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Chapter 1 

 

Introduction 

 
Recently, concerns over global climate changes have motivated significant efforts 

in reducing the emissions of CO2 and other greenhouse gases (GHGs). With the 

increasing requirement for more electric power, the development of sustainable energy 

like hydroelectricity, solar and wind energy attract many researchers to engage in. The 

manufacturing process of industry contributes large amount of greenhouse gases while 

the business and residential area counts on steady and continuous power supply. For the 

residential or industrial area, it is not an easy task to indicate that where we have wasted 

our precious electricity power for unnecessary appliances uses. Many researchers focus 

on the reduction of electricity usage in residence because it is a significant contributor 

of greenhouse gas emissions.  

However, electricity conservation is an arduous task for the residential users due to 

the lack of detailed electricity usage. For the residential or industrial area, it is not an 

easy task to indicate that where we have wasted our precious electricity power for 

unnecessary appliances uses. Therefore we expect that we can use electricity more 

efficiently by discovering the appliances behaviors. If the useful inspiration of our 

behaviors and representative patterns of appliance electricity usage are available, 

residents can adapt their appliance usage behaviors to conserve the energy effectively. 

Due to the advance of sensor technology, the electricity usage data of in-house 

appliances can be collected easily. For example, it is no longer an obstacle that we 

manufacture the electrical sensors with capability of collecting the voltage, current and 
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apparent power consumption information. Collecting the appliances or environment 

status will be easy [3, 18]. In particular, an increasing number of smart power meters, 

which facilitates data collection of appliance usage, have been deployed.  

With the usage data, one could supposedly visualize how the appliances are used. 

Nonetheless, with an anticipated huge amount of appliance usage data, subtle 

information may exist but hidden. We observed that in the smart environment the 

appliances behaviors of the residents have the spatial relation. For example, people 

watching television in the living room of first floor will also turn on the lights in the 

living room, rather than turn on the other appliances in the second or third floor. We 

also observed that the appliances ON-OFF data in the smart environment can be 

regarded as the time interval-based database. Therefore it is necessary to devise data 

mining algorithms to discover appliance usage patterns in order to make representative 

usage behavior of appliances explicit. Appliance usage patterns cannot only help users 

to better understand how they use the appliances at home but also detect abnormal 

usages of appliances. Moreover, it facilitates appliance manufacturers to design 

intelligent control of smart appliances. 

In our daily life, we usually use different appliances simultaneously. For example, 

in the morning, coffee machine and toaster in the kitchen are often used together to 

prepare for breakfast, while the light, air conditioner and television in the living room 

may be turned on in the evening (as shown in Figure 1). The correlation among the 

usage of some appliances can provide valuable information to assist residents better 

understand how they use appliances. 

 

Figure 1: An example of daily usage sequence 

Moreover, it is difficult to discover useful knowledge from a huge set of generated 
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patterns. Too many patterns sometimes hinder users from understanding their actual 

behaviors. Hence, we aim to derive compact and meaningful patterns in this study. 

Obviously, the locations of appliances in a house provide good hints. For example, as 

shown in Fig. 1, the correlation between television and light in the same living room on 

the first floor may reveal a high dependency between these two devices. Moreover, the 

co-occurrence of turning on the television in living room on the first floor and turning 

on the light in bathroom on the third floor may be merely a coincidence. 

So far, little attention has been paid to the issue of mining correlation among 

appliances, which undoubtedly is more complex and arduous than mining the usage 

patterns of an appliance alone, and thus requires new mining techniques. In this paper, a 

new framework fundamentally different from previous work is proposed to discover the 

usage correlation patterns. The contributions of our work are as follows: 

 Probabilistically, we define the notion of correlation pattern based on time 

interval-based sequence. Since the usage of a device can be regarded as a 

usage interval (time duration between turn-on and turn-off), interval-based 

sequence can depict users’ daily behaviors unambiguously. 

 The relation between any two usage intervals is intrinsically complex. This 

complex relation is really crucial for designing a correlation pattern mining 

algorithm with high efficiency and effectiveness, since it may lead to more 

candidate sequences and heavier workload for computing the support. We 

propose a method, called usage representation, to simplify the processing of 

complex relations among intervals by considering the global information of 

intervals in the sequence.  

 We develop an efficient algorithm, called Correlation Pattern Miner 

(abbreviated as CoPMiner), to capture the usage patterns implying the 

correlations among appliances with several optimized techniques to reduce 

the search space effectively. 

 The readability of patterns is also an essential issue. Sometimes, a large 

number of patterns may become an obstacle for users to understand their 

actual behaviors. To generate compact, expressive and meaningful patterns, 

we propose a method that takes into account the interior of a smart home. A 
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spatial constraint is introduced to prune off non-promising correlation and 

reduce the number of generated correlation patterns. 

 To demonstrate the practicability of correlation pattern mining, we apply 

CoPMiner on a real dataset and analyze the results to show the discovered 

patterns are not just an anecdote. 

Now let us list the application domain of mining correlation patterns. That is, we 

will mention who, where and when will people need the pattern mining algorithm. We 

first enumerate the application domain are Researchers in Library and Information 

Science [5], in Information and Electrical Engineering (Smart Sensors and Environment 

related) [7, 8], Economy, Banking and Finance [30], Medical Information [31] and 

Mobile Sensors Applications [32, 33]. 

As the experiments in CTMiner [5], the lending/borrowing behaviors of books can 

be our applications. Different from CTMiner explores what lending/borrowing 

behaviors of books are tends to appear, our algorithm introduce the spatial constraint, 

which can be regarded as the general similarity of items, can explore more specific the 

relations of patterns and along with its happening time. That is, CTMiner may tell us 

that many people borrowing a book of C++ Programming Language (Science Class 

with class number 300), a book of Philosopher (Philosophy Class with class number 

100) and a book of Eastern Architecture (Arts Class with class number 900). This 

lending behavior is not easy to recommend people to borrow what kind of related C++ 

programming book. However, our algorithm especially focuses on the relations of items 

and happening time and may tell people to lend another C++ programming books 

which many people recommend. For the managers of library, they can see the lending 

time of these books to decide which part of books are frequently lend and pay more 

attention on managing or introducing new books into these area. 

In banking and finance, the spatial constraint in correlation pattern can be seen as 

the relations between different stocks, future contracts, bonds, funds and other 

derivatives in financial instrument. Financial data has much worthy implicit knowledge 

and the Chief Finance Officer (CFO) of company may be interested in the stock 

interactive behaviors in Stock Market to make proper financial decisions for company. 

Medical Information will also record many laboratory variables and disease for 
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patients. Especially, the medical data like electronic health record (EHR) is multivariate 

and contains class labels [31]. For mobile users, the user’s temporal profile is very 

crucial for App prediction [32, 33]. Our algorithm may explore more interval-based 

sensors features for each user and can be used in prediction. 

The rest of the paper is organized as follows. Section 2 reviews some related 

works. Section 3 provides the preliminaries and the framework of our system. Section 4 

introduces the detail definitions of usage representation correlation pattern, and 

probability-based projected database and finally proposed CoPMiner algorithm. Section 

5 proposed three pruning strategies for discovering correlation patterns. Section 6 gives 

the detailed applications on anomaly detection by using correlation patterns. Section 7 

reports the experimental results in a performance study and the correlation patterns 

mined in real-world dataset, and finally Section 8 concludes this paper. 
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Chapter 2 

 

Related Work 

 

During the past several decades, many researchers focus on sequential pattern 

mining, temporal pattern mining and discover the behaviors in smart environment. We 

provide a very brief survey on these domains and summarize the domains into two parts. 

First, we discuss some literatures about sequential pattern mining and temporal pattern 

mining. Then, we will discuss some works mainly apply to smart environment. Some 

applications like behaviors discovery, anomaly detection and activity prediction are 

also listed. 

 

2.1 Research Works in Smart Environment 

Many prior studies discuss how to extract useful knowledge regarding usage 

patents of a single appliance via energy disaggregation [4, 9, 10, 17, 20, 29] or 

appliance recognition [2, 7, 8, 12, 16, 22, 27, 29]. 

In the domain of energy disaggregation, Chen et al. [4] disaggregate utility 

consumption from smart meters into specific usage associated with certain human 

activities. They propose a novel statistical framework for disaggregation on coarse 

granular smart meter readings by modeling fixture characteristic, household behavior, 

and activity correlations. Farinaccio et al. [9] use some patterns, such as number of 

ON-OFF switches, to disaggregate the whole-house electricity consumption into a 
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number of major end-uses. Goncalves et al. [10] explore an unsupervised approach to 

determine the number of appliances in the household, including their power 

consumption and state, at any given moment. Kim et al. [17] investigate the 

effectiveness of several unsupervised disaggregation methods on low frequency power 

measurements collected in real homes. They also propose a usage pattern which 

consists of on-duration distribution of all appliances. Lin et al. [20] use a dynamic 

Bayesian network and filter to disaggregate the data online. Suzuki et al. [29] use a new 

NIALM technique based on integer programming to disaggregate residential power use. 

For appliance recognition, Aritoni et al. [2] develop a software prototype to 

understand the behaviors of household appliances. Ito et al. [12] extract features from 

the current (e.g., amplitude, form, timing) to develop appliance signatures. Kato et al. 

