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基於內視鏡影像序列之手術器械辨識與追蹤 

學生:陳俊儒                                      指導教授:宋開泰 博士 

 

國立交通大學電控工程研究所 

 

摘要 

    本論文主旨在研究內視鏡扶持機器人之影像追蹤系統。內視鏡裝置於扶持機

器人上，本系統會透過內視鏡的影像即時偵測手術器械，並根據器械在影像上的

位置自主調整內視鏡扶持機器人運動，帶動內視鏡的移動以提供適當的影像視野。

在影像辨識設計部份，本論文提出基於Spiking Neural Network(SNN)演算法，利

用手術器械之紋理和幾何等自然特徵來辨識內視鏡影像中之手術器械。透過資料

訓練後，類神經網路辨識器不容易受光線變化所影響；器械的大小變化或形變等

辨識問題也能被克服。本論文結合Region of interest及Kalman filter估測影像畫面

中器械之位置以提升辨識的效率。在手術器械追蹤控制方面，考慮到內視鏡對器

械的追蹤太過敏感會導致手術中螢幕影像畫面過度晃動而干擾醫師，我們提出

「緩衝區」的設計，以進行手術器械之追蹤控制。如此一來，內視鏡機器人在追

蹤器械的同時，也能提供穩定的影像畫面。所發展之方法先以內視鏡影像驗證器

械之辨識率可達91%以上; 進而在華陀機器人上進行影像追蹤實驗，成功驗證本

論文所發展方法之有效性。 
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Abstract 

The objective of this study is to design an image tracking algorithm for the 

endoscopic system in Minimally Invasive Surgery (MIS). The endoscopic robot 

autonomously adjusts its pose according to the position of the instruments in image 

plane, and moves the endoscope to provide a suitable field of view. A method is 

proposed to identify the tip of instruments without using extra artificial markers. We 

suggest to use texture and geometric features of laparoscopic instruments and to adopt 

the spiking neural network approach for object detection. Affection of light change 

can be reduced. The size change problem and deformation of the instrument can be 

handled by the neural network. To enhance tracking performance, we further employ 

region of interest(ROI) and Kalman filter to the neuro-based tracker. For the tracking 

control of surgical instrument, we propose to set a buffer zone in the center of the 

image frame to avoid redundant movement of the camera. In this way, the endoscopic 

system provides a stable view while the robot is tracking surgical instruments. By 

using endoscopic images, a recognition rate above 91% has been achieved for surgical 

instruments. Practical experiments on Huatuo robot further validate the effectiveness 

of the developed image tracking methods. 
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Chapter 1 Introduction 

1.1 Motivation 

Minimally Invasive Surgery (MIS) has been widely used in medical area in 

recent years. Surgeons treat the lesion inside human body through the small incision 

about 1~2cm and bring less pain than conventional open surgery [1-3]. The small 

wounds reduce the recovery time in comparison with open surgery. MIS technology 

further advances when Da Vinci
®

 system was approved by FDA in 2000[4]. The 

operation time using Da Vinci system is less than conventional MIS. The consumption 

of medical resources is thus greatly reduced.  

In the past, there was usually an assistant helped to hold the endoscope during 

MIS. The tremble of image is usually inevitable since the endoscope is held by hand. 

Surgeons would get eyestrain and their concentration will easily be distracted. Hence 

a camera holder will play an important role to stabilize the image and nowadays 

surgeons greatly rely on the holder during operation. When surgeons want to deal with 

the lesion which is out of the image, they need to stop their work and adjust the 

endoscope to derive the suitable field of view because both of hands are operating the 

instruments. The adjustment of endoscope is inconvenient for surgeons.  

Many types of robotic camera holders have been developed and commercialized. 

AESOP[5] was approved by the FDA in 1996. The voice-controlled interface is 

user-friendly for the surgeons. LapMan
®
[6] is another camera holder launched in 

2003. Surgeons can control the robot motion by manipulating a wireless joystick 

mounted on the handle of the instrument. FreeHand
®
[7] allows surgeons control the 

scope position by head movement through a controller attached to a surgical cap. 

Robotic camera holders can replace an assistant to move the endoscope 
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according to surgeon’s commands. Surgeons no longer need to put down the 

instruments for the endoscope adjustment. A friendly human-machine interface 

becomes the significant issue for more efficiently scope control. For this reason, this 

work aims to develop a novel control method for autonomously adjust the scope by 

image recognition and tracking. In general, the location of the instruments is the place 

where the surgeons would like to treat. The surgical instruments can be like a mouse 

to guide the robot to focus on the operated area. Robot will thus make decision by 

itself according to the tendency of instrument motion. In this way, surgical operations 

can be easier for surgeons.  

Since each surgery has its specific workflow, Oliver Weede et al.[8] developed a 

system that is adaptive and cognitive to surgeon’s skills and autonomously adjust the 

endoscope. For this purpose, they divided the workflow of sigmoidectomy surgery 

into nine phases such as dissection of descending colon, dissection of sigmoid 

mesenterium and closure of descending colon. The system senses the surgical 

progress by image and voice recognition. In this way, the robotic endoscope system 

can carry out tasks autonomously at appropriate time. 

    Our goal is to develop an image tracking system that can provide stable view to 

surgeons. We combine the object detection and robotic control to give autonomous 

tracking. The robot will recognize the instruments in surgical image and move the 

endoscope to provide a suitable view.  

 

1.2 Related Work 

In image recognition, some reported approaches employ additional makers on 

the instruments to facilitate image tracking. As depicted in Fig1.1, Nageotte et al.[9] 

use twelve marker spots around the instrument surface were used to estimate 3D pose 
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of the surgical instrument. The method needs other measurement devises together 

with a complex registration scheme in order to track the trajectory of instruments in a 

stitching task. Bouarfa et al.[10] use an approach of CAMShift tracker and Kalman 

filter to find color markers. Instruments trajectories can be recorded to give an activity 

log for surgery. As shown in Fig. 1.2, X.Sun et al.[11] propose a method to detect 

color markers using a particle filter approach. It is robust to illumination variations, 

thanks to the probability-based technique. 

However, approaches using artificial markers are not appropriate in actual 

surgical applications. In recent years, methods have been investigated to detect the 

instrument tip using natural features. Stefanie Speidel et al.[12] extract the metallic 

color in HSV color space. As shown in Fig. 1.3, they also use Bayes classifier to train 

region of interest (ROI) and recognize the type of instruments by comparing with  

 

 

Fig. 1.1 Marker spots used for recognition and 3D pose estimation.[9] 

 

 

Fig. 1.2 Instrument detection by using particle filter.[11] 
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Fig. 1.3 Recognize the type of the instrument[12] 

 

predefined 3D tool models. Baek et al. [13] also use color-based approach to defining 

an ROI. To find the best-fitted contour, Fig. 1.4 shows their suggestion to enhance 

edge detection by Canny edge detector, then use a particle filter to estimate the pose 

state of the instrument. 

Sa-Ing et al. [14] use mean-shift technique to locate the tip of an instrument. 

