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利用漸近解分析內嵌週期性金屬圓柱介質波導之色散特性 

 

 

學生:邱怡嘉                                      指導教授:黃謀勤 博士 

 

 

國立交通大學電信工程研究所碩士班 

 

 

摘   要 

 

 

  近來，有非常多的研究著重於電磁能隙結構 (Electromagnetic Bandgap, 

EBG)，其特性最廣為人知便是在頻率截止帶相當於一高阻抗表面，有著抑制表

面波的效果。除此之外，電磁能隙結構有些甚至放置在平行板波導的空隙中去實

現高頻率波導特性。[1] 類似的概念也可以從矩形波導中發現。而還有一種新的

複合材料，人們稱之為”針床”也已經被廣泛研究。其特性就類似於上述我們所說

的 EBG 結構。不僅如此，我們可以發現此種結構應用在中脊波導，其原因在於

此結構可近似模擬出高阻抗邊界條件；當我們放置一脊面於平行板波導中間、並

讓周圍環繞著無限多(假想)的週期性金屬圓柱，當空氣隙小於四分之一波長時，

那些規律無限多金屬圓柱形成了相當於理想磁導體(PMC)的平面，使得 TEM 波

只會隨著中脊(ridge)而傳。 

  而這些年來，也有許多的研究是將一些填充物放置在空波導中，藉此量測波導

的傳播特性、並且填充方式從最簡單的放置介質到插入一些介質層去做阻抗匹配

並探討其特性。在此篇論文中，我們主要採用將空波導兩旁的介質放置入規律的
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金屬長柱（理想導體），並且利用漸近解的方式去分析其特徵方程式；分析出特

徵方程式之後再用模擬軟體去跑出其色散圖。由 HFSS 及 CST 吻合的色散圖來

推斷其模擬結果是正確的，搭配 MATLAB 結果，來分析其特性。 

 

在分析此結構之前，我們會先介紹另一較單純結構：在介質基座裡，想像其

中嵌有無限週期性排列金屬柱、利用電磁場的概念下去分析推導，並用漸近解取

得其特徵方程式；接著用模擬軟體 CST、HFSS 跑出其色散圖，並將其結果與橫

向共振技術 (Transverse Resonance Technique, TRT)得到的特性方程式用

MATLAB 模擬出的色散圖做比較，藉此來證明其漸近解的可靠性與準確性，同

時解釋選擇此種場論分析的目的。 
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ABSTRACT 

 

There are so many researches focusing on Electromagnetic band-bap structure (EBG) 

recently; for their well-known characteristic of being as a high-impedance surface in 

frequency stop-band that can suppress surface waves. Besides, EBG structure can be 

used to realize a new high-frequency waveguide in the gap between the parallel plate 

waveguides. The similar concept can also be found in the rectangular waveguide. [1] 

Recently, a new type of novel meta-surfaces, which is called “pin-lattice” or 

“bed-of-nails” is being widely researched.[2] Its characteristics are similar to those of 

EBG structures. [3][4]  

Furthermore, we can see that the “bed-of-nails” structure is also applied in ridge 

gap waveguide. The reason of this structure being used is because that can usually 

mimic the ideal impedance boundary. When we put a ridge in the parallel plate and 

surrounded infinitely periodic pins, the “bed-of-nails” structure would be similar with 

PMC (Perfectly Magnetic Conducting) surface when the air gap is smaller than 

quarter-wavelength and let TEM wave propagate following on the ridge.[5] 

In recent years, the insertion of additional structures into empty waveguide has 
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been practiced a lot, which can discuss about the characteristics of the propagation 

through the measurement of the waveguides. Furthermore, the insertion has ranging 

from the simplest use of dielectric fillings for reduction of cutoff frequency to the 

plugging in of dielectric layers to serve as impedance match-tunners. In this paper, we 

use the structure that is a waveguide filling the dielectric in the sidewall and loading 

with uniform embedded lattice of metallic pins (Perfect Electric Conductor, PEC). 

Next, we analyzed its characteristic equation by asymptotic solution, and simulated 

with the tools to get the dispersion diagrams. By agreements of simulating results in 

CST and HFSS, we can assume its accuracy, and we will analyze the characteristics 

with the MATLAB tool. 

On the other hand, we will introduce another simpler structure before the 

sidewall loaded with embedded pins waveguide; first, we imagine that there is a 

dielectric grounded plane filling with infinitely periodic array of metallic pins. Next, 

we derive it by the concept of electromagnetics and get the characteristic equation 

through the asymptotic solution. Then, we compare the result through the simulated 

tools with the result of the Transverse Resonance Technique (TRT), and we can get 

the agreement of the results and the dependability of the asymptotic solution.[2] 

Meanwhile, we will explain the objective of choosing this field analyzing method.  
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I. Introduction 

 

Usually, the hollow waveguide can be manufactured in two parts that are joined 

together, but there would be a big problem which is that we cannot ensure good 

electrical contact in the joints. When it comes to radio frequency transmission, the 

micro-strip lines are commonly used as well, but the losses increase with frequency, 

as well as the power handling capability being reduced. 

Therefore, there is a need for new waveguides or transmission lines operating at 

high frequencies, in particular above 30 GHz. There exist already some waveguides 

particularly intended for use at high frequencies. Such a waveguide is the so-called 

substrate integrated waveguide (SIW), as described in [6]. 

However, these waveguides still suffer from losses due to the substrate, and the 

metallized via holes represent a complication that is expensive to manufacture. 

The first conceptual attempt to realize magnetic conductivity (in the form of high 

surface impedance) was the so-called soft and hard surfaces. For its abnormal 

characteristic which is the equivalent of magnetic conductivity, such materials are 

often referred to as meta-materials. 

Recently, there has been a new type of novel meta-surfaces, which is called 

“pin-lattice” or “bed-of-nails”.[2] Its characteristics are similar to those of EBG 

(electromagnetic band-gap) structures, which are well-known for suppressing surface 

wave propagation in a specific band. [3][4]  

The “bed-of-nails” structure can also be applied in the ridge gap waveguide.[7] The 

reason of this structure being used is because it can usually mimic the ideal 

impedance boundary. When we put a ridge in the parallel plate and surround it with an 

infinite array of periodic pins, and when the air gap is smaller than 
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quarter-wavelength, TEM waves propagate along the ridge.[1] 

 

 

II. Theory 

 

2-1 Modal Analysis of a Periodic Pins Array within a Grounded Dielectric 

Substrate 

 

In this section, we analyze a basic structure being simply a grounded dielectric 

substrate and seek to demonstrate that by the concept of assuming TEM solution in 

the dielectric region perpendicular to the slab surface, the presence of the pin lattice 

within the dielectric slab can be effectively taken into account in an asymptotic 

manner. As in, the solution approaches exactness as the period of the lattice tends to 

zero. Besides, we demonstrated the characteristic equation with a key concept which 

is we assume the TEM solution within the dielectric region to the normal direction of 

the slab surface. That is to say, it will only be sense by the vertical y-oriented 

embedded pins in the substrate when yTM modes. Which means the yTE modes 

won’t feel them. Hence, we derive the equation only for yTM modes. 