[16] use Principal Component Analysis to extract features from electric signals and 

classify them using Support Vector Machine. Prudenzi [27] utilize an artificial neural 

network based procedure for identifying the electrical signatures of residential 

appliances. Matthews et al. [22] discuss some of these works and characterize workable 

solutions. 

For usage pattern of appliances, Chen et al. [8] introduce two types of usage 

patterns to describe users’ representative behaviors. HAUBA [7] is developed to 

analyze the usage status of all appliances in a smart home environment. An intelligent 

system, Jakkula et al. propose an Apriori-based algorithm [13] for activity prediction 

[14] and anomaly detection [15] from sensor data in a smart home. However, Jakkula et 

al. use the Allen’s representation for time interval-based data, which still has ambiguity, 

and mining algorithm is candidate generation, which is not efficient enough. 

All aforementioned studies focus on knowledge extraction for a single appliance 

instead of the correlation among appliances in a house. 

 

2.2 Sequential/Temporal Pattern Mining 

The sequential pattern mining originally focuses on the time point-based 

database [11, 26]. Han et al. [11] propose an efficient sequential pattern mining 

method, named FreeSpan. The general idea of FreeSpan is to integrate the 
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mining of frequent sequences with that of frequent patterns and use projected 

sequence databases to confine the search and the growth of subsequence 

fragments. Pei et al. [26] propose an efficient sequential mining algorithm, 

named PrefixSpan, based on divide-and-conquer inspiration. PrefixSpan 

explores prefix-projection in sequential pattern mining, which substantially 

reduces the size of projected databases. 

 The time point-based data denotes the transactions happened at the specific 

time. However, the time interval-based data records the event both with start 

time and finish time. Therefore, a proper representation for time interval-based is 

a great issue. Allen’s logic [1] gives the 13 relations between any two intervals. 

Figure 2 lists all the Allen’s relations. However, Allen’s relation will suffer the 

disambiguity when representing three or more intervals. To conquer the problem, 

researchers usually use a relation matrix to maintain.  

Some algorithms are proposed to discover the temporal patterns in time 

interval-based database [5, 6, 23, 25, 30]. Morchen et al. [23] propose the Time 

Series Knowledge Representation(TSKR) representation and mining algorithm 

TSKM. Patel et al. [25] propose the Augmented Hierarchical Representation 

(abbreviate as AHR) to explore temporal pattern for classification. Wu et al. [30] 

propose the Temporal Sequence (abbreviate as TS) to mining temporal patterns. 

Chen et al. [5] propose a more compact representation, named Coincidence 

Representation (abbreviate as CR). Chen et al. [6] propose an Endpoint 

Representation (abbreviate as ER). To fairly compare the advantages and 

disadvantage, we use the example of Figure 3 to show how these temporal 

representation works. Table 1 lists the above five representations for the example 

in Figure 3. 
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Figure 2: Allen’s 13 relations between two intervals 
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Table 1: Five distinct representations for temporal relations in Figure 3 

Method Representation 

TSKR AB  ABDE  ADE  AC 

AHR 
(((A Started-by [0,0,0,0,1] B) Contains [1,0,0,1,0] D) 

Contains [2,0,0,2,0] E)  Finished-by [2,0,2,2,0] C 

TS A
+ 

= B
+ 

< D
+ 

= E
+ 

< B
－ 

< C
+ 

= D
－ 

= E
－ 

< A
－ 

= C
－

  

CR (A
+ 

B
+
) ( D

+ 
E

+ 
B
－

) ( D
－ 

E
－

) @ (C A
－

) 

ER (A
+ 

B
+
) (D

+ 
E

+
) B

－ 
(D

－ 
E
－ 

C
+
) (A

－ 
C
－

) 

 

 

 

 

 

 

Figure 3: An example contains 13 Allen’s relation 
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Chapter 3 

 

System Overview 

 

In section 3.1 Preliminaries, we will first give formal definitions of some terms we 

use in this paper and then the definition of our problem. In section 3.2 System 

Framework, we will give a concrete overview of our system framework and also 

describes how our system works. 

 

3.1 Preliminaries  

Definition 1 (Usage-interval and usage-interval sequence)  

Let             be a set of k appliances. Without loss of generality, we define 

a set of uniformly spaced location and time points based on natural numbering  . A 

function,         , specifies the location of each appliance in A. Let the triplet 

(        )        denote a usage-interval of   , where              and 

     . The two time endpoints    and    are the turn-on time and the turn-off time 

of appliance    respectively. This indicates the interval of appliance    starts at time 

   and finishes at time    with      . The set of all usage-intervals over A is denoted 

by   . A usage-interval sequence     is a series of usage-intervals triples. Formally, 

     〈(        ) (        )   (        )〉 with         and       . Also all 



 

17 

the n elements in Seq are ordered by (1) start time    (2) finish time    and finally (3) 

appliance symbol   .    (  ) is the interior location of appliance    in a smart home 

environment. We can either use the logical location or real location to define    . 

 

Let us take Figure 1 as an example. Suppose that there are three appliances, light, 

air conditioner (AC), television (TV). Each appliance has its interior location in the 

house. (light, 18:00, 24:00) is a usage-interval and ⟨ (AC, 00:00, 06:00), (light, 05:00, 

08:00), (light, 18:00, 24:00), (AC, 18:00, 24:00), (TV, 20:00, 22:00)  ⟩ is a daily 

usage-interval sequence on Oct. 27, 2012. 

 

Definition 2 (Usage-interval database) 

The set                 is said to be a usage-interval database if D collects 

the records     〈       〉 with the sequence date        and its corresponding 

daily usage-interval sequence   . Also, an interior location of appliance is also 

recorded in DB. Note   that   the   location information can be regarded as an 

attachment to appliances. Figure 4 shows a usage database which consists of 17 usage 

intervals and 4 daily usage-interval sequences. 

 

 

 

 

 

 

 

 

Figure 4: An example of usage database 
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Processing usage-interval sequence is a difficult task. Since the relation among 

usage intervals is intrinsically complex. Allen’s 13 temporal logics [1], in general, can 

be adopted to describe the relations among intervals. However, Allen’s logics are 

binary relation. When describing relationships among more than three intervals, it may 

suffer several problems. In this paper, we modify the coincidence representation [5] and 

propose a new expression, called usage representation, to address the ambiguous and 

scalable problem of Allen’s temporal logics. 

Given a usage-interval sequence    〈(        ) (        )   (        )〉 , 

the set                           is the time set corresponding to  . After we 

order all the elements of     in nondecreasing order, we can derive a sequence 

   〈           〉  where        and        .    is called a time sequence 

corresponding to  . 

 

Definition 3 (Usage-point and usage sequence) 

Given a usage-interval sequence    〈(        ) (        )   (        )〉 

where (        )     and corresponding time sequence    〈                〉, a 

function   that maps a usage interval (        ) into two usage-points   
  and   

  

is defined as follows.  

 (    )  {
  

            

  
            

                                                                  ( ) 

where   
  and   

  are called on-point and off-point of interval (        ) 

respectively. The usage-points   
 , …,   

  (* can be ＋ or － ) are collected in 

brackets and ordered the elements in parenthesis by (1) end point   
  (2) appliance 

symbol   and finally (3) start points   
 . We also attach occurrence number to 

usage-points in order to distinguish multiple occurrences of the same appliance in an 

usage-point sequence. A usage sequence    of   is denoted by    〈           〉 

where    is a usage-point. For example, in Figure 4 the database collects 4 daily 
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usage-interval sequences. The usage sequence of date 2 is 

〈         (     ) (     )   〉  Noted that (     ) and (     ) are represented 

with ordering within parenthesis because they occur at the same time respectively. 

 

Definition 4 (Usage representation) 

Given a usage-interval sequence    〈(        )   (        )〉 and corresponding 

time sequence    〈             〉 , we can derive the usage sequence    

〈             〉  by Definition 3. The usage representation of   is defined as a 

pair. Noted that the time of usage point    in    is    in   . 

(     )  (
         

         
)                                                        ( ) 

 

By Definition 4, we can transform a usage-interval database into usage 

representation. Let us take the database in Figure 4 as an example. Without leading into 

ambiguity, we consider the turn-on and turn-off times by recording hours only. The 

usage representation of DB is shown in the last column in Figure 4. For the rest of this 

paper, we assume that the usage database has already been transformed into usage 

representation.  

