Fr¥TF g 5 M2 B R RTER M
Design and Implementation of a Flexible Pipeline for Secure

Embedded Systems

FogoA TR os I Student : Zhi-Wei Chen

¥4 HE 4 % L Advisor : Dr. Jean, Jyh-Juin Shann

B = 2 =~ F
A S A G
MLm=
A, Thesis

Submitted to Department of Computer;Seience and Information Engineering
College of Electrical Engineering and Computer Science
National-Chiae Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science and Information Engineering
June 2004

Hsinchu, Taiwan, Republic of China

PERAR 4t &£ N~ 0

LEE S S SN Rt Vel SE S b

B4 hsTR R EFE L

Rz~ EFn14E8 L (F19r) mise
&

BILS B Y R EARRHT R TN EE 0 ok *3]/\” UK AP e x AR

if 5 e f E I B IERAL Hoe A Al Eav g B YR R RIS T8 R AEE (72t
o MNPAE R W RE L ehde BIR B 2 RS RUAES DES fr RSA - dt k- BF A

AES > DES {r RSA z. B sl 4 0 I Pl Rt 7 B2 A A - ¥ B idlig

Bt BUEHRAZ T 0 AP RS R HRR S RE

BAhz? A PF AL ZFRZLEL G R REEHT PRI ZEL AL

HA o He el §admdd]ixt
H

PR TR > APk ASTE A

FEH A AJRH Airea > e g AR
PH R R Y R AT RN G2 EEE A2 E n R T S A G A

@R FAOBE) B R D AP e BRI R 2 2 R R P RO R R

SR AP EET o iR KM REFTE o

Design and Implementation of a Flexible Pipeline for Secure

Embedded Systems

Student : ZhiWei Chen Advisor : Dr, Jean, J.J Shann

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

Providing security has become more and more urgent and necessary in embedded
systems. If we want to support security in our embedded systems, some issues must be
solved. We focus on processing gap and flexibility concerns. We target on the three
commonly used cryptographic algorithms, AES, DES-and RSA. In our thesis, we want to
propose a hardware which solves the processing gap and-switches flexibly between AES,
DES, and RSA. Under the consideration of processing gap, we use space-time product as

our performance metrics.

We first classify the operation of the three cryptographic algorithms into three classes.
Then, we design modules for different operation classes respectively. The three modules are
permutation-combination unit, computation unit and memory unit. The permutation-
combination unit is a custom design. The computation unit is consisted of processing
elements and the memory unit is consisted of tile buffers. The different ratio of processing
elements and tile buffers will lead to different results. We choose the most appropriate ratio.

Finally, our proposed method will get better result than ASIC design.

FARSA il - Ay gig o aEpaiises 3o h ¥
2\ 2E 1y "'E’T'J;'i%\ Lh< > 1 ¥ ul;.j—fn];a' wEFEr Fik F?'FEE."E‘T"\‘ Har Fi‘iﬁ
L2 B 2R d B iy ik o

L RHAEREDE R —B R Y
4 po

Bishhe 2 for
E i
AL B AL B

e

b"" ﬁ_}v@—a—f)

._rr?if\‘?’t

Lfrd TREL ’4‘”"‘"32 FREF B A
AT R L RTINS R Y
BB ET R e TR R EASF L 2 E AR K
i dota -
B s B WA e RA s BT
F g Ed e A

2 2 A S RN e T R
SRR B NES oA KA e L -

Wore TG R AES S R R R R 0 RSB AR o IR

Mo 3%
2005. 8. 15

j s

List of Figures

List of Tables

1

1.1

1.2

1.3

2.1

2.2
2.3

2.4

2.5

1.1.1
1.1.2

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6

2.4.1
2.4.2.

2.0.1
2.5.2

Table of contents

... 11
... 111
... 1v
... v
... viii
... X1
INTTOdUCTION socvvsrrrrrrrereereseeeneeiteteiieiattitteiententestnenncnncaacans 1
Design Challenges of Secure Embedded Systems ««+«exeereeeeereeseee 2
Processi ng Gap .. 2
Flelelllty CONCEITIS trrvrrrrrrrrrsensantantattuetetattastisteceacaacancanns 3
Architecture for Securi ty Processi I cvecceececeeceeneesnatiiuicsuatns 5
Motivation and ObGEGHIVELEs: - - vvvreeersrmmeeeermiiiiee e 6
Background and Related Work ««s#cecceeeeeeeeieiiniiiiiiiiiiiiiiiiiian.., 8
Overview Of CrYPEOSIADHY «w«-toreweeeeersrmmeeerniiiieniniiiiee e 8
Symmetric and Asymmetric Cryptosystems «:«eoceeeeerrerreeeeeeeee 9
AES ceeeeet i s s s ettt ittt ettt e eaeaes 11
DET INITIOMN “ovrvrrerreereeeetaetattnteiiiiititietetttataataetontoseceacanes 12
Key Expansion .. 12
SUbByteS ... 13
ShITtROWS cvceeereeceeeenieniiiiiiiiiiiiiiiiiiitieitteniticttcnsencncacnns 14
MiXCOTUIM ecveverrerreoreereoeroeeoenetuetuetetiettettateattetenteotnornesacnacans 15
Add Round Key ... 17
DES ceeceeteeeeiiiiii i ittt e e 17
Permutations «ccoceeereererrereeeeeeatniiiiiiiiiiiiiiiiiiiiiietiieieeiaaaas 18
ROUNA cevvvvrereeeereeeneeniiniiiiiieiiiiiiiiiiiiiiitititietititnttcnneacncncnns 20
RS A ceeeeeeee e ittt 21
RSA COH]DOHCHtS .. 21
Complexity OF RSA teveveeeeeememmeniii ittt 29

A~ o D

2. 5. 3 Fast Exponentlatlon Algorl‘thm ... 22

2.5.4 Montgomery AlGOrithm ««««eeeeerrmsmssseneenenneiniiiiiiiii, 24
Some Hardware Implementations «««-:eeeeeeesessesereereemrmmmmii. 26
2 6.1 Integrated DESIign «++eeeeerrererrermmmmmmiiiinniee et 27
2.6.9 Dedicated DeSign «««rreeeerrerrrrrnrerermiiiiii 20
DESIEIL +++veeeeererrermrmmmmutumti e 33
Function REQUITEMENT +-rrererrrssrererrmmmmininiiiiiii i, 33
SYSTEM OVEIVIEW +++erereeserserermmmmmumiiiiin it 35
Permutation and Combination Uit «-«--e-rereererereererareernenaeinanns 37
CompUEAtion Uit «eeeeeeeeermmmmmmmmnnniniiniiiiiiii, 37
3.4.1 ODSEIVATION #++rrrrrrrrrernrerrnesereeseeneresseriererieserneressenieeseesernees 37
3.4.9 Organization of Computation Unit «eeeeeeeeseeeeerrmmmmmnnnnin. 39
3.4.3 Design Of P.E «eeeeeersereerermmmmiiiiiiiiiii 40
3.4.4 Additional hardWare for MONi::------eeeeereerererrerieramemieneiennannn. 48
DES Unit eee- /8- frs il Aloooenennnniininiiiiniiiniieaees 48
Memory Unit oesesspessfotunmnseieemhenninnnnnnnniiiiiii, 49
3.6. 1 Organization <A ceeeeee e eiafien i 49
3.6.2 Preload BUFFEr ««-eeerrseestrneeernerteieeaeserierererieieseeseresereneeennns 50
3.6.3 Ratio of PE and Tile BUFFEr ««-eeeeeeecerrnremruermenmeneuemneinineinennenes 51
Context Memory and Context Decoder «-r-rereeeerrmmmmmmmmmnininnnnnn 55
03 T s 56
EVALUATION RESULTS #rvrerrrerrrrrrnenernenerememterieeeeeserereenenneeanns 58
Evaluation ENVirONMENT «««-+err-reeesreserrasserneraeimserseriesesienneiesnns 58
ProCESSING Gap «+rrerereererrrmrmmmmiiiinintiniiiiiiii 58
ASTC wevvnrererenernrnenneneeeteeteteeteretesaeseeterarteretesaetererasternenaanns 59
4.3.1 AES veenernenmnetee et e e 59
4.3.9 1)) TR R N 60
4.3.3 1110 T T T U 61
4.3 4 ASIC SUMMETY +++eeererereersmmmmmmmmmiiiniineetete it 62

Vi

4.4
4.5
4.6

4.7

5.1
5.2

4.6.1
4.6.2

Proposed apPrOach «+++++seeeererermmmmmmmmmiiiininiinien et 62
TiMing and ATEa -oeeeeeeeserererrmmmmmm e 63
Space—time ProQUCE ««wwwweerrrrmrmsmrmrinniniiiiiiiii 64
Stand alone deSign ««eeweeeeerrmrmrrrnreneiiiiiiiiii 65
Take OFf SRAM «+vceevveeeeeerneaenenenmeemeneneeeeeneneeerieteenerneneennns 66
SUIMMATY +++vvveeesrssessssessessrsmmmmmiiiiiiii e 67
Conclusion and FULUTE WOILK ««rrerrerrrerrrerererarieieuememieieneeaeenes 68
CONCLUSION ++verrrrrerernrrernermreneenertetererieereeneraetereeeeneenees 68
FULUTE WOIK +evveverernrnenenenmenmnmniniiiiitiinieieteeeeeteeneeeneaenes 69

vii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1-1
1-2
1-3
1-4
2-1
2-2
2-3
2-4
2-5
2-6
2-1
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-21

List of Figures

Obstacles preventing consumers from adopting Mobile Commerce ----:: 1

Throughput of high and low end embedded processors «+««+:eseeseereeseee 2

Evolution of Security prOtOCOlS .. 4

SecUrity Processing architeCtlres «««t - - s-srrrrrereeersmmmmmmrreeeeeennnns 6

Typlcal Cripto algorithm block diagram 9

Public Key Cryptosystem .. 10
F1oW Of AES cccceeereetmminiii ittt 11
4 Key EXDaHSiOH Flow cecereeeeceeenminiieniiiiiiiiniiiiiiiiiiiiiiientiineeienne 13
SubBytes applies Sbox to each byte of the state ««wreoreereerreeeeeenn 13
SUDBytes tranSfOrMATion siysssrererreeessemmmmmmmmerreeenemmiiiriieeeeeennnns 14
shift Cyclically tHE STATEI s eedee ettt iiiiiieieieaaans 14
MiXCOLUMMN *vcvveveeeioresmeeeetesaaioteneeeetiloiiueieeictateeteotentassnenacnncancans 15
X TIME ceveceecececeeetonievaansenashidioteedaatoneiieteitiiiietesreticecesnacscncennnnnes 15
Data flow graph of encryptioniand decryption «««-sceseeeeeseeseeseeeeneen 16
Add Round Key ... 17
F1oW Of DES cecceceeceeceetamimiiiiiiiiiiiiiiiiiiiiiiiiitiiitiiiitiittitnetncencancans 17
Organization OF ROUNA +vvvvvvrerrereereeeeeenenaiiiiiiiiiiiiiiiiietietaenaannns 20
F1OW Of RSA ccvcceeeeceeteatniiiiiiiiiiiiiiiiiiiiiiiiiiiiitiitittietistostocnocacianss 23
Modified RSA f1OW scocerreeeeeteeteieiiiiiii ittt i ietietieneeaaaaans 26
Cryptonite ArChitECTUTE «-rr+vrrrrerreeereemmmmmrrrrrreeenniiiiiiiee e e 27
ALU of Cryptonite ... 28
Organization Of 15] eereeeeersrermmmmmmeeeeeenmmiiiitiite e et e 30
The new DES pipeline ... 31
Organization Of [19] «reeeeersressrrmmrmreeeeenmmiiiiiiiteee e 39

viii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

3-1
3-2
3-3
3-4
3-5
3-6
37
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25

System OVEIVIEW vvesveseeseesestoetateateateeteeeuecnecsenscnacnetsetoscossoceacanns 35
En/Decryption data flow graph of Mixcolume and AddroundKey -------- 38
MON data flow graph .. 38
Granularity of the two cryptographic algorithms «:«esceseeseeseeeeeeee 39
Organization OF CU weververeereerantneiiiiii ittt iiiiiietieiceceaaaaans 39
Partition AES and MON cccceeceeceeteetttitnitiiiiiiiiiiiiiitiitiitittosnocaacanes 41
OP set TOr OPSET 1 cceceeceeeeeteatatiitiiniiniiiiiiiiiiiiiiiiitietiitiataenacnananns 41
OPSET 1 OIGANIZATION «rrreeersrrrrrmmmnrereeenmmmmiinniteeeeenniitiieeeeeeeeens 41
Partition AES and MON «ccceeeeeeeeteatmmnininiiiiiiiiitiiiiiiitiitieeienaanans 49
OP SEt fOr OPSE © «eevveerrerrneeunammuimmuneeiiieiieeiie e eanee 49
OPSET 2 Organization ... 49
Partition AES and MON cercceceeeeetoaieeeieieiieiieiiiiiiiiitittiititticnocaacanes 43
OP set TOr OPSET 3 seereeteecaatiee o nie it imeeeeeeiiiitiitietieteetaetacnacaananns 43
OPSET 3 Organization hietcssssssaiseeeteneeeennnnummunnneeeeeennniiniieeeeeeeens 43
Partition AES and MON s e e oottt iiiiiitiitieeienaannas 44
OP Set fOr OPSET 4 «+ceeeeeereeereeeuammuermunmmmereuneeuneerneeeieeeneeenean... 44
OPSET 4 Organization ... 44
AES space time product of the four OPSETS ----r«rrereeeeserssmmmmmeeeeeennans 46
MON space time result of the four candidates ««::eeeeeerresreerrereeeeen 46
Space time result of the four OPSET ««+eeeesssrvrrrrrrreeersmmmmmmmnieeeeeennnns 47
Organization Of PE ceveeeemmaii it 47
Additional hardware «-cecceeceereereereeaeetieiiiiiiiiiiiieiieititnetcecancans 48
Organization OF DES UNLT cvveveerrerreeeeeeeteetntntiiiiiiiiiiiiiieeieaienann, 49
Organization Of MU ««eeeeeeeesseemmmmmmmteteeenmmiiiieiiteee e ee s 50
Preload buffer «cocceceeeeeeeeemiiiiiiiiiiii ittt iieiieeeeeaaes 51