In the next section, we use the classical analysis by vector potentials and we 

assume a “TEM-to-slab-surface-normal” solution inside the pin-lattice layer. In that 

way, the approach is reasonable only when the pin-period is diminishingly small, i.e. 

the density of the pins would be likely to infinity. As mentioned, we use the key 

concept, and let kd, the wavenumber in the dielectric, to equal kyd, the wavenumber 

along the y-direction in the dielectric, perpendicular to the surface. The reason for this 

is because the wave within the space between adjacent pins was forced to propagate 
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along them, and acting as a transmission line, thereby tantamount to being TEM to the 

direction perpendicular to the slab surface. 

Figure 1 below shows the structure of the lattice of grounded metallic pins embedded 

within a slab of dielectric host. 

 

Fig.1 Lattice of grounded metallic pins, or bed-of-nails, embedded within a slab 

of dielectric host 

 

2-2 Transverse Resonance Technique and Characteristic Equation Demonstrated 

by Vector-potential Method 

 

  This section presents the derivation of the TM mode characteristic equation in the 

substrate without any pins embedded by using the vector-potential method. Next step, 

we then let kd = kyd. This turns out to be exactly the same as using the transverse 

resonance technique (TRT).[5] Before commencing with the vector-potential method, 

we first introduce the TRT. Fig. 2 below shows the transverse equivalent network of 

the TE0N waveguide. 
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In the transverse resonance method the cross section of a traveling wave structure is 

represented as a transmission line network. The method can be illustrated with Fig.2, 

which shows a simple example with a conventional TE0N waveguide. 

For this structure, a TE wave travels in the x direction with propagation constant γx, 

and the Z0N represents the characteristic impedance of the transmission line. At any 

point, when we look into the impedance line of the transverse network from the 

positive x direction would be equal and it would be opposite when we look into the 

negative x direction. This is the same applied to admittance. Which follows the 

continuity that the components of E and H are tangential to a plane orthogonal to the 

transverse transmission line, also means that x = constant plane in Fig.2. 

Another way to state the impedance relationship is that the sum of the two 

impedances that are observed by opposite directions from a point on the line must be 

canceled to zero.  

    From the above discussion it is clear that one needs to know both the impedance 

of the equivalent line and the aperture impedance in order to apply transverse 

resonance. 

  Transverse resonance technique is a method to find the propagation constant of 

many practical traveling wave structures.  
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Fig.2 Transverse equivalent network of TE0N waveguide 

 

After briefly introducing the TRT, the vector-potential method is discussed. Fig.3 

below shows the grounded dielectric substrate with thickness d and (µd, ɛd) material. It 

is along the x-z plane, and y-axis is the normal direction. 

 

 

Fig.3 Grounded dielectric substrate with thickness d and (µd, ɛd) material 
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  The various field components of the yTM modes are stated as follow. [7] 
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For the upper (air) region: script “0”: y d  
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The boundary conditions are stated as follow. 

 

( , 0, ) 0d

xE x y z                                                 (BC-1a) 

( , 0, ) 0d

zE x y z                                                 (BC-1b) 

0( , , ) ( , , )d

x xE x y d z E x y d z                                               (BC-2a) 

0( , , ) ( , , )d

z zE x y d z E x y d z                                       (BC-2b) 

0( , , ) ( , , )d

x xH x y d z H x y d z                                              (BC-3a) 
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0( , , ) ( , , )d

z zH x y d z H x y d z                                              (BC-3b) 

 

By (a1), (a2), (Eq-1), and (Eq-2), we can state these equations of each region as below: 
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Then applying (BC-1a): we get 0d

yD  . 

Next, 
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Next, 
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Then, applying (BC-2b): 

0 0| | sin( )xd xd zd zdzd yd jk x jk x jk z jk zd d d d d

x x x x y yd z z

d d

k k
C e D e C k d D e C e

 

   

 
             

0 0 0 00 0 0 0 0 0

0 0

0 0

| |x x z zy z jk x jk x jk z jk z

x x x x z z

k k
C e D e D e C e

j 

   

 
                           (Eq-8) 

 

Next, need xH  and zH  in both layers:  

0 0

1
| | cos( )xd xd zd zd

d

y jk x jk x jk z jk dd d d d d dzd
x x x x x y yd z z

d d

A jk
H C e D e C k y C e D e

z 

   

 


            

 

(Eq-9) 

00 0 0 0

0

( )0 0 0 0 00
0 0

0 0

1
| | yx x z z

jk y dy jk x jk x jk z jk zz
x x x x x z z

A jk
H C e D e e C e D e

z 

    

 


            

 

(Eq-10) 

00 0 0 0

0

( )0 0 0 0 00
0 0

0 0

1
| | yx x z z

jk y dy jk x jk x jk z jk zx
z x x x x z z

A jk
H D e C e e C e D e

x 

    

 


           

 

                                                                           (Eq-11) 

Then applying (BC-3a): 

0 0| | cos( )xd xd zd zdjk x jk x jk z jk zd d d d dzd
x x x x y yd z z

d

k
C e D e C k d C e D e



   

 
            

0 0 0 00 0 0 00
0 0

0

| |x x z zjk x jk x jk z jk zz
x x x x z z

k
C e D e C e D e



   

 
                              (Eq-12) 

And applying (BC-3b): 

0 0| | cos( )xd xd zd zdjk x jk x jk z jk zd d d d dxd
x x x x y yd z z

d

k
D e C e C k d C e D e



   

 
            

0 0 0 00 0 0 00
0 0

0

| |x x z zjk x jk x jk z jk zx
x x x x z z

k
D e C e C e D e



   

 
                              (Eq-13) 

Dividing (Eq-6) by (Eq-13): 
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0

0

tan( )
yd y

yd

d

k k
k d

j 
                                                     (Eq-14) 

Then we set
0 0y yk j  ,  

Here, we only consider the slow wave, so we think about the “–ja” situation only,  

and then we will get: 

0

0

tan( )
yd y

yd

d

k
k d



 
                                                        (Eq-15) 

Next, we let yd d d dk k     [9], and the above equation becomes: 

  0

0

tan( )
yd

d

d

k
k d



 
   

0 00
0 tan( ) tan( ) tan( )

d d d

y d d d d

d d d

k k
k k d k d k d

  


  
                  (Eq-16) 

By dividing (Eq-8) by (Eq-12) above, we can obtain the exact same equation. 

 

However, we still need one more correction factor for the real case which the 

metallic-pins aren’t being infinite. 

