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Student: Chien-Hung Shih Advisors : Yi-fan Yang
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National Chiao Tung University

ABSTRACT

In the thesis > we will-determine the equations of Shimura curves X5 (1)/Wp of genus one for
several D »  where Wp denotes the group of all Atkin-Lehner involutions on.XP(1). The main idea is to
construct two suitable Borcherds forms of weight O that-.generate the field of modular functions on
X0 (1)/Wp and use Schofer’s formula for values of Borcherds forms at CM=points to find the relation
between the two Borcherds forms.
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1. Introduction

Let XP (V) denote the Shimura curve associated to the Eichler order of level N in an
indefinite quaternion algebra of discriminant D. In [17], Shimura showed that X’ (V) is
the moduli space of principally polarized abelian surfaces with quaternionic multiplication
by the Eichler order. Furthermore, he proved that X (V) are algebraic curves defined over
Q. However, because of the lack of effective methods in constructing modular functions
on Shimura curves, it has been very difficult to determine equations for Shimura curves
and there are only a handful of Shimura curves whose equations are known [10, 11, 13,
14, 15]. All the existing methods rely on the Cerednik-Drinfeld theory [5, 6, 7] of p-adic
uniformization of Shimura curves.to-some degree.

In [12], as an application of their explicit methods for. Shimura.curves, Guo, Lin, and
Yang determine the equations of all hyperelliptic Shimura curves X ( N) whose hyperel-
liptic involutions are Atkin-Lehner involutions. (In particular, the genus of X’ (N)/Wp n
is zero for the curves they consider, where Wp, o denotes the group of all Atkin-Lehner
involutions on X (N):) The:methods of [12] do not rely on the Cerednik-Drinfeld theory
of p-adic uniformization of Shimura curves. Instead, the idea is simple in the sense that if
we can find two modular functions  and y on the Shimura curves that generate the field of
modular functions and suppose that we can determine the values of the modular functions
x and y at sufficiently many points, then the relation between x and y can be easily de-
termined. Now the construction of modular functions is done via the theory of Borcherds
forms [3, 4] and Schofer’s formula [16], together with the formula of Kudla, Rapoport,
and Yang [], yield the values of these Borcherds forms at CM-points. Then equations of

Shimura curves follow.
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The idea of using Borcherds forms to study Shimura curves is not new. For instance,
Errthum [9] used Borcherds forms and Schofer’s formula to determine the values of Haupt-
moduls of the Shimura curves X§(1)/Ws and X}°(1)/W3o at CM-points, known as sin-
gular moduli, verifying Elkies” numerical computation [8]. Also, Schofer himself uses his
formula to give a criterion for what primes can appear in the prime factorization of the
norm of the differences between two singular moduli. This criterion is an analogue of the
result of Gross and Zagier for the case of the classical modular curve X((1). The main
contribution in [12] is a systematic way to construct:Borcherds forms.

In [12], the authors also détermine the equations of Shimura‘eurves X (1)/Wp of
positive genus for'several D and discuss how to use Borcherds forms to compute Hecke
operators and heights of CM-divisors on the Jacobian variety of X{’(1)/Wp. The main

goal of this thesis is to give more examples of equations of Shimura curves.

2. Quaternion Algebras and Shimura Curves

The following contents are mostly from Bayer [1,18].
A K-algebra B (associative.and with unity) is a vector.space over a field K with ring

structure and with unity.

Definition 1. A quaternion K-algebra B is a central simple K-algebra of dimension 4

over K. We denote by B* its groups of units, B* = {u € H : Jv € H,uv = vu = 1}.

Over a field K of characteristic different from 2, every quaternion algebra B has a K-
basis {1,1, 7,45} satisfying the relations i> = a, j2 = b, and ij = —ji, for some a, b € K*.
Conversely, a K -basis and relations such as the previous ones, plus the associative property,
define a quaternion K-algebra. In this case, we denote by <‘17b> the quaternion algebra
B and the basis {1, 4, j,ij} is called the canonical basis. Of course different couples may

lead to isomorphic quaternion K -algebras.
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Definition 2. A quaternion w = x + yi + zj + tij in B is called pure if © = 0.We denote

by By the K-vector space of pure quaternions.

A quaternion K-algebra is either a skew field or an algebra isomorphic to the matrix
algebra M (2, K); in the first case it is called a division K -algebra, and in the second one,
a matrix K-algebra. If K is algebraically closed, we only obtain matrix algebras. If K
is a local field different form C, there exists a unique division quaternion K-algebra up
to isomorphism. If K = R, the unique quaternion division algebra B is the Hamilton
quaternion algebra.

