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Student: Chun-Ju Chen Advisor: Dr. Kai-Tai Song

Institute of Electrical Control Engineering

National Chiao Tung University

Abstract

The objective of this study Is to design an image tracking algorithm for the
endoscopic system in Minimally Invasive Surgery (MIS). The endoscopic robot
autonomously adjusts its pose according to the position of the instruments in image
plane, and moves the endoscope to provide a suitable field of view. A method is
proposed to identify the tip of instruments without using extra artificial markers. We
suggest to use texture and geometric features of laparoscopic instruments and to adopt
the spiking neural network approach for object detection. Affection of light change
can be reduced. The size change problem and deformation of the instrument can be
handled by the neural network. To enhance tracking performance, we further employ
region of interest(ROI) and Kalman filter to the neuro-based tracker. For the tracking
control of surgical instrument, we propose to set a buffer zone in the center of the
image frame to avoid redundant movement of the camera. In this way, the endoscopic
system provides a stable view while the robot is tracking surgical instruments. By
using endoscopic images, a recognition rate above 91% has been achieved for surgical
instruments. Practical experiments on Huatuo robot further validate the effectiveness

of the developed image tracking methods.
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Chapter 1 Introduction

1.1 Motivation

Minimally Invasive Surgery (MIS) has been widely used in medical area in
recent years. Surgeons treat the lesion inside human body through the small incision
about 1~2cm and bring less pain than conventional open surgery [1-3]. The small
wounds reduce the recovery time in comparison with open surgery. MIS technology
further advances when Da Vinci® system was approved by FDA in 2000[4]. The
operation time using Da Vinci system is less than conventional MIS. The consumption
of medical resources is thus greatly reduced.

In the past, there was usually an assistant helped to hold the endoscope during
MIS. The tremble of image is usually inevitable since the endoscope is held by hand.
Surgeons would get eyestrain and their concentration will easily be distracted. Hence
a camera holder will play an important role to stabilize the image and nowadays
surgeons greatly rely on the holder during operation. \When surgeons want to deal with
the lesion which is out of the image, they need to stop their work and adjust the
endoscope to derive the suitable field of view because both of hands are operating the
instruments. The adjustment of endoscope is inconvenient for surgeons.

Many types of robotic camera holders have been developed and commercialized.
AESOP[5] was approved by the FDA in 1996. The voice-controlled interface is
user-friendly for the surgeons. LapMan®[6] is another camera holder launched in
2003. Surgeons can control the robot motion by manipulating a wireless joystick
mounted on the handle of the instrument. FreeHand®[7] allows surgeons control the
scope position by head movement through a controller attached to a surgical cap.

Robotic camera holders can replace an assistant to move the endoscope



according to surgeon’s commands. Surgeons no longer need to put down the
instruments for the endoscope adjustment. A friendly human-machine interface
becomes the significant issue for more efficiently scope control. For this reason, this
work aims to develop a novel control method for autonomously adjust the scope by
image recognition and tracking. In general, the location of the instruments is the place
where the surgeons would like to treat. The surgical instruments can be like a mouse
to guide the robot to focus on the operated area. Robot will thus make decision by
itself according to the tendency of instrument motion. In this way, surgical operations
can be easier for surgeons.

Since each surgery has its specific workflow, Oliver Weede et al.[8] developed a
system that is adaptive and cognitive to surgeon’s skills and autonomously adjust the
endoscope. For this purpose, they divided the workflow of sigmoidectomy surgery
into nine phases such as dissection of descending colon, dissection of sigmoid
mesenterium and- closure of descending colon. The system senses the surgical
progress by image and voice recognition. In-this way, the robotic endoscope system
can carry out tasks autonomously at appropriate time.

Our goal is to develop an image tracking system that can provide stable view to
surgeons. We combine the object detection and robotic control to give autonomous
tracking. The robot will recognize the instruments in surgical image and move the

endoscope to provide a suitable view.

1.2 Related Work

In image recognition, some reported approaches employ additional makers on
the instruments to facilitate image tracking. As depicted in Figl.1, Nageotte et al.[9]

use twelve marker spots around the instrument surface were used to estimate 3D pose



of the surgical instrument. The method needs other measurement devises together
with a complex registration scheme in order to track the trajectory of instruments in a
stitching task. Bouarfa et al.[10] use an approach of CAMShift tracker and Kalman
filter to find color markers. Instruments trajectories can be recorded to give an activity
log for surgery. As shown in Fig. 1.2, X.Sun et al.[11] propose a method to detect
color markers using a particle filter approach. It is robust to illumination variations,
thanks to the probability-based technique.

However, approaches using artificial markers are not appropriate in actual
surgical applications. In recent years, methods have been investigated to detect the
instrument tip using natural features. Stefanie Speidel et al.[12] extract the metallic
color in HSV color space. As shown in Fig. 1.3, they also use Bayes classifier to train

region of interest (ROI) and recognize the type of instruments by comparing with

———0- -
e o e f
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marker

line

Fig. 1.2 Instrument detection by using particle filter.[11]
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Fig. 1.3 Recognize the type of the instrument[12]

predefined 3D tool models. Baek et al. [13] also use color-based approach to defining
an ROI. To find the best-fitted contour, Fig. 1.4 shows their suggestion to enhance
edge detection by Canny edge detector, then .use a particle filter to estimate the pose
state of the instrument.

Sa-Ing et al. [14] use mean-shift technigue to locate the tip of an instrument.
Their algorithm is effective to track size-varying objects. A Kalman filter was used to
overcome difficult tasks such as occlusion. The tracking performance was shown in
Fig. 1.5. In [15], Ryu et al. proposed to use LAB color space instead of HSV, and use
k-means clustering algorithms to classify metallic properties to get the instrument

positions. Fig. 1.6 shows that when any two instruments become too close, a collision

Projection

2-D image plane

Fig. 1.4 3D pose estimation by fitting contour with 3D model in data base.[13]
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Fig. 1.6 Instrument detection by metallic color and k-means.[15]

warning will occur.

Although color-based approaches to image tracking are simple and efficient in
relative pure environments, variation of the lighting condition and. reflective surfaces
may degrade the tracking accuracy dramatically. For this reason, [16, 17] use
gradient-based algorithms to find edge information-of the shaft in order to locate
instrument by its contour. Further, by computing the projected point in image plane of
the instrument insertion position; the design can filter out noises which do not belong
to the instrument shaft. The shaft end can therefore be evaluated according to two

straight lines extracted from the acquired image. Fig.1.7 shows the line extraction.

Fig. 1.7 Find the tip of the instrument by the straight edge.[16]
5



However, the design may fail when there are specular reflections on the organ tissues
with long straight borders. Sznitman et al. [18] used gradient-based tracker and
reasonable amounts of training data such that their results as presented in [19] are able
to detect the 2D location of a deformable target in imagery irrespective of its
orientation. As shown in Fig 1.8, this operation results in a set of pixel positions and
their associated classification scores. The detection is valid if the score associated

with the location is above a threshold.