It is fairly presumed that the electric fields on the substrate surface may be corrected 

by an incremental factor w/(w + t), where w is the distance between two pins, and t is the 

diameter of the pin, yielding  

0

0 tan( )
d

y d

d

kw
k d

w t








                                                (Eq-17) 

 

2-3 Simulation result 

 

We get the characteristic equation above, and then use the simulate tools CST and 

Matlab to observe their agreement. Fig.4 below shows the simulation result. The blue 
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square would be the Matlab result, and the purple star represents the CST result. We 

can find out that they have excellent agreement in every mode. 

 

Fig.4 Comparison of Matlab and CST simulation results 

  By this result, we can prove that our vector-potential method matches to the TRT 

(Transverse Resonance Technique) solution. 

 

2-4 Rigorous analysis of partially dielectric-loaded rectangular waveguide using 

vector potential method 

 

Here, we will demonstrate treatment methods of inhomogeneously 

dielectric-loaded rectangular waveguide. 

2-4-1 Analytical Modal Field Solutions 

 

  First, the inhomogeneously dielectric-loaded rectangular waveguide consists of an 



- 11 - 

 

empty rectangular waveguide with two E-plane sidewalls (when fundamental modal 

electric field is parallel to these side walls) which are coated with a dielectric lining of 

a certain thickness
4 1

TEM

r

d






, where TEM

TEM

c
f

  , with TEMf being the 

designated TEM frequency. 

  The geometry of the structure is shown in the figure below. 

 

Fig.5 Geometry of partially dielectric-loaded rectangular waveguide 

 

Fig.6 (a) and (b) below shows the cross-sectional view of rectangular waveguide 

with dielectric sidewall loading embedded with a lattice of pins. 

  Fig.7 below represents the perspective view of pin-lattice sidewall-loaded 

waveguide. 
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Fig.6 Cross-sectional view of a rectangular waveguide with dielectric sidewall 

loading embedded with a lattice of pins (a.k.a. bed-of-nails), (a). finite periodicity, and 

(b). infinitesimal period for asymptotic treatment. 

 

Fig.7 Perspective view of pin-lattices sidewall-loaded waveguide 
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  The modal fields within this inhomogeneously-filled waveguide are neither zTE

nor zTM , but rather are mode configurations that are combinations of these two modes. 

Such combined modes are referred to as hybrid modes or longitudinal section electric 

(LSE) or longitudinal section magnetic (LSM) modes. 

 

2-4-2 Case (I): LSE
x
 or TE

x
 mode (for above geometry, with x normal to 

discontinuity interface) 

 

(A) For central freespace region: a x a   : subscript ‘0’ 

        -0 0 0 0 0 0

0 0 0 0(- , , ) cos sin cos sin z z

x x x x x y y y y zF a x a y z C k x D k x C k y D k y A e
           

(IA1) 

with  

z z zjk                                          (IA2a) which is valid throughout 

and 

2 2 2 2 2

0 0 0 0 0x y zk k k                                (IA2bi) for generally lossy case   

2 2 2 2 2

0 0 0 0 0x y zk k k k                       (IA2bii) for lossless case with 0z                                

 

 

(B)For dielectric region: ( )a d x a     and a x a d    

 

(1)Left dielectric region: ( )a d x a     (superscript or subscript ‘1’) 

 1 1 (1) 1 (1)[ ( ) , , ] cos ( ) sin ( )d d d

x x xd x xdF a d x a y z C k x a d D k x a d                  

 1 (1) 1 (1) 1cos sin z zd d d

y yd y yd zC k y D k y A e
                                           (IB1a) 
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with 

2 2
(1) (1) 2 2 2

xd yd z d d dk k k                                (IB1bi) for generally lossy case 

2 2
(1) (1) 2 2 2

xd yd z d d dk k k k                         (IB1bii) for lossless case with 0z   

(2)Right dielectric region: a x a d    (superscript or subscript ‘2’) 

 2 2 (2) 2 (2)[ , , ] cos ( ) sin ( )d d d

x x xd x xdF a x a d y z C k x a d D k x a d                

 2 (2) 2 (2) 2cos sin z zd d d

y yd y yd zC k y D k y A e
                                         (IB2a) 

with 

2 2
(2) (2) 2 2 2

xd yd z d d dk k k                               (IB2bi) for generally lossy case 

and 

2 2
(2) (2) 2 2 2

xd yd z d d dk k k k                        (IB2bii) for lossless case with 0z   

 

(C)Boundary Conditions: 

(1)    1 2( ),0 , ,0 , 0d d

z zE x a d y h z E x a d y h z                        (IC1) 

(2a)    1 1( ) , 0, ( ) , , 0d d

z zE x a d x a y z E x a d x a y h z               
 

(IC2a) 

(2b)    2 2, 0, , , 0d d

z zE a x a d y z E a x a d y h z                       (IC2b) 

(3)    0 0, 0, , , 0z zE a x a y z E a x a y h z                               (IC3) 

(4a)    1 0,0 , ,0 ,d

z zE x a y h z E x a y h z                               (IC4a) 

(4b)    2 0,0 , ,0 ,d

z zE x a y h z E x a y h z                               (IC4b) 

(5a)    1 0,0 , ,0 ,d

z zH x a y h z H x a y h z                              (IC5a) 



- 15 - 

 

(5b)    2 0,0 , ,0 ,d

z zH x a y h z H x a y h z                               (IC5b) 

(6)    1 2( ),0 , ,0 , 0d d

y yE x a d y h z E x a d y h z                        (IC6) 

(7a)    1 1( ) , 0, ( ) , , 0d d

x xE a d x a y z E a d x a y h z                  (IC7a) 

(7b)    2 2, 0, , , 0d d

x xE a x a d y z E a x a d y h z                       (IC7b) 

(8)    0 0, 0, , , 0x xE a x a y z E a x a y h z                               (IC8) 

(9a)    1 0,0 , ,0 ,d

y yE x a y h z E x a y h z                               (IC9a) 

(9b)    2 0,0 , ,0 ,d

y yE x a y h z E x a y h z                               (IC9b) 

(10a)    1 0,0 , ,0 ,d

y yH x a y h z H x a y h z                            (IC10a) 

(10b)    2 0,0 , ,0 ,d

y yH x a y h z H x a y h z                        (IC10b)     

For LSE
x
 mode, we know that  

1 x
z

F
E

y





 

 

Therefore, we have: 

Using (IA1): 

0
00 0 0 0 0 0

0 0 0 0

0 0

1
cos( ) sin( ) cos( ) sin( ) z

y zx
z x x x x y y y y z

kF
E C k x D k x D k y C k y A e

y



 


         

 

Apply (IC3): 

 0 0, 0, 0 0z yE a x a y z D      
 

 0

0, , 0z y

n
E a x a y h z k

h


      

 

