

1

Contents

Chinese Abstract i

Abstract ii

Acknowledgements iii

Contents 1

List of Figures 3

List of Tables 5

1 Introduction 6

2 Related Work 11

 2.1 Research Works in Smart Environment 11

 2.2 Sequential/Temporal Pattern Mining 12

3 System Overview 16

 3.1 Preliminaries 16

 3.2 System Framework 22

4 Correlation Pattern Discovery 25

 4.1 Usage Representation 25

 4.2 Correlation Pattern 27

 4.3 Probability-based Projected Database 32

 4.4 CoPMiner Algorithm 35

2

5 Efficient Strategies for CoPMiner Algorithm 43

 5.1 Pruning by Spatial Constraint – pruneDB 43

 5.2 Pruning by Usage Points in Prefix – pruneFI 44

 5.3 Pruning by Prefix in Projected Databases – pruneSup 45

6 Application – Anomaly Detection 48

 6.1 Problem Definition of Anomaly Detection 48

 6.2 Anomaly Threshold Setting 50

 6.3 Fault Tolerance of Time 50

 6.4 Anomaly Detection 51

7 Experiment Evaluations and Results 52

 7.1 Synthetic Dataset 52

 7.2 Real-world Dataset – REDD 61

 7.3 Synthetic Dataset for Anomaly Detection 63

8 Conclusion 66

3

List of Figures

FIGURE 1: AN EXAMPLE OF DAILY USAGE SEQUENCE ... 7

FIGURE 2: ALLEN’S 13 RELATIONS BETWEEN TWO INTERVALS .. 14

FIGURE 3: AN EXAMPLE CONTAINS 13 ALLEN’S RELATION .. 15

FIGURE 4: AN EXAMPLE OF USAGE DATABASE ... 16

FIGURE 5: THE FRAMEWORK OF COPMINER .. 16

FIGURE 6: TWO EXAMPLES OF DIFFERENT TEMPORAL ALLEN’S RELATION ... 16

FIGURE 7: TWO EXAMPLES OF EXTENDING TEMPORAL ALLEN’S RELATION ... 16

FIGURE 8: CORRELATION PATTERN EXAMPLE ... 16

FIGURE 9: ERUPTION LENGTHS (IN MINUTE) OF 107 ERUPTIONS OF OLD FAITHFUL GEYSER 16

FIGURE 10: HISTOGRAM OF OLD FAITHFUL GEYSER .. 16

FIGURE 11: KERNEL DENSITY ESTIMATION ON H = 0.25 .. 16

FIGURE 12: THE EXAMPLE OF PROJECTED DATABASE ... 16

FIGURE 13: EXAMPLE OF PROBABILITY-BASED PROJECTED DATABASE .. 16

FIGURE 14: MINING EXAMPLE 1/5.. 16

FIGURE 15: MINING EXAMPLE 2/5.. 16

FIGURE 16: MINING EXAMPLE 3/5.. 16

FIGURE 17: MINING EXAMPLE 4/5.. 16

FIGURE 18: MINING EXAMPLE 5/5.. 16

FIGURE 19: THE CONCEPT OF PRUNESUP STRATEGY .. 16

FIGURE 20: ABSTRACTION OF ANOMALY DETECTION ... 16

FIGURE 21: EXAMPLE INPUT OF ANOMALY DETECTION SYSTEM ... 16

FIGURE 22: EXAMPLE OUTPUT OF ANOMALY DETECTION SYSTEM .. 16

FIGURE 23: PARAMETERS OF TYPE 1 SYNTHETIC DATA GENERATOR .. 16

FIGURE 24: RUNTIME PERFORMANCE TESTING ON D10K–C20–N1K DATASET ... 16

FIGURE 25: RUNTIME PERFORMANCE TESTING ON D100K–C20–N10K DATASET 16

FIGURE 26: SCALABILITY OF COMPARING ALGORITHMS ON DIFFERENT DATABASE SIZE 16

FIGURE 27: SCALABILITY OF DIFFERENT MIN_SUP ON DIFFERENT DATABASE SIZE 16

FIGURE 28: INFLUENCE OF THREE PRUNING STRATEGIES ON DIFFERENT MIN_SUP 16

FIGURE 29: EXECUTION TIME COMPARISON ON DIFFERENT ALGORITHMS .. 16

FIGURE 30: EXECUTION TIME OF ALGORITHMS WITH STRATEGIES .. 16

FIGURE 31: THE NUMBER OF CONSTRUCTED PROJECTED DATABASE .. 16

FIGURE 32: FREQUENT PATTERNS' SEQUENCE OF REDD DATASET .. 16

file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094667
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094668
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094669
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094670
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094671
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094672
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094673
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094674
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094675
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094676
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094677
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094678
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094679
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094680
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094681
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094682
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094683
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094684
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094685
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094686
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094687
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094688
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094689
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094690
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094691
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094692
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094693
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094694
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094695
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094696
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094697

4

FIGURE 33: PART OF DETAILED CORRELATION PATTERN IN REDD .. 16

FIGURE 34: THE DISTRIBUTION OF QUERY DATASET Q ... 16

FIGURE 35: THE PRECISION OF SYNTHETIC DATASET .. 16

file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094698
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094699
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094700

5

List of Tables

TABLE 1: FIVE DISTINCT REPRESENTATIONS FOR TEMPORAL RELATIONS IN FIGURE 3 15

TABLE 2: MATRIX OF FIGURE 6.(B) .. 16

TABLE 3: MATRIX OF FIGURE 6.(A) .. 16

TABLE 4: MATRIX OF FIGURE 7.(B) .. 16

TABLE 5: STRATEGIES USED BY ALGORITHMS .. 16

TABLE 6: DESCRIPTION OF SIX HOUSES IN REDD DATASET ... 16

file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094702
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094703
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094704
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094705
file:///C:/Users/ADSL/Desktop/碩論/NCTU碩士論文v1.docx%23_Toc366094706

6

Chapter 1

Introduction

Recently, concerns over global climate changes have motivated significant efforts

in reducing the emissions of CO2 and other greenhouse gases (GHGs). With the

increasing requirement for more electric power, the development of sustainable energy

like hydroelectricity, solar and wind energy attract many researchers to engage in. The

manufacturing process of industry contributes large amount of greenhouse gases while

the business and residential area counts on steady and continuous power supply. For the

residential or industrial area, it is not an easy task to indicate that where we have wasted

our precious electricity power for unnecessary appliances uses. Many researchers focus

on the reduction of electricity usage in residence because it is a significant contributor

of greenhouse gas emissions.

However, electricity conservation is an arduous task for the residential users due to

the lack of detailed electricity usage. For the residential or industrial area, it is not an

easy task to indicate that where we have wasted our precious electricity power for

unnecessary appliances uses. Therefore we expect that we can use electricity more

efficiently by discovering the appliances behaviors. If the useful inspiration of our

behaviors and representative patterns of appliance electricity usage are available,

residents can adapt their appliance usage behaviors to conserve the energy effectively.

Due to the advance of sensor technology, the electricity usage data of in-house

appliances can be collected easily. For example, it is no longer an obstacle that we

manufacture the electrical sensors with capability of collecting the voltage, current and

7

apparent power consumption information. Collecting the appliances or environment

status will be easy [3, 18]. In particular, an increasing number of smart power meters,

which facilitates data collection of appliance usage, have been deployed.

With the usage data, one could supposedly visualize how the appliances are used.

Nonetheless, with an anticipated huge amount of appliance usage data, subtle

information may exist but hidden. We observed that in the smart environment the

appliances behaviors of the residents have the spatial relation. For example, people

watching television in the living room of first floor will also turn on the lights in the

living room, rather than turn on the other appliances in the second or third floor. We

also observed that the appliances ON-OFF data in the smart environment can be

regarded as the time interval-based database. Therefore it is necessary to devise data

mining algorithms to discover appliance usage patterns in order to make representative

usage behavior of appliances explicit. Appliance usage patterns cannot only help users

to better understand how they use the appliances at home but also detect abnormal

usages of appliances. Moreover, it facilitates appliance manufacturers to design

intelligent control of smart appliances.

In our daily life, we usually use different appliances simultaneously. For example,

in the morning, coffee machine and toaster in the kitchen are often used together to

prepare for breakfast, while the light, air conditioner and television in the living room

may be turned on in the evening (as shown in Figure 1). The correlation among the

usage of some appliances can provide valuable information to assist residents better

understand how they use appliances.

Figure 1: An example of daily usage sequence

Moreover, it is difficult to discover useful knowledge from a huge set of generated

8

patterns. Too many patterns sometimes hinder users from understanding their actual

behaviors. Hence, we aim to derive compact and meaningful patterns in this study.

Obviously, the locations of appliances in a house provide good hints. For example, as

shown in Fig. 1, the correlation between television and light in the same living room on

the first floor may reveal a high dependency between these two devices. Moreover, the

co-occurrence of turning on the television in living room on the first floor and turning

on the light in bathroom on the third floor may be merely a coincidence.

So far, little attention has been paid to the issue of mining correlation among

appliances, which undoubtedly is more complex and arduous than mining the usage

patterns of an appliance alone, and thus requires new mining techniques. In this paper, a

new framework fundamentally different from previous work is proposed to discover the

usage correlation patterns. The contributions of our work are as follows:

 Probabilistically, we define the notion of correlation pattern based on time

interval-based sequence. Since the usage of a device can be regarded as a

usage interval (time duration between turn-on and turn-off), interval-based

sequence can depict users’ daily behaviors unambiguously.

 The relation between any two usage intervals is intrinsically complex. This

complex relation is really crucial for designing a correlation pattern mining

algorithm with high efficiency and effectiveness, since it may lead to more

candidate sequences and heavier workload for computing the support. We

propose a method, called usage representation, to simplify the processing of

complex relations among intervals by considering the global information of

intervals in the sequence.

 We develop an efficient algorithm, called Correlation Pattern Miner

(abbreviated as CoPMiner), to capture the usage patterns implying the

correlations among appliances with several optimized techniques to reduce

the search space effectively.

