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Dispersion Analysis of Sidewall Dielectric Loading with Embedded Lattice of Pins

using asymptotic solution

Student : Yi Jia Chiou Advisor : Dr. Malcolm Ng Mou Kehn

Institute of Communications Engineering

National Chiao Tung University

ABSTRACT

There are so many researches focusing on Electromagnetic band-bap structure (EBG)
recently; for their well-known characteristic of being as a high-impedance surface in
frequency stop-band that can suppress surface waves. Besides, EBG structure can be
used to realize a new high-frequency waveguide in the gap between the parallel plate
waveguides. The similar concept can also be found in the rectangular waveguide. [1]

Recently, a new type of novel meta-surfaces, which is called “pin-lattice” or
“bed-of-nails” is being widely researched.[2] lts-characteristics are similar to those of
EBG structures. [3][4]

Furthermore, we can see that the “bed-0f-nails” structure is also applied in ridge
gap waveguide. The reason of this structure being used is because that can usually
mimic the ideal impedance boundary. When we put a ridge in the parallel plate and
surrounded infinitely periodic pins, the “bed-0f-nails” structure would be similar with
PMC (Perfectly Magnetic Conducting) surface when the air gap is smaller than
quarter-wavelength and let TEM wave propagate following on the ridge.[5]

In recent years, the insertion of additional structures into empty waveguide has



been practiced a lot, which can discuss about the characteristics of the propagation
through the measurement of the waveguides. Furthermore, the insertion has ranging
from the simplest use of dielectric fillings for reduction of cutoff frequency to the
plugging in of dielectric layers to serve as impedance match-tunners. In this paper, we
use the structure that is a waveguide filling the dielectric in the sidewall and loading
with uniform embedded lattice of metallic pins (Perfect Electric Conductor, PEC).
Next, we analyzed its characteristic equation by asymptotic solution, and simulated
with the tools to get the dispersion diagrams. By agreements of simulating results in
CST and HFSS, we can assume its accuracy; and we will analyze the characteristics
with the MATLAB tool.

On the other hand, we_ will introduce another simpler structure before the
sidewall loaded with. embedded pins waveguide; first, we imagine that there is a
dielectric grounded plane filling with infinitely periodic array of metallic pins. Next,
we derive it by the concept of electromagnetics and get the characteristic equation
through the asymptotic solution. Then, we compare:the result through the simulated
tools with the result of the Transverse Resonance Technique (TRT), and we can get
the agreement of the results<and the.dependability of the asymptotic solution.[2]

Meanwhile, we will explain the objective of choosing this field analyzing method.
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l. Introduction

Usually, the hollow waveguide can be manufactured in two parts that are joined
together, but there would be a big problem which is that we cannot ensure good
electrical contact in the joints. When it comes to radio frequency transmission, the
micro-strip lines are commonly used as well, but the losses increase with frequency;,
as well as the power handling capability being reduced.

Therefore, there is a need for new waveguides or transmission lines operating at
high frequencies, in particular above 30-GHz. There exist already some waveguides
particularly intended for use at high frequencies.-Such a waveguide is the so-called
substrate integrated waveguide (SIW), as described in [6].

However, these waveguides still suffer from losses. due to the substrate, and the
metallized via holes represent a complication that is expensive to manufacture.

The first conceptual attempt to realize magnetic conductivity (in the form of high
surface impedance)«was the. so-called soft -and hard surfaces. For its abnormal
characteristic which is the equivalent of magnetic conductivity, such materials are
often referred to as meta-materials.

Recently, there has been a new type of novel meta-surfaces, which is called
“pin-lattice” or “bed-of-nails”.[2] Its characteristics are similar to those of EBG
(electromagnetic band-gap) structures, which are well-known for suppressing surface
wave propagation in a specific band. [3][4]

The “bed-of-nails” structure can also be applied in the ridge gap waveguide.[7] The
reason of this structure being used is because it can usually mimic the ideal
impedance boundary. When we put a ridge in the parallel plate and surround it with an

infinite array of periodic pins, and when the air gap is smaller than



quarter-wavelength, TEM waves propagate along the ridge.[1]

Il. Theory

2-1 Modal Analysis of a Periodic Pins Array within a Grounded Dielectric

Substrate

In this section, we analyze a basic.structure being simply a grounded dielectric
substrate and seek to demonstrate that by the concept of assuming TEM solution in
the dielectric region perpendicular to the slab surface, the presence of the pin lattice
within the dielectric.slab can be effectively taken into account in an asymptotic
manner. As in, the solution approaches exactness-as the period of the lattice tends to
zero. Besides, we demonstrated the characteristic equation with a key concept which
IS we assume the TEM solution within the dielectric:region to the normal direction of
the slab surface. That is to say, it will only be sense by the vertical y-oriented
embedded pins in the substrate when. TM*modes. Which means the TEYmodes
won’t feel them. Hence, we derive the equation only for TM Y modes.

In the next section, we use the classical analysis by vector potentials and we
assume a “TEM-to-slab-surface-normal” solution inside the pin-lattice layer. In that
way, the approach is reasonable only when the pin-period is diminishingly small, i.e.
the density of the pins would be likely to infinity. As mentioned, we use the key
concept, and let kg, the wavenumber in the dielectric, to equal kyqg, the wavenumber
along the y-direction in the dielectric, perpendicular to the surface. The reason for this
is because the wave within the space between adjacent pins was forced to propagate

-2



along them, and acting as a transmission line, thereby tantamount to being TEM to the
direction perpendicular to the slab surface.
Figure 1 below shows the structure of the lattice of grounded metallic pins embedded

within a slab of dielectric host.

Fig.1 Lattice of grounded metallic pins;or bed-of-nails, embedded within a slab

of dielectric host

2-2 Transverse Resonance Technique.and Characteristic Equation Demonstrated

by Vector-potential Method

This section presents the derivation of the TM mode characteristic equation in the
substrate without any pins embedded by using the vector-potential method. Next step,
we then let kg = kyq. This turns out to be exactly the same as using the transverse
resonance technique (TRT).[5] Before commencing with the vector-potential method,
we first introduce the TRT. Fig. 2 below shows the transverse equivalent network of

the TEon waveguide.



In the transverse resonance method the cross section of a traveling wave structure is

represented as a transmission line network. The method can be illustrated with Fig.2,
which shows a simple example with a conventional TEqy waveguide.
For this structure, a TE wave travels in the x direction with propagation constant vy,
and the Zyy represents the characteristic impedance of the transmission line. At any
point, when we look into the impedance line of the transverse network from the
positive x direction would be equal and it would be opposite when we look into the
negative x direction. This is the same applied to admittance. Which follows the
continuity that the components of E and-H are tangential to a plane orthogonal to the
transverse transmission line, also'means that X = constant plane in Fig.2.

Another way to state the impedance relationship is. that the sum of the two
impedances that are-observed by opposite directions from a point.on the line must be
canceled to zero.