Their algorithm is effective to track size-varying objects. A Kalman filter was used to 

overcome difficult tasks such as occlusion. The tracking performance was shown in 

Fig. 1.5. In [15], Ryu et al. proposed to use LAB color space instead of HSV, and use 

k-means clustering algorithms to classify metallic properties to get the instrument 

positions. Fig. 1.6 shows that when any two instruments become too close, a collision  

 

 

 

 

 

 

Fig. 1.4 3D pose estimation by fitting contour with 3D model in data base.[13] 
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Fig. 1.5 Tracking in the occluded condition.[14] 

 

 

Fig. 1.6 Instrument detection by metallic color and k-means.[15] 

 

warning will occur.  

Although color-based approaches to image tracking are simple and efficient in 

relative pure environments, variation of the lighting condition and reflective surfaces 

may degrade the tracking accuracy dramatically. For this reason, [16, 17] use 

gradient-based algorithms to find edge information of the shaft in order to locate 

instrument by its contour. Further, by computing the projected point in image plane of 

the instrument insertion position, the design can filter out noises which do not belong 

to the instrument shaft. The shaft end can therefore be evaluated according to two 

straight lines extracted from the acquired image. Fig.1.7 shows the line extraction.  

 

 

Fig. 1.7 Find the tip of the instrument by the straight edge.[16] 
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However, the design may fail when there are specular reflections on the organ tissues 

with long straight borders. Sznitman et al. [18] used gradient-based tracker and 

reasonable amounts of training data such that their results as presented in [19] are able 

to detect the 2D location of a deformable target in imagery irrespective of its 

orientation. As shown in Fig 1.8, this operation results in a set of pixel positions and 

their associated classification scores. The detection is valid if the score associated 

with the location is above a threshold. 

 

1.3 Spiking Neural Network 

Spiking neural network is a computer vision approach which imitates the visual 

system of human and primates. Since primates are good at recognizing object in 

cluttered images, researchers have realized the use of spikes as the physiological 

signal transduction. Figure 1.9 depicts a spike train as the measurement of retinal 

ganglion[20].  

As shown in Fig. 1.10, the visual information will firstly enter the pupils and 

project to retina which can change the light signal to neural impulse[21]. Optic 

radiation will then project to an area termed primary visual cortex or V1 in the  

 

 

Fig. 1.8 Combine gradient-base tracker and classifier-based detector for tracking.[18] 
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posterior of the brain. Cells in V1 responds to stimuli such as line segments and 

oriented edges[23]. The visual processing continues to go through the pathway termed 

dorsal stream[24] and arrives inferotemporal cortex(IT). Within the IT are neurons 

selective to specific type of objects, which means the recognition can be achieved. 

Thorp et al. have implemented a three-layered model termed SpikeNET[25]. The 

model operates in two distinct modes: training and recognition. In the modes, each 

pixel in the imagery represents a neuron will generate a spike in different latency 

depend on the input intensity. Spikes propagate through the system in a feedforward  

 

Fig. 1.9 Schematic diagram of spike train.[21] 

 

Fig. 1.10 Visual signal transduction. [22] 

Dorsal 
Stream

Ventral 
Stream

IT

V1

retina

pupil
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manner. The feedforward architecture aims to explain “immediately recognition”. 

This hypothesis is supported convincingly by the requirement of short time intervals 

for recognition tasks[26]. In the output layer, only the first spikes propagate to this 

layer and the rest of spikes will be ignored. In this way, SpikeNET can achieve face 

recognition[25]. 

Our algorithm is similar to that of SpikeNET. However, SpikeNET is applied in 

single image recognition, and our algorithm works on object tracking of image 

sequence.  

 

1.4 Problem Statement 

In the MIS environment, instruments detection is under cluttered background 

that contains tissues and organs within the body cavity. In order to guide the 

endoscope to the desired location by image tracking, it is essential to robustly 

recognize the instruments from the surgical images. Under such condition, the system 

can correctly control the camera holder to provide the suitable field of view for 

surgeons.  

Some problems would occur during recognition process. First, the artificial 

markers are impermissible due to the sterilized issue. The system should recognize the 

instruments by the natural features. But the instruments lack feature points that can be 

extract by many extraction algorithms, such as SURF. The second problem is the light 

variation. Since there is single light source irradiated from the endoscope, the 

distribution of the light is seriously uneven. The third problem is the size change in 

the imagery, caused by rotation and the displacement of the tip of the instruments 

during operation. It is hoped to conquer these three problems to ensure the endoscopic 

robot stably track the instruments and eliminate the inconvenience of endoscope 
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adjustment. 

Fig 1.11 shows various types of instruments of Da Vinci. In the shaft end of the 

instrument is the endowrist, where is considered have most features. Therefore, we 

will recognize the instrument to represent their positions in the image. In particular, 

consider that surface of the endowrist is lack of feature points such as corners, we 

would use spiking neural network to extract the contour and the texture as the features 

for recognition. Thus the influence of the lack of features can be efficiently reduced. 

Since the tool ends of surgical instrument are almost made of metal material, the 

influence of light change would be even severe and the color on the surface would 

also change dramatically. For this problem, the edge feature extraction of spiking 

neural network would less be affected. We can also consider the learning method to 

train the data of some extreme conditions. 

Finally, for the size change problem caused by rotation and displacements of 

tools can also be solved by training of the artificial neural network. We can let the 

neural network learn about most of appearances of an instrument to achieve robust 

tracking. Though it needs great amount of training samples, it can rapidly complete 

training process because of feedforward learning manner. In this thesis, we want to 

develop a method to let the endoscopic robot track multiple instruments and provide 

stable image to the surgeons. 

 

Fig. 1.11 Robotized surgical instruments of Da Vinci system[27]. 

endowrist 



 

10 
 

1.5 System Overview  

Fig. 1.12 shows the proposed system architecture. The system contains three 

main parts. The first part is the endoscopic robot which is comprised of a camera 

holder and an endoscope. The camera holder is responsible for holding endoscope, 

and the endoscope is for providing the surgical image in the body cavity. 

The second is an image detection part. It will firstly extract the features from the 

surgical image. The positions of both instruments can then be calculated through the 

selective target kernels which were generated in pre-operation stage. In order to 

improve the stability of recognition, Kalman filter is used and is expected to have 

more precise estimation for the positions of instruments. The results of image 

detection unit are the estimated positions of both instruments on image plane. The 

coordinates p1’ and p2’ are then sent to the next part. 

The third is the motion control part. In order to reduce some redundant motions 

of robot for stable view, we set a buffer zone in the center of the image. When both of 

the instruments are in the buffer zone, the robot keeps still. But if one of the  

 

 

Fig. 1.12 System architecture. 
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instruments is out of the buffer zone, the motion control unit would give the robot 

motion command. The robot will adjust the pose of endoscope until both of the 

instruments are back to the buffer zone. 

The details are described as follows in the rest of the thesis. Chapter 2 shows the 

laparoscopic instrument detection. Chapter 3 describes the method of motion control. 