 

Definition 4.1 (Subsequence, support, and spatial similarity) 

Let    〈            〉 and    〈            〉 be two usage sequences, 

where       are usage points and    .    is called a subsequence of   , denoted 

by      , if there exist integers                such that       
, 

      
, …,       

. Given a usage-interval database DB in usage representation, 

the tuple (          )     is said to contain a usage sequence   if     . The 

support of a usage sequence   in DB, denoted as         ( ), is the number of 
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tuples in the database containing  . More formally, 

       ( )  | (          )    |      |                                                 ( ) 

 

As mentioned above, each appliance in a house has its own location. For an 

appliance    , the function             gives the locations (        )  

of    . The similarity between two appliances         is defined as 

          (     )  {

                                                 (  )     (  )
 

|   (  )     (  )|
            (  )     (  )

                (   ) 

     |   (  )     (  )|  |   
    

|  |   
    

|  |   
    

|                 (   ) 

    

For example, in Figure 4 the similarity of appliances B and C is 

 

|   | |   | |   |
 

 

 
     . Obviously, the support count decides the significance of a 

usage sequence. We use a support threshold, min_sup, to filter out insignificant usage 

sequences. Furthermore, as mentioned above, the spatial distance may spoil the 

correlation dependency between two devices. When mining representative usage 

sequences, we use a similarity threshold, min_sim, to filter out non-promising 

appliances in a usage sequence. A usage sequence   〈       〉 in DB is called a 

frequent sequence if        ( )          and                    (     )  

       . 

Let us go into deeper abstraction for spatial similarity. We can regard the spatial 

similarity as the general similarity for items. That is, for the applications in library and 

information sciences, if we want to find the lending/borrowing relations among the 

same class of the books we can define each book is in an imaginary location in the 

pseudo-space of book space. Probably the location is related to the class of the book. 

For another financial domain, we can regard each stock is located in the stock space. 

And their location may be defined by their other feature like industry type, capital of 



 

21 

company, the rate of return and etc. Of course the practical definition of similarity may 

vary from domain to domain. But here we just introduce the general idea of item 

similarity and we name it as spatial similarity. Also, the spatial similarity will have 

great impact on what kind of correlation patterns are mined, which is defined in 

Definition 5. Therefore, we can regard the spatial similarity as the constraints of the set 

of target patterns. 

 

Definition 5 (Correlation pattern) 

Given a usage-interval database DB in usage representation and two thresholds 

min_sup and min_sim, the set of frequent sequences FS includes all frequent usage 

sequences in DB. The correlation pattern consists of two parts. One part is the frequent 

sequence   〈       〉. The other part is the probability function of each usage point 

happening in time of 24 hours and we use a set of functions  ( )  〈       〉 to 

annotate the probability along with the frequent sequence  . The formal definition of 

correlation pattern P is defined as 

  (   ( ))  (
        

        
)   

        〈       〉     and    is the probability function of    in DB.   (5) 

 

We also use the idea of Multivariate Kernel Density Estimation [21, 28] to 

estimate the probability function of each     . Suppose that the time information of 

   in DB is {             }, the formal definition of probability function is defined as 

  ( )  〈 ( )   {         }〉  
 

  
∑  (

     

 
) 

     with   
     (           )

√ 
   

                                       ( )  
 

√  
  

  

         (6) 

 

We take the database in Figure 4 as an example again. Given min_sup = 2 and 

min_sim = 0.3, 〈           〉 is a frequent sequence since it appears in date = 1, 3 
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and 4. Therefore        (〈           〉)              and 

           (   )                 . The correlation pattern with respective to 

〈           〉 is (
        

            
). Here we discuss    ( ) as an example. 

The time information of    is {2, 6, 13}, hence    ( )  
 

  √  
(  

 

 
(
   

 
)
 

 

  
 

 
(
   

 
)
 

   
 

 
(
    

 
)
 

), with   
     (        )

√ 
 

    

√ 
     . 

Obviously, with a turn-on time of appliance    , we can derive probability 

functions    ( ) and    ( ) with respect to the usage of  . The practicability of 

correlation patterns will be discussed in chapter 4 and 6. 

The reason that we define the correlation pattern combined with probability 

density functions (p.d.f.) makes the correlation pattern outperforms from related works 

[5, 6, 23, 25, 30]. Since we expect to see the p.d.f. of happening time of each interval 

not only simply interprets the relations. The gap of happening time also make the 

patterns contains different meanings. Consider that there are two patterns with the same 

interval relations. The first pattern says that next behavior pops up within 1 hour while 

another tells us the next behavior appears in 8 hours. This will tell us that although the 

relation might be same, but the happening time (or equivalently the p.d.f.) are different 

matters the semantics of the pattern. Also with the p.d.f. appended in correlation pattern, 

we can provide more information and application like anomaly detection and activity 

prediction by applying the calculations on p.d.f. 

 

3.2 System Framework 

In this section we will describe our framework of novel mining algorithm, 

CoPMiner, and also give a general view of each components or modules inside the 

CoPMiner. The general concepts or main idea of our algorithm or components will be 

described here. And the detailed content will be depicted in chapter 4 and 5. 
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Problem definition 

Let             be the usage database of appliances symbol set   

         . Inside the usage database   we can see that each record    collects the 

usage-interval sequence of certain day     . Equivalently we can say that    

 〈(           )   (           )〉 is the daily behavior that consist of several usage 

intervals (           )       . Each appliances     also has the interior 

information which is retrieved from the original floor plan and denoted as location 

function            . In order to explore the correlation patterns, the 

minimum support of database            is used to verify the frequent sequences 

from the usage database. With respect to spatial constraint of the usage sequence of 

correlation pattern, the minimum spatial support of location function           

      is also used to ensure that each appliance in the sequence of explored correlations 

pattern are pairwise closed enough in the space. 

Now given the usage database   and the minimum support thresholds 

           and                 , our target is to explore the correlation pattern 

set   from the usage database  . Mathematically, if the usage sequence   is a 

frequent pattern for   ( that is        ( )          ) and the appliances inside 

the sequence   are spatially closed enough ( that is                    (     )  

        ), then correlation pattern of   is collected in  , i.e. (   ( ))   . 

 

The framework of CoPMiner 

Now our framework is clearly shown in Figure 5. Obviously, our framework 

contains online and offline part. The main goal of the online part is to obtain the two 

parameters            and                 from user. After receiving the users’ 

preference with database, we will give the two parameters to main algorithm, 

CoPMiner, to discover all the correlation patterns and then we show to users what the 

patterns are mined. The offline part consists of usage database, the location function, 

the database in usage representation and finally the CoPMiner algorithm. 

Transforming the usage database in usage representation is the first step in the 

offline part and is shown as the blue cylinder in the Figure 5. We require following the 
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Definition 1 to 4 to transform every sequence in the original usage-interval database 

into the usage representation like Equation (2). We will further mining the patterns 

based on the usage representation and therefore this step is very important. This step 

will scan the usage database once and transform the usage-interval sequence into usage 

representation form like Equation (2). 

The CoPMiner algorithm is the second step after converting the notations of usage 

sequences. The main mining concept of CoPMiner is similar to the previous framework 

of PrefixSpan [PrefixSpan]. CoPMiner will count the frequent usage points in the local 

projected database and construct the next projected database based on the current prefix. 

The recursive mining procedure is named UPrefixSpan in our algorithm. Owing to we 

are required to explore the correlation patterns, three strategies pruneDB, pruneFI and 

pruneSup are also used interactively inside the UPrefixSpan. The detailed concepts 

and implementation methods of pruning strategies are depicted in chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The framework of CoPMiner 
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Chapter 4 

 

Correlation Pattern Discovery 

 

We focus our study on correlation pattern mining in smart home due to its wide 

applicability and the lack of research on this topic. In this paper, we develop a new 

algorithm, called Correlation Pattern Miner (abbreviated as CoPMiner), to discover 

correlation patterns effectively and efficiently. CoPMiner utilizes the arrangement of 

endpoints to accomplish the mining of correlation among appliances’ usage. We also 

propose three pruning strategies to effectively reduce the search space and speedup the 

mining process. In Section 4.1, we discuss some advantages of usage representation. In 

Section 4.2, we outline the practicability of proposed correlation pattern and describe 

how to use the correlation patterns to perform some applications like anomaly detection 

and behavior prediction. In Section 4.3, we proposed the novel idea of projected 

database used in CoPMiner. In a nutshell, we introduce the concept of affect the 

projected database of certain prefix by probability function. In Section 4.4, we give a 

complete and full view of detailed mining algorithm－CoPMiner. 

 

4.1 Usage Representation 

Practicability of Usage Representation 

Obviously, the correlation pattern mining is an arduous task. Since the time period 

of the two usage-intervals may overlap, the relation between them is intrinsically 

complex. Allen’s 13 temporal logics [1], in general, can be adopted to describe the 
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relations among intervals, as shown in Figure 2. However, Allen’s logics are binary 

relations. When describing relationships among more than three intervals, Allen’s 

temporal logics may suffer several problems. 

A suitable representation is very important for describing a correlation pattern. In 

this paper, a new expression, called usage representation, is proposed to effectively 

address the ambiguous and scalable issue [30] for describing relationships among 

intervals. Given two different usage-intervals A and B, the usage representation of  

Allen’s  13 relations between  A and B is categorized as in Figure 2. Several merits 

of usage representation are discussed as follows, 

 Lossless: Usage representation not only implies the temporal relation among 

intervals, but also includes the accurate usage time of each interval. This 

concept can achieve a lossless representation to express the nature of the 

interval sequence. Since each usage-interval has two usage-points, we only 

require 2k space for expressing a k-interval sequence and 2k space for 

describing turn-on/off time. The usage representation scales well even with 

plenty of intervals appearing in a sequence. 