 The readability of patterns is also an essential issue. Sometimes, a large

number of patterns may become an obstacle for users to understand their

actual behaviors. To generate compact, expressive and meaningful patterns,

we propose a method that takes into account the interior of a smart home. A

9

spatial constraint is introduced to prune off non-promising correlation and

reduce the number of generated correlation patterns.

 To demonstrate the practicability of correlation pattern mining, we apply

CoPMiner on a real dataset and analyze the results to show the discovered

patterns are not just an anecdote.

Now let us list the application domain of mining correlation patterns. That is, we

will mention who, where and when will people need the pattern mining algorithm. We

first enumerate the application domain are Researchers in Library and Information

Science [5], in Information and Electrical Engineering (Smart Sensors and Environment

related) [7, 8], Economy, Banking and Finance [30], Medical Information [31] and

Mobile Sensors Applications [32, 33].

As the experiments in CTMiner [5], the lending/borrowing behaviors of books can

be our applications. Different from CTMiner explores what lending/borrowing

behaviors of books are tends to appear, our algorithm introduce the spatial constraint,

which can be regarded as the general similarity of items, can explore more specific the

relations of patterns and along with its happening time. That is, CTMiner may tell us

that many people borrowing a book of C++ Programming Language (Science Class

with class number 300), a book of Philosopher (Philosophy Class with class number

100) and a book of Eastern Architecture (Arts Class with class number 900). This

lending behavior is not easy to recommend people to borrow what kind of related C++

programming book. However, our algorithm especially focuses on the relations of items

and happening time and may tell people to lend another C++ programming books

which many people recommend. For the managers of library, they can see the lending

time of these books to decide which part of books are frequently lend and pay more

attention on managing or introducing new books into these area.

In banking and finance, the spatial constraint in correlation pattern can be seen as

the relations between different stocks, future contracts, bonds, funds and other

derivatives in financial instrument. Financial data has much worthy implicit knowledge

and the Chief Finance Officer (CFO) of company may be interested in the stock

interactive behaviors in Stock Market to make proper financial decisions for company.

Medical Information will also record many laboratory variables and disease for

10

patients. Especially, the medical data like electronic health record (EHR) is multivariate

and contains class labels [31]. For mobile users, the user’s temporal profile is very

crucial for App prediction [32, 33]. Our algorithm may explore more interval-based

sensors features for each user and can be used in prediction.

The rest of the paper is organized as follows. Section 2 reviews some related

works. Section 3 provides the preliminaries and the framework of our system. Section 4

introduces the detail definitions of usage representation correlation pattern, and

probability-based projected database and finally proposed CoPMiner algorithm. Section

5 proposed three pruning strategies for discovering correlation patterns. Section 6 gives

the detailed applications on anomaly detection by using correlation patterns. Section 7

reports the experimental results in a performance study and the correlation patterns

mined in real-world dataset, and finally Section 8 concludes this paper.

11

Chapter 2

Related Work

During the past several decades, many researchers focus on sequential pattern

mining, temporal pattern mining and discover the behaviors in smart environment. We

provide a very brief survey on these domains and summarize the domains into two parts.

First, we discuss some literatures about sequential pattern mining and temporal pattern

mining. Then, we will discuss some works mainly apply to smart environment. Some

applications like behaviors discovery, anomaly detection and activity prediction are

also listed.

2.1 Research Works in Smart Environment

Many prior studies discuss how to extract useful knowledge regarding usage

patents of a single appliance via energy disaggregation [4, 9, 10, 17, 20, 29] or

appliance recognition [2, 7, 8, 12, 16, 22, 27, 29].

In the domain of energy disaggregation, Chen et al. [4] disaggregate utility

consumption from smart meters into specific usage associated with certain human

activities. They propose a novel statistical framework for disaggregation on coarse

granular smart meter readings by modeling fixture characteristic, household behavior,

and activity correlations. Farinaccio et al. [9] use some patterns, such as number of

ON-OFF switches, to disaggregate the whole-house electricity consumption into a

12

number of major end-uses. Goncalves et al. [10] explore an unsupervised approach to

determine the number of appliances in the household, including their power

consumption and state, at any given moment. Kim et al. [17] investigate the

effectiveness of several unsupervised disaggregation methods on low frequency power

measurements collected in real homes. They also propose a usage pattern which

consists of on-duration distribution of all appliances. Lin et al. [20] use a dynamic

Bayesian network and filter to disaggregate the data online. Suzuki et al. [29] use a new

NIALM technique based on integer programming to disaggregate residential power use.

For appliance recognition, Aritoni et al. [2] develop a software prototype to

understand the behaviors of household appliances. Ito et al. [12] extract features from

the current (e.g., amplitude, form, timing) to develop appliance signatures. Kato et al.

[16] use Principal Component Analysis to extract features from electric signals and

classify them using Support Vector Machine. Prudenzi [27] utilize an artificial neural

network based procedure for identifying the electrical signatures of residential

appliances. Matthews et al. [22] discuss some of these works and characterize workable

solutions.

For usage pattern of appliances, Chen et al. [8] introduce two types of usage

patterns to describe users’ representative behaviors. HAUBA [7] is developed to

analyze the usage status of all appliances in a smart home environment. An intelligent

system, Jakkula et al. propose an Apriori-based algorithm [13] for activity prediction

[14] and anomaly detection [15] from sensor data in a smart home. However, Jakkula et

al. use the Allen’s representation for time interval-based data, which still has ambiguity,

and mining algorithm is candidate generation, which is not efficient enough.

All aforementioned studies focus on knowledge extraction for a single appliance

instead of the correlation among appliances in a house.

2.2 Sequential/Temporal Pattern Mining

The sequential pattern mining originally focuses on the time point-based

database [11, 26]. Han et al. [11] propose an efficient sequential pattern mining

method, named FreeSpan. The general idea of FreeSpan is to integrate the

13

mining of frequent sequences with that of frequent patterns and use projected

sequence databases to confine the search and the growth of subsequence

fragments. Pei et al. [26] propose an efficient sequential mining algorithm,

named PrefixSpan, based on divide-and-conquer inspiration. PrefixSpan

explores prefix-projection in sequential pattern mining, which substantially

reduces the size of projected databases.

 The time point-based data denotes the transactions happened at the specific

time. However, the time interval-based data records the event both with start

time and finish time. Therefore, a proper representation for time interval-based is

a great issue. Allen’s logic [1] gives the 13 relations between any two intervals.

Figure 2 lists all the Allen’s relations. However, Allen’s relation will suffer the

disambiguity when representing three or more intervals. To conquer the problem,

researchers usually use a relation matrix to maintain.

Some algorithms are proposed to discover the temporal patterns in time

interval-based database [5, 6, 23, 25, 30]. Morchen et al. [23] propose the Time

Series Knowledge Representation(TSKR) representation and mining algorithm

TSKM. Patel et al. [25] propose the Augmented Hierarchical Representation

(abbreviate as AHR) to explore temporal pattern for classification. Wu et al. [30]

propose the Temporal Sequence (abbreviate as TS) to mining temporal patterns.

Chen et al. [5] propose a more compact representation, named Coincidence

Representation (abbreviate as CR). Chen et al. [6] propose an Endpoint

Representation (abbreviate as ER). To fairly compare the advantages and

disadvantage, we use the example of Figure 3 to show how these temporal

representation works. Table 1 lists the above five representations for the example

in Figure 3.

14

Figure 2: Allen’s 13 relations between two intervals

15

Table 1: Five distinct representations for temporal relations in Figure 3

Method Representation

TSKR AB  ABDE  ADE  AC

AHR
(((A Started-by [0,0,0,0,1] B) Contains [1,0,0,1,0] D)

Contains [2,0,0,2,0] E) Finished-by [2,0,2,2,0] C

TS A
+

= B
+

< D
+

= E
+

< B
－

< C
+

= D
－

= E
－

< A
－

= C
－

CR (A
+

B
+
) (D

+
E

+
B
－

) (D
－

E
－

) @ (C A
－

)

ER (A
+

B
+
) (D

+
E

+
) B

－
(D

－
E
－

C
+
) (A

－
C
－

)

Figure 3: An example contains 13 Allen’s relation

16

Chapter 3

System Overview

In section 3.1 Preliminaries, we will first give formal definitions of some terms we

use in this paper and then the definition of our problem. In section 3.2 System

Framework, we will give a concrete overview of our system framework and also

describes how our system works.

3.1 Preliminaries

Definition 1 (Usage-interval and usage-interval sequence)

Let be a set of k appliances. Without loss of generality, we define

a set of uniformly spaced location and time points based on natural numbering . A

function, , specifies the location of each appliance in A. Let the triplet

() denote a usage-interval of , where and

 . The two time endpoints and are the turn-on time and the turn-off time

of appliance respectively. This indicates the interval of appliance starts at time

 and finishes at time with . The set of all usage-intervals over A is denoted

by . A usage-interval sequence is a series of usage-intervals triples. Formally,

 〈() () ()〉 with and . Also all

17

the n elements in Seq are ordered by (1) start time (2) finish time and finally (3)

appliance symbol . () is the interior location of appliance in a smart home

environment. We can either use the logical location or real location to define .

Let us take Figure 1 as an example. Suppose that there are three appliances, light,

air conditioner (AC), television (TV). Each appliance has its interior location in the

house. (light, 18:00, 24:00) is a usage-interval and ⟨ (AC, 00:00, 06:00), (light, 05:00,

08:00), (light, 18:00, 24:00), (AC, 18:00, 24:00), (TV, 20:00, 22:00) ⟩ is a daily

usage-interval sequence on Oct. 27, 2012.

Definition 2 (Usage-interval database)

The set is said to be a usage-interval database if D collects

the records 〈 〉 with the sequence date and its corresponding

daily usage-interval sequence . Also, an interior location of appliance is also

recorded in DB. Note that the location information can be regarded as an

attachment to appliances. Figure 4 shows a usage database which consists of 17 usage

intervals and 4 daily usage-interval sequences.