1.3 Spiking Neural Network

Spiking neural network is a computer vision approach which imitates the visual
system of human and primates.-Since primates are good at recognizing object in
cluttered images, researchers have realized the use of spikes as. the physiological
signal transduction. Figure 1.9 depicts a spike train as the measurement of retinal
ganglion[20].

As shown in Fig. 1.10, the visual information-will firstly enter the pupils and
project to retina which can change the light signal to neural impulse[21]. Optic

radiation will then project to an area termed primary visual cortex or V1 in the

Tracker position and template update

Gradient-based | | Classifier-based | | Spatial & Score
Tracker Detector Weighting

Image/,

Fig. 1.8 Combine gradient-base tracker and classifier-based detector for tracking.[18]

6



posterior of the brain. Cells in V1 responds to stimuli such as line segments and
oriented edges[23]. The visual processing continues to go through the pathway termed
dorsal stream[24] and arrives inferotemporal cortex(IT). Within the IT are neurons
selective to specific type of objects, which means the recognition can be achieved.
Thorp et al. have implemented a three-layered model termed SpikeNET[25]. The
model operates in two distinct modes: training and recognition. In the modes, each
pixel in the imagery represents a neuron will generate a spike in different latency

depend on the input intensity. Spikes propagate through the system in a feedforward

—LUAA A A

_— >
time

Fig. 1.9 Schematic diagram of spike train.[21]

Dorsal
Stream

N
YW%

Fig. 1.10 Visual signal transduction. [22]
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manner. The feedforward architecture aims to explain “immediately recognition”.
This hypothesis is supported convincingly by the requirement of short time intervals
for recognition tasks[26]. In the output layer, only the first spikes propagate to this
layer and the rest of spikes will be ignored. In this way, SpikeNET can achieve face
recognition[25].

Our algorithm is similar to that of SpikeNET. However, SpikeNET is applied in
single image recognition, and our algorithm works on object tracking of image

sequence.

1.4 Problem Statement

In the MIS environment, instruments detection is under cluttered background
that contains tissues and organs within the body cavity. In order to guide the
endoscope to the desired location by image tracking, it is essential to robustly
recognize the instruments from the surgical images. Under such condition, the system
can correctly control the camera holder to provide the suitable field of view for
surgeons.

Some problems would occurduring. recognition process. First, the artificial
markers are impermissible due to the sterilized issue. The system should recognize the
instruments by the natural features. But the instruments lack feature points that can be
extract by many extraction algorithms, such as SURF. The second problem is the light
variation. Since there is single light source irradiated from the endoscope, the
distribution of the light is seriously uneven. The third problem is the size change in
the imagery, caused by rotation and the displacement of the tip of the instruments
during operation. It is hoped to conquer these three problems to ensure the endoscopic

robot stably track the instruments and eliminate the inconvenience of endoscope



adjustment.

Fig 1.11 shows various types of instruments of Da Vinci. In the shaft end of the
instrument is the endowrist, where is considered have most features. Therefore, we
will recognize the instrument to represent their positions in the image. In particular,
consider that surface of the endowrist is lack of feature points such as corners, we
would use spiking neural network to extract the contour and the texture as the features
for recognition. Thus the influence of the lack of features can be efficiently reduced.

Since the tool ends of surgical instrument are almost made of metal material, the
influence of light change would be even severe and the color on the surface would
also change dramatically. For this problem, the edge feature extraction of spiking
neural network would less be affected. We can also consider the learning method to
train the data of some extreme conditions.

Finally, for the size change problem caused by rotation and displacements of
tools can also be solved by training of the artificial neural network. We can let the
neural network learn about most of appearances of-an instrument to achieve robust
tracking. Though it needs great amount of training samples, it can rapidly complete
training process because of feedforward-learning manner. In this thesis, we want to
develop a method to let the endoscopic robot track multiple instruments and provide

stable image to the surgeons.

endowrist

\

Fig. 1.11 Robotized surgical instruments of Da Vinci system[27].



1.5 System Overview

Fig. 1.12 shows the proposed system architecture. The system contains three
main parts. The first part is the endoscopic robot which is comprised of a camera
holder and an endoscope. The camera holder is responsible for holding endoscope,
and the endoscope is for providing the surgical image in the body cavity.

The second is an image detection part. It will firstly extract the features from the
surgical image. The positions of both instruments can then be calculated through the
selective target kernels which were generated in pre-operation stage. In order to
improve the stability of recognition, Kalman filter is used and is expected to have
more precise estimation for the positions of instruments. The results of image
detection unit are the estimated positions of both instruments on image plane. The
coordinates p/’ and p2’ are then sent to the next part.

The third is.the motion control part. In order to reduce some redundant motions
of robot for stable view, we set a buffer zone in the center of the image. When both of

the instruments ‘are in the buffer zone, the robot keeps still. But if one of the

"Endoscopic robot!

Endoscope

| |
| |
| / |
____________ Buffer zone | |
| |
| |
|
! |
|

| Motion control unit
l I v Camera holder

|
|
- . . Motion
Object detection by target| | 27:p2'! | Two dimension ANV comrr:and : N ﬁ
|
| = L [

I
. I
Feature extraction | e |
|
I
I

kernel

|| motion planning transformation |1 D

!

I

I

I e ——
Predict the next positions | | l

I

I

I

of the instruments

[Image detection unit Monitor

Fig. 1.12 System architecture.
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instruments is out of the buffer zone, the motion control unit would give the robot
motion command. The robot will adjust the pose of endoscope until both of the
instruments are back to the buffer zone.

The details are described as follows in the rest of the thesis. Chapter 2 shows the
laparoscopic instrument detection. Chapter 3 describes the method of motion control.
Chapter 4 shows the experimental results. Chapter 5 is the conclusions of thesis and

the future works.
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Chapter 2 Laparoscopic Instrument Detection

2.1 Proposed Instrument Detection Architecture

In this work, the vision-based instrument tracking task is divided into two main
procedures: object recognition and feature tracking. We suggest a novel algorithm to
track surgical instrument by using natural features. The algorithm estimates the type
of instrument and target position simultaneously. The whole tracking algorithm
features a combination of spiking neural network and Kalman filter[28]. The spiking
neural network is designed to recognize the instrument tip and the Kalman filter is
responsible for robust tracking of multiple instruments.

