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摘要 
    在本論文中，我們藉由偏振疊加波鎖模機制來鎖模光纖雷射以產

生光脈衝序列，雷射共振腔是由4m的摻鉺光纖以及6m的單模光纖所組

成，輸出的脈衝重複頻率為20MHz。我們藉由調變共振腔中的偏振控

制器與980 nm雷射二極體的幫浦功率，可以讓雷射操作在兩個截然不

同的操作態-光固子態與混沌脈衝態。在這兩個操作態中，混沌脈衝

操作態的輸出光譜較為平滑且頻寬寬度為12nm，而光固子態的輸出光

譜則有著對稱的Kelly sidebands，其頻寬寬度為10nm。兩者的輸出

脈衝寬度皆為300飛秒左右，但在示波器上可以觀察到混沌操作態下

的脈衝序列高度是不規律的。混沌操作態下的脈衝經單模光纖傳輸後，

在強度自相關量測儀的量測中可以看到一個狹窄的中心尖峰，並且這

個狹小尖峰的寬度幾乎不受色散影響，這正是混沌脈衝操作態的特色

之一。在光固子操作態下﹐我們比較了Kelly sidebands 對光固子傳

輸實驗的影響性，利用了帶通濾波器來濾掉Kelly sidebands，結果

發現有Kelly sidebands的光固子脈衝經色散位移光纖傳輸後，有較

清楚的四波混和效應。相較而言，在混沌操作態中我們只用了24mW

的平均功率在色散位移光纖中傳輸就能產生頻寬約120nm的超連續平

坦光譜。最後，我們比較了兩操作態下的脈衝壓縮實驗，光固子操作

態最短可以壓縮至223飛秒，而混沌操作態則無法有好的脈衝壓縮。 
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Abstract   
  In the thesis, we use the polarization additive pulse mode-locking 

(P-APM) technique to mode-lock the laser. The laser cavity constitutes 

4m Er-doped fiber and 6m SMF-28, with the pulse repetition rate of 

20MHz. By adjusting the polarization controllers and the 980 nm LD 

pump power inside optical cavity, we can let laser operate under two very 

different operation states - soliton and chaotic pulse states. The optical 

spectrum under the chaotic state is smooth and the 3dB bandwidth is 

12nm. In contrast, the optical spectrum under the soliton state has the 

symmetric Kelly sidebands and the 3dB bandwidth is 10nm. The output 

pulse-width is 300fs for both cases, but we can observe chaotic-like pulse 

amplitude variation under the chaotic state by using an oscilloscope. 

When the chaotic pulse train propagates through a section of SMF-28, we 

can observe a narrow center coherent spike in the auto-correlation trace, 

which width is almost not affected by the dispersion. We also compare 

the difference of propagation for the soliton case without and with Kelly 

sidebands. A band-pass filter can be used to filter out the Kelly sidebands. 

The result is that the soliton pulse without Kelly sidebands has shown 

obvious four-wave mixing effects after propagating through the 
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dispersion-shifted fiber. In contrast, for the chaotic operation state, we 

can just use 24mW of the average power to produce a 120 nm relatively 

flat optical spectrum after propagating through the dispersion-shifted 

fiber. Finally we compare the pulse compression possibility of the two 

operation states. The shortest compressed pulse we can achieve is 223 fs 

for the soliton case. In comparison, the chaotic pulse cannot be 

compressed well. 
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Chapter 1  
Introduction 

 
1-1 Laser dynamics of mode-locked 
fiber lasers 
  The word “mode-locking” describes the locking of multiple axial 

modes in a laser cavity. By enforcing coherence between the phases of 

different modes, a periodic pulse train can be produced. Mode-locking 

can also be conceived in the time domain. By applying optical 

modulation synchronous with the roundtrip time of the lights circulating 

in the laser, optical pulses is initiated and can be made shorter on every 

pass through the laser resonator. The pulse shortening process continues 

until the pulse becomes short enough and its spectrum becomes so wide 

that additional pulse broadening mechanisms or spectrum narrowing 

processes spring into action to stop the pulse shortening. The finite 

bandwidth of the gain medium is one of the fundamental causes that will 

eventually limit the pulse width that can be achieved [2.10]. 

  Mode-locked lasers can be roughly classified into two categories: 

passive and active. Passive mode-locking of fiber lasers to generate 
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sub-picosecond pulses has been achieved using three main methods: 

nonlinear amplifying loop mirror [1.1-1.3], nonlinear polarization rotation 

(also called polarization additive pulse mode-locking or Kerr 

mode-locking) [1.4-1.6], and saturable absorbers [1.7-1.9]. In contrast, 

active mode-locked fiber lasers are important candidates for light sources 

in optical communication systems because high-quality pulse trains near 

1550 nm can be generated and locked to a master clock at high rates (> 1 

GHz) with low timing jitter. Active mode-locking is generally achieved 

by using a high-speed intra-cavity electro-optic modulator. The cavity 

length foe both passive and active fiber mode-locked lasers is usually  

≧ 1m due to the limited doping concentrations of Er+3 in silica fiber such 

that the gain fiber length cannot be too short. 

  Mode-locked fiber lasers have a number of potential applications, 

depending on the wavelength and pulse width. They could be used as 

sources in communications systems for time-division multiplexing (TDM) 

[1.10,1.11] or wavelength-division multiplexing (WDM) [1.12-1.14], as 

spectroscopic tools in the laboratory for time-resolved studies of fast 

nonlinear phenomena in semiconductors, or as seeds for solid-state 

amplifiers such as Nd:glass [1.15], color center [1.16], alexandrite [1.17], 
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or Ti: sapphire. Short optical pulses also have potential use in 

electro-optic sampling systems, as a source for pulsed sensors, or as 

tunable seed pulses for lasers in medical applications. Applications such 

as optical coherence tomography can take advantage of the broad 

bandwidth of a mode-locked fiber laser as well as the temporal ultra-short 

pulse width. 

