
 i

針對安全性嵌入式系統之彈性管線化設計與實做

Design and Implementation of a Flexible Pipeline for Secure

Embedded Systems

研 究 生：陳 治 瑋 Student：Zhi-Wei Chen

指導教授：單 智 君 博士 Advisor：Dr. Jean, Jyh-Juin Shann

國 立 交 通 大 學
資 訊 工 程 學 系

碩 士 論 文

A Thesis
Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
In

Computer Science and Information Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國 九十四 年 八 月

 ii

具安全考量之嵌入式系統的彈性管線化設計與實做

學生：陳治瑋 指導教授：單智君 博士

國立交通大學資訊工程學系（研究所）碩士班

摘 要

在現今的環境中，提供加密的需求已是刻不容緩，如果在嵌入式系統中加入加密

的運算，就會遇到幾項議題，其中我們針對處理速度以及硬體彈性這兩項議題進行討

論，我們針對目前較常見的加密演算法，分別為 AES DES 和 RSA。提供一個可在

AES，DES 和 RSA 之間彈性轉換，並且可以彌補速度上不足之硬體。在考量處理速

度不足這項議題之下，我們採用速度與面積乘積為評比標準。

在本論文中，我們首先分析此三演算法之運算需求，然後針對不同類型之運算分

別設計出排列組合單元，運算單元以及記憶單元，其中排列組合單元採客制化設計，

運算單元由處理單元所組成，記憶單元則由單位緩衝區所組成，我們討論處理單元以

及單位緩衝區的設計以及考量在不同比例之運算單元以及單位緩衝區之下，造成面積

速度乘積的影響，最後所提出的設計和針對個別演算法之客制化設計做比較，比較結

果顯示我們的方法確實在面積速度乘積有較好的效果。

 iii

Design and Implementation of a Flexible Pipeline for Secure

Embedded Systems

Student：ZhiWei Chen Advisor：Dr, Jean, J.J Shann

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract
Providing security has become more and more urgent and necessary in embedded

systems. If we want to support security in our embedded systems, some issues must be

solved. We focus on processing gap and flexibility concerns. We target on the three

commonly used cryptographic algorithms, AES, DES and RSA. In our thesis, we want to

propose a hardware which solves the processing gap and switches flexibly between AES,

DES, and RSA. Under the consideration of processing gap, we use space-time product as

our performance metrics.

We first classify the operation of the three cryptographic algorithms into three classes.

Then, we design modules for different operation classes respectively. The three modules are

permutation-combination unit, computation unit and memory unit. The permutation-

combination unit is a custom design. The computation unit is consisted of processing

elements and the memory unit is consisted of tile buffers. The different ratio of processing

elements and tile buffers will lead to different results. We choose the most appropriate ratio.

Finally, our proposed method will get better result than ASIC design.