Chapter 4 shows the experimental results. Chapter 5 is the conclusions of thesis and 

the future works. 
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Chapter 2 Laparoscopic Instrument Detection 

2.1 Proposed Instrument Detection Architecture 

In this work, the vision-based instrument tracking task is divided into two main 

procedures: object recognition and feature tracking. We suggest a novel algorithm to 

track surgical instrument by using natural features. The algorithm estimates the type 

of instrument and target position simultaneously. The whole tracking algorithm 

features a combination of spiking neural network and Kalman filter[28]. The spiking 

neural network is designed to recognize the instrument tip and the Kalman filter is 

responsible for robust tracking of multiple instruments. 

In the following, we will briefly describe the spiking neural network and its 

learning process. After network learning, the trained target kernel is used to recognize 

and localize the instrument in the image frame. The neuro-based tracking system is 

summarized in Fig. 2.1. It contains three main parts. The first part is to extract the 

features from input images; the second part uses the trained target kernel to recognize 

the instrument around the predicted position, which is estimated by the Kalman filter; 

and the third part aims to update the state of Kalman filter by the measurement in part 

2, and predict the next possible position target. The process will be executed the three 

units repeatedly as long as new images are acquired. The Kalman filter predicts the 

position of the instruments such that the detection(searching) area can be dramatically 

reduced. The system can thus achieve efficient and robust tracking of in-vivo surgical 

instruments. 

 

2.2Model of Spiking Neural Network 

We use the same layered architecture to that of SpikeNET. The model consists of 

three layers and each layer comes to approach the biological visual system. Since the  
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Fig. 2.1 Image tracking algorithm. 

 

different application from SpikeNET, there is only single output layer in the network. 

We redraw the model in our manner as in Fig. 2.2. The first layer occurs in ON/OFF 

pairs that represents the retina. The second layer occurs in a set of eight that mimics 

the visual cortex(V1) to select the lines in different orientation. The third layer is the 

output to decide the recognition result which corresponds to IT in biological visual 

system. Between each layer, there are specific kernels to define the prefer stimulus for  
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Fig. 2.2 Architecture of spiking neural network. 

 

the efferent layer. Kernels play the role as the connections with synaptic weight to 

decide the values from previous layer to next one. 

Both training and recognition modes operate in the same neural architecture. But 

there are still differences during the processing. The first difference is the utilization 

of the kernel between the second layer and the third layer. When in training mode, the 

kernel is initialized as an empty array for learning. But in recognition mode, the 

kernel has completed learning and plays as the synaptic weight to decide the 

recognition result. For the reason, it is termed target kernel. The second difference is 

the size of input images. Since the size of target kernel is same as the sample images, 

the inputs for training should keep in same dimension. However, in recognition 

process, the size of input images can be different but should greater than or equal to 

the target kernel. The kernels of each layer are discussed in more detail in the 
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following. 

 

2.2.1 The First Layer of the Network 

The purpose of the first layer is to extract edge features. SpikeNET uses 

difference of Gaussian (doG) as the selective kernel. doG is the second spatial 

derivative that it is sensitive to edges. And it obtains zero response when the image 

changes linearly. In our work, we use the use Laplacian of Gaussian(LoG)[29] filter 

which has the same approximation with doG. The definition of LoG is expressed as 

the equation such that: 













 





2

22

2

22

4LoG
2

vu

2

vu
1

1
1vuW



 exp][)(),(           (2.1) 

where (u, v) is the position of the element in LoG array. σ is a the parameter to 

affect the smoothing when applied. When σ is a large value, the edges after filtering 

become smoother and less noise remind. η is the parameter to decide the LoG to be 

ON-center or OFF-center kernel. Fig 2.3(a) shows the 15×15 ON kernel, in whichη 

is an even number. For the OFF kernel, η becomes an odd number. Fig. 2.3(b) 

shows the OFF kernel which is reverse to (a).  

The input image will convolve with the kernels for the edge extraction. In the 

process of convolution, ON/OFF kernels plays the role as masks to filter out the 

proper edges from the input image. Suppose the kernels are in size of 

(2M+1)×(2M+1), where M is an integer. Fig 2.4 shows the schematic diagram and the  

        
(a)ON kernel         (b) OFF kernel 

Fig. 2.3 LoG kernels. 
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Fig. 2.4 Schematic diagram of image convolution. 

 

equation can be expressed as: 

    
M

Mm
M

Mn LoG nvmufnmWvuC ),(),(),(            (2.2) 

where (u, v) is the position of efferent layer. f represents the value in afferent layer. m 

is the kernel index in horizontal direction. n is the kernel index in vertical direction. 

Examples for the operation show in Fig. 2.5. The input image is an instrument as 

in Fig. 2.5(a), and (b) shows the convolution result by the ON kernel. The edges are  

 

 

 

 

 

 

(a)input image          (b)result using ON kernel   (c) result using OFF kernel 

Fig. 2.5 LoG kernel operation. 
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enhanced as bright line that responds to the patterns with positive center and negative  

surround. Fig. 2.5(c) is the result by OFF kernel that emphasizes different edge 

features. Results show the output figures keep the same size with the input image. 

2.2.2The Second Layer of the Network 

The second layer aims to extract texture features. Since texture contains 

directionality, we use the Gabor filter[30] for line selection in specific angle. The 

filtering is also the convolution process the same as in first layer but by using the 

Gabor kernel. Orientation of the kernel can be easily determined depend on our 

requirement. The equation of Gabor kernel is defined by: 



















 
 






 uvu
WGabor 2cos

2
exp

2

222

             (2.3) 

 sincos vuu                         (2.4) 

 cossin vuv                        (2.5) 

where λ is the wavelength. φ is the phase offset.γ is the spatial aspect ratio that 

specifies the shape of ellipticity in Gabor function. θ is the orientation setting. The 

same as SpikeNET, we use orientation layers in a set of eight at 45º rotations. By 

(2.3)~(2.5), the kernels can be derived that is shown in Fig 2.6. Each kernel has the 

same value ofλ, φ andγ, only θ changes depending on the requirement of user. 

 

  

 

(a)0°    (b) 45°    (c) 90°    (d) 135°    (a)180°   (b) 225°   (c) 270°  (d) 315° 

Fig. 2.6 Gabor kernels. 
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We go on to project the spikes from the first layer to the second layer by Gabor 

filters. Fig 2.7 shows the oriented edge selection from Fig. 2.5(b). Fig. 2.7(a) is the 0° 

Gabor kernel convolution. Only the edges in vertical detection are selective and pass 

through the filter. Fig. 2.7(b) shows the result of 45° Gabor filter. The edges in more 

like 45° are brighter than others.  Fig. 2.7(c) shows the case to find the horizontal 

edges. Therefore, through the operation, we can derive all the eight different edge 

figures. All the neuron layers in layer two are also the same size to the input image. 

 

2.2.3Network Learning 

The purpose of network learning is to find a proper kernel that can decide the 

recognition result accurately in the output layer. It locates between layer 2 and layer 3 

and is initialized as an empty array with the same size as the sample image prepared 

for the training process.  

 

   

 

 

 

(a)0°filtering         (b)45°filtering        (c)90°filtering       (c)135°filtering 

  

 

 

 

(a)180°filtering      (b)225°filtering       (c)270°filtering       (c)315°filtering 

Fig. 2.7 Gabor kernel operation 
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The learning procedure of the spiking neural network is shown in Fig. 2.8. The 

input image propagates through the network first processed by LoG and Gabor 

convolution. Then the produced eight figures in the second layer should merge into a 

single figure and then transfer to spike latency according to the activation of each 

neuron. The transformation mechanism is termed the rank-order-coding[32] which is 

developed by Thorp et al. 

