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Abstract

Beamforming and multi-channel post-filtering are two major techniques in
microphone array speech enhancement. In” conventional algorithms; the relationship
between a source to the microphones-is-usually-deseribed by delays or relative transfer
functions (RTFs) of ,each microphone pair. The description of the source model is
limited to the rank-1 spatial correlation. However, in the real sound propagation of the
source, the spatial correlation is typically multi-rank due to local scattering, wavefront
fluctuation, or reverberation. Thus, this dissertation proposes the beamforming and
multi-channel post-filtering algorithms based on multi-rank signal models. The
proposed algorithms can alleviate the self~cancellation phenomenon of the desired
source during noise reduction and improve the speech quality.

For the proposed beamforming algorithms, multi-rank signal models and norm
constraint are introduced into the minimum variance distortionless response (MVDR)
beamforming problem for reducing the sensitivity of the design against array

uncertainties. Based on the pseudo-observation method, the beamforming problems are

il



transformed into state spaces and solved by the first- and second-order extended
Kalman filters (EKF) and the unscented Kalman filter (UKF). In addition, the selection
of the norm constraint value is completely studied. The simulations show that the usage
of the norm constraint is more robust to the unknown signal powers and model errors
compared to the usage of the diagonal loading (DL) technique.

For the proposed multi-channel post-filtering algorithms, a novel spatial coherence
measure is defined and multi-rank signal models are firstly conducted into the
post-filtering development. The spatial coherence measure evaluates the similarity
between the measured signal fields' wusing. power .spectral density matrices. A
multi-channel post-filter'is proposed based on this measure. Under this measure, the
bias term due to the similarity of the-desired signal field and thetnoise field is further
investigated and'a solution based on-bias compensation is proposeéd. It can be shown
that the compensated solution is equivalent to the optimal Wiener filter if the bias or the
noise power spectral density matrix is perfectly measured. The theoretical and empirical
results demonstrate that the proposed-bias=compensated post-filter provides better

speech quality with'a,more accurate signal model.
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Chapter 1

Introduction

1.1 Overview of Multi-Channel Speech Enhancement

Multi-channel speech enhancement has attracted much-attention-in recent years. In
the real world, desired speech signals‘are‘often corrupted by background noises, speech
interferences, and reverberation. For more than two microphones, there are two main
categories of speech ' enhancement approach: beamforming and multi-channel
post-filtering. Beamforming has been applied to several narrow- or wide-band signals
processes, which can be defined by a'filter-and-sum process [1] in the conventional
sense. A well-known designing strategy is to preserve the signal from the direction of
interest while attenuating others, which can be achieved by the minimum variance
distortionless response (MVDR) algorithm [1-3]. The MVDR beamforming (or
so-called Capon beamforming) is optimal in the mean square error (MSE) sense when
the interference-plus-noise power spectral density (PSD) matrix can be obtained and
there is no mismatch on the presumed steering vector. Typically, adaptive filtering

techniques are applied to estimate the PSD matrix and additional training processes or
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Figure 1-1 Implementation of a beamformer with a multi-channel post-filter.

a priori information of signal presence is needed for offline or online implementation
[1-4]. On the othér hand, the multi-channel post-filtering, which considers both the
spatial information and the signal-to-noise ratio (SNR), can be designed in a more
general way. Simmer et al. [5] show that the optimal minimum mean square error
(MMSE) solution can be decomposed into an MVDR beamformer followed by a
single-channel Wiener filter.| This solution-is-alsorealled a multi-channel Wiener filter.
A typical implementation of a beamformer with a multi-channel post-filter is illustrated

in Figure 1-1.

1.1.1 Overview of Beamformers

Beamformer is a spatial filter which can be defined by a filter-and-sum process. In
the beamforming design, the major objective is to control the mainlobe, nulls, and the
sidelobe level according to the spatial characteristics of the sound fields. Figure 1-2
gives an illustration of the beam pattern. Fixed beamformers aim to design a filter for
some desired spatial response. The commonly used delay-and-sum (DS) beamformer [1]

is known to be optimal in an incoherent noise field with the point source model
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assumption. In coherent fields, the spatial coherence is high at low frequencies due to
the insufficient spatial sampling. Some beamformers.are designed tokeep the directivity
[1] through frequencies such as constant. - directivity- beamformers [6—8] and
super-directive beamformers [9-11]..Besides, due to the uncertainty; of steering error,
some fixed beamformer aim to extend the bandwidth [1] of the mainlobe to reduce the
sensitivity to the uncertainties.

When the spatial information. is unknown.@ priori or time-varying, adaptive
beamformers are able to adjust their filter “responses according to the defined
optimization problem and the training data. The most popular optimization strategy is
the MVDR problem [1-3]. Cox et al. [2] showed that the MVDR problem is equivalent
to maximize the improvement in the signal-to-interference-plus-noise ratio (SINR) or
the array gain. Under this problem, a famous method called generalized sidelobe
canceller (GSC) [12-17] decomposes the MVDR beamformer into two mutually
orthogonal subspaces follower by a noise canceller. Several algorithms follow this

structure to design the null-space (or blocking matrix) of the given fixed beamformer



[16][17], or the noise canceler [17-19].

The major problem of the MVDR beamforming is the sensitivity to the array or
propagation uncertainties in the presence of the desired signal. Shahbazpanahi et al. [20]
investigated the MVDR problem with multi-rank signal models to reduce the model
errors. Rather than wusing multi-rank models [20-22], several robust adaptive
beamforming algorithms [2][23-28] have been designed to improve the robustness
against uncertainties. One of the famous techniques is called diagonal loading (DL)
[2][23][24]. The DL can be explained as imposing additional spatially white noise on
the input covariance matrix. "The other equivalent explanation is to add a norm
constraint on the MVDR problem [2]. Several robust adaptive beamforming approaches
can be categorizeddinto this family-[23-27]. The major.drawback:of DL is that it is not
clear how to decide the diagonal loading level 'and the level depends on the unknown

signal powers.

1.1.2 Overview of Post-Filters

Most post-filtering algorithms aim to enhance the: estimation of the Wiener
post-filter by a more accurate estimation of SNR. The ‘SNR estimation for speech
enhancement can be implemented based on ‘the minimum statistics for the stationary
noise [29-31], or the spatially pre-processed power [32][33]. Most of them are
energy-based. Given the SNR or noise estimates, some post-filtering algorithms
emphasize on the designs of different objective functions, such as the MMSE estimator
under spectral amplitude domains [33—37] or the psychoacoustic masking [38—40].

Alternatively, the phase information of a microphone pair has already been used in
blind source separation (BSS) [41] as well as the computational auditory scene analysis

(CASA) [42]. Aarabi et al. [43—45] provide a different view of the SNR from the phase



error perspective for the dual-channel case. In their work, the relationship between the
phase error and the SNR was derived [43]. However, the idea of phase error can only be
applied to the case of two-microphone. In addition to the SNR estimation, some
post-filtering algorithms directly estimate the spectral densities [46—48]. Like the case
of phase error, the cross-spectral density is usually defined between two microphones.
For more than two microphones, the common practice is to perform average among all
distinct microphone pairs [46][47]. Although this might enhance the robustness of the
estimation, there is still no formal proof regarding its effectiveness. In particular, it does
not consider the spatial arrangement of microphones,i.c., the advantages of using more
than two microphones “is not- fully explored. In addition,. the description of the
relationship from the source to the-microphones is limited to thefrank-1 signal model,
which is not sufficient to répresent the real world 'source where local scattering,

wavefront fluctuation, or reverberation can happen.

1.2 Problem:Formulation and Multi-Rank Signal Models
1.2.1 Framework of'Beamforming and Post-Filtering

Consider that a linear array with M omni-directional microphones and the

observation in the m-th microphone at time instant ¢ is given by

X, () =Ry, (£)xs" (1) + D i () +vi, (1) (1-1)

where s'(7) is the coherent desired signal; iy, (¢) is the p-th interference sampled in the
m-th microphone; v,,/(£) is the sensor noise sampled in the m-th microphone; 4,,'(¢) is the
impulse response of the desired signal corresponding to the m-th microphone; * denotes

convolution; and the desired signal and the noise are assumed to be zero mean and



mutually uncorrelated. Assuming time-invariant transfer functions, the observations are
divided in time into overlapping frames by the application of a window function and
analyzed using the short-time Fourier transform (STFT) and expressed in the

time-frequency domain in a vector form as,

X(w,k) =h(o)s(w,k)+i(w,k)+v(o,k)

(1-2)
=s(w,k)+n(w,k)

where o and k are discrete frequency and frame indices respectively. n(@,k) is the total
noise (i.e., interference plus noise).
A beamforming method aims to find a spatial filter.w to estimate the desired

source by
y(w,k)=w" (0,k)x(w, k) (1-3)

A post-filtering method aims to find a gain function (or mask) in the STFT domain to

suppress the undesired noise swhich’can’be multiplied on the beamformer output as

S(w,k)=G(w,k)- y(a@,k) (1-4)

1.2.2 Multi-rank Signal Models in Array Signal Processing

Multi-rank signal models or rank relaxation has been widely used in sensor array
localization [49-52], beamforming [20-22][53], or quadratic optimization problems
[53][54]. One commonly used model of the signal field is a point source in a
homogeneous sound field [33]. Assuming that there is no mismatch between

microphones, the desired signal field can be measured using the PSD matrix as

D (0)=¢, (o)L (@) (1-5)
=¢ (v)a (w)al (o)



where @y(w) = Eis(w,k) s"(wk)]; To(w), a(w), and ¢(w) are the coherence matrix,
steering vector, and power spectral density of the desired signal respectively. A single
point source is usually referred as the rank-1 signal model.

However, in practice, the rank of signal model is usually greater than 1. Typical
examples are incoherently scattered signal source or signals with random fluctuating
wavefronts in wireless communication, sonar, and microphone array [49-52]. Further,
environmental reverberation also increases the rank. For example, in the case of

incoherently scattered source, the desired PSD matrix can be expressed by [49—51]

/2

®,(0)=4,(0) [ p(0,0p{B,0)a" (6,0) 0 (1-6)

where p(6,w) is the normalized-angular-power density. function ( _[_7[//22 p(¢9, a))dé? =1),

and a(6,w) is the steering vector-at direction €. In the case of randomly fluctuating

wavefronts, the,desired PSD matrix can be expressed by [20}
<I)S(a))=¢s(a))Bo{as(a))af (a))} (1-7)

where B is the M-=by-M coherence loss matrix, and e is"the Schur-Hadamard

(elementwise) matrix product. Two. commonly used models for the coherence loss

matrix are
[B],, =exp{~(i- /) ¢| (1-8a)
8], =exp{-fi—i¢] (-5

where ¢ is the coherence loss parameter. Note that both the signal models in (1-6) and

(1-7) are multi-rank.



1.3 Outline of Proposed Beamformer and Post-Filter

1.3.1 Robust Adaptive Beamforming with Multi-Rank Signal Models

Based on the Kalman Filter

In this dissertation, the multi-rank norm-constrained MVDR beamforming based
on the Kalman filter (MRNCKF) is proposed. The multi-rank MVDR problem defined
in [20] is modified with normalized signal model and norm constraint. Simulations
show the superiority of using the norm constraint rather than the diagonal loading
formulation. The modifieds problem is transformed into state space models using the
soft-constrained pseudo-observation (SCPO) method in constrained Kalman filtering
[55-59]. Severalgnonlinear Kalman® filtering approaches imcluding the first- and
second-order extended Kalman-filters (EKF) [60—62] and the unscented Kalman filter
(UKF) [62—66]qare introduced to solve the quadratically -constrained problems. The

settings of initial.conditions and parameter matrices are also studied.

1.3.2 Multi-Channel Post-Filtering Based on Spatial Coherence

Measure

In this dissertation, a novel multi-channel post-filter where multi-rank signal
models can be easily adopted is proposed. A new spatial coherence measure is
introduced and analyzed. Based on this measure, the new spatial coherence based
post-filter (SCPF) is derived. Due to the similarity of the desired signal field and the
noise field, a bias compensated (BC) solution, BC-SCPF, is proposed. It can be shown
that the BC-SCPF is equivalent to the optimal Wiener filter if the bias or the noise
power spectral density matrix is perfectly measured. The proposed post-filters are

compared with the state-of-the-art post-filters, Zelinski post-filter [46] and McCowan



post-filter [47], theoretically and experimentally.

1.4 Contribution of this Dissertation

The contributions of this dissertation are listed below:

1)

2)

The norm constrained Capon beamforming (NCCB) is known to be equivalent
to the DL [2][26]. In this dissertation, the simulations demonstrates that an
appropriately chosen norm constraint value is more robust to unknown signal
powers, small angle mismatches, and number .of sensors compared to the
selection of ‘the diagonal loading level. By using the SCPO method, the
multi-rank signal 'model and_the norm constraint’ can,be easily adopted.
On-line.implementations ‘using nenlinear Kalman filters, are proposed to
reduce, the  computation burden, and-give a mere flexible structure. The
settings'of'initial conditions‘and parameter matrices are alsojinvestigated.

Compared to- the Zelinski and McCewan post-filters, ‘the assumption of
homogeneous sound fields is relaxed and multi-rank signal models are firstly
introduced into the postfilter design. In.addition, a spatial coherence measure
which describes the similarity between two signal fields is introduced and
analyzed. The proposed BC-SCPF is less sensitive to the individual estimation
error of the noise coherence function. Besides, compared to the noise
coherence function, the bias term in the proposed method can be estimated in
many ways. The speech enhancement results demonstrate the superiority of
the proposed BC-SCPF across different types of noise fields with a more

accurate signal model.