 iv

誌 謝

首先感謝我的指導老師 單智君教授，在老師的諄諄教誨、辛勤指導與勉勵下，

我得以順利完成此論文，並且順利通過畢業口試。同時感謝我的口試委員 鍾崇斌教

授以及謝萬雲教授，由於他們的指導與建議，讓這篇論文更加完整和確實。

此外，感謝實驗室的學長—蔣昆成學長和喬偉豪學長，每次都不厭其煩地跟我討

論許多問題，還帶我去吃海鮮，給予我莫大的幫助。也感謝實驗室全體學長姐、同學

以及學弟們，真的很高興可以認識你們大家。因為你們，讓我的研究生活充滿了歡樂

跟 dota。

最後感謝我的家人，謝謝你們在背後全心全意地支持我，讓我在這研究的路上走

得更順利，進而能無後顧之憂的學習，讓我追求自己的理想。

謹向所有支持我、勉勵我的師長與親友，奉上最誠摯的祝福，謝謝你們。

陳治瑋

2005. 8. 15

 v

Table of contents

中文提要 …………………………………………………………………………… ii

英文提要 …………………………………………………………………………… iii

誌謝 …………………………………………………………………………… iv

Table of contents …………………………………………………………………………… v

List of Figures …………………………………………………………………………… viii

List of Tables …………………………………………………………………………… xi

1 Introduction …………………………………………………………… 1

1.1 Design Challenges of Secure Embedded Systems …………………… 2

1.1.1 Processing Gap ………………………………………………………… 2

1.1.2 Flexibility Concerns ………………………………………………… 3

1.2 Architecture for Security Processing …………………………… 5

1.3 Motivation and Objective …………………………………………… 6

2 Background and Related Work ………………………………………… 8

2.1 Overview of Cryptography …………………………………………… 8

 2.2 Symmetric and Asymmetric Cryptosystems ………………………… 9

2.3 AES ……………………………………………………………………… 11

2.3.1 Definition ……………………………………………………………… 12

2.3.2 Key Expansion ………………………………………………………… 12

2.3.3 SubBytes ………………………………………………………………… 13

2.3.4 ShiftRows ……………………………………………………………… 14

2.3.5 MixColumn ……………………………………………………………… 15

2.3.6 Add Round Key …………………………………………………………… 17

2.4 DES ……………………………………………………………………… 17

2.4.1 Permutations …………………………………………………………… 18

2.4.2. Round …………………………………………………………………… 20

2.5 RSA ……………………………………………………………………… 21

2.5.1 RSA Components ………………………………………………………… 21

2.5.2 Complexity of RSA ……………………………………………………… 22

 vi

2.5.3 Fast Exponentiation Algorithm ……………………………………… 22

2.5.4 Montgomery Algorithm ………………………………………………… 24

 2.6 Some Hardware Implementations …………………………………… 26

 2.6.1 Integrated Design …………………………………………………… 27

 2.6.2 Dedicated Design ……………………………………………………… 29

3 Design ………………………………………………………………… 33

 3.1 Function Requirement ………………………………………………… 33

 3.2 System Overview ……………………………………………………… 35

 3.3 Permutation and Combination Unit ………………………………… 37

 3.4 Computation Unit ……………………………………………………… 37

 3.4.1 Observation …………………………………………………………… 37

 3.4.2 Organization of Computation Unit ………………………………… 39

 3.4.3 Design of P.E ………………………………………………………… 40

 3.4.4 Additional hardware for MON ……………………………………… 48

 3.5 DES Unit ………………………………………………………………… 48

 3.6 Memory Unit …………………………………………………………… 49

 3.6.1 Organization …………………………………………………………… 49

 3.6.2 Preload Buffer ………………………………………………………… 50

 3.6.3 Ratio of PE and Tile Buffer ………………………………………… 51

 3.7 Context Memory and Context Decoder ……………………………… 55

 3.8 CTRL ……………………………………………………………………… 56

4 Evaluation Results …………………………………………………… 58

 4.1 Evaluation Environment ……………………………………………… 58

 4.2 Processing Gap ………………………………………………………… 58

 4.3 ASIC ……………………………………………………………………… 59

 4.3.1 AES ……………………………………………………………………… 59

 4.3.2 DES ……………………………………………………………………… 60

 4.3.3 MON ……………………………………………………………………… 61

 4.3.4 ASIC Summery …………………………………………………………… 62

 vii

 4.4 Proposed approach …………………………………………………… 62

 4.5 Timing and Area ……………………………………………………… 63

 4.6 Space-time product …………………………………………………… 64

 4.6.1 Stand alone design …………………………………………………… 65

 4.6.2 Take off SRAM ………………………………………………………… 66

 4.7 Summary ………………………………………………………………… 67

5 Conclusion and Future work ………………………………………… 68

 5.1 Conclusion …………………………………………………………… 68

 5.2 Future Work …………………………………………………………… 69

 viii

List of Figures

Fig. 1-1 Obstacles preventing consumers from adopting Mobile Commerce …… 1

Fig. 1-2 Throughput of high and low end embedded processors ………………… 2

Fig. 1-3 Evolution of security protocols ………………………………………… 4

Fig. 1-4 Security processing architectures ……………………………………… 6

Fig. 2-1 Typical cripto algorithm block diagram ………………………………… 9

Fig. 2-2 Public Key Cryptosystem …………………………………………………… 10

Fig. 2-3 Flow of AES …………………………………………………………………… 11

Fig. 2-4 4 Key Expansion Flow ……………………………………………………… 13

Fig. 2-5 SubBytes applies Sbox to each byte of the state ……………………… 13

Fig. 2-6 SubBytes transformation ………………………………………………… 14

Fig. 2-7 shift cyclically the state ……………………………………………… 14

Fig. 2-8 Mixcolumn …………………………………………………………………… 15

Fig. 2-9 X_TIME ………………………………………………………………………… 15

Fig. 2-10 Data flow graph of encryption and decryption ………………………… 16

Fig. 2-11 Add Round Key ………………………………………………………………… 17

Fig. 2-12 Flow of DES ………………………………………………………………… 17

Fig. 2-13 Organization of Round ……………………………………………………… 20

Fig. 2-14 Flow of RSA …………………………………………………………………… 23

Fig. 2-15 Modified RSA flow …………………………………………………………… 26

Fig. 2-16 Cryptonite Architecture ………………………………………………… 27

Fig. 2-17 ALU of Cryptonite …………………………………………………………… 28

Fig. 2-18 Organization of 15] ………………………………………………………… 30

Fig. 2-19 The new DES pipeline ……………………………………………………… 31

Fig. 2-21 Organization of [19] ……………………………………………………… 32

 ix

Fig. 3-1 System overview …………………………………………………………… 35

Fig. 3-2 En/Decryption data flow graph of Mixcolume and AddroundKey ……… 38

Fig. 3-3 MON data flow graph ………………………………………………………… 38

Fig. 3-4 Granularity of the two cryptographic algorithms …………………… 39

Fig. 3-5 Organization of CU ………………………………………………………… 39

Fig. 3-6 Partition AES and MON ……………………………………………………… 41

Fig. 3-7 OP set for OPSET 1 …………………………………………………………… 41

Fig. 3-8 OPSET 1 organization ……………………………………………………… 41

Fig. 3-9 Partition AES and MON ……………………………………………………… 42

Fig. 3-10 OP set for OPSE 2 …………………………………………………………… 42

Fig. 3-11 OPSET 2 organization ……………………………………………………… 42

Fig. 3-12 Partition AES and MON ……………………………………………………… 43

Fig. 3-13 OP set for OPSET 3 …………………………………………………………… 43

Fig. 3-14 OPSET 3 organization ……………………………………………………… 43

Fig. 3-15 Partition AES and MON ……………………………………………………… 44

Fig. 3-16 OP set for OPSET 4 ………………………………………………………… 44

Fig. 3-17 OPSET 4 organization ……………………………………………………… 44

Fig. 3-18 AES space time product of the four OPSETs ……………………………… 46

Fig. 3-19 MON space time result of the four candidates ………………………… 46

Fig. 3-20 Space time result of the four OPSET ……………………………………… 47

Fig. 3-21 Organization of PE ………………………………………………………… 47

Fig. 3-22 Additional hardware ……………………………………………………… 48

Fig. 3-23 Organization of DES unit ………………………………………………… 49

Fig. 3-24 Organization of MU ………………………………………………………… 50

Fig. 3-25 Preload buffer ……………………………………………………………… 51

 x

Fig. 3-26 Space time product of different ratio in AES ………………………… 52

Fig. 3-27 Space time product of different ratio in symmetric cryptography … 53

Fig. 3-28 Space time product of asymmetric cryptography………………………… 53

Fig. 3-29 Space time product of total result……………………………………… 54

Fig. 3-30 System overview …………………………………………………………… 54

Fig. 3-31 Organization of Context Decoder ………………………………………… 55

Fig. 3-32 Finite state machine of CTRL ……………………………………………… 57

Fig. 4-1 Throughput of proposed design …………………………………………… 59

Fig. 4-2 ASIC of AES …………………………………………………………………… 59

Fig. 4-3 ASIC of DES …………………………………………………………………… 60

Fig. 4-4 ASIC of MON …………………………………………………………………… 61

Fig. 4-5 Proposed approach ………………………………………………………… 62

Fig. 4-6 Area result of stand along design ……………………………………… 64

Fig. 4-7 Area result of stand along design ……………………………………… 64

Fig. 4-8 Symmetric cryptography result…………………………………………… 65

Fig. 4-9 Asymmetric cryptography result………………………………………… 65

Fig. 4-10 Result of symmetric and asymmetric cryptography …………………… 65

Fig. 4-11 Symmetric cryptography result ………………………………………… 66

Fig. 4-12 Asymmetric cryptography result ………………………………………… 66

Fig. 4-13 Result of symmetric and asymmetric cryptography …………………… 55

Fig. A-1 Symmetric result …………………………………………………………… 73

Fig. A-2 Asymmetric result ………………………………………………………… 73

Fig. A-3 Total result ………………………………………………………………… 74

Fig. A-4 Organization of AT91SC …………………………………………………… 74

 xi

List of Tables

Table 2-1 Key Block Round Combination …………………………………………… 12

Table 2-2 Xi of Rcon[i] ……………………………………………………………… 12

Table 2-3 Shift number C1 means Column one ……………………………………… 14

Table 2-4 Left shifts number ……………………………………………………… 18

Table 2-5 Comparison of Cryptonite and proposed design ……………………… 29

Table 2-6 Comparison of AES ASIC …………………………………………………… 30

Table 2-7 Comparison of DES ASIC …………………………………………………… 31

Table 2-8 Comparison of RSA ASIC …………………………………………………… 32

Table 3-1 Function requirements …………………………………………………… 33

Table 3-2 Operation classification ……………………………………………… 34

Table 3-3 Permutation and combination performed by PCU ……………………… 37

Table 3-4 Hardware requirements of the three cryptographic algorithms … 37

Table 3-5 Area and timing of the four OPSET ……………………………………… 45

Table 3-6 Cycles needed by different specification of cryptographic

algorithms …………………………………………………………………

45

Table 3-7 Bandwidth requirements for three cryptographic algorithms ……… 51

Table 3-8 Area of PE and Tile Buffer ……………………………………………… 52

Table 4-1 Processing Gap of secured embedded system …………………………… 58

Table 4-2 Area or timing of each component in AES ASIC ………………………… 60

Table 4-3 Area or timing of each component in DES ASIC ………………………… 61

Table 4-4 Area or timing of each component in RSA ASIC ………………………… 61

Table 4-5 Area timing and cycles of the three ASIC respectively …………… 45

Table 4-6 Area and timing of each component in modified approach ………… 63

Table 4-7 Cycle counts of each cryptographic algorithm respectively ……… 63

 xii

Table 4-8 Performance loss ………………………………………………………… 63

國 立 交 通 大 學

資訊工程系

碩 士 論 文

針對安全性嵌入式系統之彈性管線化設計與實做

Design and Implementation of a Flexible Pipeline for Secure

Embedded Systems

研 究 生：陳 治 瑋

指導教授：單 智 君 博士

中 華 民 國 九 十 四 年 八 月

 - 1 -

Chapter 1 Introduction

 Curiosity about other people's business and the hiding of information are characteristic

of all human societies. In military, commerce, and diplomat, protecting some confidential

papers is more and more important. Furthermore, embed security feature in some personal

devices, such as PDA and handset, has become a considerable factor for consumers.

According to the statistic of Mobile Commerce taken by ePaynews.com, nearly 52% of cell

phone users and 47% of PDA users feel that security is the largest concern preventing the

adoption of Mobile Commerce. The statistic bar graph is shown in Fig.1-1. In the Fig. 1-1,

the second important reason is the klunky user experience. It means the habits of

experienced users. The two reasons account for 70% of the statistics. [1]
Besides the urgent necessity, the stronger computing power and the more impeccable

development of mathematical techniques have make cryptosystems extremely sophisticated.

It's able to construct ciphers that are effective and impossible to break. As a result,

embedded systems adapt some security features is necessary and possible.

0%

10%

20%

30%

40%

50%

60%

Credit card security

concerns

Fear of 'klunky' user

experience

Don't understand how it

would work

Other Never heard of it before

Phones

PDAs

Fig. 1-1 Obstacles preventing consumers from adopting Mobile Commerce [1]

 - 2 -

1.1 Design Challenges of Secure Embedded Systems
Many embedded systems are constrained by the environments they operate in, and by

the resources they possess. For secure embedded systems, there are some new design

challenges. These new design challenges are processing gap, flexibility concerns, battery

gap, tamper resistance, assurance gap and cost. The processing gap means the gap between

bandwidth of devices and environments. The flexibility concerns come from the

characteristics of cryptographic algorithms. Battery gap is the insufficiency of battery. The

tamper resistance is the countermeasure for malicious software such as viruses and Trojan

horses. The assurance gap is the gap between current systems and the reliable systems

which never crash under any kind of situation. Last but not least, the cost is the area

constrain of embedded environment. [2] Our thesis is focus on processing gap and

flexibility concerns.

1.1.1 Processing Gap

At different environments, data rates of cellular (128 kbps~2Mbps), wireless Lan

(2~60Mbps) and the lower-end of access network (~100Mbps) are supported by current

low- and high-end embedded processors. [2] Take XScale as an example, when it 100%

dedicates for record protocol of Secure Socket Layer (SSL) which is a popular security

protocol, it can only sustain data rate 3.1Mbps. Any higher rates are unattainable. If we use

this embedded process for SSL, this would lead processing gap. In Fig.1-2 shows the

throughput of low- and high-end processors. The horizontal axis is MIPS of embedded

processors. The vertical axis is data rate produced by these embedded processors. We

choose some popular processor. For low-end system, we choose the XScale, ARM9 and

SA-1110 as an example. For high-end system, we choose Xcon and PIII.

 - 3 -

Fig. 1-2 Throughput of high- and low- end embedded processors [2]

1.1.2 Flexibility Concerns

A typical security protocol standard usually allows for a wide range of cryptographic

algorithms. In general, asymmetric cryptographic algorithms are used to exchange the keys

which needed by symmetric ones. If we use ASIC to speed up the two cryptographic

algorithms individually, hardware utilization will be very low. The low utilization comes

from using symmetric and asymmetric ASIC in sequence. When we use asymmetric

cryptographic algorithms to exchange keys, the hardware used to speed up symmetric

 - 4 -

cryptographic algorithms is idle. It is the same for asymmetric ones when symmetric ones

are active.

Fig. 1-3 Evolution of security protocols [2]

Besides the requirement of supporting different cryptographic algorithms, security

protocols and cryptographic algorithms are not only diverse, but also continuously evolving

over time. As time goes by, future computation power will become stronger than current

one. The current cryptosystem will become insecurity. So, we need some new

cryptographic algorithms or some cryptographic enhancements. As the Fig.1-3 shows, these

security protocols add more and more features from 1990 to 2002. For cryptographic

algorithms itself, take DES as an example. 3DES is an enhancement algorithm with respect

to DES. It uses the same cryptographic algorithm, but need longer key to support higher

security level.

As a result, embedded systems supporting for security need some kinds of flexibility

concerns between different cryptographic algorithms and forward compatible for future

ones.

 - 5 -

1.2 Architecture for Security Processing
As the security embedded systems grow, there are two generations of security

processing architecture. The First-generation solutions perform security processing by

executing security software on the embedded processors. Because they use software to

perform cryptographic algorithms, they have high flexibility and fast turn around time.

Unfortunately, the characteristic of processor which is designed to execute any kind of

application leads doesn’t meet the case for stream data processing. The most execution time

is spent on instruction fetch and decode. Nevertheless, the applications such like

cryptographic algorithms are fixed. As a result, the First-generation solutions are not

efficient in terms of their performance and energy consumption.

The First-generation solutions have the defect of performance. Some people suggest

that design a dedicated hardware to speed up cryptographic algorithms. It is a good

approach in the view point of processing gap. So, the Second-generation solutions are

proposed. The Second-generation ones sacrifice the flexibility and turn around time. The

benefits of them are hardware efficiency and low power. These advantages are due to the

custom design. But, as the section 1.1 tells us, the cryptographic algorithms are not only

diverse, but also continuously evolving over time. As time goes by, the mainstream

cryptographic algorithms may be replaced by some new cryptographic ones. Under this

situation, the Second-generation solutions will get troubles. As a result, we need the

third-generation solutions which need to have benefits of first- and second-generation ones.

They need to have high efficiency, high flexibility and fast turn around time. Fig.1-4 shows

the pro and con of the three generations of security processing architecture.

 - 6 -

Fig. 1-4 Security processing architectures [2]

1.3 Motivation and Objective
For secure embedded systems, processing gap still needs to be solved. But new issue

for embedded systems, flexibility, should be considered. Unfortunately, the researches

about flexibility are rare. In our thesis, we propose a hardware which solves the processing

gap and switches flexibly between AES, DES, and RSA. Under consideration of processing

gap, we use space-time product as our performance metrics.

We first classify the operation of the three cryptographic algorithms into three classes.

Then, we design modules for different operation classes respectively. The three modules are

permutation-combination unit, computation unit and memory unit. The

permutation-combination unit is a custom design. The computation unit is consisted of

processing elements and the memory unit is consisted of tile buffers. The different ratio of

processing elements and tile buffers will lead to different result. We choose the most

Executing security SW on

embedded processors.

Poor Efficiency

High Flexibility

Fast turn-around time

Offload crypto functions to

crypto hardware
Good Efficiency

Poor Flexibility

High design complexity

Protocol-level Offload to

programmable engines
High Efficiency

High Flexibility

Fast turn-around time

1st generation
security solutions

2nd generation
security solutions

3rd generation
security solutions

Increasing Efficiency (Performance, Energy)

Faster design turn around tim
e

Flexibility

 - 7 -

appropriate ratio. Finally, our proposed method will get better result than dedicated design.

Organization of this thesis is that chapter 2 will introduce some cryptographic concepts, the

three algorithms, DES, AES, and RSA and some hardware implementations. Chapter 3 is

our proposed design. Chapter 4 is evaluation results. We compare our design to dedicated

design. Chpater 5 is conclusion and future work.

 - 8 -

Chapter 2 Background and Related Work
In this chapter, we will give an overview of cryptography. Then, we introduce the three

commonly used cryptographic algorithms and summarize all the used operation. Finally,

previous works related of the three cryptographic algorithms are presented.