Figure 4: An example of usage database

18

Processing usage-interval sequence is a difficult task. Since the relation among

usage intervals is intrinsically complex. Allen’s 13 temporal logics [1], in general, can

be adopted to describe the relations among intervals. However, Allen’s logics are

binary relation. When describing relationships among more than three intervals, it may

suffer several problems. In this paper, we modify the coincidence representation [5] and

propose a new expression, called usage representation, to address the ambiguous and

scalable problem of Allen’s temporal logics.

Given a usage-interval sequence 〈() () ()〉 ,

the set is the time set corresponding to . After we

order all the elements of in nondecreasing order, we can derive a sequence

 〈 〉 where and . is called a time sequence

corresponding to .

Definition 3 (Usage-point and usage sequence)

Given a usage-interval sequence 〈() () ()〉

where () and corresponding time sequence 〈 〉, a

function that maps a usage interval () into two usage-points
 and

is defined as follows.

 () {

 ()

where
 and

 are called on-point and off-point of interval ()

respectively. The usage-points
 , …,

 (* can be ＋ or －) are collected in

brackets and ordered the elements in parenthesis by (1) end point
 (2) appliance

symbol and finally (3) start points
 . We also attach occurrence number to

usage-points in order to distinguish multiple occurrences of the same appliance in an

usage-point sequence. A usage sequence of is denoted by 〈 〉

where is a usage-point. For example, in Figure 4 the database collects 4 daily

19

usage-interval sequences. The usage sequence of date 2 is

〈 () () 〉 Noted that () and () are represented

with ordering within parenthesis because they occur at the same time respectively.

Definition 4 (Usage representation)

Given a usage-interval sequence 〈() ()〉 and corresponding

time sequence 〈 〉 , we can derive the usage sequence

〈 〉 by Definition 3. The usage representation of is defined as a

pair. Noted that the time of usage point in is in .

() (

) ()

By Definition 4, we can transform a usage-interval database into usage

representation. Let us take the database in Figure 4 as an example. Without leading into

ambiguity, we consider the turn-on and turn-off times by recording hours only. The

usage representation of DB is shown in the last column in Figure 4. For the rest of this

paper, we assume that the usage database has already been transformed into usage

representation.

Definition 4.1 (Subsequence, support, and spatial similarity)

Let 〈 〉 and 〈 〉 be two usage sequences,

where are usage points and . is called a subsequence of , denoted

by , if there exist integers such that
,

, …,

. Given a usage-interval database DB in usage representation,

the tuple () is said to contain a usage sequence if . The

support of a usage sequence in DB, denoted as (), is the number of

20

tuples in the database containing . More formally,

 () | () | | ()

As mentioned above, each appliance in a house has its own location. For an

appliance , the function gives the locations ()

of . The similarity between two appliances is defined as

 () {

 () ()

| () ()|
 () ()

 ()

 | () ()| |

| |

| |

| ()

For example, in Figure 4 the similarity of appliances B and C is

| | | | | |

 . Obviously, the support count decides the significance of a

usage sequence. We use a support threshold, min_sup, to filter out insignificant usage

sequences. Furthermore, as mentioned above, the spatial distance may spoil the

correlation dependency between two devices. When mining representative usage

sequences, we use a similarity threshold, min_sim, to filter out non-promising

appliances in a usage sequence. A usage sequence 〈 〉 in DB is called a

frequent sequence if () and ()

 .

Let us go into deeper abstraction for spatial similarity. We can regard the spatial

similarity as the general similarity for items. That is, for the applications in library and

information sciences, if we want to find the lending/borrowing relations among the

same class of the books we can define each book is in an imaginary location in the

pseudo-space of book space. Probably the location is related to the class of the book.

For another financial domain, we can regard each stock is located in the stock space.

And their location may be defined by their other feature like industry type, capital of

21

company, the rate of return and etc. Of course the practical definition of similarity may

vary from domain to domain. But here we just introduce the general idea of item

similarity and we name it as spatial similarity. Also, the spatial similarity will have

great impact on what kind of correlation patterns are mined, which is defined in

Definition 5. Therefore, we can regard the spatial similarity as the constraints of the set

of target patterns.

Definition 5 (Correlation pattern)

Given a usage-interval database DB in usage representation and two thresholds

min_sup and min_sim, the set of frequent sequences FS includes all frequent usage

sequences in DB. The correlation pattern consists of two parts. One part is the frequent

sequence 〈 〉. The other part is the probability function of each usage point

happening in time of 24 hours and we use a set of functions () 〈 〉 to

annotate the probability along with the frequent sequence . The formal definition of

correlation pattern P is defined as

 (()) (

)

 〈 〉 and is the probability function of in DB. (5)

We also use the idea of Multivariate Kernel Density Estimation [21, 28] to

estimate the probability function of each . Suppose that the time information of

 in DB is { }, the formal definition of probability function is defined as

 () 〈 () { }〉

∑ (

)

 with
 ()

√

 ()

√

 (6)

We take the database in Figure 4 as an example again. Given min_sup = 2 and

min_sim = 0.3, 〈 〉 is a frequent sequence since it appears in date = 1, 3

22

and 4. Therefore (〈 〉) and

 () . The correlation pattern with respective to

〈 〉 is (

). Here we discuss () as an example.

The time information of is {2, 6, 13}, hence ()

 √
(

(

)

(

)

(

)

), with
 ()

√

√
 .

Obviously, with a turn-on time of appliance , we can derive probability

functions () and () with respect to the usage of . The practicability of

correlation patterns will be discussed in chapter 4 and 6.

The reason that we define the correlation pattern combined with probability

density functions (p.d.f.) makes the correlation pattern outperforms from related works

[5, 6, 23, 25, 30]. Since we expect to see the p.d.f. of happening time of each interval

not only simply interprets the relations. The gap of happening time also make the

patterns contains different meanings. Consider that there are two patterns with the same

interval relations. The first pattern says that next behavior pops up within 1 hour while

another tells us the next behavior appears in 8 hours. This will tell us that although the

relation might be same, but the happening time (or equivalently the p.d.f.) are different

matters the semantics of the pattern. Also with the p.d.f. appended in correlation pattern,

we can provide more information and application like anomaly detection and activity

prediction by applying the calculations on p.d.f.

3.2 System Framework

In this section we will describe our framework of novel mining algorithm,

CoPMiner, and also give a general view of each components or modules inside the

CoPMiner. The general concepts or main idea of our algorithm or components will be

described here. And the detailed content will be depicted in chapter 4 and 5.

23

Problem definition

Let be the usage database of appliances symbol set

 . Inside the usage database we can see that each record collects the

usage-interval sequence of certain day . Equivalently we can say that

 〈() ()〉 is the daily behavior that consist of several usage

intervals () . Each appliances also has the interior

information which is retrieved from the original floor plan and denoted as location

function . In order to explore the correlation patterns, the

minimum support of database is used to verify the frequent sequences

from the usage database. With respect to spatial constraint of the usage sequence of

correlation pattern, the minimum spatial support of location function

 is also used to ensure that each appliance in the sequence of explored correlations

pattern are pairwise closed enough in the space.

Now given the usage database and the minimum support thresholds

 and , our target is to explore the correlation pattern

set from the usage database . Mathematically, if the usage sequence is a

frequent pattern for (that is ()) and the appliances inside

the sequence are spatially closed enough (that is ()

), then correlation pattern of is collected in , i.e. (()) .

The framework of CoPMiner

Now our framework is clearly shown in Figure 5. Obviously, our framework

contains online and offline part. The main goal of the online part is to obtain the two

parameters and from user. After receiving the users’

preference with database, we will give the two parameters to main algorithm,

CoPMiner, to discover all the correlation patterns and then we show to users what the

patterns are mined. The offline part consists of usage database, the location function,

the database in usage representation and finally the CoPMiner algorithm.

Transforming the usage database in usage representation is the first step in the

offline part and is shown as the blue cylinder in the Figure 5. We require following the

24

Definition 1 to 4 to transform every sequence in the original usage-interval database

into the usage representation like Equation (2). We will further mining the patterns

based on the usage representation and therefore this step is very important. This step

will scan the usage database once and transform the usage-interval sequence into usage

representation form like Equation (2).

The CoPMiner algorithm is the second step after converting the notations of usage

sequences. The main mining concept of CoPMiner is similar to the previous framework

of PrefixSpan [PrefixSpan]. CoPMiner will count the frequent usage points in the local

projected database and construct the next projected database based on the current prefix.

The recursive mining procedure is named UPrefixSpan in our algorithm. Owing to we

are required to explore the correlation patterns, three strategies pruneDB, pruneFI and

pruneSup are also used interactively inside the UPrefixSpan. The detailed concepts

and implementation methods of pruning strategies are depicted in chapter 5.

Figure 5: The framework of CoPMiner

25

Chapter 4

Correlation Pattern Discovery

We focus our study on correlation pattern mining in smart home due to its wide

applicability and the lack of research on this topic. In this paper, we develop a new

algorithm, called Correlation Pattern Miner (abbreviated as CoPMiner), to discover

correlation patterns effectively and efficiently. CoPMiner utilizes the arrangement of

endpoints to accomplish the mining of correlation among appliances’ usage. We also

propose three pruning strategies to effectively reduce the search space and speedup the

mining process. In Section 4.1, we discuss some advantages of usage representation. In

Section 4.2, we outline the practicability of proposed correlation pattern and describe

how to use the correlation patterns to perform some applications like anomaly detection

and behavior prediction. In Section 4.3, we proposed the novel idea of projected

database used in CoPMiner. In a nutshell, we introduce the concept of affect the

projected database of certain prefix by probability function. In Section 4.4, we give a

complete and full view of detailed mining algorithm－CoPMiner.

4.1 Usage Representation

Practicability of Usage Representation

Obviously, the correlation pattern mining is an arduous task. Since the time period

of the two usage-intervals may overlap, the relation between them is intrinsically

complex. Allen’s 13 temporal logics [1], in general, can be adopted to describe the

26

relations among intervals, as shown in Figure 2. However, Allen’s logics are binary

relations. When describing relationships among more than three intervals, Allen’s

temporal logics may suffer several problems.

