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摘  要 

 
在現今的環境中，提供加密的需求已是刻不容緩，如果在嵌入式系統中加入加密

的運算，就會遇到幾項議題，其中我們針對處理速度以及硬體彈性這兩項議題進行討

論，我們針對目前較常見的加密演算法，分別為 AES DES 和 RSA。提供一個可在

AES，DES 和 RSA 之間彈性轉換，並且可以彌補速度上不足之硬體。在考量處理速

度不足這項議題之下，我們採用速度與面積乘積為評比標準。 

 

在本論文中，我們首先分析此三演算法之運算需求，然後針對不同類型之運算分

別設計出排列組合單元，運算單元以及記憶單元，其中排列組合單元採客制化設計，

運算單元由處理單元所組成，記憶單元則由單位緩衝區所組成，我們討論處理單元以

及單位緩衝區的設計以及考量在不同比例之運算單元以及單位緩衝區之下，造成面積

速度乘積的影響，最後所提出的設計和針對個別演算法之客制化設計做比較，比較結

果顯示我們的方法確實在面積速度乘積有較好的效果。 
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Abstract 
Providing security has become more and more urgent and necessary in embedded 

systems. If we want to support security in our embedded systems, some issues must be 

solved. We focus on processing gap and flexibility concerns. We target on the three 

commonly used cryptographic algorithms, AES, DES and RSA. In our thesis, we want to 

propose a hardware which solves the processing gap and switches flexibly between AES, 

DES, and RSA. Under the consideration of processing gap, we use space-time product as 

our performance metrics. 

 

We first classify the operation of the three cryptographic algorithms into three classes. 

Then, we design modules for different operation classes respectively. The three modules are 

permutation-combination unit, computation unit and memory unit. The permutation- 

combination unit is a custom design. The computation unit is consisted of processing 

elements and the memory unit is consisted of tile buffers. The different ratio of processing 

elements and tile buffers will lead to different results. We choose the most appropriate ratio. 

Finally, our proposed method will get better result than ASIC design. 
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Chapter 1 Introduction 

 
    Curiosity about other people's business and the hiding of information are characteristic 

of all human societies. In military, commerce, and diplomat, protecting some confidential 

papers is more and more important. Furthermore, embed security feature in some personal 

devices, such as PDA and handset, has become a considerable factor for consumers. 

According to the statistic of Mobile Commerce taken by ePaynews.com, nearly 52% of cell 

phone users and 47% of PDA users feel that security is the largest concern preventing the 

adoption of Mobile Commerce. The statistic bar graph is shown in Fig.1-1. In the Fig. 1-1, 

the second important reason is the klunky user experience. It means the habits of 

experienced users. The two reasons account for 70% of the statistics. [1] 
Besides the urgent necessity, the stronger computing power and the more impeccable 

development of mathematical techniques have make cryptosystems extremely sophisticated. 

It's able to construct ciphers that are effective and impossible to break. As a result, 

embedded systems adapt some security features is necessary and possible. 
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Fig. 1-1 Obstacles preventing consumers from adopting Mobile Commerce [1] 
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1.1   Design Challenges of Secure Embedded Systems 
Many embedded systems are constrained by the environments they operate in, and by 

the resources they possess. For secure embedded systems, there are some new design 

challenges. These new design challenges are processing gap, flexibility concerns, battery 

gap, tamper resistance, assurance gap and cost. The processing gap means the gap between 

bandwidth of devices and environments. The flexibility concerns come from the 

characteristics of cryptographic algorithms. Battery gap is the insufficiency of battery. The 

tamper resistance is the countermeasure for malicious software such as viruses and Trojan 

horses. The assurance gap is the gap between current systems and the reliable systems 

which never crash under any kind of situation. Last but not least, the cost is the area 

constrain of embedded environment. [2] Our thesis is focus on processing gap and 

flexibility concerns. 

 

1.1.1  Processing Gap 

At different environments, data rates of cellular (128 kbps~2Mbps), wireless Lan 

(2~60Mbps) and the lower-end of access network (~100Mbps) are supported by current 

low- and high-end embedded processors. [2] Take XScale as an example, when it 100% 

dedicates for record protocol of Secure Socket Layer (SSL) which is a popular security 

protocol, it can only sustain data rate 3.1Mbps. Any higher rates are unattainable. If we use 

this embedded process for SSL, this would lead processing gap. In Fig.1-2 shows the 

throughput of low- and high-end processors. The horizontal axis is MIPS of embedded 

processors. The vertical axis is data rate produced by these embedded processors. We 

choose some popular processor. For low-end system, we choose the XScale, ARM9 and 

SA-1110 as an example. For high-end system, we choose Xcon and PIII. 
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Fig. 1-2 Throughput of high- and low- end embedded processors [2] 

 

1.1.2  Flexibility Concerns 

A typical security protocol standard usually allows for a wide range of cryptographic 

algorithms. In general, asymmetric cryptographic algorithms are used to exchange the keys 

which needed by symmetric ones. If we use ASIC to speed up the two cryptographic 

algorithms individually, hardware utilization will be very low. The low utilization comes 

from using symmetric and asymmetric ASIC in sequence. When we use asymmetric 

cryptographic algorithms to exchange keys, the hardware used to speed up symmetric 
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cryptographic algorithms is idle. It is the same for asymmetric ones when symmetric ones 

are active. 

 

Fig. 1-3 Evolution of security protocols [2] 

Besides the requirement of supporting different cryptographic algorithms, security 

protocols and cryptographic algorithms are not only diverse, but also continuously evolving 

over time. As time goes by, future computation power will become stronger than current 

one. The current cryptosystem will become insecurity. So, we need some new 

cryptographic algorithms or some cryptographic enhancements. As the Fig.1-3 shows, these 

security protocols add more and more features from 1990 to 2002. For cryptographic 

algorithms itself, take DES as an example. 3DES is an enhancement algorithm with respect 

to DES. It uses the same cryptographic algorithm, but need longer key to support higher 

security level. 

As a result, embedded systems supporting for security need some kinds of flexibility 

concerns between different cryptographic algorithms and forward compatible for future 

ones. 
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1.2   Architecture for Security Processing 
As the security embedded systems grow, there are two generations of security 

processing architecture. The First-generation solutions perform security processing by 

executing security software on the embedded processors. Because they use software to 

perform cryptographic algorithms, they have high flexibility and fast turn around time. 

Unfortunately, the characteristic of processor which is designed to execute any kind of 

application leads doesn’t meet the case for stream data processing. The most execution time 

is spent on instruction fetch and decode. Nevertheless, the applications such like 

cryptographic algorithms are fixed. As a result, the First-generation solutions are not 

efficient in terms of their performance and energy consumption. 

The First-generation solutions have the defect of performance. Some people suggest 

that design a dedicated hardware to speed up cryptographic algorithms. It is a good 

approach in the view point of processing gap. So, the Second-generation solutions are 

proposed. The Second-generation ones sacrifice the flexibility and turn around time. The 

benefits of them are hardware efficiency and low power. These advantages are due to the 

custom design. But, as the section 1.1 tells us, the cryptographic algorithms are not only 

diverse, but also continuously evolving over time. As time goes by, the mainstream 

cryptographic algorithms may be replaced by some new cryptographic ones. Under this 

situation, the Second-generation solutions will get troubles. As a result, we need the 

third-generation solutions which need to have benefits of first- and second-generation ones. 

They need to have high efficiency, high flexibility and fast turn around time. Fig.1-4 shows 

the pro and con of the three generations of security processing architecture. 
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Fig. 1-4 Security processing architectures [2] 

 

1.3   Motivation and Objective 
For secure embedded systems, processing gap still needs to be solved. But new issue 

for embedded systems, flexibility, should be considered. Unfortunately, the researches 

about flexibility are rare. In our thesis, we propose a hardware which solves the processing 

gap and switches flexibly between AES, DES, and RSA. Under consideration of processing 

gap, we use space-time product as our performance metrics. 

We first classify the operation of the three cryptographic algorithms into three classes. 

Then, we design modules for different operation classes respectively. The three modules are 

permutation-combination unit, computation unit and memory unit. The 

permutation-combination unit is a custom design. The computation unit is consisted of 

processing elements and the memory unit is consisted of tile buffers. The different ratio of 

processing elements and tile buffers will lead to different result. We choose the most 
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appropriate ratio. Finally, our proposed method will get better result than dedicated design. 