Thus 
00 0 0 0 0

0 0 0

0

cos( ) sin( ) sin( ) z
y z

z x x x x y y z

k
E C k x D k x C k y A e 



                       (I1) 
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Using (IB1): 

1
1 1

d
d x
z

d

F
E

y


 


 

 
(1)

1 (1) 1 (1)cos ( ) sin ( )
yd d d

x xd x xd

d

k
C k x a d D k x a d


            

 

 1 (1) 1 (1) 1cos sin z zd d d

y yd y yd zD k y C k y A e
         

Apply (IC1):  1 1( ) 0 0d d

z xE x a d C       

Apply (IC2a): 

1 1

1 (1)

( 0) 0 0

( ) 0

d d

z y

d

z yd

E y D

n
E y h k

h



    



   


 

Thus   
(1)

1 1 (1) 1 (1) 1sin ( ) sin z
yd zd d d d

z x xd y yd z

d

k
E D k x a d C k y A e





                        (I2) 

 

Using (IB2): 

2
2 1

d
d x
z

d

F
E

y


 


 

 
(2)

2 (2) 2 (2)cos ( ) sin ( )
yd d d

x xd x xd

d

k
C k x a d D k x a d


            

 

 2 (2) 2 (2) 2cos sin z zd d d

y yd y yd zD k y C k y A e
         

 

Apply (IC1):  2 20 0d d

z xE x a d C      

Apply (IC2b): 

2 2

2 (2)

( 0) 0 0

( ) 0

d d

z y

d

z yd

E y D

n
E y h k

h



    



   


 

 

Thus   
(2)

2 2 (2) 2 (2) 2sin ( ) sin z
yd zd d d d

z x xd y yd z

d

k
E D k x a d C k y A e





                      (I3) 
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Use (I1) and (I2) in (IC4a): 

  

0 0 0 0 0

0 0 0

0

(1)

1 (1) 1 (1) 1

cos( ) sin( ) sin( )

sin sin

z

z

y z

x x x x y y z

yd zd d d

x xd y yd z

d

k
C k a D k a C k y A e

k
D k d C k y A e













        

       
 

Since (1)

0y yd
nk k

h
  , thus 

0 0 1 1 1

0 0 (1)

0 0

0

cos( ) sin( ) sin

d d d

y z x y z

x x x x xd

d

C A D C A
C k a D k a k d

 
                            (I4) 

Use (I1) and (I3) in (IC4b): 

  

0 0 0 0 0

0 0 0

0

(2)

2 (2) 2 (2) 2

cos( ) sin( ) sin( )

sin sin

z

z

y z

x x x x y y z

yd zd d d

x xd y xd z

d

k
C k a D k a C k y A e

k
D k d C k y A e













        

       
 

Since (2)

0y yd
nk k

h
  , thus 

0 0 2 2 2

0 0 (2)

0 0

0

cos( ) sin( ) sin

d d d

y z x y z

x x x x xd

d

C A D C A
C k a D k a k d

 
                           (I5) 

Also for LSE
X
 modes,  

2
1 x

z

F
H

j x z




   

Hence using (IA1), whose 
0 0yD  : 

2 0
0 0 0 0 00

0 0 0

0 0 0 0

1
cos( ) sin( ) cos( ) z zx x z

z x x x x y y z

F k
H D k x C k x C k y A e

j x z j



   


      

 (I6) 

Using (IB1) with its 
1 1 0d d

x yC D   

  
2 1 (1)

1 1 (1) 1 (1) 11
cos ( ) cos z

d
zd d d dx xd z

z x xd y yd z

d d d d

F k
H D k x a d C k y A e

j x z j



   


           

 

(I7) 

Using (IB2) with its 
2 2 0d d

x yC D   
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2 2 (2)

2 2 (2) 2 (2) 21
cos ( ) cos z

d
zd d d dx xd z

z x xd y yd z

d d d d

F k
H D k x a d C k y A e

j x z j



   


           

 

(I8) 

Use (I6) and (I7) in (IC5a): 

  

0 0 0 00
0 0 0

0 0

(1)
1 (1) 1 (1) 1

sin( ) cos( ) cos( )

cos cos

z

z

zx z
x x x x y y z

zd d dxd z
x xd y yd z

d d

k
C k a D k a C k y A e

j

k
D k d C k y A e

j







 



 





    

        
 

Again with (1)

0y yd
nk k

h
  , 

(1) 1 1 1

0 0 0 0 (1)0
0 0

0 0

sin( ) cos( ) cos

d d d

xd x y zx
x x x x y z xd

d d

k D C Ak
C k a D k a C A k d

   
                     (I9) 

Use (I6) and (I8) in (IC5b): 

  

0 0 0 00
0 0 0

0 0

(2)
2 (2) 2 (2) 2

cos( ) sin( ) cos( )

cos cos

z

z

zx z
x x x x y y z

zd d dxd z
x xd y yd z

d d

k
D k a C k a C k y A e

j

k
D k d C k y A e

j







 



 





    

        
 

 

Again with (2)

0y yd
nk k

h
  , 

(2) 2 2 2

0 0 0 0 (2)0
0 0

0 0

cos( ) sin( ) cos

d d d

xd x y zx
x x x x y z xd

d d

k D C Ak
D k a C k a C A k d

   
                   (I10) 

Divide (I4) by (I9), we have 

0 0 (1)

0 0 0

(1)0 0

0 0 0

cos( ) sin( ) tan

sin( ) cos( )

x x x x d xd

xdx x x x x

C k a D k a k d

kk C k a D k a

       
  

                              (I11) 

Divide (I5) by (I10), we have 

0 0 (2)

0 0 0

(2)0 0

0 0 0

cos( ) sin( ) tan

sin( ) cos( )

x x x x d xd

xdx x x x x

C k a D k a k d

kk C k a D k a

       
  

                              (I12) 

Also for LSE
x
 mode,  
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1 x
y

F
E

z


 


 and 

2
1 x

y

F
H

j x y




 
 

Thus, using (IB1) with its 
1 1 0d d

x yC D  , we have 

 
1

1 1 (1)1
sin ( )

d
d dx z
y x xd

d d

F
E D k x a d

z



 


       

 

 1 (1) 1cos z zd d

y yd zC k A e
                                                     (I13) 

2 1
1 1

d
d x
y

d d

F
H

j x y 


 

 
 

  
(1) (1)

1 (1) 1 (1) 1cos ( ) sin z
xd yd zd d d

x xd y yd z

d d

k k
D k x a d C k y A e

j



 

                       (I14) 

Apply (IB2) with its 
2 2 0d d

x yC D  , 

 
2

2 2 (2)1
sin ( )

d
d dx z
y x xd

d d

F
E D k x a d

z



 


       

 

     2 ( 2 ) 2co s z zd d

y yd zC k A e
                                                     (I15) 

2 2
2 1

d
d x
y

d d

F
H

j x y 


 

 
 