A suitable representation is very important for describing a correlation pattern. In

this paper, a new expression, called usage representation, is proposed to effectively

address the ambiguous and scalable issue [30] for describing relationships among

intervals. Given two different usage-intervals A and B, the usage representation of

Allen’s 13 relations between A and B is categorized as in Figure 2. Several merits

of usage representation are discussed as follows,

 Lossless: Usage representation not only implies the temporal relation among

intervals, but also includes the accurate usage time of each interval. This

concept can achieve a lossless representation to express the nature of the

interval sequence. Since each usage-interval has two usage-points, we only

require 2k space for expressing a k-interval sequence and 2k space for

describing turn-on/off time. The usage representation scales well even with

plenty of intervals appearing in a sequence.

 Nonambiguity: According to [30], we can find that the usage representation

has no ambiguous problem. First, by Definition 3 and 4, we can transform

every usage-interval sequence to a unique usage sequence. In other words, the

temporal relations among intervals can be mapped to a usage sequence.

Second, in a usage sequence, the order relation of the starting and finishing

endpoints of A and B can be categorized as shown in Figure 2. Hence, we can

infer the original temporal relationships between intervals A and B

nonambiguously.

 Simplicity: Obviously, the complex relations between intervals are the major

bottleneck of correlation pattern mining. However, the relation between two

usage points is simple, just “before,” “after” and “equal.” The simpler the

relations, the less number of intermediate candidate sequences are generated

and processed.

27

Advantages of Usage Representation

 Here we list some examples to indicate the advantages of usage representation.

Consider we have three appliances A, B and C and their pictorial temporal relations are

depicted in Figure 6. Clearly, we can identify that the temporal relations of Figure 6.(a)

and Figure 6.(b) are different. However, we may fall into ambiguity if simply use

Allen’s relation to represent Figure 6.(a) and Figure 6.(b). That is, using Allen’s

relation without parameters would cause ((A overlaps B) during C) to represent both

Figure 6.(a) and Figure 6.(b). Traditional method could perform the disambiguity by

providing the relation matrix like Table 2 and Table 3. Table 2 states that (A overlaps

B), (A contains C) and (B contains C) while Table 3 states that (A overlaps B), (A

overlaps C) and (B contains C). However, the relation matrix costs () space for

n intervals while our usage representation costs only () space. Our usage

representation for Figure 6 is clearer and can be constructed from only given the

relation. The usage representation for Figure 6.(a) is 〈 〉 and Figure

6.(b) is 〈 〉.

Scalability and low cost of relation extension is another advantage of usage

representation. We consider again in the Figure 7. If we have relation like Figure 7.(a),

and we want to add new interval D into relation to be Figure 7.(b). Traditional relation

matrix will add new column for interval D and fill in all the relations with other

intervals. That is, Table 4 lists (A overlaps B), (A finished-by D), (A contains C), (B

contains D), (B contains C) and (D contains C). In usage representation, we simply

add two endpoints and into 〈 〉 to be

〈 () 〉. This scalability of usage representation is very useful

when our mining algorithm use prefix-growth approach.

4.2 Correlation Pattern

Extracting correlation patterns from data collected in smart homes can provide

resident useful information to better understand the relation among usage of appliances.

Given a correlation pattern, as defined in Definition 5, users can know the distribution

of usage time of appliances. With the turn-on/off time of an appliance, we can derive

the usage probability of other appliances.

28

(a) Example 1 of A, B and C (b) Example 2 of A, B and C

(a) Example 1 of A, B and C (b) Example 3 of A, B, C and D

Table 2: Matrix of Figure 6.(b)

xRy A B C

A - o o

B - c

C -

Table 3: Matrix of Figure 6.(a)

xRy A B C

A - o c

B - c

C -

Figure 6: Two examples of different temporal Allen’s relation

Figure 7: Two examples of extending temporal Allen’s relation

Table 4: Matrix of Figure 7.(b)

xRy A B D C

A - o fi c

B - c c

D - c

C -

29

Consider the correlation pattern in aforementioned example in Definition 5.

Suppose the appliance A is the light and D is the coffee machine. Given the turn-on/off

times of light and coffee machine, we can derive the usage probability for A and D

respectively. That is to say, the probability functions for the light and coffee machine to

be turned on/off at that time. This probability information is very useful for several

applications, such as abnormal behavior detection and activity prediction. Suppose that

a user forgets to turn off the light when she goes to supermarket. The home

management system (HMS) detects that the light is still turn-on at a time when the

turn-on probability is very low. Thus, the HMS sends a message to the user’s smart

phone to notify this anomaly. Activity prediction also can be realized by discovering

correlation patterns. From the example pattern, we can observe that the coffee machine

(appliance symbol D) is usually turned on after the light (appliance symbol A) is turned

off. If we detect the light is turned off at a given time, the HMS may automatically turn

on the coffee machine if the probability of happening time from the aforementioned

correlation pattern is high enough.

Here we give another correlation example. Suppose the appliances D and E are

spatially close enough in Figure 4. Given the minimum support and

 . Then the sequence 〈 〉 is frequent and therefore the

correlation pattern is briefly shown in Figure 8.

(a) Correlation pattern (b) Positions of Pattern in Database

Figure 8: Correlation Pattern Example

30

Now we will discuss more about the probability density functions of the

correlation pattern. The union of sequential pattern and probability distributions makes

the sow’s ear into a silk purse. Probability distribution fitting (or simply distribution

fitting) is the fitting of a probability distribution to a series of data concerning the

repeated measurement of a variable phenomenon. Basically there are parametric

methods, regression method and statistical methods to conquer the distribution fitting

problem. We list the five major and present method as (1) Moments (2) Maximum

Likelihood of Probability Density Function (3) Regression of the Cumulative

Distribution Function (4) Histogram and (5) Multivariate Kernel Density Estimation (or

simply KDE).

Given the set of observations of data, the methods of moments is to compute the

several higher order moments of data. Let us take the Figure 9 (from [2]) as example.

We can compute the mean , variance () ,

skewness [(

)

]

 ()

(())
 and kurtosis

Figure 9: Eruption lengths (in minute) of 107 eruptions of Old Faithful geyser

31

 [()]

(())
 . However with only these moments, we cannot

directly construct how the shape of probability distribution actually is.

Maximum likelihood method at first gives the assumption distribution of the data,

and then applies the maximum-likelihood estimation (MLE) to estimating the

parameters of the statistical model. And if we first make the assumption of normal

distribution of the data in Figure 9, we obtained the ̂ ̂ .

Therefore the Normal distribution with and is the result of

the maximum likelihood method.

The regression of cumulative distribution function uses a transformation of the

cumulative function so that a linear relation is found between the cumulative

probability and the values of data. For example, let () and the regression

equation () . We can explore that 90% of this dataset lies

between and .

Histogram is very common to estimate the distribution of data. However

histogram will suffer from choosing the proper bin width and origin. The two factor

pose a great impact on the histogram result. The left hand side of Figure 10 uses the bin

width = 0.5 and origin = 1.3 while the right hand side of Figure 10 uses bin width = 0.5

and origin = 1.5. We can see the difference of the distribution estimated by Figure 10.

Compared with aforementioned methods, multivariate kernel density estimation

(or KDE) is the general version of histogram. In KDE we usually choose a proper

symmetric kernel like standard normal distribution and a bandwidth parameter to

decide the shape when these observations combined in the distribution. Choosing the

Figure 10: Histogram of Old Faithful geyser

32

proper bandwidth parameter h is well studied in [21] and therefore choosing the

parameters is reasonable. For example we choose h = 0.25 and the Figure 11 shows the

distribution. Since KDE will accumulate the kernel of each observations on distribution,

KDE have another advantage is what we desired. The distribution will reveal the shape

of true distribution as the data observations getting larger. More observations for the

KDE make the distribution more genuine to real distribution. Therefore these are the

reasons that we choose KDE instead of the other five distribution fitting methods.

4.3 Probability-based Projected Database

Projected database is the set of subsequence in the original database with

regarding to certain given prefix . Therefore we usually call the local database as

 projected database. In traditional method [26], the formal definition of the projected

database is the collection of all the postfix of sequences with respect to prefix . Let us

take a concrete example for construct 〈 〉 projected database in the database of

Figure 4. Now Figure 9 clearly indicate the 〈 〉 projected database by underlining

the dashed orange line in the usage representation. For each sequence we will find the

position of prefix. For example is located at 1
st
 position of sequence date = 1 and

date = 3 while 3
rd

 position of sequence date = 4. Therefore the 〈 〉 projected

Figure 11: Kernel Density Estimation on h = 0.25

33

database, denoted as 〈 〉 (〈() 〉)

(〈 () 〉) (〈 〉) .

However collecting all the postfix of every sequence may lead to outlier and noise

sequences are also collected. In order to make our projected database more confidence

on happening time information, we first observe that outlier sequence has the property

of happening time of next endpoint of turned on of an appliance is usually far

away from the previous endpoint of turned on . In order to ensure the time of each

starting endpoint are strongly time-connected, we evaluate the probability

according to the probability function given in correlation pattern. We do not consider

the finish endpoint since the probability function should actually reflect the

original time of starting endpoint . Mathematically, the probability-based 〈

 〉 projected database is defined as

 〈 〉 〈 〉 | 〈 〉

 〈 〉 〈 〉 ∫ ()

 (7)

The reason why we choose 0.34 for the probability threshold is that Gaussian

Normal Distribution from mean to variance is 0.34, i.e. ∫

√

 .

Therefore, our projected database is different from original one and more fault

tolerance and robustness to prevent containing the outlier sequences in database.