From the above discussion it is clear that one needs to know both the impedance
of the equivalent line and the aperture impedance in order to apply transverse
resonance.

Transverse resonance technique is-a method-to find the propagation constant of

many practical traveling wave structures.
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Fig.2 Transverse equivalent network of TEqy waveguide

After briefly introducing the TRT, the vector-potential method is discussed. Fig.3
below shows the grounded dielectric substrate with thickness d and (4, €4) material. It

is along the x-z plane; and y-axis Is‘the normal direction.

af | 7 (e ed

A

Fig.3 Grounded dielectric substrate with thickness d and (l4, £4) Material



The various field components of the TM ¥ modes are stated as follow. [7]

0? 2 0?
e L OA S I AN AR A (al)
joue oxay Joue \ oy Joue oyoz
%) 0.
sz_li’ H,=0; H, _1 A (a2)
U 0z M OX

For the slab region: script “d”: 0<y<d

A (x,0<y<d,2)=[Cle |, +Dle | ]

XI:CS COS(kyd y) + D;/j Sin(kyd y)][cge—jkmz |z>0 +Dfe+jkmz |z<0:| (Eq_l)

For the upper (air) region: script“0”: y >d

A (xy>d,z) =] Gle " |, +Dje | |

—jkyo (y—d —j j
xg o (y=0d) ><[Czoe Jkz2 - +D)(()e+1kzoz Iz<0] (Eq-2)

The boundary conditions are stated as follow.

E{(x,y=0,2)=0 (BC-1a)
E'(x,y=0,2)=0 (BC-1b)
E‘(x,y=d,z)=E’(x,y=d,2) (BC-2a)
E'(x,y=d,z)=E’(x,y=d,2) (BC-2b)
HY(x,y=d,z)=HJ(x,y=d,2) (BC-3a)



sz(xay=dyz):HzO(X’y=d,Z) (BC-3b)

By (al), (a2), (Eg-1), and (Eg-2), we can state these equations of each region as below:

*AY  jk k :
1 A\/ _ JKyg yd I:DSerXdX |X<0 Cd — jkyg X |X>0]X

El=-
jouge, X0y jou,s
x| Dy cos(k,qy) —Cy sin(k,,y) || Cle *«? + Dfe" e | (Eg-3)
Then applying (BC-1a): we get D] =0.
Next,
0? :
Ezd _ 1 Ay Zd yd I:Cd —kadx |X>0 +D)((1e+jkxdx |X<0:'X
Joopy 6y82 Ja)/udgd
x| Dy cos(k,qy) —Cy sin(k,q ) [Dfe“"‘erZ —Cz“e*"ka] (Eq-4)
Next,
0? jK jk )
E)(() — 1 A\/ J xo( J yO)I:DO + jKeoX |X<0 —Cfe_JkXUX |X>0]x
Jor,&, oxoy JopEs
xe 100D [ Cle Mot 4 Dl ot | (Eq-5)
Then, applying (BC-2a):
k Kk . .
NzdMyd [D)z(jeﬂkxdx |X<0 Cd —jkxdx X>0:H: Cd Sln(kydd):H:Cd _JkZdZ+Dfe+JkZdZ:|:
Wiy &y
k O(kyO) 1
—__X D0e+kaOx Coe—jkxox CO —szoz+D0 +jK;0z E '6
jwﬂogo[ X |x<0 |x>0][ :I ( q )
Next,
PN —jk, jk .
EZO _ 1 Ay _ J yOJ 20 |:CO —kaox |X>0 +D§)e+1kxox |X<0}X

Jopyey oyor  jopge,



s Joly-d) o [ D" ko? — Cge—szoz] (Eq-7)

Then, applying (BC-2b):

k. k .
a;(ld:j [Cd —kadx |X>0 +D;je+jkxdx X<0:||: Cd Sln(kydd):'[Ddeﬂkzdz Cd _JkZdZ:I _
_ k OkZO — jKyox + JKyoX + jk;0z _ 04— iK;02 _

_—jcjwoeo [Coeioor |, +DJe ke | ][ DYerHer —CPe et | (Eq-8)

Next, need H, and H, in both layers:

HY = —iﬂ = jk—z"[Cfe"'kxdx | oo +Dg e |X<O}[C;’ cos(k,q y)][cz“e"'kzdZ - Dfe”kzdd]

Uy 02 Hy .
(Ea-9)
0
HE =_iaai= |:C0 —kaox |X>0 +D)?e+jkxox |X<O]Xe—jkyo()’—d) |:C0 —JkZOZ+DZ(Je+ijOZ:'
Hy OL Ho
(Eg-10)

0 .
1o ik . g e . |
H 0 = —i — M [ D)(()e'*'kaO)< | _C)((Je IkgoX |X>O] x e JkyO(y d) x I:Czoe JK;02 + Dzoe+ ik;02 ]

’ My OX Ho -
(Eg-11)
Then applying (BC-3a):
tl [ Cle " | +Dge |, ][ C) cos(k,,d) || Ce " —Dfe " | =
d
= Q[Cfe’j"wx | oo +D0e" Moo |X<0][Czoe"kz<)Z — Dzoe”"‘wz] (Eg-12)
Hy
And applying (BC-3b):
kA[DSe-#jkde |x<0 Cd —kadx x>0:||:Cd COS(k )}[ d —jkzdz+D;ie+jkzdz]:
Hy
_ kxO [DO + JKyoX 04— jKyoX 0, jKyoZ 0+ jK,02
- K€ |x<0 C € |x>O:H:Cze + Dze ] (Eq_13)
Ho

Dividing (Eg-6) by (Eg-13):



k

¥
Jos,

kyd _ -
—w—gd[tan(kydd)} = (Eq-14)

Then we setk , =—ja,,,

Here, we only consider the slow wave, so we think about the “—ja” situation only,

and then we will get:

k
[ an(k,,d) | =22 (Eq-15)
e, &,

0

Next, we let k, =k, = o, f 1,4 [9], and the above equation becomes:

Ko Tan(k,dy]= 22 =
e, &,

ko k
= a,, = 22k, tan(k,d) = 2 g k,d) =°—Etan(kdd) (Eq-16)

&y &y x/c‘i'd

By dividing (Eg-8) by (EQ-12) above, we can obtain the exact same equation.

However, we still need one more correction factor for the real case which the
metallic-pins aren’t being infinite:

It is fairly presumed that the electric fields on the substrate surface may be corrected
by an incremental factor w/(w + t), where w is the distance between two pins, and tis the

diameter of the pin, yielding

- lMtan(kdd) (Eq-17)

a =
yo W+t Jgd
2-3 Simulation result

We get the characteristic equation above, and then use the simulate tools CST and

Matlab to observe their agreement. Fig.4 below shows the simulation result. The blue



square would be the Matlab result, and the purple star represents the CST result. We

can find out that they have excellent agreement in every mode.