For the implementation of rank-order-coding, we need to classify neurons into 

different ranks and decide their firing order. Once the firing order is decided, the 

variance of synaptic weight can be derived such that: 

J
nmw

nmr ),(

),(


       ,                       (2.6) 

where m is the kernel index in horizontal direction. n is the kernel index in the vertical 

direction. β (0,1) and r(m,n) is the firing order of neuron (m,n) in the merged pattern. 

J is the number of training cases of an instrument. The division operation is to 

combine multiple kernels to a single target kernel by averaging them.  

 

 
Fig. 2.8 Training of the spiking neural network. 
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Fig.2.9 shows the process of target kernel generation. Orientation patterns in the 

second layer are summed to single figure. In the merged pattern are texture and edge 

features belong to the recognized target. Suppose the size of each layer is in (2M+1)×

(2N+1), where M and N are integers. The target kernel will generate in the same 

dimension and plays the role as the synaptic weight from the merged pattern to the 

center neuron of the third layer. 

Since the training is a feed-forward procedure, the synaptic weight will be 

trained when all the prepared image samples have been used in the training process. 

Each synaptic weight will converge to a value depending on the mean rank of each 

input. After training, the synaptic weights become constants and can be used as a 

kernel to recognize a specific target.  

 

2.2.4 Object Recognition 

In execution of image tracking, LoG and Gabor convolution are processed for 

the acquired image the same as that in the network learning stage. The firing order of 

neurons is estimated accordingly. As usual, we should implement the 

rank-order-coding directly after feature extraction. However, an improving scheme is 

proposed in this thesis to be added before the rank-order-coding. The idea is that if the 

 

Fig. 2.9 The schematic diagram of target kernel generation. 
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environmental background is complex in the imagery, the target neurons might be 

inhibited and results in misclassifications. We will describe this part in more detail in 

Section 2.3. 

After the feature extraction, the instrument position will be found by using the 

target kernel to compute output values of layer 3 around the predicted position. Fig 

2.10 shows the schematic diagram of the computation process. Suppose the size of 

target kernel is (2M+1)×(2N+1), where M and N are integers. The size of the input 

image is LI×WI, where LI represents the length in horizontal direction and WI is the 

width in vertical direction. Since the input image should be greater than or equal to 

the target kernel, the output value of the third layer can be computed by the 

expression bellow: 

   






  


ML

1Mu

NW

1Nv

M

Mm

N

Nn

nvmurI I

nmwvuA ),(),( ),(  ,           (2.7) 

where LI≧(2M+1) and WI≧(2N+1). (u,v) represents the neural position in the third 

layer. w(m,n) is the value of element (m,n) in target kernel. r(u+m,v+n) is the firing 

order of the neuron (u+m,v+n) of the merged pattern. Finally, the neuron will fire if 

the value is equal or greater than the threshold: 

hTvuA ),(  ,                            (2.8) 

 

Fig. 2.10 The process of the recognition value in output layer. 
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where Th is the threshold. This procedure of spiking neural network is called 

integrate-and-fire [32].  

In spiking neural networks, rank-order-coding plays a key role in object 

recognition. Every object mapped to the network will produce different neural 

sequences and firing order. So the target object will match the training data only when 

the neuron fire sequences belong to in a particular order.  

Fig. 2.11 shows the example of rank order scheme for recognition. Suppose 

activation of the neurons is B>A>C>D>E. If β is 0.7, by the rank-order-coding, 

spike latency of A~E would be (0.7
1
, 0.7

0
, 0.7

2
, 0.7

3,
 0.7

4
). If the neurons of the image 

for recognition is in the same order and the values of A~E are (4,5,3,2,1). The output 

value would reach the maximum: 4×0.7
1
+5×0.7

0
+3×0.7

2
+2×0.7

3
+1×0.7

4
=10.1961. But 

if the input image is in the order A>B>C>D>E, the output value will be 9.8961. Other 

arrangements would be even lower. Therefore we can set the threshold about 10 for 

recognition in this case. 

Through the rank-order-coding scheme, the trained kernel will be very unique to 

the specific appearance of the target. But an instrument has different appearances such 

as change in size and rotation. The adopted strategy is to average the kernels for all 

the conditions described in (2.6). In this way, the universal kernel can recognize most 

of the condition s but it loses the uniqueness at the same time. And it 

 

Fig. 2.11 Rank-order-coding scheme. 
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will be affected by noise more easily. To keep advantage of the recognition capability, 

the training samples should be as less as possible. Furthermore, the suitable threshold 

for filtering is also an important factor for a successful recognition. 

Once any neuron fires in layer 3, it implies that the object matches the target. 

The firing neuron will appear at the center point of this object in layer 3. If the 

instrument has not been detected, then the search region would extend. This process 

will repeat until the instrument is found or the neural map has completely scanned. If 

the instrument is successfully detected, its coordinate p will be sent to the next step. 

Otherwise, p will maintain the previous value for the condition that the instrument is 

temporarily occluded. 

 

2.3 Object Recognition under Complex Environment 

During surgical operation, the effluence of blood and body fluid from tissue 

occurs frequently. Luster on the organ and tissue become brighter and there are 

reflections of lighting appear on the fluid. Edges of these reflections are always more 

intense than the others. By the spiking neural network algorithm, the neurons with 

highest intensity will fire first. Therefore, the reflections will greatly affect the 

recognition result. In the following, we will describe the rank order classification and 

the improved method to reduce the impact of reflection. 

As we know, the range of the grayscale image is from 0 to 255. A simple way to 

decide the firing order is to classify the neurons linearly into 256 ranks depending on 

their intensity. Fig. 2.12 shows the rank classification. By the known rank level, firing 

order of each neuron can be defined as: 

firing order=255-rank  ,                    (2.9) 

Since the most activated neurons will fire first, the firing order of the neuron j in rank 
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255 will be zero. When firing order rj is 0, jr
  will reach maximum by the equation 

(2.7). It means the neurons firing first have the most contribution to the integration in 

layer 3. However, because the contribution of each neuron decreases exponentially 

(Fig. 2.13), only the neurons which fire first will demonstrate the integrated result in 

layer 3. If the most activated neurons come from the background noise, the tracking 

performance will be seriously degraded. 

Since the intensity of the features in the second layer is greater than the mean 

value of the image after extraction, we can enhance the firing order of these neurons 

whose activation are higher than the average. Therefore, the integration of our 

 
Fig. 2.12 Rank classification. 

 

Fig. 2.13 Neural contribution in equation (2.7). 
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target can be improved in the third layer. Through the analysis, we suggest to change 

the rank classification scheme to another type of function such as a sigmoid function. 