In the following, we will briefly describe the spiking neural network and its
learning process. After network learning, the trained target kernel is used to recognize
and localize the instrument in the image frame. The neuro-based tracking system is
summarized in Fig. 2.1. It contains three main parts. The first part is to extract the
features from input images; the second part uses the trained target kernel to recognize
the instrument around the predicted position, which is estimated by the Kalman filter;
and the third part aims to update the state-of Kalman filter by the measurement in part
2, and predict the next possible position target. The process will be executed the three
units repeatedly as long as new images are acquired. The Kalman filter predicts the
position of the instruments such that the detection(searching) area can be dramatically
reduced. The system can thus achieve efficient and robust tracking of in-vivo surgical

instruments.

2.2Model of Spiking Neural Network

We use the same layered architecture to that of SpikeNET. The model consists of

three layers and each layer comes to approach the biological visual system. Since the

12
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Fig. 2.1 Image tracking algorithm.

different application from SpikeNET, there is only single output layer in the network.
We redraw the model in our manner as in Fig. 2.2. The first layer occurs in ON/OFF
pairs that represents the retina. The second layer occurs in a set of eight that mimics
the visual cortex(V1) to select the lines in different orientation. The third layer is the
output to decide the recognition result which corresponds to IT in biological visual

system. Between each layer, there are specific kernels to define the prefer stimulus for

13
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Fig. 2.2 Architecture of spiking neural network.

the efferent layer. Kernels play the role as the connections with synaptic weight to
decide the values from previous layer to next one.

Both training and recognition. modes operate.in the same neural architecture. But
there are still differences during the processing. The first difference is the utilization
of the kernel between the second layer and the third layer. When in training mode, the
kernel is initialized as an empty array for learning. But in recognition mode, the
kernel has completed learning and plays as the synaptic weight to decide the
recognition result. For the reason, it is termed target kernel. The second difference is
the size of input images. Since the size of target kernel is same as the sample images,
the inputs for training should keep in same dimension. However, in recognition
process, the size of input images can be different but should greater than or equal to

the target kernel. The kernels of each layer are discussed in more detail in the

14



following.

2.2.1 The First Layer of the Network

The purpose of the first layer is to extract edge features. SpikeNET uses
difference of Gaussian (doG) as the selective kernel. doG is the second spatial
derivative that it is sensitive to edges. And it obtains zero response when the image
changes linearly. In our work, we use the use Laplacian of Gaussian(LoG)[29] filter
which has the same approximation with doG. The definition of LoG is expressed as

the equation such that:

1 u? +v? u? +v?
Wioe (u,v)= (_1)ﬂ . [1- 252 ]exp(— 252 (2.1)

where (u, V) is the position of the element in LoG array. o is a the parameter to
affect the smoothing when applied. When ¢ is a large value, the edges after filtering
become smoother and less noise remind. 7 Is the parameter to decide the LoG to be
ON-center or OFF-center kernel. Fig 2.3(a) shows the 15x15 ON kernel, in which 7
is an even number. For the OFF kernel, , becomes an odd number. Fig. 2.3(b)
shows the OFF kernel which is reverse to-(a)-

The input image will convolve with the kernels for the edge extraction. In the
process of convolution, ON/OFF kernels plays the role as masks to filter out the
proper edges from the input image. Suppose the kernels are in size of

(2M+1)x(2M+1), where M is an integer. Fig 2.4 shows the schematic diagram and the

(a)ON kernel (b) OFF kernel
Fig. 2.3 LoG kernels.
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Fig. 2.4 Schematic diagramof image convolution.

equation can be expresséd as:-
CU, V) =ZM 2N\ Wioe (m,n) f U+m,v+n) (2.2)

where (u, V) is the position of efferent-layer. f represents the value in afferent layer. m
is the kernel index in‘horizontal direction. n is the kernel index in vertical direction.
Examples for the dperation show in Fig. 2.5. The input image is an instrument as

in Fig. 2.5(a), and (b) shows the convolution result by th-e ON kernel. The edges are

(a)input image (b)result using ON kernel  (c) result using OFF kernel

Fig. 2.5 LoG kernel operation.
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enhanced as bright line that responds to the patterns with positive center and negative
surround. Fig. 2.5(c) is the result by OFF kernel that emphasizes different edge

features. Results show the output figures keep the same size with the input image.

2.2.2The Second Layer of the Network

The second layer aims to extract texture features. Since texture contains
directionality, we use the Gabor filter[30] for line selection in specific angle. The
filtering is also the convolution process the same as in first layer but by using the
Gabor kernel. Orientation of the kernel can be easily determined depend on our

requirement. The equation.of Gabor kernel is defined by:

12 ) ’
W apor = XD % COS(Zﬂ'u—+(pj (2.3)
20 A
u'=ucosé+vsing (2.4)
V'=-usin@+vcosé (2.5)

where A is the wavelength. ¢ is the phase offset. o is the spatial aspect ratio that
specifies the shape of ellipticity in Gabor function. € is the orientation setting. The
same as SpikeNET, we use orientation layers in a set of eight at 45° rotations. By

(2.3)~(2.5), the kernels can be derived that is shown in Fig 2.6. Each kernel has the

same value of 1, ¢ andy,only & changes depending on the requirement of user.

A |

(@)0° (b) 45° (c) 90° (d) 135 (@)180°  (b) 225" (c) 270" (d) 315
Fig. 2.6 Gabor kernels.
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We go on to project the spikes from the first layer to the second layer by Gabor
filters. Fig 2.7 shows the oriented edge selection from Fig. 2.5(b). Fig. 2.7(a) is the 0°
Gabor kernel convolution. Only the edges in vertical detection are selective and pass
through the filter. Fig. 2.7(b) shows the result of 45" Gabor filter. The edges in more
like 45° are brighter than others. Fig. 2.7(c) shows the case to find the horizontal
edges. Therefore, through the operation, we can derive all the eight different edge

figures. All the neuron layers in layer two are also the same size to the input image.

2.2.3Network Learning

The purpose of network learning is to find a proper kernel that can decide the
recognition result accurately in the output layer. It locates between layer 2 and layer 3

and is initialized as an empty array with-the same size as the sample image prepared

for the training process.

(a)0filtering (b)45°filtering (c)90filtering (c)135filtering

(a)1807filtering (b)225filtering (c)2707filtering (c)3157filtering

Fig. 2.7 Gabor kernel operation
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The learning procedure of the spiking neural network is shown in Fig. 2.8. The
input image propagates through the network first processed by LoG and Gabor
convolution. Then the produced eight figures in the second layer should merge into a
single figure and then transfer to spike latency according to the activation of each
neuron. The transformation mechanism is termed the rank-order-coding[32] which is
developed by Thorp et al.

For the implementation of rank-order-coding, we need to classify neurons into
different ranks and decide their firing order. Once the firing order is decided, the

variance of synaptic weight can be derived such that:

Aw(m, n) = ’Br:m’n) : (2.6)

where m is the kernel index in-horizontal direction. n is the kernel index in the vertical
direction. g < (0,1) and r(m,n) is the firing order of neuron (m,n) in the merged pattern.
J is the number of training cases of an instrument. The division operation is to

combine multiple kernels to a single target kernel-by averaging them.

