

energy-based. Given the SNR or noise estimates, some post-filtering algorithms 

emphasize on the designs of different objective functions, such as the MMSE estimator 

under spectral amplitude domains [33–37] or the psychoacoustic masking [38–40]. 

Alternatively, the phase information of a microphone pair has already been used in 

blind source separation (BSS) [41] as well as the computational auditory scene analysis 

(CASA) [42]. Aarabi et al. [43–45] provide a different view of the SNR from the phase 
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error perspective for the dual-channel case. In their work, the relationship between the 

phase error and the SNR was derived [43]. However, the idea of phase error can only be 

applied to the case of two-microphone. In addition to the SNR estimation, some 

post-filtering algorithms directly estimate the spectral densities [46–48]. Like the case 

of phase error, the cross-spectral density is usually defined between two microphones. 

For more than two microphones, the common practice is to perform average among all 

distinct microphone pairs [46][47]. Although this might enhance the robustness of the 

estimation, there is still no formal proof regarding its effectiveness. In particular, it does 

not consider the spatial arrangement of microphones, i.e., the advantages of using more 

than two microphones is not fully explored. In addition, the description of the 

relationship from the source to the microphones is limited to the rank-1 signal model, 

which is not sufficient to represent the real world source where local scattering, 

wavefront fluctuation, or reverberation can happen. 

1.2 Problem Formulation and Multi-Rank Signal Models 

1.2.1 Framework of Beamforming and Post-Filtering 

Consider that a linear array with M omni-directional microphones and the 

observation in the m-th microphone at time instant t is given by 

    ,( ) ( ) ( )t t t t t
m m m p m

p

x t h t s t i t v t      (1-1) 

where st(t) is the coherent desired signal; im,p
t(t) is the p-th interference sampled in the 

m-th microphone; vm
t(t) is the sensor noise sampled in the m-th microphone; hm

t(t) is the 

impulse response of the desired signal corresponding to the m-th microphone; * denotes 

convolution; and the desired signal and the noise are assumed to be zero mean and 
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mutually uncorrelated. Assuming time-invariant transfer functions, the observations are 

divided in time into overlapping frames by the application of a window function and 

analyzed using the short-time Fourier transform (STFT) and expressed in the 

time-frequency domain in a vector form as, 

   
 

( , ) , ( , ) ( , )

, ( , )

k s k k k

k k

    

 

  

 

x h i v

s n
  (1-2) 

where  and k are discrete frequency and frame indices respectively. n(,k) is the total 

noise (i.e., interference plus noise). 

A beamforming method aims to find a spatial filter w to estimate the desired 

source by 

( , ) ( , ) ( , )Hy k k k   w x   (1-3) 

A post-filtering method aims to find a gain function (or mask) in the STFT domain to 

suppress the undesired noise, which can be multiplied on the beamformer output as 

ˆ( , ) ( , ) ( , )s k G k y k      (1-4) 

1.2.2 Multi-rank Signal Models in Array Signal Processing 

Multi-rank signal models or rank relaxation has been widely used in sensor array 

localization [49–52], beamforming [20–22][53], or quadratic optimization problems 

[53][54]. One commonly used model of the signal field is a point source in a 

homogeneous sound field [33]. Assuming that there is no mismatch between 

microphones, the desired signal field can be measured using the PSD matrix as 

   
     

( )s s s

H
s s s

   

   





Φ Γ

a a
  (1-5) 
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where s() = Ek[s(,k) sH(,k)]; s(), as(), and s are the coherence matrix, 

steering vector, and power spectral density of the desired signal respectively. A single 

point source is usually referred as the rank-1 signal model. 

However, in practice, the rank of signal model is usually greater than 1. Typical 

examples are incoherently scattered signal source or signals with random fluctuating 

wavefronts in wireless communication, sonar, and microphone array [49–52]. Further, 

environmental reverberation also increases the rank. For example, in the case of 

incoherently scattered source, the desired PSD matrix can be expressed by [49–51] 

         
2

2
, , ,H

s s d



          


 Φ a a   (1-6) 

where (,) is the normalized angular power density function (  
2

2
, 1d




   


 ), 

and a(,) is the steering vector at direction . In the case of randomly fluctuating 

wavefronts, the desired PSD matrix can be expressed by [20] 

        H
s s s s    Φ B a a   (1-7) 

where B is the M-by-M coherence loss matrix, and   is the Schur-Hadamard 

(elementwise) matrix product. Two commonly used models for the coherence loss 

matrix are 

    2

,
exp

i j
i j   B   (1-8a) 

   ,
exp

i j
i j   B   (1-8b) 

where  is the coherence loss parameter. Note that both the signal models in (1-6) and 

(1-7) are multi-rank. 
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1.3 Outline of Proposed Beamformer and Post-Filter 

1.3.1 Robust Adaptive Beamforming with Multi-Rank Signal Models 

Based on the Kalman Filter 

In this dissertation, the multi-rank norm-constrained MVDR beamforming based 

on the Kalman filter (MRNCKF) is proposed. The multi-rank MVDR problem defined 

in [20] is modified with normalized signal model and norm constraint. Simulations 

show the superiority of using the norm constraint rather than the diagonal loading 

formulation. The modified problem is transformed into state space models using the 

soft-constrained pseudo-observation (SCPO) method in constrained Kalman filtering 

[55–59]. Several nonlinear Kalman filtering approaches including the first- and 

second-order extended Kalman filters (EKF) [60–62] and the unscented Kalman filter 

(UKF) [62–66] are introduced to solve the quadratically constrained problems. The 

settings of initial conditions and parameter matrices are also studied.  

1.3.2 Multi-Channel Post-Filtering Based on Spatial Coherence 

Measure 

In this dissertation, a novel multi-channel post-filter where multi-rank signal 

models can be easily adopted is proposed. A new spatial coherence measure is 

introduced and analyzed. Based on this measure, the new spatial coherence based 

post-filter (SCPF) is derived. Due to the similarity of the desired signal field and the 

noise field, a bias compensated (BC) solution, BC-SCPF, is proposed. It can be shown 

that the BC-SCPF is equivalent to the optimal Wiener filter if the bias or the noise 

power spectral density matrix is perfectly measured. The proposed post-filters are 

compared with the state-of-the-art post-filters, Zelinski post-filter [46] and McCowan 
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post-filter [47], theoretically and experimentally. 

1.4 Contribution of this Dissertation 

The contributions of this dissertation are listed below: 

1)   The norm constrained Capon beamforming (NCCB) is known to be equivalent 

to the DL [2][26]. In this dissertation, the simulations demonstrates that an 

appropriately chosen norm constraint value is more robust to unknown signal 

powers, small angle mismatches, and number of sensors compared to the 

selection of the diagonal loading level. By using the SCPO method, the 

multi-rank signal model and the norm constraint can be easily adopted. 

On-line implementations using nonlinear Kalman filters are proposed to 

reduce the computation burden and give a more flexible structure. The 

settings of initial conditions and parameter matrices are also investigated. 

2)   Compared to the Zelinski and McCowan post-filters, the assumption of 

homogeneous sound fields is relaxed and multi-rank signal models are firstly 

introduced into the post-filter design. In addition, a spatial coherence measure 

which describes the similarity between two signal fields is introduced and 

analyzed. The proposed BC-SCPF is less sensitive to the individual estimation 

error of the noise coherence function. Besides, compared to the noise 

coherence function, the bias term in the proposed method can be estimated in 

many ways. The speech enhancement results demonstrate the superiority of 

the proposed BC-SCPF across different types of noise fields with a more 

accurate signal model. 
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1.5 Organization of this Dissertation 

The remainder of this dissertation is organized as follows. The robust adaptive 

beamforming with multi-rank models based on the Kalman filter is introduced in 

Chapter 2. Chapter 3 presents the multi-channel post-filtering based on spatial 

coherence measure. Chapter 4 shows the experimental results of the proposed 

beamformer and post-filter. Finally, conclusions and future works are drawn in Chapter 

5.
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Chapter 2 

Robust Adaptive Beamforming with 
Multi-Rank Signal Models Based on the 
Kalman Filter 

2.1 Introduction 

MVDR beamforming aims to minimize variances of the interferences and noise 

while maintaining the desired array response. It is known to degrade dramatically due to 

even small mismatches of the desired signal model, especially when the desired signal 

is present in the training data. The robust MVDR beamforming aims to keep the output 

SINR performance against several array or propagation uncertainties. In real world 

environments, the spatial correlation is typically multi-rank due to local scattering, 

wavefront fluctuation, or reverberation. Therefore, the multi-rank signal model is able to 

provide a more accurate model of the sound propagation of the desired source to the 

microphones. In this case, if the array response provided with multi-rank signal models 

is known exactly, such performance degradation can be reduced. To further reduce the 

sensitivity of arbitrary kinds of mismatches, diagonal loading (DL) [2][23][24] 

technique has been a popular used approach to improve the robustness of the MVDR 
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beamformer. The major drawback of DL is that it is not clear how to choose the 

diagonal loading level given the input covariance matrix. The norm constrained Capon 

beamforming (NCCB) is known to be equivalent to the DL [2][26]. However, the 

knowledge of how to choose the norm constraint value has not been completely studied. 

In this dissertation, we use the norm constraint rather than the original DL formulation. 

Besides, the superiority of using the norm constraint value rather than using the 

diagonal loading level is demonstrated in the simulations (see Section 4.1.1). 

In this dissertation, we conduct the constrained Kalman filtering for more flexible 

on-line implementations. Constrained Kalman filtering [55–59] has been widely 

investigated in the last decade. The approaches mainly fall into one of three categories: 

pseudo-observation methods (or penalty methods), projection methods, and dimension 

reduction methods. Among these methods, the pseudo-observation method is the most 

intuitive way to conduct the constraints into the state-space of the Kalman filtering by 

considering the constraints as additional measurement equations. In this way, several 

developed nonlinear Kalman filtering algorithms can be directly applied. Chen et al. 

was the first one who introduced the soft-constrained pseudo-observation (SCPO) 

[58][59] into the traditional MVDR problem [67]. El-Keyi et al. conducted the SCPO 

for the robust adaptive beamforming based on worst-case performance optimization 

[68]. In this dissertation, we also apply the SCPO for the robust adaptive beamforming 

with multi-rank signal models. The potential drawback is that the unconstrained 

problem by using SCPO can be ill-conditioned if the parameter matrices are not 

appropriately chosen. In this dissertation, the settings of the initial conditions and 

parameter matrices are studied to achieve the good performance, which also prevent the 

SCPO method from the ill-conditioning problem. Compared to the prior work [20], the 

computation of principal eigenvector can be avoided in the proposed method. 
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Since the robust adaptive beamforming problems with multi-rank signal models 

and the norm constraint belong to the quadratically constrained quadratic programming 

(QCQP) [69], nonlinear Kalman filtering is introduced. The most widely used nonlinear 

Kalman filter is the extended Kalman filter (EKF) [60–62]. Another popular method is 

the unscented Kalman filter (UKF) [62–66]. The EKF approximates the Jacobian and 

Hessian matrices (in the first- and second-order approximations) of the nonlinear 

functions, while the UKF approximates the probability distribution of the nonlinear 

transformation using sigma points. Theoretically, the second-order extended Kalman 

filter (SOEKF) gives the best approximation in the MSE sense. However, due to the 

approximation of the second-order errors (see Appendix I), the SOEKF is sensitive to 

improper initial conditions and parameter matrices. The comparison of the above 

nonlinear Kalman filters will be discussed in Section 4.1.2. 

The remainder of this chapter is organized as follows. In Section 2.2, we briefly 

review the problem of the MVDR beamforming with multi-rank signal models. Section 

2.3 gives a modified problem with the normalized signal model and the norm constraint, 

and formulates its state space model based on the SCPO method. The relationship 

between the diagonal loading level and the norm constraint value for the multi-rank case 

is also analyzed. Section 2.4 presents the solutions using the EKFs and the UKF. Finally, 

a summary is drawn in Section 2.5. 