1.5 Organization of this Dissertation

The remainder of this dissertation is organized as follows. The robust adaptive
beamforming with multi-rank models based on the Kalman filter is introduced in
Chapter 2. Chapter 3 presents the multi-channel post-filtering based on spatial
coherence measure. Chapter 4 shows the experimental results of the proposed
beamformer and post-filter. Finally, conclusions and future works are drawn in Chapter

5.
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Chapter 2

Robust Adaptive Beamforming with
Multi-Rank Sighal Moaels:Based on the
Kalman Filter

2.1 Introduction

MVDR beamforming aims to mmimize variances of the interferences and noise
while maintaining the desired array. response: It is Known to degrade dramatically due to
even small mismatches of the desired signal model, especially when the desired signal
is present in the training data. The robust MVDR beamforming aims to keep the output
SINR performance against several array or propagation uncertainties. In real world
environments, the spatial correlation is typically multi-rank due to local scattering,
wavefront fluctuation, or reverberation. Therefore, the multi-rank signal model is able to
provide a more accurate model of the sound propagation of the desired source to the
microphones. In this case, if the array response provided with multi-rank signal models
is known exactly, such performance degradation can be reduced. To further reduce the
sensitivity of arbitrary kinds of mismatches, diagonal loading (DL) [2][23][24]

technique has been a popular used approach to improve the robustness of the MVDR
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beamformer. The major drawback of DL is that it is not clear how to choose the
diagonal loading level given the input covariance matrix. The norm constrained Capon
beamforming (NCCB) is known to be equivalent to the DL [2][26]. However, the
knowledge of how to choose the norm constraint value has not been completely studied.
In this dissertation, we use the norm constraint rather than the original DL formulation.
Besides, the superiority of using the norm constraint value rather than using the
diagonal loading level is demonstrated in the simulations (see Section 4.1.1).

In this dissertation, we conduct the constrained Kalman filtering for more flexible
on-line implementations. Constrained Kalman filtering [55-59] has been widely
investigated in the last.decade. The approaches mainly fall into one of three categories:
pseudo-observationfmethods (or penalty methods), projection methods, and dimension
reduction methods. Among these methods, the pseudo-observation'method is the most
intuitive way to'conduct the constraints into the state-space of the Kalman filtering by
considering thefconstraints as additional méasurement equations. In‘this way, several
developed nonlinear Kalman filtering-algorithms=ean-be directly applied. Chen et al.
was the first one “who iintroduced the soft-constrained pseude-observation (SCPO)
[58][59] into the traditional MVDR problem [67]. El-Keyi ef al. conducted the SCPO
for the robust adaptive beamforming based on worst-case performance optimization
[68]. In this dissertation, we also apply the SCPO for the robust adaptive beamforming
with multi-rank signal models. The potential drawback is that the unconstrained
problem by using SCPO can be ill-conditioned if the parameter matrices are not
appropriately chosen. In this dissertation, the settings of the initial conditions and
parameter matrices are studied to achieve the good performance, which also prevent the
SCPO method from the ill-conditioning problem. Compared to the prior work [20], the

computation of principal eigenvector can be avoided in the proposed method.
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Since the robust adaptive beamforming problems with multi-rank signal models
and the norm constraint belong to the quadratically constrained quadratic programming
(QCQP) [69], nonlinear Kalman filtering is introduced. The most widely used nonlinear
Kalman filter is the extended Kalman filter (EKF) [60-62]. Another popular method is
the unscented Kalman filter (UKF) [62-66]. The EKF approximates the Jacobian and
Hessian matrices (in the first- and second-order approximations) of the nonlinear
functions, while the UKF approximates the probability distribution of the nonlinear
transformation using sigma points. Theoretically, the second-order extended Kalman
filter (SOEKF) gives the best approximation in the MSE sense. However, due to the
approximation of the second-order errors (see Appendix I), the SOEKF is sensitive to
improper initial cénditions  and parameter matrices. (The comparison of the above
nonlinear Kalmanfilters will be discussed in Section 4.1.2.

The remainder of this chapter is organized as follows. In Section 2.2, we briefly
review the problem of the MVDR beamforming with multi-rank signal models. Section
2.3 gives a modified problem with themormalizedssignalhmodel and the norm constraint,
and formulates its"state.space model based on the SCPO, method. The relationship
between the diagonal loading level and the norm constraint value for the multi-rank case
is also analyzed. Section 2.4 presents the solutions using the EKFs and the UKF. Finally,

a summary is drawn in Section 2.5.

2.2 Problem Formulation

2.2.1 Robust MVDR Beamforming with Multi-Rank Signal Models

The well-known MVDR beamformer minimizes the output power of

interference-signals-plus-noise while maintaining a distortionless constraint at the look
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direction [1]. Consider the noise vector n(w,k) in the STFT domain given in (1-2), the

problem can be formulated as

minw” (0)®, (0)w(w) subjectto w”(w)a (w)=1 (2-1)

w(@)

where ®@,(w) = E[n(wk)n”(wk)] is the noise-only PSD matrix. The problem is
equivalent to the maximum signal-to-interference-plus-noise ratio (SINR) beamformer
[2]. The solution of the MVDR beamformer can be easily obtained by the Lagrange

multiplier method as

(2-2)

Note that the distortionless constraint w''(@)as(@) =1 in (2-1) constrains the signal array
response on the steering vector ay(@), where the steering vector is usually considered as
a point source model, or a rank-1 signal model. Shahbazpanahi ez al. [20] modified the
distortionless constraint to arquadratic*one and incorporated multi-rank signal models

given in Section 1.2:2. The modified MVDR.problem.is given by

minw” (0)®, (0)w(w) subjectto w" (w)é)s (@)w(w)=1 (2-3)

W((U)

where <i)s (a)) is the designed or estimated multi-rank signal model. The solution of

the modified problem can be solved by the Lagrange multiplier, which results in the

following generalized eigenvalue problem [70]:
P, (o)W ()= u(0)®, (0)w(o) (2-4)
where the Lagrange multiplier (@) can be considered as a corresponding generalized

eigenvalue. Since the PSD matrices (i)s (a)) and @, (w) are positive semi-definite, (@)
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is always real-valued and non-negative.
The solution to the minimization problem in (2-3) is the generalized eigenvector

corresponding to the smallest generalized eigenvalue of the matrix pencil
{tl)n (0),D, (a))} Assuming that ®,(w) is full-rank and invertible, the equation (2-4)

can be rewritten as

D, (0)®, (0)W(0)=——w(0) (2-5)

which is the characteristic equation_for. the matrix Q;l(w)(i)s (). In this case, the

smallest eigenvalue in (2-4) corresponds to the maximum' eigenvalue in (2-5). Thus, the

optimal weight vector of the problem i (2-3) can be expressed by
W (0)=P{0 0)®, (a))} (2-6)

where P{+} denotes the operator that yields.the principal eigenvecton of a matrix. It is

known that when the noise field is.incoherent-(ive"®@;(w) = Iy where I is the identity
matrix), the optimal MVDR turns into the matched filter .(or the delay-and-sum (DS)
filter for the rank-1 signal model).- Hence, the matched filter for the multi-rank case can

be obtained by
Wmatched (C()) = 7) {(i)s (C())} (2_7)

For speech enhancement, the desired signal can appear with the interferences and
noise. In practice, the noise PSD matrix is replaced by the input PSD matrix of the

training data as
Wyrow (©) = P{D () @, ()] (2-8a)

where

15



@, (0)=1- 3 x(0n)x" (011) (2-8b)

n=1

is referred as the sample matrix [1] and N is the training size. The solution of (2-8) is the
multi-rank (MR) version of the well-known sample matrix inverse (SMI) beamformer
[20]. However, when the desired signal exists in the training data, the MVDR
beamforming is known to degrade dramatically due to the mismatches between the
presumed and actual array responses to the desired signal [20]. This is the so-called
self-cancellation phenomenon. To improve the robustness of the MVDR beamforming
against mismatches, one of the mostpopular approaches is the diagonal loading (DL)
method. It is equivalent to impose an additive noise on the coyariance matrix [1][2], and

the MVDR problemin«(2-3) can be modified as

l’vlv’gur)lWH (0)@, (@)W (0)+i(o)w" (0)w(o)
[ (2-9)
subject to w'((@)® (@)w(@)=1

where A(w) is the'diagonal loading level to be determined. The solution of the modified

problem (2-9) is referred as the multi-rank loaded-SMI (MRLSMI) beamformer as
A -1 A
Wymiow (@) = P{((I)x (@) (o)1) @, (a))} (2-10)

The major drawback of MRLSMI 1s ‘that itis not clear how to choose the best diagonal
loading level A(w) since the optimal choice depends on the unknown signal and

interference parameters [20].
2.2.2 Motivations of the Proposed Robust Beamforming

In this dissertation, the motivations of proposed robust beamforming are listed

below:
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1)

2)

3)

4)

The performance of the MVDR beamforming is known to degrade severely in
the presence of even small mismatches between the actual and presumed array
responses to the desired signal [20], especially when the desired signal
“contaminates” the training data. Therefore, with multi-rank signal models, it
is possible to model a more accurate array response which reduces the
performance degradation due to the model mismatches.

In the original multi-rank MVDR beamforming algorithm [20], the
normalization problem is not taken into account in the narrow-band
applications. Howeyver; it is-important in the wide-band applications since
different normalization factors among frequencies will introduce frequency
dependent: distortion or-different white noise gains [1]. This can seriously
deteriorate the speech quality for multi-channel spéech enhancement.
Therefore, this dissertation proposes.a modification of the problem based on a
normalized multi-rank signal model.

The selection of the diagonal-loading=level4(w®) depends on the unknown
signal and interference parameters. Cox ef al. [2] have shown that the DL
problem in (249) is equivalent to the norm-c¢onstrained Capon beamforming
problem. In this dissertation, the relationship between the diagonal loading
level and the norm constraint value for the multi-rank case is analyzed. The
simulations in Section 4.1.1 show that the optimal choice of the norm
constraint value is less sensitive to unknown signal powers and small angle
mismatches at high SNRs.

In [20], the computation of the principal eigenvector is needed. For the
on-line implementation, we introduce the Kalman filter algorithms for more

flexible designs.
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5) The selection of initial conditions and parameter matrices is critical,
especially when the system is nonlinear. Wrong settings can break down the
performance of the system. In this dissertation, the initial state is suggested to
be in the feasible set of the constraints, or at least close to the feasible set
corresponding to chosen variance parameters. The error covariance is
initialized as the null space of the initial state. Further, the selection of the
parameter matrices is investigated to achieve a good performance and prevent

from the ill-conditioning problem.

2.3 Proposed” “Robust Beamforming = Based on the

Soft-Constrained Pseudo-Observation Method

The soft-constrained pseudo-observation (SCPO) 1s one of the methods in
constrained Kalman filtering [55-59]. By the SCPO method, constraints can be easily
formulated into"the state spacé aswaugmentedwmeasurements. In the follows, the
distortionless constraint using nermalized signal models for wide-band applications is
proposed in Section 2.3.1. Then, the norm-constrained-Capon beamforming (NCCB) for
the multi-rank case is introduced in Section 2.3.2. In"the sequel, the state space of the

NCCB problem is formulated using the SCPO method in Section 2.3.3.

2.3.1 Normalized Multi-Rank Signal Model for Wide-Band Applications

In narrow-band applications, the normalization is immaterial since it does not

affect the SINR defined as

sive - Y (@2, (0)v(0) o

(@)@, (0)w()
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However, the normalization is important in wide-band applications to keep the array

gain consistent at the desired signal array response. In (2-3) and (2-9), it is worth to note

that different powers of the designed signal models (i)q(a)) lead to different

normalization factors. Since the distortionless constraint is to constrain the desired array

response without the consideration of signal power, normalization on the PSD matrix

A

® (o) is reasonable. Thus, we modified the distortionless constraint by using the

normalized signal model (i)s(a)) as

w (0)®, (0)w(w)=1 (2-12a)
where
&, ()= 1 et2) (2-12b)

tr{(i)ss(a))}

The factor M in (2-12b) is. to Kkeep the norm of the weight wvector ||w(a)) || be
comparable to the conventional case. For example; consider the rank-1 signal model

given in (1-5), the left-hand side of the distortionless constraint in (2-12a) is

W (0), (0)w ()= L4

o) (2-13)

This gives the same norm as the distortionless constraint given in (2-1).
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2.3.2 Norm-Constrained Capon Beamforming

Cox et al [2] have shown that the DL problem is equivalent to the
norm-constrained Capon beamforming (NCCB) problem [23][26]. For the rank-1 signal

model, the NCCB can be expressed by

w' (w)a, (w)=1

(@) =7 ()

minw” (@)@, (@)w(w) subject to

w(®)

(2-14)

where 7'(w) is the designed constraint value of the squared weight vector norm. The

solution of the NCCB has the diagonal loading (DL) form as

(2-15)

By substituting'the weight vector in (2-15) into the norm constraint, the relationship
between the diagonal loading level A(@) and the norm-constrained value of the weight

vector norm 7' (@) can be obtained by [26]

2’ (0)(®, (0)+ H)1) a, (o)
! (0)(@, (0) + 2()T) 2, (@),

=T (o) (2-16)

Now, the NCCB formulation can be extended with multi-rank signal models as

w(0)® (0)w(w)=1

(o) =T (o)

minw” (@)@, (w)w(w) subject to

w(®)