  Nonambiguity: According to [30], we can find that the usage representation 

has no ambiguous problem. First, by Definition 3 and 4, we can transform 

every usage-interval sequence to a unique usage sequence. In other words, the 

temporal relations among intervals can be mapped to a usage sequence. 

Second, in a usage sequence, the order relation of the starting and finishing 

endpoints of A and B can be categorized as shown in Figure 2. Hence, we can 

infer the original temporal relationships between intervals A and B 

nonambiguously. 

  Simplicity: Obviously, the complex relations between intervals are the major 

bottleneck of correlation pattern mining. However, the relation between two 

usage points is simple, just “before,” “after” and “equal.” The simpler the 

relations, the less number of intermediate candidate sequences are generated 

and processed. 
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Advantages of Usage Representation 

    Here we list some examples to indicate the advantages of usage representation. 

Consider we have three appliances A, B and C and their pictorial temporal relations are 

depicted in Figure 6. Clearly, we can identify that the temporal relations of Figure 6.(a) 

and Figure 6.(b) are different. However, we may fall into ambiguity if simply use 

Allen’s relation to represent Figure 6.(a) and Figure 6.(b). That is, using Allen’s 

relation without parameters would cause ( (A overlaps B) during C ) to represent both 

Figure 6.(a) and Figure 6.(b). Traditional method could perform the disambiguity by 

providing the relation matrix like Table 2 and Table 3. Table 2 states that ( A overlaps 

B ), ( A contains C ) and ( B contains C ) while Table 3 states that ( A overlaps B ), ( A 

overlaps C ) and ( B contains C ). However, the relation matrix costs  (  ) space for 

n intervals while our usage representation costs only  ( )  space. Our usage 

representation for Figure 6 is clearer and can be constructed from only given the 

relation. The usage representation for Figure 6.(a) is 〈                 〉 and Figure 

6.(b) is 〈                 〉. 

Scalability and low cost of relation extension is another advantage of usage 

representation. We consider again in the Figure 7. If we have relation like Figure 7.(a), 

and we want to add new interval D into relation to be Figure 7.(b). Traditional relation 

matrix will add new column for interval D and fill in all the relations with other 

intervals. That is, Table 4 lists ( A overlaps B ), ( A finished-by D ), ( A contains C ), ( B 

contains D ), ( B contains C ) and ( D contains C ). In usage representation, we simply 

add two endpoints    and    into 〈                 〉  to be 

〈               (     )   〉. This scalability of usage representation is very useful 

when our mining algorithm use prefix-growth approach. 

4.2 Correlation Pattern 

Extracting correlation patterns from data collected in smart homes can provide 

resident useful information to better understand the relation among usage of appliances. 

Given a correlation pattern, as defined in Definition 5, users can know the distribution 

of usage time of appliances. With the turn-on/off time of an appliance, we can derive 

the usage probability of other appliances. 
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(a) Example 1 of A, B and C             (b) Example 2 of A, B and C 

    

(a) Example 1 of A, B and C          (b) Example 3 of A, B, C and D 

Table 2: Matrix of Figure 6.(b) 

xRy A B C 

A - o o 

B  - c 

C   - 

 

Table 3: Matrix of Figure 6.(a) 

xRy A B C 

A - o c 

B  - c 

C   - 

 

Figure 6: Two examples of different temporal Allen’s relation 

Figure 7: Two examples of extending temporal Allen’s relation 

Table 4: Matrix of Figure 7.(b) 

xRy A B D C 

A - o fi c 

B  - c c 

D   - c 

C    - 
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Consider the correlation pattern in aforementioned example in Definition 5. 

Suppose the appliance A is the light and D is the coffee machine. Given the turn-on/off 

times of light and coffee machine, we can derive the usage probability for A and D 

respectively. That is to say, the probability functions for the light and coffee machine to 

be turned on/off at that time. This probability information is very useful for several 

applications, such as abnormal behavior detection and activity prediction. Suppose that 

a user forgets to turn off the light when she goes to supermarket. The home 

management system (HMS) detects that the light is still turn-on at a time when the 

turn-on probability is very low. Thus, the HMS sends a message to the user’s smart 

phone to notify this anomaly. Activity prediction also can be realized by discovering 

correlation patterns. From the example pattern, we can observe that the coffee machine 

(appliance symbol D) is usually turned on after the light (appliance symbol A) is turned 

off. If we detect the light is turned off at a given time, the HMS may automatically turn 

on the coffee machine if the probability of happening time from the aforementioned 

correlation pattern is high enough. 

Here we give another correlation example. Suppose the appliances D and E are 

spatially close enough in Figure 4. Given the minimum support            and 

             . Then the sequence 〈           〉 is frequent and therefore the 

correlation pattern is briefly shown in Figure 8. 

 

 

 

 

 

 

 

 

 

(a) Correlation pattern              (b) Positions of Pattern in Database 

Figure 8: Correlation Pattern Example 
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Now we will discuss more about the probability density functions of the 

correlation pattern. The union of sequential pattern and probability distributions makes 

the sow’s ear into a silk purse. Probability distribution fitting (or simply distribution 

fitting) is the fitting of a probability distribution to a series of data concerning the 

repeated measurement of a variable phenomenon. Basically there are parametric 

methods, regression method and statistical methods to conquer the distribution fitting 

problem. We list the five major and present method as (1) Moments (2) Maximum 

Likelihood of Probability Density Function (3) Regression of the Cumulative 

Distribution Function (4) Histogram and (5) Multivariate Kernel Density Estimation (or 

simply KDE ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given the set of observations of data, the methods of moments is to compute the 

several higher order moments of data. Let us take the Figure 9 (from [2]) as example. 

We can compute the mean            , variance      (   )          , 

skewness     [(
   

 
)
 

]  
  

   
  (   )  

(  (   )      )
          and kurtosis    

  

  
   

 

Figure 9: Eruption lengths (in minute) of 107 eruptions of Old Faithful geyser 
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 [(   ) ]

(  (   )  ) 
          . However with only these moments, we cannot 

directly construct how the shape of probability distribution actually is. 

Maximum likelihood method at first gives the assumption distribution of the data, 

and then applies the maximum-likelihood estimation (MLE) to estimating the 

parameters of the statistical model. And if we first make the assumption of normal 

distribution of the data in Figure 9, we obtained the  ̂             ̂        . 

Therefore the Normal distribution with        and           is the result of 

the maximum likelihood method. 

The regression of cumulative distribution function uses a transformation of the 

cumulative function so that a linear relation is found between the cumulative 

probability and the values of data. For example, let     (   ) and the regression 

equation       (    )      . We can explore that 90% of this dataset lies 

between                  and                  .  

Histogram is very common to estimate the distribution of data. However 

histogram will suffer from choosing the proper bin width and origin. The two factor 

pose a great impact on the histogram result. The left hand side of Figure 10 uses the bin 

width = 0.5 and origin = 1.3 while the right hand side of Figure 10 uses bin width = 0.5 

and origin = 1.5. We can see the difference of the distribution estimated by Figure 10. 

 

 

 

 

 

 

 

 

 

Compared with aforementioned methods, multivariate kernel density estimation 

(or KDE) is the general version of histogram. In KDE we usually choose a proper 

symmetric kernel like standard normal distribution and a bandwidth parameter   to 

decide the shape when these observations combined in the distribution. Choosing the 

 

Figure 10: Histogram of Old Faithful geyser 
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proper bandwidth parameter h is well studied in [21] and therefore choosing the 

parameters is reasonable. For example we choose h = 0.25 and the Figure 11 shows the 

distribution. Since KDE will accumulate the kernel of each observations on distribution, 

KDE have another advantage is what we desired. The distribution will reveal the shape 

of true distribution as the data observations getting larger. More observations for the 

KDE make the distribution more genuine to real distribution. Therefore these are the 

reasons that we choose KDE instead of the other five distribution fitting methods. 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Probability-based Projected Database 

Projected database is the set of subsequence in the original database with 

regarding to certain given prefix  . Therefore we usually call the local database as 

  projected database. In traditional method [26], the formal definition of the projected 

database is the collection of all the postfix of sequences with respect to prefix  . Let us 

take a concrete example for construct 〈  〉  projected database in the database of 

Figure 4. Now Figure 9 clearly indicate the 〈  〉  projected database by underlining 

the dashed orange line in the usage representation. For each sequence we will find the 

position of prefix. For example    is located at 1
st
 position of sequence date = 1 and 

date = 3 while 3
rd

 position of sequence date = 4. Therefore the 〈  〉  projected 

 

Figure 11: Kernel Density Estimation on h = 0.25 
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database, denoted as  〈  〉   (  〈(     )                     〉 )  

(  〈      (     )        〉 ) (  〈              〉 ) . 

 

 

 

 

 

 

 

 

 

 

 

 

However collecting all the postfix of every sequence may lead to outlier and noise 

sequences are also collected. In order to make our projected database more confidence 

on happening time information, we first observe that outlier sequence has the property 

of happening time of next endpoint of turned on of an appliance     is usually far 

away from the previous endpoint of turned on   . In order to ensure the time of each 

starting endpoint    are strongly time-connected, we evaluate the probability 

according to the probability function given in correlation pattern. We do not consider 

the finish endpoint    since the probability function should actually reflect the 

original time of starting endpoint   . Mathematically, the probability-based 〈  

 〉  projected database is defined as 

  〈   〉   〈      〉 |                                     〈 〉                                

  〈 〉    〈      〉               ∫   ( )  
        

  
           (7) 

The reason why we choose 0.34 for the probability threshold is that Gaussian 

Normal Distribution from mean to variance is 0.34, i.e. ∫
 

√  
  

 

 
  

  
 

 
     . 