3000 = T e o S B
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1500

1000

500

Freq (GHz)

Fig.4 Comparison of Matlaband CST simulation results
By this result, we can prove that our vector=potential method matches to the TRT

(Transverse Resonance Technique) solution.

2-4 Rigorous analysis of partially dielectric-loaded rectangular waveguide using

vector potential method

Here, we will demonstrate treatment methods of inhomogeneously
dielectric-loaded rectangular waveguide.

2-4-1 Analytical Modal Field Solutions

First, the inhomogeneously dielectric-loaded rectangular waveguide consists of an

-10-



empty rectangular waveguide with two E-plane sidewalls (when fundamental modal

electric field is parallel to these side walls) which are coated with a dielectric lining of

tain thickness d = rem _ wh ¢/ . with f.. being th
a certain thickness %&/ﬁ where A, %TEM with f,, being the

designated TEM frequency.

The geometry of the structure is shown in the figure below.

2a

#0

€0, 1o

Fig.5 Geometry of partially dielectric-loaded rectangular waveguide

Fig.6 (a) and (b) below shows.the cross-sectional view of rectangular waveguide
with dielectric sidewall loading embedded with a lattice of pins.
Fig.7 below represents the perspective view of pin-lattice sidewall-loaded

waveguide.

-11 -



Fig.6 Cross-sectional view-of-a rectangular waveguide with.dielectric sidewall
loading embedded with a lattice of pins (a.k.a. bed-of-nails), (a). finite periodicity, and

(b). infinitesimal period for asymptotic treatment.

Fig.7 Perspective view of pin-lattices sidewall-loaded waveguide
-12 -



The modal fields within this inhomogeneously-filled waveguide are neither TE®
norTM*, but rather are mode configurations that are combinations of these two modes.
Such combined modes are referred to as hybrid modes or longitudinal section electric

(LSE) or longitudinal section magnetic (LSM) modes.

2-4-2 Case (l): LSE* or TE® mode (for above geometry, with x normal to

discontinuity interface)

(A) For central freespace region: —a < x < a: subscript ‘0’

F(-a<x<a,y,2z)=[ C} cos(kyx)+D; sin (kxox)J[C;’ cos(k,,y )+ Dy sin (kyoy)] Ale7*

(IAL)
with
7, =a,+ K, (IA2a) whichiis valid throughout
and
kio + Koo — 77 = & 1165 = K5 (1A2bi) for generally lossy case
kio + Koo+ K =0 1 & X7 (1A2bii) for lossless case with ¢, =0

(B)For dielectric region: —(a+d)<x<a and a<x<a+d

(1)Left dielectric region: —(a+d) < x<a (superscript or subscript ‘1)

F'[-(a+d)<x<-a,y,z]= {Cf1 cos[kg)(x+ a+ d)} +Dsin [kg)(x+a+d)]}
x{C;‘l cos[k&fy} +D{"sin [k&,’ y]} Alte7 (IB1a)

-13-



with

[ K& ’ +[k§ﬂ2 — 72 =Py, =k (1B1bi) for generally lossy case
[KOT +[KOT +K = sy, =K (IB1bii) for lossless case withc, =0

(2)Right dielectric region: a<x<a+d (superscript or subscript 2”)

F’[a<x<a+d,y,Z] ={sz cos[kij’ (x—a—d)]+ szsin[kij)(x—a—d)]}

x{C;’Z cos[kéj’ y] +D{?sin [kfy]} Al%e 7 (1B2a)

with

[k ’ +[k§§’}2 — 72 = ue, =K (1B2bi) for generally lossy case
and

[kij) ’ +[k§§’}2 +k2 =’ e, =K (1B2bii).for lossless case with o, =0
(C)Boundary Conditions:

(1) E*[x=—(a+d),0sy<hz]=E*[x=a+d,0<y<h/z]=0 (IC1)

(2a) E'[x=—(a+d)<x<-ay=0z]=E/*[x==(@a+d)<x<-ay=h,z]=0

(IC2a)
(2b) Ej?[a<x<a+d,y=0z]=E/*[a<x<a+d,y=hz]=0 (1C2b)
() E)(-a<x<a,y=0,z)=E;(-a<x<a,y=h,z)=0 (1C3)
(4a) Ej*(x=-a,0<y<h,z)=E](x=-a,0<y<h,z) (IC4a)
(4b) E;*(x=a,0<y<h,z)=E}(x=a,0<y<h,z) (1C4b)
(58) H'(x=-a,0<y<h,z)=H}(x=-a,0<y<h,z) (IC5a)
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(5b) H{*(x=a,0<y<h,z)=H}(x=a,0<y<h,z) (IC5b)
(6) Ej'[x=—(a+d),0<y<h,z]=E]*(x=a+d,0<y<h,z)=0 (1C6)

(7a) E{*[-(a+d)<x<-a,y=0,z]=E‘[-(a+d)<x<-a,y=hz]=0 (IC7a)

(7b) E{’[a<x<a+d,y=0,z]=E{*(a<x<a+d,y=h,z)=0 (IC7b)
(8) Ef(-a<x<a,y=0,z)=E/(-a<x<a,y=hz)=0 (1C8)
(9a) E)'(x=-a,0<y<h,z)=E)(x=-a,0<y<h,z) (1C9a)
(9b) Ej*(x=a,0<y<hz)=E)(x=a,0<y<hz) (IC9Db)
(10a) H{*(x=-a,0<y<h,z)=H}(x=-a,0<y<hz) (IC10a)
(10b) HJ*(x=a,0<y<hz)=HY(x=a0<y<hz) (IC10b)

For LSE* mode, we know that
B 1 oF,

EZ
£ 0y

Therefore, we have:
Using (IA1):
E° = ia_Fxo
Z go ay
Apply (IC3):

k
=22/} cos(k,,X) + D{ sin(k,,X) ][ DY cos(k,,y) —Cy sin(k,,y) | Ale 7
&y

E;(-a<x<ay=0,z)=0=D] =0

E;(-a<x<ay=hz)=0=Kk, :nTﬂ
k

Thus E; =—2| C? cos(k,oX) + D sin(k,,X) ][ ~Cy sin(k,,y) | Ae 7 (11)
&

0

-15-



Using (IB1):
i aFXdl _

Edl —
z gd ay

- @{Cfl cos| k (x+a-+d) |+ D*sin[ k§ (x+a-+ d)]}x

d
{D‘”cos[k&fy} Cy*sin| k() y]} Alle7
Apply (IC1): E'[x=-(a+d)]=0=C;* =0

E/'(y=0)=0=D;'=0

Apply (IC2a):

Efl(y:h):0:>k§ﬁ)=n%

Th Edl_k)(/:CLl) Ddl H k(l) d Cdl H k(l) dl, -7,z
us E _g—{ sinfkQ(xFa+ )J}{— ot sin kS y]}AZe

d

Using (1B2):
E92 :iaF_xdz -
z gd ay

(2)

Ld{cfz cos| k' (x=a—d)]+D;’sin[ ki (x—a- d)]}

d

{Ddzcos[k(z’y] Cdzsm[k(z)y]}Afze‘“

Apply (IC1): E*[x=a+d]=0=C*=0
E;?(y=0)=0=D;*=0

Apply (IC2b): £
h)=0 k(z’ I
(y=h)=0= .