2.1 Overview of Cryptography
The word Cryptography is composed by two ancient Greek words. “kryptŏs” and

“graphein” The “kryptŏs” means hidden and “graphein” means writing. Cryptography is

the study of information hiding, message certification and the science of encrypting and

decrypting text. [3][4]

Cryptography has existed thousands of years. The Ancient Greece, Spartan, wraps

leather at a specific ruler and then write the information on it to transmit to others; Others

which want to read the message only need the ruler with equal size. When they get the

leather like this, they wrapped the leather on the ruler and then read the original information.

In this way, even if this leather is intercepted midway. It is only some useless information

in a mess because of unknown ruler’s length. This is one of the earliest cryptography of the

mankind that records in history. Of course, such system is ludicrously weak. The modern

cryptosystems use sophisticated algorithms based on mathematical problems that are

difficult to solve.[5]

In general, a cryptosystem will have three roles during messages exchanging. They are

sender, receiver and intruder. Typical cryptosystems are shown as Fig.2-1. At the sender

side, sender encrypts plaintext M with an encryptor E and a key k1. The ciphertext is C = E

(M, k1). Then, the sender sends the ciphertext to public channel for receiver. When receiver

receives the ciphertext, he uses a decryptor D and key a k2 to decrypt ciphertext to plaintext.

M =D(C, k2)= D(E (M, k1), k2). The intruder is a malicious role. He listens to the public

 - 9 -

channel and uses any kind of methods to know the plaintext from sender or pretend

message to receiver. He can get ciphertext, but has no idea about k2.[4]

Fig. 2-1 Typical cripto-algorithm block diagram [4]

2.2 Symmetric and Asymmetric Cryptosystems
In typical cryptosystem, if secret k1 and k2 are the same, this cryptosystems are

Symmetric Key Cryptosystem, One-key Cryptosystem or Private Key Cryptosystem.

Symmetric Key cryptosystems have been used for thousands of years. They range from

simple substitution ciphers to more complex constructions. One of the simplest form is

known as the Caesar cipher used by Julius Caesar. The process of Caesar cipher is

simply shifting the alphabet [6]. This system is very easy to break. Fortunately, the growth

of computing power and some new developments in mathematics make that it is possible to

create Symmetric Key Cryptosystems that are unbreakable. Symmetric Key

Cryptosystems are generally very fast. But they have a disadvantage. Sender and receiver

need to agree on the shared key previously. However, the communicating parties may never

meet over the network. It is impossible for the two parties to encrypt data without having a

shared secret key that is known in advance. So, the Symmetric Key Cryptosystems are

vulnerable.

The secret key sharing can be a major vulnerability in Symmetric Key

Public Channel

Decryptor D

Encryptor E

ciphertext C

Intruder

Sender Receiver

k2 k1

plaintext Mplaintext M

 - 10 -

Cryptosystems. In 1976, Diffie and Hellman[7] demonstrated an algorithm which is

known as Diffie-Hellman Key Exchange. It is an elegant approach toward secure

communication that has led to the development of Public Key Cryptosystem, also named

Asymmetric Cryptosystem. The use of Public Key Cryptosystem is quite simple. As

shown in Fig.2-2., sender and receiver share a single public key, but receiver has one more

key, private key. The public key is available to everyone in the world including the intruder,

but the private key is only known by receiver. If sender wants to send message to receiver,

sender uses the public key to encrypt message and then send to receiver. When receiver

receives the ciphertext, he uses his private key to decrypt message. As a result, sender and

receiver don’t have to exchange key previously. So, the Asymmetric Cryptosystems don’t

have the vulnerability of symmetric cryptosystems.

Fig. 2-2 Public Key Cryptosystem

Symmetric cryptosystems are faster than asymmetric ones. They are the preferred

mechanism for encrypting large amount of message. A cipher such as DES[8] will be at

least 100 times faster than the asymmetric cipher RSA[9] in software and might be up to

10,000 times faster when implemented on specialist hardware.[6] Asymmetric

cryptosystems are most suitable for protecting data with high security requirement. In

practice, the most satisfactory methods are combining both symmetric and asymmetric

systems. Use asymmetric systems to exchange secret key which is used by symmetric ones.

Public Encryption Key k1

plaintext M
Encryptor E

Decryptor D

ciphertext C

Private Decryption Key k2

plaintext M

 - 11 -

After secret key exchanging, the symmetric cryptosystems can encrypt or decrypt data with

this key. DES and AES are the commonly used symmetric algorithms, and RSA is

asymmetric one. In our research, we will focus on the three cryptographic algorithms.

2.3 AES[11]
In October 2000, the NIST chose Rijndael as the new Advanced Encryption Standard

(AES). AES is intended to replace DES and Triple DES as a new secure standard [10].

AES is a symmetric block cipher. It can process block data of 128-bit. The Fig.2-3 shows

the AES encryption flow. Just like all symmetric cryptographic algorithms. The AES has a

regular computation flow. It just repeats the routine, round, some times depending on

different length of cipher key. The length of cipher key are 128-, 192- and 256-bit

respectively. The AES encryption and decryption are composed by five main components.

All of them are Key Expansion, Subbytes, ShfitRows, Mixcolumn, and AddRoundKey.

[11]

Fig. 2-3 Flow of AES

RoundKey1

RoundKeyNr

AddRoundKey

Round 0
Key Expansion

FLOW

AddRoundKey

Round 1

128

RoundKey2 128

128

128

128

128

128

128

128

128
RoundKey0

Mixcolumn

SubBytes

ShiftRows

plaintext(128 bits)

ciphertext (128 bits)

Round n

SubBytes
ShiftRows

AddRoundKey

Key (128,192 and 256 bits)

 - 12 -

2.3.1 Definition

Before introducing AES, we must define some terms previously. The length of input,

output, and state which is output of round in AES is 128 bits. This is represented by Nb = 4,

which means the number of 32-bit words. The length of the cipher key, k is 128-, 192-, or

256-bit. The length of key is represented by Nk. The 128, 192, and 256 are Nk = 4, 6, and 8

respectively. Depending on different length of cipher key, AES algorithm performs some

times of round. The round number is represented by Nr. When Nk is 4, 6, and 8, it means

10, 12 and 14 rounds in AES respectively. The combinations of Key-Block-Round are

given as follow in Table. 2-1

 Cipher Key length(Nk) Block Size(Nb) Number of Rounds(Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Table 2-1 Key-Block-Round Combination

2.3.2 Key Expansion

The Key Expansion algorithm takes cipher key to produces a key schedule for

en/decryption flow. The Key Expansion will generate total Nb(Nr + 1) words. The Key

Expansion processes shows as the following algorithm.

The SubBytes() is a function that perform four bytes table look up which will mention

in section 2.3.3. The function RotWord() take a word [A1,A2,A3,A4] to perform a cyclic

rotate, and then return the result [A2,A3,A4,A1]. And the Rcon[i] are constant in the form

[Xi,0,0,0]. Xi are list as following table 2-2.

Round i 0 1 2 3 4 5 6 7 8 9

Xi 01 02 04 08 10 20 40 80 1b 36

Table 2-2 Xi of Rcon[i]

 - 13 -

KeyExpansion(byte key[4×Nk], word w[Nb×(Nr+1)], Nk)
begin

word temp
i = 0
while (i < Nk)

w[i] = word(key[4×i], key[4×i+1], key[4×i+2], key[4×i+3])
i = i+1

end while
i = Nk
while (i < Nb × (Nr+1)]

temp = w[i-1]
if (i mod Nk = 0)

temp = SubBytes(RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)
end if
w[i] = w[i-Nk] xor temp
i = i + 1

end while
end

 Take Nk = 4 as an example, the expansion executes as following Fig. 2-4

Fig. 2-4 Key Expansion Flow

2.3.3 SubBytes

Fig. 2-5 SubBytes applies S-box to each byte of the state

S-BOX

Rotate
&Table

Rcon[0] Rcon[1]

…

⊕
⊕

⊕
⊕

Rotate
&Table

⊕
⊕

⊕ ⊕

B3,3 B3,2 B3,1 B3,0

B2,3 B2,2 B2,1 B2,0

B1,3 B1,2 B1,1 B1,0

B0,3 B0,2 B0,1 B0,0

Cipher key

B’3,2B’3,1 B’3,0 B’3,3

B’2,1B’2,0 B’2,3 B’2,2

B’1,0B’1,3 B’1,2 B’1,1

B’0,3B’0,2 B’0,1 B’0,0

 - 14 -

The SubBytes transformation performs a non-linear byte substitution that operates

independently on each byte as in Fig. 2-5. The non-linear byte substitution is constructed by

the following transformation in Fig. 2-6. This transformation is invertible.

Fig. 2-6 SubBytes transformation

2.3.4 ShiftRows

Fig. 2-7 shift cyclically the state

In the ShiftRows transformation, the last three rows of the state rotate over different

numbers of bytes like Fig.2-7. The shift numbers are listed in table 2-3.

No. of column C1 C2 C3

Left shift (Encryption) 1 2 3

Right shift (Decryption) 1 2 3

Table 2-3 Shift number C1 means Column one

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

=
b0
b1
b2
b3
b4
b5
b6
b7

+
1

1

0

0

0

1

1

0

b0’
b1’
b2’
b3’
b4’
b5’
b6’
b7’

B’3,2B’3,1 B’3,0 B’3,3

B’2,1B’2,0 B’2,3 B’2,2

B’1,0B’1,3 B’1,2 B’1,1

B’0,3B’0,2 B’0,1 B’0,0

B3,3 B3,2 B3,1 B3,0

B2,3 B2,2 B2,1 B2,0

B1,3 B1,2 B1,1 B1,0

B0,3 B0,2 B0,1 B0,0

 - 15 -

2.3.5 MixColumn

Fig. 2-8 Mixcolumn

 The MixColumn operates column by column on the state. We can view it as a special

matrix computation. It is shown as Fig.2-8. Before introducing the MixColumn, we must

define some terms.

Definition

 Bi,C is byte : Bi,C ={b7,b6, b5, b4, b3, b2, b1, b0}

 B0,C ⊕ B1,C : B0,C XOR B1, C

 01 ⊗ B0,C : {b7,b6, b5, b4, b3, b2, b1, b0}

 02 ⊗ B0,C : {b6, b5, b4, b3 ⊕ b7, b2 ⊕ b7, b1, b0 ⊕ b7, b7}

 Hardware form of “02 ⊗ B0,C“ is shown as follows It is named X_TIME

Fig. 2-9 X_TIME

Mix-Col

=

B0,c
B1,c
B2,c
B3,c

B’0,c
B’1,c
B’2,c
B’3,c

02 03 01 01
01 02 03 01
01 01 02 03
03 02 01 01

=

B0,c
B1,c
B2,c
B3,c

B’0,c

B’1,c

B’2,c

B’3,c

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

Encryption Decryption

b’7 b’6 b’5 b’4 b’3 b’2 b’1 b’0

b7 b6 b5 b4 b3 b2 b1 b0

⊕ ⊕⊕

B3,3 B3,2 B3,1 B3,0

B2,3 B2,2 B2,1 B2,0

B1,3 B1,2 B1,1 B1,0

B0,3 B0,2 B0,1 B0,0

B’3,2B’3,1 B’3,0B’3,3

B’2,1B’2,0 B’2,3B’2,2

B’1,0B’1,3 B’1,2B’1,1

B’0,3B’0,2 B’0,1B’0,0

 - 16 -

Use the previous define, the encryption matrix can be expanded as follows.