Definition 3. Everyquaternion K-algebra B = (a?’b) is provided with a K-endomorphism

which is an involutive antiautomorphism called conjugation; it is denoted by w — w. If
w = x+yi+ zJ +0g, with z,y,2,t.€ K, then ™ = x — yi— zj —tij: The reduced trace
and the reduced norm are defined by tr(w) = w +w and n(w) = ww, respectively. Thus,
tr(w) = 2z andn(w) = z —ay® — bz® + abt®. Note w € By if.and only if 0 = —w in
fact, By is the set-of quaternions of reduced trace equal to O. The elements in B* are the

elements of nonzero reduced norm.

In the following, we assume that K is a number field.

Definition 4. Let B be a quaternion K -algebra. Foreach place v of K, B, := K, ® B
is a quaternion K, -algebra. If B, is a division algebra, we say that B is ramified at v;

otherwise, we say that B is unramified at v.

Definition 5. Let B be a quaternion K -algebra and F a field extension of K. The field F'
splits Bif Bp .= F @k H ~ M(2, F).

Theorem 1 ([1]). (1) A quaternion K-algebra B is ramified at a finite even number
of places.
(2) Two quaternion K-algebras are isomorphic if and only if they are ramified at the
same places.
(3) Given an even number of noncomplex places of K, there exists a quaternion K-

algebra that ramifies exactly at these places.
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Definition 6. The reduced discriminant Dp of a quaternion K-algebra B is the integral

ideal of R equal to the product of prime ideals of R that ramify in B.

Definition 7. Two quaternion K-algebras are isomorphic if and only if they have the same
reduced discriminant. In particular, a quaternion K-algebra B is a matrix K-algebra if

and only if Dp = R.

Definition 8. Let B be a quaternion K-algebra and F a field extension of K. The field F
splits Bif Hp == F @ B~ M(2,F).

Let F = K(«) be a quadratic field that splits a quaternion K -algebra B. An embedding

¢ : ' — H is characterized by an element ¢(a) € Busuch that n(¢(«)) = n(a) and
tr(g(a)) = tr(a).

Lemma 1 ([1]). Let B = (%’) D,.q primes and (-) be the Legendre symbol. Then, there
always exists an_embedding B ® M (2,R). Moreover, B-is a matrix algebra if and only if
one of the following conditions are satisfied: ' p =q —2; p = q'=1 mod 4, ¢ = 2 and
p==41 mod&; p+#q pF#2 qgF£2 (%) = 1, and either p or q is congruent to 1

modulo 4.

Lemma 2 ([1]). Let B = (%) , D, q primes, p = q = 3 mod 4 and ( ) % 1. Then

q
P
Dy =2p. If ¢ =2, p=3 mod 8, then Dg = pq = 2pIf p #.q, p or q congruent to 1
modulo 4 and ( ) = —1, then D = pq.

q
P
From above statements, we could get the following theorem.

Theorem 2 ([1]). Let B = (%’) be a quaternion algebra.
(1) If Dp =1, then B ~ M(2,Q) ~ <%)

) If Dp =2p, pprime and p =3 mod 4, then B ~ (%)

(3) If Dg = pq, p, q primes, ¢ =1 mod 4 and (%) = —1,then B ~ (p@q> .

If a and b are prime numbers, the algebra B satisfies one, and only one, of the three
previous statements.

From the above theorem, we could get the following proposition.
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Proposition 1 ([1]). Given p and q two different prime numbers, let B be a quaternion

Q-algebra of discriminant Dp = pq.

N O

N———

p,2

Q

B) Ifp=—-1 mod8and q = 2, then H ~
such that (%) = (g) =—1.

4) If p or q is congruent to 1 modulo 4 and

) Ifp=>5 mod 8and q =2, then B ~

(1) Ifp=3 mod 4 and q =2, then B ~ (p’_l).
(

2~ . .
L5 T), where 1 is a prime number

~~
~— o —

g ~ [ 24

: ;él,thenB_(Q).

(5) If p or q is congruent to 1 modulo 4 and (%) =1, then B ~ (%) , where r is
a prime number such that ~ =41 according to s = F1 mod 4, respectively, for
s = p, q; moreover, if p orq is.congruent to 3 modulo 4, then necessarily r = 3

mod 4.
6) If p=q=3 mod 4, then H ~ (1%)_

Definition 9. Anelement o € -B-is-said to be integral over K if n(a) and tr(«) are in R.

In general, the set of integral elements in a quaternion algebra is not a ring.

Definition 10. An R-lattice A of B is.a finitely generated R-torsion-free Rmodule con-
tained in H. An_R-ideal I of B.isan R-lattice such that K Qg A ~ H. The inverse of an
ideal I is the R-ideal I=' =/{'h € H | IhI C I.}. An R-ideal is said to be integral if all

its elements are integral.

Definition 11. A subset O of H s called an R-order of H if it satisfies the following

conditions.

(1) O is a ring whose elements are integral and R ® O = H.

(2) O is an R-ideal that is a ring.