Thus E? =§{D§”sin[k§j)(x—a—d)]}{ CdZSIn[k(Z)YJ}Afze .

d

-16 -
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Use (I11) and (12) in (1C4a):

k
ELOO[CS cos(k,,a) — Dy sin(k,qa) || ~C sin(k oY) | Ale 7 =
= ? { D sin [kijj)d ]} {—C;il sin [kﬁfy}} At 7

d

- —Kk®=n
Since ky, =kyg =74 , thus

CO 0 Ddl dl pdl
a | CJ cos(k,4a) — Df sin(k,4a) | = ————sin[ k{{d ] (14)
&y

&y

Use (I11) and (13) in (1C4b):

k
gi:[cf cos(k,,a) + Dy sin(kxoa)][—c‘y’ sin(kyoy)] Al s
=55 (o sin[a of* i@ A

&y

i k@ _n
Since k, =k, = ”h,thus

Co 0 DchdZ d2
_V—AZ[cf cos(k,,@) + D sin(k,ea) | =————"=sin| k{d | (15)
& 2

Also for LSE* modes,

1 O°F,
Jawue oxoz

Hence using (IA1), whose DJ =0:

20
L OF Ko g0 cos(k 0 - Cosin(i, ) ]CE cosi,y) Ale ™ (16)

H 0
T joue, xer Joug,

Using (IB1) with its C{* = DJ" =0

2 dl @
= ja)ﬁllded aangz o Jz)jlz/;d {Ddlcos[k(l)(XJraer)]}{Cdlcos[k(l)y]}Azdle_yz

(17)

. - d d
Using (1B2) with its C;*=D;*=0
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1 aZFXdZ _ kij)yz

d2 _
H,” =

Use (16) and (17) in (IC5a):

Jouye, OXoz - jouye,

{Ddzcos[kij)(x a— d)]}{cdzcos[k(z)y]}Afze 72

_ Kale —2072 [ CPsin(k,qa) + DY cos(k,a) |Cy cos(k,oy) Ale " =

Joe,

__ ka7 {D‘jl cos[kx(i,)d]} {C‘“ cos[k‘i}y]} Alle 7

Jouye,
Again with k,, =k = ”77 :

Ko —-[C7sin(k,qa) + Dy cos(k,a) [CPAT =

Hy&y

Use (16) and (I8) in (IC5h):

_k
o,

=— kx" Yz {D“cos[k‘z)d]}{cdzcos[k(z’ ]} d2g it

jouye,

Again with k,, =k{@ = ”%,

K [DO cos(k,,a) — COSIn(kxoa)]C A=

Ho&y

Divide (14) by (19), we have

k)(é) Ddlcdl dl

&4

(2 yd2d2 pd2
Ky’ Dy "Gy A
Hq€y

o [Cf cos(k,,a) — D? sin(kxoa)] g tan [k(l)d}

Kyo| C2sin(k,qa) + DY cos(k,ea) | -

Divide (I5) by (110), we have

@
kxd

# €y cos(K,o2) + DY sin(k,ea) | tan| k3d |

Kyo| C2 sin(k,qa) — DY cos(k,ea) | -

Also for LSE* mode,

(2)
kxd

-18 -

cos [ki},)d ]

xolz [Docos(kxoa) Cosm(kxoa)] ; cos(k,y)Aje " =

cos[k(z) ]

(18)

(19)

(110)

(111)

(112)



1 oF 1 O°F
———> and H, =- -
& oz Y joue oxoy

Thus, using (IB1) with its C{* = D{* =0, we have

EJ =—iixdl=ﬁ{Dflsin[k$)(x+a+d)]}x
&

&y OL 4
{Cdlcos[k(l) } dlg7:2

dl 1 aZFdl
b joue, oxoy

kOK®D
_ Jaxjﬂy; {Df* cos k& (x+a+d) H{C;sin[ ky ]} Ae
d“d

Apply (1B2) with its C* = DJ*=0,

1R

g oz
{Cdzco{k”]} g7

o 1 OFE

Y jouue, oxoy

2= =Z—:{szsin[k(2’(x a—d)J}x

Y T T

Apply (A1) whose DJ =0,

0
E) = LR ﬁ[cf cos(K,,x) + D? sin(kxox)]CS cos(k,oy)Ae
& 0L &
oo 1 oF;
’ Ja)/‘ogo axay
k
= _X0y0 K0 [DO cos(K ,X) — Cosm(kxox)][ Cosm(kyoy)]Aze 72
Joue,

2-4-2.1 Case One: Symmetric Even LSE* Mode i.e. D) =0 in (117)

-19-

(113)

(114)

(115)

(116)

(117)

(118)



o
With D = 0, equation (111) yields: 4o %0S(Kid) _ 4 tan| kd |
kxO Sln(kxoa) k)%)

Equivalently, upon inverting: &tan(kxoa) xd cot[k‘l) ] (I-ES1)
y7;

0

where

= \fkj —kio+77 = \fwzﬂogo —k},+; which is from (IA2bi) for generally lossy

case

and k, \/kz —-k? = \/a) oo —Ki —k?  which is from (1A2bii) for lossless case

also kié) = kij) = \/kdz —I:k&j)]z +7/Z2 = \/kdz —[k(z)] +7Z \/a) HyEq — kjo +)/Z2

which is from (IB1bi) for.generally lossy case,

2
and k% =k® = k2K | K= [l iags, iy K2
which is from (IB1bii) for lossless case

nz
— kO _ @ _
where Kk, =k =k’ =—

i /) ; th
Therefore, for a certain frequency f = %2”) , and for a particular n” mode

: n : o
(corresponding to ko =k =k :Tﬁ and a certain y,, ), the above dispersion

equation (I-ES1) may be explicitly expressed as:

2 nz )’ 2
\/a) ﬂogo_( ) +Vm { 2
h ) nz 2
tan a\/a) Ho&y —(Tj +7zn =

Ho

Hy h

2 nz )’ 2
\/a) Hq&y _(h) +Vm )2
= cot d\/a)zydgd—(—j +y2 (I-ES2)
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whose only unknown is y,, , [for a certain n™ mode and at a specific frequency

f= 6%27[)], which can then be solved for numerically.

: . n : : .
This solved y,,, together with k , = Tﬂ can then be substituted into above equations
for k,,toobtain k  and k& =k@.