1-2 Motivation of the research 
 Passively mode-locked erbium-doped fiber lasers (EDFL’s) [1.18] are 

compact, stable, energy-efficient, and capable of generating femtosecond 

optical pulses with broad spectra. A wide range of potential applications 

require optical sources with broad spectra, and not necessarily with 

ultrashort pulse duration. For example, optical sources for coherence 

tomography and for gyroscopes should produce high-energy pulses with 

short coherence lengths. 

In previous works [1.19-1.21] it was demonstrated that noiselike 

pulse generation in lasers can be used to obtain sources with a broad 

spectrum. The autocorrelation trace of the pulse intensity contains a 

narrow peak, which is not strongly broadened by dispersion effects [1.19]. 

A theoretical model indicated that the noiselike mode of operation may 
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be due to the existence of birefringent fibers inside the laser cavity [1.22]. 

  The noiselike mode may have the following advantages over 

conventional coherent pulse mode: (1) its spectrum is smoother and 

broader; (2) its output exhibits a narrow peak of a few hundred 

femtosecond width in the autocorrelation trace of the pulse intensity even 

after propagating through long dispersive media; and (3) its average 

powers can be higher compared with conventional mode-locking. 

  In our passive mode-locked fiber laser system, we find two different 

operation states by simply tuning the polarization controllers. The first 

one is the common soliton operation state. The second is the chaotic-like 

(or noise-like) operation state with a broad and smooth optical spectrum. 

In order to distinguish the different laser properties for the two operation 

states, we experimentally investigate the resulting differences when the 

outputs of the two states are utilized for super-continuum generation, 

linear/nonlinear optical fiber propagation, as well as pulse compression.  

1-3 Organization of the thesis 
  This thesis contains four chapters. Chapter 1 gives an overview of the 

passive and active mode-locking mechanisms and the motivation for the 

present research. In Chapter 2.1, we introduce three nonlinear effects in 
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optical fibers, including the self-phase-modulation, four-wave-mixing, 

and super-continuum generation. Chapter 2.2 presents the Polarization 

Additive Pulse Mode-locking (PAPM) mechanism, which is the main 

mode-locking mechanism in our fiber laser. We then derive the master 

equation model in Chapter 2.3. Chapter 2.4 introduces the soliton theory 

and Chapter 2.5 reviews the simulation of chaotic mode-locked pulses. 

  In Chapter 3, we demonstrate that we can obtain two different 

mode-locking states by tuning the polarization controllers and the 

pumping current. Then we show the experiment results and analyses by 

using the laser outputs from the two different mode-locking states 

respectively. Finally we summarize the achievements and give the 

possible future works in Chapter 4. 
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Chapter 2  
Principle of passive mode-locked 

fiber laser 
 

2-1 Nonlinear effects of optical fibers 
2-1-1 Self-phase modulation 

  An interesting manifestation of the intensity dependence of the 

refractive index in nonlinear optical media occurs through the self-phase 

modulation (SPM) effect, a phenomenon that can lead to the spectral 

broadening of the optical pulses. The SPM effect was first observed in 

1967 in the context of transient self-focusing of optical pulses 

propagating in a CS2-filled cell [2.1]. By 1970, SPM had been observed 

in solids and glasses by using picosecond pulses. The earliest observation 

of SPM in optical fibers was made with a fiber with the core filled with 

CS2 [2.2]. This work led to a systematic study of SPM in a silica-core 

fiber [2.3]. The intensity-dependent nonlinear phase shift ( ) can be 

described by 

                                       (2.1.1) 

where L is the fiber length and  is the squared magnitude of the 
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electrical field at the working wavelength. 

  The SPM-induced chirp affects the pulse shape through GVD as shown 

in Fig. 2.1 and Fig. 2.2. In the anomalous-dispersion regime of an optical 

fiber, the two phenomena can cooperate in such a way that the pulse 

propagates as an optical soliton. Similarly, in the anomalous-dispersion 

regime, the combined effects of GVD and SPM can be used for pulse 

compression. Generally the GVD broadens the pulses in the time domain 

with the production of pulse chirps if the original pulses are chirpless. 

SPM can enhance or cancel the chirps to further broadening or shortening 

the pulses, depending on the signs of the pulse chirps. In this way SPM is 

responsible for the spectral broadening of ultrashort pulses and for the 

formation of optical solitons in the anomalous-dispersion regime. 
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Fig. 2.1 Evolution of pulse shapes (upper plot) and optical spectra (lower plot) for an 
initially unchirped Gaussian pulse propagating in the normal-dispersion fiber [2.18]. 

 
Fig. 2.2 Evolution of pulse shapes (upper plot) and optical spectra (lower plot) for an 

initially unchirped Gaussian pulse propagating in the anomalous-dispersion fiber [2.18] 
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2-1-2 Four-wave mixing 

  Four-wave mixing is a nonlinear phenomenon that can be described as 

follows. When several optical signals at different frequencies propagate 

along the fiber, the total electrical field is equal to the vectorial addition 

of each individual field. The resulting optical field will have new 

frequency components as a result of the cross products terms generated 

through the third order nonlinearity. 

  The FWM effect in optical fibers has been studied extensively because 

it can be quite efficient for generating new frequency lights. For example 

if three optical frequencies (ω1, ω2 and ω3) interact in a nonlinear medium, 

they will give rise to a fourth frequency (ω4). 