Input an image
v
Use Laplacian of Gaussian(LoG) to
extract the edge feature

|

Use Gabor filter to
update texture features

-

Rank classification according to the
intensity of each neuron

|

Rank order coding

|

Update target kernel

Fig. 2.8 Training of the spiking neural network.
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Fig.2.9 shows the process of target kernel generation. Orientation patterns in the
second layer are summed to single figure. In the merged pattern are texture and edge
features belong to the recognized target. Suppose the size of each layer is in (2M+1)x
(2N+1), where M and N are integers. The target kernel will generate in the same
dimension and plays the role as the synaptic weight from the merged pattern to the
center neuron of the third layer.

Since the training is a feed-forward procedure, the synaptic weight will be
trained when all the prepared image samples have been used in the training process.
Each synaptic weight will converge to a value depending on the mean rank of each
input. After training, the synaptic weights become constants and can be used as a

kernel to recognize a specific target.

2.2.4 Object Recognition

In execution of image tracking, LoG and Gabor convolution are processed for
the acquired image the same as that in the network learning stage. The firing order of
neurons is estimated accordingly. As wusual, we should implement the
rank-order-coding directly after feature extraction. However, an improving scheme is

proposed in this thesis to be added before the rank-order-coding. The idea is that if the

Thesecond layer Merged figure

The third layer

Target kernel

Fig. 2.9 The schematic diagram of target kernel generation.
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environmental background is complex in the imagery, the target neurons might be
inhibited and results in misclassifications. We will describe this part in more detail in
Section 2.3.

After the feature extraction, the instrument position will be found by using the
target kernel to compute output values of layer 3 around the predicted position. Fig
2.10 shows the schematic diagram of the computation process. Suppose the size of
target kernel is (2M+1)x(2N+1), where M and N are integers. The size of the input
image is LixW,, where L, represents the length in horizontal direction and W, is the
width in vertical direction. Since the input image should be greater than or equal to
the target kernel, the output value of the third layer can be computed by the
expression bellow:

L=M W,-N M

Auv= X X X %ﬂ““m’””)W(m,n), 2.7)

U=M+1v=N+1m=—-M n=-N
where L= (2M+1) and W, = (2N+1). (u,v) represents the neural position in the third
layer. w(m,n) is the value of element (m,n) in target kernel. r(u+m,v+n) is the firing
order of the neuron (u+m,v+n) of the merged pattern. Finally, the neuron will fire if

the value is equal or greater than the threshold:

Au,v) =T, , (2.8)

(u,v)[j%

Predicted
positionp’

Target kernel

The third layer

layer

The second Merged figure

Fig. 2.10 The process of the recognition value in output layer.
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where Ty, is the threshold. This procedure of spiking neural network is called
integrate-and-fire [32].

In spiking neural networks, rank-order-coding plays a key role in object
recognition. Every object mapped to the network will produce different neural
sequences and firing order. So the target object will match the training data only when
the neuron fire sequences belong to in a particular order.

Fig. 2.11 shows the example of rank order scheme for recognition. Suppose
activation of the neurons is B>A>C>D>E. If S is 0.7, by the rank-order-coding,
spike latency of A~E would be (0:7%, 0.7%, 0.7, 0.7%:0.7%). If the neurons of the image
for recognition is in the same order and the values of A~E are (4,5,3,2,1). The output
value would reach the maximum: 4x0.7'+5x0.7°+3x0.7°+2x0.73+1x0.7=10.1961. But
if the input image is in the order A>B>C>D>E, the output value will be 9.8961. Other
arrangements would be even lower. Therefore we can set the threshold about 10 for
recognition in this case.

Through the rank-order-coding scheme, the trained kernel will be very unique to
the specific appearance of the target. But an instrument has different appearances such
as change in size and rotation. The adopted strategy is to average the kernels for all
the conditions described in (2.6). In this way, the universal kernel can recognize most
of the condition s but it loses the unigqueness at the same time. And it

layer 2 Iayfar 3

A AN AN ZE

intensity

Fig. 2.11 Rank-order-coding scheme.
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will be affected by noise more easily. To keep advantage of the recognition capability,
the training samples should be as less as possible. Furthermore, the suitable threshold
for filtering is also an important factor for a successful recognition.

Once any neuron fires in layer 3, it implies that the object matches the target.
The firing neuron will appear at the center point of this object in layer 3. If the
instrument has not been detected, then the search region would extend. This process
will repeat until the instrument is found or the neural map has completely scanned. If
the instrument is successfully detected, its coordinate p will be sent to the next step.
Otherwise, p will maintain the previous value for the condition that the instrument is

temporarily occluded.

2.3 Object Recognition under Complex Environment

During surgical operation, the effluence of blood and body fluid from tissue
occurs frequently. Luster on the organ and tissue become brighter and there are
reflections of lighting appear on the fluid. Edges of these reflections are always more
intense than the others. By the spiking neural network algorithm, the neurons with
highest intensity will fire first. . Therefore, the reflections will greatly affect the
recognition result. In the following, we will describe the rank order classification and
the improved method to reduce the impact of reflection.

As we know, the range of the grayscale image is from 0 to 255. A simple way to
decide the firing order is to classify the neurons linearly into 256 ranks depending on
their intensity. Fig. 2.12 shows the rank classification. By the known rank level, firing

order of each neuron can be defined as:

firing order=255-rank (2.9

Since the most activated neurons will fire first, the firing order of the neuron j in rank
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255 will be zero. When firing order rjis 0, A" will reach maximum by the equation

(2.7). 1t means the neurons firing first have the most contribution to the integration in
layer 3. However, because the contribution of each neuron decreases exponentially
(Fig. 2.13), only the neurons which fire first will demonstrate the integrated result in
layer 3. If the most activated neurons come from the background noise, the tracking
performance will be seriously degraded.

Since the intensity of the features in the second layer is greater than the mean
value of the image after extraction, we can enhance the firing order of these neurons

whose activation are higher than the average. Therefore, the integration of our

250

0 50 100 150 200 250
activation of the neuron

Fig. 2.12 Rank classification.

1 T T T T T

0.8 N

0.2 N

o r r r F
0 50 100 150 200 250

firing order 7;

Fig. 2.13 Neural contribution in equation (2.7).
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target can be improved in the third layer. Through the analysis, we suggest to change
the rank classification scheme to another type of function such as a sigmoid function.