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

3-26
3-27
3-28
3-29
3-30
3-31
3-32
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
A-1
A-2
A-3
A4

Space time product of different ratio in AES «+eeeeeeeeeneerineeeneinnnen. H2

Space time product of different ratio in symmetric cryptography -+ 53

Space time product of asymmetric cryptography:«:«««:«sseeseeereeeeeeeeen 53
Space time prOdUCt of total resultrcrrcerrerreereeceeceeieiiiiiiiiiiinian., 54
System OVEIVIEW vvesveseeseeseetostateateateateeeuecnecnenocnacastoetoscossoceacanns 54
Organization of CONtext DECOder «««««tteeesssrrrrrrrreeeesemmmumriireeeeennns 55
Finite state machine of CTRL cccceeeeeeeeeeeenentnniniiiiiiiiiiiiiiiiiieniennan. 57
Throughput of proposed design ... 59
ASTC Of AES cceereereeemeniii ittt iee e eaees 59
ASTC OFf DES ++vvvevevrrerrneesrrneersuoeeeuueeeeiieresiieeesineretinereiaeeerieeesseeeses 60
ASTC Of MON ccvcveereeeeeeetentenieitiitiitiitiititeitittttteteateetactacnacaananns 61
PrOpOSCd approach .. 62
Area result of stand along deSigH ... 64
Area result of Stand alORG.AESLEN fre-wrwwweerrrrrreeermmmreernniiiiienns 64
Symmetric Cryptography FESUL Lt et 65
Asymmetric Cryptography TESUL T rrrrrrererrrereeeentnenieiiieieieciiencnenn, 65
Result of symmetric and asymmetric cryptography :««:eeoeeeseeeeeeees 65
Symmetric Cryptography TeSULT «rereeeeeesssrmrmmrrreeenmmmiiiiieeieeennns 66
Asymmetric Cryptography TESULT svrerrerrereereeeiiiiiiiiiiiiiiiieee 66
Result of symmetric and asymmetric cryptography -:«--:esceeeeeeeseeeeee 55
Symmetric TESULT vvrerrerrereeeeeeeii ittt ittietieecneaaeans 73
Asymmetric TESULT eveerreereeeeeeeeneeetntiiiieiiiiieniettitacneectotncnceccocacnes 73
ToOtal TESULT wverrerrrrrrreeree ettt ittt tietietietietaenacaananns T4
Organization Of ATOISC «eeerrrerrrrrrmrereeemmmuiiiriitteeeenniitiieeeeeeeens 74

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table
Table
Table
Table
Table
Table
Table
Table

Table

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4
3-5
3-6

3-7
3-8
4-1
4-2
4-3
4-4
4-5
4-6
4-7

List of Tables

Key Block Round Combination =-ceceeeeeeeereseeseereetetaetneiiienienienennnn. 12
Xi Of RCON[1] vreereerserserssrssnmsssunmsniiiiiitiitib et 12
Shift number C1 means COlUMN ONE -+ +ererreereereetetaetieenenienaennnanns 14
Left SHifts MUIDET «+erreerrrrererrronerruamereieeeruieeeriieeerieeeerieeernnnns, 18
Comparison of Cryptonite and proposed design «:«eeseesreerrerresreeeeee 29
Comparison Of AES ASIC «wrveeeeeersrenmmmmmmmeeeeeenmmiitiirrieeeee e 30
Comparison OF DES ASTC evveeeeeneememmeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiaenaee 31
CompPATiSOn Of RSA ASIC rrrveeeeeersrrnmmmmmmmeeeeeennniiiiinrieeeee e 39
Function requirements .. 33
Operation ClassifiCation, sy -rrrrrrrreeeeermmmmmmmrrreeeeeenniinineeee 34
Permutation and combination.performed by PCU «-«eeeeerreerreseesreeeee. 37

Hardware requirements of the threé cryptographic algorithms --- 37
Area and ‘tlmlng Of the four OPSET ... 45

Cycles needed by different specification of cryptographic 45

ALGOTTTRIS #+errrrrrerrrnrerr ettt
Bandwidth requirements for three cryptographic algorithms =-«------ 51
Area Of PE and Tlle Buffer .. 52
Processing Gap of secured embedded SyStem ««--eeeeeeeeeeeeeeeeaeeaeine. 58
Area or timing of each component in AES ASIC +eeeeeereremeeneeiniananns 60
Area or timing of each component in DES ASIC ceeeeeerereeeeeneeineinnne. 61
Area or timing of each component in RSA ASIC «+-eeeeeemeeemeenannnannnnn. 61
Area timing and cycles of the three ASIC respectively «:ceeeeeeeeeees 45
Area and timing of each component in modified approach :-««------ 63
Cycle counts of each cryptographic algorithm respectively «««---- 63

X

Table 4-8

Performance loss

Xii

&%iiﬁ%%ﬁﬁﬁiﬁﬁ%ﬁﬂayﬁga

Design and Implementation:of a Flexible Pipeline for Secure

Embedded Systems

SR | SR

By B o 2 W

PoE R4 e g AN

Chapter 1 Introduction

Curiosity about other people's business and the hiding of information are characteristic
of all human societies. In military, commerce, and diplomat, protecting some confidential
papers is more and more important. Furthermore, embed security feature in some personal
devices, such as PDA and handset, has become a considerable factor for consumers.
According to the statistic of Mobile Commerce taken by ePaynews.com, nearly 52% of cell
phone users and 47% of PDA users feel that security is the largest concern preventing the
adoption of Mobile Commerce. The statistic bar graph is shown in Fig.1-1. In the Fig. 1-1,
the second important reason is the klunky user experience. It means the habits of
experienced users. The two reasons account'for 70%of the statistics. [1]

Besides the urgent necessity, the“stronger computing power and the more impeccable

development of mathematical techniques have make cryptosystems extremely sophisticated.

It's able to construct ciphers that are effective and impossible to break. As a result,

embedded systems adapt some security features is necessary and possible.

60%

50%

40%

30%

O Phones
B PDAs

20% |

10%

0%
Credit card security Fear of 'klunky' user ~ Don't understand how it Other Never heard of it before
concems experience would work

Fig. 1-1 Obstacles preventing consumers from adopting Mobile Commerce [1]

-1-

1.1 Design Challenges of Secure Embedded Systems

Many embedded systems are constrained by the environments they operate in, and by
the resources they possess. For secure embedded systems, there are some new design
challenges. These new design challenges are processing gap, flexibility concerns, battery
gap, tamper resistance, assurance gap and cost. The processing gap means the gap between
bandwidth of devices and environments. The flexibility concerns come from the
characteristics of cryptographic algorithms. Battery gap is the insufficiency of battery. The
tamper resistance is the countermeasure for malicious software such as viruses and Trojan
horses. The assurance gap is the gap between current systems and the reliable systems
which never crash under any kind of situation. Last but not least, the cost is the area
constrain of embedded environment. [2] Our.thesis is focus on processing gap and

flexibility concerns.

1.1.1 Processing Gap

At different environments, data rates of cellular (128 kbps~2Mbps), wireless Lan
(2~60Mbps) and the lower-end of access network (~100Mbps) are supported by current
low- and high-end embedded processors. [2] Take XScale as an example, when it 100%
dedicates for record protocol of Secure Socket Layer (SSL) which is a popular security
protocol, it can only sustain data rate 3.1Mbps. Any higher rates are unattainable. If we use
this embedded process for SSL, this would lead processing gap. In Fig.1-2 shows the
throughput of low- and high-end processors. The horizontal axis is MIPS of embedded
processors. The vertical axis is data rate produced by these embedded processors. We
choose some popular processor. For low-end system, we choose the XScale, ARM9 and

SA-1110 as an example. For high-end system, we choose Xcon and PIII.

=
S _
=
=
el sl
~3000 MIPS
— (=] s
g 8 :
S T | 768MHzPlll Coppermine (100% dedicated) !
= ~790 MIPS ! '
@ | |
= ! -
w I [}
= | 400 MHz XScale (100% dedicated) i |
w = I [}
& 250 MIPS i | |
oS 206 MHz SA-1110 (100% dedicated) PR !
P o S | -1s0mps P& : i
E &1 | |
2 O :
[| 1
28 o i
o2 40 MHz ARMS9 ! i i i
o (100% dedicated) S | ! i i
E T=20MIPS T S 5 i 1 : I
______________ | : 1 :
> 1 1
sl 206 MHz SA-1110, I : i [[
o S _|(10% dedicate Lo | |\ el s oo sypdpans
o | L : | AR e AOF o
2 o ! | AR S 28 RyiRAE
T t T
| o !
(] ! H 1 1
1 1 1 : 1 1
| 1 | 1 |
| gl gl |
w] 1 | 1
£ & £ & B &
218 = =1 = =
< slat @ -~ i el o |
Sia) i@~ ;
1 | | I
100 kbps 1 Mbps 10 Mbps 100 Mbps
DATA RATES

(logarithmic scale)

Fig. 1-2 Throughput of high- and low- end embedded processors [2]

1.1.2 Flexibility Concerns

A typical security protocol standard usually allows for a wide range of cryptographic
algorithms. In general, asymmetric cryptographic algorithms are used to exchange the keys
which needed by symmetric ones. If we use ASIC to speed up the two cryptographic
algorithms individually, hardware utilization will be very low. The low utilization comes
from using symmetric and asymmetric ASIC in sequence. When we use asymmetric

cryptographic algorithms to exchange keys, the hardware used to speed up symmetric

_3-

cryptographic algorithms is idle. It is the same for asymmetric ones when symmetric ones
are active.

Feb 2002 + OpenPGP
Jun 2002 + AES
Jul 2002 TLS ext. draft

Aug 2002 +ECC MET :EJ

Aug 2002 + Camellia formed 8 Vi1

Sept 2002 TLS compression * *k MET
methods

A WTLS

TLS Working
5rp Estd TLS
®

vioe @ @ TLS

+Kerberos
Workd HMAC.MDS
Warking &rp a =
Estdge ESP, IP'— L 4 & v IPSec
authent. IP- TP-security arch., drafts

security arch. TyE TSAKMP etc.

1990 1992 1994 1996 1998 2000 2002

Fig. 1-3 Evolution.of security protocols [2]

Besides the requirement of supporting different cryptographic algorithms, security
protocols and cryptographic algorithms are not‘only diverse, but also continuously evolving
over time. As time goes by, future computation powet will become stronger than current
one. The current cryptosystem will become insecurity. So, we need some new
cryptographic algorithms or some cryptographic enhancements. As the Fig.1-3 shows, these
security protocols add more and more features from 1990 to 2002. For cryptographic
algorithms itself, take DES as an example. 3DES is an enhancement algorithm with respect
to DES. It uses the same cryptographic algorithm, but need longer key to support higher
security level.

As a result, embedded systems supporting for security need some kinds of flexibility

concerns between different cryptographic algorithms and forward compatible for future

ones.

1.2 Architecture for Security Processing

As the security embedded systems grow, there are two generations of security
processing architecture. The First-generation solutions perform security processing by
executing security software on the embedded processors. Because they use software to
perform cryptographic algorithms, they have high flexibility and fast turn around time.
Unfortunately, the characteristic of processor which is designed to execute any kind of
application leads doesn’t meet the case for stream data processing. The most execution time
is spent on instruction fetch and decode. Nevertheless, the applications such like
cryptographic algorithms are fixed. As a result, the First-generation solutions are not
efficient in terms of their performance and energy consumption.

The First-generation solutions have the defect of performance. Some people suggest
that design a dedicated hardware to’speed up efyptographic algorithms. It is a good
approach in the view point of processing gap. So, the Second-generation solutions are
proposed. The Second-generation onés sacrifice-the flexibility and turn around time. The
benefits of them are hardware efficiency and low'power. These advantages are due to the
custom design. But, as the section 1.1 tells us, the cryptographic algorithms are not only
diverse, but also continuously evolving over time. As time goes by, the mainstream
cryptographic algorithms may be replaced by some new cryptographic ones. Under this
situation, the Second-generation solutions will get troubles. As a result, we need the
third-generation solutions which need to have benefits of first- and second-generation ones.
They need to have high efficiency, high flexibility and fast turn around time. Fig.1-4 shows

the pro and con of the three generations of security processing architecture.