Organization of this thesis is that chapter 2 will introduce some cryptographic concepts, the 

three algorithms, DES, AES, and RSA and some hardware implementations. Chapter 3 is 

our proposed design. Chapter 4 is evaluation results. We compare our design to dedicated 

design. Chpater 5 is conclusion and future work. 
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Chapter 2 Background and Related Work 
In this chapter, we will give an overview of cryptography. Then, we introduce the three 

commonly used cryptographic algorithms and summarize all the used operation. Finally, 

previous works related of the three cryptographic algorithms are presented. 

 

2.1   Overview of Cryptography 
The word Cryptography is composed by two ancient Greek words. “kryptŏs” and 

“graphein” The “kryptŏs” means hidden and “graphein” means writing. Cryptography is 

the study of information hiding, message certification and the science of encrypting and 

decrypting text. [3][4] 

Cryptography has existed thousands of years. The Ancient Greece, Spartan, wraps 

leather at a specific ruler and then write the information on it to transmit to others; Others 

which want to read the message only need the ruler with equal size. When they get the 

leather like this, they wrapped the leather on the ruler and then read the original information. 

In this way, even if this leather is intercepted midway. It is only some useless information 

in a mess because of unknown ruler’s length. This is one of the earliest cryptography of the 

mankind that records in history. Of course, such system is ludicrously weak. The modern 

cryptosystems use sophisticated algorithms based on mathematical problems that are 

difficult to solve.[5] 

In general, a cryptosystem will have three roles during messages exchanging. They are 

sender, receiver and intruder. Typical cryptosystems are shown as Fig.2-1. At the sender 

side, sender encrypts plaintext M with an encryptor E and a key k1. The ciphertext is C = E 

(M, k1). Then, the sender sends the ciphertext to public channel for receiver. When receiver 

receives the ciphertext, he uses a decryptor D and key a k2 to decrypt ciphertext to plaintext. 

M =D(C, k2)= D( E (M, k1), k2). The intruder is a malicious role. He listens to the public 
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channel and uses any kind of methods to know the plaintext from sender or pretend 

message to receiver. He can get ciphertext, but has no idea about k2.[4] 

 

Fig. 2-1 Typical cripto-algorithm block diagram [4] 

 

2.2   Symmetric and Asymmetric Cryptosystems 
In typical cryptosystem, if secret k1 and k2 are the same, this cryptosystems are 

Symmetric Key Cryptosystem, One-key Cryptosystem or Private Key Cryptosystem. 

Symmetric Key cryptosystems have been used for thousands of years. They range from 

simple substitution ciphers to more complex constructions. One of the simplest form is 

known as the Caesar cipher used by Julius Caesar. The process of Caesar cipher is 

simply shifting the alphabet [6]. This system is very easy to break. Fortunately, the growth 

of computing power and some new developments in mathematics make that it is possible to 

create Symmetric Key Cryptosystems that are unbreakable. Symmetric Key 

Cryptosystems are generally very fast. But they have a disadvantage. Sender and receiver 

need to agree on the shared key previously. However, the communicating parties may never 

meet over the network. It is impossible for the two parties to encrypt data without having a 

shared secret key that is known in advance. So, the Symmetric Key Cryptosystems are 

vulnerable. 

The secret key sharing can be a major vulnerability in Symmetric Key 

Public Channel 
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Intruder 
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k2 k1 
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Cryptosystems. In 1976, Diffie and Hellman[7] demonstrated an algorithm which is 

known as Diffie-Hellman Key Exchange. It is an elegant approach toward secure 

communication that has led to the development of Public Key Cryptosystem, also named 

Asymmetric Cryptosystem. The use of Public Key Cryptosystem is quite simple. As 

shown in Fig.2-2., sender and receiver share a single public key, but receiver has one more 

key, private key. The public key is available to everyone in the world including the intruder, 

but the private key is only known by receiver. If sender wants to send message to receiver, 

sender uses the public key to encrypt message and then send to receiver. When receiver 

receives the ciphertext, he uses his private key to decrypt message. As a result, sender and 

receiver don’t have to exchange key previously. So, the Asymmetric Cryptosystems don’t 

have the vulnerability of symmetric cryptosystems. 

 

Fig. 2-2 Public Key Cryptosystem 

Symmetric cryptosystems are faster than asymmetric ones. They are the preferred 

mechanism for encrypting large amount of message. A cipher such as DES[8] will be at 

least 100 times faster than the asymmetric cipher RSA[9] in software and might be up to 

10,000 times faster when implemented on specialist hardware.[6] Asymmetric 

cryptosystems are most suitable for protecting data with high security requirement. In 

practice, the most satisfactory methods are combining both symmetric and asymmetric 

systems. Use asymmetric systems to exchange secret key which is used by symmetric ones. 

Public Encryption Key k1 

plaintext M  
Encryptor E 

 
Decryptor D 

ciphertext C 

Private Decryption Key k2 

plaintext M 
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After secret key exchanging, the symmetric cryptosystems can encrypt or decrypt data with 

this key. DES and AES are the commonly used symmetric algorithms, and RSA is 

asymmetric one. In our research, we will focus on the three cryptographic algorithms. 

 

2.3   AES[11] 
In October 2000, the NIST chose Rijndael as the new Advanced Encryption Standard 

(AES). AES is intended to replace DES and Triple DES as a new secure standard [10].  

AES is a symmetric block cipher. It can process block data of 128-bit. The Fig.2-3 shows 

the AES encryption flow. Just like all symmetric cryptographic algorithms. The AES has a 

regular computation flow. It just repeats the routine, round, some times depending on 

different length of cipher key. The length of cipher key are 128-, 192- and 256-bit 

respectively. The AES encryption and decryption are composed by five main components. 

All of them are Key Expansion, Subbytes, ShfitRows, Mixcolumn, and AddRoundKey. 

[11] 

 
Fig. 2-3 Flow of AES 
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2.3.1  Definition 

Before introducing AES, we must define some terms previously. The length of input, 

output, and state which is output of round in AES is 128 bits. This is represented by Nb = 4, 

which means the number of 32-bit words. The length of the cipher key, k is 128-, 192-, or 

256-bit. The length of key is represented by Nk. The 128, 192, and 256 are Nk = 4, 6, and 8 

respectively. Depending on different length of cipher key, AES algorithm performs some 

times of round. The round number is represented by Nr. When Nk is 4, 6, and 8, it means 

10, 12 and 14 rounds in AES respectively. The combinations of Key-Block-Round are 

given as follow in Table. 2-1 

 Cipher Key length(Nk) Block Size(Nb) Number of Rounds(Nr) 

AES-128 4 4 10 

AES-192 6 4 12 

AES-256 8 4 14 

Table 2-1 Key-Block-Round Combination 

 

2.3.2  Key Expansion 

The Key Expansion algorithm takes cipher key to produces a key schedule for 

en/decryption flow. The Key Expansion will generate total Nb(Nr + 1) words. The Key 

Expansion processes shows as the following algorithm. 

The SubBytes() is a function that perform four bytes table look up which will mention 

in section 2.3.3. The function RotWord() take a word [A1,A2,A3,A4] to perform a cyclic 

rotate, and then return the result [A2,A3,A4,A1]. And the Rcon[i] are constant in the form 

[Xi,0,0,0]. Xi are list as following table 2-2. 

Round i 0 1 2 3 4 5 6 7 8 9 

Xi 01 02 04 08 10 20 40 80 1b 36 

Table 2-2 Xi of Rcon[i] 
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KeyExpansion(byte key[4×Nk], word w[Nb×(Nr+1)], Nk) 
begin 

word temp 
i = 0 
while (i < Nk) 

w[i] = word(key[4×i], key[4×i+1], key[4×i+2], key[4×i+3]) 
i = i+1 

end while 
i = Nk 
while (i < Nb × (Nr+1)] 

temp = w[i-1] 
if (i mod Nk = 0) 

temp = SubBytes(RotWord(temp)) xor Rcon[i/Nk] 
else if (Nk > 6 and i mod Nk = 4) 

temp = SubWord(temp) 
end if 
w[i] = w[i-Nk] xor temp 
i = i + 1 

end while 
end 

 Take Nk = 4 as an example, the expansion executes as following Fig. 2-4 

 

Fig. 2-4 Key Expansion Flow 

 

2.3.3  SubBytes 

 

 

Fig. 2-5 SubBytes applies S-box to each byte of the state 
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The SubBytes transformation performs a non-linear byte substitution that operates 

independently on each byte as in Fig. 2-5. The non-linear byte substitution is constructed by 

the following transformation in Fig. 2-6. This transformation is invertible. 

 

Fig. 2-6 SubBytes transformation 

 

2.3.4  ShiftRows 

 

 

 

 
 

Fig. 2-7 shift cyclically the state 

In the ShiftRows transformation, the last three rows of the state rotate over different 

numbers of bytes like Fig.2-7. The shift numbers are listed in table 2-3. 