      
( 2 ) ( 2 )

2 ( 2 ) 2 ( 2 ) 2c o s ( ) s i n z
x d y d zd d d

x x d y y d z

d d

k k
D k x a d C k y A e

j



 

                       (I16) 

Apply (IA1) whose 
0 0yD  , 

0
0 0 0 0 0

0 0 0

0 0

1
cos( ) sin( ) cos( ) z zx z

y x x x x y y z

F
E C k x D k x C k y A e

z



 


     

            (I17) 

0
0

0 0

1 x
y

F
H

j x y 


 

 
 

   
0 0 0 0 0 0

0 0 0

0 0

cos( ) sin( ) sin( ) z
x y z

x x x x y y z

k k
D k x C k x C k y A e

j



 

                       (I18) 

 

2-4-2.1 Case One: Symmetric Even LSE
x
 Mode i.e. 0 0xD   in (I17) 
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With 0 0xD  , equation (I11) yields: 
(1)

0 0

(1)

0 0

tancos( )

sin( )

d xdx

x x xd

k dk a

k k a k

              

Equivalently, upon inverting: 
(1)

(1)0
0

0

tan( ) cotx xd
x xd

d

k k
k a k d

 
   

                 (I-ES1) 

where  

2 2 2 2 2 2

0 0 0 0 0 0x y z y zk k k k           which is from (IA2bi) for generally lossy 

case 

and 2 2 2 2 2 2

0 0 0 0 0 0x y z y zk k k k k k         which is from (IA2bii) for lossless case 

also 
2 2

(1) (2) 2 (1) 2 2 (2) 2 2 2 2

0xd xd d yd z d yd z d d y zk k k k k k k                      

which is from (IB1bi) for generally lossy case, 

and 
2

(1) (2) 2 (1) 2 2 2 2

0xd xd d yd z d d y zk k k k k k k            

which is from (IB1bii) for lossless case 

where 
(1) (2)

0y yd yd

n
k k k

h


    

 

Therefore, for a certain frequency
(2 )

f 


 , and for a particular n
th

 mode 

(corresponding to 
(1) (2)

0y yd yd

n
k k k

h


    and a certain zn ), the above dispersion 

equation (I-ES1) may be explicitly expressed as: 

2

2 2
20 0

2 2

0 0

0

tan

zn

zn

n

h n
a

h


   


   



 
    

       
  
 

 

2

2 2
2

2 2cot

d d zn

d d zn

d

n

h n
d

h


   


   



 
    

       
  
 

                    (I-ES2) 
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whose only unknown is zn , [for a certain n
th

 mode and at a specific frequency 

(2 )
f 


 ], which can then be solved for numerically. 

 

This solved zn , together with 0y

n
k

h


 , can then be substituted into above equations 

for xdk to obtain 0xk and (1) (2)

xd xdk k . 

It is noted that d may be expressed as
0

complex

d rd   , with "complex

rd rd rdj     

With 0 0xD  , equation (I12) yields 
 

 

(2)

0 0

(2)

0 0

tancos

sin

d xdx

x x xd

k dk a

k k a k d

     

Equivalently, upon inverting:  
(2)

(2)0
0

0

tan cotx xd
x xd

d

k k
k a k d

 
                    (I-ES3) 

Which is the same as (I-ES1) since (1) (2)

xd xdk k . 

 

Therefore, (I12) also will result in the same dispersion characteristic equation as does 

(I11). 

From (I4), with 0 0xD  , we have:  
0 0 0 1 1 1

(1)

0

0

cos sin

d d d

x y z x y z

x xd

d

C C A D C A
k a k d

 
     

i.e.
 1 1 1

0

0 0 0 (1)

0

cos

sin

d d d

x y z d x

x y z xd

D C A k a

C C A k d






  

                                              (I-ES4) 

Normalizing by setting 

0 0 0 1x y zC C A                                                                  (I-ES5) 

Then (I-ES4) becomes 

 01 1 1

(1)

0

cos

sin

d xd d d

x y z

xd

k a
D C A

k d






  

                                                  (I-ES6) 
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Also from (I5), with 0 0xD  , we have  
0 0 0 2 2 2

(2)

0

0

cos sin

d d d

x y z x y z

x xd

d

C C A D C A
k a k d

 
      

i.e.
 2 2 2

0

0 0 0 (2)

0

cos

sin

d d d

x y z d x

x y z xd

D C A k a

C C A k d




 

  

                                           (I-ES7) 

with (1) (2)

xd xdk k  

As above, normalizing with (I-ES5), then (I-ES7) becomes: 

 02 2 2

(2)

0

cos

sin

d xd d d

x y z

xd

k a
D C A

k d




 

  

                                               (I-ES8) 

Subsequently, using (I-ES5), (I-ES6) and (I-ES8), we can write expressions for all the 

electric and magnetic fields for this even symmetric LSE
x
 mode (with 0 0xD  ) using 

equations (I1) through (I18). It is stressed that these field expressions pertain to one 

particular 
thn mode corresponding to 

(1) (2)

0y yd yd

n
k k k

h


   and a certain zn , at a 

specific frequency 
2

f



 . For each 

thn root zn  obtained from the dispersion 

equation (I-ES2), there corresponds to a certain set of phase constants, namely: 

 

(1) (2)

0y yd yd

n
k k k

h


    

2 2 2

0 0 0 0x y znk k       

2 2
(1) (2) 2 (1) 2 2 (2) 2 2 2 2

0xd xd d yd zn d yd zn d d y znk k k k k k k                      

 

From (I1): 

   00

0 0

0

cos sin zny z

z x y

k
E k x k y e






                                           (I-ES9) 

From (I17): 
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   0

0 0

0

cos sin z zz
y x yE k x k y e






                                            (I-ES10) 

and 

0 0xE   (since LSE
x
 mode)                                                (I-ES11) 

From (I6): 

   0 0
0 0

0 0

sin cos z zx z
z x y

k
H k x k y e

j



 


                                      (I-ES12) 

From (I18): 

   0 00

0 0

0 0

sin sin znx y z

y x y

k k
H k x k y e

j



 


                                      (I-ES13) 

Now, for LSE
x
 modes, we know that 

2
2

2

0 0

1
x xH k F

j x 

 
  

 
 

Then using (IA1) with 
0 0yD  as well, 

     
2

0 2 0 2 2

0 0 0 0 02

0 0 0 0

1 1
cos cos znz

x x x x yH k F k k k x k y e
j x j



   

 
     

 
 (I-ES14) 

From (I2): 
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0

cos
sin ( ) sin
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d xd

k k a
E k x a d k y e

k d



 

       
            (I-ES15) 

From (I13): 
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0

cos
sin ( ) cos
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znzd xd zn
y xd yd

d xd

k a
E k x a d k y e

k d



 