(2-17)

where (I)S (a)) is the normalized signal PSD matrix given in (2-12b). The Lagrangian

function of (2-17) can be defined by
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J(w(0).A(0),1(0) =W (0)®, (0)w(o) (Hw H )
e (o), (o)

(2-18)

By letting the derivatives with respect to w(w), A ), and (w) be equal to zeros, we

obtain the solution similar to (2-10) as

Wo, (@)= Vo (@) (2-192)

(2-19b)

(2-19¢)

. Likewise, the

odels can be derived

(2-20)

The value of 7'(w) is greater than 1/M. According to the distortionless constraint,

we have

D, (o) w( (a))) (2-21)

which gives the lower bound of 7'(w) as
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T(0)> (2-22)

1
M
Note that the trace inequality tr(AB) < tr(A) tr(B) used in (2-21) is described in Section
3.3.1 in detail. If we assume a semi-positive diagonal loading level A(w), there is also an
upper bound for 7(w). The equation (2-20) monotonically decreases to 1/M as U w)

approaches to c. Thus, the upper bound happens when A(w) = 0, where 7 (w) should be

smaller than

[¥sron ()]

T(a)) : vV"ﬁvDR (a)) (i)s (a))WMVDR (a)) (323
where
Waor (@) = P{@(0) @, () (2-23b)

If the norm constraint value 7'(®) is greater'than the upper-bound, there is no feasible
solution for a semi-positive A(w).
For the rank=1 signal model, the weight ‘vector can be decomposed into subspaces

of the presumed steering vector and its null space based on,the eoncept of GSC [71] as

w(@)=212) 40 (o) (2-24)

€
s

where a (w)a; (w)=0 and the weight vector satisfies the distortionless constraint

w" (w)a, (w)=1. In this case, the norm of the weight vector can be expressed as

al (o) (2-25)

N

1
(@) =5+

It can be seen that constraining the norm of w(®) is equivalent to constrain the norm of

a; (). Thus, to express the effect of the latter term in (2-25), we decompose the
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threshold 7(w) as
T(w)=—+y(w), wherey(w)=0 (2-26)

In the rest of this dissertation, we discuss the selection of y () instead of 7(w) for better
description of the scale of the norm deviations.

Compared to the selection of the diagonal loading level A(w), the selection of y(w)
is less sensitive to the signal powers due to the division in (2-16) and (2-19). It is worth
to note that the speech signals are nonstationary and time-varying. The insensitivity
property of y(w) benefits the application of speech enhancement. It can be shown in
Section 4.1.1 that theselection of norm constraint is also less sensitive to the small

angle mismatches at:high SNRs.

2.3.3 State Space Formulation Using the SCPO Method

The pseude-observation method treats the set of constraint equations as additional
observations, but; with-no measurement noise {55-59]. In this  case, the constraint
equations are called'perfect measurements, and the consttaints.are considered as “hard
constraint”. However, it is known. that perfect measurements give a singular error
covariance matrix, which will lead to the ill-conditioning problem in the Kalman filter.
Thus, small variances of the constraint equations are used instead and it gives the
“soft-constrained” solutions.

Considering the NCCB problem in (2-17), the state space model is given as

follows:
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State Space Formulation of the Proposed Robust Beamforming Problem

State equation

w(w,k+1)=w(w,k)+v (o,k) (2-27a)

Measurement equations

(2-27b)

(2-27¢)

(2-27d)

(2-27¢)

easurement noises respectively.
Typically, the noise processes vy, vm(@,k) are assumed to be zero-mean and

mutually uncorrelated with the covariance matrices

Q(@)=E,[v,(@.k)V! (0.k) =07 (o)1 (2-28)
and
o (w) 0 0
R(w)=E, I:Vm (o,k)v, (a),k)] =l 0 o(w) O (2-29)
0 0 o (o)
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The only real measurement in (2-27b) is the input vector x(@,k) in the first equation

given by the objective of minimizing the filtered output power in the MSE sense, i.e.,

E, UO_XH (w,k)w(a,

Considering the measurement update in the Kalman filter,
W(w,k)=W(w,k —l)+K(a),k)(z —f(w(a),k—l)))
It can be shown that v”v(a),k) is the solution to the optimization problem [59]

Wocro (@,k) =arg min {(w - W(o.k —1))H [P' (co,k—l)]f1 (w—W(w,k-1))

k)ﬂ.

‘0 —x" (o, k)w”2

1-wlo, (a))WH2

ool

(2-30)

(2-31)

where K(w,k) is_the Kalman, gain and P (w.,k) 1s the a priori state error covariance

matrix. Now the constraint parameters 0>°(@) and-0s (@) act as penalty terms. When the

constraint parameters-approach.to zeros, the constraint costs are increasingly weighted,

and the solutions that do not satisfy the constraint are increasingly penalized. The

solution of the SCPO should approach to the solution of the NCCB problem in (2-17) if

the constraint parameters o»”(w) and o3*(®) are much smaller than o;%(®) and the

approximation of the nonlinear functions are adequate. To avoid numerical problems,

typically the constraint parameters will not be set as zeros. Therefore, the SCPO method

does not strictly satisfy the constraints, but provides a flexible approach to incorporate

different equality constraints.
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2.4 Solutions Using Nonlinear Kalman Filters

In the multi-rank MVDR problems, the multi-rank distortionless constraint and the
norm constraint are quadratic. Hence, nonlinear approximation on the measurement
equations is needed. Consider the nonlinear measurement equation describe in (2-27), it

can be approximated by the Taylor expansion in the second-order around an estimate

W(w,k) as

f(w(a),k)) = f(W(w,k))+Fw (w(a),k)—\?v(a),k))

+%§¢§(w(w,k)—€v(w,k))HFff3v (w(@,k) W (w.k)) 232

T
where ¢ =[0, Ha Lk, 0} and=P is«the number of ‘measurement equations.
i—th

F, denotes the Jacobian matrix of the nonlinear function f (w(a),k)), and F!)

denotes the Hessian matrix of the i-th measurement equation in f (w(a), k)) . The major

two categories ofithe nonlinear Kalman filtering-are the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF). An overview of the above algorithms has been

given in [66]:

1) The first-order EKF (FOEKF) [60][62] approximates the Jacobian matrix F, .
This works fine as long as the Hessian matrix (i.e., second-order term) is

small, which can depend on the state estimation error or the degree of
nonlinearity of f (w (a), k))

2) The second-order EKF (SOEKF) [61][62] approximates both the Jacobian
matrix and the Hessian matrices.

3) The UKF [62-65] implicitly estimates the first- and second-order terms in the

nonlinear transformation in (2-32) instead of estimating the Jacobian and
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Hessian matrices. In other words, the UKF approximates the probability
distribution using sigma points rather than approximating an arbitrary

nonlinear function or transformation.

In the following, the solutions using the EKFs and the UKF for our problems will

be listed. Discussions among the algorithms are investigated in the sequel.
2.4.1 Solutions Using Extended Kalman Filters

The EKF has been widely used'in nonlinear filtering [60—62]. It approximates the
nonlinear function around the @ priori estimate of the Kalman filter. In our problems,
only parts of the measurement equations are nonlinear. Therefore, only Jacobian and
Hessian matrices of the'nonlinear measutement equations are rieeded to be estimated.

Given the state space model in Section 2.3.3, the Jacobian matrix Fy(®.k) and the

Hessian matrices FV(V]V)V (a),k) and Fv(vzvz (a),k) of the nonlinear -functions can be

computed as

F, (0.k)=[V £ (Wlak))|
x' (@) (2-33a)
=|w" (0,k)® (o)
w (w,k)
F) (0.k)=V Vo {x" (0.k)w(.k)} =0 (2-33b)
F) (0.k)=V Vi lfi(w(o.k))| =@, (o) (2-33c)
F) (0.6) =V Vil £ (w(e.k))} =1 (2-33d)

For the SOEKF, the Hessian matrices in (2-32) leads to the additional terms in the
innovation 7(w,k) and it covariance matrix A(®,k) under the MSE sense (see Appendix

I). The bias terms n(@,k) and A(@,k) in our problem can be expressed as
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n(a),k):% tr(®, (o) P~ (@.k)) (2-34a)
tr(P_(a),k))
0 0 0
Ao, k)=—|0 tr{tl)b(a))P*(a),k)d)S( )P*(a),k)} tr{(I)b(a))P*(a),k)P*(a),k)}
0 tr{d)q(a))P*(a),k)P*(a),k)} tr{P*(a),k)P*(a),k)}
(2-34b)

Finally, the EKFs using the first- and second-order Taylor expansion can be

summarized as follows [62}:

Multi-Rank MVDR Beamformer Using the FOEKF and SOEKF

The SOEKEF, using the second-order Taylor expansion, for. the state space model in

(2-27) is given by the following recursionsinitialized with ‘W (,0) and P (®,0):

P (@,k) =P’ (0yf=1)+Q(w) (2-35a)
e(o,k)=2—f(W(o k= 1))=n(w.k) (2-35b)
S(@.k)=F, (0.k)P" (o k)F,{(@k)+ R(@)+ A (@.%) (2-35¢)
K(o,k) =P (0,k)F (0,k)S" (k) (2-35d)
W(@,k)=W(0k—1)+K(o,k)e(w.k) (2-35¢)
P (a.k)=[1-K(a.k)F, (0.k) [P (.k) (2-351)

The FOEKF is obtained by letting both n(w,k) and A(w.k) be zero.

In (2-35), P'(w,k) is the a posteriori state error covariance matrix; e(w,k) and S(w,k) are
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the innovation vector and its covariance matrix. For detailed derivation of the SOE

Kalman filter, please refer to the Appendix I.

2.4.2 Solution Using the Unscented Kalman Filter

The UKEF uses sigma points to approximate the first- and second-order moments of
the nonlinear transformation. There are different ways to set the sigma points and the
weightings [62—66]. In this dissertation, we choose the method given by [62] since it
gives positive weightings. The (2M + 1) sigma points for the approximation of the

nonlinear measurement equations are generated by

W, (w,k)=
(2-36a)
W(w,k-1), W(@,k—1)-1"+MP=(@,k)n W(@k=1)-1" = JMP (w,k)
Mx1 MxM - MxM
And the transformed sigma points are given by
(2, (w.0)] =1 ([Wo (k) | )it z0mm2mr (2-36b)

where 1 denotes the M=by-1 all-one vector.

The UKF is summarized as follows [62]:

Multi-Rank MVDR Beamformer Using the UKF

By using the sigma points given in (2-36), the UKF is given by the following recursions

initialized with W(@,0) and P*(®,0):

P (w,k)=P" (0,k-1)+Q(w) (2-37a)
_ 1 2M
Z(w,k)= ZMHZO:[ZG(w,k)l (2-37b)
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P, (0.h)=— zﬁ([wg(a),k)}—vAv(a),k—l))([Za(a),k)l—i(a),k))H (2-37¢)

M +15 :

(k) = 2Ml+1 ”:( 2, (0)] -7(0.0))([ 2, (04)] —i(a),k))H (2-37d)
e(w.k)=2-Z(w.k) (2-37¢)
S(w,k)=P, (w,k)+R(w) (2-379)
K(w,k)=P,,(0,k)S™ (w,k) (2-37g)
W(w,k)=W(w,k—1)+K(w,k)e(wo,k) (2-37h)
P' (w,k) =P (w,k)-K(o,k)S(@.k) K" (@,k) (2-371)

2.4.3 Initial Conditions

The setting_of initial conditions is important-for constrained.,Kalman filtering
problems. The initial conditions should satisfy the constraints or atJeast close to the
feasible sets of the constraint.in_the order of the chosen variance parameter in matrix
R(w). An improper setting can dramatically degrade the performance with nonlinear
constraints.

First, consider the rank-1 " MVDR beamforming problem in (2-1). Based on the
projection method in the constrained Kalman filtering [55-59], the state error

covariance matrix P'(,k) converges to the null space of the presumed steering vector

a,(w). Therefore, the initial values of v”v(a),O) and P* (a),O) are chosen as

W (0,0)= (2 (2-38a)
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a (w)al (o) (2-38b)

The normalization term in (2-38a) is to satisfy the distortionless constraint w”(w)ay(w)
=1.
Likewise, for multi-rank signal models, the weight vector w(w) is initialized to

satisfy the distortionless constraint, and the state error covariance matrix P*(@,k) can be

set as the null space of w(w). Thus, the initial conditions of W(w,O) and P'(w,0) for

multi-rank case are chosen.as

W(,0)= gt () (2-39a)
\/er;llatched (a)) (I)s (a)) Wmatched (C())

H
P+ (C(), ) — I _ wmatched (0)) Wmatched (C()) (2-39b)

‘Wmatched (a))Hz

where Wiached( @) 1S the matched filter givenrin(2=7):

2.4.4 Estimation of the Parameter Matrices

In the update equations of the proposed Kalman filters, there are two parameter
matrices to be determined: Q(®) and R(w). In general, Q(w) stands for the random walk
during the state update, which is typically assumed as stochastically white. For
stationary environments, oo’ (@) = 0 can be chosen. The larger the parameter oo’ (w) is
chosen, the larger random walk of the state is allowed. That is, the state variation can be
large to track the nonstationary environmental changes. Second, R(w) corresponds to
the error variances of each measurement. In (2-29), o7%(®) corresponds to the average

output power. It is suggested to be the same order of the optimal output power of the
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array (which can be roughly approximated as Hw(a))u2 (M g (0)+¢, (a))) [68], where

d(w) and ¢ (w) are the PSDs of the desired signal and sensor noise, respectively);
however, the PSD of the desired signal is not known a priori and it is related to the
norm of the state w(®). 0»°(w) and o3°(w) correspond to the augmented distortionless
and norm constraints. o3°( ) controls the fitness of the distortionless constraint in (2-12).
When o»*(w) approaches to zero, the beamformer approaches to the matched filter in
(2-39a), which is distortionless to the presumed signal model but fails to reject the
interferences. And o3*(w) controls the fitness of the norm constraint. The norm
constraint controls the sidelobe level of the beamformer. When the norm constraint
value 7(w) is small_and o3°(®) approaches to zero, the beamformer emphasizes on
reducing the sidelebe leyvel instead of rejecting interferences.