No. of column C1 C2 C3 

Left shift (Encryption) 1 2 3 

Right shift (Decryption) 1 2 3 

Table 2-3 Shift number C1 means Column one 
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2.3.5  MixColumn 

 

Fig. 2-8 Mixcolumn 

 The MixColumn operates column by column on the state. We can view it as a special 

matrix computation. It is shown as Fig.2-8. Before introducing the MixColumn, we must 

define some terms. 

Definition 

 Bi,C is byte : Bi,C ={b7,b6, b5, b4, b3, b2, b1, b0} 

 B0,C ⊕ B1,C : B0,C  XOR  B1, C 

 01 ⊗ B0,C :  {b7,b6, b5, b4, b3, b2, b1, b0} 

 02 ⊗ B0,C  : {b6, b5, b4, b3 ⊕ b7, b2 ⊕ b7, b1, b0 ⊕ b7, b7} 

 Hardware form of  “02 ⊗ B0,C“ is shown as follows It is named X_TIME 

 

Fig. 2-9 X_TIME 
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Use the previous define, the encryption matrix can be expanded as follows. 

B’0,C  = 02 ⊗ B0,c ⊕ 03 ⊗ B1,c ⊕ 01 ⊗ B2,c ⊕ 01 ⊗ B3,c 

      = 02 ⊗ B0,c ⊕ 02 ⊗ B1,c ⊕ 01 ⊗ B1,c ⊕ 01 ⊗ B2,c ⊕ 01 ⊗ B3,c 

The decryption shows as follows. 

B’0,C  = 0e ⊗ B0,c ⊕ 0b ⊗ B1,c ⊕ 0d ⊗ B2,c ⊕ 09 ⊗ B3,c 

      = 02 ⊗ B0,c ⊕ 02 ⊗ (02 ⊗ B0,c) ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B0,c)) ⊕ 

01 ⊗ B1,c ⊕ 02 ⊗ B1,c ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B1,c)) ⊕ 

01 ⊗ B2,c ⊕ 02 ⊗ (02 ⊗ B2,c) ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B2,c)) ⊕ 

01 ⊗ B3,c ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B3,c)) 

 The Data flow graph of the two functions is shown as follows. 

 
Fig. 2-10 Data flow graph of encryption and decryption 
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2.3.6  Add Round Key 

 

 

 

 

 

Fig. 2-11 Add Round Key 

In this transformation, it adds state and key scheduling like Fig.2-11 

 

2.4   DES[8] 
Data Encryption Standard (DES) derives from work done by IBM. It became effective 

in July 1977 and reaffirmed in 1983, 1988 and 1999. It is probably the most widely used 

secret key cryptosystem, particularly in securing financial data, such as Automated Teller 

Machines (ATMs). 

 
Fig. 2-12 Flow of DES 
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The DES flow is in Fig.2-12. It is composed by sixteen rounds and two permutations. 

The two permutations are place at beginning and end of DES round. In the key scheduling, 

DES needs only three kinds of permutations. As a result, we will divide DES in to two 

categories, Permutations and Round. 

 

2.4.1  Permutations 

In the Shift Left transformation, it treats input as two 28-bit blocks. Let’s note the 2 

28-bit as C and D. The left rotating one bit means a rotation of the bits one place to the left. 

So after rotating one bit C and D become {C[0],C[28]…..C[1]}, {D[0],D[28]…..D[1]} 

separately. The rotate number depends on round iteration number. It shows as the following 

table. 

Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rotate bits 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 

Table 2-4 Left shifts number 

The Initial permutation, IP encipher the input block to the following permutation 

 

58 50 42 34 26 18 10 2 
60 52 44 36 28 20 12 4 
62 54 46 38 30 22 14 6 
64 56 48 40 32 24 16 8 
57 49 41 33 25 17 9 1 
59 51 43 35 27 19 11 3 
61 53 45 37 29 21 13 5 
63 55 47 39 31 23 15 7 

 

That is the permuted input has bit 58 of the input as its first bit, bit 50 as its second bit, 

and so on with bit 7 as its last bit. The inverse permutation, IP-1, is list as following by the 

same notation as IP:  
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40 8 48 16 56 24 64 32 
39 7 47 15 55 23 63 31 
38 6 46 14 54 22 62 30 
37 5 45 13 53 21 61 29 
36 4 44 12 52 20 60 28 
35 3 43 11 51 19 59 27 
34 2 42 10 50 18 58 26 
33 1 41 9 49 17 57 25 

 

 Key scheduling is performed by three permutations Permutation choice 1 (PC1), 

Permutation choice 2 (PC2) and some left circular shift. PC1 is determined as follows. 

 

57 49 41 33 25 17 9 
1 58 50 42 34 26 18 
10 2 59 51 43 35 27 
19 11 3 60 52 44 36 
63 55 47 39 31 23 15 
7 62 54 46 38 30 22 
14 6 61 53 45 37 29 
21 13 5 28 20 12 4 

 

PC2 is determined as follows. 

 

14 17 11 24 1 5 
3 　 28 15 6 21 10 
23 19 12 4 26 8 
16 7 27 20 13 2 
41 52 31 37 47 55 
30 40 51 45 33 48 
44 49 39 56 34 53 
46 42 50 36 29 32 

 

After Cipher Key performs permutation choice 2, it becomes 64 bits to 56 bits.  
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2.4.2  Round 

DES is composed by sixteen rounds. The Round organization is shown as follows in 

Fig.2-13. We first divide the input 64-bit into Right part and Left part. The R part is the f 

input. We XOR the result of f with L part to be R part of the next round. And the current R 

part will be the L part of the next round.  

The function f performs the following operation. First, f expands input from 32-bit to 

48-bit, and then XOR with Key scheduling. Second, separate the 48-bit into eight 6-bit data 

and then the eight 6-bit will look up 8 different tables individually. Each table will output 

4-bit data. Finally, the eight 4-bit data will perform the finial permutation. The f finishes. 

 

Fig. 2-13 Organization of Round 
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The function of P 

16 7 20 21 
29 12 28 17 
1 15 23 26 
5 18 31 10 
2 8 24 14 
32 27 3 9 
19 13 30 6 
22 11 4 25 

 

2.5   RSA[9] 
In 1976, Diffie and Hellman propose an algorithm which leads to development of 

today’s Public Key Cryptosystems. After one year, three researchers at MIT used the 

suggestion of Diffie and Hellman to develop a method. The Three MIT researchers are Ron 

Rivest, Adi Shamir, and Leonard Adleman. The method is named after its founders, RSA. 

The RSA algorithm has become almost synonymous with Public Key Cryptosystems. 

 

2.5.1  RSA Components[12] 

For RSA, there are two components of RSA.  

 Choice of public key and private key 

 The encryption and decryption algorithm 

RSA has two keys, public key for encryption, and private key for decryption. In order 

to choose public key and private key, doing the following flow is necessary. 

 Choose two large prime numbers, p and q 

 Compute n = pq and z = (p-1)(q-1) 

 Choose a number, e, less than n, and e and z with no comMon factor 

 Find a number, d, such that ed – 1 is exactly divisible by z 
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 The public key of RSA is (n,e), and the private key of RSA is (n,d) 

After get the keys the RSA flow shows as following. 

 Ciphertext = C, and Plaintext = P. 

 Public key is (n,e) and Private key is (n,d). 

 Encryption : C = Pe mod n. 

 Decryption :P = Cd mod n. 

 

2.5.2  Complexity of RSA 

Before explain the complexity of RSA, we define one term as a basic unit to estimate 

result. 

 Define :  

1-bit addition or subtraction as a unit computation 

 In RSA, n times of modular-multiplications are required. Suppose (n,e) both are n 

bits, the RSA compute at least n times modular-multiplication. And each 

modular-multiplication needs total n2 times unit computation because one multiplication 

and one division are required. As a result, RSA needs O(n3) of computation. 

There are two ways to speed up the RSA. The two algorithms are not conflict with each 

other. They can cooperate to speed up the RSA. They are Fast Exponentiation Algorithm 

and Montgomery Algorithm. 

 

2.5.3  Fast Exponentiation Algorithm 

Fast Exponentiation Algorithm is a trick to reduce the number of 

modular-multiplication from e times to log e. As previously described, we need at least n 

times modular-multiplication. However, it is not necessary to compute at least n times 
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modular-multiplication. For example, if we want to compute 816 mod 13. We can first 

compute 82 mod 13 with one modular-multiplication. Then, 84mod 13 come from by one 

modular-multiplication of 82 mod 13 and so on. As a result, 816mod 13 needs only four 

times of modular-multiplication. We reduce the number of modular-multiplication form 

e to log e. This is the concept of Fast Exponentiation Algorithm. A real case lists as 

follows. 