      
                  (I-ES16) 

and 

1 0d

xE   (since LSE
x
 mode)                                               (I-ES17) 

From (I7): 

 
 

(1)
01 (1) (1)

(1)

0

cos
cos ( ) cos
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znzd xd xd z
z xd yd

d d xd
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H k x a d k y e
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           (I-ES18) 
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From (I14): 
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y xd yd

d d xd
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H k x a d k y e

j k d



  

       
           (I-ES19) 

Using (IB1a), with its 
1 1 0d d

x yC D  , we have 

 

2
1 2 1

2

2
2 (1)

(1) (1)0

(1)

0
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d d

x d x

d d

d xd zd x
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               (I-ES20) 

From (I3): 
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k d







 







  
             

      
         (I-ES21) 

From (I15): 
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k d







 









  
            

       

            (I-ES22)

 

 

and 

2 0d

xE   (since LSE
x
 mode)                                               (I-ES23) 

From (I8): 
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    (I-ES24) 

From (I16): 
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cos ( ) sin
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           (I-ES25) 

and finally using (IB2a) with its 2 2 0d d

x yC D  : 

 
 

2
2 2 2

2

2
2 (2)

0 (2) (2)

(2)

0

1

cos
sin ( ) cos

sin
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d d
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d d

d xd zd x
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H k F
j x
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      (I-ES26) 

 

2-4-2.2 Case Two: Asymmetric Odd LSE
x
 Mode i.e. 

0 0xC   in (I17) 

With
0 0xC  , equation (I11) yields: 

 
(1) (1)

0 0 0
0(1) (1)

0 0 0

tan tansin( )
tan

cos( )

d xd d xdx
x

x x xd x xd

k d k dk a
k a

k k a k k k

            

 

Equivalently, upon inverting: 
(1)

(1)0
0

0

cot( ) cotx xd
x xd

d

k k
k a k d

 
                    (I-OA1) 

which can be explicitly expressed as: 

2

2 2
20 0

2 2

0 0

0

cot
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n

h n
a

h


   


   



 
    

       
  
 

 

2

2 2
2

2 2cot

d d zn

d d zn

d

n

h n
d

h


   


   



 
    

        
  
 

                  (I-OA2) 

which, as before, whose only unknown is zn , [for a certain n
th

 mode and at a specific 

frequency 
(2 )

f 


 ], which can then be solved for numerically. 

With
0 0xC  , equation (I12) yields: 
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(2) (2)

0 0 0
0(2) (2)

0 0 0

tan tansin( )
tan

cos( )

d xd d xdx
x

x x xd x xd

k d k dk a
k a

k k a k k k

            

 

Equivalently, upon inverting: 
(2)

(2)0
0

0

cot( ) cotx xd
x xd

d

k k
k a k d

 
                    (I-OA3) 

which is the same as (I-OA1) since (1) (2)

xd xdk k . 

 

Therefore, (I12) also will result in the same dispersion characteristic equation as does 

(I11). 

From (I4), with
0 0xC  , we have  

0 0 0 1 1 1

(1)

0

0

sin sin

d d d

x y z x y z

x xd

d

D C A D C A
k a k d

 
      

i.e.
 1 1 1

0

0 0 0 (1)

0

sin

sin

d d d

x y z d x

x y z xd

D C A k a

D C A k d




 

  

                                            (I-OA4) 

Normalizing by setting 

0 0 0 1x y zD C A                                                                 (I-OA5) 

then (I-OA4) becomes 

 01 1 1
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sin

sin

d xd d d

x y z
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D C A

k d




 

  

                                               (I-OA6) 

Also from (I5), with
0 0xC  , we have  

0 0 0 2 2 2

(2)

0

0

sin sin

d d d

x y z x y z

x xd
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i.e.
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d d d

x y z d x

x y z xd

D C A k a

D C A k d




 

  

                                           (I-OA7) 

with (1) (2)

xd xdk k . 

As above, normalizing with (I-OA5), then (I-OA7) becomes: 

 02 2 2

(2)

0

sin

sin

d xd d d

x y z
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k a
D C A

k d




 

  

                                              (I-OA8) 
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Subsequently, as before in the symmetric even case, using (I-OA5), (I-OA6) and 

(I-OA8), we can write expressions for all the electric and magnetic fields for this odd 

asymmetric LSE
x
 mode (with

0 0xC  ) using equations (I1) through (I18). 

From (I1): 

   00

0 0
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sin sin zny z

z x y

k
E k x k y e






   

From (I17): 
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sin cos znzz
y x yE k x k y e








 

and 

0 0xE     (since LSE
x
 mode) 

From (I6): 
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cos cos znzx z
z x y

k
H k x k y e

j



 


   

From (I18): 

   0 00
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cos sin znx y z

y x y

k k
H k x k y e

j



 


 

 

Now, for LSE
x
 modes, we know that 

2
2

2

1
x xH k F

j x

 
  

 
 

Then using (IA1) with
0 0 0x yC D 

 
as well, 
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From (I2): 
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From (I13): 



- 28 - 

 

 
 01 (1) (1)

(1)

0

sin
sin ( ) cos

sin

znzd xd zn
y xd yd

d xd

k a
E k x a d k y e

k d



 

       

 

and 

1 0d

xE     (since LSE
x
 mode) 

From (I7): 
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Using (IB1a), with its 2 2 0d d

x yC D  , we have 
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From (I14): 
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From (I3): 
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From (I15): 
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and 

2 0d

xE     (since LSE
x
 mode) 

From (I8): 
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From (I16): 
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and finally using (IB2a) with its 2 2 0d d

x yC D  : 
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2-4-3 Case (II): LSM
x
 or TM

x
 mode (with x direction normal to discontinuity 

interface) 

 

(A) For central freespace region: a x a   : superscript or subscript ‘0’ 

        -0 0 0 0 0 0

0 0 0 0(- , , ) cos sin cos sin z z

x x x x x y y y y zA a x a y z C k x D k x C k y D k y A e
           

(IIA1) 

(B) For dielectric region: ( )a d x a     and a x a d    
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(1) Left dielectric region: ( )a d x a     (superscript or subscript ‘1’) 

 1 1 (1) 1 (1)[ ( ) , , ] cos ( ) sin ( )d d d

x x xd x xdA a d x a y z C k x a d D k x a d                  

 1 (1) 1 (1) 1cos sin z zd d d

y yd y yd zC k y D k y A e
                                          (IIB1a) 

 

(2) Right dielectric region: a x a d    (superscript or subscript ‘2’) 

 2 2 (2) 2 (2)[ , , ] cos ( ) sin ( )d d d

x x xd x xdA a x a d y z C k x a d D k x a d                (IIB2a) 

 

Here, LSM
x
 and LSE

x
 have many formulas in common, except some equations. 

Table I below shows the difference in those two cases. We will omit the boundary 

conditions and some equations that are the same with LSE cases.  