2.2 Problem Formulation 

2.2.1 Robust MVDR Beamforming with Multi-Rank Signal Models 

The well-known MVDR beamformer minimizes the output power of 

interference-signals-plus-noise while maintaining a distortionless constraint at the look 
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direction [1]. Consider the noise vector n(,k) in the STFT domain given in (1-2), the 

problem can be formulated as 

 
         min subject to 1H H

n s
     

w
w Φ w w a   (2-1) 

where n() = E[n(,k)nH(,k)] is the noise-only PSD matrix. The problem is 

equivalent to the maximum signal-to-interference-plus-noise ratio (SINR) beamformer 

[2]. The solution of the MVDR beamformer can be easily obtained by the Lagrange 

multiplier method as 

     
     

1

1 1
n s

opt H
s n s

 


  




Φ a

w
a Φ a

  (2-2) 

Note that the distortionless constraint wH()as() = 1 in (2-1) constrains the signal array 

response on the steering vector as(), where the steering vector is usually considered as 

a point source model, or a rank-1 signal model. Shahbazpanahi et al. [20] modified the 

distortionless constraint to a quadratic one and incorporated multi-rank signal models 

given in Section 1.2.2. The modified MVDR problem is given by 

 
           ˆmin subject to 1H H

n s
      

w
w Φ w w Φ w   (2-3) 

where  ˆ
s Φ  is the designed or estimated multi-rank signal model. The solution of 

the modified problem can be solved by the Lagrange multiplier, which results in the 

following generalized eigenvalue problem [70]: 

         ˆ
n s     Φ w Φ w   (2-4) 

where the Lagrange multiplier () can be considered as a corresponding generalized 

eigenvalue. Since the PSD matrices  ˆ
s Φ  and n() are positive semi-definite, () 
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is always real-valued and non-negative. 

The solution to the minimization problem in (2-3) is the generalized eigenvector 

corresponding to the smallest generalized eigenvalue of the matrix pencil 

    ˆ,n s Φ Φ . Assuming that n() is full-rank and invertible, the equation (2-4) 

can be rewritten as 

         1 1ˆ
n s   

 
 Φ Φ w w   (2-5) 

which is the characteristic equation for the matrix    1 ˆ
n s Φ Φ . In this case, the 

smallest eigenvalue in (2-4) corresponds to the maximum eigenvalue in (2-5). Thus, the 

optimal weight vector of the problem in (2-3) can be expressed by 

      1
opt

ˆ
n s  w Φ Φ   (2-6) 

where {•} denotes the operator that yields the principal eigenvector of a matrix. It is 

known that when the noise field is incoherent (i.e., n() = I, where I is the identity 

matrix), the optimal MVDR turns into the matched filter (or the delay-and-sum (DS) 

filter for the rank-1 signal model). Hence, the matched filter for the multi-rank case can 

be obtained by  

    matched
ˆ

s w Φ   (2-7) 

For speech enhancement, the desired signal can appear with the interferences and 

noise. In practice, the noise PSD matrix is replaced by the input PSD matrix of the 

training data as 

      1
MRSMI

ˆ ˆˆ x s  w Φ Φ   (2-8a) 

where 
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1

1ˆ , ,
N

H
x

n

n n
N

  


 Φ x x   (2-8b) 

is referred as the sample matrix [1] and N is the training size. The solution of (2-8) is the 

multi-rank (MR) version of the well-known sample matrix inverse (SMI) beamformer 

[20]. However, when the desired signal exists in the training data, the MVDR 

beamforming is known to degrade dramatically due to the mismatches between the 

presumed and actual array responses to the desired signal [20]. This is the so-called 

self-cancellation phenomenon. To improve the robustness of the MVDR beamforming 

against mismatches, one of the most popular approaches is the diagonal loading (DL) 

method. It is equivalent to impose an additive noise on the covariance matrix [1][2], and 

the MVDR problem in (2-3) can be modified as 

 
           

     

min

ˆsubject to 1

H H
x

H
s


      

  





w
w Φ w w w

w Φ w
  (2-9) 

where () is the diagonal loading level to be determined. The solution of the modified 

problem (2-9) is referred as the multi-rank loaded SMI (MRLSMI) beamformer as 

         1

MRLSMI
ˆ ˆˆ x s    


 w Φ I Φ   (2-10) 

The major drawback of MRLSMI is that it is not clear how to choose the best diagonal 

loading level () since the optimal choice depends on the unknown signal and 

interference parameters [20]. 

2.2.2 Motivations of the Proposed Robust Beamforming 

In this dissertation, the motivations of proposed robust beamforming are listed 

below: 

 



 17

1)   The performance of the MVDR beamforming is known to degrade severely in 

the presence of even small mismatches between the actual and presumed array 

responses to the desired signal [20], especially when the desired signal 

“contaminates” the training data. Therefore, with multi-rank signal models, it 

is possible to model a more accurate array response which reduces the 

performance degradation due to the model mismatches. 

2)   In the original multi-rank MVDR beamforming algorithm [20], the 

normalization problem is not taken into account in the narrow-band 

applications. However, it is important in the wide-band applications since 

different normalization factors among frequencies will introduce frequency 

dependent distortion or different white noise gains [1]. This can seriously 

deteriorate the speech quality for multi-channel speech enhancement. 

Therefore, this dissertation proposes a modification of the problem based on a 

normalized multi-rank signal model. 

3)   The selection of the diagonal loading level () depends on the unknown 

signal and interference parameters. Cox et al. [2] have shown that the DL 

problem in (2-9) is equivalent to the norm-constrained Capon beamforming 

problem. In this dissertation, the relationship between the diagonal loading 

level and the norm constraint value for the multi-rank case is analyzed. The 

simulations in Section 4.1.1 show that the optimal choice of the norm 

constraint value is less sensitive to unknown signal powers and small angle 

mismatches at high SNRs. 

4)   In [20], the computation of the principal eigenvector is needed. For the 

on-line implementation, we introduce the Kalman filter algorithms for more 

flexible designs. 
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5)   The selection of initial conditions and parameter matrices is critical, 

especially when the system is nonlinear. Wrong settings can break down the 

performance of the system. In this dissertation, the initial state is suggested to 

be in the feasible set of the constraints, or at least close to the feasible set 

corresponding to chosen variance parameters. The error covariance is 

initialized as the null space of the initial state. Further, the selection of the 

parameter matrices is investigated to achieve a good performance and prevent 

from the ill-conditioning problem. 

2.3 Proposed Robust Beamforming Based on the 

Soft-Constrained Pseudo-Observation Method 

The soft-constrained pseudo-observation (SCPO) is one of the methods in 

constrained Kalman filtering [55–59]. By the SCPO method, constraints can be easily 

formulated into the state space as augmented measurements. In the follows, the 

distortionless constraint using normalized signal models for wide-band applications is 

proposed in Section 2.3.1. Then, the norm-constrained Capon beamforming (NCCB) for 

the multi-rank case is introduced in Section 2.3.2. In the sequel, the state space of the 

NCCB problem is formulated using the SCPO method in Section 2.3.3. 

2.3.1 Normalized Multi-Rank Signal Model for Wide-Band Applications 

In narrow-band applications, the normalization is immaterial since it does not 

affect the SINR defined as 

     
     

SINR  
H

s
H

n

  
  


w Φ w

w Φ w
  (2-11) 
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However, the normalization is important in wide-band applications to keep the array 

gain consistent at the desired signal array response. In (2-3) and (2-9), it is worth to note 

that different powers of the designed signal models  ˆ
s Φ  lead to different 

normalization factors. Since the distortionless constraint is to constrain the desired array 

response without the consideration of signal power, normalization on the PSD matrix 

 ˆ
s Φ  is reasonable. Thus, we modified the distortionless constraint by using the 

normalized signal model  s Φ


 as 

      1H
s   w Φ w


  (2-12a) 

where 

   
  

ˆ

ˆtr

s
s

s
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Φ
Φ

Φ


  (2-12b) 

The factor M in (2-12b) is to keep the norm of the weight vector ║w()║ be 

comparable to the conventional case. For example, consider the rank-1 signal model 

given in (1-5), the left hand side of the distortionless constraint in (2-12a) is  

               
      

     
 

   

2

2

tr

H H
s s sH

s H
s s s

H
s s

s

H
s

M

M

M

     
  

   

   

 

 

 


 






w a a w
w Φ w

a a

w a

w a



  (2-13) 

This gives the same norm as the distortionless constraint given in (2-1).  
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2.3.2 Norm-Constrained Capon Beamforming 

Cox et al. [2] have shown that the DL problem is equivalent to the 

norm-constrained Capon beamforming (NCCB) problem [23][26]. For the rank-1 signal 

model, the NCCB can be expressed by 

 
     

   
   2

1
min subject to

H
sH

x
T

 
  

 

 



w

w a
w Φ w

w
  (2-14) 

where () is the designed constraint value of the squared weight vector norm. The 

solution of the NCCB has the diagonal loading (DL) form as 

        
        

1

DL 1
ˆ x s

H
s x s

   


    










Φ I a
w

a Φ I a
  (2-15) 

By substituting the weight vector in (2-15) into the norm constraint, the relationship 

between the diagonal loading level () and the norm-constrained value of the weight 

vector norm () can be obtained by [26] 
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H
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a Φ I a

a Φ I a
  (2-16) 

Now, the NCCB formulation can be extended with multi-rank signal models as 
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1
min subject to

H
sH

x
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w

w Φ w
w Φ w
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  (2-17) 

where  s Φ


 is the normalized signal PSD matrix given in (2-12b). The Lagrangian 

function of (2-17) can be defined by 
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   (2-18) 

By letting the derivatives with respect to w(), (), and () be equal to zeros, we 

obtain the solution similar to (2-10) as 
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  (2-19a) 

where 

         1

DL x s    


 w Φ I Φ


  (2-19b) 

and 

       DL DL
H

s    w Φ w
 

  (2-19c) 

is the normalization factor to meet the distortionless constraint. Likewise, the 

relationship between () and T () with the multi-rank signal models can be derived 

as 
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  (2-20) 

The value of () is greater than 1/M. According to the distortionless constraint, 

we have 
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tr
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H
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H
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  (2-21) 

which gives the lower bound of () as 
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  1
T

M
    (2-22) 

Note that the trace inequality tr(AB) ≤ tr(A) tr(B) used in (2-21) is described in Section 

3.3.1 in detail. If we assume a semi-positive diagonal loading level (), there is also an 

upper bound for (). The equation (2-20) monotonically decreases to 1/M as () 

approaches to . Thus, the upper bound happens when () = 0, where() should be 

smaller than 

 
 

     

2

MVDR

MVDR MVDR
H

s

T



  


w

w Φ w



    (2-23a) 

where 

      1
MVDR x s  w Φ Φ


  (2-23b) 

If the norm constraint value () is greater than the upper bound, there is no feasible 

solution for a semi-positive (). 

For the rank-1 signal model, the weight vector can be decomposed into subspaces 

of the presumed steering vector and its null space based on the concept of GSC [71] as 

     s
sM


  

a
w a   (2-24) 

where     0H
s s  a a  and the weight vector satisfies the distortionless constraint 

    1H
s  w a . In this case, the norm of the weight vector can be expressed as 

    22 1
sM

  w a   (2-25) 

It can be seen that constraining the norm of w() is equivalent to constrain the norm of 

 s a . Thus, to express the effect of the latter term in (2-25), we decompose the 
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threshold T() as 

     1
, where 0T

M
         (2-26) 

In the rest of this dissertation, we discuss the selection of () instead of T() for better 

description of the scale of the norm deviations. 

Compared to the selection of the diagonal loading level (), the selection of () 

is less sensitive to the signal powers due to the division in (2-16) and (2-19). It is worth 

to note that the speech signals are nonstationary and time-varying. The insensitivity 

property of () benefits the application of speech enhancement. It can be shown in 

Section 4.1.1 that the selection of norm constraint is also less sensitive to the small 

angle mismatches at high SNRs. 

2.3.3 State Space Formulation Using the SCPO Method 

The pseudo-observation method treats the set of constraint equations as additional 

observations, but with no measurement noise [55–59]. In this case, the constraint 

equations are called perfect measurements, and the constraints are considered as “hard 

constraint”. However, it is known that perfect measurements give a singular error 

covariance matrix, which will lead to the ill-conditioning problem in the Kalman filter. 

Thus, small variances of the constraint equations are used instead and it gives the 

“soft-constrained” solutions. 