Definition 12. An Eichler R-order in a quaternion algebra H is the intersection of two

maximal R-orders of H.

Theorem 3 ([1]). Let H be a quaternion Q-algebra of discriminant D. Then, for each
integer N such that gcd(D, N) = 1, there exist Eichler orders of level N.

Definition 13. The Poincaré half-plane is the complex upper half-plane H = {z € C :
Im(z) > 0}.
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The definition of proper and discontinuous action is equivalent to the fact that I is a
discrete subgroup of SL(2,R).

Definition 14. The action of I in H gives an equivalence relation between the points: two
points z, 2’ € H are called equivalent with respect to T if and only if 2z’ = v(z) for some

v e A

Definition 15. A point x € R U {oo} is called parabolic ( hyperbolic, respectively) with
respect to I if there exists a transformation v € T which is parabolic (hyperbolic, respec-
tively) and such that v(x) = x. A point z € H is called elliptic with respect to T if there
exists an elliptic transformation . & I, v # £1d, such that y(z) = z. The isotropy group
of a point z with respect.to This the group T, = {v € T|y(z) = 2}.

In the following; we want to-introduce Shimura curves associated-to quaternion alge-
bras. Let D, Nie Nand ged(D, N) = 1. Let B be an indefinite quaternion Q-algebra
of discriminant:D. Choose an Eichler order OF () of level N in B, and fix a monomor-
phism @ : B <M (2,R).

The group TP(N) := {#(a): o€ O(D;N);n(a)=1} C SL(2,R) is a Fuchsian
group of the first kind acting on the Poincaré half-plane. The quotient I')(N) \ H is a
Riemann surface.

The theory of Shimura [17] gives a canonical model X2’ (N) over Q for TP (N) \ H
and a modular interpretation.

The Shimura curves have the following properties ([17]):

(1) XP(N) is a projective curve defined over Q.

(2) There exists a mapping jp n : H — X (N)(C) that factorizes in an isomor-
phism between the analytic space '}’ (N)\H and a Zariski open setin X’ (N)(C).

(3) Let F' = Q(\/&) be an imaginary quadratic field splitting the algebra H. Let ¢ be
an embedding of F'into H, and z € H the unique common fixed point of all the

elements in ®(¢(F™)). Then the coordinates of the point jp n(Z) are algebraic,
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more specifically, jp v (Z) € XP(N)(F.), where F,;, C C denotes the maximal
abelian extension of F.

Definition 16. The canonical model X (N) is called the Shimura curve associated with

the subgroup TY (N).

Definition 17. Let F' = Q(\/ﬁ) be an imaginary quadratic field splitting the algebra.
Let ¢ : F — B be an imbedding of F into B. Let R be the quadratic order in F such
that $(F) N O(D, N) = ¢(R). Then the unique fixed point of ®(H(F™*) in H is called a

CM-point of discriminant disc R, where diseR denotes the discriminant of R.

The case D = 1 corresponds to a nonramified quaternion algebra B ~ M (2,Q). If
D > 1, the quaternion algebra B is ramified; In this case, the Riemann surface T'5 (N) \ H
is already compact.

Lemma 3 ([2]). Assume that m is a squarefree divisor of DN such that (m, %) = I
Then the set of the fixed points of an Atkin-Lehner involution w,,, m > 1,on XP(N) is
CM(=4)UCM(-8) ifm =2,
CM(m) UCM(—4m) ifm =3 mod4,

CM(=4m) else.

3. Borcherds and Computations of Singular Moduli

§ 3.1 Modular forms on orthogonal groups

Definition 18. Let k be an integer. A meromorphic function f : H — C is weakly modular

of weight k if

a b
f() = (et +d)*f(r) for ~= €SLy(Z) and TEH
c d

Definition 19. Let k be an integer. A function f : H — C is a modular form of weight k if
(1) f is holomorphic on H,
(2) [ is weakly modular of weight k,

(3) f is holomorphic at co.
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The set of modular forms of weight & is denoted My, (SL2(Z)).

Definition 20. Ler V be a finite dimensional vector space over a field F' and ¢ be a
bilinear form on V. If ¢ is symmetric and nondegenerate, then the automorphisms of ¢ is

called the orthogonal group of ¢.

Let L C R™ be a lattice of dimension n with the associated quadratic form () and the
bilinear form (-, -). Assume that L is nonsingular and let (b™, ™) be its signature. For k =
Q,R,Clet V(k) = L®k and extend the definition (-;-) to V (k) bilinearly. Let Oy (R) be
the orthogonal group for-V" and O‘J; (R) be the subgroup of €lements whose spinor norm
has the same sign as the discriminant. Let also O = {0 € Oy(R) : ¢(L) = L} and
O} = O N Oy(R)F. In order to define modular forms on a subgroup I' of O, we

assume that the signature of L is (b, 2) and consider the set
K ={ze V(C).(z,2)=0,(z,2) > 0}/C*.