The function is depicted as the solid line in Fig. 2.12 and can be expressed such that:

G,
1+exp(-a(g—-d)) -

S(g) = (2.10)

where S is the rank and g is the activity of the neuron in layer 2. « is an constant to
decide the degree of curvature of the function curve. Gs is a scale depends on the
maximum rank number. In our case, G is 255. d is the mean value of the neural map
and it will change depending on each frame. By equation (2.10), the neurons in rank
200 will be upgraded. to 230, the firing order is therefore improved. The neurons
below rank 100 is downgraded, it will not influence the value layer 3 according to the
exponential function.

The proposed classification is adjustable depending on the mean value of the
image. The function curve will shift at each frame to achieve suitable firing order
adjustment. As we know, the intensity of the extracted features is greater than the
mean value. If the input image becomes darker due to the lighting of endoscope, the
average value will decrease. The center-of sigmoid curve will shift to left according to
d in (2.10). Through the adjustment of the function, the firing order of the neurons
belong to the features will keep enhanced. For the case of brighter image, the firing
order of the neurons which belong to the features can also derive the suitable
adjustment through the same process. In this way, it can achieve stable recognition
even the luminance changes due to the moving of endoscope during surgery.

We take a snapshot from an in-vivo video of laparoscopic surgery as an example
shown in Fig 2.14(a) [34]. Suppose that our target is the right instrument in the image.
After this image frame is processed by LoG and Gabor convolutions, the contribution

of the neurons from the right instrument will be inhibited by the exponential function
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L === The right instrument
The left instrument X

(b) ) )

Fig. 2.14 Image tracking under complex background.

in the calculation the rank-order-coding as shown in Fig 2.14(b). With the new
classification method, the contribution of the neurons is shown in Fig. 2.14(c). From
this image, one can find the contribution of the neurons from the right instrument is
much improved. As shown in Fig. 2.14(d), the integrated values in layer 3 will exceed
the threshold and fire spikes, which will appear in the center of the right instrument.
With the new classification method, the neurons still maintain a certain firing
order, but the firing priority of target neurons is upgraded. This scheme reserves
property of rank-order-coding and improve the object detection under complex

background.

2.4 Kalman Filter Design

Kalman filter is a recursive estimator based on linear systems [28]. It is efficient

for solving numerical engineering problems. The application of Kalman filter has two
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classes. The first one as the name is filter for smoothing data sets. The second class is
the prediction.

In our study, we use Kalman filter to predict the positions of instruments in the
images. We expect the prediction to help to make the image tracking more efficiently
through recognizing the instruments surrounding a smaller area of the predicted
position. Since the critical time in our algorithm is at the recognition process, Kalman
filter would help to efficiently reduce much of redundant computation. In addition,
Kalman filter can filter out the unexpected recognition error. It is helpful to stabilize
the recognition result for robust tracking. A useful property also refers to that Kalman
filter can track the target even encountering the temporary occlusion. For these
reasons, we will combine the spiking neural network with Kalman filter for the
instrument tracking in the endoscopic image sequences:

The main process of Kalman filter contains prediction step and correction step.
Prediction is to estimate the next possible position before the next endoscopic image
come in. Correction is to attain measurement by the detected position. In our
algorithm, Kalman filter plays a role as a tracker and spiking neural network is the
detector. In order to achieve the better performance, Kalman filter will predict the
instrument not only by position but also by velocity. The details of computation are

described as below:
We first define X, , be the posteriori state at instant k-1 and X, be the

predicted state at instant k. The state of the Kalman filter includes the information of

instrument position and velocity. The posteriori state can thus define as
R 1 =[ X1 Vi dX 4 dY, 417, where X1 and Yy, are the coordinate of the instrument
in X and y axis while dXy; and dYy.; are the displacements. To predict the first

position p’ of the instrument, we initialize X, , by a random variable. The predicted
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state X, can be estimated such that:

where F is a transition matrix applied to posteriori state X, ,, B is a control input
matrix applied to the control vector e,_;. In order to simplify the state estimation, we
assume that there is no control input, so e,_, will be a zero matrix. We also assume
that the instruments move in a constant speed such that the displacement dX; =dx, ,

and dY, =dv,_,. The predicted position (X, ,Y,”) can be (X, , +dX, ;,Y,_;+dY, ;).

The overall predicted state becomes:

Rt [1 0 1" 0] X,
i O L L Ve
dX;| [0 0 1 ofdX,,
dY; | [0 0.0 1]dvY,,
We rewrite equation (2.11) as:
2 =FX ., , (2.12)

By equation (2.12), the matrix F can be determined. The first predicted position p’

can also be derived. Then the priori estimate covariance can be computed such that:

P =FP_F +Q , (2.13)

where Q is the process noise covariance matrix, and Py.; is equal to identity matrix I.
The next important step is to apply the measurement update t of Kalman filter

namely the correction. The first task of the correction is to compute the Kalman gain:

K.=P H;(H,PRH +R)™ , (2.14)
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where H is a measurement matrix. R is the measurement noise covariance matrix.
Then by the recognition process around predicted position p’, we can derive a

detected position p by spiking neural network. Then we rewrite the coordinate p as

matrix z, to generate the posteriori state X, , such as:

X =X +K (z, —H, X)) (2.15)

And the posteriori error covariance p, is expressed as follow:

P.=(0-KH)P: (2.16)

In some cases, the noise covariance matrixes Q and R, and the measurement matrix H
might be time varying. We assume-them.as constants in this design for simplification.
And in our work; we set Q and R the 4x4 identical matrix with a very small scale and
H the 1,.

Fig. 2.15 summarizes the proposed tracking algorithm using Kalman filter. The
prediction of the two instruments should be estimated separately by two Kalman
filters. Therefore, we create two Kalman filters and initialize the parameters to predict
the possible positions for the first frame bye (2.12) and (2.13). The system then starts
to recognize the instrument around the predicted positions by spiking neural network.
The derived measurement positions pl and p2 imply the coordinates of the left and
the right instrument respectively. In order to predict the next position for next frame,
we let z4 be the transpose matrix of pl. Through the correction step by (2.14)~(2.16),
the state of the left instrument can finish update. And the next possible position of the
left instrument p1’can be estimated by (2.12) and (2.13). The predicted position of the

right instrument p2’ can be derived by the same process.
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Fig. 2.15 Instrument tracking using Kalman filter.
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Both of p1’ and p2* will be sent to the motion controller to transfer to the robot
commands D, and D,, ‘which implies the displacements in horizontal and vertical
direction respectively. In the same time, the predicted positions pl’ and p2’ will be
reserved for the reduction of searching area in the next frame. In this way, Kalman
filter can help to achieve efficiently tracking in robotic endoscope system.