B’0,C = 02 ⊗ B0,c ⊕ 03 ⊗ B1,c ⊕ 01 ⊗ B2,c ⊕ 01 ⊗ B3,c

 = 02 ⊗ B0,c ⊕ 02 ⊗ B1,c ⊕ 01 ⊗ B1,c ⊕ 01 ⊗ B2,c ⊕ 01 ⊗ B3,c

The decryption shows as follows.

B’0,C = 0e ⊗ B0,c ⊕ 0b ⊗ B1,c ⊕ 0d ⊗ B2,c ⊕ 09 ⊗ B3,c

 = 02 ⊗ B0,c ⊕ 02 ⊗ (02 ⊗ B0,c) ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B0,c)) ⊕

01 ⊗ B1,c ⊕ 02 ⊗ B1,c ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B1,c)) ⊕

01 ⊗ B2,c ⊕ 02 ⊗ (02 ⊗ B2,c) ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B2,c)) ⊕

01 ⊗ B3,c ⊕ 02 ⊗ (02 ⊗ (02 ⊗ B3,c))

 The Data flow graph of the two functions is shown as follows.

Fig. 2-10 Data flow graph of encryption and decryption

 - 17 -

2.3.6 Add Round Key

Fig. 2-11 Add Round Key

In this transformation, it adds state and key scheduling like Fig.2-11

2.4 DES[8]
Data Encryption Standard (DES) derives from work done by IBM. It became effective

in July 1977 and reaffirmed in 1983, 1988 and 1999. It is probably the most widely used

secret key cryptosystem, particularly in securing financial data, such as Automated Teller

Machines (ATMs).

Fig. 2-12 Flow of DES

64-bit plaintext

Initial permutation

Round 0

Round 15

Round 1

Inverse permutation

64-bit ciphertext

KEY CHEDULING
FLOW

Permuted choice2
48

Permuted choice2
48

Permuted choice2

48

Permuted choice1

56-bit key

56

56

56

Left circular shift

Left circular shift

Left circular shift

ENCRYPTION
FLOW

B3,3 B3,2 B3,1 B3,0

B2,3 B2,2 B2,1 B2,0

B1,3 B1,2 B1,1 B1,0

B0,3 B0,2 B0,1 B0,0

B’3,2B’3,1 B’3,0 B’3,3

B’2,1B’2,0 B’2,3 B’2,2

B’1,0B’1,3 B’1,2 B’1,1

B’0,3B’0,2 B’0,1 B’0,0

XOR

key

 - 18 -

The DES flow is in Fig.2-12. It is composed by sixteen rounds and two permutations.

The two permutations are place at beginning and end of DES round. In the key scheduling,

DES needs only three kinds of permutations. As a result, we will divide DES in to two

categories, Permutations and Round.

2.4.1 Permutations

In the Shift Left transformation, it treats input as two 28-bit blocks. Let’s note the 2

28-bit as C and D. The left rotating one bit means a rotation of the bits one place to the left.

So after rotating one bit C and D become {C[0],C[28]…..C[1]}, {D[0],D[28]…..D[1]}

separately. The rotate number depends on round iteration number. It shows as the following

table.

Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rotate bits 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 2-4 Left shifts number

The Initial permutation, IP encipher the input block to the following permutation

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

That is the permuted input has bit 58 of the input as its first bit, bit 50 as its second bit,

and so on with bit 7 as its last bit. The inverse permutation, IP-1, is list as following by the

same notation as IP:

 - 19 -

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

 Key scheduling is performed by three permutations Permutation choice 1 (PC1),

Permutation choice 2 (PC2) and some left circular shift. PC1 is determined as follows.

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

PC2 is determined as follows.

14 17 11 24 1 5
3 　 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

After Cipher Key performs permutation choice 2, it becomes 64 bits to 56 bits.

 - 20 -

2.4.2 Round

DES is composed by sixteen rounds. The Round organization is shown as follows in

Fig.2-13. We first divide the input 64-bit into Right part and Left part. The R part is the f

input. We XOR the result of f with L part to be R part of the next round. And the current R

part will be the L part of the next round.

The function f performs the following operation. First, f expands input from 32-bit to

48-bit, and then XOR with Key scheduling. Second, separate the 48-bit into eight 6-bit data

and then the eight 6-bit will look up 8 different tables individually. Each table will output

4-bit data. Finally, the eight 4-bit data will perform the finial permutation. The f finishes.

Fig. 2-13 Organization of Round

The function of E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

32

…..
f Expand

Permutation

Look-Up Table

32

32

48 48

32 32

64-bit

64-bit

32 32
E

XOR

6 6

S1

4 4

P

⊕⊕
 S8

 - 21 -

The function of P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

2.5 RSA[9]
In 1976, Diffie and Hellman propose an algorithm which leads to development of

today’s Public Key Cryptosystems. After one year, three researchers at MIT used the

suggestion of Diffie and Hellman to develop a method. The Three MIT researchers are Ron

Rivest, Adi Shamir, and Leonard Adleman. The method is named after its founders, RSA.

The RSA algorithm has become almost synonymous with Public Key Cryptosystems.

2.5.1 RSA Components[12]

For RSA, there are two components of RSA.

 Choice of public key and private key

 The encryption and decryption algorithm

RSA has two keys, public key for encryption, and private key for decryption. In order

to choose public key and private key, doing the following flow is necessary.

 Choose two large prime numbers, p and q

 Compute n = pq and z = (p-1)(q-1)

 Choose a number, e, less than n, and e and z with no comMon factor

 Find a number, d, such that ed – 1 is exactly divisible by z

 - 22 -

 The public key of RSA is (n,e), and the private key of RSA is (n,d)

After get the keys the RSA flow shows as following.

 Ciphertext = C, and Plaintext = P.

 Public key is (n,e) and Private key is (n,d).

 Encryption : C = Pe mod n.

 Decryption :P = Cd mod n.

2.5.2 Complexity of RSA

Before explain the complexity of RSA, we define one term as a basic unit to estimate

result.

 Define :

1-bit addition or subtraction as a unit computation

 In RSA, n times of modular-multiplications are required. Suppose (n,e) both are n

bits, the RSA compute at least n times modular-multiplication. And each

modular-multiplication needs total n2 times unit computation because one multiplication

and one division are required. As a result, RSA needs O(n3) of computation.

There are two ways to speed up the RSA. The two algorithms are not conflict with each

other. They can cooperate to speed up the RSA. They are Fast Exponentiation Algorithm

and Montgomery Algorithm.

2.5.3 Fast Exponentiation Algorithm

Fast Exponentiation Algorithm is a trick to reduce the number of

modular-multiplication from e times to log e. As previously described, we need at least n

times modular-multiplication. However, it is not necessary to compute at least n times

 - 23 -

modular-multiplication. For example, if we want to compute 816 mod 13. We can first

compute 82 mod 13 with one modular-multiplication. Then, 84mod 13 come from by one

modular-multiplication of 82 mod 13 and so on. As a result, 816mod 13 needs only four

times of modular-multiplication. We reduce the number of modular-multiplication form

e to log e. This is the concept of Fast Exponentiation Algorithm. A real case lists as

follows.

1113 mod 53

 11 mod 53 = 11

 112 = 121, 112 mod 53 = 121 – 2×53 = 15

 114 = (112)2 , 114 mod 53 = 152 mod 53 = 225 mod 53 = 225 – 4×53 = 13

 118 = (114)2 , 114 mod 53 = 132 mod 53 = 169 mod 53 = 169 – 3×53 = 10

Therefore 1113 mod 53 = 11 × 13 × 10 = 1430 mod 53 =

1430 – 26×53 = 52

The Fast Exponentiation Algorithm applied to RSA is shown in Fig.2-14. The gray

box is a modular-multiplication. P is plaintext. The bit notation of e in public key (n,e) is

{ek ,…., e2,e1,e0}.

Fig. 2-14 Flow of RSA

The Fast Exponentiation Algorithm shows as follows.

Fast-Ex (P,E,N)
 E, N < 2r.
 E = {e0, e1, e2, e3, e4, ….. en}, ei belong {1,0}.
 {
 var t0 = 1;

1

1

P
(＊)

e0 e1

(＊)

P2modn P4modn

e2

(＊)

…

ei

(＊) (＊)

(＊)

(＊)

(＊)

en …

…

(＊)

P2^n-2modn

 - 24 -

var t1 = P;
for i=0 to n-1
begin

 if(ei = 1) then
t0 = t0 × t1 mod N

end if
t1 = t1 × t1 mod N

end for
return t0;

 }

2.5.4 Montgomery Algorithm[13]

Fast Exponentiation Algorithm can reduce the modular-multiplication times in

RSA. But computing a modular-multiplication still needs a lot of computation. In 1983,

L.P. Montgomery proposed an algorithm that can speed up modular-multiplication.

 For Fix N > 1, select a radix R coprime to N and the computation of modulo R are

inexpensive to process. Let R-1 and N’ be integers satisfying 0< R-1 < N, 0 < N’ < R and R

R-1 -NN’ = 1. For the given number, we can quickly compute the T R-1 mod N from T if

0< T < RN by the following algorithm REDC.

REDC(T)

m = (T mod R) N’ mod R

t = (T + mN)/R

if(t > N)then return t-N else return t

The result of REDC(T) will have the following characteristic. First, mN ≡ TNN’ ≡ -T

mod R, so t is an integer. Second, tR ≡ T mod N so t ≡ T R-1 mod N. Third, 0< T+ mN <

RN+RN, so 0 < t < 2N If we choose R = 2, the REDC will modify as follows.

REDC(T) (Radix 2)

T = Tn……T2T1T0 Ti∈{1,0}

 - 25 -

N’ = N’n……N’2N’1N’0 N’i∈{1,0}

m =T0×N’0 mod 2

t = (T + mN) /R

if(t > N)then return t-N else return t

The -N’N mod 2 is equal to 1 and N0 is equal to 1 because N is the product of two

large primes. As a result, N’ mod 2 is equal to 1. This will lead m equal to T0. We combine

the multiplication and REDC(T) will get the Montgomery Algorithm shows as follow.

Mon (A, B, N) (radix 2)
A , B , N < 2r .
A = { Ar,… A2 , A1,A0} Ai ∋ {1,0}
B = {Br ,… B2 ,B1 B0} Bi ∋ {1,0}
{

var ACC = 0;
 for i=0 to r do

ACC = Ai×B+(AiB0^ACC0)×N >>1
 end for
 return ACC;

}

The result of Montgomery Algorithm is A×B×(2n)-1mod N. And the Montgomery

Algorithm needs only n2 times of unit computation.

How does the Montgomery Algorithm reduce the computation? The Mon function

has is a characteristic. If we process A to A×2n as A by doing Mon(A, 2nmodN, N), the

result of Mon(A,A,N) will be A2×2n mod N, as A2. The preprocess can be done by

Mon(A,22r,N). With the same way, we can get A4, A8 …A 2^i, … A2^n which needs only one

Mon. (A2^i is A 2^i×2n mod N) To get the A2^imod N we need the post processing,

Mon(A2^i,1, N). We call the preprocessing as mapping, and the post processing as

remapping. This characteristic makes the number unit computations in

 - 26 -

modular-multiplication from 2n2 to n2.