The set K has two_connected components. Pick one of them and designate it to be K,
called the tubedomain for L. The orthogonal group O‘t (R)-acts transitively on K. That
is, KT is a symmetric domain for O‘ﬁ(R). The space KT can be identified with the
Grassmanian Gr(V) = {W C V(R) : dimW = 2,(-,-) |w< 0}, the set of oriented
negative 2-planes of V. Namely, for W = Rz + Ry C V(R) with (z,z) = (y,y) =
—1,(z,y) = 0 and suitable orientation, we have = + iy € K. Let KT ={ w € V(C) \
{0} : [w] € KT}.

Definition 21. Let LYV = {z € R" : (z,y) € Zforally € L} be the dual lattice of L and
{ey : v € LY/L} be the standard basis for the space C[L" /L]. The metapletic group

— a b
SL

a b
,EVer+d| : e SL(2,Z)
c d c d
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is generated by

S = VT, T= .1

Then the Weil representation py, of SAE(Z, 7) associated to L is defined by

pr(T)e, = e2m‘<%w>/2eV

27rz<b_7b+ ) 5
§ : w7y,
TDTLT 37

We say a holomorphic function f :'H — C[LY/L}is.a modular form of weight k and

pL(S)ey =

type pr, if
b a b
f(aT+ >:<07+d>’“m Ner +d | f@)
et/ d
c d
for all
a b
€ SL(2,7Z)
¢ d

Such a modular form admits a Fourier Expansion

Z f~(T)ey Z ZCW 7)q"ry

~E LYWL ~e LYy L meQ

We say f is weakly holomorphicif only a finite number of ¢~ (m) with m < 0 are nonzero.

Theorem 4 ([3, 4]). Let f be a weakly holomorphic vector-valued modular form of weight

1 —b/2 and type pr, with Fourier expansion

Z rex = Z ZC/\ m)q"ex.

XeLY /L AeLY /L meQ
Assume that cx(m) € Z for m < 0. Then there exists a meromorphic modular form Uy on

the orthogonal group
O;;f ={o € Oz' : fox= fforall € LY/L} C O'L"

with the following properties.

(1) The weight of ¥ is c(0)/2.
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(2) The divisor of ¥y is given by

div(vy) =3 3 ex(m)Z(-m, ),

A m<O0

where the Z(—m, \) are rational quadratic divisors.

Definition 22. The modular form ¥ in the above theorem is called the Borcherds form

associated to f.

A relation between f and ¥ could be described as follows. Let 0 (7,v), 7 € H,
v € Gr(V), be the Siegel theta function. For vector-valued modular form f of weight

1 — b/2 and type py,, we define

' _ dxd
;(0) = / Al o)L ~ 2o iy
SL(2,Z)/H Yy

Then ®;(v) : Gr(¥) — C is an-automorphic function invariant under O . When 2 is not

in the divisor of ¥, we have
Of(v) = —2log ||y (v)|*.
§ 3.2 Borcherds forms as modular forms on Shimura Curves

Let O = O(D, N){(D,N).= 1, be an Eichler order of level N in an indefinite quater-

nion algebra B of discriminant D. Consider the set
L={aecO:tr(a)=0}.

Define a symmetric bilinear form (-, -) on L by

Then L becomes a lattice of rank 3 and signature (1,2). If we choose a representative

for B to be (a—b) with a,b > 0 and fix the embedding ¢ : B < M (2, R) to be the one

Q
(0 Va (Vb0
L(l)—(\/& 0>, L(J)—<O \/5>7

determined by
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then the symmetric space K can be identified with H*, the union of the upper half-plane
and the lower half-plane, by

1+72. T . 1-7%

—F—i+ —=j+ —=1ij.
ova VT avab Y

We let K be the piece corresponding to H ™.

TEHE — 2(1) =

It is clear that if « is an element of B normalizing O, then the function o, : B — B

defined by

o5 (1) £ dijol!
is an automorphism of the lattice’L. In fact, it follows from the Noether-Skolem theorem
that, up to £1, all automorphisms of L arise this way. That is, we have
Op =Hog: a € Ng(O)} x {£1},
where N (O), denotes the normalizer of O in B. Furthermore, we can verify that

O} = {a. + € N5(O), n(a) >0} x {£1}.

Now the group N£(O) acts on both #* and K '« (The action on #*.is linear fractional
transformation through ¢ (ev).and the action on K is conjugation.) We can check that the

actions are compatible. That is, the diagram

7—[+4’K+

\%

H+4>K+

(a)

commutes. Thus, if f = > f,e, is a weakly holomorphic modular form of weight 1/2

and type pr, such that
{o€Of: fon=f,forallne LY/L},

then ¢ ¢ (1) = Wy (2(7)) is a meromorphic modular form on N (O). In other words, 1y

becomes a modular form on the Shimura curve X (N)/Wp n-.
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§ 3.3 Construction of Borcherds forms

Definition 23. For k € %Z, let the slash operator of weight k of an element v € éiz (Z)
be defined by
FlEe (1) = (EVer +d) 7>  f(y7).