It is noted that &, may be expressed as g, = £2™%g, , Withe®™™ =¢  — je.,

Ho cos(kxoa) Hy tan[k(Z) ]
kgsin(kga) ~  k@d

With D? =0, equation (112) yields

Equivalently, upon inverting: &tan(kxoa) k' cot[k(z) ] (I-ES3)
Hy

Which is the same as (1-ES1) sincek® =K®.

Therefore, (112) also-will result in the same dispersion characteristic equation as does
(111).

0~0 A0 dl~dl pdl

From (14), with D = 0, we'have: ——— cos (K qa)=———"sin| k{{d |
o &y

D'C' AT &, cos(k,ya)

Ie. =—
C.,C)A)  &sin [kﬁ}d]

(I-ES4)

Normalizing by setting
CICIA’ =1 (1-ES5)
Then (I-ES4) becomes

&4 C05(k,08)

Ddlcdl dl
A= gosm[k“) ]

(I-ES6)
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00 A0 d2~d2 pd2

Also from (15), with D =0, we have ———*—cos(k,qa) = ————sin| k{;'d ]
& &

D;°Cy* A &, c08(k,d)

ie. = (I-ES7)
CICoA) gosm[k(z’ ]
with k& =k®
As above, normalizing with (I-ES5), then (I-ES7) becomes:
] & cos(K,,a)
D{*Cy Al = —— g (1-ES8)
5osm[k ]

Subsequently, using (I-ES5), (I1-ES6) and (I-ES8), we can write expressions for all the

electric and magnetic fields forthis even symmetric LSE*.mode (with D? =0) using

equations (I11) through (118). It-is-stressed that these field expressions pertain to one

particular n™ mode..corresponding to k,, =k =k = h ~Zand-a certain y, , at a

specific frequency fzzﬁ. For each n" root y, obtained from the dispersion
VA

equation (I-ES2), there corresponds to a certain set of phase constants, namely:

nrz
—k® 1@ _
ko =kid =k ===

2 2 2
:\/a) /'logo_kyo-’_}/zn

kg) = kig) :\/kd2 _[k)(/](.j)]z +7/22n =\/k§ _I:k(Z)] +7/zn \/(0 Hyé&y _k§0 +7/22n

From (11):
k

EY =——2cos(k,ox)sin(k,,y)e 7 (1-ES9)
o

From (117):
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E; _%cos(kxox)sin(kyoy)e‘yzZ
0

and
=0 (since LSE* mode)
From (16):
KoV, _
H? = =% gsjn(k x)cos(k,y)e "
’ Jorye, ( * ) ( yoy)

From (118):

k. k
H® =22 gin(k..x)sin(k .y)e 7=
T joue, n(kox)si ( yoy)

1 (51
Now, for LSE* modes, we know that H, == —+k* |F,
Jopyey (Ox

Then using (IAL) with Dj = 0as-well,

0 1 82 2 0 1 2 2 —¥ml
HO =— — +k§ |Fl=——— (k% +k;)cos(k,qx)cos(K,y e 7

jope, | OX° JOHoEq
From (12):
kg &, cos(k,,a)
Ef = 20 T2 0 6in[ kO (x+a+d) [sin(k®y)e 7
z & gosmlik)%)d:l I: xd( )} ( Y)
From (I113):
cos(k a
Edl yzn &y ( sm[k)%)(x_ka.kd)jICOS(k(l)y)e YanZ

g, gosm[k(l’ ]
and

EX* =0 (since LSE* mode)
From (17):

kWy &, cos(k,a)
jou,e, gosin[k(l) ]

Ho = — cos[k(l)(x+a+d)]cos(k(”y)e 7l
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(I-ES10)

(I-ES11)

(I-ES12)

(I-ES13)

(I-ES14)

(I-ES15)

(I-ES16)

(I-ES17)

(I-ES18)



From (114):

Kiakja & c0s(Koa)
joue, &, sm[k(l) ]

HO" = cos| k§ (x+a+d) Jsin(ky)e ="

Using (IBZ1a), with its C,* = Dy =0, we have

H di — 1 62 k2 Fdl —
© jouye, ox2 X

2
—[kiﬁ)] &4 cos(k,,a)

jouye esm[km‘Sm[km(x+a+dik°“ka)e%n
d©d 0 x|

From (13):

k& | & cos(kya)
e 0 ZRsin k@ (x—a—d){sin(k@y)e 7" =
‘ & { gosin[ k@d | Pl ) pin(ky)

k3 cos(k,,a)
=X 0 Csin| ki (x—a—d)sin (k&y)e 7
&sin[k2d | [ i (kGa'y)
From (115):
k a
go2 =22 ) % COS( N2 tsinf kD (x—a—d) |cos(kBy)e 77 =
’ gd{ gosm[k(z) } Lk ) Joos(Zy)
7 cos(k,,a)

o Te@ (3 g St
EOSin[kiﬁ)d}sm[kx" (x—a—d) |cos(k{Py)e 7

and
E* =0 (since LSE* mode)

From (18):

Jory &y

@
H = _kx" £: { i Cos(kxoa)}cos[k(z)(x a— d)}cos(k(z)y)e Tl —

g,sin[ k¥d |
_ k@y, cos(k,a)
ja),udgosm[kij)d}

cos[k(z)(x a— d)}cos(k‘z)y)e o

From (116):
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(I-ES19)

(1-ES20)

(I-ES21)

(I-ES22)

(I-ES23)

(I-ES24)



kPk$S | &, cos(kya)

e 0L tcos| k2 (x—a—d) [sin(k&y)e7* =
y ja),udgd{ &sin[kPd | [l ) Jsin(kG&'y)
k @k k

- Kk 005Uad) ooty xadyJsin(kDy)e
Jou, s, sm[kXd d] (1-ES25)

and finally using (IB2a) with its C;* = DJ? =0:

Hd 1 (a—2+k§j|:;’2 =

 joue, | ox3
k2 -[k@T cos(k,,a
0 [ Xd} I ( 2 ) sin[kﬁj)(x—a—d)]cos(kﬁy)e’“nZ (I-ES26)
jou,e, gosm[kid)d}
2-4-2.2 Case Two: Asymmetric Odd LSE* Mode'i.e. '\C>=0 in (117)
WithC? =0, equation (I111) yields:
usin(kga)  Matan[k@d] s tan| kd |
— = ) = -2 tan(k,a) = )
kxO Cos(kxoa) kxd kxO kXd
k k®
Equivalently, upon inverting: =2 cot(K;,a) :—L“cot[kﬁfd] (1-OA1)
Ho Hq

which can be explicitly expressed as:

2 nz)’ 2
\/a) ﬂogo_(j T 2
h ) nz 2
cot a\/a) Ho&o —(Tj TVm | =

Ho

2 nz)’ 2
\/a) Hq&y _(hj 7 nr )2
= cot d\/a)z,udgd _(Tj +y2 (I-0A2)

Hy

which, as before, whose only unknown is y,., [for a certain n™ mode and at a specific

frequency f = 6%27[)], which can then be solved for numerically.