Considering the NCCB problem in (2-17), the state space model is given as 

follows: 

 

 

 



 24

State Space Formulation of the Proposed Robust Beamforming Problem 

State equation 

     , 1 , ,sk k k    w w v   (2-27a) 

Measurement equations 
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  (2-27b) 

where  

        1 , , ,H
sf k k k   w w Φ w


  (2-27c) 

      2 , , ,Hf k k k  w w w   (2-27d) 

A vector form of (2-27b) is expressed as 

    , ,mk k  z f w v   (2-27e) 

where vs(k) and vm(k) are the process and measurement noises respectively. 

Typically, the noise processes vs(k) and vm(k) are assumed to be zero-mean and 

mutually uncorrelated with the covariance matrices  

       2
0, ,H

k s sE k k       Q v v I   (2-28) 
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The only real measurement in (2-27b) is the input vector x(,k) in the first equation 

given by the objective of minimizing the filtered output power in the MSE sense, i.e., 

    2
0 , ,H

kE k k    
x w . 

Considering the measurement update in the Kalman filter, 

         ˆ ˆ, , 1 , , 1k k k k       w w K z f w   (2-30) 

It can be shown that  ˆ , kw  is the solution to the optimization problem [59] 
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   (2-31) 

where K(k) is the Kalman gain and P(k) is the a priori state error covariance 

matrix. Now the constraint parameters 2
2() and 3

2() act as penalty terms. When the 

constraint parameters approach to zeros, the constraint costs are increasingly weighted, 

and the solutions that do not satisfy the constraint are increasingly penalized. The 

solution of the SCPO should approach to the solution of the NCCB problem in (2-17) if 

the constraint parameters 2
2() and 3

2() are much smaller than 1
2() and the 

approximation of the nonlinear functions are adequate. To avoid numerical problems, 

typically the constraint parameters will not be set as zeros. Therefore, the SCPO method 

does not strictly satisfy the constraints, but provides a flexible approach to incorporate 

different equality constraints. 
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2.4 Solutions Using Nonlinear Kalman Filters 

In the multi-rank MVDR problems, the multi-rank distortionless constraint and the 

norm constraint are quadratic. Hence, nonlinear approximation on the measurement 

equations is needed. Consider the nonlinear measurement equation describe in (2-27), it 

can be approximated by the Taylor expansion in the second-order around an estimate 

 ˆ , kw  as 

          

           
1

ˆ ˆ, , , ,

1
ˆ ˆ, , , ,

2

P
H i

i
i

k k k k

k k k k

   

   


  

  

w

ww

f w f w F w w

w w F w w
  (2-32) 

where 0, , 1, , 0
T

i
i th

    
   and P is the number of measurement equations. 

wF  denotes the Jacobian matrix of the nonlinear function   , kf w , and  i
wwF  

denotes the Hessian matrix of the i-th measurement equation in   , kf w . The major 

two categories of the nonlinear Kalman filtering are the extended Kalman filter (EKF) 

and the unscented Kalman filter (UKF). An overview of the above algorithms has been 

given in [66]: 

1)   The first-order EKF (FOEKF) [60][62] approximates the Jacobian matrix wF . 

This works fine as long as the Hessian matrix (i.e., second-order term) is 

small, which can depend on the state estimation error or the degree of 

nonlinearity of   ,kf w . 

2)   The second-order EKF (SOEKF) [61][62] approximates both the Jacobian 

matrix and the Hessian matrices.  

3)   The UKF [62–65] implicitly estimates the first- and second-order terms in the 

nonlinear transformation in (2-32) instead of estimating the Jacobian and 
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Hessian matrices. In other words, the UKF approximates the probability 

distribution using sigma points rather than approximating an arbitrary 

nonlinear function or transformation. 

In the following, the solutions using the EKFs and the UKF for our problems will 

be listed. Discussions among the algorithms are investigated in the sequel. 

2.4.1 Solutions Using Extended Kalman Filters 

The EKF has been widely used in nonlinear filtering [60–62]. It approximates the 

nonlinear function around the a priori estimate of the Kalman filter. In our problems, 

only parts of the measurement equations are nonlinear. Therefore, only Jacobian and 

Hessian matrices of the nonlinear measurement equations are needed to be estimated. 

Given the state space model in Section 2.3.3, the Jacobian matrix Fw(k) and the 

Hessian matrices    1 ,kwwF  and    2 , kwwF  of the nonlinear functions can be 

computed as 
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  (2-33a) 

        1 , , ,
H Hk k k    ww w w

F x w 0   (2-33b) 

         2
1, ,

H

sk f k    ww w w
F w Φ   (2-33c) 

       3
2, ,

H
k f k   ww w w

F w I   (2-33d) 

For the SOEKF, the Hessian matrices in (2-32) leads to the additional terms in the 

innovation (k) and it covariance matrix (k) under the MSE sense (see Appendix 

I). The bias terms (k) and (k) in our problem can be expressed as 
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Finally, the EKFs using the first- and second-order Taylor expansion can be 

summarized as follows [62]:  

Multi-Rank MVDR Beamformer Using the FOEKF and SOEKF 

The SOEKF, using the second-order Taylor expansion, for the state space model in 

(2-27) is given by the following recursions initialized with  ˆ ,0w  and  ,0P : 

     , , 1k k     P P Q   (2-35a) 

      ˆ, , 1 ,k k k     e z f w π   (2-35b) 

           , , , , ,Hk k k k k       w wS F P F R Λ   (2-35c) 

       1, , , ,Hk k k k     wK P F S   (2-35d) 

       ˆ ˆ, , 1 , ,k k k k     w w K e   (2-35e) 

       , , , ,k k k k       wP I K F P   (2-35f) 

The FOEKF is obtained by letting both (k) and (k) be zero. 

In (2-35), P+(k) is the a posteriori state error covariance matrix; e(k) and S(k) are 
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the innovation vector and its covariance matrix. For detailed derivation of the SOE 

Kalman filter, please refer to the Appendix I.  

2.4.2 Solution Using the Unscented Kalman Filter 

The UKF uses sigma points to approximate the first- and second-order moments of 

the nonlinear transformation. There are different ways to set the sigma points and the 

weightings [62–66]. In this dissertation, we choose the method given by [62] since it 

gives positive weightings. The (2M + 1) sigma points for the approximation of the 

nonlinear measurement equations are generated by 
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  (2-36a) 

And the transformed sigma points are given by 

    ˆ ˆ, , , 0, , 2
i i

k k i M         Z f W    (2-36b) 

where 1 denotes the M-by-1 all-one vector. 

The UKF is summarized as follows [62]: 

Multi-Rank MVDR Beamformer Using the UKF 

By using the sigma points given in (2-36), the UKF is given by the following recursions 

initialized with  ˆ ,0w  and  ,0P : 

     , , 1k k     P P Q   (2-37a) 
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           2
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          wzP W w Z z   (2-37c) 
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         zzP Z z Z z   (2-37d) 

   , ,k k  e z z   (2-37e) 

     , ,k k   zzS P R   (2-37f) 

     1, , ,k k k   wzK P S   (2-37g) 

       ˆ ˆ, , 1 , ,k k k k     w w K e   (2-37h) 

         , , , , ,Hk k k k k      P P K S K   (2-37i) 

2.4.3 Initial Conditions 

The setting of initial conditions is important for constrained Kalman filtering 

problems. The initial conditions should satisfy the constraints or at least close to the 

feasible sets of the constraint in the order of the chosen variance parameter in matrix 

R(). An improper setting can dramatically degrade the performance with nonlinear 

constraints. 

First, consider the rank-1 MVDR beamforming problem in (2-1). Based on the 

projection method in the constrained Kalman filtering [55–59], the state error 

covariance matrix P+(k) converges to the null space of the presumed steering vector 

as(). Therefore, the initial values of  ˆ ,0w  and  ,0P  are chosen as 
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ˆ ,0 s
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w
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  (2-38a) 
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The normalization term in (2-38a) is to satisfy the distortionless constraint wH()as() 

= 1. 

Likewise, for multi-rank signal models, the weight vector w() is initialized to 

satisfy the distortionless constraint, and the state error covariance matrix P+(k) can be 

set as the null space of w(). Thus, the initial conditions of  ˆ ,0w  and P+(0) for 

multi-rank case are chosen as 
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  (2-39b) 

where wmatched() is the matched filter given in (2-7). 

2.4.4 Estimation of the Parameter Matrices 

In the update equations of the proposed Kalman filters, there are two parameter 

matrices to be determined: Q() and R(). In general, Q() stands for the random walk 

during the state update, which is typically assumed as stochastically white. For 

stationary environments, 0
2() = 0 can be chosen. The larger the parameter 0

2() is 

chosen, the larger random walk of the state is allowed. That is, the state variation can be 

large to track the nonstationary environmental changes. Second, R() corresponds to 

the error variances of each measurement. In (2-29), 1
2() corresponds to the average 

output power. It is suggested to be the same order of the optimal output power of the 
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array (which can be roughly approximated as       2

s vM    w  [68], where 

s() and v() are the PSDs of the desired signal and sensor noise, respectively); 

however, the PSD of the desired signal is not known a priori and it is related to the 

norm of the state w().2
2() and 3

2() correspond to the augmented distortionless 

and norm constraints. 2
2() controls the fitness of the distortionless constraint in (2-12). 

When 2
2() approaches to zero, the beamformer approaches to the matched filter in 

(2-39a), which is distortionless to the presumed signal model but fails to reject the 

interferences. And 3
2() controls the fitness of the norm constraint. The norm 

constraint controls the sidelobe level of the beamformer. When the norm constraint 

value () is small and 3
2() approaches to zero, the beamformer emphasizes on 

reducing the sidelobe level instead of rejecting interferences. 

Since there is only one “true measurement” in the measurement equations, we 

propose only to estimate the parameter 1
2() and consider 2

2() and 3
2() as 

adjustable parameters to control the tradeoff between signal distortion and interference 

rejection. Contrary to the adaptive beamforming problems [67][68], who suggested to 

set the variance parameters corresponding to the constraints as a very small value 10-10, 

it is suggested in this dissertation to set an “properly” small value if there are some 

tradeoffs between the constraint sets. For such case, if both 2
2() and 3

2() are set 

very small, the problem may not be feasible. For the uniform linear array (ULA) with 

10 elements and half-wavelength spacing, 10-5 is a good choice for the tradeoff between 

the distortionless and norm constraints. Further, to avoid the ill-conditioning problem, 

the condition number of the parameter matrix R() should be controlled. In this case, 

we propose to use the following form 
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   2
1

1 0 0
ˆ ˆ 0 0

0 0

   


 
   
  

R   (2-40) 

where ≤1 is the small variance set for the constraints. In this case, the 

condition number of  ˆ R  is guaranteed to be smaller than 1010 

The parameter 1
2() is estimated in a recursive way as 

 2 2 *
1 1 1 1ˆ ˆ( , ) ( , 1) 1 ( , ) ( , )k k e k e k               (2-41) 

where  is the forgetting factor close to unity and e1(k) is the first element of the 

innovation vector e(k). The recursive approach is similar to the work [72]. Compared 

to the variance estimation which used the a priori state error covariance matrix P(k) 

[73][74], the recursive estimator in (2-41) depends on only the innovation and is not 

affected by the initial conditions. This guarantees the stability of the whole system. 

Typically, the parameter 1
2() is initialized as zero. For the simulations, is 

chosen. 