1% generation 3" generation

security solutions security solutions
Executing security SW on e
Protocol-level Offload to

1

1
embedded processors. '
i programmable engines
' QO High Efficiency

| . Sy
'O High Flexibility

X Poor Efficiency
O High Flexibility

O Fast turn-around time 1 O Fast tumn-around time
1

Aljigixai4

Offload crypto functions to

crypto hardware
O Good Efficiency

nd i
2" generation X Poor Flexibility
security solutions | X High design complexity

awl] punoJe uin) ubisap Jaise

Increasing Efficiency (Performance, Energy)

Fig. 1-4 Security processing.architéctures [2]

1.3 Motivation and Objective

For secure embedded systems, processing gap still needs to be solved. But new issue
for embedded systems, flexibility, should be considered. Unfortunately, the researches
about flexibility are rare. In our thesis, we propose a hardware which solves the processing
gap and switches flexibly between AES, DES, and RSA. Under consideration of processing
gap, we use space-time product as our performance metrics.

We first classify the operation of the three cryptographic algorithms into three classes.
Then, we design modules for different operation classes respectively. The three modules are
permutation-combination unit, computation unit and memory unit. The
permutation-combination unit is a custom design. The computation unit is consisted of
processing elements and the memory unit is consisted of tile buffers. The different ratio of
processing elements and tile buffers will lead to different result. We choose the most

_6-

appropriate ratio. Finally, our proposed method will get better result than dedicated design.

Organization of this thesis is that chapter 2 will introduce some cryptographic concepts, the
three algorithms, DES, AES, and RSA and some hardware implementations. Chapter 3 is
our proposed design. Chapter 4 is evaluation results. We compare our design to dedicated

design. Chpater 5 is conclusion and future work.

Chapter 2 Background and Related Work

In this chapter, we will give an overview of cryptography. Then, we introduce the three
commonly used cryptographic algorithms and summarize all the used operation. Finally,

previous works related of the three cryptographic algorithms are presented.

2.1 Overview of Cryptography

The word Cryptography is composed by two ancient Greek words. “kryptds” and
“graphein” The “kryptds” means hidden and “graphein” means writing. Cryptography is
the study of information hiding, message certification and the science of encrypting and
decrypting text. [3][4]

Cryptography has existed thousands®of yearsi»The Ancient Greece, Spartan, wraps
leather at a specific ruler and then write the information on it to transmit to others; Others
which want to read the message only need the ruler with equal size. When they get the
leather like this, they wrapped the leather on the ruler and then read the original information.
In this way, even if this leather is intercepted midway. It is only some useless information
in a mess because of unknown ruler’s length. This is one of the earliest cryptography of the
mankind that records in history. Of course, such system is ludicrously weak. The modern
cryptosystems use sophisticated algorithms based on mathematical problems that are
difficult to solve.[5]

In general, a cryptosystem will have three roles during messages exchanging. They are
sender, receiver and intruder. Typical cryptosystems are shown as Fig.2-1. At the sender
side, sender encrypts plaintext M with an encryptor E and a key kj. The ciphertext is C = E
(M, Kk1). Then, the sender sends the ciphertext to public channel for receiver. When receiver
receives the ciphertext, he uses a decryptor D and key a k; to decrypt ciphertext to plaintext.

M =D(C, k2)= D(E (M, ki), k2). The intruder is a malicious role. He listens to the public

-8-

channel and uses any kind of methods to know the plaintext from sender or pretend

message to receiver. He can get ciphertext, but has no idea about kj.[4]

plaintext M ciphertext C plaintext M
ey | EnNCryptor E O <> Decryptor D |
Sender Public Channel Receiver

— kz
ky Intruder

Fig. 2-1 Typical cripto-algorithm block diagram [4]

2.2 Symmetric and Asymmetric Cryptosystems

In typical cryptosystem, if secret.Ky and K, are. the same, this cryptosystems are
Symmetric Key Cryptosystem, One-key. Cryptosystemor Private Key Cryptosystem.
Symmetric Key cryptosystems have been-used. for thousands of years. They range from
simple substitution ciphers to more complex constructions. One of the simplest form is
known as the Caesar cipher used by Julius Caesar. The process of Caesar cipher is
simply shifting the alphabet [6]. This system is very easy to break. Fortunately, the growth
of computing power and some new developments in mathematics make that it is possible to
create Symmetric Key Cryptosystems that are unbreakable. Symmetric Key
Cryptosystems are generally very fast. But they have a disadvantage. Sender and receiver
need to agree on the shared key previously. However, the communicating parties may never
meet over the network. It is impossible for the two parties to encrypt data without having a
shared secret key that is known in advance. So, the Symmetric Key Cryptosystems are
vulnerable.

The secret key sharing can be a major vulnerability in Symmetric Key
9.

Cryptosystems. In 1976, Diftfie and Hellman[7] demonstrated an algorithm which is
known as Diffie-Hellman Key Exchange. It is an elegant approach toward secure
communication that has led to the development of Public Key Cryptosystem, also named
Asymmetric Cryptosystem. The use of Public Key Cryptosystem is quite simple. As
shown in Fig.2-2., sender and receiver share a single public key, but receiver has one more
key, private key. The public key is available to everyone in the world including the intruder,
but the private key is only known by receiver. If sender wants to send message to receiver,
sender uses the public key to encrypt message and then send to receiver. When receiver
receives the ciphertext, he uses his private key to decrypt message. As a result, sender and
receiver don’t have to exchange key previously. So, the Asymmetric Cryptosystems don’t

have the vulnerability of symmetric cryptosystems.

plaintext M ciphertext C plaintext M
—)] ENCryptor E i DECIYPION D Ly

7'y

Private Decryption Key k

Public Encryption Key k;

Fig. 2-2 Public Key Cryptosystem

Symmetric cryptosystems are faster than asymmetric ones. They are the preferred
mechanism for encrypting large amount of message. A cipher such as DES[8] will be at
least 100 times faster than the asymmetric cipher RSA[9] in software and might be up to
10,000 times faster when implemented on specialist hardware.[6] Asymmetric
cryptosystems are most suitable for protecting data with high security requirement. In
practice, the most satisfactory methods are combining both symmetric and asymmetric
systems. Use asymmetric systems to exchange secret key which is used by symmetric ones.

-10 -

After secret key exchanging, the symmetric cryptosystems can encrypt or decrypt data with
this key. DES and AES are the commonly used symmetric algorithms, and RSA is

asymmetric one. In our research, we will focus on the three cryptographic algorithms.

2.3 AES[11]

In October 2000, the NIST chose Rijndael as the new Advanced Encryption Standard
(AES). AES is intended to replace DES and Triple DES as a new secure standard [10].
AES is a symmetric block cipher. It can process block data of 128-bit. The Fig.2-3 shows
the AES encryption flow. Just like all symmetric cryptographic algorithms. The AES has a
regular computation flow. It just repeats the routine, round, some times depending on

different length of cipher key. The leng_t;lh‘),kg_{ ,.c]:,%her key are 128-, 192- and 256-bit
Gy,

i v{h‘-.'f .
respectively. The AES encryption and.'dec rypt n:gf‘g&é(‘)i'i.nposed by five main components.
= q[HAET o
e g = L e
itRows, Mixcolumn, and AddRoundKey.

All of them are Key Expansion, Subbytes, ShitRo\
= | i

- T
= .t 1o B -
[11] A NEIEE L
s gl >

plaintext(128 bits)

AddRoundKey

Round 0

Round 1

128 ShiftRows

AddRoundKev

SubBytes
ShiftRows
AddRoundKey

ciphertext (128 bits)

Fig. 2-3 Flow of AES
- 11 -

2.3.1 Definition

Before introducing AES, we must define some terms previously. The length of input,
output, and state which is output of round in AES is 128 bits. This is represented by Nb = 4,
which means the number of 32-bit words. The length of the cipher key, k is 128-, 192-, or
256-bit. The length of key is represented by NK. The 128, 192, and 256 are Nk =4, 6, and 8
respectively. Depending on different length of cipher key, AES algorithm performs some
times of round. The round number is represented by Nr. When NK is 4, 6, and 8, it means
10, 12 and 14 rounds in AES respectively. The combinations of Key-Block-Round are

given as follow in Table. 2-1

Cipher Key length(Nk) Block Size(Nb) Number of Rounds(Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Table 2-1 Key-Block-Round Cambination

2.3.2 Key Expansion

The Key Expansion algorithm takes cipher key to produces a key schedule for
en/decryption flow. The Key Expansion will generate total No(Nr + 1) words. The Key
Expansion processes shows as the following algorithm.

The SubBytes() is a function that perform four bytes table look up which will mention
in section 2.3.3. The function RotWord() take a word [A1,A2,A3,A4] to perform a cyclic
rotate, and then return the result [A2,A3,A4,A1]. And the Rcon[i] are constant in the form

[X;,0,0,0]. X are list as following table 2-2.
Round i 0 1 2 3 4 5 6 7 8 9
Xi 01 02 04 08 10 20 40 80 1b 36

Table 2-2 X;of Rcon[i]

-12-

KeyExpansion(byte key[4xNk], word w[Nbx(Nr+1)], Nk)
begin

word temp

i=0

while (i < Nk)

i = i+l
end while
i = Nk

while (i < Nb x (Nr+1)]
temp = wli-1]
if (i mod Nk = 0)
temp = SubBytes(RotWord(temp)) xor Rcon[i/NK]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)

end if
w[i] = w[i-NKk] xor temp
i1 +1

end while

end

W[i] = word(key[4xi], key[4xi+1], key[4xi+2], key[4xi+3])

Take Nk = 4 as an example, the expansion executes as following Fig. 2-4

. N\
Clﬂher key D G

@ =P

A 4 \ 4 A 4 A 4 A 4 A 4 A

Rotate Rotate
&Table [&Table [
Rconl0l Rcon[1l——

Fig. 2-4 Key Expansion Flow

2.3.3 SubBytes

> v
B - BB

Boo | Bo1 | Boz | Bos B'oo | B'ox | B'o2 | Blogs
Bio | Bi1 | Biz | Bug B'11 | B12 | B'iz | Blio
Boo | Bo1 | B2o | Bags » SBOX B2 | B2z | B2o | B2a
Bso | Bs1 | Baz | Bag B'az | B'so | B'a1 | B's2

Fig. 2-5 SubBytes applies S-box to each byte of the state

-13 -

The SubBytes transformation performs a non-linear byte substitution that operates
independently on each byte as in Fig. 2-5. The non-linear byte substitution is constructed by

the following transformation in Fig. 2-6. This transformation is invertible.

” by N 1 0 0 01 1 1 1N by ™ 1N
by 11000111 b, 1
b, 11100011 b, 0
b3’ 11110001 bs 0
b — 11111000 b, + 0

I
bs’ 01111100 bs 1
be’ 00111110 be 1
\ b, p \0 00 1 1 1 1 1 J \\ b7 y . 0 y
Fig. 2-6 SubBytes transformation
2.3.4 ShiftRows
Bo,o Bo.1 Bo,2 Bo,3 B’0,0 B'o,1 | B'o2 | B'o3

Bio | Bi1 | B12 | Bigs |—-:|:|:|<—| B'11 | B'12 | B'is | B'1o

B2o | B21 | B2z | Bas |_-:|:|'—| B22 | B2z | B2o | B'2a

Bso | Bs1 | Bs2 | Bss I__:h B's3 | B'so | B's1 | B's2

Fig. 2-7 shift cyclically the state
In the ShiftRows transformation, the last three rows of the state rotate over different

numbers of bytes like Fig.2-7. The shift numbers are listed in table 2-3.