The function is depicted as the solid line in Fig. 2.12 and can be expressed such that: 

))(exp(
)(

dg1

G
gS s


  ,                       

(2.10) 

where S is the rank and g is the activity of the neuron in layer 2. α is an constant to 

decide the degree of curvature of the function curve. Gs is a scale depends on the 

maximum rank number. In our case, Gs is 255. d is the mean value of the neural map 

and it will change depending on each frame. By equation (2.10), the neurons in rank 

200 will be upgraded to 230, the firing order is therefore improved. The neurons 

below rank 100 is downgraded, it will not influence the value layer 3 according to the 

exponential function.  

The proposed classification is adjustable depending on the mean value of the 

image. The function curve will shift at each frame to achieve suitable firing order 

adjustment. As we know, the intensity of the extracted features is greater than the 

mean value. If the input image becomes darker due to the lighting of endoscope, the 

average value will decrease. The center of sigmoid curve will shift to left according to 

d in (2.10). Through the adjustment of the function, the firing order of the neurons 

belong to the features will keep enhanced. For the case of brighter image, the firing 

order of the neurons which belong to the features can also derive the suitable 

adjustment through the same process. In this way, it can achieve stable recognition 

even the luminance changes due to the moving of endoscope during surgery. 

We take a snapshot from an in-vivo video of laparoscopic surgery as an example 

shown in Fig 2.14(a) [34]. Suppose that our target is the right instrument in the image. 

After this image frame is processed by LoG and Gabor convolutions, the contribution 

of the neurons from the right instrument will be inhibited by the exponential function  
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(a) 

 

 

 

 

 

 

 

(b)                      (c)                       (d) 

Fig. 2.14 Image tracking under complex background. 

 

in the calculation the rank-order-coding as shown in Fig 2.14(b). With the new 

classification method, the contribution of the neurons is shown in Fig. 2.14(c). From 

this image, one can find the contribution of the neurons from the right instrument is 

much improved. As shown in Fig. 2.14(d), the integrated values in layer 3 will exceed 

the threshold and fire spikes, which will appear in the center of the right instrument. 

With the new classification method, the neurons still maintain a certain firing 

order, but the firing priority of target neurons is upgraded. This scheme reserves 

property of rank-order-coding and improve the object detection under complex 

background. 

 

2.4 Kalman Filter Design 

Kalman filter is a recursive estimator based on linear systems [28]. It is efficient 

for solving numerical engineering problems. The application of Kalman filter has two 

The right instrument 
The left instrument 
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classes. The first one as the name is filter for smoothing data sets. The second class is 

the prediction.  

In our study, we use Kalman filter to predict the positions of instruments in the 

images. We expect the prediction to help to make the image tracking more efficiently 

through recognizing the instruments surrounding a smaller area of the predicted 

position. Since the critical time in our algorithm is at the recognition process, Kalman 

filter would help to efficiently reduce much of redundant computation. In addition, 

Kalman filter can filter out the unexpected recognition error. It is helpful to stabilize 

the recognition result for robust tracking. A useful property also refers to that Kalman 

filter can track the target even encountering the temporary occlusion. For these 

reasons, we will combine the spiking neural network with Kalman filter for the 

instrument tracking in the endoscopic image sequences. 

The main process of Kalman filter contains prediction step and correction step. 

Prediction is to estimate the next possible position before the next endoscopic image 

come in. Correction is to attain measurement by the detected position. In our 

algorithm, Kalman filter plays a role as a tracker and spiking neural network is the 

detector. In order to achieve the better performance, Kalman filter will predict the 

instrument not only by position but also by velocity. The details of computation are 

described as below: 

We first define 1
ˆ

kx
 
be the posteriori state at instant k-1 and 


kx̂

 
be the 

predicted state at instant k. The state of the Kalman filter includes the information of 

instrument position and velocity. The posteriori state can thus define as 

T
1-k1-k1-k1k1k dY dX Y Xx ][ˆ   , where Xk-1 

and Yk-1 are the coordinate of the instrument 

in x and y axis while dXk-1 and dYk-1 are the displacements. To predict the first 

position p’ of the instrument, we initialize 1
ˆ

kx  by a random variable. The predicted 
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state 
kx̂

 
can be estimated such that:  

    1k1kk BexFx 
  ˆˆ   ,                    (2.11) 

where F is a transition matrix applied to posteriori state 1
ˆ

kx , B is a control input 

matrix applied to the control vector 1ke  . In order to simplify the state estimation, we 

assume that there is no control input, so 1ke   will be a zero matrix. We also assume 

that the instruments move in a constant speed such that the displacement 

kXd ˆ =
1kdX  

and 
kYd ˆ =

1kdY 
. The predicted position ( 

kX̂ , 

kŶ ) can be (
1k1k dXX   , 1k1k dYY   ). 
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We rewrite equation (2.11) as: 

1
ˆˆ



  kk xFx   ,                           (2.12) 

By equation (2.12), the matrix F can be determined. The first predicted position p’ 

can also be derived. Then the priori estimate covariance can be computed such that: 

QFPFP T

kkkk  



1
  ,                       (2.13)

 

where Q is the process noise covariance matrix, and Pk-1 is equal to identity matrix I4. 

The next important step is to apply the measurement update t of Kalman filter 

namely the correction. The first task of the correction is to compute the Kalman gain: 

1)(   RHPHHPK T

kkk

T

kkk  ,                   (2.14) 
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where H is a measurement matrix. R is the measurement noise covariance matrix. 

Then by the recognition process around predicted position p’, we can derive a 

detected position p by spiking neural network. Then we rewrite the coordinate p as 

matrix kz  to generate the posteriori state kx̂ , such as: 

)ˆ(ˆˆ   kkkkkk xHzKxx  ,                     (2.15) 

And the posteriori error covariance 
kP  is expressed as follow: 

 kkkk PHKIP )(
 ,                      

(2.16) 

In some cases, the noise covariance matrixes Q and R, and the measurement matrix H 

might be time varying. We assume them as constants in this design for simplification. 

And in our work, we set Q and R the 4×4 identical matrix with a very small scale and 

H the I4. 

 Fig. 2.15 summarizes the proposed tracking algorithm using Kalman filter. The 

prediction of the two instruments should be estimated separately by two Kalman 

filters. Therefore, we create two Kalman filters and initialize the parameters to predict 

the possible positions for the first frame by e (2.12) and (2.13). The system then starts 

to recognize the instrument around the predicted positions by spiking neural network. 

The derived measurement positions p1 and p2 imply the coordinates of the left and 

the right instrument respectively. In order to predict the next position for next frame, 

we let zk be the transpose matrix of p1. Through the correction step by (2.14)~(2.16), 

the state of the left instrument can finish update. And the next possible position of the 

left instrument p1’ can be estimated by (2.12) and (2.13). The predicted position of the 

right instrument p2’ can be derived by the same process. 
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Fig. 2.15 Instrument tracking using Kalman filter. 

 

Both of p1’ and p2’ will be sent to the motion controller to transfer to the robot 

commands Du and Dv, which implies the displacements in horizontal and vertical 

direction respectively. In the same time, the predicted positions p1’ and p2’ will be 

reserved for the reduction of searching area in the next frame. In this way, Kalman 

filter can help to achieve efficiently tracking in robotic endoscope system. 