WithC? =0, equation (112) yields:
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ssintegd) D]y
k,cos(k,a) k& Kya : o

@
Equivalently, upon inverting: &cot(kxoa) = —kx—dcot[kij)d} (1-OA3)

Hy Hy

which is the same as (I-OAL) since k& =k®.

Therefore, (112) also will result in the same dispersion characteristic equation as does

(111).
0~0 A0 dl~dl pdl
From (14), withC{ =0, we have ——<"“*sin (k) = ————sin[ k{{d |
&g &y

Ddlcdl di - k

o 2O A sin (Xl‘)’a) (1-0A%)
D,C/A gosm[k ]

Normalizing by setting

CIA =1 (1-OAb5)
then (I-OA4) becomes

sin(k 4a
DICH AL = - 58 (Xf) (1-0AB)
& sm[k” ]
0~0 A0 d2~d2 pd2
Also from (15), withC{ =0, we have ———*sin(k,,a) = ————sin[ kd |
&o &y

Dd2cd2 d2 - k

i.e. X0 yop;z - = Sm( (Xz(;a) (1-OA7)
C,A gosm[k ]
with k& =k,
As above, normalizing with (I-OA5S), then (I-OA7) becomes:
&48in(k,ed)

DY2CIZAS = - ° (1-0A8)

& sm[k(z) ]
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Subsequently, as before in the symmetric even case, using (I-OA5), (I-OA6) and

(1-OA8), we can write expressions for all the electric and magnetic fields for this odd
asymmetric LSE* mode (with C =0) using equations (11) through (118).
From (11):

K. _ N
E’ :—gijsm(kxox)sm(kyoy)e &

From (117):

E; =%sin(kxox)cos(kyoy)e’ymZ
0

and

E?=0 (since LSE* mode)

From (16):

(% |
HY =-—%* cos(k k &
* T e cos( XOx)cos( yoy)e

From (118):

k. .k
HO _ x0y0 k - k ~¥ml
T e, cos (Kx)sin(kyey)e

Now, for LSE* modes, weknow that H, = - 1 [—2+k2]FX
Joue \ OX

Then using (IAL) withC{ = D) =0 as well,

1 o° 1 _
H = —+ks [F = —k2 +kZ)sin(k ,x)cos(k,,y)e "’
X ja)ﬂogo (axz Oj X ja),uogo( x0 O) ( x0 ) ( yoy)

From (12):
ki | &, cos(ka)
EM =20y 20 0 sin k@ (x+a+d) [sin(kBy)e 7=’
Z gd{ gosin[ k¥ | [l Ccrad) Jsin(Ggy)

From (113):
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7/zn gd Sln(kxoa

dl
S &, gosm[k(l) ]

sin[ k% (x+a-+d) [cos(k{y)e

and
EM*=0 (since LSE* mode)

From (17):

kBy,  &,5in(k,a) -
H# = —dfz 20 0"~ cos| kD (x+a+d) |cos(kDy)e 7
© o Jous, gysin[kQd ] [ Oxrad) Joos(kiye

Using (IBla), with its C? = Dy =0, we have

H* :.;(a—zka jdel =
jou,e, \ 0x°

_kdz—[kib]z &4 Sin(K @) o N
S _gosin[kﬁ,)d} sin| kS (x+a+d)|cos(ky)e s

From (114):
ot _ kigkis | eqsin(k.oa)

joues | gy sin[ kd ]
 kigksin(k,qa)

 jou,s, Sln[kx(?d]

}cos[kg’(x+a+d)]sin(k‘1)y)e Fn?

cos[kg’(x+a+d)]sin(k(1)y)e Y

From (13):
k@ & sin(ka)
& &sin[k{d ]
_ k(D sin (k)
g,sin[ k{Pd |

d2 _
E,“=

sm[k(z)(x a— d)]SIn(k(z’y)e To?

[ 13- Jsn k)

From (115):
7, &asin(ked)
&, gosm[k(z) ]

_ Y sin(k,,a)
 gsin[ kd ]

Ey = sin[ kP (x—a—-d) |cos(k{Fy)e 7" =
sin[ kP (x—a—d) |cos(kFy)e
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and
E®=0 (since LSE* mode)

From (18):

) :
k@y  g,sin(k,a

H? = ) cos[kx(j)(x—a—d)]cos(k%)y)e‘“"Z =

 jous, & sin[ k{'d
_ k@y,sin(k,a)
 jou,e, sin[kx‘?d]

cos| k{3 (x—a—d) ]cos(k{y)e

From (116):
kik(d &y sin(k,a)
jouyey g, sin| kPd |
_ k{Pk3 sin (k)

jou,e, Sin[kg)d]

d2 _
Hy =

cos| k' (x =a—d) sin(k{?y)e 7" =

cos| ki (x—a—d) Jsin (k{'y e "¢

and finally using (IB2a) with its-C* = DJ* = 0:

H2 = 1 [8_2+kdzJde2:

jou,e, \ 0x°

~ ks —[kijqz ggsin(koa) | . @ /N
T joue, _gosin[kg)d] sin[ k) (x~a=d) Jcos(k{;y)e "

2-4-3 Case (I): LSM* or TM* mode (with x direction normal to discontinuity

interface)

(A) For central freespace region: —a < x < a: superscript or subscript ‘0’
A (-a<x<a,y,z) =] C{ cos(k,x)+Dfsin (kxox)][cs cos (k,,y)+ D sin (kyoy)] Ale7:?

(I1AL)

(B) For dielectric region: —(a+d)<x<a and a<x<a+d
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(1) Left dielectric region: —(a+d) < x<a (superscript or subscript ‘1”)

A'[~(a+d) <x<-a,y,z]={C*cos[k§ (x+a-+d) |+ D" sin[ k) (x+a+d) |}

x {C;“ cos[k%) y] +Dsin [kﬁ,’ y]} Alle 7 (11B1a)

(2) Right dielectric region: a<x<a+d (superscript or subscript ‘2”)

Allla<x<a+d,y, z]= {cf2 cos[ k) (x—a—d) ]+ Djzsin[kg)(x—a—d)]} (11B2a)

Here, LSM* and LSE* have many.formulas.in common, except some equations.
Table | below shows the difference in those two-cases. We will omit the boundary

conditions and some equations that are the same with LSE cases.