ω4 =ω1+ω2-ω3                                          (2.1.2) 

Its main features can be understood by considering the third-order 

polarization given as 

                             (2.1.3) 

where E is the electric field, PNL is the induced nonlinear polarization that 

can excites new lights, and ε0 is the vacuum permittivity. 

  Consider four optical waves oscillating at frequencies ω1, ω2, ω3, ω4 

and linearly polarized along the same axis x. The total electric field can 
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be written as 

       (2.1.4) 

where the propagation constant kj= njωj/c, nj is the refractive index, and 

all four waves are assumed to be propagating in the same direction. If we 

substitute Eq. (2.1.4) in Eq. (2.1.3) and express PNL in the same form: 

          (2.1.5) 

we find that Pj ( j =1 to 4) consists of a large number of product terms 

involving the three electric fields. For example, P4 can be expressed as 

    (2.1.6) 

where θ+ and θ- are defined as 

θ+ = (k1+k2+k3-k4)z-(ω1+ω2+ω3-ω4)t                        (2.1.7) 

θ- = (k1+k2-k3-k4)z-(ω1+ω2-ω3-ω4)t                         (2.1.8) 

In Eq. (2.1.6) the first four terms containing E4 are responsible for the 

SPM and XPM effects. The remaining terms give rise to the FWM effect. 

How many of these are effective in producing a parametric coupling 

depends on the phase mismatch between E4 and P4, which is governed by 
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θ+, θ-, etc. 

  Through the FWM effect, a strong pump wave at ω1=ω2 creates two 

sidebands located symmetrically at frequencies ω3 and ω4 with a 

frequency shift: 

                              (2.1.9) 

where we assumed for definiteness ω3 <ω4. The low-frequency sideband 

at ω3 and the high-frequency sideband at ω4 are referred to as the Stokes 

and anti-Stokes bands. If the incident pump wave is strong enough and 

the phase-matching condition is satisfied, the Stokes and anti-Stokes 

waves at the frequencies ω3 and ω4 can be generated from noises. 

 

2-1-3 Super-continuum generation 

  The super-continuum generation is a nonlinear phenomenon that can 

be described as follows. When the ultrashort optical pulses propagate 

through an optical fiber, the FWM process is accompanied by a multitude 

of other nonlinear effects, such as SPM, XPM, and SRS (Stimulated 

Raman Scattering), together with the linear effects of dispersion. All of 

these nonlinear processes are capable of generating new frequencies 

within the pulse spectrum. It turns out that, for sufficiently intense pulses, 
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the pulse spectrum can become so broad that it extends over a very wide 

frequency range. This broadening is referred to as super-continuum 

generation and was initially studied in solid and gaseous nonlinear media 

[2.4]. 

  The linear group velocity dispersion also plays an important role in the 

formation of super-continuum lights in optical fibers. In general, because 

of the large spectral bandwidth associated with a super-continuum, β2 

cannot be treated as constant and its wavelength dependence should be 

considered. Numerical simulations show that the uniformity or flatness of 

the super-continuum can be improved considerably if β2 increases along 

the fiber length such that the optical pulse experiences anomalous GVD 

initially and normal GVD after some fiber length [2.5]. 
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2-2 Polarization Additive Pulse 
Mode-locking (P-APM) mechanism 
  Additive pulse mode-locking (APM) has been employed successfully 

for short-pulse production in several solid-state lasers. This 

pulse-shortening mechanism produces mode-locking effects similar to 

fast saturable-absorber mode-locking. One advantage of APM is that it is 

extremely fast because the effect is based on the self–phase modulation 

(SPM) from the Kerr effect in glass. Thus the APM mechanism should 

not impose a limit on the achievable shortest pulses. The APM techniques 

have been extensively studied both experimentally and theoretically in 

several solid-state lasers [2.6-2.8]. 

  Fig. 2.3 shows how the nonlinear polarization rotation effect can be 

used in conjunction with bulk polarization optics to obtain P-APM as an 

artificial fast saturable absorber [2.9] for mode-locking the laser. An 

initial pulse is linearly polarized and then made elliptically polarized with 

a quarter-wave plate. The light then passes through an optical fiber where 

the ellipse rotation occurs and the peak of the pulse rotates more than the 

pulse wings due to the nonlinear effects. At the output of the fiber, the 

half-wave plate is oriented in such a way that the peak of the pulse passes 
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through the polarizer while the wings of the pulse are extinguished. In 

this way the pulse shorting is achieved. This mechanism is the 

polarization additive pulse mode-locking (P-APM) scheme mentioned 

above and is a common technique used in many passive mode-locked 

fiber lasers. 

 

Fig. 2.3 Mechanism of P-APM [2.10] 
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2-3 Master equation model 
  We refer to the paper by H.A. Haus [2.10] for the detailed derivation of 

the master equation model for mode-locked lasers. Equation (2.3.1) 

shows the optical field amplitude change of the n-th mode in each 

roundtrip pass. When the n-th mode passes through the gain medium and 

the linear loss of the whole cavity, its amplitude will change a little 

amount. Moreover, if the laser is mode-locked by an amplitude modulator, 

the modulator also contributes to the change of the n-th mode per round 

trip time as shown below. 

                       (2.3.1) 

△Ω = 2π/ TR=ΩM                                       (2.3.2) 

Here An is the amplitude of the n-th mode, TR is the cavity round trip time, 

g is the peak gain, n△Ω is the n-th mode, Ωg is the gain bandwidth, M is 

the modulation, and g/(1+( n△Ω/Ωg)2) is the gain profile seen by 

different longitudinal modes. 

  The following two equations show how the modulator makes the 

(n-1)-th and (n+1)-th modes contribute to the n-th mode after modulation. 
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Physically, a sinusoidal modulation of the central mode at the frequency 

ΩM = △Ω produces sidebands at ω0 ± △Ω. They can injection-lock the 

adjacent modes, which in turn lock their neighbors. 