Figure 12: The example of projected database

34

Let us see a concrete example for database of Figure 4. Consider the prefix to be

〈 〉, we observed that is a frequent starting endpoints in 〈 〉. Also the set

 collects the time information of 〈 〉 in 〈 〉. The time information

of is {18, 10, 17, 21}. We first evaluate the mean and variance for

 . Therefore
() () () ()

 and

 √
() () () ()

 . Then the sequence will

be considered in probability-based projected database 〈 〉 only if the

∫ ()

 for . Therefore 〈 〉

collects the 4 sequences. The general concept for this example is depicted in Figure 13

Figure 13: Example of probability-based projected database

35

4.4 CoPMiner Algorithm

To mine the correlation patterns, our algorithm CoPMiner is proposed. The main

concepts of the CoPMiner are listed as follows: (1) Pruning Database (pruneDB):

Eliminate the faraway usage intervals in each of the usage sequence of the usage

database by spatial similarity constraint (see Definition 4.1). (2) Pruning Frequent

Itemset of Endpoints (pruneFI): Eliminate the frequent endpoints that is not spatially

related to our prefix , and only collects those endpoints both frequent and related to

prefix . (3) Pruning the Support Counting Space (pruneSup): Mark the positions

of support counting bounds in projected database according to prefix . The

detailed content of three strategies will be discussed in chapter 5.

Algorithm 1 illustrates the main framework of CoPMiner. Before we apply the

pruneDB strategy, we need to collect those frequent but single usage interval out to

form correlation patterns (line 1, algorithm 1). And then we apply the pruneDB strategy

(line 2, algorithm 1) to reduce the numbers of intervals in database (line 3, algorithm 3).

Then it transforms the usage database to usage representation and calculates the count

of each usage point concurrently (line 3-4, algorithm 1). For each frequent starting

usage point x, we find all its time information {

} in DB and

estimate the probability function () by Kernel Density Estimation in Definition 5

(lines 6-7, algorithm 1). Now we construct the probability-based projected database

 along with the pruneSup strategy is applied and attached in (line 8-9,

algorithm 1). Then we can extend our prefix to be a correlation pattern like form

(line 10, algorithm 1). Finally, we prepare the prefix and its projected database

to recursively explore the correlation patterns in further projected databases.

By borrowing the idea of the PrefixSpan [26], UPrefixSpan is developed with two

search space pruning methods pruneFI and pruneSup. The pseudocode of the

UPrefixSpan is shown in Algorithm 2. Since this is the recursive procedure, we need to

first add prefix into correlation pattern set if the current prefix is ready to be (line 1-2,

algorithm 2). For example, 〈 〉 and 〈 〉 are not well-paired since there is at

least one interval has only starting points (or respectively finish endpoints). Thus

〈 〉 and 〈
 (

) (
)

 〉 are well paired. After that for prefix ,

36

37

UPrefixSpan scans its projected database once to discover all local frequent

usage points as (line 3, algorithm 2) and remove some usage points unrelated to

prefix (line 4, algorithm 2). For frequent usage point , we can append it to original

prefix to generate a new frequent sequence with the length increased by 1 (line 6,

algorithm 2). We also use again the time information of in (line 7, algorithm 2)

for the purpose of estimating the probability function () (line 8, algorithm 2) by

Definition 5. And then we obtain the new prefix and construct the projected

database (line 9, algorithm 2) and update the set Bounds for pruneSup strategy

(line 10, algorithm 2). As the method of pattern growth, the prefixes are appended and

extended as (lines 11, algorithm 2). Finally, we can discover further correlation

patterns by constructing the next projected database with at least minimum support size

of database to keep extending prefix and recursively running until the prefix cannot be

extended anymore or database is infrequent (lines 12-1, algorithm 2).

We take the database in Figure 4 with and as an

example. There are 17 usage intervals which can be regarded as 4 usage interval

sequences in the database. After transforming database into usage representation, we

can find all frequent usage points. They are () () () ()

() () () () () () () () where the

notation (endpoint : count) represents the endpoint and its associated support in

projected database. If now we extend the prefix to be 〈 〉, then the support count

without pruneSup strategy is () () () () () ()

() () () while with pruneSup strategy becomes ()

() () . From now on if we extend the usage point to prefix to form

〈 〉, then our correlation pattern for single interval A is completed. Therefore,

(

) is the correlation pattern form and since the time information of ,

 . The probability function ()

 √
(

(

)

(

)

(

)

) where
 ()

√

√
 Likewise the probability

function ()

 √
(

(

)

(

)

(

)

) where

38

39

Now let us illustrate the mining algorithm by a quick example. Suppose that given

usage database in Figure 4 with the minimum support and

 . The further example clearly and down to earth illustrates how we

perform the CoPMiner algorithm step by step. First, Figure 14 clearly shows the

database with time axis attached (left part) and the usage representation (right part).

This result is the snapshot of after implementing line 1-3 of algorithm 1 in CoPMiner.

Also we show that what usage intervals is pruned by pruneDB in the arrow. The

pruneDB strategy prunes the intervals E in date = 2, 3 and 4.

Figure 14: Mining Example 1/5

40

Figure 15: Mining Example 2/5

Figure 16: Mining Example 3/5

41

Figure 17: Mining Example 4/5

Figure 18: Mining Example 5/5

42

Now we obtain the support of Figure 14 as () () () ()

() () () () () () () () . And we will

only construct the four projected databases respectively with prefix = .

Furthermore we extend the prefix in Figure 14. Figure 15 shows the projected

database of 〈 〉, 〈 〉. And the green triangle flags indicates the position of prefix

〈 〉 while the yellow thumbtack indicates the Bounds set. The red square flag

indicates the length of sequence in database. The orange underlined part is the full

 〈 〉 while the blue underlined part is the support counting space. Therefore, we

obtain the support of Figure 15 as () () () . Now we choose to

extend and construct 〈 〉. Meanwhile the correlation pattern for 〈 〉 is

added to output set. As 〈 〉 is shown in Figure 16, we again obtain the support as

 () () () () () () . If we again choose to extend

 , the 〈 〉 is shown in Figure 17. Now it has only the as the frequent

endpoints in the support () () () . As CoPMiner goes to

 〈 〉, it finds that there is no sequences so CoPMiner has to track back and

explore other correlation patterns.

43

Chapter 5

Efficient Strategies for CoPMiner

Algorithm

In this chapter, we focus on describing the detail and the efficient strategies used

in our algorithm, CoPMiner. We will also give the conceptual and theoretical viewpoint

along with the implementation method for each strategies. The pruneDB strategy is

used before mining process to explore the correlation pattern satisfying spatial

similarity constraint .The pruneFI strategy is applied in recursive mining process to

explore the prefix with spatial similarity. The pruneSup strategy is the most significant,

outstanding and only restricted to the usage representation. The pruneSup strategy can

be said to be the most independent in mining algorithm. In Section 5.1, we discuss the

pruneDB. In Section 5.2, we mention the pruneFI. In Section 5.3, we introduce the

pruneSup strategy.

5.1 Pruning by Spatial Constraint – pruneDB

Now we clearly state how the strategy pruneDB works here. This strategy is to

pruning the usage intervals previously by spatial constraint. The main concept of

pruneDB is to eliminate the faraway intervals in the usage database.

In algorithm 3 pruneDB, for each usage sequence of usage database, we only

collect the usage interval () where there exists another event symbol that

is spatially close enough to . This indicates that usage intervals and are

44

possible to form the correlation pattern that we expected to see. That is, we collect

those usage intervals that they are not relatively standing alone in the sequence . This

for loop in line 2 to 4 of algorithm 3 pruneDB discards the faraway intervals

() that there is no other intervals () close to in . We know

that never appears as a frequent pattern with other intervals since the interval

() is relatively stand alone in the event sequence . Thus for each sequence

 in D, we prune these faraway intervals () and only remain the intervals

() that they are possible to form correlation patterns. Hence line 4 to 5 in

algorithm 3 return the usage database DB after applying the pruneDB strategy.

In order to accomplish the concept of pruneDB, we add an attribute Space_id in

our database and assign Space_id for each interval. Therefore we illustrate how

pruneDB works in our example database DB in Figure 14. In the sequence of

 the usage interval () is a faraway interval in . That is,

{ } is the space-related set of . Therefore we assign

Space_id = 2 in the other 3 intervals of and assign interval () with

Space_id = -1 for deprecated. The usage intervals in of are similar to

 (i.e. { }). The gray intervals which is pointed by arrow is

selected to be the faraway intervals and therefore is eliminated after pruneDB strategy.

The Figure 14 shows the usage sequences of database after applying pruneDB strategy.

5.2 Pruning by Usage Points in Prefix – pruneFI

Different from pruneDB solving the problem by rearrangement the usage intervals

in sequences of usage database, pruneFI strategy solves the problem from the

viewpoint of frequent endpoints. The concept of pruneFI strategy is that we only

extend the frequent points related to our current prefix. This strategy will also ensure

the intervals in the prefix are always close enough in space.

Given the prefix and projected database , the set of frequent endpoints

may be large. We only select part of the frequent endpoints related to prefix . Those

frequent endpoints but not related to prefix will be temporarily avoid to construct the

projected database. This strategy decreases the number of projected databases

45

potentially to be find. Therefore we avoid some projected database that the prefix is

never been a correlation pattern. Hence we only construct the projected databases

whose prefixes are possible to be correlation pattern.

The pruneFI stratgey is depicted in algorithm 4. In algorithm 4, we first check

whether the frequent endpoint is appendable to prefix in line 4 to 8. The spactial

similarity is examined in line 9 to 10. We collect those frequent endpoints that is both

appendable and spatial related to prefix in line 11 to 12.

We indicate our concept of pruneFI with 〈 〉 in Figure 16. Given the

minimum support and , The traditional method

PrefixSpan will find out 7 frequent endpoints, they are

 . Then CTMiner will find out 4 frequent points . Our proposed

method will only consider two frequent endpoints . If we construct the

 〈 〉,
 will be extended in PrefixSpan while our method will

find out that no other endpoints need to be extended. Since pruneFI strategy is applied

in recursive mining process, our strategy can effectively decrease the degree of

projected databases need to create after each recursion. In previous mining example,

 〈 〉 in Figure 15 will extend . Figure 16 of 〈 〉 extends

and Figure 17 of 〈 〉 seeks the empty set.

5.3 Pruning by Prefix in Projected Databases – pruneSup

In traditional PrefixSpan algorithm [PrefixSpan], the data has only pointwise

information. However, our data now exist the idea of point time of starting and finish.

Given the prefix , counting the support of endpoints in projected database is

a routine procedure. We can use the endpoints information to make great advance on

the support counting procedure.