1113 mod 53 

 11 mod 53 = 11 

 112  =  121,   112 mod 53 = 121 – 2×53 = 15 

 114 = (112)2 , 114 mod 53 = 152 mod 53 = 225 mod 53 = 225 – 4×53 = 13 

 118 = (114)2 , 114 mod 53 = 132 mod 53 = 169 mod 53 = 169 – 3×53 = 10 

Therefore 1113 mod 53 = 11 × 13 × 10 = 1430  mod 53 =  

1430 – 26×53 = 52 

The Fast Exponentiation Algorithm applied to RSA is shown in Fig.2-14. The gray 

box is a modular-multiplication. P is plaintext. The bit notation of e in public key (n,e) is 

{ek ,…., e2,e1,e0}. 

 
Fig. 2-14 Flow of RSA 
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var t1 = P; 
for i=0 to n-1 
begin 

    if( ei = 1) then 
t0 = t0 × t1 mod N 

end if 
t1 = t1 × t1 mod N 

end for 
return t0;  

  }  

 

2.5.4  Montgomery Algorithm[13] 

Fast Exponentiation Algorithm can reduce the modular-multiplication times in 

RSA. But computing a modular-multiplication still needs a lot of computation. In 1983, 

L.P. Montgomery proposed an algorithm that can speed up modular-multiplication. 

 For Fix N > 1, select a radix R coprime to N and the computation of modulo R are 

inexpensive to process. Let R-1 and N’ be integers satisfying 0< R-1 < N, 0 < N’ < R and R 

R-1 -NN’ = 1. For the given number, we can quickly compute the T R-1 mod N from  T if 

0< T < RN by the following algorithm REDC. 

REDC(T) 

m = (T mod R) N’ mod R 

t = (T + mN)/R 

if(t > N)then return t-N else return t 

 

The result of REDC(T) will have the following characteristic. First, mN ≡ TNN’ ≡ -T 

mod R, so t is an integer. Second, tR ≡ T mod N so t ≡ T R-1 mod N. Third, 0< T+ mN < 

RN+RN, so 0 < t < 2N If we choose R = 2, the REDC will modify as follows.  

 

REDC(T) (Radix 2) 

T = Tn……T2T1T0  Ti∈{1,0} 
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N’ = N’n……N’2N’1N’0  N’i∈{1,0} 

m =T0×N’0 mod 2 

t = (T + mN) /R  

if(t > N)then return t-N else return t 

 

The -N’N mod 2 is equal to 1 and N0 is equal to 1 because N is the product of two 

large primes. As a result, N’ mod 2 is equal to 1. This will lead m equal to T0. We combine 

the multiplication and REDC(T) will get the Montgomery Algorithm shows as follow. 

 

Mon ( A, B, N) (radix 2) 
A , B , N < 2r .  
A = { Ar,… A2 , A1,A0}  Ai ∋ {1,0} 
B = {Br ,… B2 ,B1 B0}  Bi ∋ {1,0} 
{ 

var ACC = 0; 
   for i=0 to r do 

ACC = Ai×B+(AiB0^ACC0)×N >>1 
   end for 
   return ACC; 

} 
 

The result of Montgomery Algorithm is A×B×(2n)-1mod N. And the Montgomery 

Algorithm needs only n2 times of unit computation. 

How does the Montgomery Algorithm reduce the computation? The Mon function 

has is a characteristic. If we process A to A×2n as A by doing Mon(A, 2nmodN, N), the 

result of Mon(A,A,N) will be A2×2n mod N, as A2. The preprocess can be done by 

Mon(A,22r,N). With the same way, we can get A4, A8 …A 2^i, … A2^n which needs only one 

Mon. (A2^i is A 2^i×2n mod N) To get the A2^imod N we need the post processing, 

Mon(A2^i,1, N). We call the preprocessing as mapping, and the post processing as 

remapping. This characteristic makes the number unit computations in 
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modular-multiplication from 2n2 to n2. 

 

Fig. 2-15 Modified RSA flow 

The flow applies Fast Exponentiation Algorithm and Montgomery Algorithm 

shows as Fig.2-15. The green box is a Montgomery Algorithm. The green box in circle in 

the left side is mapping. The right side is remapping. The algorithm of new RSA flow is 

following. 

RSA(M, E, N) 

  E = { er, … e3, e4, e2 , e1, e0},  ei ∋ {1,0}. 
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   t=22r mod N; 
   P = Mon( t, M, N);  (Mapping) 
   R = Mon( t ,1, N);  (Mapping)  
   for i=0 to r-1 do  

       if( ei = 1) then 
     R = Mon( R, P, N); 

      end if 
P = Mon( P, P, N); 

end for 
R = Mon(1, R, N);  (Re-mapping) 
return R; 

  } 
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into two categories, Integrated Design and Dedicated Design. The Integrated design is able 

to perform more than two cryptographic algorithms. The dedicated design is dedicated to 

only one cryptographic algorithm. 

 

2.6.1  Integrated Design 

The Cryptonite processor is designed to provide a better tradeoff between flexibility 

and performance/area/power in the embedded systems, especially networking systems. It is 

a programmable architecture dedicated to cryptographic applications namely DES/3DES, 

AES, RC6, IDEA, MD4, MD5, SHA-1. 

 
Fig. 2-16 Cryptonite Architecture 

Architecture of Cryptonite shows as Fig. 2-16. It is two independent computing 

clusters, one for encryption and another for on-the-fly key generation. In general, key 

generation is independent to en/decryption flows. Coarse-grain parallelism can be exploited. 

On-the-fly key generation is vital for embedded systems solutions because 

storing/retrieving the round key needs for hundreds or thousands of cycle is not feasible. As 
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a result, Cryptonite provides two independent computing clusters. There are four 

components, Control Unit, ALU, Address Generation Unit and Data I/O Unit in one 

computing cluster. 

The Control Unit puts all other units on hold and grants the External Access Unit 

access to the internal data paths. Besides control other unit, Control Unit also provides 16 

register for loop and control branch. 

 

Fig. 2-17 ALU of Cryptonite 

The ALU of Cryptonite shows as Fig. 2-17. There three main part of Cryptonite, 

register file, Arithmetic Unit and XOR unit. The register file is consisted of four 64-bit 

register. In order to compensate for the low register count, each register can be either used 

as one 64-bit or 2 32-bit registers. The AU supports conventional arithmetic operations, 

boolean operations and specialized functions supporting certain algorithms. The XU can 

provide six operand XOR. 

The Address Generation Unit and Data I/O Unit are used to access local memory. The 
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Address Generation Unit contains small add/sub/and ALU for address generation. It 

supports eight addressing modes. The Data I/O Unit contains two data buffer for 

input/output. Data I/O Unit also contains a specialized DES unit. Fast DES execution not 

only needs highly specialized operations but also S-Box access to memory. Hence the DES 

is dedicated in the Data I/O Unit rather than ALU. 

We compare our proposed design with Cryptonite in the following table. 

 Cryptonite Proposed design 

Hardware organization ASIP Reconfigure Hardware 

Parallelism Coarse grain Fine grain 

Key gen. On the fly Generate previously AES 

Implementation Integrate to other algorithm Integrate to other algorithm 

Key gen On the fly On the fly DES 

Implementation Dedicated module Dedicated module 

Support DES/3DES, AES, RC6, IDEA, 

MD4, MD5, SHA-1 

DES/3DES, AES,RSA 

Environments High-end system Low-end system 

Flexibility Cryptonite > Proposed design 

Area Cryptonite > Proposed design 

Speed Cryptonite < Proposed design 

Table 2-5 Comparison of Cryptonite and proposed design 

Besides the cryptonite other industrial implementation will list in Appendix A-2 

 

2.6.2  Dedicated Design 

AES 

[15] proposed a special purpose ASIC processor that implements the AES. In its 

implementation, there is only one hardware for en/decryption round and re-use the same 

piece to complete the whole en/decryption. Besides hardware reusing, the processor is also 

designed to complete one encryption round in one clock cycle. Furthermore, it uses 

on-the-fly key generation for encryption and generating the all key beforehand for 
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decryption. For SubBytes, it uses ROM to implement the SubBytes. 

Its architecture is shown as Fig. 2-18. There are two main modules for AES. One for 

encrypt another for Key Expansion. Besides the two processing components, there are three 

interfaces. The Processor FSM is top-level controller interfacing with the user module. The 

input and output FSM is used to control input and output channel. 