  Fig. 2.4 shows the gain profile and linear loss, denoting that several 

axial modes will be lasing if the gain level is above threshold. 

 
Fig. 2.4 The gain distribution of different modes with linear loss [2.10] 

  There are three approximations that can be used to transform the above 

equation into a simpler form. 

(1) The frequency dependent gain can be expanded to second order in    

   n△Ω. 

(2) The discrete frequency spectrum with Fourier components at n△Ω is    

   replaced by a continuum spectrum, a function of Ω = △Ω. 
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(3) The sum (An+1-2An+An-1)/ △Ω2 can be replaced by a second 

derivative with respect to frequency if the spectrum is very dense. 

After these approximations, we can get the differential equation (2.3.3) 

describing mode-locking in terms of amplitude change per round trip time 

in the frequency domain: 

                      (2.3.3) 

where Ωm = △Ω is the modulation frequency. 

  In the steady state, the change of the pulse in one roundtrip is zero 

(corresponds to △A(Ω) = 0 ). Hence, the mode-locked pulse must be a 

solution of the differential equation. 

             (2.3.4) 

We can obtain a Gaussian pulse solution for the equation. 

                                (2.3.5) 

  However, the change per pass need not be zero during evolution. If the 

roundtrip change is small, the difference equation can be replaced by a 

differential equation in terms of the long term time variable T. Since the 

pulse is now characterized in terms of its spectrum, slow variation of the 
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spectrum is legitimately described in terms of the two-dimensional 

differential equation. 

        (2.3.6) 

  In next step, we transform the mode-locking equation for the pulse 

spectrum that evolves with time into an equation for the temporal pulse 

envelope that evolves on a time scale much longer than the pulse-width. 

This is accomplished by applying the Fourier–transform defined below: 

                             (2.3.7) 

                          (2.3.8) 

The pulse evolution equation now becomes 

           (2.3.9) 

  As a further step, we introduce the simple model to explain that passive 

mode-locking mechanism caused by a fast saturable absorber. In passive 

mode-locking, the modulator is replaced by a saturable absorber as shown 

in Fig. 2.5. The modulation term of the saturable absorber s(t) after 

transmission through the absorber is 
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                                  (2.3.10) 

where 

s0(<1) : unsaturated loss 

I(t) : dependent intensity  

Isat : saturation intensity of the absorber  

If the saturation is relatively weak, Eq. (2.3.10) can be expanded to give 

                             (2.3.11) 

The intensity multiplied by the effective area of the mode Aeff gives the 

power in the mode. We normalize the mode amplitude so that |a(t)|2 = 

power. Then the transmission can be written 

                 (2.3.12) 

Where  is the self amplitude modulation (SAM) coefficient. 

  The master equation of passive mode-locking with a fast saturable 

absorber is obtained by introducing the saturable loss into Eq. (2.3.9) and 

omitting the active modulation term. The unsaturated loss s0 can be 

incorporated into the loss coefficient with the final resulting equation as 

               (2.3.13) 
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The solution is a simple hyperbolic secant 

                                (2.3.14) 
with 

                                        (2.3.15) 

                                        (2.3.16) 

 

 
Fig. 2.5 Schematic of the laser passively mode-locked with a fast saturable absorber 

and the time dependence of the pulse and the net gain[2.10] 
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2-4 Soliton pulse operation state 
  The soliton phenomenon comes from the balance between the group 

velocity dispersion (GVD) and the self phase modulation (SPM) caused 

by the Kerr–effect of the nonlinear medium. With the inclusion of the 

SPM and GVD effects, the modified master equation for fast saturable 

absorber mode-locking is given below: 

           (2.4.1) 

Here D is the group velocity dispersion parameter and the filtering action 

is represented by . In a medium of length L, with a 

propagation constant whose second derivative is β2, the parameter D is 

given by D = β2L/2. The Kerr–coefficient is , where λ 

is the carrier wavelength, n2 is the nonlinear index in cm2/W and Aeff is 

the effective mode cross-sectional area in cm2. The gain is taken as time 

independent, which is applicable for a gain medium with a long 

relaxation time. The bandwidth is assumed to be limited by a filter of 

bandwidth . This equation still has a steady state solution [2.11]. 

                           (2.4.2) 
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Fig. 2.6 Solution plots for (a) pulse-width and (b) chirp parameter [2.10]. 

The pulse-width as a function of dispersion is plotted in Fig. 2.6(a). For 

nonzero SPM, the shortest pulses are obtained with negative dispersion. 

The pulses are always longer with positive dispersion. The chirp 

parameter as a function of dispersion is plotted in Fig. 2.6(b). A 

combination of negative dispersion with finite SPM can find a zero chirp 

solution. For a small SAM coefficient, weak filtering, and negative values 

of D, one finds that the pulse is chirp-free. In this case the pulse is 

soliton-like. The soliton is a solution of the nonlinear Schrödinger 

equation given below: 

                         (2.4.3) 
which is a chirp-free hyperbolic secant solution: 

                    (2.4.4) 

The soliton pulse is continuously phase shifted by the Kerr–effect and the 
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soliton amplitude and pulse-width obey the “area theorem”: 

                                     (2.4.5) 

The soliton forms via the balance of GVD and SPM. Fiber ring lasers 

with net negative dispersion (D<0) can be a platform for producing 

soliton-like pulses inside the laser cavity. In the following we list the 

formula for the soliton order and soliton period: 

 

  

Here P0 is the peak power, T0 is the width of the incident pulse, and the 

parameter N is the soliton order. LD is the dispersion length and LNL is the 

nonlinear length. 