No. of column C1 C2 C3
Left shift (Encryption) 1 2 3
Right shift (Decryption) 1 2 3

Table 2-3 Shift number C1 means Column one

-14-

2.3.5 MixColumn

BO,O BO,l BO,2 BO,3 B’O,O B’O,l B’O,Z B,0,3
Bl,O Bl,l Bl,2 Bl,3 B’l,l B’1,2 B’l,3 B,l,O
* Mix-Col
BZ,O BZ,l BZ,Z 82,3 B’2,2 B’2,3 B’Z,O B’Z,l
BS,O BS,l BS,Z B3,3 B13,3 B’3,O B’3,l B,3,2
N 7 N\NCaNYN(Co Y\ 7 /N
Bloc 02 03 01 01 Bo.c Boc Oe Ob 0d 09 Bo.c
Bic| | o1020301 || Bie Bic] |o9oeobod || Bre
B2c] =] 01010203 Bac B2c | =1 0d 09 0e 0b Bac
B'sc 03020101 J | Bac B'sc 0b 0d 09 0e J | Bac
. y \. ~ \ J \ y . . y

Encryption Decryption

Fig: 2-8 Mixcolumn
The MixColumn operates columin by column on the state. We can view it as a special
matrix computation. It is shown as Fig.2-8,.Before-introducing the MixColumn, we must
define some terms.
Definition

> Bi,C is byte Z Bi,C :{b7,b6, b5, b4, b3, bz, b1, bo}

> BO,C @Bl,c . BO,C XOR Bl,C

> 01 ®Boc : {bs,be, bs, ba, b, by, by, bo}

> 02 ®Boc : {bg, bs, ba, bs @by, by @by, by, by @by, b7}

> Hardware form of “02 &@Bg " is shown as follows It is named X_TIME
l|37 be bs b:)gm b, b, bo
b‘{ b{ b‘{ b’y bs b’ by b

Fig. 2-9 X_TIME

-15-

Use the previous define, the encryption matrix can be expanded as follows.
B’oc = 02 ®By.®P03 ®¥B;: P01 ®B,c @01 ¥B3,
= 02®By.®?02 ®¥B,.»01 ®B; P01 ®B,. P01 ¥B3,
The decryption shows as follows.
B’oc = 0e ®By.®0b ®B;.@0d ®B,. #09 ®Bs,
= 02 ®By. 402 ®(02 ®By.) 02 ®(02 ®(02 ®By,)) @
01 ®B;. ®02 ®B; P02 ® (02 ®(02 ®B,.)) &
01 ®B,. 402 ®(02 ®B,,) $02 ®(02 ®(02 ®B,.)) &
01 ®B3.®02 ®(02 ® (02 ®Bg3))

The Data flow graph of the two functions is shown as follows.
AES Decryption
@)

*KOR—»
g KOR
@)+ I ! “XOR
KO " XT
L or
"XO WXTH—xT| —
@, ¢ XO " XT >
KOR—— | XT[—{xT " HOR
AES Encryption
2 'KOR __KOR ___KOR 8 bits

@ 8 bits
@ 8 bits Input

Fig. 2-10 Data flow graph of encryption and decryption

pas
O
L

XT

-16 -

2.3.6 Add Round Key

Boo | Bo1 | Boz2 | Bos B'oo | B'oax | B'o2 | Blos

Bio | B11 | Bi2 | Bis key B'11 | B12 | B'is | B'io

Boo | B2t | B2z | Bas B'22 | B2z | B'2o | B2

Bso | Bs1 | Bs2 | Bags B's3 | B'so | B's1 | B's2
XOR

Fig. 2-11 Add Round Key

In this transformation, it adds state and key scheduling like Fig.2-11

2.4 DESI[8]
3L

Data Encryption Standard (DES) ggﬁ%i%s-frqfﬁﬁﬂg done by IBM. It became effective

| 4=\ |
in July 1977 and reaffirmed in 19835'71(988 a 5.‘%’%@5:*‘:& Tg probably the most widely used
‘.-':l " S :::-c_.- - In

R

: - &
secret key cryptosystem, partlcularly%q S L’FJ fina C}g data, such as Automated Teller
. h«‘;:j v Ao Y _;g_,
. . e
iy T
Machines (ATMs). Frprrs
64-bit plaintext 56-bit key

Initial nermutation Permuted choicel
Round O Permuted choice2 Left circular shift

Permuted choice2 Left circular shift

Round 1

Round 15 Permuted choice2 Left circular shift

Inverse permutation

64-bit ciphertext

Fig. 2-12 Flow of DES

-17 -

The DES flow is in Fig.2-12. It is composed by sixteen rounds and two permutations.
The two permutations are place at beginning and end of DES round. In the key scheduling,
DES needs only three kinds of permutations. As a result, we will divide DES in to two

categories, Permutations and Round.

2.4.1 Permutations

In the Shift Left transformation, it treats input as two 28-bit blocks. Let’s note the 2
28-bit as C and D. The left rotating one bit means a rotation of the bits one place to the left.
So after rotating one bit C and D become {C[0],C[28].....C[1]}, {D[0],D[28].....D[1]}
separately. The rotate number depends on round iteration number. It shows as the following
table.

Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rotate bits 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
Table 2+4 Left shifts number

The Initial permutation, IP encipher the input block to the following permutation

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

N LN W = o0 N B~ DN

That is the permuted input has bit 58 of the input as its first bit, bit 50 as its second bit,
and so on with bit 7 as its last bit. The inverse permutation, 1P+, is list as following by the

same notation as IP:

-18 -

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 3l
3826 46 14 54 22 62 30
37. 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Key scheduling is performed by three permutations Permutation choice 1 (PC1),

Permutation choice 2 (PC2) and some left circular shift. PC1 is determined as follows.

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 33260 52 44 36
63 55.:47,39- 31 ,23° 15
7 62- 54 46 38 30 -22
14 6 = 61,/53°45.- 37 29
21 137%5 928 20 12 4

PC2 is determined as follows.

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26

16 7 27 20 13

41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

After Cipher Key performs permutation choice 2, it becomes 64 bits to 56 bits.

-19 -

2.4.2 Round

DES is composed by sixteen rounds. The Round organization is shown as follows in
Fig.2-13. We first divide the input 64-bit into Right part and Left part. The R part is the f
input. We XOR the result of f with L part to be R part of the next round. And the current R
part will be the L part of the next round.

The function f performs the following operation. First, f expands input from 32-bit to
48-bit, and then XOR with Key scheduling. Second, separate the 48-bit into eight 6-bit data
and then the eight 6-bit will look up 8 different tables individually. Each table will output

4-bit data. Finally, the eight 4-bit data will perform the finial permutation. The f finishes.

gttty
XOR j/
Expand 8 48
6 | = | 6
Look-Up Table
Tl |
32
. Permutation
. 32
64-bit pN

Fig. 2-13 Organization of Round

The function of E

321 2 3 4 5
4 5 6 7 8 9
& 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 2223 24 25
24 25 2627 28 29
28 29 3031 32 1

-20 -

The function of P

16 7 20
29 12 28
I 15 23
5 18 3l
& 24
32 27 3
19 13 30
22 11 4

2.5 RSA[9]

In 1976, Diffie and Hellman propose an algorithm which leads to development of
today’s Public Key Cryptosystems. After one year, three researchers at MIT used the
suggestion of Diffie and Hellman to develop a method. " The Three MIT researchers are Ron
Rivest, Adi Shamir, and Leonard Adleman. The method is named after its founders, RSA.

The RSA algorithm has become almost synonymeus-with Public Key Cryptosystems.

2.5.1 RSA Components[12]

For RSA, there are two components of RSA.
® Choice of public key and private key

® The encryption and decryption algorithm

RSA has two keys, public key for encryption, and private key for decryption. In order
to choose public key and private key, doing the following flow is necessary.

® (Choose two large prime numbers, p and ¢

® Compute N =pg and z = (p-1)(g-1)

® Choose a number, e, less than n, and e and z with no comMon factor

® Find a number, d, such that ed — 1 is exactly divisible by z

-21 -

21
17
26
10
14

25

® The public key of RSA is (n,e), and the private key of RSA is (n,d)
After get the keys the RSA flow shows as following.

® C(iphertext = C, and Plaintext = P.

® Public key is (n,e) and Private key is (n,d).

® Encryption : C = P* mod n.

® Decryption :P = C mod n.

2.5.2 Complexity of RSA

Before explain the complexity of RSA, we define one term as a basic unit to estimate
result.

* Define:

1-bit addition or subtraction as a unit computation

In RSA, n times of modular-multiplications are required. Suppose (n,e) both are n
bits, the RSA compute at least™> m_ times modular-multiplication. And each
modular-multiplication needs total n* times unit computation because one multiplication
and one division are required. As a result, RSA needs O(n’) of computation.
There are two ways to speed up the RSA. The two algorithms are not conflict with each
other. They can cooperate to speed up the RSA. They are Fast Exponentiation Algorithm

and Montgomery Algorithm.

2.5.3 Fast Exponentiation Algorithm

Fast Exponentiation Algorithm is a trick to reduce the number of
modular-multiplication from e times to log e. As previously described, we need at least n

times modular-multiplication. However, it is not necessary to compute at least n times

-22 -

modular-multiplication. For example, if we want to compute 8'° mod 13. We can first
compute 8mod 13 with one modular-multiplication. Then, 8'mod 13 come from by one
modular-multiplication of 8 mod 13 and so on. As a result, 8'®mod 13 needs only four
times of modular-multiplication. We reduce the number of modular-multiplication form
e to log e. This is the concept of Fast Exponentiation Algorithm. A real case lists as
follows.
11" mod 53

11 mod 53 =11

11> = 121, 11°mod 53 = 121 -2x53 =15

11* = (11%?, 11* mod 53 = 15% mod 53 = 225 mod 53 = 225 — 4x53 = 13

11% = (11%?, 11* mod 53 = 13? mod 53 = 169 mod 53 = 169 — 3x53 = 10

Therefore 11 mod 53 = 11 x 13 x 10 =11430 mod 53.=

1430 — 26%x53 = 52
The Fast Exponentiation Algo‘rﬁi‘thm applied-{o RSA is shown in Fig.2-14. The gray
box is a modular-multiplication. P is “plaintext. The bit notation of e in public key (n,e) is

{ek geeney ez,el,eo}.

P P?’modn P*modn

Fig. 2-14 Flow of RSA

The Fast Exponentiation Algorithm shows as follows.

Fast-Ex (P,E,N)
E,N<2"
E = {eo, €1, 2, €3, €4, ---..en}, €jbelong {1,0}.

{
vart0 =1;

-23-

vartl =P,
fori=0to n-1
begin
if(ej=1) then
t0=t0 x tImod N
end if
t1=t1 x tImodN
end for
return t0;

2.5.4 Montgomery Algorithm[13]

Fast Exponentiation Algorithm can reduce the modular-multiplication times in
RSA. But computing a modular-multiplication still needs a lot of computation. In 1983,
L.P. Montgomery proposed an algorithm that can speed up modular-multiplication.

For Fix N > 1, select a radix R coptimi¢ 'to Nsand the computation of modulo R are
inexpensive to process. Let R and N* beintégers satisfying 0< R'<N, 0 <N’ <R and R
R -NN’ = 1. For the given number,-we can quickly compute the T R mod N from T if

0<T < RN by the following algorithm REDC.

REDC(T)
m = (T mod R) N’ mod R
t=(T+mN)/R

if(t > N)then return t-N else return t

The result of REDC(T) will have the following characteristic. First, mN = TNN’ = -T
mod R, so t is an integer. Second, tR =T mod Nsot=T R mod N. Third, 0< T+ mN <

RN+RN, so 0 <t < 2N If we choose R = 2, the REDC will modify as follows.

REDC(T) (Radix 2)

T= Tn T2T1T0 Ti 6{1,0}

_24 -

N’ =N",...... N’2N’1N’o N’ &{1,0}
m =ToxN’omod 2
t=(T+mN)/R

if(t > N)then return t-N else return t

The -N’N mod 2 is equal to 1 and Nyis equal to 1 because N is the product of two
large primes. As a result, N’ mod 2 is equal to 1. This will lead m equal to Ty. We combine

the multiplication and REDC(T) will get the Montgomery Algorithm shows as follow.

Mon (A, B, N) (radix 2)
A,B,N<2".

A={A, - A2, Ai,A)} Ai>{1,0}
B={B,-:- B2,B1Bo} Bi>{1,0}

{
var ACC =0;
fori=0tordo
ACC = AixB+(AiBy®ACC) xN>>1
end for
return ACC;
}

The result of Montgomery Algorithm is AxBx(2")'mod N. And the Montgomery
Algorithm needs only n” times of unit computation.

How does the Montgomery Algorithm reduce the computation? The Mon function
has is a characteristic. If we process A to Ax2" as A by doing Mon(A, 2"modN, N), the
result of Mon(A,ANN) will be A’x2" mod N, as A’ The preprocess can be done by
Mon(A,22r,N). With the same way, we can get A4, A8 ...AzAi, ... A7 which needs only one
Mon. (A" is A ¥'x2" mod N) To get the A”'mod N we need the post processing,
Mon(A¥" 1, N). We call the preprocessing as mapping, and the post processing as

rema il’l . ThlS char acteristic makes the number Unit co Utatio S in
pping m n
-25-

modular-multiplication from 2n* to n’.

P?x2"modN P*%2"modN

2" P 2" 1 result

Fig. 2-15 Modified RSA flow
The flow applies Fast Exponentiation Algorithm and Montgomery Algorithm
shows as Fig.2-15. The green box is a Montgomery Algorithm. The green box in circle in

the left side is mapping. The right side is remapping. The algorithm of new RSA flow is

following.
RSA(M, E, N) g | o,
E={e, - €3 64, €2, 61, o} e.a{lJO} | L | -
t=2%"mod N; K S
P = Mon(t, M, N); (Mapping)© "~
R =Mon(t,1, N); (Mapping)
for i=0to r-1 do
if(ej = 1) then
R =Mon(R, P, N);
end if
P =Mon(P, P, N);
end for
R =Mon(1, R, N); (Re-mapping)
return R;
}

2.6 Some Hardware Implementations

There are many researches about cryptographic hardware design. We classify them

-26 -

into two categories, Integrated Design and Dedicated Design. The Integrated design is able
to perform more than two cryptographic algorithms. The dedicated design is dedicated to

only one cryptographic algorithm.