LSE LSM
C)((il(dZ) | A 0 D;Jl(dZ) — 0
DS(dZ) AY 0 C;J(d 2) — O
E =0 2
» g o4 (a_ﬁkszA
Joue \ OX
e . 10F E_ 1 A
Y oos oz Y joue oxoy
e 1R 1o
‘g ooy * jous oxoz
Hoo Lt (2 el H,=0
* joue, | oxP "
1 R L LA
" jous 0xoy S Tae:
__1 oF H —_L19A
* jowoue oxoz Yoouoy

Table I. The comparison of the electromagnetic distribution between LSE and LSM
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2-4-3.1 Case One: Symmetric Even LSM* Mode i.e. D? =0 in (1113)

. (3] @)
With D =0, equation (1111) yields: K« SN(Kyed) _ _ ki tan| kigd |
&, cos(k,,a) &4

. ()
i.e. K0 an(_a)= _detan[kg)d} (I1-ES1)

&y &y

which can be explicitly expressed as:

2 nz Y’ 2
\/a) ﬂogo_(J 7 [ 2
h ) nz 2
tan a\/a) Ho&y —(Tj +7zn =

&g

2 nz)’ 2
\/a) Hq€y _(hj T nz )2
=— tan d\/a)zuded—(—) +y2 (N-ES2)

&4 h

which, as before, whose only unknown'is #,., [for a certain n™ mode and at a specific

frequency f = 6%27[)], which can then be solved for numerically.

2
With D) =0, equation (1112) yields: &tan(kxoa)=—ﬁtan[k$)d] (N-ES3)
&,

&y d

which is the same as (11-ES1) since k& =k?.

Therefore, (1112) also will result in the same dispersion characteristic equation as does

(1111).

2-4-3.2 Case Two: Asymmetric Odd LSM* Mode i.e. C) =0 in (1113)

WithC? =0, equation (I111) yields:
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kyoc0s(kea) kS tan [km ]

Ko cot (kod)= L tan[k‘l) ]

&, sin(k,,a) &4
k Kk®
Therefore, we have: — cot(k,,a)=—2-tan [kx(}j)d ] (11-0A1)
o &4
where

:\jkg _kjo +7z2 :\/wzﬂogo _kjo +7z2
which is from (11A2bi) for generally lossy case

also

K k2 = kg [k T +77 =l [BT 472 = gz, 172

which is from (11B1bii) for.lossless case

where

N7z

o =K =k =2
Y 0 . th
Therefore, for a certain frequency f_a%zﬂ), and for a particular n™ mode

(corresponding to k,q=k3 =k = Tﬁ and a certain'y,, ), the above dispersion

equation (11-OA1) may be explicitly expressed.as:

2 nz)’ 2
JCO ﬂogo—(hj +}/2n nr 2
cotla a’zﬂogo_[Tj +y2 =

zn
&y

2 nz Y’ 2
\/CO Hqy &y _(hj +7Vm nr 2
= tan dezydgd _(TJ +y2 (11-OA2)

&y
which, as before, whose only unknown is y,., [for a certain n™ mode and at a specific

frequency f = 6%27[)], which can then be solved for numerically.
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This solvedy,, , together withk =nTﬂ, can then be substituted into above equations
for k,,andk,, to obtain k  andk$) =k®.

It is noted that &, may be expressed as g, = £2™%g,, Withe?™™ =¢  — je.,

WithC? =0, equation (1112) yields:

cot(kxoa)— k' tan[k<2> ] (11-0A3)

0

which is the same as (11-OAL1) since k&) =k@.

Therefore, (1112) also will result in the same dispersion characteristic equation as does
(1111).

2-5 The characteristic equations after modification

From above, TEM-x solution in mathematically stated,
Ko =k’ =Ky = oyfage, (Eq-18)

Note that (IB1a), with (1) above taken into effect. This gives the form

1 1
ki ki

F'[-(a+d)<x<-a,y,z]=+C cos[k, (X +a+d)]+ D" sin[k, (x+a+d)] p--

{C‘“ cos| k(Jy |+ Dy"sin [k(l’y]} Alle

(Eq-19)

As such, Case 2 of the solution to Example 6-1 in Balanis Advanced Engineering
Electromagnetics (AEE) [8] on Pg 263 pertaining to TEM-x mode (with z and x
swapped there) can be invoked here. This (Eg-19) indeed coheres with the second

equation on Pg 264 Balanis AEE, being
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H = ! (i+a)2,udgdexdl 0, (Eg-20)

RETEACS

along with the null E that is already in place. Note no matter what the TEM-x solution
being stated at the bottom of page 263 in Balanis AEE, i.e.0/0z#0, d/oy+0
actually holds here, even though it’s being invalid for ordinary homogeneous media
(this pin-lattice medium here however is unusual and not subjected to that invalidity).
That is to say, they, of (Eg-19) above remain nonzero in the analysis. Also, it is
remained of the case in the center-region of the waveguide where has no pins.
However, although the. y, in the pin-lattice-embedded slab. region must be nonzero,
and equal to the center region for-phase continuity, it doesn’t mean that there would be
aactually wave propagation in that host region with.a component along the waveguide z
axis. On the contrary, the TEM-x waves propagate along the pins (x-direction) within
an increasing part of the host medium between neighboring infinitesimally-separated
pins acting as a transmission line.-In more properly words, they are standing waves
on the shorted (PEC wall) transmission line rather_than propagate waves. Seeing the
trigonometric functional forms of (Eg-19) for the variation with X, they are slightly out
of phase from those in neighboring transmission-line regions such that the phase

progressively along y and z (tangential to the slab surface) follow those in the center

(1&2)

part of the waveguide. In an asymptotic sense then, ki

and y, in the lattice-layers
are being as nonzero in the analysis. As a result, the usual

[ G ’ +[k§§&z)}2 — 2 =k2 no longer holds here. This formula is valid only for the

ordinary media within which actual waves propagate along a direction with x, y and z
components.
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The pin-lattice sidewall of the waveguide supports TEM-x waves along x only, but
no waves actually propagate obliquely with components along z or y.
Therefore, the new characteristic equations for the four mode categories: LSE

Symmetric, LSE Asymmetric, LSM Symmetric, and LSM Asymmetric are now:

(i). LSE Symmetric:

2 11n&y —(n7r/h)’ + 52 \
\/a) Ho& ( r/ ) 7z, tan‘:a\/wzﬂogo_(nﬂ/h)2+yzzn}szot(cgd Iudgd)
Hy

Hy
(Eq-21)
(if). LSE Asymmetric:
2 g, — (/MY F92 [
\/a) o~ (/) 7 cot[a\/wzyogo—(nn/h)2+yfn}:—mcot(a)d ,udgd)
Hy #4
(Eq-22)
(iii). LSM Symmetric:
26, —(n7z/h) + 52 [
\/(0 Ho&o ( / ) 7z, tan[a\/wzﬂoeo—(nﬂ/h)er}/f }z_Mtan<a)d /udgd)
& ' &4
(Eq-23)

(iv). LSM Asymmetric:

2 11ney —(n7/h)’ + 52 \
\/a) Ho&y ( 71'/ ) 7z, C0t|:a\/a)2ﬂ0€0—(n72'/h)2+722n jlzmmn(a)d Iudgd)
&4

%o
(Eq-24)
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where h is the height along y, a is half the central width along x, and d is the slab

thickness.
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I11. Discussion

3-1 Initial setting of dimension - width: 20 mm & height: 5 mm

At first, we choose a waveguide with dimensions: 5 mm in height and 20 mm in
width.