  In the case of a fundamental soliton (N = 1), GVD and SPM balance 

each other in such a way that neither the pulse shape nor the pulse 

spectrum changes along the fiber length. In the case of higher-order 

solitons, SPM dominates initially but GVD soon catches up and leads to 

pulse contraction. Soliton theory shows that for pulses with a 

hyperbolic-secant shape and with peak powers determined from soliton 
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order formula, the two effects can cooperate in such a way that the pulse 

follows a periodic evolution pattern with original shape recurring at 

multiples of the soliton period z0. 
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2-5 Chaotic pulse operation state 
  It was first shown by Ikeda that a passive nonlinear ring cavity could 

exhibit chaotic behavior in response to a constant incident light [2.12]. 

From the Ikeda’s result, extensive theoretical and experimental studies on 

the dynamic features of passive and active nonlinear ring cavities have 

also been carried out [2.13-2.16]. 

  In this section, we refer to the paper by Zhao, et al. [2.17] for 

explaining the chaotic operation state of mode-locked fiber lasers. They 

reported on the experimental and numerical studies of the chaotic 

dynamics of a soliton fiber ring laser passively mode-locked by using the 

nonlinear polarization rotation (NPR) technique. Here we will only quote 

their numerical simulation results as an example. 

  The light propagation in the optical fibers can be described by the 

extended coupled complex nonlinear Schrödinger equations [2.18]: 

 

where u and v are the normalized envelopes of the optical pulses along 

the two orthogonal polarized modes of the optical fiber. 2β=2π△n/λis 

the wave-number difference between the two modes. 2δ =2βλ/2πc is 
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the inverse group velocity difference. k'' is the second-order dispersion 

coefficient, k''' is the third-order dispersion coefficient, and γ represents 

the nonlinearity of the fiber. g is the saturable gain coefficient of the fiber 

and Ωg is the bandwidth of the laser gain. For un-doped fibers g=0; For 

erbium doped fibers, the gain saturation can be modeled as 

 

where G is the small signal gain coefficient and Psat is the normalized 

saturation energy. They used the following parameters for simulation: γ 

=3 W-1 km-1, k'''=0.1 ps2 /nm/km, Ωg =25 nm, beat length Lb=L/2, and the 

orientation of the intra-cavity polarizer to the fiber fast birefringent axis 

Ψ=0.125π, cavity length L=6SMF+2EDF+4SMF=12 m and the gain saturation 

energy Psat =250. To simulate the feature of cavity dispersion 

management, they have used the fiber group velocity dispersion (GVD) 

as k''EDF = 50 ps/nm/km, and k''SMF = −20 ps/nm/km.  

  With the above laser parameter selection, they showed that the laser 

can achieve self-started mode-locking in the linear cavity phase delay 

bias range of π<δΦ<2π. Numerically they found that with too small 

linear cavity phase delay bias selection, the peak power of the 
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mode-locked pulses was clamped by the polarization switching effect of 

the cavity. No soliton could be formed under this situation. 

  With the linear cavity phase delay bias set in the range of ~1.2π<δΦ

<1.5π, conventional soliton operation as observed experimentally could 

always be obtained. 

  With the chosen laser parameter selection, increasing the linear cavity 

phase delay bias δΦ increases the nonlinear polarization switching 

threshold of the cavity. Consequently, the solitons formed in the cavity 

can have a higher peak power. When the peak power of the solitons 

becomes strong enough, they then experience period-doubling 

bifurcations or period-doubling route to chaos. 

 
Fig. 2.7 Soliton period-doubling route to chaos numerically calculated. (a) Period-1 state; 

(b) period-2 state; (c) period-4 state; (d) chaotic state. [2.17] 

  Figure 2.7 shows, for example, the soliton period-doubling route to 
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chaos which were numerically obtained when the linear cavity phase 

delay bias was set as δΦ =1.6π. With the linear cavity phase delay setting, 

the output of the laser is a uniform soliton train at the low pump intensity. 

As the pump power is increased, to a certain value the soliton peak 

intensity suddenly changed to alternating between two values, exhibiting 

a so-called period-doubling bifurcation. This period-doubling bifurcation 

occurred again as the pump strength is further increased. Eventually the 

soliton pulse output became chaotic as shown in Fig. 2.7(d). Note that the 

maximum soliton peak power grew up with the increase of the pump 

strength. 
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Chapter 3 
Experimental results and analyses 

 
3-1 Experimental Setup 

 
Fig. 3.1 Experimental setup of the passive mode-locked fiber laser. 

 

  Our experiment setup is illustrated in Fig. 3.1. We use a fiber ring laser 

mode-locked through the nonlinear polarization evolution (NPE) 

mechanism. The NPE effect, when followed by intensity discrimination 

with a polarization splitter, can provide ultrafast effective saturable 

absorption for mode-locking. The all-fiber ring laser cavity utilizes a 

4-m-long erbium-doped fiber with 980-nm LD pumping as the gain 
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medium. The ring includes an optical isolator (ISO) that ensures 

unidirectional laser emission at 1.55 um. It also has two polarization 

controllers, which are used to adjust the polarization of the light. The 

cavity length is 10m, composed by 4m Er-doped fiber and 6m SMF-28. 

The output coupler is 70/30 with 70% returning back to ring and 30% 

used for the laser output. The total cavity GVD of the laser is in the 

anomalous dispersion regime. 