 

 
Fig. 2-18 Organization of [15] 

Besides the research about the architecture of AES, there are some researches which 

focu on SubBytes. In [16], they propose a compact S-Box based on composite field. Using 

the composition field ,we can get smaller area of S-box. 

 

 H.Kuo A. Satoh 

Unroll loop No No 

SubByte ROM Dedicated Design 

Area H.Kuo > A. Satoh 

Speed H.Kuo < A. Satoh 

Table 2-6 Comparison of AES ASIC 
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DES 

In [17], this paper presents two FPGA implementations of DES. Both permit different 

pipeline levels with 21 and 37 cycles. As the section 2.4 shows, DES has some 

combinations and permutations operation. They are IP, IIP, E, and P in the Fig. 2-18. The S 

means S-box. The ⊕ means XOR. R means E-1 which is an inverse operation of E.  The 

two new pipeline of DES are shows as follows. In the Fig 2-18, the left side is DES core 

one with 21 pipe stages, another is core two with 37 pipe stages. [17] wants to reduce the 

critical path and provide higher throughput by reorder the E in the DES flow. 

 
Fig. 2-19 The new DES pipeline 

 

 Rouvroy -1 Rouvroy -2 

Unroll loop Yes Yes 

Pipe stages 37 21 

Area Rouvroy -1 > Rouvroy -2 

Speed Rouvroy -1 > Rouvroy -2 

Table 2-7 Comparison of DES ASIC 
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RSA 

The Montgomery Algorithm has a modified version. Unlike the original one, 

Mon(A,B,N) A,B,N < 2n, which adds N along with partial product of A×B, the modified 

one adds N after finishing A×B. In Modified Montgomery algorithm, it splits 

modular-multiplication operation into multiplication procedure and Montgomery modular 

reduction procedure. Modular reduction procedure adds N 2n times to the accumulated 

result which is produced from the multiplication procedure. 

 In [18], they also based on the enhanced Modified-Montgomery Algorithm. Unlike 

previous implementation, they use one linear Bit-level Cellular-Array Design to perform 

the two procedures. The linear Bit-level Cellular-Array is Baugh-Wooley 2’s complement 

array multiplier. 

 In [19], it based on original Montgomery Algorithm. Its architecture shows as 

follows. It is consisted of a linear Processing element (PE). Each PE performs fix length 

addition. Use these PEs to perform the all addition of RSA. The all architecture is like 

serial parallel multiplier. 

 

Fig. 2-20 Organization of [19] 

 Blum & Paar Su & Hwang 

Mon Original Modified 

Organization Serial-parallel multiplier Baugh-Wooley multiplier 

Area Medium Large 

Speed Medium High 

Table 2-8 Comparison of RSA ASIC 
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Chapter 3 Design 
In this chapter, we first summarize the all operation of the three cryptographic 

algorithms by its characteristic and classify them into three categories. Then design the 

components for the categories respectively. 

 

3.1   Function Requirement 
Cipher Function Comment 

XOR 8 bits xor 

Table look up 8 bits in/8 bits output. 

Key 

expansion 

Rotate Byte Rotate left 1 bytes 

X_TIME Special operation for Galois field 

XOR 8 bits xor 

Table look up 8 bits in/8 bits output. 

AES 

Round 

Rotate Byte Rotate right or left 1, 2, and 3 bytes 

PC-1 Permutation bits from 64 bits to 56 bits 

PC-2 Permutation bits from 56 bits to 48 bits 

Key 

scheduling 

Shift 1 or 2 Shift left and right 28 bits one or two bits individually 

Expand E Expand input form 32 bits to 48 bits 

Permutation P Permutation 32 bits 

XOR 48 and 32 bits XOR 

DES 

Round 

Table look up 6 bits in 4 bits out 

Addition  RSA MON 

Shift Shift right one bits 

Table 3-1 Function requirements 

 At Chapter 2, we introduce for the three cryptographic algorithms. At this Chapter we 

first summarize the function requirement of the three algorithms in Table 3-1. In table 3-1, 

the function requirements for the three cryptographic algorithms are listed. These function 

requirements can be classified into three kinds depending on their characteristic. In Table 

3-2, shows the three categories. 
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Class Type Algorithm Comment 

Expand DES 32 bits to 48 bits 

Permutation function DES 32 bits permutation 

Initial permutation DES Start of the flow 64 bits to 64 bits 

Inverse permutation DES End of the flow 64 bits to 64 bits 

Rotate Bit DES Rotate left one or two bits 

Permutation Choice 1 DES 64 bits to 56 bits 

Permutation Choice 2 DES 56 bits to 48 bits 

Rotate Byte AES byte level rotate left or right 

 

 

 

Permutation 

& 

Combination 

Shift MON Shift one bit 

XOR DES,AES 8 or 32 bits xor 

Xtime AES special operation for Galois field 

 

Computation 

Addition MON  

Buffer DES,AES,MON Memory output buffer Memory 

Look-up table DES,AES Table look up 

Table 3-2 Operation classification 

These three categories are Permutation & Combination, Computation and Memory. 

Permutation & Combination are some fix wiring operation of the three cryptographic 

algorithms. Computation is the operators which are belong to arithmetic and logic. The 

three cryptographic algorithms need only Addition, XOR and X_TIME. The finial class is 

Memory which is table look up and data buffer in the three cryptographic algorithms. 

Because of the three classes, our system will have the three components to perform the 

three kinds of operation respectively. 

Before design module for the three class operation, we notice that DES has some 

characteristics. First, DES is suit for on-the-fly key generation. So, the hardware cost for 
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DES key generation is small. Second, the hardware circuit for table look up in DES is small 

too. Because these two reasons, we dedicated part of DES for get better result. 

 

3.2   System Overview 
As the section 3.1 described, our system overview is shown in Fig. 3-1. We have six 

components. They are Permutation & Combination Unit, Computation Unit, Memory 

Unit, DES Unit, Context Memory/Decoder and Ctrl.  

 

 

Fig. 3-1 System overview 

 

Permutation & Combination Unit (PCU-1 or PCU-2) :  

The Permutation & Combination Unit (PCU) executes the fix wiring tasks. As 

cryptographic algorithms go, PCU routes the data to Computation Unit or Memory Unit. 

In DES, there are many wiring operation, such like PC1, PC2, Expand and etc. The most 

operation wiring of DES is in this unit. 
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Computation Unit (CU) :  

The Computation Unit performs arithmetic or logic operators of three cryptographic 

algorithms. It is composed by processing elements (PE) and some additional circuits for 

MON. Each PE is a functional unit which has its own register file which stores immediate 

data during execution. The additional circuits will introduce at section 3.4.4. 

 

DES UNIT 

This unit performs some DES operation to get better space-time product. It supports  

on-the-fly key generation. 

 

Memory Unit (MU) :  

As the Montgomery Algorithm goes, it needs to store large immediate data and 

preload data for smooth execution. Besides the Montgomery Algorithm, DES and AES 

also need to look up table. As a result, Memory Unit is used to store immediate data and 

preload buffer of MON and look-up table for DES and AES 

 

Context Memory/Decoder (CMD) :  

The three cryptographic algorithms needs different context to control CU, PCU, and 

MU. We use the Context Memory (CM) to store the context for each cryptographic 

algorithm. Context Decoder (CD) decodes the context to control signals. 

 

Control Unit (Ctrl) :  

Ctrl is the central control unit to control the whole hardware. It consists of a finite 

state machine, some flow registers, address register and address generation function. It uses 

the finite state machine to control our hardware and the flow registers to control the flow of 

the three cryptographic algorithms. 
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3.3   Permutation and Combination Unit 
Permutation and Combination Unit is used to route data between CU and MU. In the 

following table, it shows the permutations and combinations perform by this unit.  

If we use high flexibility implementation, such as GRP [20],OMFLIP[21], CROSS [22], and 

BFLY [23][24]. These will lead to high area cost. As a result, we just make our PCU to 

perform the fix permutation or combination wiring. It operation is shown in the Table 3-3 

Unit Type Algorithm Comment 

Initial permutation DES Start of the flow 64 bits to 64 bits 

Permutation Choice 1 DES 64 bits to 56 bits 

PCU-1 

Rotate Byte AES byte level rotate left or right 

PCU-2 Inverse permutation DES End of the flow 64 bits to 64 bits 

Table 3-3 Permutation and combination performed by PCU 

 

3.4   Computation Unit 
The CU performs tasks of logic operators of three cryptographic algorithms. The CU 

is composed by processing elements (PE). Each PE has its own register file to store 

immediate data. For Montgomery Algorithm consideration, CU needs additional circuits 

to execute Montgomery Algorithm. First we will introduce the PE design and then 

introduce these additional circuits in section 3.4.4. 