The slash operator satisfies

F =515,

Lemma 4 ([3]). Let N be the level of the lattice Suppose [ is a scalar-valued weight k
modular form on f‘B(N ) with €haracter X .. Then the function Fy : H — C[L" /L] defined
by

Fy(7) = T B pan(y e

¥ELo) \SLa(Z)
is a weakly holomorphic vector-valued modular form of weight k and type pr.. Moreover,

if (n,m) = (n',n"), then the n-component and the 1 <component-of F'y are equal.

Now recall the Dedekind n-function

n(r)y= g P [ ="
k=1

which is a weight 1/2 modular form. The n-function satisfies

1(r + 1 2B A e Y E (7).

Lemma 5. Let N be the level of a lattice L. Assume that 4, d|N, are integers such that
(1) |LY/L] 14w d™ is the square of a rational number,
2) Ed‘N rqd =0 mod 24,
(3) Xgnra(N/d) =0 mod 24.

Then the function [ n(d7)" is a modular form of weight 3 x(ra/2) and character

XL-

§ 3.4 Borcherds Forms at CM Points

In the following, we will discuss some results about Borcherds forms at CM points([9,

16)).
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As before, let L = {a € O : tr(a) = 0}. Let V = L ®z Q. For € V with positive

norm, let
U={yeV:(x,y) =0}, Ly =QznNL, L_=UnNL.

Then U is a negative definite 2-plane and thus can be identified with a point in the symmet-
ric space K for the orthogonal group Op. In our setting, the corresponding point in K is a
CM-point of discriminant —c?(x, z') for some ¢ € Q*. In this section, we recall Schofer’s
formula for values of a Borcherds form at such a CM-=point.

Definition 24. For p € L/L="and ¢, = char(pu + L), let E(T, S; mu, +1) be the

incoherent Eisenstein series of weight I with Fourier Expansion
E(Ta S ¢mu, +1) = Z AM(S, n, U)qm
meQ
with the Fouriercoefficients having Laurent expansionsA,, = b, (m,v)s+0(s?) at s = 0.
Forn € LV/L and m € Q define,

kalm) = () >k (m— Q)

AeL/Ly ¥L_ z€ny A+ Ly

where
lim,_ o0 bu(m,,v)7 ifm' >0,
ki (m) =9 (0)8,,(0), ifm" =0,
0, ifm’ < 0.

Here

_ A/(LXA)
ko(0) = log <|A| | +2A(1,XA)> ;

where A is the discriminant of the imaginary quadratic number field Q(—./z,x) and
A(s,xA) is the complete L-function ﬂ_%F(%)L(s, XA) associated with the Dirich-

let character x A.

Theorem 5 (Corollary 3.4 of [16]). Assume that c,,(m) € Z for m < 0, ¢o(0) = 0, and
that the CM-point corresponding to x is a CM-point of discriminant d. Assume that the set

CM(d) of CM-points of discriminant d does not meet the divisor of the Borcherds form ¢



14 STUDENT: CHIEN-HUNG SHIH AND ADVISOR: YIFAN YANG

of weight 0. Then Then

m > loglys(n) = —iz 37 ep(m)ky(m).

T€CM(d) n m>0

From [3] we could know that zp : Xp — P! is a Borcherds form. Thus, we could use

the above results to compute the singular moduli.

4. Equations of Shimura Curves

Example 1. Consider the Shimura Curve X% (1)/Wiss. 1. By finding suitable eta-products,
we construct 4 modular forms f1, fo, fa, fa of weight 1/2 on T'y(316) with Fourier expan-

sions

R e R e e S S N AT

fo=q % + 510 {964 T 482 9q 04 0482 9 —23 L), -2/ 119 _ 18

2q—16 +4q—15 +4q—14 +q—13 _q—11 +2q—10 _ q—S +4q—6 +q—5 +4q—3 4+

f3 _ _qfl o q72 4 3q—3 _’_q74 V. 2(]75 _ 3(]76 _’_q78 + q49 y 2q—10 _ q713 o 3q714 o 3q715+