3-2 Laser characteristics 
  Our laser system can operate under two different states: soliton and 

chaotic. A striking feature of the laser is that by simply changing the 

orientation of the polarization controllers, the soliton laser operation state 

could be changed into a new mode-locked state with a different optical 

spectrum of broad bandwidth. The broadband spectrum suggests that the 

laser is still mode-locked. However, its spectral distribution is very 

different to that of the soliton operation state. The soliton spectrum has 

symmetric Kelly sideband as in Fig. 3.2(a) and the auto-correlation trace 

is shown in Fig. 3.2(b). Fig. 3.2(c) shows the smooth and broadband 

optical spectrum under the chaotic state. The auto-correlation trace under 

the chaotic state is shown in Fig. 3.2(d). 
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Fig. 3.2(a) Optical spectrum under the soliton state, 3dB bandwidth: 10nm, span: 50nm. 

(b) Auto-correlation trace under the soliton state, pulse width: 311fs. (c) Optical spectrum 
under the chaotic state, 3dB bandwidth: 12nm, span: 100nm. (d) Auto-correlation under 

the chaotic state, pulse width: 308fs. 
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Fig. 3.3 shows the RF intensity spectra and the phase noise spectra for 

both the soliton and chaotic states. Fig 3.3 (a) and Fig 3.3 (d) indicate that 

the laser repetition rate is close to 20MHz, which is the fundamental 

cavity repetition frequency. The RF signal is 60dB above the noise 

background under the soliton state. However, the intensity noises are 

obviously larger in Fig. 3.3(e) for the chaotic state. The resulting phase 

noise spectra of the two states are shown in Fig. 3.3(c) and Fig. 3.3(f). 

The chaotic state possesses ultrahigh phase noises about -40 dBc/Hz at 

the low frequencies. There is also a noise bump around 100kHz. The 

noise level drops to -120 dBc/Hz at 10MHz eventually. 
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Fig. 3.3 (a) RF spectrum under soliton state; span 100MHz. (b) RF spectrum under 
soliton state; span 10MHz. (c) Phase noise measurement under soliton state. (d) RF 
spectrum under chaotic state; span 100MHz. (e) RF spectrum under chaotic state;  

span 10MHz.(f) Phase noise measurement under chaotic state. 

Fig. 3.4 shows that the output power is increasing linearly with the 

pump current for both states. Experimentally we first tune the 

polarization controllers into a particular state for either soliton or chaotic 

operation. Second, we reduce the pump current to zero. Third, we then 

increase the pump current gradually without changing the orientation of 

the polarization controllers. It can be seen that it needs a higher pump 

current to reach the chaotic mode-locked state (430mA pump current 

should be required). In contrast, one only needs 150mA pump current to 

reach the soliton state. 
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Fig. 3.4 (a)CW--->Soliton region.(b) CW--->Chaotic region. 
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  To have a better clue for the laser dynamic difference of the two 

operation states, we have also recorded the changes of the optical spectra 

from CW to mode-locked states. When we increase the pump current 

continuously, Fig. 3.5 shows that there is only one CW peak in the optical 

spectra before the soliton mode-locking. On the contrary, there are two 

competing CW peaks at 1530 and 1560 nm before the chaotic 

mode-locking as shown in Fig. 3.6. Moreover, we observe that the pulse 

amplitudes in the chaotic pulse train are not the same and randomly 

varying when measured by a real-time oscilloscope. But they are the 

same in the soliton case. 

 

 
Fig. 3.5 (a)~(c)Transition of optical spectra from CWSoliton mode-locked state (d) The 

pulse train measured by a Lecroy real time oscilloscope. 
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Fig. 3.6 (a)~(m)Transition of optical spectra from CWChaotic mode-locked state (n) 

the pulse train measured by a Lecroy real time oscilloscope. 
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3-3 Pulse propagation in optical 
fibers 
3-3-1 Soliton pulse operation state 

  For the soliton state, Fig. 3.7 shows that the initial pulse width before 

transmission is 355 fs, and its 3dB bandwidth is 8nm. In Fig. 3.8, we 

utilize this soliton pulse to propagate through about 20m &100m SMF-28. 

The results indicate that the autocorrelation trace can still be fitted well 

by assuming the sec2h profile, and the measured pulse width agrees with 

the expected value from the straightforward calculation based on the 

known fiber dispersion: 8(nm)*17(ps/nm*km)*0.02(km)=2.7ps. The 

expected pulse broadening indicates that the nonlinear effect is not 

enough and thus the outcome is mainly dispersion dominated. 

 

 
Fig. 3.7 (a)Auto-correlation trace before 20m & 100m SMF-28 propagation under soliton 
state, FWHM: 355fs(b) Optical spectrum before 20m & 100m SMF-28 propagation under 

soliton state, 3dB bandwidth: 8nm, span: 50nm. 
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Fig. 3.8 Auto-correlation trace after 20m & 100m SMF-28 propagation under soliton 
state(up), FWHM: 2.77ps and sec2h curve fitting schematic diagram in 20 m SMF 

propagation(down) 
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3-3-2 Chaotic pulse operation state 

  For the chaotic pulse state, Fig. 3.9 shows that the initial pulse width 

before transmission is 308 fs, and its 3dB bandwidth is 14nm. In Fig. 3.10, 

we utilize the chaotic pulse to propagate through 20m & 100m SMF-28. 

After propagation, we can observe that there are a narrow central spike 

and a broad base in the auto-correlation trace. This broad base can be 

affected by dispersion. If we propagate the pulse train through longer 

length SMF-28, the broad base will be more broaden and the central peak 

will be lower. However the width of the central narrow spike is not much 

affected by the fiber length. This is a signature indicating that the laser 

may output a chaotic pulse train. 