However, if the instrument has not been recognized before the correction step,
the measurement matrix z, will stay as the previous value in our work. In this way, the
prediction will keep moving on for a while and go back to the position that loss
detection. Therefore, if temporary occlusion occurs during the process that the
instrument pierce the tissue, the system can soon find the instrument along the moving

direction. But if the instrument is vanish for a period, the system will detect around z



and extent the searching area until the instrument is rediscovered or the image is
completely scanned. Therefore, for the condition that surgeon changes the instrument,

the tracking will soon restart from the border of the image.
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Chapter 3 Image Tracking System

After instrument recognition, the system can track the instruments in an image
sequence. The next step is to combine the robot control with image recognition. The
purpose here is to let endoscope provide stable image when robot track the
instruments. In the following, we describe proposed buffer zone design for the issue
in Section 3.1. Section 3.2 tells about the workflow of image tracking. We further

describe motion control by using buffer zone in Section 3.3.

3.1 Buffer Zone Design

By knowing the location of both instruments, the camera can track them by using
feedback controllers. ‘However, it would make surgeons dizzy if the tracking
controller is sensitive to the movement of the instruments in the image frame. In order
to solve this problem, we propose to set an area termed buffer zone.in the center of the
image[33]. Buffer.zone offers a suitable buffer space to avoid excessive control
actions and thus the movement of the camera and thus maintain a stable imagery.
Surgeons can therefore operate the instruments with a series of motion without

moving camera. The schematic diagram of buffer zone is depicted in Fig. 3.1.

Image frame

v

Bufferzone

Fig. 3.1 Schematic diagram of buffer zone.
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We will use the ratio between size of buffer zone and image plane to describe the

choices for buffer zone, such that:

rt=te _We (3.1)
I‘I |

where L, and W, denote the length and width of image frame respectively. And Lg and
Wg are the length and width of buffer zone. The parameters of equation (3.1) are
depicted in Fig. 3.2. To get larger movable range for instruments, we want the buffer
zone to have larger size, but the tracking performance will become worse relatively.
The factor to affect tracking performance is the area outside the buffer zone. If the
area is large, it will have more space to get the tracking command. In determining the
size of the buffer zone, It is a trade-off between reducing camera movement and

improving tracking performance:

3.2Workflow of image tracking implementation

Since surgeons use two of the instruments in the operation to guide the robot into
the required location, the system starts the robotic control only when both of the
instruments are detected. Fig. 3.3 shows the flow chart of the proposed image tracking
design. When none of the instruments appears or only one of them is detected, the
system will keep detecting without moving. Once both of them have been detected,
which implies that the surgeons are ready to implement the operation, the system will

start to track the instruments with motion control estimation.

:[WB WI
I‘I

Fig. 3.2 The ratio of buffer zone.

Lg
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Order the the
endoscopic robot to track the instruments

Fig. 3.3 The flow chart of motion control.

We divide the tracking procedure into-two fundamental modes in the camera
holder operation. One is the operation mode, and another is the tracking mode. Fig.
3.4 shows the working principle of two operation modes of laparescopic instruments
during the surgery. When both of the instruments are inside the buffer zone, system
enters to operation maode. In this mode, surgeons operate the instruments with a series
of tool motion without introducing camera motion. The camera view stands still. It is
desirable for doctors to concentrate on operation. But if one of the instruments moves

outside the buffer zone, the system will switch to tracking mode and control the robot

One of the instruments is out of buffer zone.

Operation
Mode

Tracking
Mode

Both of the instruments are in buffer zone
or both of them are out of buffer zone

Fig. 3.4 Two operation modes of laparoscopic instruments tracking.

34



move to the instrument beyond the buffer zone. The robot will keep moving until both
of the instruments are back to the buffer zone. But if both of the instruments are out of
buffer zone during tracking, the robot will keep also still by considering the safety
problem. When the surgeons need to change the instruments during operation, the
system again keeps detecting without control. Therefore, it is safe in the whole
process of surgery. And in this way, the system can achieve two dimensional tracking.

Furthermore, we expand the concept of buffer zone to the third (depth)
dimension tracking. In doing so, we set a range of the Euclidean distance between two
instruments as a measure of the distance between the camera lens and instruments.
This depth should be kept a proper value and maintain stable during the surgery.
Suppose the Euclidean distance:between the instruments is Eq. If Eq is a small value, it
is likely that the surgeon is operating at a delicate part in body cavity, but the camera
shot is too far away from the instruments. In this situation, it is desirable for the
surgeon if he/she wants to zoom in the camera to watch a clearer view. In contrast, if
Eq is too large or both instruments cannot be contained in a single image, it means that
the camera is too close to the instruments. Thus the endoscopic robot would lose
tracking easily. It would be helpful if the.endoscopic robot zoom out autonomously in
this condition. Therefore, by evaluating the magnitude Eg, the robot can control the
third dimension. And the controller would autonomously adjust the robot’s
configuration along the third dimension to make Eq4 to the suitable value. It also
implies that the robot would keep an appropriate distance from camera shot to the
instruments.

We hardly have better information about image depth by using monocular
camera. Fortunately, the parameter Eq4 we proposed can help us to realize the
instruments roughly in the third dimension. However, it would be unstable in specific

condition. Fig. 3.5 shows the condition where it is not applicable by considering Egq
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(a) (b)
Fig. 3.5 Specific condition that would be misjudged. (a)Top view, (b)Side view.

merely. The robot does not know actually how deep the two instruments are, but it
only knows Eg is very small and out of the range. Therefore, the robot will zoom in
the camera continuously and touch the right instrument. It will lose its stability in the

end. Therefore, the motion control-of zoom In/out is not added in the system currently.

3.3 Motion Control of Robotic Arm

Fig. 3.6 shows the architecture of robot control. System detects the instruments
and estimates the predictions pl’ and p2* for the left and the right instrument
respectively. p1” and p2’ will send to the comparators to.compare with boundaries of
buffer zone in both horizontal and vertical directions. Suppose ul and u2 are the
horizontal (U) component of p1” and p2’, uy and ug, are upper bound and lower
bound of buffer zone in horizontal direction. Once ul or u2 is out of the boundary, the
comparator starts to estimate the deviation AU between the instrument and the

buffer zone:

u-u, for u>u,
AU = , (3.2)
u-u,, for u<uy,

The deviation in vertical (V) direction can be estimated in the same way:

v-vy,, for v>v,
AV = , (3.3)

v-v,, for v<y,,
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Fig. 3.6 Control architecture of surgical instrument tracking.
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Fig. 3.7'Boundaries of buffer zone.

where (u,v) denotes the instrument position which is out of the buffer zone. And the

corresponding boundaries lines are illustrated in Fig. 3.7.

The controller then transfers the deviations AU and AV into robot commands.