Therefore, our projected database is different from original one and more fault 

tolerance and robustness to prevent containing the outlier sequences in database.  

 

Figure 12: The example of projected database 
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Let us see a concrete example for database of Figure 4. Consider the prefix to be 

〈  〉, we observed that    is a frequent starting endpoints in  〈  〉. Also the set 

             collects the time information of 〈  〉 in  〈  〉. The time information 

of    is {18, 10, 17, 21}. We first evaluate the mean   and variance   for 

       . Therefore   
(     )   (    )   (     )   (     ) 

 
   and 

  √
(       )    (      )    (       )    (       )  

 
      . Then the sequence will 

be considered in probability-based projected database   〈    〉  only if the 

∫    ( )  
 
          

   
      for                   . Therefore   〈    〉 

collects the 4 sequences. The general concept for this example is depicted in Figure 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 13: Example of probability-based projected database 
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4.4 CoPMiner Algorithm 

To mine the correlation patterns, our algorithm CoPMiner is proposed. The main 

concepts of the CoPMiner are listed as follows: (1) Pruning Database (pruneDB): 

Eliminate the faraway usage intervals in each of the usage sequence of the usage 

database by spatial similarity constraint (see Definition 4.1). (2) Pruning Frequent 

Itemset of Endpoints (pruneFI): Eliminate the frequent endpoints that is not spatially 

related to our prefix  , and only collects those endpoints both frequent and related to 

prefix  . (3) Pruning the Support Counting Space (pruneSup): Mark the positions 

of support counting bounds in   projected database according to prefix  . The 

detailed content of three strategies will be discussed in chapter 5. 

Algorithm 1 illustrates the main framework of CoPMiner. Before we apply the 

pruneDB strategy, we need to collect those frequent but single usage interval out to 

form correlation patterns (line 1, algorithm 1). And then we apply the pruneDB strategy 

(line 2, algorithm 1) to reduce the numbers of intervals in database (line 3, algorithm 3). 

Then it transforms the usage database to usage representation and calculates the count 

of each usage point concurrently (line 3-4, algorithm 1). For each frequent starting 

usage point x, we find all its time information    {   
    

      
} in DB and 

estimate the probability function   ( ) by Kernel Density Estimation in Definition 5 

(lines 6-7, algorithm 1). Now we construct the probability-based   projected database 

    along with the pruneSup strategy is applied and attached in     (line 8-9, 

algorithm 1). Then we can extend our prefix   to be a correlation pattern like form   

(line 10, algorithm 1). Finally, we prepare the prefix   and its projected database     

to recursively explore the correlation patterns in further projected databases. 

By borrowing the idea of the PrefixSpan [26], UPrefixSpan is developed with two 

search space pruning methods pruneFI and pruneSup. The pseudocode of the 

UPrefixSpan is shown in Algorithm 2. Since this is the recursive procedure, we need to 

first add prefix into correlation pattern set if the current prefix is ready to be (line 1-2, 

algorithm 2). For example, 〈  〉 and 〈        〉 are not well-paired since there is at 

least one interval has only starting points (or respectively finish endpoints). Thus 

〈           〉 and 〈  
  (  

    ) (     
 )   

 〉 are well paired. After that for prefix  ,  
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UPrefixSpan scans its projected database     once to discover all local frequent 

usage points as      (line 3, algorithm 2) and remove some usage points unrelated to 

prefix   (line 4, algorithm 2). For frequent usage point  , we can append it to original 

prefix   to generate a new frequent sequence   with the length increased by 1 (line 6, 

algorithm 2). We also use again the time information of   in     (line 7, algorithm 2) 

for the purpose of estimating the probability function   ( ) (line 8, algorithm 2) by 

Definition 5. And then we obtain the new prefix   and construct the   projected 

database     (line 9, algorithm 2) and update the set Bounds for pruneSup strategy 

(line 10, algorithm 2). As the method of pattern growth, the prefixes are appended and 

extended as   (lines 11, algorithm 2). Finally, we can discover further correlation 

patterns by constructing the next projected database with at least minimum support size 

of database to keep extending prefix and recursively running until the prefix cannot be 

extended anymore or database is infrequent (lines 12-1, algorithm 2). 

We take the database in Figure 4 with            and              as an 

example. There are 17 usage intervals which can be regarded as 4 usage interval 

sequences in the database. After transforming database into usage representation, we 

can find all frequent usage points. They are  (    ) (    ) (    ) (    ) 

(    ) (    ) (    ) (    ) (    ) (    ) (    ) (    )  where the 

notation (endpoint : count) represents the endpoint and its associated support in 

projected database. If now we extend the prefix to be 〈  〉, then the support count 

without pruneSup strategy is   (    ) (    ) (    ) (    ) (    ) (    ) 

(    ) (    ) (    )  while with pruneSup strategy becomes   (    ) 

(    ) (    ) . From now on if we extend the usage point    to prefix to form 

〈     〉, then our correlation pattern for single interval A is completed. Therefore, 

(
    

      
) is the correlation pattern form and since the time information of   , 

            . The probability function    ( )  
 

  √  
(  

 

 
(
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)  where     
     (        )

√ 
   

    

√ 
         Likewise the probability 

function    ( )  
 

  √  
(  
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Now let us illustrate the mining algorithm by a quick example. Suppose that given 

usage database in Figure 4 with the minimum support            and 

             . The further example clearly and down to earth illustrates how we 

perform the CoPMiner algorithm step by step. First, Figure 14 clearly shows the 

database with time axis attached (left part) and the usage representation (right part). 

This result is the snapshot of after implementing line 1-3 of algorithm 1 in CoPMiner. 

Also we show that what usage intervals is pruned by pruneDB in the arrow. The 

pruneDB strategy prunes the intervals E in date = 2, 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Mining Example 1/5 
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Figure 15: Mining Example 2/5 

 

 

Figure 16: Mining Example 3/5 
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Figure 17: Mining Example 4/5 

 

 

Figure 18: Mining Example 5/5 
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Now we obtain the support of Figure 14 as  (    ) (    ) (    ) (    ) 

(    ) (    ) (    ) (    ) (    ) (    ) (    ) (    ) . And we will 

only construct the four projected databases respectively with prefix =              . 

Furthermore we extend the prefix    in Figure 14. Figure 15 shows the projected 

database of 〈  〉,  〈  〉. And the green triangle flags indicates the position of prefix 

〈  〉 while the yellow thumbtack indicates the Bounds set. The red square flag 

indicates the length of sequence in database. The orange underlined part is the full 

 〈  〉 while the blue underlined part is the support counting space. Therefore, we 

obtain the support of Figure 15 as  (    ) (    ) (    ) . Now we choose to 

extend    and construct  〈     〉. Meanwhile the correlation pattern for 〈     〉 is 

added to output set. As  〈     〉 is shown in Figure 16, we again obtain the support as 

 (    )    (    ) (    ) (    ) (    ) (    ) . If we again choose to extend 

  , the  〈        〉 is shown in Figure 17. Now it has only the    as the frequent 

endpoints in the support  (    ) (    ) (    ) . As CoPMiner goes to 

 〈           〉, it finds that there is no sequences so CoPMiner has to track back and 

explore other correlation patterns. 
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Chapter 5 

 

Efficient Strategies for CoPMiner 

Algorithm 

 

In this chapter, we focus on describing the detail and the efficient strategies used 

in our algorithm, CoPMiner. We will also give the conceptual and theoretical viewpoint 

along with the implementation method for each strategies. The pruneDB strategy is 

used before mining process to explore the correlation pattern satisfying spatial 

similarity constraint .The pruneFI strategy is applied in recursive mining process to 

explore the prefix with spatial similarity. The pruneSup strategy is the most significant, 

outstanding and only restricted to the usage representation. The pruneSup strategy can 

be said to be the most independent in mining algorithm. In Section 5.1, we discuss the 

pruneDB.  In Section 5.2, we mention the pruneFI. In Section 5.3, we introduce the 

pruneSup strategy. 

 

5.1 Pruning by Spatial Constraint – pruneDB 

Now we clearly state how the strategy pruneDB works here. This strategy is to 

pruning the usage intervals previously by spatial constraint. The main concept of 

pruneDB is to eliminate the faraway intervals in the usage database. 

In algorithm 3 pruneDB, for each usage sequence    of usage database, we only 

collect the usage interval (        ) where there exists another event symbol    that 

is spatially close enough to   . This indicates that usage intervals    and    are 
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possible to form the correlation pattern that we expected to see. That is, we collect 

those usage intervals that they are not relatively standing alone in the sequence   . This 

for loop in line 2 to 4 of algorithm 3 pruneDB discards the faraway intervals 

(        ) that there is no other intervals (        ) close to    in   . We know 

that    never appears as a frequent pattern with other intervals since the interval 

(        ) is relatively stand alone in the event sequence   . Thus for each sequence 

   in D, we prune these faraway intervals (        ) and only remain the intervals 

(        ) that they are possible to form correlation patterns. Hence line 4 to 5 in 

algorithm 3 return the usage database DB after applying the pruneDB strategy. 