Since there.is only one “true measurement’in the measurement equations, we
propose only te: estimate the parameter alz(a)) and consider 0'22((0) and (732(60) as
adjustable parameters to control the tradeoff between signal distortion and interference
rejection. Contrary to the adaptive’beamforming-problems [67][68], who suggested to
set the variance parameters corresponding to the constraints'as.a very small value 107,
it is suggested in this dissertation-to set an “properly” small value if there are some
tradeoffs between the constraint sets. For 'such case, if both o»’(w) and o3°(w) are set
very small, the problem may not be feasible. For the uniform linear array (ULA) with
10 elements and half-wavelength spacing, 107 is a good choice for the tradeoff between
the distortionless and norm constraints. Further, to avoid the ill-conditioning problem,
the condition number of the parameter matrix R(w) should be controlled. In this case,

we propose to use the following form
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0
R(w)=67 ()]0 « 0 (2-40)
K

where 107 < k<1 is the small variance set for the constraints. In this case, the

condition number of ﬁ( a)) is guaranteed to be smaller than 10'.

The parameter o7(w) is estimated in a recursive way as
Sl (w,k)=a-6(w,k—-1)+(1-a)-e(w,k)e (@, k) (2-41)

where « is the forgetting factor close to unity and e;(@;k) is the first element of the
innovation vector e(@,k). The recursive approach is similar to the work [72]. Compared
to the variance estimation which used the a priori state error covariance matrix P (w,k)
[73][74], the recursive estimator-in (2-41) depends.on only the innevation and is not
affected by theginitial conditions. This guarantees the stability of the whole system.
Typically, the parameter o;*(w) is initialized as zero. For the simulations, o= 0.9 is

chosen.

2.5 Summary

In this chapter, robust beamformers with multi-rank signal models based on the
Kalman filter are proposed. The original multi-rank MVDR beamforming in [20] is
modified with normalized signal models and the norm constraint and transformed into
state spaces using the SCPO method. The relationship between the diagonal loading
level and the norm constraint value for multi-rank signal models is analyzed, and the
problem formulation of the SCPO is given to point out the difference from the original

NCCB problem. The settings of initial conditions and parameter matrices are also
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studied for our problem. Since the modified problems are quadratic, nonlinear Kalman
filters including the first- and second-order extended Kalman filters and the unscented

Kalman filter are conducted for on-line implementations.
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Chapter 3

Multi-Channel Post-Filtering Based on
Spatial Caherence.Meastire

3.1 Introduction

As discussed in Sectionrl. I"2y most multi-channelpost-filtering algorithms use the
spectral densities or'phase errers between,microphone pairs rather than the whole array
elements at one time. For the category of spectral densityestimators, the state-of-the-art
post-filtering are Zelinski [46] and McCowan [47] post-filters. Under the assumptions
of homogeneous sound fields and point source model (rank-1 model), the Zelinski
post-filter is equal to the optimal Wiener filter in the incoherent noise field (i.e.,
spatially white noise). McCowan et al generalized the Zelinski post-filter by
considering the noise field coherence between microphone pairs. This makes their
post-filter to be equal to the Wiener filter for any noise fields if the true noise field
coherence is given. However, the assumptions of homogeneous sound fields and rank-1
model are not satisfied in the real-world according to the existence of the local

scattering, wavefront fluctuation, or reverberation.
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In this dissertation, a new spatial measure is defined on a microphone array which
leads to a novel post-filtering algorithm (named spatial coherence based post-filter,
SCPF). The post-filter belongs to the class of spectral densities estimators (which is
inherent in the estimation of the input PSD matrix), while it is guaranteed to lie in the
range of [0, 1]. Further, the proposed spatial coherence measure can be easily extended
to multi-rank signal models encompassing incoherently scattered source etc. It is more
convenient to consider various design requirements than previous methods using
microphone array.

However, a bias term due to the similarity of thedesired signal field and the noise
field deteriorates the noise reduction performance.”As a result, a bias compensated
method is proposéd (called bias-compensated spatial coherence based post-filter,
BC-SCPF). It cantbe shown that the BC-SCPF'is equivalent to the optimal Wiener filter
if the bias or thenoise PSD matrix is perfectly measured.

The remainder of this chapter is ofganized as follows. In Section 3.2, we briefly
review the Zelinski and McCowan post=filters-for-subsequent comparisons. Section 3.3
introduces a trace inequality and its induced spatial coherence,measure. Section 3.4
presents the formulation’and mean square error (MSE) analysis of the proposed SCPF.
The bias compensated solution is proposed in Section 3.5. Finally, a summary is drawn

in Section 3.6.

3.2 Brief Review of Zelinski and McCowan Post-Filters

The Zelinski post-filter [46] and the McCowan post-filter [47] are state-of-the-art
multi-channel post-filters. In this dissertation, comparisons of the proposed post-filters
with the Zelinski and McCowan post-filters are carried out theoretically and empirically.

Thus, a brief review of the post-filters is introduced here.

36



‘{_I ((J}', k ]

x (o.k) (fF——»
x, (@,k) (F—

%, (@.k)

G +—» §(wk)

Time Alignment
Weighting

Xy (o.k)

Xy (0.k) CF——

Y

Post-filter
Estimation

Figure 3-1 System architecture of the’Zelinski and McCowan post-filters.

McCowan et al, [47] proposed a multi-channel post-filter as a modification of the
Zelinski post-filter [46]. The system _architecture of the Zelinski and McCowan
post-filters is depicted in Figure 3-1. In their systems, the microphenes have to pass a
time alignment,module. to adjust the propagation of the desired; source between
microphones before the post-filter estimation, which is equivalent to the information in
the presumed steering vector a,. L'et us denote the pre-processed imput vector after the

time alignment module .as

X(w,k)=x(w,k)oa () (3-1)

where x(w,k) and i(a),k) are the microphone input vector before and after the time

alignment module, as shown in Figure 3-1; o denotes the Schur-Hadamard
(elementwise) matrix product.

Compared to the Zelinski post-filter, the work in [47] considered a generalized
coherence function to describe the characteristics of the noise field on the aligned inputs.
Noises between sensors can be coherent (or correlated). The noise coherence function of

the time aligned inputs is defined as
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£, (©)=4,, (0)/ (., ()4, (@) (3-2)
where ¢Zn‘_nj (a)) is the cross-spectral density between the noises at the i-th and j-th

microphones. Note that the diagonal terms of l~“n (a)) are 1 and its trace equals to M. In

their works, the homogeneous sound fields are assumed. That is, the sources have the
same power spectrum at each sensor. Based on this assumption, the spectral densities of

the aligned inputs are expressed as [47]

b, (0)=4,(0)+4,(o) (3-3)
b, (0)=4,(0)+4, (@) (3-4)
b.. (0) =9, (0) £k, (©)4, (o) (3-5)

where (Z;S ( a)), ¢7n (a)) are the aligned power spectral densities of the desired signal and

noise. According to (3-3) —(3-5), the signal’‘power spectral density can be estimated as

(3-6)

where (Zx‘_x/_ (w) is the cross-spectral density between the i-th and j-th aligned inputs

and R{-} is the real operator. The spectral densities can be estimated using a first-order
recursive filter. Equation (3-6) can be explained as removing the highly coherent part of
the cross-spectral density and then compensating the residual.

The estimation can be improved by averaging the solutions over all sensor

combinations, resulting in the post-filter
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GMcCowan (a)) = L (3_7)

This technique significantly improves the noise reduction in the diffuse noise field, and
can be applied to any noise field by modeling the complex coherence function. When

the noise field is incoherent, it reduces to the Zelinski post-filter as

S

-1 M

M(Azl—l) . z SR{é‘f}‘/ (a))}
GZelinski (CO) = : _l; ( )
X X; @,

1l
~

(3-8)

g

x|~

i=

3.3 Proposed Spatial Coherence.Measure
3.3.1 Definition of the Spatial Coherence Measure

It is known that the trace ‘of the“power spectral~density (PSD) matrix, obtained
from a sensor arrays 1S the summation of the.signal powers. This metivates us to use the

trace operation to design @ ceherence measure between two PSD matrices. Let matrices

A, B € C" be positive ‘semi-definite (which also ensures Hermitian), the trace

inequality is established as [75]

1/2

tr(AB)" <{tr(A)" tr(B)"] (3-9)

where tr(A) denotes the trace of matrix A, and p is an integer. Considering the special

case when p =1, we have
tr(AB)<tr(A)tr(B) (3-10)

Based on (3-10), the spatial coherence measure between PSD matrices A and B is
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defined as

tr(AB)
tr(A) tr(B)

F(A,B) (3-11)

According to the matrix version of inner product and Kronecker product, (3-11) can be

written as

F(A,B)= (A.B)

w(A®B) G-12)

where (A,B) denotes the inner. product of PSD matrices A and B, and ® denotes the
Kronecker product. Theinner product measures the_similarity among the bases in the
matrices, and thegtrace of the Kronecker product gives the mormalization. From the

positive semi-definite property-of the matrices and:the inequality given by (3-10), the
spatial coherence measure F(A,B) is guaranteed to be mapped in the interval [0, 1].

Since the PSD matrix represents the signal field measured by the sensor array (in the
second-order statistics)y the [proposed spatial,coherence measure,in (3-11) gives the

“closeness” between two measured signal fields (named MSF hereafter).
3.3.2 Properties of Proposed Spatial Coherence Measure

The PSD matrices can be decomposed as,

L J J

A=>0?(A)u,(A)u” (A) and B:iaj(B)u.(B)uﬁ(B) (3-13)

where 677(A) and u;(A) denote the i-th eigenvalue and eigenvector of the PSD matrix A,

respectively. By (3-13), the spatial coherence measure can be rewritten as
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1

o2 (A) 0% (B)

i=l1 Jj=1

‘2

M=
M=

F(A,B)=—

Il
—_
Il

o’ (A)o; (B)|uf (A)u, (B)
(3-14)

It can be seen that the coherence measure is the weighted similarity of the bases, and the
eigenvalues give the weighting on each basis. When two MSFs belong to the same
1-dimensional subspace, the spatial coherence measure gives a measure of unity. As
one of the MSF’s dimension increases, the spatial coherence measure decreases
according to the normalization of eigenvalues. Therefore, given PSD matrices A and B,

several properties of the proposed spatial coherence measure can be listed below:

Property 1: If A belongs to the null-space of B, then (A,B) = 0.

Property 2: If A is rank-1, the self-cohcrence measure F(A,A) = 1. As the

eigenvaluesspread of A increases, the F(A,A) decreases to 1/M until the eigenvalue
spread is uniform (i.c., incoherent-fieldgA=-c*Twhere o’ is the signal power).

Property 3: If'A or B is an incoherent field, then the spafial coherence measure

equals to a constant value of F(A;B) = 1/M(It can be casily observed from (3-11)).

From Property 1, consider A as the PSD matrix of the desired MSF and B as the
PSD matrix measured by the microphone array. Then F(A,B) = 0 could be interpreted

as the signals of the microphones do not contain the target source information. Thus, if a

multiplicative gain of a post-filter is designed, the gain should be zero. For Property 2,

the self-coherence measure F(A,A) is derived from (3-14) as
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(3-15)

where F(A,A) is purely determined by the eigenvalues of A. According to the natural of
coherent speech sources, the eigenvalue spread of the desired MSF typically condenses

on some low-dimensional subspace. Therefore, if F(A,B) is used as a multiplicative

post-filtering gain, the gain approaches to unity when there is only a desired signal.

3.4 The Proposed Spatial Coherence Based Post-Filter
(SCPF)

3.4.1 A Description of the Proposed SCPF

The proposed post-filter is designed by comparing the input'™PSD matrix @,(w)

with a desired one @y(w) as,

L CAQLAC)
Gl 0 (o)) w0 (o) e
where
® (0)=E, [x(co,k)x” (a),k)]

4 (@) b (@) b, (@)

b (©) 4. (0) - 4., (o) (3-16b)

and ¢ (a)) is the cross-spectral density between the inputs at the i-th and j-th
microphones. The post-filter uses the measure directly as the gain function and is called
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spatial coherence based post-filter (SCPF). In practice, the PSD matrix ®@,(w) can be

estimated using a first-order recursive update formula
D (@,k)=a® (0,k-1)+(1-a)x(o,k)x" (w,k) (3-17)

where « is the forgetting factor close to unity. In practice, the desired MSF ®@4(w) can
be estimated empirically from the clean signal recordings of the microphone array. It is
worth to note that the usage of @) in (1-5)—(1-7) is not crucial since it is cancelled
during the normalization of the spatial coherence measure.

In order to compare with the previous algorithms, we consider the special case as

the following:

1) The desited MSF is assumed to.be a point source.

2) The sound fields are-assumed to be homogeneous [33].