However, if the instrument has not been recognized before the correction step, 

the measurement matrix zk will stay as the previous value in our work. In this way, the 

prediction will keep moving on for a while and go back to the position that loss 

detection. Therefore, if temporary occlusion occurs during the process that the 

instrument pierce the tissue, the system can soon find the instrument along the moving 

direction. But if the instrument is vanish for a period, the system will detect around zk 
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and extent the searching area until the instrument is rediscovered or the image is 

completely scanned. Therefore, for the condition that surgeon changes the instrument, 

the tracking will soon restart from the border of the image. 
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Chapter 3 Image Tracking System 

After instrument recognition, the system can track the instruments in an image 

sequence. The next step is to combine the robot control with image recognition. The 

purpose here is to let endoscope provide stable image when robot track the 

instruments. In the following, we describe proposed buffer zone design for the issue 

in Section 3.1. Section 3.2 tells about the workflow of image tracking. We further 

describe motion control by using buffer zone in Section 3.3. 

 

3.1 Buffer Zone Design  

By knowing the location of both instruments, the camera can track them by using 

feedback controllers. However, it would make surgeons dizzy if the tracking 

controller is sensitive to the movement of the instruments in the image frame. In order 

to solve this problem, we propose to set an area termed buffer zone in the center of the 

image[33]. Buffer zone offers a suitable buffer space to avoid excessive control 

actions and thus the movement of the camera and thus maintain a stable imagery. 

Surgeons can therefore operate the instruments with a series of motion without 

moving camera. The schematic diagram of buffer zone is depicted in Fig. 3.1. 

 

          

Fig. 3.1 Schematic diagram of buffer zone. 
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We will use the ratio between size of buffer zone and image plane to describe the 

choices for buffer zone, such that: 

         ,                      (3.1) 

where LI and WI denote the length and width of image frame respectively. And LB and 

WB are the length and width of buffer zone. The parameters of equation (3.1) are 

depicted in Fig. 3.2. To get larger movable range for instruments, we want the buffer 

zone to have larger size, but the tracking performance will become worse relatively. 

The factor to affect tracking performance is the area outside the buffer zone. If the 

area is large, it will have more space to get the tracking command. In determining the 

size of the buffer zone, it is a trade-off between reducing camera movement and 

improving tracking performance.  

3.2Workflow of image tracking implementation 

Since surgeons use two of the instruments in the operation to guide the robot into 

the required location, the system starts the robotic control only when both of the 

instruments are detected. Fig. 3.3 shows the flow chart of the proposed image tracking 

design. When none of the instruments appears or only one of them is detected, the 

system will keep detecting without moving. Once both of them have been detected, 

which implies that the surgeons are ready to implement the operation, the system will 

start to track the instruments with motion control estimation.  

 

Fig. 3.2 The ratio of buffer zone. 
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Fig. 3.3 The flow chart of motion control. 

We divide the tracking procedure into two fundamental modes in the camera 

holder operation. One is the operation mode, and another is the tracking mode. Fig. 

3.4 shows the working principle of two operation modes of laparoscopic instruments 

during the surgery. When both of the instruments are inside the buffer zone, system 

enters to operation mode. In this mode, surgeons operate the instruments with a series 

of tool motion without introducing camera motion. The camera view stands still. It is 

desirable for doctors to concentrate on operation. But if one of the instruments moves 

outside the buffer zone, the system will switch to tracking mode and control the robot  

 

Fig. 3.4 Two operation modes of laparoscopic instruments tracking. 
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move to the instrument beyond the buffer zone. The robot will keep moving until both 

of the instruments are back to the buffer zone. But if both of the instruments are out of 

buffer zone during tracking, the robot will keep also still by considering the safety 

problem. When the surgeons need to change the instruments during operation, the 

system again keeps detecting without control. Therefore, it is safe in the whole 

process of surgery. And in this way, the system can achieve two dimensional tracking.  

Furthermore, we expand the concept of buffer zone to the third (depth) 

dimension tracking. In doing so, we set a range of the Euclidean distance between two 

instruments as a measure of the distance between the camera lens and instruments. 

This depth should be kept a proper value and maintain stable during the surgery. 

Suppose the Euclidean distance between the instruments is Ed. If Ed is a small value, it 

is likely that the surgeon is operating at a delicate part in body cavity, but the camera 

shot is too far away from the instruments. In this situation, it is desirable for the 

surgeon if he/she wants to zoom in the camera to watch a clearer view. In contrast, if 

Ed is too large or both instruments cannot be contained in a single image, it means that 

the camera is too close to the instruments. Thus the endoscopic robot would lose 

tracking easily. It would be helpful if the endoscopic robot zoom out autonomously in 

this condition. Therefore, by evaluating the magnitude Ed, the robot can control the 

third dimension. And the controller would autonomously adjust the robot’s 

configuration along the third dimension to make Ed to the suitable value. It also 

implies that the robot would keep an appropriate distance from camera shot to the 

instruments. 

We hardly have better information about image depth by using monocular 

camera. Fortunately, the parameter Ed we proposed can help us to realize the 

instruments roughly in the third dimension. However, it would be unstable in specific 

condition. Fig. 3.5 shows the condition where it is not applicable by considering Ed  
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(a)                    (b) 

Fig. 3.5 Specific condition that would be misjudged. (a)Top view, (b)Side view. 

 

merely. The robot does not know actually how deep the two instruments are, but it 

only knows Ed is very small and out of the range. Therefore, the robot will zoom in 

the camera continuously and touch the right instrument. It will lose its stability in the 

end. Therefore, the motion control of zoom in/out is not added in the system currently. 

3.3 Motion Control of Robotic Arm 

Fig. 3.6 shows the architecture of robot control. System detects the instruments 

and estimates the predictions p1’ and p2’ for the left and the right instrument 

respectively. p1’ and p2’ will send to the comparators to compare with boundaries of 

buffer zone in both horizontal and vertical directions. Suppose u1 and u2 are the 

horizontal (U) component of p1’ and p2’, uup and udn are upper bound and lower 

bound of buffer zone in horizontal direction. Once u1 or u2 is out of the boundary, the 

comparator starts to estimate the deviation ΔU  between the instrument and the 

buffer zone: 










dndn

upup

uu   for   uu

uu   for   uu
U  ,                    (3.2) 

The deviation in vertical (V) direction can be estimated in the same way: 










dndn

upup

vv   for   vv

vv   for   vv
V  ,                    (3.3) 
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Fig. 3.6 Control architecture of surgical instrument tracking. 

 

 

Fig. 3.7 Boundaries of buffer zone. 

where (u,v) denotes the instrument position which is out of the buffer zone. And the 

corresponding boundaries lines are illustrated in Fig. 3.7.  

The controller then transfers the deviationsΔU and ΔV into robot commands. 