In order to accomplish the concept of pruneDB, we add an attribute Space_id in 

our database and assign Space_id for each interval. Therefore we illustrate how 

pruneDB works in our example database DB in Figure 14. In the sequence    of 

       the usage interval (             ) is a faraway interval in   . That is, 

{           }  is the space-related set of             . Therefore we assign 

Space_id = 2 in the other 3 intervals of    and assign interval (             ) with 

Space_id = -1 for deprecated. The usage intervals in    of       are similar to 

       (i.e. {           } ). The gray intervals which is pointed by arrow is 

selected to be the faraway intervals and therefore is eliminated after pruneDB strategy. 

The Figure 14 shows the usage sequences of database after applying pruneDB strategy. 

 

5.2 Pruning by Usage Points in Prefix – pruneFI 

Different from pruneDB solving the problem by rearrangement the usage intervals 

in sequences of usage database, pruneFI strategy solves the problem from the 

viewpoint of frequent endpoints. The concept of pruneFI strategy is that we only 

extend the frequent points related to our current prefix. This strategy will also ensure 

the intervals in the prefix are always close enough in space.  

Given the prefix   and    projected database   , the set of frequent endpoints 

may be large. We only select part of the frequent endpoints related to prefix  . Those 

frequent endpoints but not related to prefix   will be temporarily avoid to construct the 

projected database. This strategy decreases the number of projected databases 
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potentially to be find. Therefore we avoid some projected database that the prefix is 

never been a correlation pattern. Hence we only construct the projected databases 

whose prefixes are possible to be correlation pattern. 

The pruneFI stratgey is depicted in algorithm 4. In algorithm 4, we first check 

whether the frequent endpoint   is appendable to prefix   in line 4 to 8. The spactial 

similarity is examined in line 9 to 10. We collect those frequent endpoints that is both 

appendable and spatial related to prefix in line 11 to 12. 

We indicate our concept of pruneFI with  〈  〉  in Figure 16. Given the 

minimum support            and              , The traditional method 

PrefixSpan will find out 7 frequent endpoints, they are                    

   . Then CTMiner will find out 4 frequent points                 . Our proposed 

method will only consider two frequent endpoints        . If we construct the 

 〈    〉,   
            will be extended in PrefixSpan while our method will 

find out that no other endpoints need to be extended. Since pruneFI strategy is applied 

in recursive mining process, our strategy can effectively decrease the degree of 

projected databases need to create after each recursion. In previous mining example, 

 〈 〉 in Figure 15 will extend              . Figure 16 of  〈  〉 extends         

and Figure 17 of  〈    〉 seeks the empty set. 

 

5.3 Pruning by Prefix in Projected Databases – pruneSup 

In traditional PrefixSpan algorithm [PrefixSpan], the data has only pointwise 

information. However, our data now exist the idea of point time of starting and finish. 

Given the prefix  , counting the support of endpoints in    projected database    is 

a routine procedure. We can use the endpoints information to make great advance on 

the support counting procedure. 

The main concepts of pruneSup strategy are listed as follows: (1) 

Pseudo-projection: First we number the position of usage points in sequence as natural 

numbers          . And for each sequence in    projected database   , we 

record the prefix   's last position as an integer      rather than construct the actual 

projected suffix sequence. (2) Midway Termination: For each sequence in 
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  projected database   , we record the positions        (in pseudo-projection) of 

counting bounds according to the prefix   's position in the sequence itself. 

We depict the concepts in Figure 19 and the detail content is in algorithm 5. 

Suppose that there are k sequences, named    
    

      
, in   projected database 

  . The green triangle flags indicate the last positions of prefix   in the sequence. The 

red square flags indicate the end of the sequence. The yellow thumbtacks indicate the 

counting bounds with respect to the prefix  . If we want to count the frequent endpoint 

for   , traditionally we need to visit the whole sequences. That is, for    
    

      
 

in   , we must visit the endpoints between green triangle flag and red square flag (or 

equivalently the blue part and the light yellow part). But now we have the yellow 

thumbtacks (the information is obtained from prefix  ). Therefore pruneSup strategy 

is that we visit the endpoints between green triangle flags to the yellow thumbtacks 

nearest to green flags (or equivalently the blue part) for each sequence in   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pruneSup strategy is effective since although frequent endpoints might be 

hidden for some prefixes, but the frequent endpoints definitely appear in certain shorter 

or longer prefixes. Also, this strategy is efficient since we visit only part of the 

 

Figure 19: The concept of pruneSup strategy 
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sequence if the sequence has many usage intervals (like visiting little endpoints of 

     
 in Figure 19). 

Let's see a concrete example to explicitly show how this strategy works in the 

usage database D in Figure 4. And we give            and             , the 

〈  〉   projected database is  〈  〉 =  (  (     )                      )   

  (        (     )          ) (                 )   

Without the pruneSup strategy, we count all the endpoints in  〈  〉. So we obtain 

the support count of endpoints are   (    ) (    ) (    ) (    ) (    ) 

(    ) (    ) (    ) (    ) . Then we have four projected databases for further 

mining process and these prefixes are  〈     〉 〈     〉 〈     〉 〈     〉 . However 

we can notice that mining 〈     〉   projected database can never extend the prefix 

to form a reasonable pattern since the endpoint    is always before    in  〈  〉. 

We explain how to apply pruneSup strategy here. First, we mark the prefix 

positions and bounds positions for each sequence in  〈  〉 . Explicitly, the set 

      〈  〉    (          ) (         ) (          )   records (    , prefix's 

last position  , bounds positions       ) for each sequence in  〈  〉 . Now the 

pruneSup strategy only visits the endpoints from     to    (      ). So we 

visit             in      ,          in       and        in      . 

Therefore we obtain the support count of endpoints are   (     ) (     ) (     ) . 

Then we only consider the two prefixes  〈     〉 〈     〉 . 

Strategy pruneSup accelerates the mining process since it decreases the number 

of prefixes and projected databases. We explicitly list some bound sets for $DB$ as 

following. The      〈 〉     (        ) (       ) (       ) (       )   , 

     〈     〉     (        ) (       ) (       ) ,      〈     〉     (  

           ) (            ) ,      〈       〉     (        ) (       ) 

(       ) . 
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Chapter 6 

 

Applications – Anomaly Detection 

 

In this chapter, we will briefly discuss the application of mining correlation pattern. 

As mentioned in chapter 1 Introduction, the residents can understand more about their 

behaviors of using appliances in the smart home. We are expected to see that our 

correlation patterns can explore where and how we use precious electricity for residents. 

Furthermore, with useful knowledge we can provide the anomaly behavior detection 

and activity prediction. We will briefly put our eyes on anomaly detection first. And we 

will also list some issue and propose a method to detect the anomaly. 

 

6.1 Problem Definition of Anomaly Detection 

Consider the regular home with four members, Dad, Mom, Son and Daughter. The 

family members have distinctive behaviors and we roughly state their own conditions. 

Dad is an engineer and usually goes to work at day but sometimes maybe to burn the 

midnight oil to finish some works and jobs. Therefore Dad can be regarded as a regular 

behavior at daylight but may have some occasional cases at night. Mom is a teacher in 

the senior high school and usually has the most regular behavior of daylight and night. 

Son is now an undergraduate student studying at other county and will come back home 

about once per month. Daughter is studying in a junior high school and need to prepare 

for her important exam this summer semester. Therefore, our system can perform some 

convenient intelligence for this home. For example, Dad usually tends to have a shower 

when he comes back to home at almost midnight. At that time, it is very likely that all 
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other members have already taken shower and go to bed. So Dad turn on the electric 

heater for bathroom and usually he will also turn off after one hour. If a condition is 

that Dad forgets to turn off the electric heater and goes to bed since the entire day work, 

our system could detect the anomaly that the electric heater is still keep running with 

other appliances are turned off. And for this case, it seems that our system turns off the 

electric heater is a good way. Consider another scenario for Mom and daughter at day. 

After the family having breakfast together, they usually turned off the television and 

light tand then go to supermarket. If one day Mom and Daughter are not at home but 

the light or the television is turned on at morning. It should investigate that whether the 

home has been invaded or simply just the Son comes back. This could be achieved by 

providing the camera of the door sensors and send the pictures or messages to the home 

members to notify this kind of abnormal behaviors. 

Therefore, how to detect the anomaly behavior is still not an easy task. In order to 

make this problem solvable, we formally define our anomaly detection problem as the 

following. We also give the abstract concept in Figure 20. 

Given the usage database, the set of correlation patterns also have been discovered 

and input a user’s behavior of certain time, determine the anomaly behavior of the turn 

on/off query behavior with user specified anomaly threshold         . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Abstraction of anomaly detection 

 



 

50 

6.2 Anomaly Threshold Setting 

However there are some issues for anomaly detection. One is that the anomaly 

threshold setting. Due to the diversity of members’ behaviors, the definition of anomaly 

behaviors may differ from people to people. For example, Dad usually comes home at 

20:00 but sometimes comes home 23:30 if he has some projects to finish. But for Mom 

the three hour difference in day and night are strongly different. Therefore the anomaly 

setting issue is intuitively a user sensitive parameter problem. 