2.6.1 Integrated Design

The Cryptonite processor is designed to provide a better tradeoff between flexibility
and performance/area/power in the embedded systems, especially networking systems. It is
a programmable architecture dedicated to cryptographic applications namely DES/3DES,

AES, RC6, IDEA, MD4, MD5, SHA-1.

ALU & cormtral
ALU k2 gontrol
ALY l
irterlink:
ALL & :;,..-‘: ALU k2
immisdigbe valus &1
0
source register b i
iredex register k1 E
=
immedinte walus §2 B
= o source register £2
oy mory index register b2
Unit &1 Uit &2
_ul:h:u: .B-b-DI
Data index Address Address index Data
10 Unit #1 | Gereration Unit &1 Gereration Unit &2 L Uit £2
3
Bt imim. #2
bt im medints &1
external data
externol address |
Datn Addrees Addre=s DCatn Extornal
Local Memory ¥1 Local Memory &2 Bocens
(409684 bit) (402664 bit) Unit

Fig. 2-16 Cryptonite Architecture
Architecture of Cryptonite shows as Fig. 2-16. It is two independent computing
clusters, one for encryption and another for on-the-fly key generation. In general, key
generation is independent to en/decryption flows. Coarse-grain parallelism can be exploited.
On-the-fly key generation is vital for embedded systems solutions because

storing/retrieving the round key needs for hundreds or thousands of cycle is not feasible. As

-27 -

a result, Cryptonite provides two independent computing clusters. There are four
components, Control Unit, ALU, Address Generation Unit and Data 1/0O Unit in one
computing cluster.

The Control Unit puts all other units on hold and grants the External Access Unit
access to the internal data paths. Besides control other unit, Control Unit also provides 16

register for loop and control branch.

Arithmetic Unit w' Accumulator

\ A-Bus

Link (outy

j
Fla-gsller r0 s

¥— Link

Register Bank
H A-Bus
I

AN A

srch l srcB

Arithmetic Unit J

|=——— A-Bus
™ X-Bus

... ArithiAccu

Register ri1

— A-Bus
[=— X-Bus

i

A RVl o

Regisfer r2

w—— A-Bus
M X-Bus

Register r3

A-Bus
T ALU data (out)

Data Size Selector
ALU alv @ Logical XOR

data (in) Input 64bit, 32bit'H, 32bivL, null

Fig. 2-17 ALU of Cryptonite
The ALU of Cryptonite shows as Fig. 2-17. There three main part of Cryptonite,
register file, Arithmetic Unit and XOR unit. The register file is consisted of four 64-bit
register. In order to compensate for the low register count, each register can be either used
as one 64-bit or 2 32-bit registers. The AU supports conventional arithmetic operations,
boolean operations and specialized functions supporting certain algorithms. The XU can
provide six operand XOR.

The Address Generation Unit and Data I/O Unit are used to access local memory. The

-28 -

Address Generation Unit contains small add/sub/and ALU for address generation. It
supports eight addressing modes. The Data I/O Unit contains two data buffer for
input/output. Data 1/O Unit also contains a specialized DES unit. Fast DES execution not
only needs highly specialized operations but also S-Box access to memory. Hence the DES
is dedicated in the Data I/O Unit rather than ALU.

We compare our proposed design with Cryptonite in the following table.

Cryptonite Proposed design
Hardware organization ASIP Reconfigure Hardware
Parallelism Coarse grain Fine grain
AES Key gen. On the fly Generate previously
Implementation Integrate to other algorithm Integrate to other algorithm
DES Key gen On the fly On the fly
Implementation Dedicated module Dedicated module
Support DES/3DES, AES, RC6, IDEA, DES/3DES, AES,RSA
MD4, MD5, SHA-1
Environments High-end system Low-end system
Flexibility Cryptonite > Proposed design
Area Cryptonite > Proposed design
Speed Cryptonite < Proposed design

Table 2-5 Comparison of Cryptonite and proposed design

Besides the cryptonite other industrial implementation will list in Appendix A-2

2.6.2 Dedicated Design

AES

[15] proposed a special purpose ASIC processor that implements the AES. In its
implementation, there is only one hardware for en/decryption round and re-use the same
piece to complete the whole en/decryption. Besides hardware reusing, the processor is also
designed to complete one encryption round in one clock cycle. Furthermore, it uses

on-the-fly key generation for encryption and generating the all key beforehand for

-29._

decryption. For SubBytes, it uses ROM to implement the SubBytes.

Its architecture is shown as Fig. 2-18. There are two main modules for AES. One for
encrypt another for Key Expansion. Besides the two processing components, there are three
interfaces. The Processor FSM is top-level controller interfacing with the user module. The

input and output FSM is used to control input and output channel.

I5A
el e v
request_ 4 l | ——1 Processor FSM f—————
input [nput
ready , FSM 4
mput Lk reset
d
. o | Encrypt KeySched
in huh key
g = 25“
LhﬂﬂﬂLllﬁ \J oo L]L
, L
L
o umut

F'HM .,
T reset

out_channel ready L:II.I1.|'IIJ[:I'L"L]IJLHI output

Fig. 2-18 Organization of [15]
Besides the research about the architecture of AES, there are some researches which
focu on SubBytes. In [16], they propose a compact S-Box based on composite field. Using

the composition field ,we can get smaller area of S-box.

H.Kuo A. Satoh
Unroll loop No No
SubByte ROM Dedicated Design
Area H.Kuo > A. Satoh
Speed H.Kuo < A. Satoh

Table 2-6 Comparison of AES ASIC

-30 -

DES

In [17], this paper presents two FPGA implementations of DES. Both permit different
pipeline levels with 21 and 37 cycles. As the section 2.4 shows, DES has some
combinations and permutations operation. They are IP, IIP, E, and P in the Fig. 2-18. The S
means S-box. The @ means XOR. R means E" which is an inverse operation of E. The
two new pipeline of DES are shows as follows. In the Fig 2-18, the left side is DES core
one with 21 pipe stages, another is core two with 37 pipe stages. [17] wants to reduce the

critical path and provide higher throughput by reorder the E in the DES flow.

Heycles of latency 3T cycles of latency
Plaintexd | | Plaintect
T e pld o S el + F o D
i R+ i R et
| l : I
| P | P |
T r k3
3 El i .E
1 b s 5o
E| - E 4
B matate! e SERLAIIEN!
H
:"!.I:'jq- = K I?I;‘-l A= ¥
‘c‘-‘l -I i ; 9 " .
v v
v T

Fig. 2-19 The new DES pipeline

Rouvroy -1 Rouvroy -2
Unroll loop Yes Yes
Pipe stages 37 21
Area Rouvroy -1 > Rouvroy -2
Speed Rouvroy -1 > Rouvroy -2

Table 2-7 Comparison of DES ASIC

-31-

RSA

The Montgomery Algorithm has a modified version. Unlike the original one,
Mon(A,B,N) A,B,N < 2", which adds N along with partial product of AxB, the modified
one adds N after finishing AXB. In Modified Montgomery algorithm, it splits
modular-multiplication operation into multiplication procedure and Montgomery modular
reduction procedure. Modular reduction procedure adds N 2n times to the accumulated
result which is produced from the multiplication procedure.

In [18], they also based on the enhanced Modified-Montgomery Algorithm. Unlike
previous implementation, they use one linear Bit-level Cellular-Array Design to perform
the two procedures. The linear Bit-level Cellular-Array is Baugh-Wooley 2’s complement
array multiplier.

In [19], it based on original Mentgomery Algorithm. Its architecture shows as
follows. It is consisted of a linear Processing element (PE). Each PE performs fix length
addition. Use these PEs to performthe all“addition, of RSA. The all architecture is like

serial parallel multiplier.

HesA_oddd_BLS I _axckil_Im
BM_iven_BELTS Htd_even_In
1 — 3 I _
BRI B _In B _In B _In Coatrol_In
Conrol_In - —— - — - — - ———| Comiral_owal Ciomirid_In [Cominsl_eeal Camsral_In -— Caneral_<ut Comired_In -
a_ieln | — a_jChnt a_i-In | a_joliut a_ji-Im a_i-Chal I a_i-in
il |— — g_i-Oul il iUl i _i-ln (= q_i-Cut — a_kn
H_Carry_In [— B_Carry_{hin B_Cairy_[n [t B_Carry_{ i g _i-ln [
Carry_In ———— - - - = - ————— Carry O Carry_In Carmy O carry_lm e Cary_ U
& Oyl ——— - — — — - —{ 5 S i 5 In 5 ipp =S n
Resali_Chal ——— = - — — — — —— = Resule_In Resuli_Our = Result_In Resuli_Our ——
- - . R R R
Ui 2 Units_m+1 ... 3 Unit_2 Umit_1 Umnit_0
a * al - al - = S_{hm
-
Resule_Chal

Fig. 2-20 Organization of [19]

Blum & Paar Su & Hwang
Mon Original Modified
Organization Serial-parallel multiplier Baugh-Wooley multiplier
Area Medium Large
Speed Medium High

Table 2-8 Comparison of RSAASIC
-32-

Chapter 3 Design

In this chapter, we first summarize the all operation of the three cryptographic

algorithms by its characteristic and classify them into three categories. Then design the

components for the categories respectively.

3.1 Function Requirement

Cipher Function Comment
AES Key XOR 8 bits xor
expansion Table look up 8 bits in/8 bits output.
Rotate Byte Rotate left 1 bytes
Round X_TIME Special operation for Galois field
XOR 8 bits xor
Table look up 8 bits in/8 bits output.
Rotate Byte Rotate right or left 1, 2, and 3 bytes
DES Key PC-1 Permutation bits from 64 bits to 56 bits
scheduling PC-2 Permutation bits from 56 bits to 48 bits
Shift 1 or 2 Shift left and right 28 bits one or two bits individually
Round Expand E Expand input form 32 bits to 48 bits
Permutation P Permutation 32 bits
XOR 48 and 32 bits XOR
Table look up 6 bits in 4 bits out
RSA MON Addition
Shift Shift right one bits

Table 3-1 Function requirements
At Chapter 2, we introduce for the three cryptographic algorithms. At this Chapter we
first summarize the function requirement of the three algorithms in Table 3-1. In table 3-1,
the function requirements for the three cryptographic algorithms are listed. These function
requirements can be classified into three kinds depending on their characteristic. In Table

3-2, shows the three categories.

-33.-

Class

Permutation
&

Combination

Computation

Memaory

Type

Expand
Permutation function
Initial permutation

Inverse permutation
Rotate Bit
Permutation Choice 1
Permutation Choice 2
Rotate Byte

Shift

XOR

Xtime

Addition

Buffer

Look-up table

Table 3-2 Operation classification

Algorithm

DES
DES
DES

DES
DES
DES
DES
AES
MON

DES,AES

AES
MON

DES,AES,MON

DES,AES

Comment

32 bits to 48 bits

32 bits permutation
Start of the flow 64 bits to 64 bits

End of the flow 64 bits to 64 bits

Rotate left one or two bits

64 bits to 56 bits
56 bits to 48 bits

byte level rotate left or right

Shift one bit

8 or 32 bits xor

special operation for Galois field

Memory output buffer

Table look up

These three categories are Permutation & Combination, Computation and Memory.

Permutation & Combination are some fix wiring operation of the three cryptographic

algorithms. Computation is the operators which are belong to arithmetic and logic. The

three cryptographic algorithms need only Addition, XOR and X TIME. The finial class is

Memory which is table look up and data buffer in the three cryptographic algorithms.

Because of the three classes, our system will have the three components to perform the

three kinds of operation respectively.

Before design module for the three class operation, we notice that DES has some

characteristics. First, DES is suit for on-the-fly key generation. So, the hardware cost for

-34 -

DES key generation is small. Second, the hardware circuit for table look up in DES is small

too. Because these two reasons, we dedicated part of DES for get better result.

3.2 System Overview

As the section 3.1 described, our system overview is shown in Fig. 3-1. We have six
components. They are Permutation & Combination Unit, Computation Unit, Memory

Unit, DES Unit, Context Memory/Decoder and Ctrl.

Context Context
) CMD

memory decoder

ctrl—4 +—‘

input
P - DES

>

MU PCU-1

input buffer

Fig. 3-1 System overview

Permutation & Combination Unit (PCU-1 or PCU-2) :

The Permutation & Combination Unit (PCU) executes the fix wiring tasks. As
cryptographic algorithms go, PCU routes the data to Computation Unit or Memory Unit.
In DES, there are many wiring operation, such like PC1, PC2, Expand and etc. The most

operation wiring of DES is in this unit.

-35-

Computation Unit (CU) :

The Computation Unit performs arithmetic or logic operators of three cryptographic
algorithms. It is composed by processing elements (PE) and some additional circuits for
MON. Each PE is a functional unit which has its own register file which stores immediate

data during execution. The additional circuits will introduce at section 3.4.4.

DES UNIT
This unit performs some DES operation to get better space-time product. It supports

on-the-fly key generation.