According to the these conditions, the'theoretical PSD ‘matrix can be expressed as
O (0)=¢ (v)a (@) (0)+d, ()T (@) (3-18)

where ¢(w), ¢.(w) are the power spectral densities of the desired signal and noise; and

I'(w) denotes the coherence matrix of the noise field. The manifold vector is usually
selected such that Has (a))H2 =M . Note that tr(F n (a)))=M . With the desired MSF

and the theoretical PSD matrix, the SCPF can be expressed by

4 (0)a (@)@ (w)a, (o)
(@)

®)=— ) ]
Gserr (@) a (o) (@, ()

©

_ B (@) +4.(0)4, (@)a (@)1, (@)a, (o) 5-19)
6. (@)a. (@) (4. (@)]a. (@) + 4, (@)u(T, ()

] 5()

~ OO 3 o)1)
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where Gwiener( ) 1s the optimal Wiener filter as,

Gryons (#) = £(o) (3-19b)

and & (w) = ¢(w) / p.(w) denotes the SNR. The term B(w) denotes the inner product of

the coherence matrices of the desired signal field and the noise field.
=tr(I (a) r (a) ) (3-20)

This can be treated as a bias term to the optimal Wiener filter as shown in (3-19b). Note

that B(w) lies in the.following range,for all kinds of noise ficlds when the desired MSF

is chosen as (1-5):
0<B(w)<M? (3-21)

The lower bound happens when:the noisessubspace-liessin the null-space of the desired
MSF, while the supremum happens when the noise MSF is.identical to the desired MSF
under the rank-1 signalimodel. Obviously, the SCPE s a function of the SNR and it

reduces to the Wiener filter when B(®) = 0.

3.4.2 Mean Square Error Analysis of Proposed SCPF

The mean square error (MSE) corresponding to the desired signal in the reference

channel can be defined as

MSE(a)):Ek[

$(@k)=s(0.k) | (3-22)
where § (a), k) is the enhanced signal given by a beamformer or a post-filter. Applying
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the SCPF on the reference microphone (microphone 1) results in the following MSE,

MSExcr (@) = E, | [Gecrr ()3 (,6) =5 (.4 |
= E, U(GSCPF (@)=1)s(,k)+ Gyepy (@)1, (a),k)ﬂ (3-23)

:‘GSCPF 1‘ ¢ +G82CPF( )¢ (a))

By substituting (3-19) into (3-23), we have

MSE, e () = Gy, (), (@) + — 22 )¢,,(w) (3-24)

M*(£(w)+1

It can be shown that the Zelinski post-filter [46] 1s related to SCPF as: (see Appendix 1)

GSCPF (a)) - I/M

— = -2
GZehnskl ((()) 1 . I/M (3 5)
By substituting the SCPF in (3-19) into (3-25), we have
M o)1 |+
G etinsii (a)) = I: ( ) :l ( )
( ~1)(&( )+1
(3-26)

= GWiener (a)) =T

In (3-26), it reveals that the'Zelinski post-filter gives a negative gain —1/(M—1) when
B(w) = 0 and & w) = 0. The negative gain will introduce unwanted phase flips and
leaves some noisy time-frequency blocks in the post-filter output. Similarly, the MSE of

the Zelinski post-filter can be derived by following the derivation in (3-23) as

MSE jinski (a’) = ‘GZelinskl 1‘ ¢ +G§ehnskz( )¢n( )
: (3-27)
M (M—l) (5( )+1)

S

= Gyiener (a)) ?, (a)) +

The bias terms in (3-24) and (3-27) reveals interesting differences between the

proposed SCPF and the Zelinski post-filter for different noise fields:
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1) B(w) = M: the noise field is incoherent, i.e., I'y(w) = L. In this case, the

Zelinski post-filter reduces to the optimal Wiener filter and the proposed

SCPF has additional term as ¢,(@) / [M *(& (w)+1)].

2) B(w) = 0: the noise field belongs to the null-space of a(w). In this case, on the
contrary, the proposed SCPF reduces to the optimal Wiener filter and the

Zelinski post-filter has additional term as ¢@,(w®)/ [(M—1)2(§ (w)+1)].

It is worth to note that when the rank-1 desired MSF is chosen, the proposed SCPF is a
special case of the post-filter algorithm [5]. In this case, the proposed SCPF can be
explained as the ratio of the output power of the delay-and-sum (DS) beamformer to the
sum of the input power. Note that the Zelinski and McCowan post-filters also belong to

the same family.

It is also interesting to analyze the MSE. ofithe DS beamformer. Given the DS

beamformer as st(a)):as(a))/ ,~which introduces no-distortion on the

a, ()

desired signal and the MSE thereof.is derived as

MSE s (®) = E, ‘W}D[S (a))x(a),k)—s(a),k)‘z}

£ al (a))n(a),k)| (3-28)
Mo

_, B(o)

_¢n JYE

It can be seen that the MSE of the DS beamformer is independent of the desired signal.
Before ending this section, we give an illustration to show the difference between

the DS beamformer, the Zelinski post-filter, and the SCPF in the MSE sense. Consider a

uniformly distributed linear array (ULA) with M = 4 sensors spaced at half-wavelength

distance. The I'y(w) described in (1-5) was steered at = 0°.
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(b) a coherent noise impinged from 6= 45°
Figure 3-2 MSE comparison among the post-filters and the DS beamformer.

Two different noise fields were analyzed: a coherent interference impinged into the
array at € =45° and the incoherent white sensor noise. In Figure 3-2, compared to the
DS beamformer, it can be seen that both the post-filters attenuate more noise component
at low SNRs and preserves more noise at high SNRs. Since speeches are highly
nonstationary signal, the post-filters are able to give aggressive noise reduction at low

SNRs, especially in the case of incoherent noise fields.
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3.5 The Proposed Bias Compensated SCPF (BC-SCPF)
3.5.1 Derivation of Proposed BC-SCPF

Recall from (3-19), the noise reduction ability of the proposed SCPF is limited due
to the additional term B(w)/ [M *(&(w)+1)]. Since B(w) is the inner product of the
coherence matrices of the desired signal field and the noise field, its effect becomes
significant at low frequencies where the similarity between coherence matrices is high
due to the insufficient spatial sampling. This can happen both in beamforming and
multi-channel post-filtering. techniques. When the desired. signal is absent in the data,
the optimal Wiener filter gives a zero gain, which completely removes the noise.

However, the SCRE gives a gain of

tr(tl)s (0)®, a)))

()0 tr(®, (o)) tr(®,(w))

Ggcpr (a)) B, (3-29)

where ®@,(w) is the noise PSD matrix:-tnder-the-assumptions of homogeneous sound

fields and point source model, the bias /5, can be expressed as

B, == — - (3-30)

Since @ (w) is designed a priori, the bias term [, only depends on the noise PSD matrix
O, (w).

To decrease the effect of the bias f,, an intuitive way is to remove the bias and
compensate the gain to map the value in the range of [0,1]. The result is called

biased-compensated SCPF (BC-SCPF) as the following,

_ Gscpr (a)) -5,

Giescer (a)) = -3 (3-31)

Note that the bias £, lies in the following range for all kinds of noise fields according to
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the range of B(w) given in (3-21)
/M <pB, <1 (3-32)

By substituting (3-19) and (3-30) into (3-31), we have

N e ) /(15’(”)]

M2

(3-33)

Il
o
< &
Rk
S
+ | =
:/E/
=
=
<
|
Sz
S
=

= Gyiener (@)

— ™~ Wiener

This gives the optimal Wiener filter if the noise field coherence is perfectly measured.
In essence, the BE-SCPF amplifies the small spatial deviation at loew frequencies. It is
also worth to note that the Zelinski post-filter .is' a special, case, of the proposed
BC-SCPF with g, = 1/Maccording to (3-25):

For the bias estimation, (3-29).can’ be used if the PSD matriees of the desired
signal and the noise, @4 w) and @,(w), can be obtained in the traming process. For the
special case of the homogeneous sound fields, the information.given by the noise PSD
matrix @,(w) equals to that of the:noise coherence matrix'I',(w). Furthermore, on-line
implementation of the bias estimation can be achieved since the bias is the smallest gain
of proposed SCPF at each discrete frequency if the noise field does not change. Thus,

the minimum tracking skills [29-31] can be conducted and implemented on-line.

3.5.2 Comparison between BC-SCPF and McCowan Post-Filter

Under the assumption of homogeneous sound field and rank-1 signal model, the

McCowan post-filter has been derived as [47]
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GMCCowan (a)) = GWiener (a))

¢S (a)) 2 “ i 1:‘n,-n,» (0)) _f’1in, (0)) (3_34)

Q

where T, (o) and r,, (w) are the actual and estimated noise coherence matrices

of the aligned inputs. From (3-34) it can be easily seen that the McCowan post-filter

reduces to the Wiener filter when the noise coherence matrix is perfectly measured.
Similarly, the proposed BC-SCPF can be expressed with fn’_n/ (a)) and fn,.n, (a))

as following equation (see Appendix IIT)

Gy scrr (a)) = Gyiener (a’)

(3-35)

By comparing (3-34) and (3-35);-itzcan-be-observed that the error term e; in the
McCowan post-filteris the average of the ratios (f wn, (o) —l:“ninj (a))) / (1 T i, (a))) for
each microphone pair, while the error term e; in thé proposed BC-SCPF is the ratio of
averaged fn[,,j (a))—lz“nln/ (w) and l—laninj (). It is known that the averaging before
division may be robust to the estimation errors. In other words, the error term e; is
sensitive to the cases such as one of the estimated f wn, (a)) approaches to unity or is

significantly different from the true noise coherence matrix. The effects are alleviated
after the averaging in the proposed BC-SCPF. Listed below are potential advantages of

the proposed BC-SCPF comparing with Zelinski and McCowan post-filters.
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1) Multi-rank signal models can be directly adopted in the proposed method.

2) The assumption of homogeneous sound fields used in Zelinski and McCowan
post-filters can be relaxed in the proposed method.

3) Compared to the estimation of the noise field coherence under each
microphone pairs, the proposed method merged those as one bias term, which
can be designed in many ways.

4) The proposed BC-SCPF is less sensitive to the individual estimation error of

the noise coherence function (or the noise PSD function).

3.6 Summary

In this chapter, a spatial coherence measure is inttoduced and analyzed. The spatial
coherence measure evaluates the similarity between the measured signal fields using
power spectral idensity matrices. Based on'this measure, the SCPF'is derived. MSE
analysis among the SCPF, the Zelinskipost=filter;rand-the DS beamformer is discussed.
Due to the similarity ,of the desired signal field and the noise field, a bias compensated
solution, BC-SCPF, is proposed. It can be shown that.the BC-SCPF is equivalent to the
optimal Wiener filter if the bias or the noise power spectral density matrix is perfectly
measured. Besides, the Zelinski post-filter is a special case of the proposed BC-SCPF.
Theoretical comparison between the BC-SCPF and the McCowan post-filter is
investigated, and advantages of the proposed BC-SCPF over the McCowan post-filter

are listed clearly.
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Chapter 4

Experimental-Results

This chapter presents| the analyses and simulation results of the proposed
beamformers and post-filters. In Section 4.1, the superiority of using the norm
constraint to the DL formulation is analyzed firSt, then comparisons among the proposed
beamformers and ptior works ‘are investigated using a ULA with half-wavelength
spacing. In Section4.2; the proposed post-filters-are compared with the Zelinski and
McCowan post-filters-using speech quality and noise reduction‘indices. In Section 4.3,
the combinations of the proposed beamformer and post-filter are studied for the

application of multi-channel speech enhancement with a steering uncertainty.

4.1 Narrow-Band Simulations of the Proposed Robust

Beamformer

In this section, narrow-band simulations using a ULA with half-wavelength
spacing are investigated, including the analyses of the norm constraint and comparisons

among different beamformers. In narrow-band array processing, the ULA with
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half-wavelength spacing is called standard linear array [1]. For multi-rank sources, we

used the following model:

7/2

(i)s(a))= 7”/2p(t9,a))a(9,a))aH (6,0)do (4-1a)
with

6-6.)
p(@,a))zx/;_m]exp[—%J (4-1b)

which is a Gaussian model within¢oherently Scattered sources, and the parameter 7
controls the angular spreading of the signal model. In the simulations, 7 =5 is chosen.
For all the scenarios; the desired signallis always present in the tfaining data cell.

In Section 4.1.1, the norm constraint valuc y (@) is analyzed with a standard linear
array. The results were computed by the theoretical covariance matrices, and the
relationship between A(w) and ¥ (@) in (2220) was used to find the equivalent diagonal
loaded beamformer. In Section 4.1:2, the proposed beamformers were compared with
the priori works. The comparison between the proposed nonlinear Kalman filters was
also investigated. The'sources.and noises were produced using mutually uncorrelated

white Gaussian noise.

4.1.1 Analyses of the Norm Constraint Value for Half-Wavelength

Spacing

In this sub-section, we show that an appropriate selection of norm constraint value
7 (w) = 0.035 is less sensitive to the input signal powers, central angle mismatches, and
number of sensors than the selection of the diagonal loading level A(w) with a standard
linear array. For all the analyses, the theoretical covariance matrices of the signals were

used. The equivalent A(w) of a chosen y(w) can be derived from the relationship in
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Figure 4-1 Presumed and actual angular power density functions for 7 =5 and 5°

central angle mismatch

(2-20).