We also give an example of input for anomaly detection in Figure 21. Given the 

query behavior like Figure 21, light A is used from 7:55 to 11:11 and light B is used 

from 10:10 to 15:00, we want to answer what turn on/off behaviors are normal or 

anomaly. 

 

 

 

 

 

 

6.3 Fault Tolerance of Time 

Another issue is that our system should have the fault tolerance of time and query. 

That is, similar queries should have similar outputs. This issue comes from the 

uncertainty of human beings. The clock will always ring at the certain fixed time but 

our behaviors will not happen so exactly as the clock. The fault tolerance of time is also 

a consideration for the detection system. The stability of the detection system will make 

the system more durable with different behaviors and more actually fit into the life of 

home members, just like we propose the probability concepts into the correlation 

patterns.  

 

Figure 21: Example input of anomaly detection system 
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6.4 Anomaly Detection 

Due to the two considerations, we can propose amethod for anomaly detection 

based on our correlation pattern. Since the user will input the time of the query 

behavior, we can evaluate the probability by the following equation. 

     
 

| |
∑ ∫   ( )  

      

            

                                    ( ) 

where the   is the correlation pattern set,    is the input query time and    
 is the 

variance of probability function   ( ). 

We would test whether the averaged probability area is higher than the user given 

threshold          to decide its anomaly behavior. Different correlation pattern 

would have its own   ( ) and    
. Also we considers the probability of happen 

within period of time, for example            and            would be the 

time for two correlation patterns. Therefore we say that our system has the fault 

tolerance of time. To decide the anomaly behavior, we could say that if      

         then the probability of happening the behavior at the certain time is not high 

enough and therefore the turn on/off behavior is regarded as anomaly behavior. 

Otherwise, we thought that we do not have sufficient information and confidence to say 

that the behavior is abnormal, then we regard it as a normal behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Example output of anomaly detection system 
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Chapter 7 

 

Experiment Evaluations and Results 

 

To best of our knowledge, CoPMiner is the first algorithm discussing the 

correlation among appliances included probability concept. Three interval-pattern 

mining algorithms, CTMiner [5], IEMiner [25] and TPrefixSpan [30] have been 

implemented for performance discussion. For fair comparison, when comparing the 

execution time of CoPMiner with other interval-pattern mining algorithms, we only 

discuss the part of usage sequence mining (i.e., exclusive of computation of probability 

function). All algorithms were implemented in Java language and tested on a 

workstation with Intel i7-3370 3.4 GHz with 8 GB main memory.  

The performance study has been conducted on both synthetic and real world 

datasets. First, we compare the execution time using synthetic datasets at different 

minimum support. Second, we conduct an experiment to observe the memory usage 

and the scalability on execution time of CoPMiner. In addition to using synthetic 

datasets, we also have performed an experiment on real-world dataset to indicate the 

applicability of correlation pattern mining. Finally, CoPMiner is applied in real-world 

dataset to show the performance and the practicability of mining correlation patterns. 

 

7.1 Synthetic Dataset 

In order to evaluate the scalability of our algorithm, we use two kinds of synthetic 

dataset generator. The first synthetic generator is to evaluate the scalability of database 

size and minimum support threshold value. The second kind is to evaluate the 
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scalability as the length of each record grows. 

First Kind Synthetic Data Generator 

The first kind synthetic datasets in the experiments are generated using   

synthetic   generation   program   modified from [26]. Since the original data 

generation program was designed to generate time point-based data, the generator for 

correlation pattern mining algorithm requires modifications on interval events 

accordingly. The parameter setting of temporal data generator is shown in Figure 23. 

 

 

 

 

 

 

 

 

 

We create a set of potentially frequent sequences used in the generation of event 

sequences. The number of potentially frequent sequences is   . A potentially frequent 

sequence is generated by first picking the size of sequence from a Poisson distribution 

with mean equal to | |. Then, the event intervals in potentially frequent sequence are 

chosen from   event symbols randomly. All the duration times of event intervals are 

classified into three categories: long, medium and short, which are normally distributed 

with an average length of 12, 8 and 4 respectively. For each event interval, we first 

randomly decide its category and then determine its length by drawing a value. The 

temporal relations between consecutive intervals are selected randomly to form a 

potentially frequent sequence. Since we adopt normalized temporal patterns [24], the 

temporal relationships can be chosen from the set {before, meets, overlaps, 

is-finished-by, contains, starts, equal}. After all potentially frequent sequences are 

determined, we generate | | event sequences. Each event sequence is generated by 

first deciding the size of sequence, which was picked from a Poisson distribution with 

mean equal to | |. Then, each event sequence is generated by assigning a series of 

 

Figure 23: Parameters of type 1 synthetic data generator 
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potentially frequent sequences. Finally, we assign the on-time of each usage-interval 

with discrete uniform distribution on            . The off-time is the on-time plus 

the interval length. The location information attached to each appliance is uniformly 

chosen on                          .  

In all the following experiments, two parameters are fixed, i.e., | | = 4 and    = 

5,000. The other parameters are configured for comparison. Note that, for fair 

comparison, when comparing the performance of CoPMiner with other interval-pattern 

mining algorithms, we only discuss the part of usage sequence mining (i.e., exclusive of 

computation of probability function). Figure 24 shows the running time of the four 

algorithms with minimum supports varied from 1 % to 5 % on the dataset D10k–C20–

N1k. Obviously, when the minimum support value decreases, the processing time 

required for all algorithms increases. We can see that when we continue to lower the 

threshold, the runtime for IEMiner and TPrefixSpan increase drastically compared to 

CTMiner and CoPMiner. This is partly because these two algorithms still process 

interval-based data with complex relationship. The complex relationship may lead to 

generate more number of intermediate candidate sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 shows the execution time of the four algorithms with minimum supports   

varied from 1 % to 5 % on the dataset D100k–C20–N10k, which is much larger since it 

 

Figure 24: Runtime performance testing on D10k–C20–N1k dataset 
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contains 100,000 event sequences and 10,000 event intervals. From the figure, we can 

observe that CoPMiner has the best runtime performance. Note that, although CTMiner 

also simplify the complex relation among intervals, the segmentation strategy of 

representation consumes more processing time. On the contrary, the proposed usage 

presentation only requires capturing two endpoints of an interval. Furthermore, three 

pruning strategies also play an important role for the efficiency of CoPMiner. We will 

discuss these in details later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Runtime performance testing on D100k–C20–N10k dataset 

 

 

Figure 26: Scalability of comparing algorithms on different database size 
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Then, we study the scalability of CoPMiner. Here, we use the data set C = 20, N = 

10k with varying different database size. Figure 26 shows the results of scalability tests 

of four algorithms with the database size growing from 100K to 500K sequences. We 

fix the         as 1%. Figure 27 depicts the results of scalability tests of CoPMiner 

under different database size growing with different minimum support threshold 

varying from 1% to 5%. As the size of database increases and minimum support 

decreases, the processing time of all algorithms increase, since the number of patterns 

also increases. As can be seen in Figure 27, CoPMiner is linearly scalable with different 

minimum support threshold. When the number of generated patterns is large, the 

runtime of CoPMiner still increases linearly with different database size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summarizing the results of type 1 synthetic data experiments, performance study 

shows that CoPMiner has the best overall performance among the algorithms tested. 

The scalability study also depicts that CoPMiner scales well even with large databases 

and low thresholds. 

 

Influence of Proposed Pruning Strategies 

To reflect the speedup of proposed pruning methods, we measure CoPMiner with 

 

Figure 27: Scalability of different min_sup on different database size 
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pruning strategies and without pruning strategy on time performance. We compare five 

algorithms, CoPMiner (includes both pruning strategies), CoP_Point (only pruneSup 

strategy), CoP_Prefix (only pruneFI strategy), CoP_Spatial (only pruneDB strategy) 

and CoP_None (without any pruning strategy). The experiment is performed on the 

data set D100k–C20–N10k. Figure 28 is the results of varying minimum support 

thresholds from 0.5% to 1%. As shown in figure, CoP_Point can improve 23.4% to 

27.9% of the performance of CoP_None. That means pruneSup can improve about 25% 

performance of CoPMiner. The impact of the pruneFI also is presented. As can be seen 

from the graph, pruneFI can improve about 11% performance of CoPMiner. Figure 28 

also depicts that pruneDB constantly ameliorate the performance of CoPMiner about 

2.5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, three pruning strategies constantly improve 35% runtime 

performance of CoPMiner. Consequently, the proposed pruning strategies not only 

effectively reduce the searching space but also efficiently improve the performance of 

CoPMiner. 