The main concepts of pruneSup strategy are listed as follows: (1)

Pseudo-projection: First we number the position of usage points in sequence as natural

numbers . And for each sequence in projected database , we

record the prefix 's last position as an integer rather than construct the actual

projected suffix sequence. (2) Midway Termination: For each sequence in

46

 projected database , we record the positions (in pseudo-projection) of

counting bounds according to the prefix 's position in the sequence itself.

We depict the concepts in Figure 19 and the detail content is in algorithm 5.

Suppose that there are k sequences, named

, in projected database

 . The green triangle flags indicate the last positions of prefix in the sequence. The

red square flags indicate the end of the sequence. The yellow thumbtacks indicate the

counting bounds with respect to the prefix . If we want to count the frequent endpoint

for , traditionally we need to visit the whole sequences. That is, for

in , we must visit the endpoints between green triangle flag and red square flag (or

equivalently the blue part and the light yellow part). But now we have the yellow

thumbtacks (the information is obtained from prefix). Therefore pruneSup strategy

is that we visit the endpoints between green triangle flags to the yellow thumbtacks

nearest to green flags (or equivalently the blue part) for each sequence in .

The pruneSup strategy is effective since although frequent endpoints might be

hidden for some prefixes, but the frequent endpoints definitely appear in certain shorter

or longer prefixes. Also, this strategy is efficient since we visit only part of the

Figure 19: The concept of pruneSup strategy

47

sequence if the sequence has many usage intervals (like visiting little endpoints of

 in Figure 19).

Let's see a concrete example to explicitly show how this strategy works in the

usage database D in Figure 4. And we give and , the

〈 〉 projected database is 〈 〉 = (())

 (()) ()

Without the pruneSup strategy, we count all the endpoints in 〈 〉. So we obtain

the support count of endpoints are () () () () ()

() () () () . Then we have four projected databases for further

mining process and these prefixes are 〈 〉 〈 〉 〈 〉 〈 〉 . However

we can notice that mining 〈 〉 projected database can never extend the prefix

to form a reasonable pattern since the endpoint is always before in 〈 〉.

We explain how to apply pruneSup strategy here. First, we mark the prefix

positions and bounds positions for each sequence in 〈 〉 . Explicitly, the set

 〈 〉 () () () records (, prefix's

last position , bounds positions) for each sequence in 〈 〉 . Now the

pruneSup strategy only visits the endpoints from to (). So we

visit in , in and in .

Therefore we obtain the support count of endpoints are () () () .

Then we only consider the two prefixes 〈 〉 〈 〉 .

Strategy pruneSup accelerates the mining process since it decreases the number

of prefixes and projected databases. We explicitly list some bound sets for DB as

following. The 〈 〉 () () () () ,

 〈 〉 () () () , 〈 〉 (

) () , 〈 〉 () ()

() .

48

Chapter 6

Applications – Anomaly Detection

In this chapter, we will briefly discuss the application of mining correlation pattern.

As mentioned in chapter 1 Introduction, the residents can understand more about their

behaviors of using appliances in the smart home. We are expected to see that our

correlation patterns can explore where and how we use precious electricity for residents.

Furthermore, with useful knowledge we can provide the anomaly behavior detection

and activity prediction. We will briefly put our eyes on anomaly detection first. And we

will also list some issue and propose a method to detect the anomaly.

6.1 Problem Definition of Anomaly Detection

Consider the regular home with four members, Dad, Mom, Son and Daughter. The

family members have distinctive behaviors and we roughly state their own conditions.

Dad is an engineer and usually goes to work at day but sometimes maybe to burn the

midnight oil to finish some works and jobs. Therefore Dad can be regarded as a regular

behavior at daylight but may have some occasional cases at night. Mom is a teacher in

the senior high school and usually has the most regular behavior of daylight and night.

Son is now an undergraduate student studying at other county and will come back home

about once per month. Daughter is studying in a junior high school and need to prepare

for her important exam this summer semester. Therefore, our system can perform some

convenient intelligence for this home. For example, Dad usually tends to have a shower

when he comes back to home at almost midnight. At that time, it is very likely that all

49

other members have already taken shower and go to bed. So Dad turn on the electric

heater for bathroom and usually he will also turn off after one hour. If a condition is

that Dad forgets to turn off the electric heater and goes to bed since the entire day work,

our system could detect the anomaly that the electric heater is still keep running with

other appliances are turned off. And for this case, it seems that our system turns off the

electric heater is a good way. Consider another scenario for Mom and daughter at day.

After the family having breakfast together, they usually turned off the television and

light tand then go to supermarket. If one day Mom and Daughter are not at home but

the light or the television is turned on at morning. It should investigate that whether the

home has been invaded or simply just the Son comes back. This could be achieved by

providing the camera of the door sensors and send the pictures or messages to the home

members to notify this kind of abnormal behaviors.

Therefore, how to detect the anomaly behavior is still not an easy task. In order to

make this problem solvable, we formally define our anomaly detection problem as the

following. We also give the abstract concept in Figure 20.

Given the usage database, the set of correlation patterns also have been discovered

and input a user’s behavior of certain time, determine the anomaly behavior of the turn

on/off query behavior with user specified anomaly threshold .

Figure 20: Abstraction of anomaly detection

50

6.2 Anomaly Threshold Setting

However there are some issues for anomaly detection. One is that the anomaly

threshold setting. Due to the diversity of members’ behaviors, the definition of anomaly

behaviors may differ from people to people. For example, Dad usually comes home at

20:00 but sometimes comes home 23:30 if he has some projects to finish. But for Mom

the three hour difference in day and night are strongly different. Therefore the anomaly

setting issue is intuitively a user sensitive parameter problem.

We also give an example of input for anomaly detection in Figure 21. Given the

query behavior like Figure 21, light A is used from 7:55 to 11:11 and light B is used

from 10:10 to 15:00, we want to answer what turn on/off behaviors are normal or

anomaly.

6.3 Fault Tolerance of Time

Another issue is that our system should have the fault tolerance of time and query.

That is, similar queries should have similar outputs. This issue comes from the

uncertainty of human beings. The clock will always ring at the certain fixed time but

our behaviors will not happen so exactly as the clock. The fault tolerance of time is also

a consideration for the detection system. The stability of the detection system will make

the system more durable with different behaviors and more actually fit into the life of

home members, just like we propose the probability concepts into the correlation

patterns.

Figure 21: Example input of anomaly detection system

51

6.4 Anomaly Detection

Due to the two considerations, we can propose amethod for anomaly detection

based on our correlation pattern. Since the user will input the time of the query

behavior, we can evaluate the probability by the following equation.

| |
∑ ∫ ()

 ()

where the is the correlation pattern set, is the input query time and
 is the

variance of probability function ().

We would test whether the averaged probability area is higher than the user given

threshold to decide its anomaly behavior. Different correlation pattern

would have its own () and
. Also we considers the probability of happen

within period of time, for example and would be the

time for two correlation patterns. Therefore we say that our system has the fault

tolerance of time. To decide the anomaly behavior, we could say that if

 then the probability of happening the behavior at the certain time is not high

enough and therefore the turn on/off behavior is regarded as anomaly behavior.

Otherwise, we thought that we do not have sufficient information and confidence to say

that the behavior is abnormal, then we regard it as a normal behavior.

Figure 22: Example output of anomaly detection system

52

Chapter 7

Experiment Evaluations and Results

To best of our knowledge, CoPMiner is the first algorithm discussing the

correlation among appliances included probability concept. Three interval-pattern

mining algorithms, CTMiner [5], IEMiner [25] and TPrefixSpan [30] have been

implemented for performance discussion. For fair comparison, when comparing the

execution time of CoPMiner with other interval-pattern mining algorithms, we only

discuss the part of usage sequence mining (i.e., exclusive of computation of probability

function). All algorithms were implemented in Java language and tested on a

workstation with Intel i7-3370 3.4 GHz with 8 GB main memory.

The performance study has been conducted on both synthetic and real world

datasets. First, we compare the execution time using synthetic datasets at different

minimum support. Second, we conduct an experiment to observe the memory usage

and the scalability on execution time of CoPMiner. In addition to using synthetic

datasets, we also have performed an experiment on real-world dataset to indicate the

applicability of correlation pattern mining. Finally, CoPMiner is applied in real-world

dataset to show the performance and the practicability of mining correlation patterns.

7.1 Synthetic Dataset

In order to evaluate the scalability of our algorithm, we use two kinds of synthetic

dataset generator. The first synthetic generator is to evaluate the scalability of database

size and minimum support threshold value. The second kind is to evaluate the

53

scalability as the length of each record grows.

First Kind Synthetic Data Generator

The first kind synthetic datasets in the experiments are generated using

synthetic generation program modified from [26]. Since the original data

generation program was designed to generate time point-based data, the generator for

correlation pattern mining algorithm requires modifications on interval events

accordingly. The parameter setting of temporal data generator is shown in Figure 23.

We create a set of potentially frequent sequences used in the generation of event

sequences. The number of potentially frequent sequences is . A potentially frequent

sequence is generated by first picking the size of sequence from a Poisson distribution

with mean equal to | |. Then, the event intervals in potentially frequent sequence are

chosen from event symbols randomly. All the duration times of event intervals are

classified into three categories: long, medium and short, which are normally distributed

with an average length of 12, 8 and 4 respectively. For each event interval, we first

randomly decide its category and then determine its length by drawing a value. The

temporal relations between consecutive intervals are selected randomly to form a

potentially frequent sequence. Since we adopt normalized temporal patterns [24], the

temporal relationships can be chosen from the set {before, meets, overlaps,

is-finished-by, contains, starts, equal}. After all potentially frequent sequences are

determined, we generate | | event sequences. Each event sequence is generated by

first deciding the size of sequence, which was picked from a Poisson distribution with

mean equal to | |. Then, each event sequence is generated by assigning a series of

Figure 23: Parameters of type 1 synthetic data generator

54

potentially frequent sequences. Finally, we assign the on-time of each usage-interval

with discrete uniform distribution on . The off-time is the on-time plus

the interval length. The location information attached to each appliance is uniformly

chosen on .