For the Simulation 1, the sensitivity of A(®) and y(®) to the input signal powers
are studied. A ULA of M =10 sensors_with half-wavelength spacing was used. The
multi-rank signal model given in (4-1) was utilized with presumed central angle equal to
0° and angular spread 7 = 5. The scattered desired source and intesference with angular
spread 77 = 5 impinged into the.array from the central angles —5° and 45°, respectively.
Thus, 5° central angle mismatch was considered. The presumed and actual normalized
angular power density functions are shown in Figure 4-1. The sensor noise power was
set to 1, and the interference-to-noise ratio (INR) was 30 dB. The signal-to-noise ratio
(SNR) varies from -20 dB to 30 dB. Figure 4-2 shows the output SINRs versus input
SNRs for different selections of A(w) and 7 (w). It can be seen that A(w) = 10* (note that
the sensor noise power = 1) and y(w) = 0.035 (i.e., T(w) = 1/M + 0.035 = 0.135) are
good choices considering all input SNR conditions. These values will be used as the
best choices for the rest simulations. For the selection of A(®), high values give more

penalties on the spatially white noise (or incoherent noise), which leads to the matched
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Figure 4-2  Output SINR vs. input SNR

filter as A(w) — oo. The matched filter does not form nulls at the directions of
interferences, hence it may have poor output SINR performance. As A(@) — 0, it turns
into the MVDR solution without norm constraint, which is sensitive to the array
mismatches and has severe self-cancellation at high input SNRs. For the selection of
y(w), it can be expected that the variation of output SINR with different y(w) is

relatively smaller than that with different A(w). This is because in (2-16) and (2-20), the
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Figure 4-4 Output SINR vs. y(w) for different input SNRs.

factor of averaged input power has been removed by the division. When the norm
constraint value y (@) — 0, the weight vector turns into the matched filter. When y (w)
approaches to the upper bound given in (2-23), it gives the MVDR solution without
norm constraint. From Figure 4-3 and Figure 4-4, the optimal selections of A(w) and
7 (w) for different input SNR conditions are illustrated. In the figures, the stars point out

the optimal selections for each case. It is obvious that the optimal selection of Aw) is
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for different input SNR conditions

related to the input signal power, while the optimal selection of () is less sensitive to
the input signal power. Since the powers of speech signals are unknown a priori and
even time varying, the proposed robust. beamformer provide consistent SINR
performances due.to the insensitivity of 7 (o) to the signal powers:. It is interesting to
note that there is agump.at 7(®) = 0.027.in Figure,4-4. A possible explanation of this
phenomenon is that+the feasible set that satisfies the morm constraint and the
distortionless constraint is too small in this case. Thus'the solution fails to reject the
interference in order to satisfy the constraints, which gives the solution of the matched
filter. Figure 4-5 gives the comparison between the best selected A(w) and y(w) for
different input SNR conditions. Since the optimal choice of A(w) dependents on the
desired signal powers, the proposed norm-constrained robust beamformer with the
optimal y (w) gives better output SINRs for most SNR conditions.

For the Simulation 2, the comparison between the best selected A(w) and y (w) for
different central angle mismatches is analyzed. It can be seen from Figure 4-6 that for

small angular mismatches, the proposed norm-constrained robust beamformer with the
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for different number of sensors

best selected y (w) performs better than using the best selected diagonal loading.
For the Simulation 3, the comparison between the best selected A(w) and y (w) for
different number of sensors is investigated. Again, the superiority of using the

norm-constrained robust beamformer is demonstrated in Figure 4-7.
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In this section, the superiorities of using the norm constraint value y(w) over the
diagonal loading level A(w) were demonstrated in the narrow-band simulations.
However, for wide-band applications, the properties differ from frequency bands
according to different directivities [1]. The parameter selection strategy for wide-band

applications will be discussed in Section 4.3.1.

4.1.2 Narrow-Band Comparisons

In this section, the comparisons of the proposed beamformers and other adaptive
beamformers are studied. Thé sensor noise power was set to 1. The simulation condition
is the same as Simulation 1, except the generated simulated data is used. For each
scenario, the average of 100 simulation runs is used to obtain each simulated point. The
detailed parameter settings and-abbreviations of thealgorithms are listed below:

1) MRSMI: Multi-rank sample matrix inverse {20]. The algorithm was

implemented by (2-8).

2) MRLSMI: Multi-rank loaded sample matrix inverse [20]. The algorithm was
implemented by (2-10), where the diagonal loading level was chosen as A w)
=107 (note that the sensor noise power =-1).

3) CKF: Constrained Kalman filter [67]. The CKF uses the rank-1 model
without the norm constraint and formulates the state space using the SCPO

method. The parameter matrices Q(w) was set to a zero matrix, and the

diagonal terms of R(w) were estimated as &; (w) and 107°-6; (@), where

67 (w) was estimated using (2-41) with the forgetting factor &= 0.9.

4) RLSVL: Recursive least square with variable loading [71]. The RLSVL uses
the rank-1 model and the GSC structure. A norm constraint was imposed on

the nulled vector for improving the robustness. The forgetting factor and the
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5)

6)

7)

norm constraint were set as 0.999 and 0.2 as suggested in the paper [71].

MRNCKF-FOE: Multi-rank norm-constrained first-order extended Kalman
filter. The proposed beamformer was implemented using (2-35) by letting
both n(w,k) and A(w,k) be zero. The parameter matrix Q(w) was set to a zero

matrix, and R(w) was set as in (2-40) with x = 107 for all the proposed

Kalman filters, where 67 (@) was estimated using (2-41) with the forgetting

factor ¢ = 0.9. The norm constraint value y(w) = 0.035 is chosen, which
corresponds to the constraint 7' (@) = 1/M + y (@) = 0.135.
MRNCKF-SOE:;:Multi-rank norm-constrained second-order extended Kalman
filter. The proposed beamformer was implemented using (2-35) with the
second-erder terms n(w,k) and A( @.k).

MRNEKEF-U: Multi-rank ' norm-constrained unscented Kalman filter. The

proposed beamformer was implemented using (2-36) and (2-37).

For the first case, the convergences and beam patterns at SNR-= 0 dB are studied.

Figure 4-8a shows the output'SINR performance versus the training size. The presence
of the desired signal-deteriorates the SINR performance due to the self-cancellation
phenomenon, which can be'observed in Figure 4-8b around the central angle of the
desired source —5°. Considering the performance of the pairs (MRSMI, MRLSMI) and
(CKF, RLSVL), it can be observed that the norm constraint improves the SINR
performance. It is also worth to note that the Kalman filter solutions seem to be more
robust to the steering mismatches than the beamformers using the estimation of sample
matrix. The Kalman filter is a close-loop system who constrains the weight vector to the
desired array response at each iterationon; on the other hand, the sample matrix inverse
method is an open-loop system who constrains the weight vector after the sample matrix

is estimated. Therefore, the latter one can be easily affected by the contaminated sample
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Figure 4-8 Comparisons of the beamformers at 0 dB input SNR.

matrix since the importance of the training data is the same when estimating the sample
matrix. From the beam pattern, it is shown that the proposed beamformer,
MRNCKF-FOE, gives the best output SINR since it has the smallest signal distortion at
—5° while keeping the same order of noise rejection at 45°.

For the second case, the convergences and beam patterns at SNR = 20 dB are

studied. In Figure 4-9a, the large signal power slows down the convergence of the
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selection of the norm constraint value.
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algorithms. The strong signal power leads to larger self-cancellation for the MRSMI and
MRLSMI beamformers. Despite of the difference between using the Kalman filter and
the sample matrix, this case also reveals that the chosen diagonal loading level of the
MRLSMI beamformer is not appropriate under this SNR condition (see Figure 4-3).

This demonstrates the advantage of using the norm constraint with a more robust
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Figure 4-11 Output SINR vs. input SNR for proposed Kalman filters

For the third case, the output SINR of the beamformers versus the input SNR is
illustrated in Figure 4-10. The training size of this simulation is N = 500. When the
input SNR is small, all the beamformers converges to the optimal MVDR solution. As
the SNR increases, the differences between algorithms become obvious. It is shown that

the proposed beamformer has the best performance through different SNR conditions.
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Figure 4-12 Beam patterns of the proposed Kalman filters at 20 dB input SNR.

For the last cdse, the output SINR of proposed Kalman filtef solutions versus the
input SNR is illustrated in Figure4-1L. It can be seen that the performances of the first-
and second-order extended Kalman filters aresalmost the same. This indicates that the
first-order approximation is good enough for our problem. Compared to the extended
solutions, the unscented Kalman filter-(UK¥)-has-worse: SINR performance. The UKF
implicitly estimates thefirst- and second-order approximation, terms of the Taylor
expansion using sigma-pointsi-The sigma points wete spread based on JM  times
eigenvectors of the error covariance P (@,k). An issue for the spreading of sigma points
is invoked when some error dominants the covariance P (@,k). In this case, some sigma
points are spread far away from the constraint sets and the neighborhood of the current
state estimate, which can induce improper nonlinear transformations that degrade the
performance of the UKF. In Figure 4-12, it can be seen that the large error of
interference rejection enforces the noise reduction at both 45° and —5°, which results in

the self-cancellation.
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4.2 Speech Enhancement Results of the Proposed SCPF and

BC-SCPF

In this section, we use three different noise fields with a local scattered desired

source and several SNR conditions to evaluate the proposed post-filters. All the

post-filters are processed on the output of the DS beamformer. The detailed parameter

settings and abbreviations of the algorithms are listed below:

1)

2)

3)

4)

5)

6)

DS: Delay-and-sum beamformer.

SD: Super-directive beamformer [76]. The ratio of the PSDs of the sensor
noise and the diffuse noise was chosen as -20 dB.

Zelinski:Zelinski post-filter [46]. The post-filter was implemented using (3-8),
where the spectral densities-were estimated using a first-order recursive filter
with the forgetting factor o= 0.9.

McCowan: McCowan post-filtersbased on noise field coherence [47]. The
post-filter was implemented-using=(3=2);=(3=6) and (3-7). The coherence
matrices were trained with 200 noise-only frames(3.2 s) for each case.

SCPF: The proposed: method was implemented using (3-16) and (3-17). The
forgetting factor ¢ = 0.9 for estimating the PSD matrices was used for the
proposed methods, which is the same as the factor used in Zelinski and
McCowan post-filters.

BC-SCPF: The proposed method was implemented using (3-31) with the
same training noise data as the McCowan et als. The biases were then

computed using (3-29).
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4.2.1 The Experimental Setup

The simulations were generated by the room impulse response generator [77] with
reverberation corresponding to the reverberation time R7s = 503 ms using
Sabine-Franklin’s formula [78]. There are three noise field conditions: 1) stochastically
white noise where noises between microphones are uncorrelated (i.e., incoherent noise
field); 2) babble noises which were uttered from four corners of the room to simulate a
diffuse noise field; 3) speech interference which is a coherent source impinged into the
array at the direction of 45°. The desited source’impinged into the array at the direction
0°, which is locally scattered with the angular distribution, described by a Gaussian
function with 7 = 10/in Figure 4-13. A"ULLA with four omni=directional microphones
and 5 cm spacing was ‘used. The simulation ehvironment.is illustrated in Figure 4-14.
The sampling rate and the fast Fourier transform (FFT) size werc 8 kHz and 256,
respectively. A female voice and a male voice were used as the desired source and the
interference respectively. The white and babble noise signals were taken from the
NOISEX-92 database [79].[*All the recordings- were 60 seconds in duration and

combined into different SNR-conditions.

4.2.2 Speech Quality and Noise Reduction Evaluations

Three criteria were used to investigate the performance. The speech quality was
evaluated by ITU-T P.862 PESQ (Perceptual Evaluation of Speech Quality) [80]. For
noise reduction performance, SNRI (Signal-to-Noise Ratio Improvement) and TNLR
(Total Noise Reduction Level) from ITU-T G.160 [81] were computed. The simulation
results of PESQ score improvement, SNRI, and TNLR are listed in Table 4-1, Table 4-2,
and Table 4-3, respectively. For all the indices, the higher score indicates the better

performance.
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The following discussions are based on the results given by Table 4-1-Table 4-3.
First, consider the DS and SD beamformers. It is known that the delay-and-sum (DS)
beamformer is optimal for the MVDR design in the incoherent noise field. Therefore,
the DS beamformer is ensured to perform better than the SD beamformer in this case.

The SD beamformer based on a modified coherence function increases the directivity at
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Table 4-1 PESQ score improvement obtained by different input SNRs
Input SNR —
Algorithm |

5dB 10 dB 15dB 20dB

White noise (Incoherent)

Original noisy PESQ 1.74 2.02 2.34 2.67
DS 0.35 0.40 0.41 0.42
SD 0.09 0.05 0.00 -0.03
DS + Zelinski 0.87 0.78 0.66 0.57
DS + SCPF 0.72 0.70 0.61 0.55
DS + McCowan 0.87 0.78 0.66 0.57
DS + BC-SCPF 0.89 0.80 0.68 0.59
Babble noise (Diffuse)
Original noisy PESQ 2.04 2.30 2.58 2.87
DS 0.15 0.14 0:13 0.13
SD 0.32 0.34 0.34 0.35
DS + Zelinski 0.16 0.16 0.15 0.14
DS + SCPF 0.19 0.17 0.16 0.15
DS + MeCowan 0.35 0.33 0.28 0.23
DS + BC-SCPF 0.36 0.34 0.29 0.24
Speech interference (Coherent)
Original noisy PESQ 2.23 2.50 2.79 3.08
DS 0.16 0.16 0.15 0.15
SD 0.28 0.30 0.29 0.29
DS + Zelinski 0.24 0.25 0.23 0.20
DS + SCPF 0.25 0.24 0.22 0.20
DS + McCowan 0.52 0.49 0.40 0.34
DS + BC-SCPF 0.53 0.50 0.41 0.34

low frequencies, or in other words, it amplifies the small deviations between
microphones to obtain more noise reduction. As a result, the SD beamformer has better
performance than the DS beamformer in the diffuse and coherent noise fields, where the
insufficient spatial sampling has to be taken into account in these cases. However, it has
some artifacts in the incoherent noise field due to the increased white noise gain [1].