The motion command in U and V directions are defined as: 

UGD uu   ,                       (3.4) 

 VGD vv   ,                       (3.5) 



 

38 
 

where uD  and vD  are the displacements that the robot have to move in U and V 

directions.  uG  and vG  are controller gains, which can be decide as arbitrary 

numbers in positive. The negative signs in (3.4) and (3.5) are because the moving 

directions are opposite to image coordinate. Therefore, the camera holder will move 

with displacements uD   and vD  in U and V directions untilΔU andΔV reduce to 

zero. Through this error correction, both of the instruments will back inside the buffer 

zone, and the system return to operation mode. In this way, the endoscopic robot can 

achieve two dimensional tracking.  
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Chapter 4 Experimental Results 

In this section, we implement our proposed algorithm and show experimental 

results of instrument tracking. In Section 4.1, we verify the tracking algorithm by 

using in-vivo endoscopic video. In Section 4.2, we have another experiment to 

combine image recognition and robot control to achieve an autonomous endoscopic 

system. And in Section 4.3, we have some discussions of the experiments. The 

analysis is expected to have better results and practicality in real surgery. 

4.1 Experiment by Using In-vivo Endoscopic Video 

A video from IRCAD [34] was used to verify the proposed algorithm to track 

surgical instruments in the actual laparoscopic surgery. As shown in Fig. 4.1, in the 

video there are two instruments in opposite directions. In the image sequences, the 

instruments change their poses and deform on the tips. 

4.1.1 Data Training of the Instruments 

To train the target kernel of each instrument, the part of the instrument wrist is 

selected as feature to recognize. Six training samples of the right instrument were  

 
Fig. 4.1 Snapshot from in-vivo endoscopic video. 
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used as shown in Fig. 4.2. The training process is depicted in Fig. 4.3. After the 

training process of each individual sample image, 6 target kernels were generated. 

These 6 target kernels are merged to a target kernel according to (2.6). The target 

kernel of the left instrument is also trained in the similar way, however, only 4 

training samples were used in this case as shown in Fig.4.4.  

 

      
Fig. 4.2 Training samples of the right instrument. 

 

 
Fig. 4.3 Training process of the right instrument. 

 

    

Fig. 4.4 Training samples of the left instrument. 
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4.1.2 Instruments Recognition by Using Video 

We then used these two target kernels together with the Kalman filter to track the 

instruments in the video. The firing neurons are tracked in the center of the instrument. 

The position of the instruments can thus be determined. Fig 4.5 shows a tracking 

result of the test video under the condition of light variation. The right instrument still 

can be tracked properly in this case. Fig.4.6 shows the tracking condition when the 

left instrument has size variation in the image sequence. It can be seen also that the 

problem of rotation and deformation of the instrument in the imagery are solved by  

 

Fig. 4.5 Lighting variation condition. 

 

Fig. 4.6 Size change condition. 
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spiking neural network. The tracking results show the robustness of the tracking 

design. In the experiments, the test video contains totally 897 frames. Table 4.1 shows 

that the recognition rate of the right instrument is 91.9% and that of the left one is 

99.1%. The tracking system was implemented on an i3-330M (2.13GHz) personal 

computer. The computational speed is 4.8 frames per second(fps) when the Kalman 

filter has not been used. It improves to 8.0 fps with the assistance of the Kalman filter.  

 

4.2 Experiment of Visual Servo by Endoscopic Robot 

The purpose of this experiment is to combine the image recognition with robot 

control to have an autonomous tracking system. We will use two robotic instruments 

from Da Vinci system in this experiment. We will hold both instruments by hands and 

move the instruments on image plane. The scenario is to simulate the surgeons 

operate the De Vinci system in MIS. 

 

4.2.1 Experimental Setup 

Fig 4.7 shows the hardware architecture that is comprised of image devises and 

the Huatuo robot. Image devices provides surgical image to the robot, and Huatuo 

robot[34] controls the motion of robot arm to track surgical instruments.  

 

Table 4.1 Recognition result of in-vivo endoscopic video. 

 Testing frame Detected frame Recognition rate 

Kernel 1 

(right instrument) 
897 824 91.9% 

Kernel 2 

(left instrument) 
897 889 99.1% 
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In the part of image devices, the light generator provides the illumination for 

surgical image through the endoscope. Fig 4.8 shows the tip of endoscope that 

contains the lens and light emission. The surgical image from endoscope will transmit 

to Storz image hub. Output ports of image hub support different kinds of image 

signals such as S-VIDEO and VGA. Fig. 4.9 shows the rear view of the image hub 

that it can simultaneously supply image signal to various image devices.  

 
Fig. 4.7 Hardware architecture. 

 

 
Fig. 4.8 The tip of endoscope. 
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Fig. 4.9 Different types of output signal from image hub. 

 

Signal from image hub to the robot has to transfer via a video grabber card. Since 

the resolution of grabber card has the limit, it can only provide images with 480p at 

30 fps to robot. But it can show on the Storz Monitor with 1080p at 60fps. However, 

the resolution of grabber card is sufficient for the implementation of instruments 

recognition and visual servo. The image devices for our experiment are list in Table 

4.2. 

Fig 4.10 shows the experimental setup. A training box is used in this experiment 

represents the human body. And we operate the instruments through the training box 

to guide the endoscope move around the emulated body. Huatuo robot is a 

development platform for minimally invasive surgery introduced in 2011 by Dr.  

 

Table 4.2 Image devices. 

Device Product Type 

Endoscope Storz IMAGE 1 S3 

Image hub Storz Xenon 300 20133120 

Light generator Storz IMAGE 1 hub 222000 

Video grabber card UPMOST UPG308 H.264 
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Fig. 4.10 Experimental setup. 

 

Hsiao-Wei Tang[35]. In this work, it was used as a camera holder. We expect to 

develop an intelligent endoscopic system on this platform. When robot receives the 

image signal from grabber card, it will recognize the instruments and calculate the 

motion command Du and Dv to the control cards to control the motors of robot arm. 

Du is the displacement in pan direction for robot, and Dv is in tilt direction in Fig.4.7. 

The robot arm of Huatuo moves in the three degree-of-freedom(DOF) that 

includes pan, tilt and zoom direction. In our work, we only use the motion command 

Du for pan direction and Dv for tilt direction to achieve 2D tracking. In addition, it is 

worth nothing that Huatuo is design by the mechanism of Adjustable Remote Center 

of Motion(ARCM). RCM means the motion of robot follows a rotation center. It is an 

important movement pattern that it can prevent wound to be extended during 

minimally invasive surgery. Fig. 4.11 depicts the rotation center and the rotation axes. 

Movable angle along pan and tilt axes are ±60°. Distance in zoom direction is 18cm. 

The detailed specification of Huatuo is described in Table 4.3. 

4.2.2 Image tracking on Robotic Platform 

Before the experiment, we grab some images from endoscope as the training 

samples. A snapshot shows in Fig. 4.12. Since the field of view will change by the  

Instruments
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Fig. 4.11 The rotation center design of Huatuo robot [36]. 

 

Table 4.3 Specification of Huatuo. 

Size 121(D) x 110 (H) x 75 (W) cm 

Movable range 

of each DOF 

Angle for pan axis: ±60° 

Angle for tilt axis: ±60° 

Zoom: 17cm 

Computer 

CPU: i3-550 3.2G  

Memory: 2GB DDR*2 

OS: Windows 7 professional 32bits  

Capture card HIWIN PCI-4P 

 

 

Fig. 4.12 The snapshot from endoscope. 
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movement of robot and the instruments used here are different to that of previous 

experiment, the appearance of instruments will be more diverse. It is necessary to 

have more training samples for robust tracking. We have total 43 training samples for 

the right instrument and 35 for the left one. Fig.4.13 shows the finished target kernels 

for both instruments. We will use them for the image guided experiment. 