 

3.4.1  Observation 

Before design our PE, we first introduce the tasks of PE and some observations. For 

full parallelism, The hardware resource needed by AES and MON is shown in Table 3-4. 

 AES_D (128) AES_E(128) Mon(1024) 

XOR(8 bits) 9×16×10+32 9×16×5+32 >1024×128×2 

X_TIME(8 bits) 9×16×6 9×16×1 0 

Table 3-4 Hardware requirements of the three cryptographic algorithms 
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As the section 2.3.5 and 2.3.6 described, the data flow graph of AES which combines 

the MixColumn and the AddRoundKey is shown in Fig.3-2. The AES-128 composed by 9 

rounds and two additional AddRoundKey. As a result, the XOR requirements of 

en/decryption are 9×16×5+32 and 9×16×10+32 and X_TIME are 9×16×6 and 

9×16×1separately. 

An addition is composed by two XOR. In Mon (1024), we know that it works like a 

multiplier. The original Montgomery Algorithm needs total 1024 times of 1024-bit 

addition. Now, we formalize 1024-bit addition to 128 times 8 bits addition. This is why the 

Mon needs at least 1024*128*2 time 8 bits addition. 

As a result, the MON needs only Double XOR. It shows as in Fig. 3-3. 

 

Fig. 3-2 En/Decryption data flow graph of Mixcolume and AddroundKey 

 
Fig. 3-3 MON data flow graph 
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So the computation granularities between the three cryptographic algorithms are shown in 

Fig. 3-4. AES has coarser granularity. MON have finer granularity.  

 

Fig. 3-4 Granularity of the two cryptographic algorithms 

 

3.4.2  Organization of Computation Unit 

As the observation of 3.4.1 described, the MON needs only simple hardware for 

execution. So, the Mon will interleave store and addition. As a result, too much complicated 

hardware will be useless. Our CU organization is shown in Fig. 3-5. It is a one dimension 

array of PE. The direction of data inputs stream is vertical to the one dimension array. Each 

PE has the ability to perform the three algorithms. The more PE have, the higher 

parallelism we have. 

  
Fig. 3-5 Organization of CU 

 If we want to design an organization of PE which gets better space-time product, we 

must make hardware idle as less as possible. There are two kinds of design method to 

analysis data flow graph of the three algorithms. 

 Partition AES to fit MON. 

 Put MON into AES. 

In the first method, it is finding a smallest hardware which can be divided by AES 

en/decryption, MON, like LCM. The second method is like to find GCD. Because the first 

P.E P.E P.E P.E P.E P.E
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AES MON 
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method will produce smaller hardware unit, it will suit for embedded system to scale than 

hardware produced by second method. As a result, we choose the first methodology. 

 

3.4.3  Design of P.E. 

We have chosen the first method to analysis in order to get small space-time product. 

It seems no trivial solution. So, we have proposed a structural methodology to decide our 

PE organization. The concept our methodology is that  

 Candidate Choosing : We choose some possible candidates of P.E. organization, 

then design it dedicatedly  

 Evaluation : Evaluate the possible candidates 

 

Candidate Choosing 

Before introducing our methodology, we must define some terms previously. The 

organization of PE comes from OPSET. 

Definition 

 OP : A connected direct graph composed by XORS and/or X_TIMEs 

 OP_LEN : Number of nodes in critical path of OP. 

 OPSET i : A set of OPs that can consist the three data flow graph 

The principle of our OPSET i finding is shown as following.  

1. First OP 

 OP_LEN is i  

 Most frequent OP and occur more than twice 

2. Other OPs 

 Dependent on occurrence frequency 

In the following, XT means X_TIME, th four candidates of OPSETs lists as follows. 
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OPSET 1 (I) 

 

Fig. 3-6 Partition AES and MON 

The OP set is 

 
Fig. 3-7 OP set for OPSET 1 

 The P.E. organization of OPSET 1 is in Fig. 3-8. 

 

Fig. 3-8 OPSET 1 organization 
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OPSET 2 (II) 

 

Fig. 3-9 Partition AES and MON 

The OP set is 

 
Fig. 3-10 OP set for OPSE 2 

The P.E. organization of OPSET 2 is in Fig. 3-11. 

 
Fig. 3-11 OPSET 2 organization 
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OPSET 3 (III) 

 
Fig. 3-12 Partition AES and MON 

The OP set is 

  

Fig. 3-13 OP set for OPSET 3 

The P.E. organization of OPSET 3 is in Fig. 3-14. 

 
Fig. 3-14 OPSET 3 organization 
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OPSET 4 (IV) 

 
Fig. 3-15 Partition AES and MON 

The OP set is 

 

Fig. 3-16 OP set for OPSET 4 

The P.E. organization of OPSET 3 is in Fig. 3-17. 

 

Fig. 3-17 OPSET 4 organization 
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Evaluation 

According to previously choosing, we get the critical path and area of the four PE by 

synthesis these design. These information shows in the following table. 

 I II III IV 

Area 1078.579 1228.222 1697.540 1910.574 

Time 3.89 4.03 4.04 4.98 

Table 3-5 Area and timing of the four OPSET 

Use the four candidates PE to execute encryption and decryption of AES-128, 

AES-192, AES-256, MON-256, MON-512, MON-1024, MON-2048, and MON-4096. The 

execution cycles of these tasks are list in following table 

 1 2 3 4 

AES_128_D 2560 1440 960 800 

AES_128_E 960 480 480 320 

AES_192_D 3072 1728 1152 960 

AES_192_E 1152 576 576 384 

AES_256_D 3584 2016 1344 1120 

AES_256_E 1344 672 672 448 

MON_256 8192 8192 8192 8192 

MON_512 32768 32768 32768 32768 

MON_1024 131072 131072 131072 131072 

MON_2048 524288 524288 524288 524288 

MON_4096 2097152 2097152 2097152 2097152 

Table 3-6 Cycles needed by different specification of cryptographic algorithms 

With the area, timing and execution cycles, we can get space-time product of the four 

OPSET. In the following result, we don’t consider the latency for accessing external 

memory. 

 In Fig. 3-18, it summarizes symmetric cryptographic algorithms space-time product 

of the four OPSETs. 
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Fig. 3-18 AES space-time product of the four OPSETs 

In Fig 3-19, it summarizes asymmetric cryptographic algorithms space-time product 

result of the four OPSETs. 

 

 

 

 

 

 

 

 

 

Fig. 3-19 MON space-time result of the four candidates 

 According to symmetric and asymmetric cryptographic algorithm usage in the 

cryptosystems, we use the following function to evaluate result. Si means the symmetric 
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Fig. 3-20 Space-time result of the four OPSET 

 As the Fig. 3-20 showing, OPSET 2 will get best space-time product in the four 

OPSET. As a result, we will choose the organization of OPSET 2 as our PE. Besides the 

organization, we still need register file for PE to store a small amount of immediate result. 

OPSET 2 needs 6 registers to store. The total P.E. organization shows as following. 

 

Fig. 3-21 Organization of PE 
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3.4.4  Additional hardware for MON 

Our PE organization is designed in previous section. Our PE is able to perform AES. 

But for Montgomery Algorithm, there are some additional circuit requirements.  

First, we need a carry chain to chain the long addition and shift chain to perform one bit 

shift during MON.  

Second, we must depend on the least significant bit of result and the multiplier to 

decide which operand should be selected to add with accumulation result. So, we design the 

hardware, named Operand Select, to do this job. 

Last but not least, overflow will occur as the MON goes,. If overflow occurs, the result 

of MON will be wrong. In order to prevent the condition, we design a one bit half adder to 

solve the problem. These additional circuit for Mon is shown as Fig. 3-22.  

 
Fig. 3-22 Additional hardware 

 

3.5   DES Unit 
The organization of DES unit is shown as follows. It is able to perform a round of 

DES in two cycles and support on-the-fly key generation. It has two inputs one for 

en/decryption flow, named round i, the other key generation, named key gen. . Round i has 

two XOR, two permutation, expand and permutation and eight distinct look up table. For 

Key Gen., there are only two permutation, Left circuit Shift and PC2. 
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Fig. 3-23 Organization of DES unit 

 

3.6   Memory Unit 
In the previous section, we have finished the design of PE organization. During 

evaluate of the four OPSET, we don’t consider the memory access latency. In this section, 

we will discuss it and design the input data buffer and analysis bandwidth requirement for 

the three cryptographic algorithms.  
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sections and then our system performs the fix length addition. As a result, MON needs to 

restore much data during execution. Besides data buffer for large storage, MON also needs 

some preload buffer to hide memory access. 