Compared to the DS beamformer, the usages of post-filters give better performances.
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Table 4-2 SNRI score obtained by different input SNRs

Input SNR — SNRI (dB)
Algorithm | 5dB 10 dB 15 dB 20 dB
White noise (Incoherent)
DS 6.06 5.79 5.47 4.96
SD -1.25 - 1.58 -1.93 -2.25
DS + Zelinski 19.78 17.75 15.31 12.50
DS + SCPF 13.75 12.73 11.45 9.73
DS + McCowan 19.65 17.66 15.26 12.48
DS + BC-SCPF 19.95 17.47 14.96 12.14
Babble noise (Diffuse)
DS 2.12 1.71 1.36 1.01
SD 4.15 3.86 3.57 3.18
DS + Zelinski 2.88 2.52 2:10 1.63
DS + SCPF 2.61 2.21 1.83 1.51
DS + McCowan 9.46 8.60 7.23 5.50
DS + BC-SCPF 8.79 8.42 7.04 5.45
Speech interference (Coherent)

DS 0.71 0.52 0.32 0.08
SD F29 1.18 1.00 0.75
DS + Zelhnski 1:80 1.73 1.47 1.10
DS + SCRE 1.38 1.36 1.11 0.67
DS + McCowan 9.91 8.87 6.91 4.73
DS + BC-SCPE 9.97 9.13 7.29 511

That means the post-filters followed by a DS beamformer have contributions to both the
speech quality and noise reduction.

Second, consider the Zelinski and the McCowan post-filters. The Zelinski
post-filter is a special case of the McCowan post-filter when the noise field is
incoherent. Hence, it can be seen that in the incoherent noise field, the performances of
the Zelinski and the McCowan post-filters are almost the same. While in other noise
fields, the consideration of noise field coherence provides evident performance
improvements. Likewise, the proposed BC-SCPF after the bias compensation has

evident performance improvements compared to the proposed SCPF. However, unlike
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Table 4-3 TNLR score obtained by different input SNRs

Input SNR — TNLR (dB)
Algorithm | 5dB 10 dB 15dB 20dB
White noise (Incoherent)
DS 5.55 542 5.14 4.63
SD -2.93 -2.94 -2.97 -3.03
DS + Zelinski 21.10 18.48 15.60 12.49
DS + SCPF 14.62 13.26 11.69 9.78
DS + McCowan 20.96 18.39 15.55 12.47
DS + BC-SCPF 21.38 18.34 15.42 12.31
Babble noise (Diffuse)
DS 0.64 0.60 0.49 0.20
SD 3.44 3.36 3.18 2.77
DS + Zelinski 1.95 1.77 1:49 1.05
DS + SCPF 1.66 1.50 1.28 0.89
DS + McCowan 9.70 8.44 6.91 5.13
DS + BC-SCPF 9.38 8.53 6.98 5.19
Speech interference (Coherent)

DS 0.66 0.67 0.71 0.50
SD 1.85 1.86 1.89 1.64
DS + Zelnski 1.94 1.82 1.73 1.38
DS + SCRBE 1.70 1.61 1.56 1.27
DS + McCowan 13.26 11.53 9.18 6.60
DS + BC-SCPFE 13.70 11.98 9.63 7.07

the relationship between the Zelinski and the McCowan post-filters in the incoherent
noise field, the bias compensation still improves the performance in this scenario. For
comparison between the Zelinski post-filter and the proposed SCPF, one can refer to the
theoretical analysis in Section 3.4.2 to see the effect of different noise fields on B(w). In
general, the Zelinski post-filter has better performance than the SCPF in the incoherent
noise field. For other noise fields, it depends on the overall effect of B(w). Besides, it
can be seen from the SNRI and TNLR scores that the SCPF has less noise reduction
than the Zelinski post-filter. However, the noise reduction performance does not

guarantee a better speech quality since the point source model used in the Zelinski
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post-filter may introduce the signal distortion due to the self-cancellation (refer to the
PESQ improvements in diffuse and coherent noise fields).

Finally, the performance of the McCowan post-filter and the proposed BC-SCPF is
discussed. It can be seen that the proposed BC-SCPF has better speech qualities than the
McCowan post-filter among all the noise fields. The results show that the small
increment of the noise reduction of the McCowan post-filter does not give a better
speech quality since the signal distortion has small impact in the noise reduction indices.
Also, the simulation results demonstrate the superiority of the proposed BC-SCPF with

a more accurate signal model,

4.3 Speech Enhancement Results of the Proposed Speech

Enhancement System (Beamformer:+ Post-Filter)

In this section, according to the dinsufficient spatial sampling at low frequency
bands, the relaxation of the constraintssforstheswide=band beamformers based on the
Kalman filter is analyzed in Section 4.3.1. Next, the combinations of the proposed
beamformer MRNCKEF and post-filter BC-SCPF are evaluated using the speech quality

and the noise reduction indices in Section 4.3 .2.

4.3.1 Relaxation of the Constraints at Low Frequency Bands

For narrow-band applications, we showed the superiorities of the proposed
multi-rank norm-constrained beamforming based on the Kalman filter (MRNCKF) with
a standard linear array (1.e., a ULA with half-wavelength spacing) in Section 4.1. The
half-wavelength spacing provides the best spatial information among different

wavelengths [1]. However, for wide-band applications, the optimal weight vector norm
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and the array response of the multi-rank signal model vary from wavelengths or
frequencies. Thus, the previous superiorities will not persistent for all frequency bands.
In this dissertation, we propose to relax the strength of the distortionless and norm
constraints at low frequency bands for wide-band applications. The main objective is to
allow more interference rejection for the Kalman filters. At low frequency bands, the
wavelengths of the observe signals can be greater than the spacing between the sensors.
In this case, the sensors are insufficient to describe the spatial differences between
sources. In the following, the impacts of insufficient spatial sampling on the

distortionless and norm constraints are investigated.
. . ) 2 . .
First, consider themnorm constraint Hw (co,k)” =T (a)) . Itiis known that the weight

vector norm is getting large with smaller steering mismatch due tosthe contradiction of
objectives of the. distortionless-and minimizing output power [26]; The high spatial
coherence of the sources at low frequency'bands (which corresponds to long
wavelengths) aceelerates this phenomenon. As a result, the weight'wector norm of the

MVDR beamforming is: getting higher for lower frequency with ceherent noises. Figure
4-15 illustrates the squared vector norm of the optimal ‘weight Hwopt ((0)”2 versus the

ratio between the array spacing and the wavelength for different noise fields. For the
simulation condition, a ULA of M = 4 sensors was used. The multi-rank signal model
given in (4-1) was utilized with presumed central angle equals to 0° and angular spread
n = 5. The theoretical covariance matrices of the sources are used for the computation
of the optimal weight and output SINRs. For coherent interference case, the scattered
desired interference with angular spread 7 = 5 impinged into the array from the central
angle 45°. From Figure 4-15, it can be seen that there is no need to add norm constraint
for the incoherent noise field (i.e., spatially white). For coherent noise fields, the vector

norms at low frequency bands are getting larger with the increasing interference power.
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It becomes the worst in the diffuse noise field since the noise is also present in the
desired directions. According to the observations, we propose to keep the norm
constraint value 7(w) but relax the strength of the norm constraint at low frequency
bands by increasing the variance parameter o3°(w). The reason to keep 7(w) is that the

vector norm correlates to the white noise gain [1]. A large white noise gain can amplify
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the unwanted noise, thus we would like to keep the value 7(w) close to 1/M. According
to the SCPO method introduced in Section 2.3.3, the larger o3°(w) gives less penalty on
the error of norm constraint. Thus, the system can put more emphasis on the objective

of interference rejection.

Next, consider the distortionless constraint w"” (&,k)® (@)w(w,k)=1. For

norm-constrained vectors, the error of the distortionless constraint becomes smaller at
low frequency bands due to limited spatial information. This can be illustrated by using
the steering vector ay(w)/M for all frequency bands. The error of the distortionless

constraint is given by

(4-2)

It can be observed from Figure 4-16 that the error.increases with the frequency. Here,
we also suggest: relaxing the distortionless constraint at-low frequencies since the
unconstrained selution is acceptable with small distortion. The relaxation can be done

by increasing the:variance parameter o»'(®). With the proposed estimation of the

parameter matrix ﬁ(w) , we only need to increase the parameter x. The modified x

should be a function of frequency and number of sensors. Here, we propose to design
the frequency dependent parameter x based on the modified squared beam pattern with

the largest angle deviation as ( [1], Eq. 2.96)

1, f=0

N =1

: 2 4-3

K(a)) ma LM & otherwise "
M sin(zdffc) ||

where d is the spacing between sensors, f is the continuous frequency, ¢ is the sound

velocity. fr = ¢/Md is the first null of the beam pattern. Since we only tend to relax
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the constraints at 1ow frequencies; the parameters are cut to small value ¢ (e.g., 107).
Figure 4-17 gives an illustration with ‘M =4 and df= 0.05 m.*With the modified
parameter x(®), We can strengthen the interference rejection at low frequencies. This

parameter will be applied to all the Kalman.filters in the next section.

4.3.2 Speech Quality. and Noise Reduction,Evaluations

In this section, we continue the Simulation l-for the wide-band application. A 5°
angle mismatch of the desired source ‘with angular spread 7 = 5 was considered, as
shown in Figure 4-1. The testing database is the same as in Section 4.2, except for the
angle mismatch of the desired source and the angular spread. The beamformers were
trained using 60 second recordings for each case, where the desired signal was present
in the training data. The trained beamformers were applied as fixed spatial filters, and
the proposed post-filter BC-SCPF was imposed afterward for further improvement. The
speech indices introduced in Section 4.2.2 were used to evaluate the speech quality and

noise reduction performances. The results are shown in Table 4-4—Table 4-6.
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Table 4-4 PESQ score improvement with 5° angle mismatch

Input SNR —

Algorithm | 0dB 5dB 10 dB 15dB
Original noisy PESQ 1.96 2.23 2.51 2.80
DS 0.16 0.14 0.15 0.13
CKF 0.68 0.49 0.28 0.00
MRNCKF 0.81 0.68 0.46 0.14
DS + BC-SCPF 0.53 0.51 0.46 0.37
CKF + BC-SCPF 0.83 0.70 0.49 0.16
MRNCKF + BC-SCPF 0.89 0.86 0.67 0.31

Table 4-5 SNRI score with 5° angle mismatch

Input SNR — SNRI (dB)

Algorithmy} 0dB 5dB 10 dB 15dB
DS 0.85 0.73 0.60 0.45
CKF 6.98 6.30 4.19 —-0.95
MRNCKE 7 6.94 448 —0.62
DS + BC=SCPE 10.55 1043 9.10 6.94
CKF + BC-SCPF 14.53 13.92 10.81 5.36
MRNCKF + BC-SCPF 14.85 14.29 11.01 5.45

Table 4-6°. TNLR score with.5¢ angle mismatch

Input SNR — TNLR (dB)

Algorithm | 0dB 5dB 10'dB 15dB
DS 0.72 0.81 0.87 0.93
CKF 11.29 10.27 7.47 0.98
MRNCKF 11.42 10.46 7.48 0.92
DS + BC-SCPF 16.16 14.75 12.49 9.72
CKF + BC-SCPF 22.72 20.89 16.75 9.47
MRNCKF + BC-SCPF 22.73 20.90 16.61 9.26

First, considering the DS, CKF, and proposed MRNCKF (with FOE) beamformers.
The DS beamformer has consistent performance since it is data independent. The CKF
and proposed MRNCKF beamformers work well at low SNRs. According to the

narrow-band simulation, both the beamformers converge to the optimal MVDR
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beamformer when the input SNR approaches to zero. Compared to the CKF, it can be
observed the proposed MRNCKEF is more robust to the mismatched desired signal since
it provides better speech quality (i.e., PESQ) and noise reduction (i.e., SNRI and TNLR).
However, both beamformers degrade as the SNR increases. At 15 dB SNR, both the
data dependent beamformers are worse than the DS beamformer due to the
self-cancellation (or signal distortion here). Second, the results show that the proposed
post-filter, BC-SCPF, always gives better speech quality and noise reduction.

In the end, we give an illustration of the waveforms and spectrograms at 5 dB SNR
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Figure 4-18 Waveforms and spectrograms at SNR = 5 dB.

as in Figure 4-18. It can be observed that the DS beamformer provides bad noise
reduction at low frequency bands. Further, compared to the proposed MRNCKEF, the

CKF has severe signal distortion at high frequency bands due to the self-cancellation.

4.4 Summary

In Section 4.1.1, the superiority of using the norm constraint to the diagonal
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loading formulation is analyzed in the narrow-band. It is shown that an proper choice of
the norm constraint value y (®) (or T(®) = y(w) + 1/M) can be found, which is robust to
the unknown signal powers, angle mismatches, and number of sensors. In Section 4.1.2,
the proposed beamformer, MRNCKF, is compared with several methods in the
narrow-band. The simulation results show that Kalman filter structure is more robust
than using the estimation of sample matrix. Besides, the norm constraint and diagonal
loading are demonstrated to improve the output SINR when the desired signal is present
in the training data and angle mismatch exists. It is also shown that the performances of
the proposed beamformer are better than the rank-1 beamformers (such as CKF and
RLSVL) with a more similar multi-rank signal model..The comparison of the nonlinear
Kalman filters is also studied. Forgour problem, the:performantes of the first- and
second-order extended solutions are-almost the same: This indicates that first-order
approximation is‘enough in our problem. The UKF has worse performance, which can
be caused by the spreading of the sigma points.