In all the following experiments, two parameters are fixed, i.e., | | = 4 and =

5,000. The other parameters are configured for comparison. Note that, for fair

comparison, when comparing the performance of CoPMiner with other interval-pattern

mining algorithms, we only discuss the part of usage sequence mining (i.e., exclusive of

computation of probability function). Figure 24 shows the running time of the four

algorithms with minimum supports varied from 1 % to 5 % on the dataset D10k–C20–

N1k. Obviously, when the minimum support value decreases, the processing time

required for all algorithms increases. We can see that when we continue to lower the

threshold, the runtime for IEMiner and TPrefixSpan increase drastically compared to

CTMiner and CoPMiner. This is partly because these two algorithms still process

interval-based data with complex relationship. The complex relationship may lead to

generate more number of intermediate candidate sequences.

Figure 25 shows the execution time of the four algorithms with minimum supports

varied from 1 % to 5 % on the dataset D100k–C20–N10k, which is much larger since it

Figure 24: Runtime performance testing on D10k–C20–N1k dataset

55

contains 100,000 event sequences and 10,000 event intervals. From the figure, we can

observe that CoPMiner has the best runtime performance. Note that, although CTMiner

also simplify the complex relation among intervals, the segmentation strategy of

representation consumes more processing time. On the contrary, the proposed usage

presentation only requires capturing two endpoints of an interval. Furthermore, three

pruning strategies also play an important role for the efficiency of CoPMiner. We will

discuss these in details later.

Figure 25: Runtime performance testing on D100k–C20–N10k dataset

Figure 26: Scalability of comparing algorithms on different database size

56

Then, we study the scalability of CoPMiner. Here, we use the data set C = 20, N =

10k with varying different database size. Figure 26 shows the results of scalability tests

of four algorithms with the database size growing from 100K to 500K sequences. We

fix the as 1%. Figure 27 depicts the results of scalability tests of CoPMiner

under different database size growing with different minimum support threshold

varying from 1% to 5%. As the size of database increases and minimum support

decreases, the processing time of all algorithms increase, since the number of patterns

also increases. As can be seen in Figure 27, CoPMiner is linearly scalable with different

minimum support threshold. When the number of generated patterns is large, the

runtime of CoPMiner still increases linearly with different database size.

Summarizing the results of type 1 synthetic data experiments, performance study

shows that CoPMiner has the best overall performance among the algorithms tested.

The scalability study also depicts that CoPMiner scales well even with large databases

and low thresholds.

Influence of Proposed Pruning Strategies

To reflect the speedup of proposed pruning methods, we measure CoPMiner with

Figure 27: Scalability of different min_sup on different database size

57

pruning strategies and without pruning strategy on time performance. We compare five

algorithms, CoPMiner (includes both pruning strategies), CoP_Point (only pruneSup

strategy), CoP_Prefix (only pruneFI strategy), CoP_Spatial (only pruneDB strategy)

and CoP_None (without any pruning strategy). The experiment is performed on the

data set D100k–C20–N10k. Figure 28 is the results of varying minimum support

thresholds from 0.5% to 1%. As shown in figure, CoP_Point can improve 23.4% to

27.9% of the performance of CoP_None. That means pruneSup can improve about 25%

performance of CoPMiner. The impact of the pruneFI also is presented. As can be seen

from the graph, pruneFI can improve about 11% performance of CoPMiner. Figure 28

also depicts that pruneDB constantly ameliorate the performance of CoPMiner about

2.5%.

In summary, three pruning strategies constantly improve 35% runtime

performance of CoPMiner. Consequently, the proposed pruning strategies not only

effectively reduce the searching space but also efficiently improve the performance of

CoPMiner.

Figure 28: Influence of three pruning strategies on different min_sup

58

Second Kind Synthetic Data Generator

Now let us focus on the second type synthetic data generators. We generate the

synthetic database with two integer parameters N and L. The database consists of N

sequences where is numbered from 1 to N. The set of event symbols is

 . Every sequence has L intervals and therefore 2L is the sequence length

of usage representation. For each usage interval () in a sequence, is chosen

from discrete uniform distribution on event symbol set E while and are chosen

from discrete uniform distribution on with . We regard this

synthetic database as uniformly-randomed. The locations of is uniformly chosen on

 . We evaluate the average execution time by mining 60

different uniformly-randomed databases.

The Figure 29 shows that our fastest algorithm (CoPMiner) is significantly

efficient when the intervals number L grow larger. Suppose that there are many

appliances in a smart environment, like lights, television, microwaves, kitchen outlets,

stoves and etc. The appliances could probably be turned on and off many times in one

day. This indicates L will grow up to 100 in one daily log. As L varies from 10 to 80,

CoPMiner is still durable in execution time while others (H-DFS[24], IEMiner[25],

TPrefixSpan[30] and CTMiner[5]) grow much faster than CoPMiner.

Figure 29: Execution time comparison on different algorithms

59

In order to compare CoPMiner algorithm with different strategies, Late Checking

(pruneFinal) checks the spatial similarity requirement after a usage sequence is

found and add into our frequent pattern set if is a correlation pattern.

We first evaluate the performances of proposed three strategies (pruneDB,

pruneFI and pruneSup) by Figure 29. We prepared six versions of CoPMiner and

named as , , , , and

 as shown in Table 5. Our parameters are fixed as N = 100, = 0.3

and = 0.89. Although the frequent pattern sets mined by the five algorithms

are completely identical, the execution time is significantly different. Figure 28 shows

the average execution time of the six versions of CoPMiner by varying the sequence

length L. In Figure 28 when the intervals number L = 20, averagely runs

in 29.022 second, costs 0.085 second, runs in 4.738 seconds,

 costs 0.021 second, runs in 0.066 and costs

0.006 second.

The pruneSup strategy reduces about 30X to 1000X execution time in Figure 29.

With the pruneSup strategy, we not only ensure that the set of correlation patterns is

completely identical but the average execution time is within 0.2 seconds when L = 80

(for the fastest CoPMiner). Therefore we conclude that the pruneSup strategy is most

significant efficient, the second is pruneFI and the third is pruneDB for CoPMiner.

Table 5: Strategies used by algorithms

Algorithm pruneFinal pruneDB pruneFI pruneSup

 Y

 Y Y

 Y Y

 Y Y Y

 Y Y

 Y Y Y

60

Figure 31 shows the number of projected databases constructed in mining process

for the fastest two algorithms, and . Although the memory

usage depends on the detail of implementation, our algorithms uses about 20MB when

Figure 30: Execution time of algorithms with strategies

Figure 31: The number of constructed projected database

61

L = 10 and about 50MB when L = 80. In Figure 30 when the intervals number L = 20,

 averagely visits 5265.033 projected database to discover the set of

correlation patterns while CoPMiner visits 250.433 projected databases. We compare

the growth orders in execution time (Figure 30) and the number of projected database

visited (Figure 31). We believe that the efficiency of CoPMiner is highly related to the

number of projected databases ever constructed. Therefore pruneSup strategy does

significantly reduce the number of constructed projected databases.

7.2 Real-world Dataset – REDD

In this section, we describe our real-world dataset and show some correlation

patterns that our algorithms discovered for each house. Although many smart home

environment datasets are available, but little of them records the status along with space

information for each appliance in smart home environment. Kolter et al. [18] collected

the dataset REDD including detailed power readings of each appliance of six houses

lasting for about five weeks. Therefore we can convert the raw data into suitable usage

database. We use our sample house for the location information of each house. And we

set the minimum space threshold fixed as 0.5 and mine the daily correlation patterns of

each house.

Precomputation

In the REDD dataset [18], the raw data of each appliance is real-valued with

discrete time. For example, ... (1303133979,0.00) (1303133983,9.00) ... is recorded as

Table 6: Description of six houses in REDD dataset

Home
Number of

Appliances

Number of Daily

Sequences

Number of Total

Intervals

1 16 36 1107

2 8 15 536

3 19 26 1361

4 17 31 1655

5 19 10 179

6 11 19 526

62

(UTC timestamp, power reading) for the stove of house 1. Therefore, we need to

convert the raw data of REDD dataset into symbolic intervals to form the usage

database.

Table 6 lists the descriptions of REDD dataset after our precomputation. We use

16 appliances of totally 20 (provided by [18]) in house 1. There are 36 days data

collected and totally 1107 intervals generated after our precomputation steps. We

briefly describe how to convert the real-valued raw data into time interval-based

database by the following steps.

(1) Round each of the real-valued power reading into an integer by the equation

 ⌊ ⌋.

(2) Apply the four-level Otsu's method on the histogram of all the rounded values

in previous step by the multilevel thresholding algorithm proposed in [19]. Then

we obtain the three thresholds , and with . Also

we take the smallest and largest if the between-class variance values

are tied [19]. Thus we have partitioned the power reading into four states,

Definitely-Off), Maybe-Off), Maybe-On) and Definitely-On

).

(3) We scan the rounded power readings to generate the intervals if the power

reading jumps from Definitely-Off to Definitely-On and jumps back. More clearly,

let be the rounded power reading at timestamp . We generate the interval

() if (1))) (2)))

and (3))) .

We list some representative patterns of each house in Figure 32. It is noted that

the interval length in Figure 32 only states the relations between endpoints instead of

the actual duration in the log of each home. By setting = 0.3 and

= 0.5, we have discovered only home 1, 3, 4 and 6 has frequent daily patterns.

Although home 2 and 5 have daily patterns in at most two days, we still regard home 2

63

and 5 have no outstanding daily patterns since their insufficiency of raw data. In home

1, the pattern 1 appears in 9 days and pattern 2 appears in 5 days. In home 3, pattern 1

and 2 appear in 5 days. Seven days of home 4 have pattern 1 while three days of home

6 exist pattern 1. The complete correlation pattern with probability function is listed in

7.3 Synthetic Dataset for Anomaly Detection

In this section, we describe our synthetic dataset for testing the performances of

anomaly detection. Since original data does not label every day with normal behavior

or anomaly. Therefore our target testing probability function is the probability

distribution of turning on Light 3 in house 1 (The probability distribution is depicted in

Figure 33 of second row and second column). We generate the synthetic query time of

turning on Light 3 in house 1 uniformly distributed in [0, 24). For example, the query

8.25 indicates that testing the anomaly of turning on Light 3 at 8:15 in house 1. We

uniformly pick 1 million queries in time. In other words, our testing set of query

 |) and we also evaluate

Equation 8 and obtain the distribution of the queries are shown in Figure 34.