LSE LSM 

1( 2) 0d d
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1( 2) 0d d

xD   

0( 2) 0d
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H
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1 x
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A
H
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Table I. The comparison of the electromagnetic distribution between LSE and LSM 
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2-4-3.1 Case One: Symmetric Even LSM
x
 Mode i.e. 0 0xD   in (II13) 

With 0 0xD  , equation (II11) yields: 
(1) (1)

0 0

0 0

tansin( )

cos( )

xd xdx x

x d

k k dk k a

k a 

              

i.e.
(1)

(1)0
0

0

tan( ) tanx xd
x xd

d

k k
k a k d

 
    

                                       (II-ES1) 

 

which can be explicitly expressed as: 

2

2 2
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2 2

0 0
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tan
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h n
a

h
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2 2
2

2 2tan

d d zn

d d zn

d

n

h n
d

h


   


   



 
    

        
  
 

                (II-ES2) 

 

which, as before, whose only unknown is zn , [for a certain n
th

 mode and at a specific 

frequency 
(2 )

f 


 ], which can then be solved for numerically. 

With 0 0xD  , equation (II12) yields: 
(2)

(2)0
0

0

tan( ) tanx xd
x xd

d

k k
k a k d

 
    

      (II-ES3) 

which is the same as (II-ES1) since (1) (2)

xd xdk k . 

Therefore, (II12) also will result in the same dispersion characteristic equation as does 

(II11). 

 

2-4-3.2 Case Two: Asymmetric Odd LSM
x
 Mode i.e. 

0 0xC   in (II13) 

With
0 0xC  , equation (I11) yields: 
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(1) (1) (1)

(1)0 0 0
0

0 0 0

tancos( )
cot tan

sin( )

xd xdx x x xd
x xd

x d d

k k dk k a k k
k a k d

k a   

          
 

Therefore, we have:  
(1)

(1)0
0

0

cot tanx xd
x xd

d

k k
k a k d

 
                            (II-OA1) 

where  

2 2 2 2 2 2

0 0 0 0 0 0x y z y zk k k k         
 

which is from (IIA2bi) for generally lossy case 

also 

2 2
(1) (2) 2 (1) 2 2 (2) 2 2 2 2

0xd xd d yd z d yd z d d y zk k k k k k k                    
 

which is from (IIB1bii) for lossless case 

 

where 

(1) (2)

0y yd yd

n
k k k

h


  

 

Therefore, for a certain frequency
(2 )

f 


 , and for a particular n
th

 mode 

(corresponding to 
(1) (2)

0y yd yd

n
k k k

h


    and a certain zn ), the above dispersion 

equation (II-OA1) may be explicitly expressed as: 
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h


   


   



 
    

       
  
 

                  (II-OA2) 

which, as before, whose only unknown is zn , [for a certain n
th

 mode and at a specific 

frequency 
(2 )

f 


 ], which can then be solved for numerically. 
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This solved zn , together with 0y

n
k

h


 , can then be substituted into above equations 

for 0xk and xdk to obtain 0xk and (1) (2)

xd xdk k . 

It is noted that d may be expressed as
0

complex

d rd   , with "complex

rd rd rdj     

With
0 0xC  , equation (II12) yields: 

(2)
(2)0

0

0

cot( ) tanx xd
x xd

d

k k
k a k d

 
                                                (II-OA3) 

which is the same as (II-OA1) since (1) (2)

xd xdk k . 

Therefore, (II12) also will result in the same dispersion characteristic equation as does 

(II11). 

2-5 The characteristic equations after modification 

   

From above, TEM-x solution in mathematically stated, 

(1) (2)

xd xd d d dk k k                                   (Eq-18) 

Note that (IB1a), with (1) above taken into effect. This gives the form 

 

(1) (1)

1 1 1

1 (1) 1 (1) 1

[ ( ) , , ] cos[ ( )] sin[ ( )]

cos sin

xd xd

z

k k

d d d

x x d x d

zd d d

y yd y yd z

F a d x a y z C k x a d D k x a d

C k y D k y A e 

 
 

           
  

       

 

                                                                        (Eq-19) 

 

As such, Case 2 of the solution to Example 6-1 in Balanis Advanced Engineering 

Electromagnetics (AEE) [8] on Pg 263 pertaining to TEM-x mode (with z and x 

swapped there) can be invoked here. This (Eq-19) indeed coheres with the second 

equation on Pg 264 Balanis AEE, being 
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2 1

2

1
0d

x d d x

d d

H F
j x

  
 

 
   

 
,                      (Eq-20) 

 

along with the null Ex that is already in place. Note no matter what the TEM-x solution 

being stated at the bottom of page 263 in Balanis AEE, i.e. 0,   0z y       

actually holds here, even though it’s being invalid for ordinary homogeneous media 

(this pin-lattice medium here however is unusual and not subjected to that invalidity). 

That is to say, theγz of (Eq-19) above remain nonzero in the analysis. Also, it is 

remained of the case in the center region of the waveguide where has no pins.       

However, although the γz in the pin-lattice-embedded slab region must be nonzero, 

and equal to the center region for phase continuity, it doesn’t mean that there would be 

aactually wave propagation in that host region with a component along the waveguide z 

axis. On the contrary, the TEM-x waves propagate along the pins (x-direction) within 

an increasing part of the host medium between neighboring infinitesimally-separated 

pins acting as a transmission line. In more properly words, they are standing waves  

on the shorted (PEC wall) transmission line rather than propagate waves. Seeing the 

trigonometric functional forms of (Eq-19) for the variation with x, they are slightly out 

of phase from those in neighboring transmission-line regions such that the phase 

progressively along y and z (tangential to the slab surface) follow those in the center 

part of the waveguide. In an asymptotic sense then, 
(1&2)

ydk  and γz in the lattice-layers 

are being as nonzero in the analysis. As a result, the usual 

2 2
(1&2) (1&2) 2 2

xd yd z dk k k          no longer holds here. This formula is valid only for the 

ordinary media within which actual waves propagate along a direction with x, y and z 

components. 
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The pin-lattice sidewall of the waveguide supports TEM-x waves along x only, but 

no waves actually propagate obliquely with components along z or y. 

Therefore, the new characteristic equations for the four mode categories: LSE 

Symmetric, LSE Asymmetric, LSM Symmetric, and LSM Asymmetric are now: 

 

(i). LSE Symmetric: 
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                                                                           (Eq-21) 

 

(ii). LSE Asymmetric: 
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                                                                           (Eq-22) 

 

(iii). LSM Symmetric: 
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                                                                           (Eq-23) 

 

(iv). LSM Asymmetric:
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                                                                           (Eq-24) 
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where h is the height along y, a is half the central width along x, and d is the slab 

thickness. 
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III. Discussion  

 

3-1 Initial setting of dimension - width: 20 mm & height: 5 mm 

 

At first, we choose a waveguide with dimensions: 5 mm in height and 20 mm in 

width. 