In Section 4.2, the proposéd post=filtersrare-evaluated using speech quality and
noise reduction indigces under three types of noise fields:  The.results show that the
proposed BC-SCPF provides: the best speech quality by using a more accurate
multi-rank signal model.

In Section 4.3, the wide-band application of the proposed beamformer is
investigated. To deal with the insufficient spatial sampling problem at low frequencies,
the relaxation of the constraints is proposed to tune the parameters of the Kalman filters
in Section 4.3.1. Next, the combinations of the beamformers and the proposed
BC-SCPF are evaluated through speech quality and noise reduction indices in Section
4.3.2. The results show the superiority of the proposed MRNCKF for most SNR
conditions. It can be observed from the spectrograms that the DS beamformer has small

noise reduction and the CKF has signal distortion at high frequencies.
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Chapter 5

Conclusions and Potential Research
Topics

5.1 Conclusions

For the proposed beamformer, the simulations show that the superiority of using
the norm constraint to the diagonal loading formulation for the narrow-band application.
Recall that the lagge norm of'the MVDR beamformer is caused by the contradiction of
the objectives of disrotionless and power minimization: ‘When"the desired source is
present in the training data with @a-small angle mismatch, there is a sharp transition to
meet the distortionless constraint while'minimizing the signal. This transition results in
the large norm. Thus, it makes sense that the norm constraint does not work for large
angle mismatches. The other thing is the spreading of the scattered source. If the angular
spreading of the scattered source is too large, the advantages of the multi-rank MVDR
beamformers will be limited to the number of sensors. Similar situation happens when
the spatial sampling is insufficient.

Besides, the comparison among the nonlinear Kalman filters for our quadratic

problems was discussed in Section 4.1.2. It is shown that the first- and second-order
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extended solutions almost have the same performances when the initial conditions are
properly set. However, we observed that the second-order approximation is more
sensitive to the improper initial conditions, which can even converge to other worse
results.

For the proposed multi-channel post-filter, the bias compensated solution gives the
optimal Wiener filter theoretically, as the McCowan post-filter did. The results show
that with a more accurate multi-rank signal model, the proposed BC-SCPF has better
speech quality than the McCowan post-filter. Furthermore, the similarity between the
coherence matrices of the desired sound field and the'noise field can be merged into a
single real-valued bias: Several noise level estimation.skills can be adopted to estimate
the bias. Comparéd to .the estimation of the noise coherencé function, the bias
estimation has fewer variables to be estimated. Besides, the noise level estimation can
be carried outin the presence of the desired signal, while the estimation of noise
coherence function is carried out during noise-only period. Finally, 1t'is relatively easy
to describe the similarity between the-multi=rank-signal-models and the noise field using
the proposed post-filters. This sprovides a more flexible ,design for the real-world

environments.

5.2 Potential Research Topics

The future researches can be summarized as follows.

1) This dissertation proposed the multi-rank norm-constrained Kalman filter
using the SCPO method. Restricted to the SCPO method, only equality
constraints can be applied. However, inequality constraints can be applied

using the projection method in the constrained Kalman filtering [55-59]. The
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2)

3)

benefit of using inequality norm constraint occurs when signal is not always
present in the training data. But the drawback is that the formulation of the
error covariance is more complicated for implementation. This is left as the
future study.

The beamformer and post-filter proposed in this dissertation is not closely
coupled. In [5], the design of the post-filter based on a known beamformer is
investigated. However, the best design of the post-filter with an adaptive
beamformer is still an opening problem, and it is interesting to impose the
multi-rank signal models into-the beamformer and post-filter designs.

For wide-band applications, the best way to design the parameters for the
Kalman filter has not been-analytically solved. In Section 4.3.1, we proposed
to relax’the constraints at low frequencies based: on a modified model. This
seems 'to work and it provides better noise reduction at'low frequencies.
However, the improvement to'theSpeech quality is not so clear. For the future
study, the database that measuring-thesspeechrquality (such as PESQ) can be

used to train the best parameters for the Kalman filter.
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Appendix |

In this appendix, the derivation of the SOE Kalman filter is given in detail. This
appendix clearly points out the assumptions and approximations in the derivation of the
SOE Kalman filter. For more reference, the reader can refer to the paper [61]. In our
case, we use the Kalman filter as.an’adaptive filter. Thus, the state transition is linear
and only the output matrix is considered as nonlinear. For brevity, the frequency index

o is omitted in the derivation, and the statéspace representation s recalled as follows:

State equation

W, =W, +V, (A-1a)
Measurement equation

z=f(w,)+v, (A-1b)
where wy is the state at time index;k and f(w,) is the nonlinear output function.

Assumption 1: The process noise v, and the measurement noise v’ are zero-mean
k m

and mutually uncorrelated.

The objective is to minimize errors between the true state and the estimated states

in the state equation and the measurement equation in the MSE sense. Let us denote the

a posteriori and a posteriori errors as e, =w, —W, and e, =w, —W,, where W,

90



and W, are the a priori and a posteriori estimate of the state using the state and

measurement equations, respectively. Using the state equation (A-1), the a priori state

estimate at time & is estimated by the a posteriori state estimate at time k-1 as
. (A-2)

It can be seen that the estimate in (A-2) is unbiased since the process noise v, is

assumed to be zero-mean (one can take expectation on (A-1) to find this). Next, the a

. . . — .- - H
priori state error covariance P, =% [ek (ek) } canrbe expressed as

=E (kal + Vier = Wiy )(Wk—l + Vi =W )Hi| (A-3)

Assumption 2: The a posteriori error €, and the process noise v, are assumed to be

. H
uncorrelated, i.e., E[(el) v;} =0.

By the Assumption 2, (A-3) can be expressed as
- + + \7 s s\
P, :E|:ek1(ek1) :|+E|:Vk1(vk1) } (A-4)
= P/:—l +Q

Now, consider the update from the measurement equation. Since the output
function f(w,) is nonlinear, the Taylor series expansion is used to approximate the
function. In our problem, the function is quadratic. Thus, the second-order

approximation is sufficient to describe the nonlinear function.
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Approximation 1: Assume the complex-valued nonlinear function f(w,) is
second-order differentiable around the nominal point w,, then the nonlinear function

can be expanded as [61]

£(we) = £(90) , (w, —37) 2 D (w, = 7) B (w, =)
i=1 (A—S)

—f(W;)+F *+li e[ e (e)"
= (Wk) w& 2i:l¢@ r[ wwek(ek) :|

T
where ¢ = [0, ey L e 0} and P is the number of measurement equations.
i—th

Given Approximatien 1, the a posteriori state estimate.can be updated in a linear

form
Wi =W, + K, [ 258V, )-m, | (A-6)

where K is the. Kalman gain to be estimated and @, is the correction term to ensure
that w, is unbiased, i.c., E [e;] = F [wk —Wﬂ =0 Given (A-6), the a posteriori
error can be rewritten as

€ =W, —W,
=e¢, - K, [z—f(\?v;)}+nk
=e, — [f(wk)+v’” f(VAV;)—ﬂTk:| (A-T7)

=(I-K,F, )e, - {Z¢ tr[ ek(ek) }}_K VI AK, T,
Assumption 3: Assume the a priori state estimate is unbiased, i.e., E [e;] =0.

According to Assumption 1 and Assumption 3, the bias @, can be obtained by taking

expectation on (A-7) and equating to zero as
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7, = %{Zq@ | e (e )H}} (A-8)

Note that the Kalman gain K; is a random variable and it should not be taken out the

expectation operator. However, in the derivations of a posteriori error e, and the a

. H . .
posteriori state error covariance P, =FE [e; (e;) }, the Kalman gain is regarded as a

determinant matrix, as the way used in the traditional Kalman filter.

1 P
T, zg{zé.t FYp (A-9)
i=1 i
Now, basedson ( > tr | the ¢ ori state error covariance P .

Assumption 4: The a priori error- e t easurement noise v, are assumed to

be mutually uncorrelated, i.e., E [[e; ]* [vﬂ _

i J

]=0 for all i and ;.

According to Assumption 1, Assumption 3, Assumption 4, and (A-7), P, can be

expressed as (here, m, and K are considered as determinant values)

93



P;:E[((I—Kka)e,; ; {Zl¢ tr[F( ek(ek)H}}_KkVZ+KknkJ(.)H:|

=(1-K,F, )P, (1-K,F,)" +K,RK" K, 7, n/'K"

—% I-K,F,) [Zek(ek) Ffj)ve;-#}Kf (A-10)

| S (o) Fler (o) Ja-k)

i=1

v 1K E[Zplzplqj (e7) Fher (o) Fle; ~¢T}KH
4 : k ww€r | €1 T k

By Assumption 5 and (A-11), (A-10) can be rewritten as

P; :(I—K F,)P; (I-K,F,)" +K,RK/

+= Kk {Zigé E[(ek) ) e (ek)H Fv(va'ze;]#}l(k” -K,n,n K/

i=1 j=1

(A-12)
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Substituting 7 into (A-12), we have

=
I
=)
|
~
=
bes)
=
=)
|
~
=
bes)
TR
+
3
T

ST () e o) Rl
—%Kk {f‘y -tr[F&P,;ﬂ~[Jitr[Ff£P,;]¢f}Kf

(A-13)
K, {izy E| ()" Fer (&) Pl |4
S| Exinaeiatps

Lemma 1: If x is alzero-mean, Gaussian random vector-with covariance matrix X, then

(]

E{Tr[ Axx"Bxx" |}

0
B{Tr[ Axx |Tr[ Bxx" ]}
= 2Tr[ AZBE|+Tr[AZ|Tr[BZ]

where A and B ar¢’symmetric matrices.

Using Lemma 1, (A-13)¢an beirearranged as

P, =(I-K,F, )P, (1-K,F,)" + K,RK”

w

K, %iiﬁ-tr[F&P{F&QP{J-@T

+
e
M-
,MNU
EN
=
[
2

WP |t EUR | g
P .

13 tr| FUP: | g7 VKT (A-14a)
Z |: wwo k g k

F

Lk iigp-tr[F(")P'F“)P—]f K/
2 k P 1 WWS kT wwe k 7 k

=(1-K,F, )P, (1-K,F,)" +K, (R+A, K}
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where

P P ) )
ZZ¢ : tr|:Fv(vlv)ka_Fv(v]“)1Pk_:| -’ (A-14b)

i=l j=1

A=

N | —

Finally, the Kalman gain K; can be derived by minimizing the trace of the a

posteriori state error covariance P, . By taking trace operation on (A-14a), we have

Tr[P,j] =Tr[Pk_J—TT[P{FkaH]_Tr[KkaP/;] (A-15)

+Tr| K, (F,PE) + R+ A, K |

(A-16)

(A-17)
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Appendix I

This appendix is to find the relationship between the proposed SCPF and the
Zelinski post-filter. To compare with the Zelinski post-filter, the special case of the
proposed SCPF in (3-19) is used. Recall in Section 3.2, before the post-processing of
the Zelinski’s and McCowan et als methods, the microphones have to pass a time

alignment module to adjust. the.mismatch between microphones, as described in (3-1).

Thus, the PSD matrix of the aligned input vector can be denoted as @ () and the

SCPF can be rewtitten as

(A-18)

where 1 is the all-one vector and tr((i)x (a))) = tr(élx (a))) if the all the magnitudes of

the elements in a; are equal to unity. ¢;xx_ (a)) is the cross-spectral density between the

aligned inputs at the i-th and j-th microphones. In this case, the SCPF can be interpreted
as the ratio between the average of total spectral densities and the average of
auto-spectral densities. Since the Zelinski post-filter is the ratio between the average of
cross-spectral densities and the average of auto-spectral densities (as in (3-8)), the

relationship between the SCPF and the Zelinski post-filter can be easily derived by
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M

o 2i;m{¢” o)f+

1
-

Ma

=1

GSCPF (w) _ off1 dlagoll“l;l - 0 diagonal
v 2P (@)
1

= GZelinskl ( ) _(1 GzeImSkl ( ))
M

Or it can be written as

_ Gyepr (a)) ~/M
Zelinskj( )_ I—I/M

Note that the covariance 1
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Appendix Il

This appendix analyzes the proposed BC-SCPF. To compare with the McCowan
post-filter, the assumptions of homogeneous sound fields and point source model are

used. Assume the actual and estimated noise coherence matrices from the microphones

are I'(w) and fn (a)) . Then according to (3-30) and (3-33), we have

_| Mé(0)pal (@), (0)a, (0) _a(@)F,(@)a, (o)
Gocscrs () { MP(é(w)+1) M }/
[l_af (w)fn(w)as(w)]
M? (A-21)
:GWiener(a))

A ,af(a’)rn(a’)as(a’) ()fn(@) a (o)
gi(@)+ ¢, (0) (MZ— a’ (w )a,

Using the time alignment expression similar to (A-18) in.Appendix II, (A-21) can be

rewritten as

Gycescrr (@) = Gy (@) + i 5) Era;) y 1'T, (w)1 _21Tfn (@)1

4,() 220 (0)-23T,, (o)

i=l j=1 i=l j=1 (A—22)

4,(0)+4,(0) M? —iif (a’)]

= GWiener (a)) +

= GWiener (a)) +
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where I, (®) and T,, (@) are the actual and estimated noise coherence matrices
iy L

of the aligned inputs.
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