Fig. 2-15 Modified RSA flow

The flow applies Fast Exponentiation Algorithm and Montgomery Algorithm

shows as Fig.2-15. The green box is a Montgomery Algorithm. The green box in circle in

the left side is mapping. The right side is remapping. The algorithm of new RSA flow is

following.

RSA(M, E, N)

 E = { er, … e3, e4, e2 , e1, e0}, ei ∋ {1,0}.
{

 t=22r mod N;
 P = Mon(t, M, N); (Mapping)
 R = Mon(t ,1, N); (Mapping)
 for i=0 to r-1 do

 if(ei = 1) then
 R = Mon(R, P, N);

 end if
P = Mon(P, P, N);

end for
R = Mon(1, R, N); (Re-mapping)
return R;

 }

2.6 Some Hardware Implementations
There are many researches about cryptographic hardware design. We classify them

e0

P2×2nmodN

P 2n 1

1

…
…

1

result

(＊) (＊) (＊)

(＊)(＊)

1 1e1 e2

…

(＊)

(＊)

(＊)(＊) (＊)

2n

1 en-1

P4×2nmodN P2^n-1×2nmodN

 - 27 -

into two categories, Integrated Design and Dedicated Design. The Integrated design is able

to perform more than two cryptographic algorithms. The dedicated design is dedicated to

only one cryptographic algorithm.

2.6.1 Integrated Design

The Cryptonite processor is designed to provide a better tradeoff between flexibility

and performance/area/power in the embedded systems, especially networking systems. It is

a programmable architecture dedicated to cryptographic applications namely DES/3DES,

AES, RC6, IDEA, MD4, MD5, SHA-1.

Fig. 2-16 Cryptonite Architecture

Architecture of Cryptonite shows as Fig. 2-16. It is two independent computing

clusters, one for encryption and another for on-the-fly key generation. In general, key

generation is independent to en/decryption flows. Coarse-grain parallelism can be exploited.

On-the-fly key generation is vital for embedded systems solutions because

storing/retrieving the round key needs for hundreds or thousands of cycle is not feasible. As

 - 28 -

a result, Cryptonite provides two independent computing clusters. There are four

components, Control Unit, ALU, Address Generation Unit and Data I/O Unit in one

computing cluster.

The Control Unit puts all other units on hold and grants the External Access Unit

access to the internal data paths. Besides control other unit, Control Unit also provides 16

register for loop and control branch.

Fig. 2-17 ALU of Cryptonite

The ALU of Cryptonite shows as Fig. 2-17. There three main part of Cryptonite,

register file, Arithmetic Unit and XOR unit. The register file is consisted of four 64-bit

register. In order to compensate for the low register count, each register can be either used

as one 64-bit or 2 32-bit registers. The AU supports conventional arithmetic operations,

boolean operations and specialized functions supporting certain algorithms. The XU can

provide six operand XOR.

The Address Generation Unit and Data I/O Unit are used to access local memory. The

 - 29 -

Address Generation Unit contains small add/sub/and ALU for address generation. It

supports eight addressing modes. The Data I/O Unit contains two data buffer for

input/output. Data I/O Unit also contains a specialized DES unit. Fast DES execution not

only needs highly specialized operations but also S-Box access to memory. Hence the DES

is dedicated in the Data I/O Unit rather than ALU.

We compare our proposed design with Cryptonite in the following table.

 Cryptonite Proposed design

Hardware organization ASIP Reconfigure Hardware

Parallelism Coarse grain Fine grain

Key gen. On the fly Generate previously AES

Implementation Integrate to other algorithm Integrate to other algorithm

Key gen On the fly On the fly DES

Implementation Dedicated module Dedicated module

Support DES/3DES, AES, RC6, IDEA,

MD4, MD5, SHA-1

DES/3DES, AES,RSA

Environments High-end system Low-end system

Flexibility Cryptonite > Proposed design

Area Cryptonite > Proposed design

Speed Cryptonite < Proposed design

Table 2-5 Comparison of Cryptonite and proposed design

Besides the cryptonite other industrial implementation will list in Appendix A-2

2.6.2 Dedicated Design

AES

[15] proposed a special purpose ASIC processor that implements the AES. In its

implementation, there is only one hardware for en/decryption round and re-use the same

piece to complete the whole en/decryption. Besides hardware reusing, the processor is also

designed to complete one encryption round in one clock cycle. Furthermore, it uses

on-the-fly key generation for encryption and generating the all key beforehand for

 - 30 -

decryption. For SubBytes, it uses ROM to implement the SubBytes.

Its architecture is shown as Fig. 2-18. There are two main modules for AES. One for

encrypt another for Key Expansion. Besides the two processing components, there are three

interfaces. The Processor FSM is top-level controller interfacing with the user module. The

input and output FSM is used to control input and output channel.

Fig. 2-18 Organization of [15]

Besides the research about the architecture of AES, there are some researches which

focu on SubBytes. In [16], they propose a compact S-Box based on composite field. Using

the composition field ,we can get smaller area of S-box.

 H.Kuo A. Satoh

Unroll loop No No

SubByte ROM Dedicated Design

Area H.Kuo > A. Satoh

Speed H.Kuo < A. Satoh

Table 2-6 Comparison of AES ASIC

 - 31 -

DES

In [17], this paper presents two FPGA implementations of DES. Both permit different

pipeline levels with 21 and 37 cycles. As the section 2.4 shows, DES has some

combinations and permutations operation. They are IP, IIP, E, and P in the Fig. 2-18. The S

means S-box. The ⊕ means XOR. R means E-1 which is an inverse operation of E. The

two new pipeline of DES are shows as follows. In the Fig 2-18, the left side is DES core

one with 21 pipe stages, another is core two with 37 pipe stages. [17] wants to reduce the

critical path and provide higher throughput by reorder the E in the DES flow.

Fig. 2-19 The new DES pipeline

 Rouvroy -1 Rouvroy -2

Unroll loop Yes Yes

Pipe stages 37 21

Area Rouvroy -1 > Rouvroy -2

Speed Rouvroy -1 > Rouvroy -2

Table 2-7 Comparison of DES ASIC

 - 32 -

RSA

The Montgomery Algorithm has a modified version. Unlike the original one,

Mon(A,B,N) A,B,N < 2n, which adds N along with partial product of A×B, the modified

one adds N after finishing A×B. In Modified Montgomery algorithm, it splits

modular-multiplication operation into multiplication procedure and Montgomery modular

reduction procedure. Modular reduction procedure adds N 2n times to the accumulated

result which is produced from the multiplication procedure.

 In [18], they also based on the enhanced Modified-Montgomery Algorithm. Unlike

previous implementation, they use one linear Bit-level Cellular-Array Design to perform

the two procedures. The linear Bit-level Cellular-Array is Baugh-Wooley 2’s complement

array multiplier.

 In [19], it based on original Montgomery Algorithm. Its architecture shows as

follows. It is consisted of a linear Processing element (PE). Each PE performs fix length

addition. Use these PEs to perform the all addition of RSA. The all architecture is like

serial parallel multiplier.

Fig. 2-20 Organization of [19]

 Blum & Paar Su & Hwang

Mon Original Modified

Organization Serial-parallel multiplier Baugh-Wooley multiplier

Area Medium Large

Speed Medium High

Table 2-8 Comparison of RSA ASIC

 - 33 -

Chapter 3 Design
In this chapter, we first summarize the all operation of the three cryptographic

algorithms by its characteristic and classify them into three categories. Then design the

components for the categories respectively.

3.1 Function Requirement
Cipher Function Comment

XOR 8 bits xor

Table look up 8 bits in/8 bits output.

Key

expansion

Rotate Byte Rotate left 1 bytes

X_TIME Special operation for Galois field

XOR 8 bits xor

Table look up 8 bits in/8 bits output.

AES

Round

Rotate Byte Rotate right or left 1, 2, and 3 bytes

PC-1 Permutation bits from 64 bits to 56 bits

PC-2 Permutation bits from 56 bits to 48 bits

Key

scheduling

Shift 1 or 2 Shift left and right 28 bits one or two bits individually

Expand E Expand input form 32 bits to 48 bits

Permutation P Permutation 32 bits

XOR 48 and 32 bits XOR

DES

Round

Table look up 6 bits in 4 bits out

Addition RSA MON

Shift Shift right one bits

Table 3-1 Function requirements

 At Chapter 2, we introduce for the three cryptographic algorithms. At this Chapter we

first summarize the function requirement of the three algorithms in Table 3-1. In table 3-1,

the function requirements for the three cryptographic algorithms are listed. These function

requirements can be classified into three kinds depending on their characteristic. In Table

3-2, shows the three categories.

 - 34 -

Class Type Algorithm Comment

Expand DES 32 bits to 48 bits

Permutation function DES 32 bits permutation

Initial permutation DES Start of the flow 64 bits to 64 bits

Inverse permutation DES End of the flow 64 bits to 64 bits

Rotate Bit DES Rotate left one or two bits

Permutation Choice 1 DES 64 bits to 56 bits

Permutation Choice 2 DES 56 bits to 48 bits

Rotate Byte AES byte level rotate left or right

Permutation

&

Combination

Shift MON Shift one bit

XOR DES,AES 8 or 32 bits xor

Xtime AES special operation for Galois field

Computation

Addition MON

Buffer DES,AES,MON Memory output buffer Memory

Look-up table DES,AES Table look up

Table 3-2 Operation classification

These three categories are Permutation & Combination, Computation and Memory.

Permutation & Combination are some fix wiring operation of the three cryptographic

algorithms. Computation is the operators which are belong to arithmetic and logic. The

three cryptographic algorithms need only Addition, XOR and X_TIME. The finial class is

Memory which is table look up and data buffer in the three cryptographic algorithms.

Because of the three classes, our system will have the three components to perform the

three kinds of operation respectively.

Before design module for the three class operation, we notice that DES has some

characteristics. First, DES is suit for on-the-fly key generation. So, the hardware cost for

 - 35 -

DES key generation is small. Second, the hardware circuit for table look up in DES is small

too. Because these two reasons, we dedicated part of DES for get better result.

3.2 System Overview
As the section 3.1 described, our system overview is shown in Fig. 3-1. We have six

components. They are Permutation & Combination Unit, Computation Unit, Memory

Unit, DES Unit, Context Memory/Decoder and Ctrl.

Fig. 3-1 System overview

Permutation & Combination Unit (PCU-1 or PCU-2) :

The Permutation & Combination Unit (PCU) executes the fix wiring tasks. As

cryptographic algorithms go, PCU routes the data to Computation Unit or Memory Unit.

In DES, there are many wiring operation, such like PC1, PC2, Expand and etc. The most

operation wiring of DES is in this unit.

P.E.

…
..

MUX

PCU-1 CU MU

Context

decoder

P.E

input buffer

Context

memory

Ctrl

CMD

128
input

Output

P.E.

P.E.

P.E.

128

DES

PCU-2

 - 36 -

Computation Unit (CU) :

The Computation Unit performs arithmetic or logic operators of three cryptographic

algorithms. It is composed by processing elements (PE) and some additional circuits for

MON. Each PE is a functional unit which has its own register file which stores immediate

data during execution. The additional circuits will introduce at section 3.4.4.