Fig. 4.14 shows the snapshot of the tracking process. The yellow rectangle is the 

boundary of designed buffer zone. Fig. 4.14(a)~(d) shows that the left instruments 

moves to the left side out of buffer zone, and the endoscope follows the left 

instrument. Fig. 4.14 (e)~(h) shows that the right instruments moves to the right side 

beyond the buffer zone, and the endoscope also follows it. Fig. 4.14 (i)~(l) shows that 

the right instruments moves to the bottom, then the endoscope moves down. Fig. 4.14 

(m)~(p) shows that the left instruments moves to the top, and the endoscope moves up. 

Fig. 4.14 (q)~(t) shows both of the instruments are back to the buffer zone, the 

endoscope keeps still.  

The system has processed total 923 images in whole procedure. The recognition 

results are list in Table 4.4. The recognition rate of the right instrument is 92.7% and 

that of the left one is 88.4%. The tracking system was implemented on an i3-550M  

                                

(a) The left instrument    (b)The right instrument 

Fig. 4.13 Target kernels of both instruments. 

 

 

 

 

(a)                 (b)                  (c)                 (d) 
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(e)                 (g)                  (g)                 (h) 

 

 

 

(i)                 (j)                  (k)                 (l) 

 

 

 

(m)                 (n)                  (o)                 (p) 

 

 

 

(q)                 (r)                  (s)                 (t) 

Fig. 4.14 Snapshot of endoscopic visual servo. 

(3.2GHz) computer of Huatuo robot. The computational speed is 8.7 frames per 

second(fps). 

In this experiment, the buffer zone works to reduce the excessive and redundant 

robot movements when we operate instruments. Otherwise, the shaking camera view 

may make the surgeon dizzy. To get larger movable range for instruments, we want 

the buffer zone to have larger size, but the tracking performance will become worse 

relatively. Through the experiments, the suitable ratio is 0.5 to 0.6. In this range, the 

system can keep balanced between tracking performance and screen stability. 
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Table 4.4 Recognition result of endoscopic visual servo. 

 Total frame Detected frame Recognition rate 

Kernel 1 

(right instrument) 
923 856 92.7% 

Kernel 2 

(left instrument) 
923 816 88.4% 

4.3 Discussion in the Experiments 

So far, our system can achieve two dimensional tracking (Du, Dv). However, 

Surgeons need to adjust the distance between the endoscope and the lesion for a clear 

view. Therefore, it is better to have the function that can use the instruments to guide 

the endoscope zoom in/out. In this way, it becomes the three dimensional tracking 

system. However, it is hard to derive the depth information precisely by using 

monocular endoscope. It will be risky for the system to autonomously control the 

zoom in/out under the uncertain condition. Therefore, the system can currently track 

the instruments in two dimensional without zoom in/out. 

In order to achieve real-time tracking, the resolution of the input images has been 

down sampled. In this way, system can spend less time for instrument detection. 

However, the recognition rate could be affected in the same time. For the reason, we 

use images with deferent resolution for testing. The size of source image is 720x480 

from endoscope video. Suppose our recognition target is the right instrument. We can 

prepare the training sample by screenshot from the source image as shown in Fig. 

4.15. The size of the training sample is 105x105. 

We down sample the image by the ratio of 0.24, the resolution becomes 183x116. 

The training sample is also resized by the ratio of 0.24. By the training process, we  
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Fig. 4.15 Screenshot from endoscope video. 

 

Fig. 4.16 Training sample. 

 

can derive a target kernel. We then use the target kernel for instrument recognition in 

the resized image. The maximum value of the integration is 21.06 appears in the 

center of the target instrument. The value of other neurons is lower than 14.8 and can 

be considered as the background noise. Therefore, the threshold can be set as 14.8. We 

divide the maximum integrated value(21.06) to the threshold(14.8) and can derive the 

value 1.42. The meaning of the process is like signal-to-noise ratio(SNR). If the value 

is larger means that it has the better recognition quality.  

If the source image is down sampled by the ratio of 0.36 and the training sample 

is also resized, then the maximum value of integration is 72.62. The threshold is 43 

and the recognition quality is 1.67 which is better than before. If the down sample 

ratio is 0.48, the recognition quality will become 1.92 which is even better. The 

testing result is list in Table 4.5. We can find that the better image resolution will have 

better recognition quality. 

The training process seems miscellaneous because the tip of the instrument 

should be located in the center of the sample image. We prepare the sample images by  
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Table 4.5 Recognition results by using different resolution image. 

Down sample 

ratio 

Image 

Resolution 

Maximum value 

of integration 
Threshold 

Recognition 

quality 

 0.24 183×116 21.0606 14.8 1.42 

 0.36 275×173 71.6210 43.0 1.67 

 0.48 366×231 140.1928 73.0 1.92 

 

screenshot manually in all the experiments. However, in the operation room, there are 

variety instruments. Surgeons may change the instruments whenever necessary. It 

cannot be sure that the tracking system has all the data of the instrument. Therefore, it 

is better to simplify the training process for a new instrument. Surgeons can therefore 

register a new instrument in few minutes and later use it in the surgery for the robot 

guiding. 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

We have developed an image processing algorithm to track surgical instruments 

by using natural features. The spiking neural network demonstrates satisfactory 

detection performance in instrument recognition. The Kalman filter enhances the 

tracking performance for multiple instruments in the scene. This algorithm detects the 

instruments by their geometric features and texture. So it will not be affected by the 

tissue reflection on the metal surfaces and the illumination problem.  

Experimental results show that the target kernels can track the instruments in the 

actual laparoscopic surgery despite of lighting variation and pose change in the 

surgical images. Furthermore, the kernels can localize and distinguish the surgical 

instruments in the endoscope images. Through the great amount of data training, the 

system can achieve robust tracking even the robot move in a wide range. The utility of 

the buffer zone design has also been verified. It helps to stable the image when 

surgeons operate the instruments in a specific range of area. They can also use the 

instruments to guide the endoscope move according to their thinking. The instrument 

in their hands is not only the tools for treatment but also a mouse to control the pose 

of endoscope. Since the safety problem is a significant issue in surgery, the control 

role should be reliable in the practical application. In our design, if the surgeons need 

to change the type of the instrument during surgery, the instrument will not be 

detected. In this condition, the robot will keep stationary.  

We have implemented an endoscope tracking system that can help the surgeons 

to concentrate on the operation of the instruments. The recognition rate of the system 

is sufficient to guide the robot to a proper location stably.  
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5.2 Future Work 

Consider that in most case of MIS, surgeons need two instruments at a time for 

treatment. Currently, the computational speed to detect two instruments is about 8 fps 

in our experiment. However, some of the surgery would be more complex and have 

the necessary to use more than two instruments in the same time. To speed up the 

computation capability is therefore become the significant task in the next work. An 

improved method is to use parallel processing hardware as the external server for 

powerful computation, and transmit the recognition result to the robot through the 

wireless network. 
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