2(]716 + q719 + q720 4 q723 o+ q731 o 2q732 o q736 o4 2q740 + q742 + q752 o 2(]764 o q776 4

fi=—2¢ =g =20 +q =27 -2+ ¢+ g0 —2¢70 — g —2¢7 M — 2715 £ 2¢7 10+
G420 B Bl g3 30 g0 9 4 =52 9y =64 mT6
so the Borcherds forms have divisors
div®y, =2P_180 — P11 — P_72, div®y, =2P 338 — P_11 — P_7»
div®y, =2P_168 — P_g — P_g9, div®y, =2P_ 196 — P_g — P_9
Thus, we could know that ® ¢, is a polynomial of degree 1 in @y, and @y, is a polynomial
of ®,. There are modular functions x and y on X§°%(1)/Wiss 1 and let divz = div @y,

and divy = div ®y, such that x has poles at P_11 and P_75 and y has poles at P_g and
P_QQ.
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Computing singular moduli, we could find

4 -8 -11 -19 -20 -40 -52 -67 -88

lz| |1 13 oo 1 3 1 1 137 11/5

la+bz|| 2 83 oo 3 4 2 3 1177 185

|y | 1 oo 4 6 o 5 2 2 5

le+dyl |2 oo 87 47 oo 6/7 12/7 12/7 6/7

From P_4 and P_19, we could set up the following equations.
Since the value of | a + bz | for P_jrand P_19 are different, thus the they
couldn’t have the same value of =By considering Cramer’s formula, we only
need to change.the sign of | a + bx | for P_4 and P—1g and fixing the value of x.
(1) Ifthe x value of P_4 is I and the x value of P—y9'is -1, and assume | a + bx | for

P_yis 2, and | a + bx-| for P19 is'3 we'could get

at+b=2

a—b=3

Then we€ould solve,(a,b) = (5, —3).

(2) If the x value of P-4 is 1 and the x value of P_1g is -1; and assume | a + bz | for
P_yis 2, and | a4 bz |\for P_19 is —3 we could get

a+b=-2

a—b=3

Then we could solve (a,b) = (3,—3).

(3) If the x value of P_4 is I and the x value of P_1g is -1, and assume | a + bz | for

P_yis =2, and | a + bx | for P_19 is —3 we could get

a+b=-2

a—b=-3

Then we could solve (a,b) = (—2,—1).
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(4) If the x value of P_y4 is I and the x value of P_1g is -1, and assume | a + bz | for
P_yis2 and | a+ bz | for P_19 is —3 we could get
a+b=2
a—b=-3

We could solve (a,b) = (—3,5). By examing the values of P_g and P_yo, we could

get(%, —%) is the correct answer. Thus, we could get value of x for each point.

By the similar argument as above, we could get (¢, d) = (1—76, f%) and get the values of y.
Then we could the following results.
5 .1
|2 J2 Byl = (2 79
3 16 7
22770y, |, g Ly e g

and the values of x-and vy at various CM-points are

-4 -8 = -19° -20 40 -52 -67 -88

x| 1 13 ye0 -1 -3 1 -1 13/7 -11/5

y|ll oo 4 6 o~ .5 2 2 5

For the coordinates, we see that the relation between x and vy is

a(3z +1)(zF 3)y? 4 (br2 e d)y 4+ (a® + fr +g) = 0.
From the information at the other CM-points P-4, P_19, P_40, P_52, P_¢7, P_gs

we could get

5 146 320 640 256

= 4007 12000 ©7 T 400 > f==200" 97 100

Therefore, the relation between x and y is
(3x + 1) (z + 3)y? + (—3222 — 64z)y + (8022 + 642 — 64) = 0.
Thus, we could get the Weierstrass model is
y? = 2% — 139z + 454.

By letting

1’1:Z$+*~
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_1 1.5
NERYTRT Ty

The minimal model is

Yi iy + oy =af —af — 9z +9,

Example 2. Consider the Shimura Curve X2'*(1)/Wa14.1. By finding suitable eta-products,
we construct 4 modular forms f1, fa, f3, fa of weight 1/2 of type oo on T'g(428) with

Fourier expansions

f _q—190 B _q—44 3q 43
q 40 + q—39 3q—18
3q_17 -7_
11¢7°
f2 _ q—147 —43 4 q—39
—37
q +
g —2¢7 %+
q—2 +3q—1
fy = _q—108 + q—64 _ q—se _—48 39 q—36 + q-27 - 2q—23 _ 6q'22—

e LI L L i T e B

65 +q =23 —Tq 2 +q 4+

fomq163 o108 _ =76 | (=04 (=50 g8 543 g, =39 | =27 25
B2 gt 410 _ 518 51T _ggm16 4 g1y 12
P +5¢ % =5¢ T +q P —2¢% 4 +q "+

so the Borcherds forms have divisors

div®y =2P 760 — P36 — P_148, div®y, =2P 147 — P36 — P_148
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div®ys, =P 19+ P_so — P_3 — P_3g, div®y = P_190 + P-163 — P_3 — P_3¢
Thus, we could know that ®, is a polynomial of degree 1 in ® ¢, and O, is a polynomial
of ®y,. There are modular functions x and y on X§14(1)/W21471 and let divz = div &y,
and divy = div @, such that x has poles at P_3¢ and P_143 and y has poles at P_3 and
P_s¢ and zeros at P_19 and P_xs.