Fig. 8 below shows the perfect agreement with HFSS simulation result and CST 

simulation result. Both make use of waveport modes for the simulation. Orange stars 

represent HFSS, and the blue spades represent CST simulation. 

By this figure, it is found that there would be modes excited at about frequency 7 GHz, 

14 GHz, 18 GHz, 22~23 GHz, and 25GHz.  

 

Fig.8 Simulation results of the comparison of CST and HFSS 

 

At first, we choose the waveguide with the dimension 5 mm height, 20 mm width. 
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Use above characteristic equations and simulated by MATLAB, and then compared 

with HFSS simulation result. The comparison is shown as below. 

 

Fig.9 Simulation results of the comparison of MATLAB and HFSS 

 

From the above results, fine agreement between the different simulation tools is 

observed, verifying the accuracy of the waveport mode simulation setting. However, 

even though this dimension has more obvious effects that we want to see, it still has 

difficulties with the measure processing for the not fitting adaptor. This way, we tried 

another dimension with double height that is 10 mm, and the same width 20mm. 

  The next section, we will go through the introduction of new dimension. 
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3-2 Final setting of dimension - width: 20 mm & height: 10 mm 

3-2-1 The pictures of the finished manufacture 

   

Fig.10(a)  Front sight of the sidewall-dielectric waveguide 

 

Fig.10(b) Side sight of the sidewall-dielectric waveguide 
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Fig.10(c) The front sight of WR90 adaptor 

 

Fig.10(d) The waveguide connected with the adaptor 
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Fig. 10(e) The setting of the measurement 

 

3-2-2 The comparison of the S-parameter by simulated and measured 

 

  Fig.11 below shows the results by simulated and measured. Red spades represents the 

HFSS simulation result and the blue star represents the measurement. 

  However, this diagram cannot show the characteristic of the stop-band obviously. 

This way, it won’t able to show our objective to create the sidewall-loaded waveguide 

in this dimension 
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Fig.11  The comparison of the simulation and measurement 

Fig.12 represents the eigenmode simulation of Rogers-3010 substrate, the sidewall 

width is 1.28 mm, and there has no stop-band. 

 

Fig.12 CST eigenmode simulation of RO-3010 substrate 
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3-2-3 The CST simulation of the Styrofoam substrate 

  Because the material we’ve chosen doesn’t show good, obvious stop-band in the 

dispersion diagram by CST simulation. We try to find another dimension with another 

material to reveal the stop-band, which may apply to the waveguide filter, and we will 

discuss about it in the next part. Fig.13 below shows the obvious stop-band between ten 

Giga-Hertz to seventeen Giga-Hertz. 

 

Fig.13  The CST simulation of the Styrofoam material substrate embedded with 

sidewall pins 

 

Fig. 13 shows the CST simulation result from above fabrication dimension in 

eigenmode solver. We can notice that it has obvious stop band from about 9.5 ~ 17 GHz. 

The reason why we are seeking for the dimension which stop band is easily to observed 

is because we are trying to apply this structure into waveguide filter in the future.   
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3-2-4 The comparison of the measurement and simulation results of the 

Styrofoam substrate 

 

Now, we can verify that the characteristic equations have convincible accuracy by 

these simulation results. After first experiment, we then try to find another dimension 

which has obvious stopband for that we cannot find any in this dimension setting.  

We finally choose the Styrofoam as our sidewall dielectric material with its 

permittivity 1.27, which is close to free space. Also, we changed the height from 5 mm 

to 10 mm and it would be easier to measure. The width remained the same, 20 mm. 

Next, we fabricate the waveguide with Styrofoam dielectric sidewall and embedded 

with metallic pins as we designed. 

 

 

 

Fig. 14 Perspective view of rectangular waveguide with sidewall dielectric embedded 

within metallic pins 

 

Since we decide the final dimension of the waveguide, we simulated the dispersion 

diagram by three different simulation tools to verify their accuracy and find an obvious 
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stop-band in this structure. However, the experiment still needs the measurement to 

ensure its credibility. Because of the adaptor WR-90 has its frequency range which 

would cause distortion beyond or lower the frequency range, 8.2 ~12.4 GHz. Fig. 15 

below shows the comparison of the S21 (Insertion loss) between the simulation and the 

measurement. The blue circle represents the measurement, and the green star shows the 

simulation by HFSS. Like above described, the measurement processing is limited by 

the adaptor, and it’s accurate from 8.2 to 12.4 GHz. Still, the simulation doesn’t have 

that problem; we still can observe their trends to discuss about where the stop-band of 

the waveguide would exist. 

From about 8.5 GHz to 12 GHz, the trend is telling that the wave can pass through it. 

They have stop-bands before 8GHz and over 12 GHz. Compare to Fig. 13, we can 

know that about 8 to 9 GHz, the wave is excited, and after 12 GHz, the insertion loss 

shows that there would have stop-band. Because we cannot exactly measure the 

frequency range after 20 GHz, we can still observe the curve trend to assume that would 

excited again about 17 to 26 GHz like Fig.9 shows. 
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Fig. 15 Comparison of measurement and HFSS simulation in Styrofoam dielectric 

sidewall-loaded waveguide 

 

Most of the time, in order to obtain knowledge of just the width and location in the 

frequency spectrum of bandgaps of periodic structure, the use of two-port scattering 

parameters is more direct than the dispersion diagram.[10] 
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IV. Conclusion 

 

Recently, there has a new type of novel meta-surfaces, which is called “pin-lattice” 

or “bed-of-nails”. Its characteristics are similar to those of EBG (electromagnetic 

band-gap) structures, which are well-known for suppressing surface wave propagation 

in a specific band. Also, the insertion of additional structures into ordinary empty 

waveguides to tailor the propagation characteristics has been an age-old practice, 

ranging from the simplest use of dielectric fillings for reduction of cutoff frequency to 

the plugging in of dielectric layers to serve as impedance match-tunners. 

Motivated by the broadband nature of such high-impedance surfaces, it could also 

be interesting and worthwhile to investigate how such a pin-lattice, when implanted 

within the sidewall dielectric slab-loading of rectangular waveguide, could affect the 

bandgap properties. 

In this paper, we introduce two similar structures by using vector-potential method 

and obtain the characteristic equations. Not only verify the accuracy and credibility of 

the method, but also we find a dimension of the sidewall-loaded embedded with 

pin-lattice waveguide whose stop band is observable. The above derivation about four 

cases of vector potential method shows us not only the characteristic equations but also 

the distribution of electric and magnetic fields. This is an important reason we choose 

this way to get the characteristic equations instead of TRT. 

 In the future, we hope we can use it as a waveguide-filter that filters in some 

frequency range. There has introduction between scattering parameters and dispersion 

diagram in the reference [10]. 
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