DES UNIT

This unit performs some DES operation to get better space-time product. It supports

on-the-fly key generation.

Memory Unit (MU) :

As the Montgomery Algorithm goes, it needs to store large immediate data and

preload data for smooth execution. Besides the Montgomery Algorithm, DES and AES

also need to look up table. As a result, Memory Unit is used to store immediate data and

preload buffer of MON and look-up table for DES and AES

Context Memory/Decoder (CMD) :

The three cryptographic algorithms needs different context to control CU, PCU, and

MU. We use the Context Memory (CM) to store the context for each cryptographic

algorithm. Context Decoder (CD) decodes the context to control signals.

Control Unit (Ctrl) :

Ctrl is the central control unit to control the whole hardware. It consists of a finite

state machine, some flow registers, address register and address generation function. It uses

the finite state machine to control our hardware and the flow registers to control the flow of

the three cryptographic algorithms.

 - 37 -

3.3 Permutation and Combination Unit
Permutation and Combination Unit is used to route data between CU and MU. In the

following table, it shows the permutations and combinations perform by this unit.

If we use high flexibility implementation, such as GRP [20],OMFLIP[21], CROSS [22], and

BFLY [23][24]. These will lead to high area cost. As a result, we just make our PCU to

perform the fix permutation or combination wiring. It operation is shown in the Table 3-3

Unit Type Algorithm Comment

Initial permutation DES Start of the flow 64 bits to 64 bits

Permutation Choice 1 DES 64 bits to 56 bits

PCU-1

Rotate Byte AES byte level rotate left or right

PCU-2 Inverse permutation DES End of the flow 64 bits to 64 bits

Table 3-3 Permutation and combination performed by PCU

3.4 Computation Unit
The CU performs tasks of logic operators of three cryptographic algorithms. The CU

is composed by processing elements (PE). Each PE has its own register file to store

immediate data. For Montgomery Algorithm consideration, CU needs additional circuits

to execute Montgomery Algorithm. First we will introduce the PE design and then

introduce these additional circuits in section 3.4.4.

3.4.1 Observation

Before design our PE, we first introduce the tasks of PE and some observations. For

full parallelism, The hardware resource needed by AES and MON is shown in Table 3-4.

 AES_D (128) AES_E(128) Mon(1024)

XOR(8 bits) 9×16×10+32 9×16×5+32 >1024×128×2

X_TIME(8 bits) 9×16×6 9×16×1 0

Table 3-4 Hardware requirements of the three cryptographic algorithms

 - 38 -

As the section 2.3.5 and 2.3.6 described, the data flow graph of AES which combines

the MixColumn and the AddRoundKey is shown in Fig.3-2. The AES-128 composed by 9

rounds and two additional AddRoundKey. As a result, the XOR requirements of

en/decryption are 9×16×5+32 and 9×16×10+32 and X_TIME are 9×16×6 and

9×16×1separately.

An addition is composed by two XOR. In Mon (1024), we know that it works like a

multiplier. The original Montgomery Algorithm needs total 1024 times of 1024-bit

addition. Now, we formalize 1024-bit addition to 128 times 8 bits addition. This is why the

Mon needs at least 1024*128*2 time 8 bits addition.

As a result, the MON needs only Double XOR. It shows as in Fig. 3-3.

Fig. 3-2 En/Decryption data flow graph of Mixcolume and AddroundKey

Fig. 3-3 MON data flow graph

 - 39 -

So the computation granularities between the three cryptographic algorithms are shown in

Fig. 3-4. AES has coarser granularity. MON have finer granularity.

Fig. 3-4 Granularity of the two cryptographic algorithms

3.4.2 Organization of Computation Unit

As the observation of 3.4.1 described, the MON needs only simple hardware for

execution. So, the Mon will interleave store and addition. As a result, too much complicated

hardware will be useless. Our CU organization is shown in Fig. 3-5. It is a one dimension

array of PE. The direction of data inputs stream is vertical to the one dimension array. Each

PE has the ability to perform the three algorithms. The more PE have, the higher

parallelism we have.

Fig. 3-5 Organization of CU

 If we want to design an organization of PE which gets better space-time product, we

must make hardware idle as less as possible. There are two kinds of design method to

analysis data flow graph of the three algorithms.

 Partition AES to fit MON.

 Put MON into AES.

In the first method, it is finding a smallest hardware which can be divided by AES

en/decryption, MON, like LCM. The second method is like to find GCD. Because the first

P.E P.E P.E P.E P.E P.E

AES_DE AES_EN

:

AES MON

AES_DE AES_EN

 - 40 -

method will produce smaller hardware unit, it will suit for embedded system to scale than

hardware produced by second method. As a result, we choose the first methodology.

3.4.3 Design of P.E.

We have chosen the first method to analysis in order to get small space-time product.

It seems no trivial solution. So, we have proposed a structural methodology to decide our

PE organization. The concept our methodology is that

 Candidate Choosing : We choose some possible candidates of P.E. organization,

then design it dedicatedly

 Evaluation : Evaluate the possible candidates

Candidate Choosing

Before introducing our methodology, we must define some terms previously. The

organization of PE comes from OPSET.

Definition

 OP : A connected direct graph composed by XORS and/or X_TIMEs

 OP_LEN : Number of nodes in critical path of OP.

 OPSET i : A set of OPs that can consist the three data flow graph

The principle of our OPSET i finding is shown as following.

1. First OP

 OP_LEN is i

 Most frequent OP and occur more than twice

2. Other OPs

 Dependent on occurrence frequency

In the following, XT means X_TIME, th four candidates of OPSETs lists as follows.

 - 41 -

OPSET 1 (I)

Fig. 3-6 Partition AES and MON

The OP set is

Fig. 3-7 OP set for OPSET 1

 The P.E. organization of OPSET 1 is in Fig. 3-8.

Fig. 3-8 OPSET 1 organization

M
U
X

X

T

SRC_B

SRC_A

Cin

M
U
X

X

Carry_chain

 - 42 -

OPSET 2 (II)

Fig. 3-9 Partition AES and MON

The OP set is

Fig. 3-10 OP set for OPSE 2

The P.E. organization of OPSET 2 is in Fig. 3-11.

Fig. 3-11 OPSET 2 organization

M
U
X

X T

XSRC_B

SRC_A

Cin

SRC_C M
U
xCarry_chain

 - 43 -

OPSET 3 (III)

Fig. 3-12 Partition AES and MON

The OP set is

Fig. 3-13 OP set for OPSET 3

The P.E. organization of OPSET 3 is in Fig. 3-14.

Fig. 3-14 OPSET 3 organization

SRC_B

SRC_A

Cin

M
U
x

Carry_chain

SRC_C

T

M
U
X

T

X

X

M
U
X

 - 44 -

OPSET 4 (IV)

Fig. 3-15 Partition AES and MON

The OP set is

Fig. 3-16 OP set for OPSET 4

The P.E. organization of OPSET 3 is in Fig. 3-17.

Fig. 3-17 OPSET 4 organization

SRC_C

M
U
XCarry_chain

T

M
U
X

T

X

X
SRC_A

X

SRC_D

M
U
X

Cin

SRC_B

 - 45 -

Evaluation

According to previously choosing, we get the critical path and area of the four PE by

synthesis these design. These information shows in the following table.

 I II III IV

Area 1078.579 1228.222 1697.540 1910.574

Time 3.89 4.03 4.04 4.98

Table 3-5 Area and timing of the four OPSET

Use the four candidates PE to execute encryption and decryption of AES-128,

AES-192, AES-256, MON-256, MON-512, MON-1024, MON-2048, and MON-4096. The

execution cycles of these tasks are list in following table

 1 2 3 4

AES_128_D 2560 1440 960 800

AES_128_E 960 480 480 320

AES_192_D 3072 1728 1152 960

AES_192_E 1152 576 576 384

AES_256_D 3584 2016 1344 1120

AES_256_E 1344 672 672 448

MON_256 8192 8192 8192 8192

MON_512 32768 32768 32768 32768

MON_1024 131072 131072 131072 131072

MON_2048 524288 524288 524288 524288

MON_4096 2097152 2097152 2097152 2097152

Table 3-6 Cycles needed by different specification of cryptographic algorithms

With the area, timing and execution cycles, we can get space-time product of the four

OPSET. In the following result, we don’t consider the latency for accessing external

memory.

 In Fig. 3-18, it summarizes symmetric cryptographic algorithms space-time product

of the four OPSETs.

 - 46 -

Fig. 3-18 AES space-time product of the four OPSETs

In Fig 3-19, it summarizes asymmetric cryptographic algorithms space-time product

result of the four OPSETs.

Fig. 3-19 MON space-time result of the four candidates

 According to symmetric and asymmetric cryptographic algorithm usage in the

cryptosystems, we use the following function to evaluate result. Si means the symmetric

result. Aj means the asymmetric result

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

MON_256 MON_512 MON_1024 MON_2048 MON_4096

I

II

III

IV

symmetric result

0

500

1000

1500

2000

2500

3000

3500

4000

AES_
12

8_
D

AES_
12

8_
E

AES_
19

2_
D

AES_
19

2_
E

AES_
25

6_
D

AES_
25

6_
E

sp
ac

e-
ti

m
e

pr
od

uc
t

OPSET1

OPSET2

OPSET3

OPSET4

 - 47 -

mn
m10n10AAA.SSS ×××…×× (1)

Fig. 3-20 Space-time result of the four OPSET

 As the Fig. 3-20 showing, OPSET 2 will get best space-time product in the four

OPSET. As a result, we will choose the organization of OPSET 2 as our PE. Besides the

organization, we still need register file for PE to store a small amount of immediate result.

OPSET 2 needs 6 registers to store. The total P.E. organization shows as following.

Fig. 3-21 Organization of PE

M
U
X

X T

SRC_B

SRC_A

SRC_C
M
U
x Carry_chain

X

MUX
6-1

Cin

MUX
6-1

MUX
6-1

Register file

Space-time product

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

7.0E+07

I II III IV

Space-time product

 - 48 -

3.4.4 Additional hardware for MON

Our PE organization is designed in previous section. Our PE is able to perform AES.

But for Montgomery Algorithm, there are some additional circuit requirements.

First, we need a carry chain to chain the long addition and shift chain to perform one bit

shift during MON.

Second, we must depend on the least significant bit of result and the multiplier to

decide which operand should be selected to add with accumulation result. So, we design the

hardware, named Operand Select, to do this job.

Last but not least, overflow will occur as the MON goes,. If overflow occurs, the result

of MON will be wrong. In order to prevent the condition, we design a one bit half adder to

solve the problem. These additional circuit for Mon is shown as Fig. 3-22.

Fig. 3-22 Additional hardware

3.5 DES Unit
The organization of DES unit is shown as follows. It is able to perform a round of

DES in two cycles and support on-the-fly key generation. It has two inputs one for

en/decryption flow, named round i, the other key generation, named key gen. . Round i has

two XOR, two permutation, expand and permutation and eight distinct look up table. For

Key Gen., there are only two permutation, Left circuit Shift and PC2.