Fig. 8 below shows the perfect agreement with HFSS simulation result and CST
simulation result. Both make use of waveport modes for the simulation. Orange stars
represent HFSS, and the blue spades represent CST simulation.

By this figure, it is found that there would be modes excited at about frequency 7 GHz,

14 GHz, 18 GHz, 22~23 GHz, and 25GHz.

T2 || R e A R R A e -l B R—— > 2P | B T TR R B R ;

# HF¢

4 ST simulation

i PR A B o0, SRR .. ......................
£
&
a

o S N Mo N B B

ATF +
= i EE!" 3538, Saar s ; ! 9
5 10 15
Freq (GHz)

Fig.8 Simulation results of the comparison of CST and HFSS

At first, we choose the waveguide with the dimension 5 mm height, 20 mm width.
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Use above characteristic equations and simulated by MATLAB, and then compared

with HFSS simulation result. The comparison is shown as below.

! ,
0 Matlab simulation :
2= % HFSS simulation R’.,.
o
i{
o
:a?
1500 4
5
g o
- JoRs
fo
a i
1000 2 L
B0 g
joie
Hou
R
fo!
‘ ‘ o
| ; Bob
11| Iy light line /l 4
TR T o P P P VR P Y PR R P P A Do N T S L e O b b R D P D
B 8 I 1 " 1 [ 0 2 2

Freq(GHz)

Fig.9 Simulation results of the comparison of MATLAB and HFSS

From the above results; fine ‘agreement between-the different simulation tools is
observed, verifying the accuracy of the waveport mode simulation setting. However,
even though this dimension has more obvious effects that we want to see, it still has
difficulties with the measure processing for the not fitting adaptor. This way, we tried
another dimension with double height that is 10 mm, and the same width 20mm.

The next section, we will go through the introduction of new dimension.
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3-2 Final setting of dimension - width: 20 mm & height: 10 mm

3-2-1 The pictures of the finished manufacture

Fig.10(a)  Front sight of the sidewall-dielectric waveguide

Fig.10(b) Side sight of the sidewall-dielectric waveguide
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Fig.10(c) The front sight of WR90 adaptor

Fig.10(d) The waveguide connected with the adaptor
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in this dimension
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Fig.12 CST eigenmode simulation of RO-3010 substrate
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3-2-3 The CST simulation of the Styrofoam substrate

Because the material we’ve chosen doesn’t show good, obvious stop-band in the
dispersion diagram by CST simulation. We try to find another dimension with another
material to reveal the stop-band, which may apply to the waveguide filter, and we will
discuss about it in the next part. Fig.13 below shows the obvious stop-band between ten

Giga-Hertz to seventeen Giga-Hertz.
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é 1200—
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¥

= - light line

400

20,
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Fig.13 The CST simulation of the Styrofoam material substrate embedded with

sidewall pins

Fig. 13 shows the CST simulation result from above fabrication dimension in
eigenmode solver. We can notice that it has obvious stop band from about 9.5 ~ 17 GHz.
The reason why we are seeking for the dimension which stop band is easily to observed

is because we are trying to apply this structure into waveguide filter in the future.
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3-2-4 The comparison of the measurement and simulation results of the

Styrofoam substrate

Now, we can verify that the characteristic equations have convincible accuracy by
these simulation results. After first experiment, we then try to find another dimension
which has obvious stopband for that we cannot find any in this dimension setting.

We finally choose the Styrofoam as our sidewall dielectric material with its
permittivity 1.27, which is close to free space. Also, we changed the height from 5 mm
to 10 mm and it would be easier to measure: The width remained the same, 20 mm.

Next, we fabricate the waveguide with Styrofoam dielectric sidewall and embedded

with metallic pins as we designed.

Fig. 14 Perspective view of rectangular waveguide with sidewall dielectric embedded
within metallic pins

Since we decide the final dimension of the waveguide, we simulated the dispersion

diagram by three different simulation tools to verify their accuracy and find an obvious
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stop-band in this structure. However, the experiment still needs the measurement to
ensure its credibility. Because of the adaptor WR-90 has its frequency range which
would cause distortion beyond or lower the frequency range, 8.2 ~12.4 GHz. Fig. 15
below shows the comparison of the S21 (Insertion loss) between the simulation and the
measurement. The blue circle represents the measurement, and the green star shows the
simulation by HFSS. Like above described, the measurement processing is limited by
the adaptor, and it’s accurate from 8.2 to 12.4 GHz. Still, the simulation doesn’t have
that problem; we still can observe their trends to discuss about where the stop-band of
the waveguide would exist.

From about 8.5 GHz to 12 GHz, the trend is telling that the wave can pass through it.
They have stop-bands before 8GHz and over 12 GHz. Compare to Fig. 13, we can
know that about 8 to.9 GHz, the wave is excited, and after 12 GHz, the insertion loss
shows that there would have stop-band. Because we cannot exactly measure the
frequency range after 20 GHz, we can still observe the curve trend to assume that would

excited again about 17 to 26 GHz like Fig.9 shows.
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Fig. 15 Comparison of measurement and HESS simulation in Styrofoam dielectric
sidewall-loaded waveguide

Most of the time, in order to obtain knowledge of just the width and location in the
frequency spectrum of bandgaps of periodic structure; the use of two-port scattering

parameters is more direct than‘the dispersion-diagram.[10]
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IV. Conclusion

Recently, there has a new type of novel meta-surfaces, which is called “pin-lattice”
or “bed-of-nails”. Its characteristics are similar to those of EBG (electromagnetic
band-gap) structures, which are well-known for suppressing surface wave propagation
in a specific band. Also, the insertion of additional structures into ordinary empty
waveguides to tailor the propagation characteristics has been an age-old practice,
ranging from the simplest use of dielectric fillings for reduction of cutoff frequency to
the plugging in of dielectric layers to serve as.impedance match-tunners.

Motivated by the broadband nature of such high-impedance surfaces, it could also
be interesting and worthwhile to investigate how such a pin-lattice, when implanted
within the sidewall dielectric slab-loading of rectangular waveguide, could affect the
bandgap properties.

In this paper, we introduce two similar structures by using vector-potential method
and obtain the characteristic equations. Not only verify the accuracy and credibility of
the method, but also we find. a dimension of the sidewall-loaded embedded with
pin-lattice waveguide whose stop band. is observable. The above derivation about four
cases of vector potential method shows us not only the characteristic equations but also
the distribution of electric and magnetic fields. This is an important reason we choose
this way to get the characteristic equations instead of TRT.

In the future, we hope we can use it as a waveguide-filter that filters in some
frequency range. There has introduction between scattering parameters and dispersion

diagram in the reference [10].
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