The motion command in U and V directions are defined as:

D, =-G, xAU ,

D, =-G, xAV
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(3.5)



where D, and D, are the displacements that the robot have to move in U and V

directions. G, and G, are controller gains, which can be decide as arbitrary

u

numbers in positive. The negative signs in (3.4) and (3.5) are because the moving

directions are opposite to image coordinate. Therefore, the camera holder will move

with displacements D, and D, in U and V directions until AU and AV reduce to

zero. Through this error correction, both of the instruments will back inside the buffer
zone, and the system return to operation mode. In this way, the endoscopic robot can

achieve two dimensional tracking.
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Chapter 4 Experimental Results

In this section, we implement our proposed algorithm and show experimental
results of instrument tracking. In Section 4.1, we verify the tracking algorithm by
using in-vivo endoscopic video. In Section 4.2, we have another experiment to
combine image recognition and robot control to achieve an autonomous endoscopic
system. And in Section 4.3, we have some discussions of the experiments. The

analysis is expected to have better results and practicality in real surgery.

4.1 Experiment by Using In-vivo Endoscopic Video

A video from IRCAD [34] was used to verify the proposed algorithm to track
surgical instruments in the actual laparoscopic surgery. As shown in Fig. 4.1, in the
video there are two instruments in opposite directions. In the image sequences, the

instruments change their poses and deform on the tips.

4.1.1 Data Training of the Instruments
To train the target kernel of each instrument, the part of the instrument wrist is

selected as feature to recognize. Six training samples of the right instrument were

Fig. 4.1 Snapshot from in-vivo endoscopic video.
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used as shown in Fig. 4.2. The training process is depicted in Fig. 4.3. After the
training process of each individual sample image, 6 target kernels were generated.

These 6 target kernels are merged to a target kernel according to (2.6). The target

kernel of the left instrument is also trained in the similar way, however, only 4

training samples were used in this case as shown in Fig.4.4.

Fig. 4.2 Training samples of the right instrument.

Inputimage Target

kernel

Fig. 4.4 Training samples of the left instrument.
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4.1.2 Instruments Recognition by Using Video

We then used these two target kernels together with the Kalman filter to track the
instruments in the video. The firing neurons are tracked in the center of the instrument.
The position of the instruments can thus be determined. Fig 4.5 shows a tracking
result of the test video under the condition of light variation. The right instrument still
can be tracked properly in this case. Fig.4.6 shows the tracking condition when the
left instrument has size variation in the image sequence. It can be seen also that the

problem of rotation and deformation of the instrument in the imagery are solved by

Fig. 4.6 Size change condition.
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spiking neural network. The tracking results show the robustness of the tracking
design. In the experiments, the test video contains totally 897 frames. Table 4.1 shows
that the recognition rate of the right instrument is 91.9% and that of the left one is
99.1%. The tracking system was implemented on an i3-330M (2.13GHz) personal
computer. The computational speed is 4.8 frames per second(fps) when the Kalman

filter has not been used. It improves to 8.0 fps with the assistance of the Kalman filter.

4.2 Experiment of Visual Servo by Endoscopic Robot

The purpose of this experiment isto combine the image recognition with robot
control to have an autonomous tracking system. \We will use two robotic instruments
from Da Vinci system in this experiment. We will hold both instruments by hands and
move the instruments: on image plane. The scenario is to simulate the surgeons

operate the De Vinci system in MIS.

4.2.1 Experimental Setup
Fig 4.7 shows the hardware architecture that is comprised of image devises and
the Huatuo robot. Image devices provides surgical image to the robot, and Huatuo

robot[34] controls the motion of robot arm to track surgical instruments.

Table 4.1 Recognition result of in-vivo endoscopic video.

Testing frame | Detected frame | Recognition rate

Kernel 1
897 824 91.9%
(right instrument)
Kernel 2
897 889 99.1%

(left instrument)
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In the part of image devices, the light generator provides the illumination for
surgical image through the endoscope. Fig 4.8 shows the tip of endoscope that
contains the lens and light emission. The surgical image from endoscope will transmit
to Storz image hub. Output ports of image hub support different kinds of image
signals such as S-VIDEO and VGA. Fig. 4.9 shows the rear view of the image hub

that it can simultaneously supply image signal to various image devices.

Monitor Light generator

r SRz 7 i

Endoscoﬁ
AN

Huatuo Robot
Fig. 4.7 Hardware architecture.

Fig. 4.8 The tip of endoscope.
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Fig. 4.9 Different types of output signal from image hub.

Signal from image hub to the robot has to transfer via a video grabber card. Since
the resolution of grabber card has the limit, it can only provide images with 480p at
30 fps to robot. But it can show on the Storz Monitor with 1080p at 60fps. However,
the resolution of grabber card is sufficient for the implementation of instruments
recognition and visual servo.-The-image.devices for our experiment are list in Table
4.2.

Fig 4.10 shows the experimental setup. A training box is used in this experiment
represents the human body. And we operate the instruments through the training box
to guide the endoscope move. around the emulated body. Huatuo robot is a

development platform for minimally invasive surgery introduced in 2011 by Dr.

Table 4.2 Image devices.

Device Product Type
Endoscope Storz IMAGE 1 S3
Image hub Storz Xenon 300 20133120
Light generator Storz IMAGE 1 hub 222000
Video grabber card UPMOST UPG308 H.264
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Hsiao-Wei Tang[35]. In this work, it was used as a camera holder. We expect to
develop an intelligent endoscopic system on this platform. When robot receives the
image signal from grabber card,-it will.recognize the instruments and calculate the
motion command D, and. D, to the control cards to control the motors of robot arm.
D, is the displacement in pan direction for robot, and D, is in tilt direction in Fig.4.7.
The robot arm of Huatuo moves in the three degree-of-freedom(DOF) that
includes pan, tilt and zoom direction. In our work, we only use the motion command
D, for pan direction and Dy for tilt direction to achieve 2D tracking. In addition, it is
worth nothing that Huatuo is design by the-mechanism of Adjustable Remote Center
of Motion(ARCM). RCM means the motion of robot follows a rotation center. It is an
important movement pattern that it can prevent wound to be extended during
minimally invasive surgery. Fig. 4.11 depicts the rotation center and the rotation axes.
Movable angle along pan and tilt axes are £60°. Distance in zoom direction is 18cm.

The detailed specification of Huatuo is described in Table 4.3.

4.2.2 Image tracking on Robotic Platform
Before the experiment, we grab some images from endoscope as the training

samples. A snapshot shows in Fig. 4.12. Since the field of view will change by the
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Axis for pan P
o s S e 3,
direction \R
1 otation center

Fig. 4.11 The rotation center design of Huatuo robot [36].

Table 4.3 Specification of Huatuo.