Memory Unit (MU) :

As the Montgomery Algorithm .goes, it needs‘to store large immediate data and
preload data for smooth execution. Besides the Montgomery Algorithm, DES and AES
also need to look up table. As a result, Memory-Unit is used to store immediate data and

preload buffer of MON and look-up tablefor- DES and AES

Context Memory/Decoder (CMD) :
The three cryptographic algorithms needs different context to control CU, PCU, and
MU. We use the Context Memory (CM) to store the context for each cryptographic

algorithm. Context Decoder (CD) decodes the context to control signals.

Control Unit (Ctrl) :

Ctrl is the central control unit to control the whole hardware. It consists of a finite
state machine, some flow registers, address register and address generation function. It uses
the finite state machine to control our hardware and the flow registers to control the flow of

the three cryptographic algorithms.
236 -

3.3 Permutation and Combination Unit

Permutation and Combination Unit is used to route data between CU and MU. In the
following table, it shows the permutations and combinations perform by this unit.
If we use high flexibility implementation, such as GRP [20],OMFLIP[21], CROSS [22], and
BFLY [23][24]. These will lead to high area cost. As a result, we just make our PCU to

perform the fix permutation or combination wiring. It operation is shown in the Table 3-3

Unit Type Algorithm Comment
PCU-1 Initial permutation DES Start of the flow 64 bits to 64 bits
Permutation Choice 1 DES 64 bits to 56 bits
Rotate Byte AES byte level rotate left or right
PCU-2 Inverse permutation DES End of the flow 64 bits to 64 bits

Table 3-3 Permutation and combination performed by PCU

3.4 Computation Unit

The CU performs tasks of logic operators-of-three cryptographic algorithms. The CU
is composed by processing elements (PE). Each PE has its own register file to store
immediate data. For Montgomery Algorithm consideration, CU needs additional circuits
to execute Montgomery Algorithm. First we will introduce the PE design and then

introduce these additional circuits in section 3.4.4.

3.4.1 Observation

Before design our PE, we first introduce the tasks of PE and some observations. For

full parallelism, The hardware resource needed by AES and MON is shown in Table 3-4.

AES_D (128) AES_E(128) Mon(1024)
XOR(8 bits) 9x16%10+32 9x16x5+32 >1024x128x%2
X_TIME(8 bits) 9x16%6 9x16x1 0

Table 3-4 Hardware requirements of the three cryptographic algorithms

-37 -

As the section 2.3.5 and 2.3.6 described, the data flow graph of AES which combines
the MixColumn and the AddRoundKey is shown in Fig.3-2. The AES-128 composed by 9
rounds and two additional AddRoundKey. As a result, the XOR requirements of
en/decryption are 9x16x5+32 and 9%16x10+32 and X TIME are 9x%16x6 and
O9x16x%1separately.

An addition is composed by two XOR. In Mon (1024), we know that it works like a
multiplier. The original Montgomery Algorithm needs total 1024 times of 1024-bit
addition. Now, we formalize 1024-bit addition to 128 times 8 bits addition. This is why the
Mon needs at least 1024*128*2 time 8 bits addition.

As aresult, the MON needs only Double XOR. It shows as in Fig. 3-3.

AES Decryption
@)

*XOR—»
g 'KOR__
@) —s [KOR___
Xo » XT c XOR
@) “Xo SXT—{XT| I—s’(OR
@)t X0 MXT
KOR—»{ XT |/ XT 2seli
AES Encryption
XOR __XOR OR | 8 bits
@— XOR :
®_. @ 8 bits
@—'KO " XT @ 8 bits Input

@—ﬁ

Fig. 3-2 En/Decryption data flow graph of Mixcolume and AddroundKey

@ |

o JOR
@—r

Fig. 3-3 MON data flow graph

-38 -

So the computation granularities between the three cryptographic algorithms are shown in

Fig. 3-4. AES has coarser granularity. MON have finer granularity.

T Con > ©0000
OOOOO
:
AES MON

Fig. 3-4 Granularity of the two cryptographic algorithms

3.4.2 Organization of Computation Unit

As the observation of 3.4.1 described, the MON needs only simple hardware for
execution. So, the Mon will interleave store and,addition. As a result, too much complicated
hardware will be useless. Our CU organizationis'shown.in Fig. 3-5. It is a one dimension
array of PE. The direction of data inputs stream is vertical fo the one dimension array. Each
PE has the ability to perform the“three algorithms. The more PE have, the higher

parallelism we have.

2 2 I T 2 T 2 2 A 2

P.E P.E P.E P.E P.E P.E

v v A v v v

Fig. 3-5 Organization of CU
If we want to design an organization of PE which gets better space-time product, we
must make hardware idle as less as possible. There are two kinds of design method to
analysis data flow graph of the three algorithms.
® Partition AES to fit MON.
® Put MON into AES.
In the first method, it is finding a smallest hardware which can be divided by AES

en/decryption, MON, like LCM. The second method is like to find GCD. Because the first
-39 -

method will produce smaller hardware unit, it will suit for embedded system to scale than

hardware produced by second method. As a result, we choose the first methodology.

3.4.3 Design of P.E.

We have chosen the first method to analysis in order to get small space-time product.
It seems no trivial solution. So, we have proposed a structural methodology to decide our
PE organization. The concept our methodology is that

® (Candidate Choosing : We choose some possible candidates of P.E. organization,

then design it dedicatedly

® Evaluation : Evaluate the possible candidates

Candidate Choosing
Before introducing our methodology, we must define some terms previously. The
organization of PE comes from OPSET.
Definition
® OP: Aconnected direct graph composed by XORS and/or X_TIMES
® OP_LEN : Number of nodes in critical path of OP.
® OPSET i: Aset of OPs that can consist the three data flow graph
The principle of our OPSET i finding is shown as following.
1. FirstOP
€ OP_LENisi
€ Most frequent OP and occur more than twice
2. Other OPs
€ Dependent on occurrence frequency

In the following, XT means X TIME, th four candidates of OPSETs lists as follows.

- 40 -

OPSET 1 (1)

KOR

]
AES i e
Decryption @ XT ~_WXOR
u @/.KOR KEY \
XOR XOR
@) — HxThF—ixT
ORI XT
XT Ixt— \\‘;:KOR
* XOR
@)
AES Encrytion MON
* TIXOR~—,
XOR-_| ~foR
KOR 0 Lo
/ AR~ @/.)(OE

XOR

V

| AT @(/"

Fig. 3-6 Partition AES and MON

The OP set is

Fig. 3-7 OP set for OPSET 1

KOR

XT

The P.E. organization of OPSET 1 is in Fig. 3-8.

Cin Carry_chain

SRC_B

SRC_A

xc<Z

xc<Z

T

Fig. 3-8 OPSET 1 organization

_4] -

OPSET 2 (11)

AES
Decryption

XOR

Fig. 3-9 Partition AES and MON

The OP set is

XT|—XOR KOR—KXOR

Fig. 3-10 OP set for OPSE 2

The P.E. organization of OPSET 2 is in Fig. 3-11.

SRC_C M
Carry_chain X
Cin y_chal 7
SRC_B

xc<Z

SRC_A

Fig. 3-11 OPSET 2 organization

-4 -

OPSET 3 (111)

XOR—_,

AES
Decryption 5

OR

XT

@,
@/‘

AES Encrytion MON

d

XOR
ko

a
XOR
a)-4: xTH XOR

OR

Fig. 3-12 Partition AES‘and MON

The OP set is

XKOR—] XT| XOR KOR—KOR

KOR— | XT [| XT

Fig. 3-13 OP set for OPSET 3

The P.E. organization of OPSET 3 is in Fig. 3-14.

» M

SRC_C]

. » X
Cin Carry_chain

A 4

(] (]
X X
|o |O
> lov}
[
h 4
xc=Z
h 4
xcZ

Fig. 3-14 OPSET 3 organization
43 -

OPSET 4 (IV)

AES

@)~
@/‘

AES Encrytion MON

@y

Fig. 3-15 Partition AES‘and MON

The OP set is

XOR—] XT[XOR— XOR KOR—KOR

KOR— XT [| XT

Fig. 3-16 OP set for OPSET 4

The P.E. organization of OPSET 3 is in Fig. 3-17.

> M
SRC_D > ¥
—> . . X
Cin > Carry_chain g
“— > M
U
SRC C
B » X
»
M
SRC B » U
» X
SRC_A
- T ;/T\

Fig. 3-17 OPSET 4 organization
- 44 -

Evaluation
According to previously choosing, we get the critical path and area of the four PE by

synthesis these design. These information shows in the following table.

I II 1 v
Area 1078.579 1228.222 1697.540 1910.574
Time 3.89 4.03 4.04 4.98

Table 3-5 Area and timing of the four OPSET

Use the four candidates PE to execute encryption and decryption of AES-128,
AES-192, AES-256, MON-256, MON-512, MON-1024, MON-2048, and MON-4096. The

execution cycles of these tasks are list in following table

1 2 3 4

AES_128 D 2560 1440 960 800
AES 128 E 960 480 480 320
AES_192 D 3072 1728 1152 960
AES 192 _E 1152 576 576 384
AES 256 _D 3584 2016 1344 1120
AES_256_E 1344 672 672 448

MON_256 8192 8192 8192 8192

MON_512 32768 32768 32768 32768
MON_1024 131072 131072 131072 131072
MON_2048 524288 524288 524288 524288
MON_4096 2097152 2097152 2097152 2097152

Table 3-6 Cycles needed by different specification of cryptographic algorithms
With the area, timing and execution cycles, we can get space-time product of the four
OPSET. In the following result, we don’t consider the latency for accessing external
memory.
In Fig. 3-18, it summarizes symmetric cryptographic algorithms space-time product

of the four OPSETs.

- 45 -

symmetric result

4000
3500
3000
2500
2000
1500
1000

500

O OPSET1
@ OPSET2
O OPSET3
0O OPSET4

space-time product

(=)

\%4 {\(I)‘o‘? (,)‘0 4

& & ¢

Fig. 3-18 AES space-time product of the four OPSETs

In Fig 3-19, it summarizes asymmetric cryptographic algorithms space-time product

result of the four OPSETs.

2.5E+10

2.0E+10

oI
|l
01
Oo1v

1.5E+10

1.0E+10

5.0E+09

0.0E+00

MON_256 MON_512 MON_1024 ~ MON_2048 ~ MON_4096

Fig. 3-19 MON space-time result of the four candidates
According to symmetric and asymmetric cryptographic algorithm usage in the
cryptosystems, we use the following function to evaluate result. S; means the symmetric

result. A;jmeans the asymmetric result

_46 -

VVSoxSix....Sa xYAox Arx.... Am ()

Space-time product

7.0E+07

6.0E+07 [

5.0E+07

4.0E+07

O Space-time product

3.0E+07

2.0E+07 [

1.0E+07

0.0E+00
I 1I 111 v

Fig. 3-20 Space=-time resultofthe four OPSET
As the Fig. 3-20 showing, OPSET 2 will get best Space-time product in the four
OPSET. As a result, we will choose the organization of OPSET 2 as our PE. Besides the
organization, we still need register file for PE to'store a small amount of immediate result.

OPSET 2 needs 6 registers to store. The total P.E. organization shows as following.

xcZ

Cin
SRC_C
MUX » M
» 6-1 U
> Carry_chain P X
= - MUX SRC_B
» 6-1
v
> | > » pere SRCA

Register file

Fig. 3-21 Organization of PE

_47 -

3.4.4 Additional hardware for MON

Our PE organization is designed in previous section. Our PE is able to perform AES.
But for Montgomery Algorithm, there are some additional circuit requirements.

First, we need a carry chain to chain the long addition and shift chain to perform one bit
shift during MON.

Second, we must depend on the least significant bit of result and the multiplier to
decide which operand should be selected to add with accumulation result. So, we design the
hardware, named Operand Select, to do this job.

Last but not least, overflow will occur as the MON goes,. If overflow occurs, the result
of MON will be wrong. In order to prevent the condition, we design a one bit half adder to

solve the problem. These additional circuit for, Mon is shown as Fig. 3-22.

CuU
" l l " l
MUX MUX MUX
1 Select
cul Cin l Cin Cin Cin cin
e o .4-
i Zl P.E I— P.E |—+ —:EE |—>'
Sin Sin Sin Sin
8/ 8 / 8 /
/ / /
 / v v

Fig. 3-22 Additional hardware

3.5 DES Unit

The organization of DES unit is shown as follows. It is able to perform a round of
DES in two cycles and support on-the-fly key generation. It has two inputs one for
en/decryption flow, named round i, the other key generation, named key gen. . Round i has
two XOR, two permutation, expand and permutation and eight distinct look up table. For
Key Gen., there are only two permutation, Left circuit Shift and PC2.

-48 -

Round

Round i

Fig. 3-23.0rganization-of DES:unit

3.6 Memory Unit

In the previous section, we have finished the design of PE organization. During
evaluate of the four OPSET, we don’t consider the memory access latency. In this section,
we will discuss it and design the input data buffer and analysis bandwidth requirement for

the three cryptographic algorithms.

3.6.1 Organization

In order to support different security level for MON, variable length addition is

unavoidable. To perform variable length addition, we partition addition into some fix length

- 49 -

sections and then our system performs the fix length addition. As a result, MON needs to
restore much data during execution. Besides data buffer for large storage, MON also needs
some preload buffer to hide memory access.