Besides MON, we put look-up table of AES into the MU. In AES, it needs only one 

table which is 8-bit input 8-bit output table.  

 

Fig. 3-24 Organization of MU 

For table look up consideration, the organization of MU will be numbers of Tile 

buffer which shows in Fig. 3-24. Each Tile buffer has preload data buffer and large storage 

(SRAM). 
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and the 1 byte write back is current result. If these memory accesses don’t finish in one 

cycle, we will stall 5 cycles to perform these job. As a result, we design 4 byte preload data 

buffer during the MON execution. The preload buffer is shown in the following Fig. 3-25 

 

Fig. 3-25 preload buffer 

 

3.6.3  Ratio of PE and Tile Buffer 

The three cryptographic algorithms need different bandwidth requirements. Suppose 

that given m number of PEs. The memory bandwidth requirements for full utilization of 

CU and MU are shown in the Table 3-7. For AES , two memory accesses, that one is for 

key scheduling and another for table look up, are needed in one round. And our PE 

performs AES encryption and AES decryption in 3 cycles and 9 cycles respectively. For 

MON, the less PE number has, the more partition and memory access is needed. This is the 

reason why the memory bandwidth is an inverse proportion to PE number. 

 AES MON 
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Table 3-7 Bandwidth requirements for three cryptographic algorithms 
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As the table 3-7 shows, the bandwidth requirements of the three cryptographic 

algorithms are not the same. In order to get the best space-time product, we compute all 

space-time product in different ratio of PE number and Tile Buffer number and then we 

choose the most appropriate ratio. In the following Figures, M : N means M PEs : N Tile 

Buffers. And in Table 3-8 shows the area of PE, Tile Buffer. 

 P.E. Tile Buffer 
Area 8216.208 71016.0290 

Table 3-8 area of PE and Tile Buffer 
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Fig. 3-26 Space-time product of different ratio in AES 

 The processing width of AES is 128-bit. It equals to 16 times of PE and Tile Buffer. 

The all ratio of PE and Tile Buffer under AES is from 1:16 to 16:1. The Fig. 3-26 shows 

space-time product of AES in all ratio. 4 PE and 1 Tile Buffer will get best result 

Symmetric cryptography result 

 The Fig 3-27 shows that 4 PEs and 1 Tile Buffer will get best space-time product. 
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Symmetric result
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Fig. 3-27 Space-time product of different ratio in symmetric cryptography 
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Fig. 3-28 Space-time product of asymmetric cryptography 
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Finial result 

 We combine AES and RSA in geometric mean. The result shows as follows. The best 

PE and Tile Buffer ratio is 16:8. 
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Fig. 3-29 Space-time product of total result 

 The Fig.3-30 shows that our system will be consisted of 16 PEs and 8 Tile Buffers. 

 
Fig. 3-30 System overview 
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3.7   Context Memory and Context Decoder 
The three main components, Permutation & Combination Unit, Computation Unit, 

and Memory Unit have been designed. Their context is store in Context Memory. The 

Context Memory is reloadable. We can use new context sequency to perform new task or 

further cryptocraphy. Context Decoder decode context into control signal. Depending on 

three cryptographic algorithms, there two decode modes must be supported. 

 

Fig. 3-31 Organization of Context Decoder 

 The organization of context decoder is shown as Fig. 3-31. Context Decoder has two 

modes to control CU and MU. Both of them are parallel mode and propagation mode. 

Parallel mode 

In this mode, all PEs, and Tile Buffers use the same control signal. This mode is for AES 

and DES. 

Propagation mode 

Because the carry propagates from the first PE to next PE during the MON execution, the 

control signal needs to reach PE and Tile Buffer in time to fit the carry propagation. In this 

mode, control signals are propagated from one PE/Tile Buffer to another. Under this mode, 

there are still two way for control P.E. 
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 Driven by context: Control signals are decode from the context. It is for usual 

addition. 

 Driven by immediate data.: Control signals are depending on the computation 

results. This mode is only for MON. 

 

3.8   CTRL 
The CM and CD are used for control the three main part of our system. The CTRL is 

used to control the CM and CM. It controls how to load context in to CM, execution flow 

of context, and specify the Parallel or Propagation mode. This module is composed by the 

following component. 

 

Address Generation Unit 

This unit will produce address for MU. It composed by five base registers and six address 

generation function. By specify base registers and address function, we can generate 

address for MU to store and load data. 

 

Control Flow Register 

These register specify control flow of context. We support loop but not nested one. We need 

specify loop iteration number, loop step, loop start address, and loop end address during 

cryptographic algorithms execution. 

 

A Finite State Machine 

This finite state machine is used to control the whole hardware. The finite state machine is 

as Fig.3-31. It consisted of five states 

 System Idle : This means that system is idle.  
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 Flow Register Load : This state will load flow registers, and address registers. 

 Context Memory Write : This state means that write context to CM. 

 Execution Start : This state means that our design will start to execution task 

and indicate the external controller to put plaintext for en/decryption. 

 Task Execution : In this state, execute the task that is specified by context. 

 

Fig. 3-32 Finite state machine of CTRL 
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Chapter 4 Evaluation Results 
 In this chapter, we first show the data rate which our design sustain. Then, we 

introduce ASIC designs for AES, DES and MON respectively. Thirdly, we compare the 

execution time and area between our design and ASIC. Last but not least, we compare the 

space-time product .Our design will get better results. 

 

4.1   Evaluation Environment 
First, we use the 0.18 μm library to synthesis our design and ASICs. And we use 

AES-128 and MON 1024 as benchmarks for AES and RSA. 

Second, we can take off our SRAM in MU when our design put in some embedded 

system. We can use the system memory of embedded system. As a result, our design has 

two organizations: Stand along design and Take off SRAM design. 

Last but not least, the evaluation metrics is shown as follows. S0: space-time product 

of DES S1: space-time product of AES A0: space-time product of RSA. The performance 

metrics is            (2). 

 

4.2   Processing Gap 
The processing gap which is mentioned at section 1.1.1 is shown as follows. 

Device Cellular Wireless Lan Low-end network 

Throughput (Mbits/sec) 0.128~2 2~60 100 

Table 4-1 Processing Gap of secured embedded system 

 First, we use RSA-256 for key exchanging. And then, we use AES and DES to encrypt 

1 M plaintext. The throughput is shown in the Fig. 4-1. The red line means data rate 

requirement of Wireless Lan and blue line for Low-end network. As the Fig.4-1 shows, our 

design can fit the processing requirement of cellular, Wireless Lan and low-end network. 

010 ASS ××
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Fig. 4-1 Throughput of proposed design 

 

4.3   ASIC 
In this section, we introduce our ASIC design. 

4.3.1  AES 

 

Fig. 4-2 ASIC of AES 
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Organization of AES ASIC is shown in Fig. 4-2.  The width of data path is 128-bit. 

This ASIC have 4 components, Key Scheduling, Key Buffer, LUT&ROTATE and 

MIXCOL&KEYADD. The Key scheduling is used to generate key for encryption and 

decryption flow and then put it to Key Buffer. Key Buffer is a 64-bit SRAM. 

LUT&ROTATE performs table look-up and bytes rotation. The Table look up is 

implemented by ROM. MIXCOL&KEYADD performs MixColumn and 

RoundKeyAddition. The encryption and decryption of AES in MixColumn are different. 

There are two parts in MixColum, one for encryption and another for decryption. Besides 

these two components, we still need one buffer for store immediate data.  

One round of AES needs two cycles to execute. The area of each component is shown 

in Table 4-1 respectively. The cycle time of this design is 7.82 ns 
Module 
name 

LUT &  
ROTATE 

MIXCOL & 
KEYADD 

KEY 
SCHE. 

KEY 
BUFFER 

MISC. TOTAL 

Area 
(10-6mm2) 

2×105 7×104 5×104 2.1×105 9×103 5.5×105 

Timing(ns)      7.82 

Table 4-2 Area or timing of each component in AES ASIC 

 

4.3.2  DES 

 

Fig. 4-3 ASIC of DES 

DES ASIC design is shown in Fig 4-3. The width of data path is 64-bit. The look-up 

tables of DES are implemented by ROM. In DES, there are eight distinct tables. The others 

are consisted of some permutations and XOR. Table 4-2 is the detail of DES ASIC. 