Size 121(D) x 110 (H) x 75 (W) cm
Angle for pan axis: £60°
Movable range
' Angle for tilt axis: £60°
of each DOF : :
' Zoom: 17cm
CPU: 13-550 3.2G
Computer ‘ Memory: 2GB DDR*2

OS: Windows 7 professional 32bits

Capture card HIWIN PCI-4P

Fig. 4.12 The snapshot from endoscope.
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movement of robot and the instruments used here are different to that of previous
experiment, the appearance of instruments will be more diverse. It is necessary to
have more training samples for robust tracking. We have total 43 training samples for
the right instrument and 35 for the left one. Fig.4.13 shows the finished target kernels
for both instruments. We will use them for the image guided experiment.
Fig. 4.14 shows the snapshot of the tracking process. The yellow rectangle is the
boundary of designed buffer zone. Fig. 4.14(a)~(d) shows that the left instruments
moves to the left side out of buffer zone, and the endoscope follows the left
instrument. Fig. 4.14 (e)~(h) shows that the right instruments moves to the right side
beyond the buffer zone, and the endoscope also follows it. Fig. 4.14 (i)~(l) shows that
the right instruments moves to the bottom, then the endoscope moves down. Fig. 4.14
(m)~(p) shows that the left instruments moves to the top, and the endoscope moves up.
Fig. 4.14 (g)~(t) shows both of the instruments are back to the buffer zone, the
endoscope keeps still.

The system has processed total 923 images in whole procedure. The recognition

results are list in Table 4.4. The recognition rate of the right instrument is 92.7% and

that of the left one is 88.4%. The tracking system was implemented on an i3-550M

(a) The left instrument (b)The right instrument
Fig. 4.13 Target kernels of both instruments.
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Fig. 4.14 Snapshot of endoscopic visual servo.

(3.2GHz) computer of Huatuo robot. The computational speed is 8.7 frames per
second(fps).

In this experiment, the buffer zone works to reduce the excessive and redundant
robot movements when we operate instruments. Otherwise, the shaking camera view
may make the surgeon dizzy. To get larger movable range for instruments, we want
the buffer zone to have larger size, but the tracking performance will become worse
relatively. Through the experiments, the suitable ratio is 0.5 to 0.6. In this range, the

system can keep balanced between tracking performance and screen stability.
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Table 4.4 Recognition result of endoscopic visual servo.

Total frame Detected frame | Recognition rate

Kernel 1
923 856 92.7%
(right instrument)
Kernel 2
923 816 88.4%

(left instrument)

4.3 Discussion in the Experiments

So far, our system can achieve two. dimensional tracking (Dy, D). However,
Surgeons need to adjust the distance between the endoscope and the lesion for a clear
view. Therefore, it is better to have the function that can use the instruments to guide
the endoscope zoom in/out. In-this way, it becomes the three dimensional tracking
system. However, it is hard to derive the depth information precisely by using
monocular endoscope. It will be risky for the system to autonomously control the
zoom in/out under the uncertain condition. Therefore, the system can currently track
the instruments in two dimensional without zoom in/out.

In order to achieve real-time tracking, the resolution of the input images has been
down sampled. In this way, system can spend less time for instrument detection.
However, the recognition rate could be affected in the same time. For the reason, we
use images with deferent resolution for testing. The size of source image is 720x480
from endoscope video. Suppose our recognition target is the right instrument. We can
prepare the training sample by screenshot from the source image as shown in Fig.
4.15. The size of the training sample is 105x105.

We down sample the image by the ratio of 0.24, the resolution becomes 183x116.

The training sample is also resized by the ratio of 0.24. By the training process, we
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Fig. 4.16 Training sample.

can derive a target kernel. We-then-use the target kernel for instrument recognition in
the resized image. The maximum value of the integration is 21.06 appears in the
center of the target instrument. The value of other neurons is lower than 14.8 and can
be considered as the background noise. Therefore, the threshold can be set as 14.8. We
divide the maximum integrated value(21.06) to the threshold(14.8) and can derive the
value 1.42. The meaning of the process is like signal-to-noise ratio(SNR). If the value
is larger means that it has the better recognition quality.

If the source image is down sampled by the ratio of 0.36 and the training sample
is also resized, then the maximum value of integration is 72.62. The threshold is 43
and the recognition quality is 1.67 which is better than before. If the down sample
ratio is 0.48, the recognition quality will become 1.92 which is even better. The
testing result is list in Table 4.5. We can find that the better image resolution will have
better recognition quality.

The training process seems miscellaneous because the tip of the instrument

should be located in the center of the sample image. We prepare the sample images by
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Table 4.5 Recognition results by using different resolution image.

Down sample Image Maximum value Recognition
. . . . Threshold )
ratio Resolution of integration quality
0.24 183x116 21.0606 14.8 1.42
0.36 275%x173 71.6210 43.0 1.67
0.48 366x231 140.1928 73.0 1.92

screenshot manually in all the experiments. However, in the operation room, there are
variety instruments. Surgeons may change the instruments whenever necessary. It
cannot be sure that the tracking system has all the data of the instrument. Therefore, it
is better to simplify the training process for a new instrument. Surgeons can therefore
register a new instrument in few minutes and later use it in the surgery for the robot

guiding.
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

We have developed an image processing algorithm to track surgical instruments
by using natural features. The spiking neural network demonstrates satisfactory
detection performance in instrument recognition. The Kalman filter enhances the
tracking performance for multiple instruments in the scene. This algorithm detects the
instruments by their geometric features and texture. So it will not be affected by the
tissue reflection on the metal surfaces and the illumination problem.

Experimental results show that the target kernels can track the instruments in the
actual laparoscopic surgery despite of lighting variation and pose change in the
surgical images. Furthermore, the kernels can localize and distinguish the surgical
instruments in the endoscope images. Through the great amount of data training, the
system can achieve robust tracking even the robot move in a wide range. The utility of
the buffer zone design has also been verified. It helps to stable the image when
surgeons operate the instruments in a specific range of area. They can also use the
instruments to guide the endoscope move according to their thinking. The instrument
in their hands is not only the tools for treatment but also a mouse to control the pose
of endoscope. Since the safety problem is a significant issue in surgery, the control
role should be reliable in the practical application. In our design, if the surgeons need
to change the type of the instrument during surgery, the instrument will not be
detected. In this condition, the robot will keep stationary.

We have implemented an endoscope tracking system that can help the surgeons
to concentrate on the operation of the instruments. The recognition rate of the system

is sufficient to guide the robot to a proper location stably.
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5.2 Future Work

Consider that in most case of MIS, surgeons need two instruments at a time for
treatment. Currently, the computational speed to detect two instruments is about 8 fps
in our experiment. However, some of the surgery would be more complex and have
the necessary to use more than two instruments in the same time. To speed up the
computation capability is therefore become the significant task in the next work. An
improved method is to use parallel processing hardware as the external server for
powerful computation, and transmit the recognition result to the robot through the

wireless network.
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