 

 
Fig. 3.9 (a)Auto-correlation trace before 20m & 100m SMF-28 propagation under chaotic 
state, FWHM: 308fs(b)Optical spectrum before 20m & 100m SMF-28 propagation under 

chaotic state , 3dB bandwidth: 14nm, span: 100nm. 
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Fig. 3.10 Auto-correlation trace after 20m & 100m SMF-28 propagation under chaotic 

state(up)and sec2h curve fitting schematic diagram in 20m SMF propagatio(down) 
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We then use a bandpass filter to keep only the central spectrum band 

because we want to verify if the mode-locking quality of the central 

spectral part could be better. Fig. 3.11 gives the optical spectrum and the 

auto-correlation after the bandpass filter. Here the band-pass filter is with 

a square profile. In Fig. 3.12, we utilize the filtered pulses to propagate 

through 20m SMF-28 again and get the same result as in Fig. 3.10. From 

these data, we can conclude that chaotic mode-locking quality is over the 

whole optical spectrum. 

 

  
Fig. 3.11 (a)Auto-correlation trace after band-pass-filter under chaotic state, FWHM: 

601 fs(b)Optical spectrum after band-pass-filter under chaotic state, 3dB bandwidth: 
14nm, span: 50nm. 
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Fig. 3.12 Auto-correlation trace after 20m BPF&SMF-28 propagation under chaotic 
state(up)and sec2h curve fitting schematic diagram(down). 
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3-4 Four-wave mixing and 
super-continuum generation 

In this section, we compare the difference of nonlinear pulse 

propagation for the soliton case with the Kelly sidebands or without the 

Kelly sidebands. First we let the laser operate under the soliton state as in 

Fig. 3.13. Then we set up two comparative experiments. The first case is 

with the optical spectrum as shown in Fig. 3.14, in which the Kelly 

sidebands have been filtered out by the band-pass-filter. From the 

auto-correlation trace, the FWHM pulse-width is 599fs. The other case is 

obtained by connecting a VOA (variable optical attenuator) to form 

600fs-pulse width as in Fig. 3.15. The VOA is for adjusting the output 

power to let both the input average power and pulse-width are roughly the 

same before the dispersion-shifted-fiber. In the next step we propagate the 

600 fs short pulses of the two cases through several hundred meters of the 

dispersion shifted fiber (DSF). The DSF can provide larger nonlinear 

effects than the SMF-28. Fig 3.16 shows the evolution of the optical 

spectrum and auto-correlation trace with linearly increasing power levels 

for the case without Kelly sidebands. One can observe that the 

shorter-wavelength band grows up with the increasing output power due 
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to the four-wave-mixing effects. On the other hand, Fig. 3.17 shows the 

results for the case with Kelly sidebands. One can see a more significant 

walk-off effect in the auto-correlation measurement for the higher optical 

power levels. The reason may be because the Kelly sidebands can be a 

more effective energy intermediary between the two spectral bands (1530 

& 1560 nm). 

 

Fig. 3.13 (a) Optical spectrum (3dB bandwidth: 10nm) and (b) auto-correlation trace 
(FWHM: 306fs) under the soliton state. 

 
Fig. 3.14 (a) Optical spectrum and (b) auto-correlation trace (FWHM: 599fs ) after 

band-pass filtering under the soliton state. 
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Fig. 3.15 (a)Optical spectrum and (b)auto-correlation trace (FWHM: 600 fs ) after VOA 
under the soliton state. 
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Fig. 3.16 (a)~(n) Evolution of optical spectrum and auto-correlation trace after BPF & 
DSF on different power levels under the soliton state without Kelly sidebands. 
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Fig. 3.17 (a)~(p)Evolution of optical spectrum and auto-correlation trace after VOA & 
DSF on different power levels under the soliton state with Kelly sidebands. 
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As a comparison, we then perform the following experiments by 

utilizing the chaotic mode-locked state. We propagate the chaotic pulse 

train through the dispersion-shifted-fiber to generate super-continuum. 

Fig. 3.18 shows the optical spectrum of the chaotic pulses with the central 

wavelength of 1552 nm and the spectral width of 13 nm. The FWHM 

pulse-width from the auto-correlation trace is 300 fs and the laser output 

power is 24mW. Fig. 3.19 is the super-continuum generation result after 

propagating through the dispersion shifted fiber. The most interesting 

point is that there is no significant modulation on the super-continuum 

spectrum when we raise the optical power to extend the optical spectrum. 

The 3dB bandwidth can reach ~120nm with a relatively uniform spectral 

distribution. It can be used as a broadband light source which can find 

many useful applications. 

 
Fig. 3.18 (a) Optical spectrum under the chaotic state, 3dB bandwidth: 13nm, span: 

100nm. (b) Auto-correlation trace under the chaotic state, pulse width: 300fs. 
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Fig. 3.19 Super-continuum generation after DSF propagation under the chaotic state 

(3dB bandwidth: 120nm). 
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3-5 Pulse compression 
  In this section, we try to compress the generated ultra-short pulses to 

achieve the possible minimum pulse-width and to implement the pulse 

compression experiment for comparing the soliton and chaotic states. Fig. 

3.20 shows the schematic diagram for the pulse compression experiment, 

including a band-pass optical filter, EDFA, and a section of SMF-28 for 

the dispersion compensation. The optical filter is used only for the soliton 

state because we want to filter out the kelly sideband in order to obtain a 

more clean optical spectrum. First we let the laser operate in the soliton 

state, which has the spectral width of 10nm and pulse-width of 305 fs in 

Fig.3.21. Then we use the band-pass filter to filter out the Kelly sideband 

spectral part as in Fig. 3.22, which produces the FWHM pulse-width 

=596 fs, estimated from the auto-correlation trace. In the next step we 

connect an EDFA to provide the normal dispersion. Fig. 3.23 also shows 

that there are some nonlinear effects caused by the EDFA since the 

optical spectrum bandwidth is broaden to 13nm. Finally we choose the 

6m SMF to be the compressor for the soliton state case, which is 

experimentally the most optimized length to compensate the pulse chirp 

caused by the nonlinear effects and normal dispersion of the EDFA. 
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When we increase the EDFA pumping current, we can observe that the 

EDFA output power is proportional to the optical spectrum broadening 

but inversely proportional to the auto-correlation trace width in Fig. 3.24. 