LUT1 

LUT2 

LUT8 

8 

8 

8 
64 64 

Others

: 
Others

Others

: 



 - 61 -

Module name LUT OTHERS BUFFER TOTAL 

Area(10-6mm2) 9×103 6.2×103 1.2×104 2.8×104 

Timing(ns)    6.98 

Table 4-3 Area or timing of each component in DES ASIC 

 

4.3.3  MON 

 

Fig. 4-4 ASIC of MON 

The ASIC of RSA is shown as follows. This ASIC is designed to perform Montgomery 

Algorithm. It is similar with our system. It is consisted of 16 8-bit adders and 8 8-bit Data 

Buffer. As the analysis in section 3.5.3, this organization will get best space-time product. 

Table 4-4 is the ASIC detail of MON . 

Module name DATA BUFFER Others Total 

Area(10-6mm2) 5.8×105 1×105 6.8×105 

Timing   5.06 

Table 4-4 Area or timing of each component in RSA ASIC 
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4.3.4  ASIC Summery 

The details of the three ASICs show as follows. Our hardware is designed to perform 

two 64-bit DES. In order to be comparable, the total area of ASIC is AES+RSA+DES*2. 

The cycle field in Table 4-5 means the cycle counts of 128-bit encryption or decryption for 

AES, DES and 1024-bit MON. 

ASIC AES_E AES_D DES MON Total 

Area(10-6mm2) 5.5×105 2.8×104 6.8×105 1.29×106 

Timing(ns) 7.82 6.98 5.06  

Cycles 26 26 22 8334  

Table 4-5 Area timing and cycles of the three ASIC respectively 

 

4.4   Proposed approach 
In the following, it is our proposed approach. Its detail information shows in Table 4-8. 

Cycle counts shows in Table 4-9. 

 

Fig. 4-5 Proposed approach 
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Module name MU PCU-1&DES CU PCU-2 Total 

Area 5.8×105 9.8×104 1.4×105 1.8×104 8.6×105 

Timing     5.46 

Table 4-6 Area and timing of each component in modified approach 

My Approach AES_E AES_D DES MON 

Cycles 43 88 38 8334 

Table 4-7 cycle counts of each cryptographic algorithm respectively 

 

4.5  Timing and Area 

Timing 

 Compare to ASIC design the performance loss is shows as follows. Our performance 

loss is just 33.38% in DES, 13.99% in AES encryption and 6.52% in MON. Unfortunately, 

the execution time of AES decryption is almost 2.3 times of ASIC. Because we choose 

finer-grain PE as our PE organization, the finer-grain PE will need more time than AES 

ASIC. 

  DES AES_E AES_D MON 

Loss 133.38% 113.99% 233.28% 106.52% 

Table 4-8 Performance loss 

 

Area 

 Compare our design to dedicated design in the stand alone design. Our area need 

only 63.38% of ASIC area. In the Fig. 4-6, It shows the area of ASIC and our design. 
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Fig. 4-6 Area result of stand along design 

  The comparison of Take off SRAM design is shown in Fig. 4-7. Our design need only  

51.05% area of ASIC. The ASIC of MON can also replace it’s SRAM with system 

memory. As a result, the MON ASIC will get less area than AES ASIC. 

 

 

 

 

 

 

 

 

Fig. 4-7 Area result of stand along design 

4.6   Space-time product 
As previous described, our design can replace SRAM with system memory if we 

integrated in embedded systems. We assume that the memory bandwidth is 64-bit width. As 

a result, the throughput of take-off-SRAM design is the same with original one. In the 

following, we will show space-time product of this two types. 
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4.6.1  Stand alone design 

The space-time product of stand alone design is shown as follows. The Fig. 4-8 is the 

result of symmetric cryptography. In DES, our design will get better space-time result than 

ASIC. However, AES will get worse result than ASIC because the execution time of AES 

decryption is 2.3 times more than ASIC. Fortunately, the result of symmetric algorithm is 

still better than ASIC result. 

 

 

 

 

 

 

 

Fig. 4-8 Symmetric cryptography result 

Result of asymmetric cryptograph is shown as Fig. 4-9. Our design will get better 

result than ASIC. Combine the result of symmetric and asymmetric cryptography. Our 

design will also get better space-time result than ASIC. 

 

 

 

 

 

 

 

Fig. 4-9 Asymmetric cryptography result     Fig. 4-10 Result of sym. and asym. cryptography 
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4.6.2  Take off SRAM 

The result of symmetric cryptography is shown as follows.  

 

  

 

 

 

 

 

Fig. 4-11 Symmetric cryptography result 

When we take off SRAM from our MU, the superiority of our design will be more 

obviously. The SRAM will need large area than others. But we can’t optimize its area in 

cell base design. 

The result of asymmetric cryptography is shown as follows. Our design will get better 

result than ASIC. Finally, combine the result of symmetric and asymmetric cryptograph. 

Our design will get better result than ASIC. 

 

 

 

 

 

 

 

Fig. 4-12 Asymmetric cryptography result     Fig. 4-13 Result of sym. and asym. cryptography 
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4.7   Summary 
For stand alone system, our design needs 63.38% area of ASIC. For integration with 

embedded system, our design needs 51.05% of ASIC. 

In performance, our system results just 6.52% performance loss of MON, 33.38% of 

DES, and 13.99% of AES Encryption. Only for AES decryption, our system may have less 

efficiency. It almost need 2.5 times of ASIC execution time. 

Finally, the space & time product of our system will get better than ASIC design of 

these three. 
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Chapter 5 Conclusion and Future work 
 

5.1   Conclusion 
In this thesis, we have proposed a hardware which can switch flexibly between DES, 

AES, and RSA. And our design has significant area saving, but less performance loss. And 

the result of space-time product is also better than ASIC design. 

Besides to space-time product, our system is a programmable engine with the most 

common operator, XOR and addition. Using different context sequence, we can perform 

new task composed by addition and XOR. For further cryptographic algorithms, we can 

apply them easily to our hardware. 

In our design, the memory unit and computation unit both have high parallelism. The 

memory unit can perform 8 parallel table look up operation in one cycle and the 

computation unit can perform 16 parallel 8-bit additions. Our design will suit for some 

applications which need high parallelism. Take MPEG4 as an example. The motion 

estimation needs much high parallelism computation for pixels. In the quantification and 

inverse quantification, it also needs some parallel table look up.  

Besides the high parallelism, our computation unit can perform very long addition in 

effective way. Some scientific application can also make use of the benefit to speed up 

computation. 
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5.2   Future Work 

There are still some researches could be further studied. First, the PCU-1, and PCU-2 

was dedicated for three cryptographic algorithms but its area is still up to 44% in total area 

in integrated vision. As a result, design a permutation unit with high efficiency and flexible 

is an important issue. 

Second, we have proposed a methodology to decide what organization of PE. In order 

to avoid local optimal, this methodology choose several possible candidates and then make 

them into more detail evaluation. This flow makes us reduce problem space of finding PE 

organization. But our OPSET choosing method is just a structural method but doesn’t 

provide global optimal. If the data flow graphs of the application are much larger, the 

method will waste lot of time and high complexity for graph computation. As a result, it 

needs a new method to decide possible candidates of P.E. organization with low complexity 

and have the ability for finding global optimal. 
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Appendix 

A-1 Result of Integrated DES design 

 In this section, we show the space-time result which integrated DES with RSA and 

AES. In the Fig., A-1 is symmetric result which execute the AES encryption, AES 

decryption and DES. Fig. A-2 is asymmetric result which execute the MON. Fig. A-3 is the 

result which combines symmetric and asymmetric result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A-1 Symmetric result 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A-2 Asymmetric result 
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Fig. A-3 Total result 

 

A-2 Related Product 

AT91SC FAMILY: Atmel 

Atmel’s AT91SC Series of 32-bit RISC based secure microcontrollers provide the 

computing power and security levels required to meet the worldwide demand for 

next-generation applications. 

 

Fig. A-4 Organization of AT91SC 
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The following is its key feature and application example 

Key Features 

1. 32-bit RISC ARM® SecurCoreTM Up to 50 MHz Clock 

2. JavaCard Hardware Accelerator 

3. Advance Crypto Co-processor AdvXTM : RSA/DSA/ECC 

4. Hardware DES and TDES 

5. Advanced Interfaces : Two I/O Ports. 

6. ISO 7816 Controller 

7. SPI Interface 

8. USB Full-Speed 

Application Examples 

1. SIM/USIM/UICC Cards 

2. High Performance Smart Cards 

3. Banking/IT/Pay TV, … 

4. Secure Storage 

5. Software Protection, e-token 

6. Secure Access Module 

7. High Security Applications 

 

 

 

 

 

 

 

 