 

Figure 28: Influence of three pruning strategies on different min_sup 
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Second Kind Synthetic Data Generator 

Now let us focus on the second type synthetic data generators. We generate the 

synthetic database with two integer parameters N and L. The database consists of N 

sequences where     is numbered from 1 to N. The set of event symbols is   

             . Every sequence has L intervals and therefore 2L is the sequence length 

of usage representation. For each usage interval (        ) in a sequence,    is chosen 

from discrete uniform distribution on event symbol set E while    and    are chosen 

from discrete uniform distribution on             with       . We regard this 

synthetic database as uniformly-randomed. The locations of    is uniformly chosen on 

                       . We evaluate the average execution time by mining 60 

different uniformly-randomed databases. 

The Figure 29 shows that our fastest algorithm (CoPMiner) is significantly 

efficient when the intervals number L grow larger. Suppose that there are many 

appliances in a smart environment, like lights, television, microwaves, kitchen outlets, 

stoves and etc. The appliances could probably be turned on and off many times in one 

day. This indicates L will grow up to 100 in one daily log. As L varies from 10 to 80, 

CoPMiner is still durable in execution time while others ( H-DFS[24], IEMiner[25], 

TPrefixSpan[30] and CTMiner[5] ) grow much faster than CoPMiner. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 29: Execution time comparison on different algorithms 
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In order to compare CoPMiner algorithm with different strategies, Late Checking 

(pruneFinal) checks the spatial similarity requirement after a usage sequence   is 

found and add   into our frequent pattern set   if   is a correlation pattern. 

 

 

 

 

 

 

 

 

 

 

We first evaluate the performances of proposed three strategies (pruneDB, 

pruneFI and pruneSup) by Figure 29. We prepared six versions of CoPMiner and 

named as          ,          ,          ,          ,           and 

         as shown in Table 5. Our parameters are fixed as N = 100,         = 0.3 

and         = 0.89. Although the frequent pattern sets mined by the five algorithms 

are completely identical, the execution time is significantly different. Figure 28 shows 

the average execution time of the six versions of CoPMiner by varying the sequence 

length L. In Figure 28 when the intervals number L = 20,           averagely runs 

in 29.022 second,           costs 0.085 second,           runs in 4.738 seconds, 

          costs 0.021 second,           runs in 0.066 and          costs 

0.006 second. 

The pruneSup strategy reduces about 30X to 1000X execution time in Figure 29. 

With the pruneSup strategy, we not only ensure that the set of correlation patterns is 

completely identical but the average execution time is within 0.2 seconds when L = 80 

(for the fastest CoPMiner). Therefore we conclude that the pruneSup strategy is most 

significant efficient, the second is pruneFI and the third is pruneDB for CoPMiner. 

 

 

Table 5: Strategies used by algorithms 

Algorithm pruneFinal pruneDB pruneFI pruneSup 

          Y    

          Y   Y 

          Y Y   

          Y Y  Y 

           Y Y  

           Y Y Y 
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Figure 31 shows the number of projected databases constructed in mining process 

for the fastest two algorithms,           and         . Although the memory 

usage depends on the detail of implementation, our algorithms uses about 20MB when 

 

Figure 30: Execution time of algorithms with strategies 

 

Figure 31: The number of constructed projected database 
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L = 10 and about 50MB when L = 80. In Figure 30 when the intervals number L = 20, 

          averagely visits 5265.033 projected database to discover the set of 

correlation patterns while CoPMiner visits 250.433 projected databases. We compare 

the growth orders in execution time (Figure 30) and the number of projected database 

visited (Figure 31). We believe that the efficiency of CoPMiner is highly related to the 

number of projected databases ever constructed. Therefore pruneSup strategy does 

significantly reduce the number of constructed projected databases. 

 

7.2 Real-world Dataset – REDD 

In this section, we describe our real-world dataset and show some correlation 

patterns that our algorithms discovered for each house. Although many smart home 

environment datasets are available, but little of them records the status along with space 

information for each appliance in smart home environment. Kolter et al. [18] collected 

the dataset REDD including detailed power readings of each appliance of six houses 

lasting for about five weeks. Therefore we can convert the raw data into suitable usage 

database. We use our sample house for the location information of each house. And we 

set the minimum space threshold fixed as 0.5 and mine the daily correlation patterns of 

each house. 

 

 

 

 

 

 

 

 

 

 

Precomputation 

In the REDD dataset [18], the raw data of each appliance is real-valued with 

discrete time. For example, ... (1303133979,0.00) (1303133983,9.00) ... is recorded as 

Table 6: Description of six houses in REDD dataset 

Home 
Number of 

Appliances 

Number of Daily 

Sequences 

Number of Total 

Intervals 

1 16 36 1107 

2 8 15 536 

3 19 26 1361 

4 17 31 1655 

5 19 10 179 

6 11 19 526 
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(UTC timestamp, power reading) for the stove of house 1. Therefore, we need to 

convert the raw data of REDD dataset into symbolic intervals to form the usage 

database. 

Table 6 lists the descriptions of REDD dataset after our precomputation. We use 

16 appliances of totally 20 (provided by [18]) in house 1. There are 36 days data 

collected and totally 1107 intervals generated after our precomputation steps. We 

briefly describe how to convert the real-valued raw data into time interval-based 

database by the following steps. 

 

(1) Round each of the real-valued power reading   into an integer   by the equation 

  ⌊     ⌋. 

 

(2) Apply the four-level Otsu's method on the histogram of all the rounded values   

in previous step by the multilevel thresholding algorithm proposed in [19]. Then 

we obtain the three thresholds   ,    and    with             . Also 

we take the smallest    and largest    if the between-class variance values    

are tied [19]. Thus we have partitioned the power reading into four states, 

Definitely-Off      ), Maybe-Off       ), Maybe-On       ) and Definitely-On 

     ). 

 

(3) We scan the rounded power readings   to generate the intervals if the power 

reading jumps from Definitely-Off to Definitely-On and jumps back. More clearly, 

let    be the rounded power reading at timestamp  . We generate the interval 

(   )  if (1)         )              )  (2)          )              ) 

and (3)                                  )              ) . 

 

We list some representative patterns of each house in Figure 32. It is noted that 

the interval length in Figure 32 only states the relations between endpoints instead of 

the actual duration in the log of each home. By setting         = 0.3 and         

= 0.5, we have discovered only home 1, 3, 4 and 6 has frequent daily patterns. 

Although home 2 and 5 have daily patterns in at most two days, we still regard home 2 
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and 5 have no outstanding daily patterns since their insufficiency of raw data. In home 

1, the pattern 1 appears in 9 days and pattern 2 appears in 5 days. In home 3, pattern 1 

and 2 appear in 5 days. Seven days of home 4 have pattern 1 while three days of home 

6 exist pattern 1. The complete correlation pattern with probability function is listed in 

 

7.3 Synthetic Dataset for Anomaly Detection 

In this section, we describe our synthetic dataset for testing the performances of 

anomaly detection. Since original data does not label every day with normal behavior 

or anomaly. Therefore our target testing probability function is the probability 

distribution of turning on Light 3 in house 1 (The probability distribution is depicted in 

Figure 33 of second row and second column). We generate the synthetic query time of 

turning on Light 3 in house 1 uniformly distributed in [0, 24). For example, the query 

8.25 indicates that testing the anomaly of turning on Light 3 at 8:15 in house 1. We 

uniformly pick 1 million queries in time. In other words, our testing set of query 

                    |         )                       and we also evaluate 

Equation 8 and obtain the distribution of the queries are shown in Figure 34. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Frequent patterns' sequence of REDD dataset 
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Figure 33: Part of detailed correlation pattern in REDD 
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We can see that there are two kinds of queries, normal time and anomaly time. 

Therefore we regard the area under 0.45 as anomaly queries (59.37%) and above 0.5 is 

normal query (40.63%). We evaluate the precision of anomaly queries by leveling up 

the parameter min_pro from 5% to 100% with step 5%. The figure 35 tells us that when 

min_pro = 0.05 we identify 91.36% anomaly queries out and correctly report to system 

while min_pro = 0.2 we only capture 61.69% anomaly queries. We conclude that the 

lower min_pro will raise more anomaly detection. However the actual value of min_pro 

is usually user sensitive and therefore the proper min_pro threshold should be found 

based on users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: The distribution of query dataset Q 
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Figure 35: The precision of synthetic dataset 
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Chapter 8 

 

Conclusion 

 

Recently, considerable concern has arisen over the electricity conservation due to 

the issue of greenhouse gas emissions. If representative behaviors of appliance usages 

are available, residents may adapt their usage patterns to conserve energy effectively. 

However, previous studies on usage pattern discovery are mainly focused on analyzing 

single appliance and ignore the usage correlation among appliances. In this paper, we 

introduce a new concept, correlation pattern, to capture the usage patterns and 

correlations among appliances probabilistically. An efficient algorithm, CoPMiner is 

developed to discover patterns based on proposed usage representation. We also 

introduce three pruning strategies named pruneDB, pruneFI and pruneSup to improve 

the performance of the proposed algorithm. We also mention some applications of 

correlation pattern mining, like anomaly behavior detection and activity prediction. We 

also list some issues for anomaly detection and propose a method for anomaly detection 

system. The experimental studies on synthetic dataset indicate that CoPMiner is 

efficient and scalable. Furthermore, CoPMiner is applied on a real-world dataset to 

show the practicability of correlation pattern mining. 
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