Eventually, the minimum pulse-width we obtain is 223 fs and the 

broadened spectrum bandwidth is about 50nm. 

 

Fig. 3.20 Schematic diagram of pulse compression 

 

Fig. 3.21 (a) Optical spectrum and (b) auto-correlation trace under the soliton state. 
Spectral 3dB bandwidth: 10nm, span: 50nm, FWHM pulse-width: 305fs. 

  
Fig. 3.22 (a) Optical spectrum and (b) auto-correlation trace after band-pass filtering 

under the soliton state. Span: 50nm, FWHM pulse-width: 596 fs. 
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Fig. 3.23 (a) Optical spectrum and (b) auto-correlation trace after BPF&EDFA under 
the soliton state. Spectral bandwidth:13nm, span: 50nm, FWHM pulse-wdith: 966 fs. 
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Fig. 3.24 (a)~(v) Evolution of optical spectrum and auto-correlation trace after 
BPF&EDFA by increasing the output power under the soliton state 
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Again, as a comparison, we let the laser operate in the chaotic state, 

which exhibits the spectral width of 12nm and the pulse-width of 308 fs 

as shown in Fig. 3.25. After the EDFA, we find that the 3dB spectrum 

bandwidth does not exceed the original 3dB bandwidth even we 

continuously enhance the EDFA pumping current. We also observe that 

there is no significant modulation on the optical spectra. Furthermore, we 

find that the auto-correlation trace is with a narrow central spike and a 

broad base for the chaotic state, as shown in Fig. 3.26. Finally we set the 

output power to be 16.2 mW as the case in Fig. 3.27. Then we use 2m, 

6m, 8m, and 9m of SMF-28 to compress the chaotic pulse. The narrow 

central coherence spike is not affected by the linear dispersion 

compensation, indicating that the chaotic pulses cannot be compressed 

well. 

 
Fig. 3.25 (a) Optical spectrum and (b) auto-correlation trace under the chaotic state. 3dB 

bandwidth: 12nm, span: 100nm, FWHM pulse-width: 308fs. 
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Fig. 3.26 Evolution of optical spectrum and auto-correlation by increasing the EDFA 

output power under the chaotic state. 

 
Fig. 3.27 Auto-correlation trace after EDFA under the chaotic state. Output power: 16.2 

mW. 
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Fig. 3.28 Auto-correlation traces after EDFA & (a) 2m, (b) 6m, (c) 8m, and (d) 9m SMF 

under the chaotic state. 
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Chapter 4 
Conclusion and future work 

 
4-1 Summary of the achievements 

We have experimentally observed two kinds of passive mode-locked 

laser operation states (soliton and chaotic-like) with the use of the P-APM 

technique. The soliton operation state is with some symmetric kelly 

sidebands while the chaotic pulse operation state exhibits a smooth broad 

spectrum. Both states can produce ultrashort pulse trains with the FWHM 

pulse-width around 300 fs. However, the pulse characteristics of the two 

states become very different after propagating through additional optical 

fibers. From the results after propagating through the DSF under the 

soliton operation, we can observe obvious four-wave-mixing effects on 

the optical spectrum and obvious walk-off effects in the auto-correlation 

trace with the presence of Kelly sidebands. By propagating the chaotic 

pulses through the DSF, we can obtain a super-broadband light source. Its 

bandwidth can reach 120nm with a relatively uniform spectral distribution. 

This can be an advantageous application for the observed chaotic 

operation state.  
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  We have also investigated the possibility of performing further pulse 

compression to reduce the pulse-width for both states. An EDFA with 

normal dispersion and a section of SMF-28 are used as the compressor. 

The minimum possible pulse-width is 223 fs under the soliton operation. 

However, the chaotic pulse train exhibits a narrow central coherence spike 

which is not affected by the dispersion, indicating that the chaotic pulse 

train cannot be compressed well. 

Finally, the comparative experiment in the literature shows that 

broadband super-continuum lights can be generated by noise-like pulses 

propagating in a section of 100m standard single-mode-fiber operated in 

the normal dispersion regime [4.1]. The super-continuum exhibits a pulse 

energy threshold of 43 nJ (corresponds to ~1 W of the average power) 

and a flat spectrum over 1050-1250 nm. On the contrary, we just use 

24mW of the average power to reach a 120 nm relatively flat spectral 

distribution after propagating through the DSF. From such comparison, 

the chaotic ultra-short pulse operation state investigated in the present 

work may find useful applications for super-continuum generation. 
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4-2 Possible future work 
In principle, there are at least three points that we may try to improve 

or implement in the future. 

(1) We can try to further improve the performance of super-continuum 

generation. In order to obtain more nonlinear effects on pulse 

propagation, using the HNLF or adding a higher power optical 

amplifier after the laser output can be the method. 

(2) In Fig. 3.6, if we use two band-pass filters to selectively separate the 

spectral components around 1530nm and 1550nm so as to measure 

them individually by an oscilloscope, we may be able to test the 

intensity correlation between the two spectral components. The 

obtained results may help to clarify whether the coexistence of the 

1530nm and 1550nm CW lasing under the lower pumping power is 

indeed the key for the existence of the chaotic mode-locked state 

under the higher pumping power. 

(3) In the literature, the chaotic (noise-like) mode-locked states are all 

found in passive mode-locked laser systems. It is interesting to see if 

we can use a modulator to achieve a high repetition rate chaotic 

mode-locked fiber laser. 
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