2.5 Summary 

In this chapter, robust beamformers with multi-rank signal models based on the 

Kalman filter are proposed. The original multi-rank MVDR beamforming in [20] is 

modified with normalized signal models and the norm constraint and transformed into 

state spaces using the SCPO method. The relationship between the diagonal loading 

level and the norm constraint value for multi-rank signal models is analyzed, and the 

problem formulation of the SCPO is given to point out the difference from the original 

NCCB problem. The settings of initial conditions and parameter matrices are also 
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studied for our problem. Since the modified problems are quadratic, nonlinear Kalman 

filters including the first- and second-order extended Kalman filters and the unscented 

Kalman filter are conducted for on-line implementations.  
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Chapter 3 

Multi-Channel Post-Filtering Based on 
Spatial Coherence Measure 

3.1 Introduction 

As discussed in Section 1.1.2, most multi-channel post-filtering algorithms use the 

spectral densities or phase errors between microphone pairs rather than the whole array 

elements at one time. For the category of spectral density estimators, the state-of-the-art 

post-filtering are Zelinski [46] and McCowan [47] post-filters. Under the assumptions 

of homogeneous sound fields and point source model (rank-1 model), the Zelinski 

post-filter is equal to the optimal Wiener filter in the incoherent noise field (i.e., 

spatially white noise). McCowan et al generalized the Zelinski post-filter by 

considering the noise field coherence between microphone pairs. This makes their 

post-filter to be equal to the Wiener filter for any noise fields if the true noise field 

coherence is given. However, the assumptions of homogeneous sound fields and rank-1 

model are not satisfied in the real-world according to the existence of the local 

scattering, wavefront fluctuation, or reverberation. 
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In this dissertation, a new spatial measure is defined on a microphone array which 

leads to a novel post-filtering algorithm (named spatial coherence based post-filter, 

SCPF). The post-filter belongs to the class of spectral densities estimators (which is 

inherent in the estimation of the input PSD matrix), while it is guaranteed to lie in the 

range of [0, 1]. Further, the proposed spatial coherence measure can be easily extended 

to multi-rank signal models encompassing incoherently scattered source etc. It is more 

convenient to consider various design requirements than previous methods using 

microphone array. 

However, a bias term due to the similarity of the desired signal field and the noise 

field deteriorates the noise reduction performance. As a result, a bias compensated 

method is proposed (called bias compensated spatial coherence based post-filter, 

BC-SCPF). It can be shown that the BC-SCPF is equivalent to the optimal Wiener filter 

if the bias or the noise PSD matrix is perfectly measured.  

The remainder of this chapter is organized as follows. In Section 3.2, we briefly 

review the Zelinski and McCowan post-filters for subsequent comparisons. Section 3.3 

introduces a trace inequality and its induced spatial coherence measure. Section 3.4 

presents the formulation and mean square error (MSE) analysis of the proposed SCPF. 

The bias compensated solution is proposed in Section 3.5. Finally, a summary is drawn 

in Section 3.6. 

3.2 Brief Review of Zelinski and McCowan Post-Filters 

The Zelinski post-filter [46] and the McCowan post-filter [47] are state-of-the-art 

multi-channel post-filters. In this dissertation, comparisons of the proposed post-filters 

with the Zelinski and McCowan post-filters are carried out theoretically and empirically. 

Thus, a brief review of the post-filters is introduced here. 



 37

 

 

Figure 3-1  System architecture of the Zelinski and McCowan post-filters. 

McCowan et al. [47] proposed a multi-channel post-filter as a modification of the 

Zelinski post-filter [46]. The system architecture of the Zelinski and McCowan 

post-filters is depicted in Figure 3-1. In their systems, the microphones have to pass a 

time alignment module to adjust the propagation of the desired source between 

microphones before the post-filter estimation, which is equivalent to the information in 

the presumed steering vector as. Let us denote the pre-processed input vector after the 

time alignment module as 

     , , sk k  x x a    (3-1) 

where x(,k) and  , kx  are the microphone input vector before and after the time 

alignment module, as shown in Figure 3-1;   denotes the Schur-Hadamard 

(elementwise) matrix product.  

Compared to the Zelinski post-filter, the work in [47] considered a generalized 

coherence function to describe the characteristics of the noise field on the aligned inputs. 

Noises between sensors can be coherent (or correlated). The noise coherence function of 

the time aligned inputs is defined as 
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i j i j i i j jn n n n n n n n             (3-2) 

where  
i jn n   is the cross-spectral density between the noises at the i-th and j-th 

microphones. Note that the diagonal terms of  n Γ  are 1 and its trace equals to M. In 

their works, the homogeneous sound fields are assumed. That is, the sources have the 

same power spectrum at each sensor. Based on this assumption, the spectral densities of 

the aligned inputs are expressed as [47] 

     
i ix x s n           (3-3) 

     
j jx x s n           (3-4) 

       
i j i jx x s n n n            (3-5) 

where  s  ,  n  are the aligned power spectral densities of the desired signal and 

noise. According to (3-3) –(3-5), the signal power spectral density can be estimated as 
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  (3-6) 

where  
i jx x   is the cross-spectral density between the i-th and j-th aligned inputs 

and {} is the real operator. The spectral densities can be estimated using a first-order 

recursive filter. Equation (3-6) can be explained as removing the highly coherent part of 

the cross-spectral density and then compensating the residual. 

The estimation can be improved by averaging the solutions over all sensor 

combinations, resulting in the post-filter 
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  (3-7) 

This technique significantly improves the noise reduction in the diffuse noise field, and 

can be applied to any noise field by modeling the complex coherence function. When 

the noise field is incoherent, it reduces to the Zelinski post-filter as 
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  (3-8) 

3.3 Proposed Spatial Coherence Measure 

3.3.1 Definition of the Spatial Coherence Measure 

It is known that the trace of the power spectral density (PSD) matrix, obtained 

from a sensor array, is the summation of the signal powers. This motivates us to use the 

trace operation to design a coherence measure between two PSD matrices. Let matrices 

A, B  MM be positive semi-definite (which also ensures Hermitian), the trace 

inequality is established as [75] 

      1 22 2
tr tr tr

p p pAB A B   (3-9) 

where tr(A) denotes the trace of matrix A, and p is an integer. Considering the special 

case when p = 1, we have 

     tr tr trAB A B   (3-10) 

Based on (3-10), the spatial coherence measure between PSD matrices A and B is 
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defined as 

   
   
tr

,
tr tr


AB

A B
A B

   (3-11) 

According to the matrix version of inner product and Kronecker product, (3-11) can be 

written as 

   
,

,
tr




A B
A B

A B
   (3-12) 

where A,B denotes the inner product of PSD matrices A and B, and  denotes the 

Kronecker product. The inner product measures the similarity among the bases in the 

matrices, and the trace of the Kronecker product gives the normalization. From the 

positive semi-definite property of the matrices and the inequality given by (3-10), the 

spatial coherence measure (A,B) is guaranteed to be mapped in the interval [0, 1]. 

Since the PSD matrix represents the signal field measured by the sensor array (in the 

second-order statistics), the proposed spatial coherence measure in (3-11) gives the 

“closeness” between two measured signal fields (named MSF hereafter). 

3.3.2 Properties of Proposed Spatial Coherence Measure 

The PSD matrices can be decomposed as, 

           2 2

1 1

and
M M

H H
i i i j j j

i j

 
 

  A A u A u A B B u B u B   (3-13) 

where i
2(A) and ui(A) denote the i-th eigenvalue and eigenvector of the PSD matrix A, 

respectively. By (3-13), the spatial coherence measure can be rewritten as 
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   (3-14) 

It can be seen that the coherence measure is the weighted similarity of the bases, and the 

eigenvalues give the weighting on each basis. When two MSFs belong to the same 

1-dimensional subspace, the spatial coherence measure gives a measure of unity. As 

one of the MSF’s dimension increases, the spatial coherence measure decreases 

according to the normalization of eigenvalues. Therefore, given PSD matrices A and B, 

several properties of the proposed spatial coherence measure can be listed below: 

Property 1: If A belongs to the null-space of B, then (A,B) = 0. 

Property 2: If A is rank-1, the self-coherence measure (A,A) = 1. As the 

eigenvalue spread of A increases, the (A,A) decreases to 1/M until the eigenvalue 

spread is uniform (i.e., incoherent field, A = 2I where 2 is the signal power). 

Property 3: If A or B is an incoherent field, then the spatial coherence measure 

equals to a constant value of (A,B) = 1/M (It can be easily observed from (3-11)). 

From Property 1, consider A as the PSD matrix of the desired MSF and B as the 

PSD matrix measured by the microphone array. Then (A,B) = 0 could be interpreted 

as the signals of the microphones do not contain the target source information. Thus, if a 

multiplicative gain of a post-filter is designed, the gain should be zero. For Property 2, 

the self-coherence measure (A,A) is derived from (3-14) as 



 42

 
 

 

4

1
2

2

1

,

M

i
i

M

i
i










 
 
 





A
A A

A

   (3-15) 

where (A,A) is purely determined by the eigenvalues of A. According to the natural of 

coherent speech sources, the eigenvalue spread of the desired MSF typically condenses 

on some low-dimensional subspace. Therefore, if (A,B) is used as a multiplicative 

post-filtering gain, the gain approaches to unity when there is only a desired signal. 

3.4 The Proposed Spatial Coherence Based Post-Filter 

(SCPF) 

3.4.1 A Description of the Proposed SCPF 

The proposed post-filter is designed by comparing the input PSD matrix x() 

with a desired one s() as, 
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tr

tr tr
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  (3-16b) 

and  
i jx x   is the cross-spectral density between the inputs at the i-th and j-th 

microphones. The post-filter uses the measure directly as the gain function and is called 
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spatial coherence based post-filter (SCPF). In practice, the PSD matrix x() can be 

estimated using a first-order recursive update formula 

 ˆ ˆ( , ) ( , 1) 1 ( , ) ( , )H
x xk k k k        Φ Φ x x   (3-17) 

where  is the forgetting factor close to unity. In practice, the desired MSF s() can 

be estimated empirically from the clean signal recordings of the microphone array. It is 

worth to note that the usage of s in (1-5)–(1-7) is not crucial since it is cancelled 

during the normalization of the spatial coherence measure. 

In order to compare with the previous algorithms, we consider the special case as 

the following: 

1)   The desired MSF is assumed to be a point source. 

2)   The sound fields are assumed to be homogeneous [33]. 

According to the these conditions, the theoretical PSD matrix can be expressed as 

           H
x s s s n n        Φ a a Γ   (3-18) 

where s, nare the power spectral densities of the desired signal and noise; and 

n() denotes the coherence matrix of the noise field. The manifold vector is usually 

selected such that   2

s M a . Note that   tr n M Γ . With the desired MSF 

and the theoretical PSD matrix, the SCPF can be expressed by 
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where GWiener() is the optimal Wiener filter as, 

   
 Wiener 1

G
 


 




  (3-19b) 

and sndenotes the SNR. The term () denotes the inner product of 

the coherence matrices of the desired signal field and the noise field. 
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  (3-20) 

This can be treated as a bias term to the optimal Wiener filter as shown in (3-19b). Note 

that () lies in the following range for all kinds of noise fields when the desired MSF 

is chosen as (1-5): 

  20 M    (3-21) 

The lower bound happens when the noise subspace lies in the null-space of the desired 

MSF, while the supremum happens when the noise MSF is identical to the desired MSF 

under the rank-1 signal model. Obviously, the SCPF is a function of the SNR and it 

reduces to the Wiener filter when () = 0. 

3.4.2 Mean Square Error Analysis of Proposed SCPF 

The mean square error (MSE) corresponding to the desired signal in the reference 

channel can be defined as 

      2
ˆMSE , ,kE s k s k      

  (3-22) 

where  ˆ ,s k  is the enhanced signal given by a beamformer or a post-filter. Applying 
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the SCPF on the reference microphone (microphone 1) results in the following MSE, 
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  (3-23) 

By substituting (3-19) into (3-23), we have 
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  (3-24) 

It can be shown that the Zelinski post-filter [46] is related to SCPF as: (see Appendix II) 
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  (3-25) 

By substituting the SCPF in (3-19) into (3-25), we have 
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  (3-26) 

In (3-26), it reveals that the Zelinski post-filter gives a negative gain 1/(M1) when 

() = 0 and () = 0. The negative gain will introduce unwanted phase flips and 

leaves some noisy time-frequency blocks in the post-filter output. Similarly, the MSE of 

the Zelinski post-filter can be derived by following the derivation in (3-23) as 
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   (3-27) 

The bias terms in (3-24) and (3-27) reveals interesting differences between the 

proposed SCPF and the Zelinski post-filter for different noise fields: 
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1)   () = M: the noise field is incoherent, i.e., n() = I. In this case, the 

Zelinski post-filter reduces to the optimal Wiener filter and the proposed 

SCPF has additional term as n() / [M 2(()+1)]. 

2)   () = 0: the noise field belongs to the null-space of as(). In this case, on the 

contrary, the proposed SCPF reduces to the optimal Wiener filter and the 

Zelinski post-filter has additional term as n()/ [(M1)2(()+1)]. 