Besides MON, we put look-up table of AES into the MU. In AES, it needs only one

table which is 8-bit input 8-bit output table.

8 L]
Data buffer for RSA |:|.
(SRAM) D ' '
8
= Tile buffer MU PCU CU
8 L]
Data buffer for RSA |:|.
(SRAM) I:' ' '
8
Tile buffer

Fig. 3-24 Organization of MU
For table look up consideration, the organization of MU will be numbers of Tile
buffer which shows in Fig. 3-24. Each Tile buffer has preload data buffer and large storage

(SRAM).

3.6.2 Preload Buffer

The Preload Buffer is used to hide memory access in MON execution. As previous
described, we partition variable length addition in some fix length addition. During the fix
length additions switch, we need 4 byte data load and 1 byte data write back. Take the

MON(A,B,N) as an example, the 4 byte load are N,B,B+N and previous accumulated result

and the 1 byte write back is current result. If these memory accesses don’t finish in one
cycle, we will stall 5 cycles to perform these job. As a result, we design 4 byte preload data

buffer during the MON execution. The preload buffer is shown in the following Fig. 3-25

-

PCU CuU

Data buffer for RSA

(SRAM)

Data buffer for RSA

(SRAM)

Fig. 3-25 preload buffer

3.6.3 Ratio of PE and Tile Buffer

The three cryptographic algorithms need different bandwidth requirements. Suppose
that given m number of PES. The memory bandwidth requirements for full utilization of
CU and MU are shown in the Table 3-7. For AES , two memory accesses, that one is for
key scheduling and another for table look up, are needed in one round. And our PE
performs AES encryption and AES decryption in 3 cycles and 9 cycles respectively. For
MON, the less PE number has, the more partition and memory access is needed. This is the

reason why the memory bandwidth is an inverse proportion to PE number.

AES MON
Phase Encryption Decryption En/Decryption
Bandwidth(bits/cycle) mx2x8/3 mx2x8/9 7x8/m

Table 3-7 Bandwidth requirements for three cryptographic algorithms

-51-

As the table 3-7 shows, the bandwidth requirements of the three cryptographic
algorithms are not the same. In order to get the best space-time product, we compute all
space-time product in different ratio of PE number and Tile Buffer number and then we
choose the most appropriate ratio. In the following Figures, M : N means M PEs : N Tile

Buffers. And in Table 3-8 shows the area of PE, Tile Buffer.

P.E. Tile Buffer
Area 8216.208 71016.0290

Table 3-8 area of PE and Tile Buffer

AES
AES_result
1.2E+08
1.0E+08 F
8.0E+07 T
6.0E+07
40E+07
2.0E+07 F H H H
0.0E+00 D‘D‘ AL ‘D‘D‘I:l‘ ‘ ‘QD‘D‘D‘ \D\D\D\D\H\D\D\D\D\D
RO G \Ai\b NN %.\b W NS &.\b R S %\b & & \@‘ \g{o\@@

Fig. 3-26 Space-time product of different ratio in AES
The processing width of AES is 128-bit. It equals to 16 times of PE and Tile Buffer.
The all ratio of PE and Tile Buffer under AES is from 1:16 to 16:1. The Fig. 3-26 shows
space-time product of AES in all ratio. 4 PE and 1 Tile Buffer will get best result

Symmetric cryptography result

The Fig 3-27 shows that 4 PEs and 1 Tile Buffer will get best space-time product.

-52 -

Symmetric result

4.0E+07
3.5E+07
3.0E+07
2.5E+07
2.0E+07 O Symmetric result
1.5E+07
1.0E+07

5.0E+06

0.0E+00

Vo N RS

Fig. 3-27 Space-time product of different ratio in symmetric cryptography

Asymmetric cryptography result (MON)

8 Tile Buffers will get best space-time p od

Asymmetric result

1.2E+10
1.0E+10
8.0E+09
6.0E+09 O Asymmetric result

4.0E+09

2.0E+09

0.0E+00

1 12 14 1.8 221 22 24 28 41 42 44 48 81 82 84 88 1611 162 164 M8

Fig. 3-28 Space-time product of asymmetric cryptography

-53-

Finial result
We combine AES and RSA in geometric mean. The result shows as follows. The best

PE and Tile Buffer ratio is 16:8.

Total

9.0E+08
8.0E+08

7.0E+08
6.0E+08
5.0E+08

4.0E+08

3.0E+08

2.0E+08

1.0E+08 —] M
% VL ? Doolloonenllloal=D

Fig. 3-29 Space-time product of total result

The Fig.3-30 shows that our system will be consisted of 16 PEs and 8 Tile Buffers.

Context Context

Memory —> CMD
Ctrl |

e *
Tile Buffer
n t M Tile Buffer
I
PUt | s

Tile Buffer
> iIP.E

MU @ PCU-1 CU PCU-2

Fig. 3-30 System overview

-54 -

3.7 Context Memory and Context Decoder

The three main components, Permutation & Combination Unit, Computation Unit,
and Memory Unit have been designed. Their context is store in Context Memory. The
Context Memory is reloadable. We can use new context sequency to perform new task or
further cryptocraphy. Context Decoder decode context into control signal. Depending on

three cryptographic algorithms, there two decode modes must be supported.

Parallel Mode sel.
mode | |

l M
l ! et

Propagation
mode

Fig. 3-31 Organization of Context Decoder

The organization of context decoder is shown as Fig. 3-31. Context Decoder has two
modes to control CU and MU. Both of them are parallel mode and propagation mode.
Parallel mode
In this mode, all PEs, and Tile Buffers use the same control signal. This mode is for AES
and DES.

Propagation mode

Because the carry propagates from the first PE to next PE during the MON execution, the
control signal needs to reach PE and Tile Buffer in time to fit the carry propagation. In this
mode, control signals are propagated from one PE/Tile Buffer to another. Under this mode,

there are still two way for control P.E.

-55-

® Driven by context: Control signals are decode from the context. It is for usual
addition.
® Driven by immediate data.: Control signals are depending on the computation

results. This mode is only for MON.

3.8 CTRL

The CM and CD are used for control the three main part of our system. The CTRL is
used to control the CM and CM. It controls how to load context in to CM, execution flow
of context, and specify the Parallel or Propagation mode. This module is composed by the

following component.

Address Generation Unit
This unit will produce address for MU. It composed by five base registers and six address
generation function. By specify base registers~and address function, we can generate

address for MU to store and load data.

Control Flow Register
These register specify control flow of context. We support loop but not nested one. We need
specify loop iteration number, loop step, loop start address, and loop end address during

cryptographic algorithms execution.

A Finite State Machine
This finite state machine is used to control the whole hardware. The finite state machine is
as Fig.3-31. It consisted of five states

® System ldle : This means that system is idle.

- 56 -

® Flow Register Load : This state will load flow registers, and address registers.

® Context Memory Write : This state means that write context to CM.

® Execution Start : This state means that our design will start to execution task

and indicate the external controller to put plaintext for en/decryption.

® Task Execution : In this state, execute the task that is specified by context.

End Task
Task Execution

Context valid

Context invalid

Task

Execution
Flow Register

Load

Context valid

Execution

Context valid
Start

Context

Memory Write Context invalid

Fig. 3-32 Finite state machine of CTRL

-57 -

Chapter 4 Evaluation Results
In this chapter, we first show the data rate which our design sustain. Then, we
introduce ASIC designs for AES, DES and MON respectively. Thirdly, we compare the
execution time and area between our design and ASIC. Last but not least, we compare the

space-time product .Our design will get better results.

4.1 Evaluation Environment

First, we use the 0.18 g m library to synthesis our design and ASICs. And we use
AES-128 and MON 1024 as benchmarks for AES and RSA.

Second, we can take off our SRAM in MU when our design put in some embedded
system. We can use the system memory ,of embedded system. As a result, our design has
two organizations: Stand along design'and Take off SRAM design.

Last but not least, the evaluation metricsis shown as’ follows. Sy: space-time product

of DES S;: space-time product of AES Ay: space-time product of RSA. The performance

metrics isvVvVSox Si x Ao (2).

4.2 Processing Gap

The processing gap which is mentioned at section 1.1.1 is shown as follows.

Device Cellular Wireless Lan Low-end network

Throughput (Mbits/sec) 0.128~2 2~60 100

Table 4-1 Processing Gap of secured embedded system
First, we use RSA-256 for key exchanging. And then, we use AES and DES to encrypt
1 M plaintext. The throughput is shown in the Fig. 4-1. The red line means data rate
requirement of Wireless Lan and blue line for Low-end network. As the Fig.4-1 shows, our

design can fit the processing requirement of cellular, Wireless Lan and low-end network.

-58 -

Throughput

340
320 |

300 =

280 [
260

240
220

200 [
180 |

160
140

Mbits/sed’ES AESI28E AESI192E AES256E AES128D AES192D AES256D

O DES

O AES128E
O AES192E
O AES256E
8 AES128D
B AES192D
B AES256D

Fig. 4-1 Throughput of proposed design

4.3 ASIC

In this section, we introduce our ASIC design:- ‘

4.3.1 AES

KEY BUFFER

Fig. 4-2 ASIC of AES

-59 -

Organization of AES ASIC is shown in Fig. 4-2. The width of data path is 128-bit.
This ASIC have 4 components, Key Scheduling, Key Buffer, LUT&ROTATE and
MIXCOL&KEYADD. The Key scheduling is used to generate key for encryption and
decryption flow and then put it to Key Buffer. Key Buffer is a 64-bit SRAM.

LUT&ROTATE performs table look-up and bytes rotation. The Table look up is
implemented by ROM. MIXCOL&KEYADD performs MixColumn and
RoundKeyAddition. The encryption and decryption of AES in MixColumn are different.
There are two parts in MixColum, one for encryption and another for decryption. Besides
these two components, we still need one buffer for store immediate data.

One round of AES needs two cycles to execute. The area of each component is shown

in Table 4-1 respectively. The cycle time of this design is 7.82 ns

Module LUT & MIXCOL & KEY KEY MISC. TOTAL
name ROTATE KEYADD SCHE. BUFFER
Area 2x10° 7x10" 5x10* 2.1x10° 9x10° 5.5x10°
(10°mm?)
Timing(ns) 7.82

Table 4-2 Area or timing of each component in AES ASIC

4.3.2 DES

Fig. 4-3 ASIC of DES
DES ASIC design is shown in Fig 4-3. The width of data path is 64-bit. The look-up
tables of DES are implemented by ROM. In DES, there are eight distinct tables. The others

are consisted of some permutations and XOR. Table 4-2 is the detail of DES ASIC.

- 60 -

Module name LUT OTHERS BUFFER TOTAL

Area(10°mm? 9x10° 6.2x10° 1.2x10* 2.8x10"
Timing(ns) 6.98

Table 4-3 Area or timing of each component in DES ASIC

4.3.3 MON
Data Data Data
Buffer e Buffer Buffer

The ASIC of RSA is shown as follows. This ASIC is designed to perform Montgomery

Fig. 4-4 ASIC of MON

Algorithm. It is similar with our system. It is consisted of 16 8-bit adders and 8 8-bit Data
Buffer. As the analysis in section 3.5.3, this organization will get best space-time product.

Table 4-4 is the ASIC detail of MON .

Module name DATA BUFFER Others Total
Area(10°mm? 5.8x10° 1x10° 6.8x10°
Timing 5.06

Table 4-4 Area or timing of each component in RSAASIC

-61 -

4.3.4 ASIC Summery
The details of the three ASICs show as follows. Our hardware is designed to perform
two 64-bit DES. In order to be comparable, the total area of ASIC is AES+RSA+DES*2.

The cycle field in Table 4-5 means the cycle counts of 128-bit encryption or decryption for

AES, DES and 1024-bit MON.

ASIC AES E AES D DES MON Total
Area(10°mm?) 5.5x10° 2.8x10" 6.8x10° 1.29x10°
Timing(ns) 7.82 6.98 5.06
Cycles 26 26 22 8334

Table 4-5 Area timing and cycles of the three ASIC respectively

4.4 Proposed approach

In the following, it is our proposéd approach: Its detail information shows in Table 4-8.

Cycle counts shows in Table 4-9.

Tile Buffer
input
Tile Buffer
) M .

Tile Buffer

Fig. 4-5 Proposed approach

-62 -

Module name MU PCU-1&DES CU PCU-2 Total
Area 5.8x10° 9.8x10* 1.4x10° 1.8x10* 8.6x10°
Timing 5.46

Table 4-6 Area and timing of each component in modified approach

My Approach AES E AES D DES MON
Cycles 43 88 38 8334

Table 4-7 cycle counts of each cryptographic algorithm respectively

4.5 Timing and Area
Timing

Compare to ASIC design the performance loss is shows as follows. Our performance
loss is just 33.38% in DES, 13.99% in.AES encryption:and 6.52% in MON. Unfortunately,
the execution time of AES decryptionis almost 2:3 times of ASIC. Because we choose

finer-grain PE as our PE organization, the finer-grain PE will need more time than AES

ASIC.
DES AES E AES D MON
Loss 133.38% 113.99% 233.28% 106.52%
Table 4-8 Performance loss
Area

Compare our design to dedicated design in the stand alone design. Our area need

only 63.38% of ASIC area. In the Fig. 4-6, It shows the area of ASIC and our design.