Figure 32: Frequent patterns' sequence of REDD dataset

64

Figure 33: Part of detailed correlation pattern in REDD

65

We can see that there are two kinds of queries, normal time and anomaly time.

Therefore we regard the area under 0.45 as anomaly queries (59.37%) and above 0.5 is

normal query (40.63%). We evaluate the precision of anomaly queries by leveling up

the parameter min_pro from 5% to 100% with step 5%. The figure 35 tells us that when

min_pro = 0.05 we identify 91.36% anomaly queries out and correctly report to system

while min_pro = 0.2 we only capture 61.69% anomaly queries. We conclude that the

lower min_pro will raise more anomaly detection. However the actual value of min_pro

is usually user sensitive and therefore the proper min_pro threshold should be found

based on users.

Figure 34: The distribution of query dataset Q

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5 1

Area of Equation 8

Figure 35: The precision of synthetic dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5 1

P
re

ci
si

o
n

min_pro

66

Chapter 8

Conclusion

Recently, considerable concern has arisen over the electricity conservation due to

the issue of greenhouse gas emissions. If representative behaviors of appliance usages

are available, residents may adapt their usage patterns to conserve energy effectively.

However, previous studies on usage pattern discovery are mainly focused on analyzing

single appliance and ignore the usage correlation among appliances. In this paper, we

introduce a new concept, correlation pattern, to capture the usage patterns and

correlations among appliances probabilistically. An efficient algorithm, CoPMiner is

developed to discover patterns based on proposed usage representation. We also

introduce three pruning strategies named pruneDB, pruneFI and pruneSup to improve

the performance of the proposed algorithm. We also mention some applications of

correlation pattern mining, like anomaly behavior detection and activity prediction. We

also list some issues for anomaly detection and propose a method for anomaly detection

system. The experimental studies on synthetic dataset indicate that CoPMiner is

efficient and scalable. Furthermore, CoPMiner is applied on a real-world dataset to

show the practicability of correlation pattern mining.

67

Bibliography

[1] J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of

ACM, vol.26, issue 11, pp.832-843, 1983.

[2] O. Aritoni and V. Negru. A Methodology for Household Appliances Behavior

Recognition in AmI Systems Integration. Proceedings of 7th International

Conference on Automatic and Autonomous Systems (ICAS'11), pp. 175-178, 2011.

[3] S. Barker, A. Mishra, D. Irwin, E. Shenoy and J. Albrecht. Smart*: An Open Data

Set and Tools for Enabling Research in Sustainable Homes. Proceedings of

SustKDD Workshop on Data Mining Applications in Sustainability, 2012.

[4] F. Chen, J. Dai, B. Wang, S. Sahu, M. Naphade and C. Lu. Activity Analysis Based

on Low Sample Rate Smart Meters. Proceedings of 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD'11), pp.

240-248, 2011.

[5] Y. Chen, J. Jiang, W. Peng and S. Lee. An Efficient Algorithm for Mining Time

Interval-based Patterns in Large Databases. Proceedings of 19th ACM International

Conference on Information and Knowledge Management (CIKM'10), pp. 49-58,

2010.

[6] Y. Chen, W. Peng and S. Lee. CEMiner 一 An Efficient Algorithm for Mining

Closed Patterns from Time Interval-based Data. Proceedings of 11th IEEE

International Conference on Data Mining (ICDM'11), pp. 121-130, 2011.

[7] Y. Chen, Y. Ko and W. Peng, An Intelligent System for Mining Usage Patterns

from Appliance Data in Smart Home Environment. Conference on Technologies

and Applications of Artificial Intelligence (TAAI’12), pp. 319-322, 2012.

[8] Y. Chen, Y. Ko, W. Peng and W. Lee. Mining Appliance Usage Patterns in a Smart

Home Environment. 17th Pacific-Asia Conference in Knowledge Discovery and

68

Data Mining, Advances in Knowledge Discovery and Data Mining (PAKDD’13),

pp. 99-110, 2013.

[9] L. Farinaccio and R. Zmeureanu. Using a Pattern Recognition Approach to

Disaggregate the Total Electricity Consumption in a House into the Major End-uses.

Energy and Buildings, vol. 30, no. 3, pp. 245-259, 1999.

[10] H. Goncalves, A. Ocneanu and M. Berges. Unsupervised Disaggregation of

Appliances using Aggregated Consumption Data. KDD workshop on Data Mining

Applications in Sustainability (SustKDD'11), 2011.

[11] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M. Hsu. FreeSpan:

frequent pattern-projected sequential pattern mining. Proceedings of 6th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD'00), pp. 355-359, 2000.

[12] M. Ito, R. Uda, S. Ichimura, K. Tago, T. Hoshi and Y. Matsushita. A Method of

Appliance Detection Based on Features of Power Waveform. Proceedings of 4th

IEEE Symposium on Applications and the Internet (SAINT'04), pp. 291-294, 2004.

[13] V. Jakkula and D. Cook. Learning Temporal Relations in Smart Home Data.

Proceedings of the Second International Conference on Technology and Aging,

2007.

[14] V. Jakkula and D. Cook. Using Temporal Relations in Smart Environment Data

for Activity Prediction. Proceedings of the 24th International Conference on

Machine Learning (ICML'07), pp. 1-4, 2007.

[15] V. Jakkula, D. Cook and A. Crandall. Temporal pattern discovery for anomaly

detection in a smart home. Proceedings of the 3rd IET Conference on Intelligent

Environments (IE’07), pp. 339-345, 2007.

[16] T. Kato, H. Cho, D. Lee, T. Toyomura and T. Yamazaki. Appliance Recognition

from Electric Current Signals for Information-energy Integrated Network in Home

Environments. Ambient Assistive Health and Wellness Management in the Heart of

the City, vol. 5597, pp. 150-157, 2009.

[17] H. Kim, M. Marwah, M. Arlitt, G. Lyon and J. Han. Unsupervised Disaggregation

of Low Frequency Power Measurements. Proceedings of 11th SIAM International

Conference on Data Mining (SDM'11), pp. 747-758, 2011.

69

[18] J. Kolter, M. Johnson. REDD: A Public Data Set for Energy Disaggregation

Research. KDD workshop on Data Mining Applications in Sustainability

(SustKDD'11), 2011.

[19] P. Liao, T. Chen and P. Chung. A Fast Algorithm for Multilevel Thresholding.

Journal of Information Science and Engineering, Institute of Information Science,

Academia Sinica, 17, pp. 713-727, 2001.

[20] G. Lin, S. Lee, J. Hsu and W. Jih. Applying Power Meters for Appliance

Recognition on the Electric Panel. Proceedings of 5th IEEE Conference on

Industrial Electronics and Applications (ISIEA'10), pp. 2254-2259, 2010.

[21] B. Liu, Y. Yang, G. Webb and J. Boughton. A Comparative Study of Bandwidth

Choice in Kernel Density Estimation for Naive Bayesian Classification. 13th

Pacific-Asia Conference in Knowledge Discovery and Data Mining, Advances in

Knowledge Discovery and Data Mining, (PAKDD’09), pp. 302-313, 2009.

[22] H. Matthews, L. Soibelman, M. Berges and E. Goldman. Automatically

Disaggregating the Total Electrical Load in Residential buildings: a profile of the

required solution. Intelligent Computing in Engineering, pp. 381-389, 2008.

[23] F. Mörchen and A. Ultsch. Efficient mining of understandable patterns from

multivariate interval time series. Data Mining and Knowledge Discovery 15.2 (2007)

181-215.

[24] P. Papapetrou, G. Kollios, S. Sclaroff and D. Gunopulos. Discovering Frequent

Arrangements of Temporal Iintervals. International Conference on Data Mining

(ICDM’05), pp. 354-361, 2005.

[25] D. Patel, W. Hsu and M. Lee. Mining Relationships Among Interval-based Events

for Classification. Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, pp. 393-404, 2008.

[26] J. Pei, J. Han, B. Mortazavi-Asl, H. Pito, Q. Chen, U. Dayal and M. Hsu.

PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern

Growth. Proceedings of 17th International Conference on Data Engineering

(ICDE’01), pp. 215-224, 2001.

70

[27] A. Prudenzi. A Neuron Nets Based Procedure for Identifying Domestic

Appliances Pattern-of-use from Energy Recordings at Meter Panel. IEEE Power

Engineering Society Winter Meeting, vol. 2, pp.491-496, 2002.

[28] B. Silverman. Density Estimation for Statistics and Data Analysis. CHAPMAN

and HALL, 1986.

[29] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura and K. Ito. Nonintrusive Appliance

Load Monitoring Based on Integer Programming. International Conference on

Instrumentation, Control and Information Technology (ICIT’08), pp. 2742-2747,

2008.

[30] S. Wu and Y. Chen. Mining Nonambiguous Temporal Patterns for Interval-Based

Events. IEEE Transactions on Knowledge and Data Engineering, vol.19, issue 6,

pp. 742-758, 2007.

[31] I. Batal, D. Fradkin, J. Harrison, F. Moerchen and M. Hauskrecht. Mining Recent

Temporal Patterns for Event Detection in Multivariate Time Seies Data.

Proceedings of 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD'12), pp. 280-288, 2012.

[32] Z. Liao, P. Lei, T. Shen, S. Li and W. Peng. AppNow: Predicting Usage of Mobile

Applications on Smart Phones. Conference on Technologies and Applications of

Artificial Intelligence (TAAI’12), pp. 319-322, 2012.

[33] Z. Liao, P. Lei, T. Shen, S. Li and W. Peng. Mining Temporal Profiles of Mobile

Applications for Usage Prediction. IEEE 12
th

 International Conference on Data

Mining Workshops (ICDMW'12), 2012.