It is worth to note that when the rank-1 desired MSF is chosen, the proposed SCPF is a 

special case of the post-filter algorithm [5]. In this case, the proposed SCPF can be 

explained as the ratio of the output power of the delay-and-sum (DS) beamformer to the 

sum of the input power. Note that the Zelinski and McCowan post-filters also belong to 

the same family. 

It is also interesting to analyze the MSE of the DS beamformer. Given the DS 

beamformer as      DS s s  w a a , which introduces no distortion on the 

desired signal and the MSE thereof is derived as 
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  (3-28) 

It can be seen that the MSE of the DS beamformer is independent of the desired signal. 

Before ending this section, we give an illustration to show the difference between 

the DS beamformer, the Zelinski post-filter, and the SCPF in the MSE sense. Consider a 

uniformly distributed linear array (ULA) with M = 4 sensors spaced at half-wavelength 

distance. The s() described in (1-5) was steered at  = 0. 
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(a) incoherent noise field 
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(b) a coherent noise impinged from  = 45 
Figure 3-2  MSE comparison among the post-filters and the DS beamformer. 

Two different noise fields were analyzed: a coherent interference impinged into the 

array at  =45 and the incoherent white sensor noise. In Figure 3-2, compared to the 

DS beamformer, it can be seen that both the post-filters attenuate more noise component 

at low SNRs and preserves more noise at high SNRs. Since speeches are highly 

nonstationary signal, the post-filters are able to give aggressive noise reduction at low 

SNRs, especially in the case of incoherent noise fields. 
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3.5 The Proposed Bias Compensated SCPF (BC-SCPF) 

3.5.1 Derivation of Proposed BC-SCPF 

Recall from (3-19), the noise reduction ability of the proposed SCPF is limited due 

to the additional term ()/ [M 2(()+1)]. Since () is the inner product of the 

coherence matrices of the desired signal field and the noise field, its effect becomes 

significant at low frequencies where the similarity between coherence matrices is high 

due to the insufficient spatial sampling. This can happen both in beamforming and 

multi-channel post-filtering techniques. When the desired signal is absent in the data, 

the optimal Wiener filter gives a zero gain, which completely removes the noise. 

However, the SCPF gives a gain of 

   

    
     SCPF 0

tr

tr tr
s n

s n

G  

 
 

 
 



Φ Φ

Φ Φ
  (3-29) 

where n() is the noise PSD matrix. Under the assumptions of homogeneous sound 

fields and point source model, the bias can be expressed as 

       
2 2

H
s n s

M M

   
  

a Γ a 
  (3-30) 

Since s() is designed a priori, the bias term  only depends on the noise PSD matrix 

n(). 

To decrease the effect of the bias , an intuitive way is to remove the bias and 

compensate the gain to map the value in the range of [0,1]. The result is called 

biased-compensated SCPF (BC-SCPF) as the following, 

   SCPF
BC-SCPF 1

G
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  (3-31) 

Note that the bias  lies in the following range for all kinds of noise fields according to 
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the range of () given in (3-21) 

1 1M     (3-32) 

By substituting (3-19) and (3-30) into (3-31), we have 
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  (3-33) 

This gives the optimal Wiener filter if the noise field coherence is perfectly measured. 

In essence, the BC-SCPF amplifies the small spatial deviation at low frequencies. It is 

also worth to note that the Zelinski post-filter is a special case of the proposed 

BC-SCPF with  = 1/M according to (3-25). 

For the bias estimation, (3-29) can be used if the PSD matrices of the desired 

signal and the noise, s() and n(), can be obtained in the training process. For the 

special case of the homogeneous sound fields, the information given by the noise PSD 

matrix n() equals to that of the noise coherence matrix n(). Furthermore, on-line 

implementation of the bias estimation can be achieved since the bias is the smallest gain 

of proposed SCPF at each discrete frequency if the noise field does not change. Thus, 

the minimum tracking skills [29–31] can be conducted and implemented on-line. 

3.5.2 Comparison between BC-SCPF and McCowan Post-Filter 

Under the assumption of homogeneous sound field and rank-1 signal model, the 

McCowan post-filter has been derived as [47] 
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  (3-34) 

where  
i jn n   and  ˆ

i jn n   are the actual and estimated noise coherence matrices 

of the aligned inputs. From (3-34) it can be easily seen that the McCowan post-filter 

reduces to the Wiener filter when the noise coherence matrix is perfectly measured. 

Similarly, the proposed BC-SCPF can be expressed with  
i jn n   and  ˆ

i jn n   

as following equation (see Appendix III) 
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  (3-35) 

By comparing (3-34) and (3-35), it can be observed that the error term e1 in the 

McCowan post-filter is the average of the ratios        ˆ ˆ1
i j i j i jn n n n n n       for 

each microphone pair, while the error term e2 in the proposed BC-SCPF is the ratio of 

averaged    ˆ
i j i jn n n n     and  ˆ1

i jn n  . It is known that the averaging before 

division may be robust to the estimation errors. In other words, the error term e1 is 

sensitive to the cases such as one of the estimated  ˆ
i jn n   approaches to unity or is 

significantly different from the true noise coherence matrix. The effects are alleviated 

after the averaging in the proposed BC-SCPF. Listed below are potential advantages of 

the proposed BC-SCPF comparing with Zelinski and McCowan post-filters. 
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1)   Multi-rank signal models can be directly adopted in the proposed method. 

2)   The assumption of homogeneous sound fields used in Zelinski and McCowan 

post-filters can be relaxed in the proposed method. 

3)   Compared to the estimation of the noise field coherence under each 

microphone pairs, the proposed method merged those as one bias term, which 

can be designed in many ways. 

4)   The proposed BC-SCPF is less sensitive to the individual estimation error of 

the noise coherence function (or the noise PSD function). 

3.6 Summary 

In this chapter, a spatial coherence measure is introduced and analyzed. The spatial 

coherence measure evaluates the similarity between the measured signal fields using 

power spectral density matrices. Based on this measure, the SCPF is derived. MSE 

analysis among the SCPF, the Zelinski post-filter, and the DS beamformer is discussed. 

Due to the similarity of the desired signal field and the noise field, a bias compensated 

solution, BC-SCPF, is proposed. It can be shown that the BC-SCPF is equivalent to the 

optimal Wiener filter if the bias or the noise power spectral density matrix is perfectly 

measured. Besides, the Zelinski post-filter is a special case of the proposed BC-SCPF. 

Theoretical comparison between the BC-SCPF and the McCowan post-filter is 

investigated, and advantages of the proposed BC-SCPF over the McCowan post-filter 

are listed clearly. 



 52

 

Chapter 4 

Experimental Results 

This chapter presents the analyses and simulation results of the proposed 

beamformers and post-filters. In Section 4.1, the superiority of using the norm 

constraint to the DL formulation is analyzed first, then comparisons among the proposed 

beamformers and prior works are investigated using a ULA with half-wavelength 

spacing. In Section 4.2, the proposed post-filters are compared with the Zelinski and 

McCowan post-filters using speech quality and noise reduction indices. In Section 4.3, 

the combinations of the proposed beamformer and post-filter are studied for the 

application of multi-channel speech enhancement with a steering uncertainty. 

4.1 Narrow-Band Simulations of the Proposed Robust 

Beamformer 

In this section, narrow-band simulations using a ULA with half-wavelength 

spacing are investigated, including the analyses of the norm constraint and comparisons 

among different beamformers. In narrow-band array processing, the ULA with 
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half-wavelength spacing is called standard linear array [1]. For multi-rank sources, we 

used the following model: 
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s d
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  (4-1a) 
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  (4-1b) 

which is a Gaussian model with incoherently scattered sources, and the parameter  

controls the angular spreading of the signal model. In the simulations, is chosen. 

For all the scenarios, the desired signal is always present in the training data cell. 

In Section 4.1.1, the norm constraint value () is analyzed with a standard linear 

array. The results were computed by the theoretical covariance matrices, and the 

relationship between () and () in (2-20) was used to find the equivalent diagonal 

loaded beamformer. In Section 4.1.2, the proposed beamformers were compared with 

the priori works. The comparison between the proposed nonlinear Kalman filters was 

also investigated. The sources and noises were produced using mutually uncorrelated 

white Gaussian noise. 

4.1.1 Analyses of the Norm Constraint Value for Half-Wavelength 

Spacing 

In this sub-section, we show that an appropriate selection of norm constraint value 

() = 0.035 is less sensitive to the input signal powers, central angle mismatches, and 

number of sensors than the selection of the diagonal loading level () with a standard 

linear array. For all the analyses, the theoretical covariance matrices of the signals were 

used. The equivalent () of a chosen () can be derived from the relationship in  
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Figure 4-1  Presumed and actual angular power density functions for 5 and 5 
central angle mismatch 

(2-20). 

For the Simulation 1, the sensitivity of () and () to the input signal powers 

are studied. A ULA of M = 10 sensors with half-wavelength spacing was used. The 

multi-rank signal model given in (4-1) was utilized with presumed central angle equal to 

0 and angular spread  = 5. The scattered desired source and interference with angular 

spread  = 5 impinged into the array from the central angles 5 and 45, respectively. 

Thus, 5 central angle mismatch was considered. The presumed and actual normalized 

angular power density functions are shown in Figure 4-1. The sensor noise power was 

set to 1, and the interference-to-noise ratio (INR) was 30 dB. The signal-to-noise ratio 

(SNR) varies from -20 dB to 30 dB. Figure 4-2 shows the output SINRs versus input 

SNRs for different selections of () and (). It can be seen that () = 102 (note that 

the sensor noise power = 1) and () = 0.035 (i.e., T() = 1/M + 0.035 = 0.135) are 

good choices considering all input SNR conditions. These values will be used as the 

best choices for the rest simulations. For the selection of (), high values give more 

penalties on the spatially white noise (or incoherent noise), which leads to the matched  
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(a) different diagonal loading levels () 
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(b) different norm constraint values () 

Figure 4-2  Output SINR vs. input SNR 

filter as ()  . The matched filter does not form nulls at the directions of 

interferences, hence it may have poor output SINR performance. As ()  0, it turns 

into the MVDR solution without norm constraint, which is sensitive to the array 

mismatches and has severe self-cancellation at high input SNRs. For the selection of 

(), it can be expected that the variation of output SINR with different () is 

relatively smaller than that with different (). This is because in (2-16) and (2-20), the  
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Figure 4-3  Output SINR vs. () for different input SNRs.  
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Figure 4-4  Output SINR vs. () for different input SNRs.  

factor of averaged input power has been removed by the division. When the norm 

constraint value ()  0, the weight vector turns into the matched filter. When () 

approaches to the upper bound given in (2-23), it gives the MVDR solution without 

norm constraint. From Figure 4-3 and Figure 4-4, the optimal selections of () and 

() for different input SNR conditions are illustrated. In the figures, the stars point out 

the optimal selections for each case. It is obvious that the optimal selection of () is  
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Figure 4-5  Comparison between the best selected () and ()                     

for different input SNR conditions 

related to the input signal power, while the optimal selection of () is less sensitive to 

the input signal power. Since the powers of speech signals are unknown a priori and 

even time varying, the proposed robust beamformer provide consistent SINR 

performances due to the insensitivity of () to the signal powers. It is interesting to 

note that there is a jump at ()  0.027 in Figure 4-4. A possible explanation of this 

phenomenon is that the feasible set that satisfies the norm constraint and the 

distortionless constraint is too small in this case. Thus the solution fails to reject the 

interference in order to satisfy the constraints, which gives the solution of the matched 

filter. Figure 4-5 gives the comparison between the best selected () and () for 

different input SNR conditions. Since the optimal choice of () dependents on the 

desired signal powers, the proposed norm-constrained robust beamformer with the 

optimal () gives better output SINRs for most SNR conditions. 

For the Simulation 2, the comparison between the best selected () and () for 

different central angle mismatches is analyzed. It can be seen from Figure 4-6 that for 

small angular mismatches, the proposed norm-constrained robust beamformer with the  
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Figure 4-6  Comparison between the best selected () and ()                     

for different central angle mismatches 
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Figure 4-7  Comparison between the best selected () and ()                     

for different number of sensors 

best selected () performs better than using the best selected diagonal loading. 

For the Simulation 3, the comparison between the best selected () and () for 

different number of sensors is investigated. Again, the superiority of using the 

norm-constrained robust beamformer is demonstrated in Figure 4-7. 
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In this section, the superiorities of using the norm constraint value () over the 

diagonal loading level () were demonstrated in the narrow-band simulations. 