P.E
Sin

CU

Full

Add

Operand

Select

P.E
Sin

P.E

Cin

Sin

8 8 8

… CinCinCin Cin

Sin

MUX MUX MUX

 - 49 -

Fig. 3-23 Organization of DES unit

3.6 Memory Unit
In the previous section, we have finished the design of PE organization. During

evaluate of the four OPSET, we don’t consider the memory access latency. In this section,

we will discuss it and design the input data buffer and analysis bandwidth requirement for

the three cryptographic algorithms.

3.6.1 Organization

In order to support different security level for MON, variable length addition is

unavoidable. To perform variable length addition, we partition addition into some fix length

64

♁

…..
P

Expand

Permutation

Look up table

32

32

32

4848 ♁

4

6

4

6

Key Schedule
56

PC2

E

S8

64

Round

32

DES

S1

Left circuit
shift

Round i Key Gen.

 - 50 -

sections and then our system performs the fix length addition. As a result, MON needs to

restore much data during execution. Besides data buffer for large storage, MON also needs

some preload buffer to hide memory access.

Besides MON, we put look-up table of AES into the MU. In AES, it needs only one

table which is 8-bit input 8-bit output table.

Fig. 3-24 Organization of MU

For table look up consideration, the organization of MU will be numbers of Tile

buffer which shows in Fig. 3-24. Each Tile buffer has preload data buffer and large storage

(SRAM).

3.6.2 Preload Buffer

The Preload Buffer is used to hide memory access in MON execution. As previous

described, we partition variable length addition in some fix length addition. During the fix

length additions switch, we need 4 byte data load and 1 byte data write back. Take the

MON(A,B,N) as an example, the 4 byte load are N,B,B+N and previous accumulated result

PCU

Data buffer for RSA

(SRAM)

8

CU

Data buffer for RSA

(SRAM)

8

:

:

:
8

8

Tile buffer MU

Tile buffer

 - 51 -

and the 1 byte write back is current result. If these memory accesses don’t finish in one

cycle, we will stall 5 cycles to perform these job. As a result, we design 4 byte preload data

buffer during the MON execution. The preload buffer is shown in the following Fig. 3-25

Fig. 3-25 preload buffer

3.6.3 Ratio of PE and Tile Buffer

The three cryptographic algorithms need different bandwidth requirements. Suppose

that given m number of PEs. The memory bandwidth requirements for full utilization of

CU and MU are shown in the Table 3-7. For AES , two memory accesses, that one is for

key scheduling and another for table look up, are needed in one round. And our PE

performs AES encryption and AES decryption in 3 cycles and 9 cycles respectively. For

MON, the less PE number has, the more partition and memory access is needed. This is the

reason why the memory bandwidth is an inverse proportion to PE number.

 AES MON

Phase Encryption Decryption En/Decryption

Bandwidth(bits/cycle) m×2×8/3 m×2×8/9 7×8/m

Table 3-7 Bandwidth requirements for three cryptographic algorithms

Data buffer for RSA

(SRAM)

8

:

Data buffer for RSA

(SRAM)

8
8

PCU

CU

 - 52 -

As the table 3-7 shows, the bandwidth requirements of the three cryptographic

algorithms are not the same. In order to get the best space-time product, we compute all

space-time product in different ratio of PE number and Tile Buffer number and then we

choose the most appropriate ratio. In the following Figures, M : N means M PEs : N Tile

Buffers. And in Table 3-8 shows the area of PE, Tile Buffer.

 P.E. Tile Buffer
Area 8216.208 71016.0290

Table 3-8 area of PE and Tile Buffer

AES

AES_result

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1:
1

1:
2

1:
4

1:
8

1:
16 2:

1
2:

2
2:

4
2:

8
2:

16 4:
1

4:
2

4:
4

4:
8

4:
16 8:

1
8:

2
8:

4
8:

8
8:

16
16

:1
16

:2
16

:4
16

:8
16

:1
6

AES_result

Fig. 3-26 Space-time product of different ratio in AES

 The processing width of AES is 128-bit. It equals to 16 times of PE and Tile Buffer.

The all ratio of PE and Tile Buffer under AES is from 1:16 to 16:1. The Fig. 3-26 shows

space-time product of AES in all ratio. 4 PE and 1 Tile Buffer will get best result

Symmetric cryptography result

 The Fig 3-27 shows that 4 PEs and 1 Tile Buffer will get best space-time product.

 - 53 -

Symmetric result

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

1:
1

1:
2

1:
4

1:
8

1:
16 2:

1
2:

2
2:

4
2:

8
2:

16 4:
1

4:
2

4:
4

4:
8

4:
16 8:

1
8:

2
8:

4
8:

8
8:

16
16

:1
16

:2
16

:4
16

:8
16

:1
6

Symmetric result

Fig. 3-27 Space-time product of different ratio in symmetric cryptography

Asymmetric cryptography result (MON)

 We support MON from 256 ~ 4096. Nevertheless, as the Table 3-7 shows, 8 Tile

Buffers are enough. More than 8 Tile Buffers will cause hardware idle. As a result, we

only consider PE from 1 to 16 and Tile Buffer from 1 to 8. In the Fig.3-28 the 16 PEs and

8 Tile Buffers will get best space-time product.

Asymmetric result

0.0E+00

2.0E+09

4.0E+09

6.0E+09

8.0E+09

1.0E+10

1.2E+10

1:1 1:2 1:4 1:8 2:1 2:2 2:4 2:8 4:1 4:2 4:4 4:8 8:1 8:2 8:4 8:8 16:1 16:2 16:4 16:8

Asymmetric result

Fig. 3-28 Space-time product of asymmetric cryptography

 - 54 -

Finial result

 We combine AES and RSA in geometric mean. The result shows as follows. The best

PE and Tile Buffer ratio is 16:8.

Total

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

9.0E+08

1:
1

1:
2

1:
4

1:
8

1:
16 2:

1
2:

2
2:

4
2:

8
2:

16 4:
1

4:
2

4:
4

4:
8

4:
16 8:

1
8:

2
8:

4
8:

8
8:

16
16

:1
16

:2
16

:4
16

:8
16

:1
6

Total

Fig. 3-29 Space-time product of total result

 The Fig.3-30 shows that our system will be consisted of 16 PEs and 8 Tile Buffers.

Fig. 3-30 System overview

Tile Buffer P.E

…
..

PCU-1 CU MU

CMD
Output

P.E

P.E

P.E

16

Context

Memory

Context

Decoder

128 128

PCU-2

Tile Buffer

Tile Buffer

: : : 8
M

U

X

input

Ctrl

 - 55 -

3.7 Context Memory and Context Decoder
The three main components, Permutation & Combination Unit, Computation Unit,

and Memory Unit have been designed. Their context is store in Context Memory. The

Context Memory is reloadable. We can use new context sequency to perform new task or

further cryptocraphy. Context Decoder decode context into control signal. Depending on

three cryptographic algorithms, there two decode modes must be supported.

Fig. 3-31 Organization of Context Decoder

 The organization of context decoder is shown as Fig. 3-31. Context Decoder has two

modes to control CU and MU. Both of them are parallel mode and propagation mode.

Parallel mode

In this mode, all PEs, and Tile Buffers use the same control signal. This mode is for AES

and DES.

Propagation mode

Because the carry propagates from the first PE to next PE during the MON execution, the

control signal needs to reach PE and Tile Buffer in time to fit the carry propagation. In this

mode, control signals are propagated from one PE/Tile Buffer to another. Under this mode,

there are still two way for control P.E.

:

:
Parallel
mode

Propagation
mode

Mode sel.

M
U
X

 - 56 -

 Driven by context: Control signals are decode from the context. It is for usual

addition.

 Driven by immediate data.: Control signals are depending on the computation

results. This mode is only for MON.

3.8 CTRL
The CM and CD are used for control the three main part of our system. The CTRL is

used to control the CM and CM. It controls how to load context in to CM, execution flow

of context, and specify the Parallel or Propagation mode. This module is composed by the

following component.

Address Generation Unit

This unit will produce address for MU. It composed by five base registers and six address

generation function. By specify base registers and address function, we can generate

address for MU to store and load data.

Control Flow Register

These register specify control flow of context. We support loop but not nested one. We need

specify loop iteration number, loop step, loop start address, and loop end address during

cryptographic algorithms execution.

A Finite State Machine

This finite state machine is used to control the whole hardware. The finite state machine is

as Fig.3-31. It consisted of five states

 System Idle : This means that system is idle.

 - 57 -

 Flow Register Load : This state will load flow registers, and address registers.

 Context Memory Write : This state means that write context to CM.

 Execution Start : This state means that our design will start to execution task

and indicate the external controller to put plaintext for en/decryption.

 Task Execution : In this state, execute the task that is specified by context.

Fig. 3-32 Finite state machine of CTRL

Context

Memory Write

Execution

Start

Context valid

Context valid

Context valid

Context invalid

End Task

Task

Execution

Task Execution

Context invalid

System Idle

Flow Register

Load

 - 58 -

Chapter 4 Evaluation Results
 In this chapter, we first show the data rate which our design sustain. Then, we

introduce ASIC designs for AES, DES and MON respectively. Thirdly, we compare the

execution time and area between our design and ASIC. Last but not least, we compare the

space-time product .Our design will get better results.

4.1 Evaluation Environment
First, we use the 0.18 μm library to synthesis our design and ASICs. And we use

AES-128 and MON 1024 as benchmarks for AES and RSA.

Second, we can take off our SRAM in MU when our design put in some embedded

system. We can use the system memory of embedded system. As a result, our design has

two organizations: Stand along design and Take off SRAM design.

Last but not least, the evaluation metrics is shown as follows. S0: space-time product

of DES S1: space-time product of AES A0: space-time product of RSA. The performance

metrics is (2).

4.2 Processing Gap
The processing gap which is mentioned at section 1.1.1 is shown as follows.

Device Cellular Wireless Lan Low-end network

Throughput (Mbits/sec) 0.128~2 2~60 100

Table 4-1 Processing Gap of secured embedded system

 First, we use RSA-256 for key exchanging. And then, we use AES and DES to encrypt

1 M plaintext. The throughput is shown in the Fig. 4-1. The red line means data rate

requirement of Wireless Lan and blue line for Low-end network. As the Fig.4-1 shows, our

design can fit the processing requirement of cellular, Wireless Lan and low-end network.

010 ASS ××

 - 59 -

Fig. 4-1 Throughput of proposed design

4.3 ASIC
In this section, we introduce our ASIC design.

4.3.1 AES

Fig. 4-2 ASIC of AES

8

KEY SCHEDULING KEY BUFFER

…

LUT &
ROTATE
(En/De)

8

MIXCOL&
KEYADD
(En/De)

8

…
88 8

LUT &

ROTATE
(En/De)

LUT &

ROTATE
(En/De)

MIXCOL&
KEYADD
(En/De)

MIXCOL&
KEYADD
(En/De)

88 8 88 8 88 8

128
128 128

MUX

Throughput

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

DES AES128E AES192E AES256E AES128D AES192D AES256D

DES

AES128E

AES192E

AES256E

AES128D

AES192D

AES256D

Mbits/sec

 - 60 -

Organization of AES ASIC is shown in Fig. 4-2. The width of data path is 128-bit.