-63 -

1.4E+06

1.2E+06
1.0E+06
8.0E+05 O DES
O AES
6.0E+05
ORSA

4.0E+05

2.0E+05

0.0E+00

ASIC My design

Fig. 4-6 Area result of stand along design
The comparison of Take off SRAM design is shown in Fig. 4-7. Our design need only
51.05% area of ASIC. The ASIC of MON can also replace it’s SRAM with system

memory. As a result, the MON ASIC will get less area than AES ASIC.

5.0E+05
4.5E+05
4.0E+05
3.5E+05
3.0E+05
2.5E+05
2.0E+05
1.5E+05
1.0E+05
5.0E+04
0.0E+00

O DES
B AES
O RSA

NN

ASIC My Design

Fig. 4-7 Area result of stand along design

4.6 Space-time product

As previous described, our design can replace SRAM with system memory if we
integrated in embedded systems. We assume that the memory bandwidth is 64-bit width. As
a result, the throughput of take-off-SRAM design is the same with original one. In the

following, we will show space-time product of this two types.

-64 -

4.6.1 Stand alone design

The space-time product of stand alone design is shown as follows. The Fig. 4-8 is the

result of symmetric cryptography. In DES, our design will get better space-time result than

ASIC. However, AES will get worse result than ASIC because the execution time of AES

decryption is 2.3 times more than ASIC. Fortunately, the result of symmetric algorithm is

still better than ASIC result.

4.5E+08
4.0E+08
3.5E+08
3.0E+08
2.5E+08
2.0E+08
1.5E+08
1.0E+08
5.0E+07

0.0E+00

0O ASIC

B My Design

AES_E

AES_D

AES

DES

Sym.

Fig. 4-8 Symmetric cryptography:result

Result of asymmetric cryptograph is shown as Flg 4-9. Our design will get better

result than ASIC. Combine the result of symmetric and asymmetric cryptography. Our

design will also get better space-time result than ASIC.

Asym.

6.0E+10

S.0E+10 f

4.0E+10

3.0E+10 f

O ASIC
B My Design

2.0E+10

1.OE+10

0.0E+00

ASIC

My Design

4.0E+09

3.5E+09

3.0E+09 |

2.5E+09

2.0E+09

1.5E+09

1.0E+09

5.0E+08

0.0E+00

Total result

O ASIC

@ My Design

ASIC

My Design

Fig. 4-9 Asymmetric cryptography result

Fig. 4-10 Result of sym. and asym. cryptography

- 65 -

4.6.2 Take off SRAM

The result of symmetric cryptography is shown as follows.

1.6E+08

1.4E+08

1.2E+08

1.0E+08

0O ASIC
B My Design

8.0E+07

6.0E+07

4.0E+07

2.0E+07

0.0E+00
AES_E AES_D AES DES Sym.

Fig. 4-11 Symmetric cryptography result

When we take off SRAM from our MU periority of our design will be more

obviously. The SRAM will need large art But we can’t optimize its area in
cell base design.

The result of asymmetric cryptograj ollows. Our design will get better
result than ASIC. Finally, combine the resu syt ‘ etric and asymmetric cryptograph.

Our design will get better result than ASIC.

Asym, Total result
1.6E+09
14E+09
1.2E+09
. 1.0E+09
u]
: 8.0E+08 - .

W)y Design @ My Design
6.0E+08
4,0E+08
2.0E+08
. 0.0E+00

ASIC My Design ASIC My Design

Fig. 4-12 Asymmetric cryptography result Fig. 4-13 Result of sym. and asym. cryptography

- 66 -

4.7 Summary

For stand alone system, our design needs 63.38% area of ASIC. For integration with
embedded system, our design needs 51.05% of ASIC.

In performance, our system results just 6.52% performance loss of MON, 33.38% of
DES, and 13.99% of AES Encryption. Only for AES decryption, our system may have less
efficiency. It almost need 2.5 times of ASIC execution time.

Finally, the space & time product of our system will get better than ASIC design of

these three.

-67 -

Chapter 5 Conclusion and Future work

5.1 Conclusion

In this thesis, we have proposed a hardware which can switch flexibly between DES,
AES, and RSA. And our design has significant area saving, but less performance loss. And
the result of space-time product is also better than ASIC design.

Besides to space-time product, our system is a programmable engine with the most
common operator, XOR and addition. Using different context sequence, we can perform
new task composed by addition and XOR. For further cryptographic algorithms, we can
apply them easily to our hardware.

In our design, the memory unit and computation unit both have high parallelism. The
memory unit can perform 8 parallel table dook up operation in one cycle and the
computation unit can perform 16 parallel 8-bit additions; Our design will suit for some
applications which need high parallélism. Take MPEG4 as an example. The motion
estimation needs much high parallelism computation for pixels. In the quantification and
inverse quantification, it also needs some parallel table look up.

Besides the high parallelism, our computation unit can perform very long addition in
effective way. Some scientific application can also make use of the benefit to speed up

computation.

- 68 -

5.2 Future Work

There are still some researches could be further studied. First, the PCU-1, and PCU-2
was dedicated for three cryptographic algorithms but its area is still up to 44% in total area
in integrated vision. As a result, design a permutation unit with high efficiency and flexible
is an important issue.

Second, we have proposed a methodology to decide what organization of PE. In order
to avoid local optimal, this methodology choose several possible candidates and then make
them into more detail evaluation. This flow makes us reduce problem space of finding PE
organization. But our OPSET choosing method is just a structural method but doesn’t
provide global optimal. If the data flow graphs of the application are much larger, the
method will waste lot of time and high complexity for graph computation. As a result, it
needs a new method to decide possible‘candidates of P.E:.organization with low complexity

and have the ability for finding global optimal.

- 69 -

Reference

[1] http://www.epaynews.com/statistics/mcommestats.html

[2] Srivaths Ravi and Anand Raghunathan NEC Laboratories America Paul Kocher C
ryptography Research and Sunil Hattangydy Texas Instruments Inc.. "Security in
Embedded Systems: Design Challenges" ACM Transactions on Embedded Computing
Systems, Vol. 3, No. 3, August 2004, Pages 461-491.

[3] http://java.sun.com/developer/technical Articles/Security/Crypto/

[4] XTFEHpRSS o BN ISAZ - Bl - 3RT ?ﬁ“i A2]

[5] http://big5.xinhuanet.com/gate/big5/news.xinhuanet.com/herald/2004-12/30/

content 2394376.htm

[6] http://www-106.ibm.com/developerworks/library/s-crypt02.html

[7] W. Diffic and M. Hellman, "Privacy-and Authentication: An Introduction to
Cryptography." Proceedings of IEEE; 67 (1979), pp- 397-427.

[8] SPEC of DES : Federal information processing standard publication, "DATA
ENCRYPTION STANDARD (DES)" October, 25, 1999.

[9] R. L. Rivest, A. Shamir, and L. Adleman,

“A method for obtaining digital signatures and public-key cryptosystems,”

Commun. ACM, vol. 21, no. 2, pp. 120-126, Feb. 1978.

[10] E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, J. Nechvatal, and E. Roback,

"Report on the Development of the Advanced Encryption Standard (AES)." Available at

http://csrc.nist.gov/encryption/aes/round2/r2report.pdf

[11] SPEC of AES :

Joan Daemen, Vincent Rijmen , Document Version 2

"AES Proposal: Rijndael", Mar, 9, 1999.

Federal Information Processing Standards Publication 197 "Specification for the

-70 -

ADVANCED ENCRYPTION STANDARD (AES)" November 26, 2001

[12] James F. Kurose keith W. Ross

"Computer Networking : A Top-Down ApproachFeaturing the Internet" 577~580

[13] P. L. Montgomery,

“Modular-multiplication without trial division,” Math. Comput.,

vol. 44, no. 7, pp. 519-521, 1985.

[14] Dino Oliva, Rainer Buchty, Nevin Heintze

"Embedded applications : AES and the cryptonite crypto processor”
Proceedings of the 2003 international conference on Compilers, architecture and
synthesis for embedded systems, October 2003

[15] Henry Kuo, Ingrid Verbauwhede

"Architectural Optimization for a 1.82Gbits/sec VLST' Implementation of the AES Rijndael

Algorithm"

Proceedings of the Third International Workshop-on-Cryptographic Hardware and

Embedded Systems, May 2001

[16] Akashi Satoh, Sumio Morioka, Kohji Takano, Seiji Munetoh

"A Compact Rijndael Hardware Architecture with S-Box Optimization*

Proceedings of the 7th International Conference on the Theory and Application of

Cryptology and Information Security: Advances in Cryptology December 2001

[17] Gaél Rouvroy, Francois-Xavier Standaert, Jean-Jacques Quisquater, Jean-Didier Legat

"Efficient Uses of FPGAs for Implementations of DES and Its Experimental Linear
Cryptanalysis*
IEEE Transactions on Computers, Volume 52 Issue 4 April 2003

[18] Chih-Yuang Su; Shih-Am Hwang; Po-Song Chen; Cheng-Wen Wu

"An Improved Montgomery’s Algorithm for High-Speed RSA Public-Key

Cryptosystem"
-71 -

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on

Volume 7, Issue 2, June 1999 Page(s):280 - 284

[19] Thomas Blum, Christof Paar

"High-Radix Montgomery Modular Exponentiation on Reconfigurable Hardware*
IEEE Transactions on Computers, Volume 50 Issue 7 July 2001

[20] Zhijie Shi and Ruby B. Lee,

“Bit Permutation Instructions for Accelerating Software

Cryptography”, Proceedings of the IEEE International Conference on

Application-Specific Systems, Architectures and Processors, pp. 138-148, July 2000

[21] Xiao Yang and Ruby B. Lee,

“Fast Subword Permutation Instructions Using Omega

and Flip Network Stages”, Proceedings of the International Conference on Computer

Design , pp. 15-22, September 2000

[22] Xiao Yang, Manish Vachharajani-and Ruby-B.-Lee,

“Fast Subword Permutation Instructions Based on Butterfly Networks”,

Proceedings of Media Processors 1999

IS&T/SPIE Symposium on Electric Imaging: Science and Technology, pp. 80-86,

January 2000

[23] Ruby B. Lee, Zhijie Shi and Xiao Yang,

“How a Processor can Permute n bits in O(1) cycles,”,

Proceedings of Hot Chips 14 — A symposium on High Performance Chips,

August 2002

[24] Zhijie Shi, Xiao Yang and Ruby B. Lee,

“Arbitrary Bit Permutations in One or Two Cycles”,

Proceedings of the IEEE International Conference on Application-Specific

Systems, Architectures and Processors, June 2003

-72-

Appendix

A-1 Result of Integrated DES design

In this section, we show the space-time result which integrated DES with RSA and
AES. In the Fig., A-1 is symmetric result which execute the AES encryption, AES
decryption and DES. Fig. A-2 is asymmetric result which execute the MON. Fig. A-3 is the

result which combines symmetric and asymmetric result.

5.0E+08

4.5E+08

4.0E+08
3.5E+08
3.0E+08 -

O ASIC
B My Design

2.58+08 — |

2.0E+08 -

1.5E+08 [

L.OE+08 [
5.0E+07 |

0.0E+00
AES_E AES_D AES DES Symmetric

Fig. A-1 Symmetric result

Space-time product

4.0E+08

3.5E+08

3.0E+08

2.5B+08

2.0E+08

O ASIC
B My Design

1.5E+08
1.0E+08 |

5.0E+07

0.0E+00
ASIC My Design

Fig. A-2 Asymmetric result

-73 -

Total result

1.6E+09

O ASIC
B My Design

8.0E+08

0.0E+00

ASIC My Design

Fig. A-3 Total result

A-2 Related Product

ATI91SC FAMILY: Atmel

Atmel’s AT91SC Series of 32-bi Sou e microcontrollers provide the

computing power and security levelst quired £ t the;' vorldwide demand for

1 i .. H' AdvX Crypto-Accelerator
o RNG
] DES/3DES
CRC
Timers

l/O Management [Vo1

SPI Interface — Mo&

On-Chip Security
SPA/DPA/Glitches...

Security Control

£ i Y

RST CLK VCC GND

Fig. A-4 Organization of AT91SC

~74 -

The following is its key feature and application example

Key Features

1. 32-bit RISC ARM® SecurCoreTM Up to 50 MHz Clock
2. JavaCard Hardware Accelerator

3. Advance Crypto Co-processor AdvXTM : RSA/DSA/ECC
4. Hardware DES and TDES

5. Advanced Interfaces : Two I/O Ports.

6. ISO 7816 Controller

7. SPI Interface

8. USB Full-Speed

Application Examples

1. SIM/USIM/UICC Cards

2. High Performance Smart Cards

3. Banking/IT/Pay TV, ...

4. Secure Storage

5. Software Protection, e-token

6. Secure Access Module

7. High Security Applications

-75 -