However, for wide-band applications, the properties differ from frequency bands 

according to different directivities [1]. The parameter selection strategy for wide-band 

applications will be discussed in Section 4.3.1. 

4.1.2 Narrow-Band Comparisons 

In this section, the comparisons of the proposed beamformers and other adaptive 

beamformers are studied. The sensor noise power was set to 1. The simulation condition 

is the same as Simulation 1, except the generated simulated data is used. For each 

scenario, the average of 100 simulation runs is used to obtain each simulated point. The 

detailed parameter settings and abbreviations of the algorithms are listed below: 

1)   MRSMI: Multi-rank sample matrix inverse [20]. The algorithm was 

implemented by (2-8). 

2)   MRLSMI: Multi-rank loaded sample matrix inverse [20]. The algorithm was 

implemented by (2-10), where the diagonal loading level was chosen as () 

= 102 (note that the sensor noise power = 1). 

3)   CKF: Constrained Kalman filter [67]. The CKF uses the rank-1 model 

without the norm constraint and formulates the state space using the SCPO 

method. The parameter matrices Q() was set to a zero matrix, and the 

diagonal terms of R() were estimated as  2
1̂   and  5 2

1ˆ10    , where 

 2
1̂   was estimated using (2-41) with the forgetting factor  = 0.9. 

4)   RLSVL: Recursive least square with variable loading [71]. The RLSVL uses 

the rank-1 model and the GSC structure. A norm constraint was imposed on 

the nulled vector for improving the robustness. The forgetting factor and the 
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norm constraint were set as 0.999 and 0.2 as suggested in the paper [71]. 

5)   MRNCKF-FOE: Multi-rank norm-constrained first-order extended Kalman 

filter. The proposed beamformer was implemented using (2-35) by letting 

both (k) and (k) be zero. The parameter matrix Q() was set to a zero 

matrix, and R() was set as in (2-40) with  = 10-5 for all the proposed 

Kalman filters, where  2
1̂   was estimated using (2-41) with the forgetting 

factor  = 0.9. The norm constraint value () = 0.035 is chosen, which 

corresponds to the constraint () = 1/M + () = 0.135. 

6)   MRNCKF-SOE: Multi-rank norm-constrained second-order extended Kalman 

filter. The proposed beamformer was implemented using (2-35) with the 

second-order terms (k) and (k).  

7)   MRNCKF-U: Multi-rank norm-constrained unscented Kalman filter. The 

proposed beamformer was implemented using (2-36) and (2-37). 

For the first case, the convergences and beam patterns at SNR = 0 dB are studied. 

Figure 4-8a shows the output SINR performance versus the training size. The presence 

of the desired signal deteriorates the SINR performance due to the self-cancellation 

phenomenon, which can be observed in Figure 4-8b around the central angle of the 

desired source 5. Considering the performance of the pairs (MRSMI, MRLSMI) and 

(CKF, RLSVL), it can be observed that the norm constraint improves the SINR 

performance. It is also worth to note that the Kalman filter solutions seem to be more 

robust to the steering mismatches than the beamformers using the estimation of sample 

matrix. The Kalman filter is a close-loop system who constrains the weight vector to the 

desired array response at each iterationon; on the other hand, the sample matrix inverse 

method is an open-loop system who constrains the weight vector after the sample matrix 

is estimated. Therefore, the latter one can be easily affected by the contaminated sample 
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(a) Output SINR vs. training size 
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(b) Beam pattern 

Figure 4-8  Comparisons of the beamformers at 0 dB input SNR. 

matrix since the importance of the training data is the same when estimating the sample 

matrix. From the beam pattern, it is shown that the proposed beamformer, 

MRNCKF-FOE, gives the best output SINR since it has the smallest signal distortion at 

5 while keeping the same order of noise rejection at 45. 

For the second case, the convergences and beam patterns at SNR = 20 dB are 

studied. In Figure 4-9a, the large signal power slows down the convergence of the 
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(a) Output SINR vs. training size 
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(b) Beam pattern 

Figure 4-9  Comparisons of the beamformers at 20 dB input SNR. 

algorithms. The strong signal power leads to larger self-cancellation for the MRSMI and 

MRLSMI beamformers. Despite of the difference between using the Kalman filter and 

the sample matrix, this case also reveals that the chosen diagonal loading level of the 

MRLSMI beamformer is not appropriate under this SNR condition (see Figure 4-3). 

This demonstrates the advantage of using the norm constraint with a more robust 

selection of the norm constraint value. 
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Figure 4-10  Output SINR vs. input SNR for different beamformers 
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Figure 4-11  Output SINR vs. input SNR for proposed Kalman filters 

For the third case, the output SINR of the beamformers versus the input SNR is 

illustrated in Figure 4-10. The training size of this simulation is N = 500. When the 

input SNR is small, all the beamformers converges to the optimal MVDR solution. As 

the SNR increases, the differences between algorithms become obvious. It is shown that 

the proposed beamformer has the best performance through different SNR conditions. 
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Figure 4-12  Beam patterns of the proposed Kalman filters at 20 dB input SNR. 

For the last case, the output SINR of proposed Kalman filter solutions versus the 

input SNR is illustrated in Figure 4-11. It can be seen that the performances of the first- 

and second-order extended Kalman filters are almost the same. This indicates that the 

first-order approximation is good enough for our problem. Compared to the extended 

solutions, the unscented Kalman filter (UKF) has worse SINR performance. The UKF 

implicitly estimates the first- and second-order approximation terms of the Taylor 

expansion using sigma points. The sigma points were spread based on M  times 

eigenvectors of the error covariance P(k). An issue for the spreading of sigma points 

is invoked when some error dominants the covariance P(k). In this case, some sigma 

points are spread far away from the constraint sets and the neighborhood of the current 

state estimate, which can induce improper nonlinear transformations that degrade the 

performance of the UKF. In Figure 4-12, it can be seen that the large error of 

interference rejection enforces the noise reduction at both 45 and 5, which results in 

the self-cancellation. 
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4.2 Speech Enhancement Results of the Proposed SCPF and 

BC-SCPF 

In this section, we use three different noise fields with a local scattered desired 

source and several SNR conditions to evaluate the proposed post-filters. All the 

post-filters are processed on the output of the DS beamformer. The detailed parameter 

settings and abbreviations of the algorithms are listed below: 

1)   DS: Delay-and-sum beamformer. 

2)   SD: Super-directive beamformer [76]. The ratio of the PSDs of the sensor 

noise and the diffuse noise was chosen as -20 dB. 

3)   Zelinski: Zelinski post-filter [46]. The post-filter was implemented using (3-8), 

where the spectral densities were estimated using a first-order recursive filter 

with the forgetting factor  = 0.9. 

4)   McCowan: McCowan post-filter based on noise field coherence [47]. The 

post-filter was implemented using (3-2), (3-6) and (3-7). The coherence 

matrices were trained with 200 noise-only frames (3.2 s) for each case. 

5)   SCPF: The proposed method was implemented using (3-16) and (3-17). The 

forgetting factor  = 0.9 for estimating the PSD matrices was used for the 

proposed methods, which is the same as the factor used in Zelinski and 

McCowan post-filters. 

6)   BC-SCPF: The proposed method was implemented using (3-31) with the 

same training noise data as the McCowan et als. The biases were then 

computed using (3-29). 
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4.2.1 The Experimental Setup 

The simulations were generated by the room impulse response generator [77] with 

reverberation corresponding to the reverberation time RT60 = 503 ms using 

Sabine-Franklin’s formula [78]. There are three noise field conditions: 1) stochastically 

white noise where noises between microphones are uncorrelated (i.e., incoherent noise 

field); 2) babble noises which were uttered from four corners of the room to simulate a 

diffuse noise field; 3) speech interference which is a coherent source impinged into the 

array at the direction of 45°. The desired source impinged into the array at the direction 

0°, which is locally scattered with the angular distribution described by a Gaussian 

function with  = 10 in Figure 4-13. A ULA with four omni-directional microphones 

and 5 cm spacing was used. The simulation environment is illustrated in Figure 4-14. 

The sampling rate and the fast Fourier transform (FFT) size were 8 kHz and 256, 

respectively. A female voice and a male voice were used as the desired source and the 

interference respectively. The white and babble noise signals were taken from the 

NOISEX-92 database [79]. All the recordings were 60 seconds in duration and 

combined into different SNR conditions. 

4.2.2 Speech Quality and Noise Reduction Evaluations  

Three criteria were used to investigate the performance. The speech quality was 

evaluated by ITU-T P.862 PESQ (Perceptual Evaluation of Speech Quality) [80]. For 

noise reduction performance, SNRI (Signal-to-Noise Ratio Improvement) and TNLR 

(Total Noise Reduction Level) from ITU-T G.160 [81] were computed. The simulation 

results of PESQ score improvement, SNRI, and TNLR are listed in Table 4-1, Table 4-2, 

and Table 4-3, respectively. For all the indices, the higher score indicates the better 

performance. 
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Figure 4-13  Angular power density function for 10 

 

Figure 4-14  Simulation environment with locally scattered sources. 

The following discussions are based on the results given by Table 4-1–Table 4-3. 

First, consider the DS and SD beamformers. It is known that the delay-and-sum (DS) 

beamformer is optimal for the MVDR design in the incoherent noise field. Therefore, 

the DS beamformer is ensured to perform better than the SD beamformer in this case. 

The SD beamformer based on a modified coherence function increases the directivity at  
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Table 4-1  PESQ score improvement obtained by different input SNRs 

Input SNR → 

Algorithm ↓ 
5 dB 10 dB 15 dB 20 dB 

White noise (Incoherent) 

Original noisy PESQ 1.74 2.02 2.34 2.67 

DS 0.35 0.40 0.41 0.42 

SD 0.09 0.05 0.00 -0.03 

DS + Zelinski 0.87 0.78 0.66 0.57 

DS + SCPF 0.72 0.70 0.61 0.55 

DS + McCowan 0.87 0.78 0.66 0.57 

DS + BC-SCPF 0.89 0.80 0.68 0.59 

Babble noise (Diffuse) 

Original noisy PESQ 2.04 2.30 2.58 2.87 

DS 0.15 0.14 0.13 0.13 

SD 0.32 0.34 0.34 0.35 

DS + Zelinski 0.16 0.16 0.15 0.14 

DS + SCPF 0.19 0.17 0.16 0.15 

DS + McCowan 0.35 0.33 0.28 0.23 

DS + BC-SCPF 0.36 0.34 0.29 0.24 

Speech interference (Coherent) 

Original noisy PESQ 2.23 2.50 2.79 3.08 

DS 0.16 0.16 0.15 0.15 

SD 0.28 0.30 0.29 0.29 

DS + Zelinski 0.24 0.25 0.23 0.20 

DS + SCPF 0.25 0.24 0.22 0.20 

DS + McCowan 0.52 0.49 0.40 0.34 

DS + BC-SCPF 0.53 0.50 0.41 0.34 

low frequencies, or in other words, it amplifies the small deviations between 

microphones to obtain more noise reduction. As a result, the SD beamformer has better 

performance than the DS beamformer in the diffuse and coherent noise fields, where the 

insufficient spatial sampling has to be taken into account in these cases. However, it has 

some artifacts in the incoherent noise field due to the increased white noise gain [1]. 

Compared to the DS beamformer, the usages of post-filters give better performances.  
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Table 4-2  SNRI score obtained by different input SNRs 

Input SNR → SNRI (dB) 

Algorithm ↓ 5 dB 10 dB 15 dB 20 dB 

White noise (Incoherent) 

DS 6.06 5.79 5.47 4.96 

SD - 1.25 - 1.58 - 1.93 - 2.25 

DS + Zelinski 19.78 17.75 15.31 12.50 

DS + SCPF 13.75 12.73 11.45 9.73 

DS + McCowan 19.65 17.66 15.26 12.48 

DS + BC-SCPF 19.95 17.47 14.96 12.14 

Babble noise (Diffuse) 

DS 2.12 1.71 1.36 1.01 

SD 4.15 3.86 3.57 3.18 

DS + Zelinski 2.88 2.52 2.10 1.63 

DS + SCPF 2.61 2.21 1.83 1.51 

DS + McCowan 9.46 8.60 7.23 5.50 

DS + BC-SCPF 8.79 8.42 7.04 5.45 

Speech interference (Coherent) 

DS 0.71 0.52 0.32 0.08 

SD 1.29 1.18 1.00 0.75 

DS + Zelinski 1.80 1.73 1.47 1.10 

DS + SCPF 1.38 1.36 1.11 0.67 

DS + McCowan 9.91 8.87 6.91 4.73 

DS + BC-SCPF 9.97 9.13 7.29 5.11 

That means the post-filters followed by a DS beamformer have contributions to both the 

speech quality and noise reduction. 