Computing singular moduli, we find

6 2 1
|z |=| 1077 @y, |, | 7+ |=] 29, | /(1077)

3 1
|5+ v =l 21070, |

and the values of x and y at various CM-points are

7
|y |=|2°1072 0y, |,

-3 4 Al -19 -40 -52 -163

x| 1716 -16/30:.1720 9/4 ~17/6~ 23/4 .. 276/26

y| oo 1/3 1 0 o) 0 -3

For the coordinates, we see that the relation between x and y is
a(162. = 1)y + (b2° fextad)y=(da=9)(4z — 23) = 0.

From the information at the other CM-points P_,, P_11, P<405 P_143, we could get
a=—1, b=-—64"c=400, d=—282.
Thus, the relation between x and v is
—7(162 — 1)y* + (—642> 4 4002 — 282)y + (4o — 9)(4x — 23) = 0.

So we could get the Weierstrass model
9 3 354656512 L 14156973350912

y= 3 27
By letting

1 1
1= =& — —.
3136° 12

1 Lo

=y — ——T+ —.

1= 1756167~ 6272”7 T 24

The minimal model is

y% + 191 = xi’ — 12z + 16.
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Example 3. Consider the Shimura Curve X2'®(1)/Waus 1. By finding suitable eta-products,
we construct 4 modular forms f1, fa, f3, fa of weight 1/2 of type co on T'q(426) with
Fourier expansions

fi= —q 295 4 9g7236 4 796 4 94776 _ 9459 4 755 _ ;=40 _ 9,39 3,32 4 (=30

20728 — 293¢ —23¢72° — 2719 —93¢712 g1 4 4710 93479 _ g6 4 g2 ...

fo= —q 295 4 0q7236 4 7183 4 (796 | 9,76 959 4 (=55 _ (=40 9 =39 3,-32_
2423 — 25072 250720 — 24719 950712 ¢ M 4710 _ 9549 — O 4 g 2.
fo = q 295 726 S0 L gF5 | 4y o —40 | (S82 L 0723 4 16,21 | 1647204

G0 g E O L 16g=t2 g0 1600 g T

Fi=q 295 _ qmR3OL (85 gmTey 59 g 0 B 3 g8 | g5,y

1520 gm0 g 1B 4 15g 12 — ¢ 0 41560 — 25 L
so the Borcherds forms have divisors

div (bfl = 2P_120 - P_g 4 P—ll; div (I)f2 — 2P_532 — P_g - P_11

div (I)fa = 2P_56 - P-ll \ P_52 div (I)f4 — 2P_340 y P_11 — P,52
Thus, we could know that @ ¢, is a polynomial of degree 1 in® ¢, and @, is a polynomial
of ®¢,. There are modularfunctionsx.and y on Xg'8(1)/Waig, and let div z = div @y,
and divy = div ® ¢, such that x has poles at P_g and P_y, and y has poles at P_y, and
P,52.
Computing singular moduli, we could find
@ |=]109% ®, | /2%, [4-22|=|109% &y, | /2
8 2 25
ly|=1 28y, | /109°, |2~ 2y =] 220, | /(3 109%)

and the values of x and y at various CM-points are

-8 -11 -19 -24 -40 -52 -67 -148 -232

x|oo oo I 12 12 1 78 -1/2 -172

y| 2 oo 1 2 !l oo -2 -2 7/3
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For the coordinates, we see that the relation between x and y is

a(x — 1)y? + (bx* +cx + d)y + (2> + fr +g) = 0.

From the information at the other CM-points P_,, P_19, P_40, P_52, P—_g7, P_gs, we could

get
1 1 1 1

= - b:—— = — d:— :—]_ =

a 87 27 & 87 ) f ) g

Thus, the relation between x and v is

(z —1)y> +

So we could get the Weie

By letting

The minimal model

Example 4. In the follc it 226, 274, 278,298

D=226,

3 -19 -20 -24 -27 -40 -43 -67 -148 -232

x|oo O 1 0 oo I 12 12 -3 -3

y| 0 1 4 o0 oo I 4 74 -17 0

The relation between x and y is

22y? + (=92 4+ 5x — 6)y + (22 + 6) = 0.

Setting

3(23z — 16y + 16)
g = — Az .
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18(32% — 3oy — 3z + 4y — 4)
_ o

Yo =

We get a Weierstrass model

s _ e G907 33075
Yo =T = g PO T Ty

By letting

L7970 1o

1 Lo
Y= 5790 7 1870 T ag

The minimal model is

 — — . — O —

Thus, the relation between x and vy is

2z +5)y* + (=222 =52 —2)y + (z +1) =0,
Setting
g 2096y 47T
12(2x + 5)
2(62” + 8xy + 23z + 4y + 8)
a 422 + 20z + 25

Yo =

We get a Weierstrass model

s _ s 33T 8381
Yo = %o ™ g 0T gey

21
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By letting
1
TR
1 1
ylzyo—il'o-i-ﬂ-

The minimal model is

y% + 191 :m‘;’ — Tx1 +9.