Second, consider the Zelinski and the McCowan post-filters. The Zelinski 

post-filter is a special case of the McCowan post-filter when the noise field is 

incoherent. Hence, it can be seen that in the incoherent noise field, the performances of 

the Zelinski and the McCowan post-filters are almost the same. While in other noise 

fields, the consideration of noise field coherence provides evident performance 

improvements. Likewise, the proposed BC-SCPF after the bias compensation has 

evident performance improvements compared to the proposed SCPF. However, unlike  
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Table 4-3  TNLR score obtained by different input SNRs 

Input SNR → TNLR (dB) 

Algorithm ↓ 5 dB 10 dB 15 dB 20 dB 

White noise (Incoherent) 

DS 5.55 5.42 5.14 4.63 

SD - 2.93 - 2.94 - 2.97 - 3.03 

DS + Zelinski 21.10 18.48 15.60 12.49 

DS + SCPF 14.62 13.26 11.69 9.78 

DS + McCowan 20.96 18.39 15.55 12.47 

DS + BC-SCPF 21.38 18.34 15.42 12.31 

Babble noise (Diffuse) 

DS 0.64 0.60 0.49 0.20 

SD 3.44 3.36 3.18 2.77 

DS + Zelinski 1.95 1.77 1.49 1.05 

DS + SCPF 1.66 1.50 1.28 0.89 

DS + McCowan 9.70 8.44 6.91 5.13 

DS + BC-SCPF 9.38 8.53 6.98 5.19 

Speech interference (Coherent) 

DS 0.66 0.67 0.71 0.50 

SD 1.85 1.86 1.89 1.64 

DS + Zelinski 1.94 1.82 1.73 1.38 

DS + SCPF 1.70 1.61 1.56 1.27 

DS + McCowan 13.26 11.53 9.18 6.60 

DS + BC-SCPF 13.70 11.98 9.63 7.07 

the relationship between the Zelinski and the McCowan post-filters in the incoherent 

noise field, the bias compensation still improves the performance in this scenario. For 

comparison between the Zelinski post-filter and the proposed SCPF, one can refer to the 

theoretical analysis in Section 3.4.2 to see the effect of different noise fields on (). In 

general, the Zelinski post-filter has better performance than the SCPF in the incoherent 

noise field. For other noise fields, it depends on the overall effect of (). Besides, it 

can be seen from the SNRI and TNLR scores that the SCPF has less noise reduction 

than the Zelinski post-filter. However, the noise reduction performance does not 

guarantee a better speech quality since the point source model used in the Zelinski 
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post-filter may introduce the signal distortion due to the self-cancellation (refer to the 

PESQ improvements in diffuse and coherent noise fields). 

Finally, the performance of the McCowan post-filter and the proposed BC-SCPF is 

discussed. It can be seen that the proposed BC-SCPF has better speech qualities than the 

McCowan post-filter among all the noise fields. The results show that the small 

increment of the noise reduction of the McCowan post-filter does not give a better 

speech quality since the signal distortion has small impact in the noise reduction indices. 

Also, the simulation results demonstrate the superiority of the proposed BC-SCPF with 

a more accurate signal model. 

4.3 Speech Enhancement Results of the Proposed Speech 

Enhancement System (Beamformer + Post-Filter) 

In this section, according to the insufficient spatial sampling at low frequency 

bands, the relaxation of the constraints for the wide-band beamformers based on the 

Kalman filter is analyzed in Section 4.3.1. Next, the combinations of the proposed 

beamformer MRNCKF and post-filter BC-SCPF are evaluated using the speech quality 

and the noise reduction indices in Section 4.3.2. 

4.3.1 Relaxation of the Constraints at Low Frequency Bands 

For narrow-band applications, we showed the superiorities of the proposed 

multi-rank norm-constrained beamforming based on the Kalman filter (MRNCKF) with 

a standard linear array (i.e., a ULA with half-wavelength spacing) in Section 4.1. The 

half-wavelength spacing provides the best spatial information among different 

wavelengths [1]. However, for wide-band applications, the optimal weight vector norm 
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and the array response of the multi-rank signal model vary from wavelengths or 

frequencies. Thus, the previous superiorities will not persistent for all frequency bands. 

In this dissertation, we propose to relax the strength of the distortionless and norm 

constraints at low frequency bands for wide-band applications. The main objective is to 

allow more interference rejection for the Kalman filters. At low frequency bands, the 

wavelengths of the observe signals can be greater than the spacing between the sensors. 

In this case, the sensors are insufficient to describe the spatial differences between 

sources. In the following, the impacts of insufficient spatial sampling on the 

distortionless and norm constraints are investigated. 

First, consider the norm constraint    2
,k T w . It is known that the weight 

vector norm is getting large with smaller steering mismatch due to the contradiction of 

objectives of the distortionless and minimizing output power [26]. The high spatial 

coherence of the sources at low frequency bands (which corresponds to long 

wavelengths) accelerates this phenomenon. As a result, the weight vector norm of the 

MVDR beamforming is getting higher for lower frequency with coherent noises. Figure 

4-15 illustrates the squared vector norm of the optimal weight   2

opt w  versus the 

ratio between the array spacing and the wavelength for different noise fields. For the 

simulation condition, a ULA of M = 4 sensors was used. The multi-rank signal model 

given in (4-1) was utilized with presumed central angle equals to 0 and angular spread 

 = 5. The theoretical covariance matrices of the sources are used for the computation 

of the optimal weight and output SINRs. For coherent interference case, the scattered 

desired interference with angular spread  = 5 impinged into the array from the central 

angle 45. From Figure 4-15, it can be seen that there is no need to add norm constraint 

for the incoherent noise field (i.e., spatially white). For coherent noise fields, the vector 

norms at low frequency bands are getting larger with the increasing interference power. 
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Figure 4-15  Squared norm of the optimal weight vs. the ratio between the array 

spacing and the wavelength for different noise fields. 
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Figure 4-16  The error of the distortionless constraint vs. the ratio between the array 

spacing and the wavelength. 

It becomes the worst in the diffuse noise field since the noise is also present in the 

desired directions. According to the observations, we propose to keep the norm 

constraint value T() but relax the strength of the norm constraint at low frequency 

bands by increasing the variance parameter 3
2(). The reason to keep T() is that the 

vector norm correlates to the white noise gain [1]. A large white noise gain can amplify 
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the unwanted noise, thus we would like to keep the value T() close to 1/M. According 

to the SCPO method introduced in Section 2.3.3, the larger 3
2() gives less penalty on 

the error of norm constraint. Thus, the system can put more emphasis on the objective 

of interference rejection. 

Next, consider the distortionless constraint      , , 1H
sk k   w Φ w


. For 

norm-constrained vectors, the error of the distortionless constraint becomes smaller at 

low frequency bands due to limited spatial information. This can be illustrated by using 

the steering vector as()/M for all frequency bands. The error of the distortionless 

constraint is given by 

       
2

Err 1
H
s s s

M

  
  

a Φ a


  (4-2) 

It can be observed from Figure 4-16 that the error increases with the frequency. Here, 

we also suggest relaxing the distortionless constraint at low frequencies since the 

unconstrained solution is acceptable with small distortion. The relaxation can be done 

by increasing the variance parameter 2
2(). With the proposed estimation of the 

parameter matrix  ˆ R , we only need to increase the parameter . The modified  

should be a function of frequency and number of sensors. Here, we propose to design 

the frequency dependent parameter based on the modified squared beam pattern with 

the largest angle deviation as ( [1], Eq. 2.96 ) 
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  (4-3) 

where d is the spacing between sensors, f is the continuous frequency, c is the sound 

velocity. fT = c/Md is the first null of the beam pattern. Since we only tend to relax  
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Figure 4-17   vs. frequency. 

the constraints at low frequencies, the parameters are cut to small value  (e.g., 10-5). 

Figure 4-17 gives an illustration with M = 4 and d = 0.05 m. With the modified 

parameter (), we can strengthen the interference rejection at low frequencies. This 

parameter will be applied to all the Kalman filters in the next section. 

4.3.2 Speech Quality and Noise Reduction Evaluations 

In this section, we continue the Simulation 1 for the wide-band application. A 5 

angle mismatch of the desired source with angular spread  = 5 was considered, as 

shown in Figure 4-1. The testing database is the same as in Section 4.2, except for the 

angle mismatch of the desired source and the angular spread. The beamformers were 

trained using 60 second recordings for each case, where the desired signal was present 

in the training data. The trained beamformers were applied as fixed spatial filters, and 

the proposed post-filter BC-SCPF was imposed afterward for further improvement. The 

speech indices introduced in Section 4.2.2 were used to evaluate the speech quality and 

noise reduction performances. The results are shown in Table 4-4–Table 4-6. 
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Table 4-4  PESQ score improvement with 5 angle mismatch 

Input SNR → 

Algorithm ↓ 
0 dB 5 dB 10 dB 15 dB 

Original noisy PESQ 1.96 2.23 2.51 2.80 

DS 0.16 0.14 0.15 0.13 

CKF 0.68 0.49 0.28 0.00 

MRNCKF 0.81 0.68 0.46 0.14 

DS + BC-SCPF 0.53 0.51 0.46 0.37 

CKF + BC-SCPF 0.83 0.70 0.49 0.16 

MRNCKF + BC-SCPF 0.89 0.86 0.67 0.31 

Table 4-5  SNRI score with 5 angle mismatch 

Input SNR → SNRI (dB) 

Algorithm ↓ 0 dB 5 dB 10 dB 15 dB 

DS 0.85 0.73 0.60 0.45 

CKF 6.98 6.30 4.19 0.95 

MRNCKF 7.57 6.94 4.48 0.62 

DS + BC-SCPF 10.55 10.43 9.10 6.94 

CKF + BC-SCPF 14.53 13.92 10.81 5.36 

MRNCKF + BC-SCPF 14.85 14.29 11.01 5.45 

Table 4-6  TNLR score with 5 angle mismatch 

Input SNR → TNLR (dB) 

Algorithm ↓ 0 dB 5 dB 10 dB 15 dB 

DS 0.72 0.81 0.87 0.93 

CKF 11.29 10.27 7.47 0.98 

MRNCKF 11.42 10.46 7.48 0.92 

DS + BC-SCPF 16.16 14.75 12.49 9.72 

CKF + BC-SCPF 22.72 20.89 16.75 9.47 

MRNCKF + BC-SCPF 22.73 20.90 16.61 9.26 

First, considering the DS, CKF, and proposed MRNCKF (with FOE) beamformers. 

The DS beamformer has consistent performance since it is data independent. The CKF 

and proposed MRNCKF beamformers work well at low SNRs. According to the 

narrow-band simulation, both the beamformers converge to the optimal MVDR 
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beamformer when the input SNR approaches to zero. Compared to the CKF, it can be 

observed the proposed MRNCKF is more robust to the mismatched desired signal since 

it provides better speech quality (i.e., PESQ) and noise reduction (i.e., SNRI and TNLR). 

However, both beamformers degrade as the SNR increases. At 15 dB SNR, both the 

data dependent beamformers are worse than the DS beamformer due to the 

self-cancellation (or signal distortion here). Second, the results show that the proposed 

post-filter, BC-SCPF, always gives better speech quality and noise reduction. 

In the end, we give an illustration of the waveforms and spectrograms at 5 dB SNR  
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Figure 4-18  Waveforms and spectrograms at SNR = 5 dB. 

as in Figure 4-18. It can be observed that the DS beamformer provides bad noise 

reduction at low frequency bands. Further, compared to the proposed MRNCKF, the 

CKF has severe signal distortion at high frequency bands due to the self-cancellation. 

4.4 Summary 

In Section 4.1.1, the superiority of using the norm constraint to the diagonal 
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loading formulation is analyzed in the narrow-band. It is shown that an proper choice of 

the norm constraint value () (or T() = () + 1/M) can be found, which is robust to 

the unknown signal powers, angle mismatches, and number of sensors. In Section 4.1.2, 

the proposed beamformer, MRNCKF, is compared with several methods in the 

narrow-band. The simulation results show that Kalman filter structure is more robust 

than using the estimation of sample matrix. Besides, the norm constraint and diagonal 

loading are demonstrated to improve the output SINR when the desired signal is present 

in the training data and angle mismatch exists. It is also shown that the performances of 

the proposed beamformer are better than the rank-1 beamformers (such as CKF and 

RLSVL) with a more similar multi-rank signal model. The comparison of the nonlinear 

Kalman filters is also studied. For our problem, the performances of the first- and 

second-order extended solutions are almost the same. This indicates that first-order 

approximation is enough in our problem. The UKF has worse performance, which can 

be caused by the spreading of the sigma points. 

In Section 4.2, the proposed post-filters are evaluated using speech quality and 

noise reduction indices under three types of noise fields. The results show that the 

proposed BC-SCPF provides the best speech quality by using a more accurate 

multi-rank signal model. 

In Section 4.3, the wide-band application of the proposed beamformer is 

investigated. To deal with the insufficient spatial sampling problem at low frequencies, 

the relaxation of the constraints is proposed to tune the parameters of the Kalman filters 

in Section 4.3.1. Next, the combinations of the beamformers and the proposed 

BC-SCPF are evaluated through speech quality and noise reduction indices in Section 

4.3.2. The results show the superiority of the proposed MRNCKF for most SNR 

conditions. It can be observed from the spectrograms that the DS beamformer has small 

noise reduction and the CKF has signal distortion at high frequencies.
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Chapter 5 

Conclusions and Potential Research 
Topics 

5.1 Conclusions 

For the proposed beamformer, the simulations show that the superiority of using 

the norm constraint to the diagonal loading formulation for the narrow-band application. 

Recall that the large norm of the MVDR beamformer is caused by the contradiction of 

the objectives of disrotionless and power minimization. When the desired source is 

present in the training data with a small angle mismatch, there is a sharp transition to 

meet the distortionless constraint while minimizing the signal. This transition results in 

the large norm. Thus, it makes sense that the norm constraint does not work for large 

angle mismatches. The other thing is the spreading of the scattered source. If the angular 

spreading of the scattered source is too large, the advantages of the multi-rank MVDR 

beamformers will be limited to the number of sensors. Similar situation happens when 

the spatial sampling is insufficient.  

Besides, the comparison among the nonlinear Kalman filters for our quadratic 

problems was discussed in Section 4.1.2. It is shown that the first- and second-order 
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extended solutions almost have the same performances when the initial conditions are 

properly set. However, we observed that the second-order approximation is more 

sensitive to the improper initial conditions, which can even converge to other worse 

results. 

For the proposed multi-channel post-filter, the bias compensated solution gives the 

optimal Wiener filter theoretically, as the McCowan post-filter did. The results show 

that with a more accurate multi-rank signal model, the proposed BC-SCPF has better 

speech quality than the McCowan post-filter. Furthermore, the similarity between the 

coherence matrices of the desired sound field and the noise field can be merged into a 

single real-valued bias. Several noise level estimation skills can be adopted to estimate 

the bias. Compared to the estimation of the noise coherence function, the bias 

estimation has fewer variables to be estimated. Besides, the noise level estimation can 

be carried out in the presence of the desired signal, while the estimation of noise 

coherence function is carried out during noise-only period. Finally, it is relatively easy 

to describe the similarity between the multi-rank signal models and the noise field using 

the proposed post-filters. This provides a more flexible design for the real-world 

environments. 

5.2 Potential Research Topics 

The future researches can be summarized as follows. 

1)   This dissertation proposed the multi-rank norm-constrained Kalman filter 

using the SCPO method. Restricted to the SCPO method, only equality 

constraints can be applied. However, inequality constraints can be applied 

using the projection method in the constrained Kalman filtering [55–59]. The 
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benefit of using inequality norm constraint occurs when signal is not always 

present in the training data. But the drawback is that the formulation of the 

error covariance is more complicated for implementation. This is left as the 

future study. 

2)   The beamformer and post-filter proposed in this dissertation is not closely 

coupled. In [5], the design of the post-filter based on a known beamformer is 

investigated. However, the best design of the post-filter with an adaptive 

beamformer is still an opening problem, and it is interesting to impose the 

multi-rank signal models into the beamformer and post-filter designs. 

3)   For wide-band applications, the best way to design the parameters for the 

Kalman filter has not been analytically solved. In Section 4.3.1, we proposed 

to relax the constraints at low frequencies based on a modified model. This 

seems to work and it provides better noise reduction at low frequencies. 

However, the improvement to the speech quality is not so clear. For the future 

study, the database that measuring the speech quality (such as PESQ) can be 

used to train the best parameters for the Kalman filter. 
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Appendix I 

In this appendix, the derivation of the SOE Kalman filter is given in detail. This 

appendix clearly points out the assumptions and approximations in the derivation of the 

SOE Kalman filter. For more reference, the reader can refer to the paper [61]. In our 

case, we use the Kalman filter as an adaptive filter. Thus, the state transition is linear 

and only the output matrix is considered as nonlinear. For brevity, the frequency index 

 is omitted in the derivation, and the state-space representation is recalled as follows: 

State equation 

1
s

k k k w w v   (A-1a) 

Measurement equation 

( ) m
k k z f w v   (A-1b) 

where wk is the state at time index k and ( )kf w  is the nonlinear output function. 

Assumption 1: The process noise s
kv  and the measurement noise s

mv  are zero-mean 

and mutually uncorrelated. 

The objective is to minimize errors between the true state and the estimated states 

in the state equation and the measurement equation in the MSE sense. Let us denote the 

a posteriori and a posteriori errors as ˆk k k
  e w w  and ˆk k k

  e w w , where ˆ k
w  
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and ˆ k
w  are the a priori and a posteriori estimate of the state using the state and 

measurement equations, respectively. Using the state equation (A-1), the a priori state 

estimate at time k is estimated by the a posteriori state estimate at time k1 as 

1ˆ ˆk k
 

w w   (A-2) 

It can be seen that the estimate in (A-2) is unbiased since the process noise s
kv  is 

assumed to be zero-mean (one can take expectation on (A-1) to find this). Next, the a 

priori state error covariance  H

k k kE      
P e e  can be expressed as 

  

  

  
1 1 1 1 1 1

1 1 1 1

ˆ ˆ

ˆ ˆ

H

k k k k k

Hs s
k k k k k k

Hs s
k k k k

E

E

E
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  (A-3) 

Assumption 2: The a posteriori error k
e  and the process noise s

kv  are assumed to be 

uncorrelated, i.e.,  H s
k kE     

e v 0 . 

By the Assumption 2, (A-3) can be expressed as 

   1 1 1 1

1

H Hs s
k k k k k

k

E E  
   




          
 

P e e v v

P Q
  (A-4) 

Now, consider the update from the measurement equation. Since the output 

function ( )kf w  is nonlinear, the Taylor series expansion is used to approximate the 

function. In our problem, the function is quadratic. Thus, the second-order 

approximation is sufficient to describe the nonlinear function.  
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Approximation 1: Assume the complex-valued nonlinear function ( )kf w  is 

second-order differentiable around the nominal point ˆ k
w , then the nonlinear function 

can be expanded as [61] 
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  (A-5) 

where 0, , 1, , 0
T

i
i th

    
   and P is the number of measurement equations. 

Given Approximation 1, the a posteriori state estimate can be updated in a linear 

form 

 ˆ ˆ ˆk k k k k
       w w K z f w π   (A-6) 

where Kk is the Kalman gain to be estimated and kπ  is the correction term to ensure 

that ˆ k
w  is unbiased, i.e., ˆk k kE E         e w w 0 . Given (A-6), the a posteriori 

error can be rewritten as 
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  (A-7) 

Assumption 3: Assume the a priori state estimate is unbiased, i.e., kE    e 0 . 

According to Assumption 1 and Assumption 3, the bias kπ  can be obtained by taking 

expectation on (A-7) and equating to zero as 
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1

1
tr
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P Hi
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 wwπ F e e   (A-8) 

Note that the Kalman gain Kk is a random variable and it should not be taken out the 

expectation operator. However, in the derivations of a posteriori error k
e  and the a 

posteriori state error covariance  H

k k kE      
P e e , the Kalman gain is regarded as a 

determinant matrix, as the way used in the traditional Kalman filter. 

Approximation 2:          tr tr tr
H Hi i i

k k k k kE E                          ww ww wwF e e F e e F P  

By Approximation 2, kπ  can be expressed by 
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1
tr
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P
i

k i k
i





      
 wwπ F P   (A-9) 

Now, based on (A-7), we try to find the a posteriori state error covariance k
P . 

Before the derivation of k
P , we give the following assumption. 

Assumption 4: The a priori error k
e  and the measurement noise m

kv  are assumed to 

be mutually uncorrelated, i.e., 
*

0m
k ki j

E           
e v  for all i and j. 

According to Assumption 1, Assumption 3, Assumption 4, and (A-7), k
P  can be 

expressed as (here, kπ  and Kk are considered as determinant values) 
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  (A-10) 

Assumption 5: Assume k
e  is complex Gaussian (s.t. the joint distributions are also 

Gaussian), then its 3rd-order moment  *, , , 0,  , ,k l k m k nE e e e l m n       
 

Since 
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  (A-11) 

By Assumption 5 and (A-11), (A-10) can be rewritten as 
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Substituting k into (A-12), we have 
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Lemma 1: If x is a zero-mean, Gaussian random vector with covariance matrix , then 
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where A and B are symmetric matrices. 

Using Lemma 1, (A-13) can be rearranged as 
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where  
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Finally, the Kalman gain Kk can be derived by minimizing the trace of the a 

posteriori state error covariance k
P . By taking trace operation on (A-14a), we have 
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For taking derivatives on the traces, the following lemma can be used. 

Lemma 2: *
Tr H    

AX A
X

,  *
Tr
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X
, *
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XAX XA
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Taking derivative on (A-15) and using Lemma 2, we have 
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  (A-16) 

The Kalman gain is obtained by 

  1H H
k k k k

   w w wK P F F P F R Λ   (A-17) 
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Appendix II 

This appendix is to find the relationship between the proposed SCPF and the 

Zelinski post-filter. To compare with the Zelinski post-filter, the special case of the 

proposed SCPF in (3-19) is used. Recall in Section 3.2, before the post-processing of 

the Zelinski’s and McCowan et als methods, the microphones have to pass a time 

alignment module to adjust the mismatch between microphones, as described in (3-1). 

Thus, the PSD matrix of the aligned input vector can be denoted as  x Φ  and the 

SCPF can be rewritten as 
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  (A-18) 

where 1 is the all-one vector and      tr trx x Φ Φ   if the all the magnitudes of 

the elements in as are equal to unity.  
i jx x   is the cross-spectral density between the 

aligned inputs at the i-th and j-th microphones. In this case, the SCPF can be interpreted 

as the ratio between the average of total spectral densities and the average of 

auto-spectral densities. Since the Zelinski post-filter is the ratio between the average of 

cross-spectral densities and the average of auto-spectral densities (as in (3-8)), the 

relationship between the SCPF and the Zelinski post-filter can be easily derived by 
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  (A-19) 

Or it can be written as 

   SCPF
Zelinski

1

1 1

G M
G

M








  (A-20) 

Note that the covariance matrix  x Φ  is Hermitian, hence    
i j j ix x x x      

  2
i jx x    . 
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Appendix III 

This appendix analyzes the proposed BC-SCPF. To compare with the McCowan 

post-filter, the assumptions of homogeneous sound fields and point source model are 

used. Assume the actual and estimated noise coherence matrices from the microphones 

are n() and  ˆ
n Γ . Then according to (3-30) and (3-33), we have 
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  (A-21) 

Using the time alignment expression similar to (A-18) in Appendix II, (A-21) can be 

rewritten as 
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where  
i jn n   and  ˆ

i jn n   are the actual and estimated noise coherence matrices 

of the aligned inputs. 