Example 6. D =278,

The values of x and y at various CM-points are

-4 -11 -20

24

From the info 148, P—163, we

could get

Setting
97x — 120y 4 21
Tp= ———F———
12(x — 3)
B _233:2 —2lay + 152 — 37y + 8
Yo = 22 —6x+9 '
We get a Weierstrass model
2—353—@,% +7849
T T
By letting
1
X1 = Ty — E

= la:-l-l
Y1 ="Yo B 0 5Yh
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The minimal model is

Y+ ziyr = 75 — 219.

Example 7. D=298, The values of x and y at various CM-points are

3 -8 -11 -40 -43 -52 -163 -232

x| 1 3 3 32 oo 6 32 1

y| I oo 13 oo 1/3 0 1 -5/3

The relation between x and y i

v+ (b +ex+d ;

Thus, the relat

Setting

 27(902%y — 14a® — - 2437 — 1107 — 2592y + 864)

Yo =

We get a Weierstrass model

9 3 24651 806787
e T
By letting
1 1
Tr1 = 9.’170 12.

L S
Y1 =979 =180 T o

The minimal model is

y2 + xy1 = 2% — 1921 + 33.



24

STUDENT: CHIEN-HUNG SHIH AND ADVISOR: YIFAN YANG

References

[1] Montserrat Alsina and Pilar Bayer. Quaternion orders, quadratic forms, and Shimura curves, volume 22 of
CRM Monograph Series. American Mathematical Society, Providence, RI, 2004.

[2] A.O.L. Atkin and J. Lehner. Hecke operators on I'g(m). Math. Ann., 185:134-160, 1970.

[3] Richard E. Borcherds. Automorphic forms with singularities on Grassmannians. /nvent. Math., 132(3):491-
562, 1998.

[4] Richard E. Borcherds. Reflection groups of Lorentzian lattices. Duke Math. J., 104(2):319-366, 2000.

[5] J.-E. Boutot and H. Carayol. Uniformisation p-adique des courbes de Shimura: les théoremes de Cerednik
et de Drinfel’d. Astérisque, (196-197):7, 45-158 (1992), 1991. Courbes modulaires et courbes de Shimura
(Orsay, 1987/1988).

[6] 1. V. Cerednik. Uniformization of algebraic curves by discrete arithmetic subgroups of PGLa (k) with
compact quotient spaces. Mat. Sb. (N.S.); 100(142)(1):59-88,.165,.1976.

[7]1 V. G. Drinfel’d. Coverings of p-adic symmetric domains. Funkcional: Anal. i PriloZen., 10(2):29-40, 1976.

[8] Noam D. Elkies. Shimura curve computations. In Algorithmic number theory (Portland, OR, 1998), volume
1423 of Lecture Notes in Comput..Sci.,.pages 1-47. Springer, Berlin, 1998.

[9] Eric Francis Ertthum. Singular moduli of Shimura curves. ProQuest-LLC, Ann Arbor, MI, 2007. Thesis
(Ph.D.)-University of Maryland, College Park.

[10] Josep Gonzilez and Victor Rotger. Equations of Shimura curves of genus two. [nt. Math. Res. Not.,
(14):661-674;.2004.

[11] Josep Gonzélez and Victor Rotger. Non-elliptic Shimura curves of genus one. J. Math. Soc. Japan,
58(4):927-948,2006.

[12] Jia-Wei Guo, Yi-Hsuan Lin, and Yifan. Yang. Explicit methods for Shimra curves. in preparation, 2013.

[13] Akira Kurihara. On'some examples of equations defining Shimura curves and the Mumford uniformization.
J. Fac. Sci. Univ. Tokyo Sect. IA Math., 25(3):277-300, 1979.

[14] Akira Kurihara. On p-adic Poincaré series and Shimura curves: Internat. J. Math., 5(5):747-763, 1994.

[15] Santiago Molina. Equations of hyperelliptic Shimura curves. Proc. Lond. Math. Soc. (3), 105(5):891-920,
2012.

[16] Jarad John Schofer. Borcherds forms and generalizations of singular moduli. ProQuest LLC, Ann Arbor,
ML, 2005. Thesis (Ph.D.)-University of Maryland, College Park.

[17] Goro Shimura. Construction of class fields and zeta functions of algebraic curves. Ann. of Math. (2), 85:58—
159, 1967.

[18] Marie-France Vignéras. Arithmétique des algebres de quaternions, volume 800 of Lecture Notes in Mathe-

matics. Springer, Berlin, 1980.