This ASIC have 4 components, Key Scheduling, Key Buffer, LUT&ROTATE and

MIXCOL&KEYADD. The Key scheduling is used to generate key for encryption and

decryption flow and then put it to Key Buffer. Key Buffer is a 64-bit SRAM.

LUT&ROTATE performs table look-up and bytes rotation. The Table look up is

implemented by ROM. MIXCOL&KEYADD performs MixColumn and

RoundKeyAddition. The encryption and decryption of AES in MixColumn are different.

There are two parts in MixColum, one for encryption and another for decryption. Besides

these two components, we still need one buffer for store immediate data.

One round of AES needs two cycles to execute. The area of each component is shown

in Table 4-1 respectively. The cycle time of this design is 7.82 ns
Module
name

LUT &
ROTATE

MIXCOL &
KEYADD

KEY
SCHE.

KEY
BUFFER

MISC. TOTAL

Area
(10-6mm2)

2×105 7×104 5×104 2.1×105 9×103 5.5×105

Timing(ns) 7.82

Table 4-2 Area or timing of each component in AES ASIC

4.3.2 DES

Fig. 4-3 ASIC of DES

DES ASIC design is shown in Fig 4-3. The width of data path is 64-bit. The look-up

tables of DES are implemented by ROM. In DES, there are eight distinct tables. The others

are consisted of some permutations and XOR. Table 4-2 is the detail of DES ASIC.

LUT1

LUT2

LUT8

8

8

8
64 64

Others

:
Others

Others

:

 - 61 -

Module name LUT OTHERS BUFFER TOTAL

Area(10-6mm2) 9×103 6.2×103 1.2×104 2.8×104

Timing(ns) 6.98

Table 4-3 Area or timing of each component in DES ASIC

4.3.3 MON

Fig. 4-4 ASIC of MON

The ASIC of RSA is shown as follows. This ASIC is designed to perform Montgomery

Algorithm. It is similar with our system. It is consisted of 16 8-bit adders and 8 8-bit Data

Buffer. As the analysis in section 3.5.3, this organization will get best space-time product.

Table 4-4 is the ASIC detail of MON .

Module name DATA BUFFER Others Total

Area(10-6mm2) 5.8×105 1×105 6.8×105

Timing 5.06

Table 4-4 Area or timing of each component in RSA ASIC

8

128

8 88

Special

 circuit

MUX

…

MUX

+

MUX …
…

Data
Buffer

Data
Buffer

0 Cn Nn Bn 0 C1 N1 B1 0 C0 N0 B

Data
Buffer

1 bits

 half

adder

…

8

+
8

+

 - 62 -

4.3.4 ASIC Summery

The details of the three ASICs show as follows. Our hardware is designed to perform

two 64-bit DES. In order to be comparable, the total area of ASIC is AES+RSA+DES*2.

The cycle field in Table 4-5 means the cycle counts of 128-bit encryption or decryption for

AES, DES and 1024-bit MON.

ASIC AES_E AES_D DES MON Total

Area(10-6mm2) 5.5×105 2.8×104 6.8×105 1.29×106

Timing(ns) 7.82 6.98 5.06

Cycles 26 26 22 8334

Table 4-5 Area timing and cycles of the three ASIC respectively

4.4 Proposed approach
In the following, it is our proposed approach. Its detail information shows in Table 4-8.

Cycle counts shows in Table 4-9.

Fig. 4-5 Proposed approach

Tile Buffer P.E.

…
..

PCU-1
CU

P.E.

P.E.

P.E.

16
128 128

M

U

X PCU-2

Tile Buffer

Tile Buffer

: : : 8

Output

MU

DES iinput

 - 63 -

Module name MU PCU-1&DES CU PCU-2 Total

Area 5.8×105 9.8×104 1.4×105 1.8×104 8.6×105

Timing 5.46

Table 4-6 Area and timing of each component in modified approach

My Approach AES_E AES_D DES MON

Cycles 43 88 38 8334

Table 4-7 cycle counts of each cryptographic algorithm respectively

4.5 Timing and Area

Timing

 Compare to ASIC design the performance loss is shows as follows. Our performance

loss is just 33.38% in DES, 13.99% in AES encryption and 6.52% in MON. Unfortunately,

the execution time of AES decryption is almost 2.3 times of ASIC. Because we choose

finer-grain PE as our PE organization, the finer-grain PE will need more time than AES

ASIC.

 DES AES_E AES_D MON

Loss 133.38% 113.99% 233.28% 106.52%

Table 4-8 Performance loss

Area

 Compare our design to dedicated design in the stand alone design. Our area need

only 63.38% of ASIC area. In the Fig. 4-6, It shows the area of ASIC and our design.

 - 64 -

Fig. 4-6 Area result of stand along design

 The comparison of Take off SRAM design is shown in Fig. 4-7. Our design need only

51.05% area of ASIC. The ASIC of MON can also replace it’s SRAM with system

memory. As a result, the MON ASIC will get less area than AES ASIC.

Fig. 4-7 Area result of stand along design

4.6 Space-time product
As previous described, our design can replace SRAM with system memory if we

integrated in embedded systems. We assume that the memory bandwidth is 64-bit width. As

a result, the throughput of take-off-SRAM design is the same with original one. In the

following, we will show space-time product of this two types.

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

ASIC My design

DES

AES

RSA

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

5.0E+05

ASIC My Design

DES

AES

RSA

 - 65 -

4.6.1 Stand alone design

The space-time product of stand alone design is shown as follows. The Fig. 4-8 is the

result of symmetric cryptography. In DES, our design will get better space-time result than

ASIC. However, AES will get worse result than ASIC because the execution time of AES

decryption is 2.3 times more than ASIC. Fortunately, the result of symmetric algorithm is

still better than ASIC result.

Fig. 4-8 Symmetric cryptography result

Result of asymmetric cryptograph is shown as Fig. 4-9. Our design will get better

result than ASIC. Combine the result of symmetric and asymmetric cryptography. Our

design will also get better space-time result than ASIC.

Fig. 4-9 Asymmetric cryptography result Fig. 4-10 Result of sym. and asym. cryptography

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

AES_E AES_D AES DES Sym.

ASIC

My Design

Asym.

0.0E+00

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

ASIC My Design

ASIC

My Design

Total result

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

3.5E+09

4.0E+09

ASIC My Design

ASIC

My Design

 - 66 -

4.6.2 Take off SRAM

The result of symmetric cryptography is shown as follows.

Fig. 4-11 Symmetric cryptography result

When we take off SRAM from our MU, the superiority of our design will be more

obviously. The SRAM will need large area than others. But we can’t optimize its area in

cell base design.

The result of asymmetric cryptography is shown as follows. Our design will get better

result than ASIC. Finally, combine the result of symmetric and asymmetric cryptograph.

Our design will get better result than ASIC.

Fig. 4-12 Asymmetric cryptography result Fig. 4-13 Result of sym. and asym. cryptography

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

AES_E AES_D AES DES Sym.

ASIC

My Design

Asym.

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

ASIC My Design

ASIC

My Design

Total result

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

ASIC My Design

ASIC

My Design

 - 67 -

4.7 Summary
For stand alone system, our design needs 63.38% area of ASIC. For integration with

embedded system, our design needs 51.05% of ASIC.

In performance, our system results just 6.52% performance loss of MON, 33.38% of

DES, and 13.99% of AES Encryption. Only for AES decryption, our system may have less

efficiency. It almost need 2.5 times of ASIC execution time.

Finally, the space & time product of our system will get better than ASIC design of

these three.

 - 68 -

Chapter 5 Conclusion and Future work

5.1 Conclusion
In this thesis, we have proposed a hardware which can switch flexibly between DES,

AES, and RSA. And our design has significant area saving, but less performance loss. And

the result of space-time product is also better than ASIC design.

Besides to space-time product, our system is a programmable engine with the most

common operator, XOR and addition. Using different context sequence, we can perform

new task composed by addition and XOR. For further cryptographic algorithms, we can

apply them easily to our hardware.

In our design, the memory unit and computation unit both have high parallelism. The

memory unit can perform 8 parallel table look up operation in one cycle and the

computation unit can perform 16 parallel 8-bit additions. Our design will suit for some

applications which need high parallelism. Take MPEG4 as an example. The motion

estimation needs much high parallelism computation for pixels. In the quantification and

inverse quantification, it also needs some parallel table look up.

Besides the high parallelism, our computation unit can perform very long addition in

effective way. Some scientific application can also make use of the benefit to speed up

computation.

 - 69 -

5.2 Future Work

There are still some researches could be further studied. First, the PCU-1, and PCU-2

was dedicated for three cryptographic algorithms but its area is still up to 44% in total area

in integrated vision. As a result, design a permutation unit with high efficiency and flexible

is an important issue.

Second, we have proposed a methodology to decide what organization of PE. In order

to avoid local optimal, this methodology choose several possible candidates and then make

them into more detail evaluation. This flow makes us reduce problem space of finding PE

organization. But our OPSET choosing method is just a structural method but doesn’t

provide global optimal. If the data flow graphs of the application are much larger, the

method will waste lot of time and high complexity for graph computation. As a result, it

needs a new method to decide possible candidates of P.E. organization with low complexity

and have the ability for finding global optimal.

 - 70 -

Reference
[1] http://www.epaynews.com/statistics/mcommstats.html

[2] Srivaths Ravi and Anand Raghunathan NEC Laboratories America Paul Kocher C

ryptography Research and Sunil Hattangydy Texas Instruments Inc.. "Security in

Embedded Systems: Design Challenges" ACM Transactions on Embedded Computing

Systems, Vol. 3, No. 3, August 2004, Pages 461–491.

[3] http://java.sun.com/developer/technicalArticles/Security/Crypto/

[4] 近代密碼學及其應用 賴溪松，韓亮，張真誠 松岡

[5] http://big5.xinhuanet.com/gate/big5/news.xinhuanet.com/herald/2004-12/30/

content_2394376.htm

[6] http://www-106.ibm.com/developerworks/library/s-crypt02.html

[7] W. Diffic and M. Hellman, "Privacy and Authentication: An Introduction to

Cryptography." Proceedings of IEEE, 67 (1979), pp. 397-427.

[8] SPEC of DES : Federal information processing standard publication, "DATA

ENCRYPTION STANDARD (DES)" October, 25, 1999.

[9] R. L. Rivest, A. Shamir, and L. Adleman,

“A method for obtaining digital signatures and public-key cryptosystems,”

Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

[10] E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, J. Nechvatal, and E. Roback,

"Report on the Development of the Advanced Encryption Standard (AES)." Available at

http://csrc.nist.gov/encryption/aes/round2/r2report.pdf

[11] SPEC of AES :

Joan Daemen, Vincent Rijmen , Document Version 2

"AES Proposal: Rijndael", Mar, 9, 1999.

Federal Information Processing Standards Publication 197 "Specification for the

 - 71 -

ADVANCED ENCRYPTION STANDARD (AES)" November 26, 2001

[12] James F. Kurose keith W. Ross

"Computer Networking : A Top-Down ApproachFeaturing the Internet" 577~580

[13] P. L. Montgomery,

“Modular-multiplication without trial division,” Math. Comput.,

vol. 44, no. 7, pp. 519–521, 1985.

[14] Dino Oliva, Rainer Buchty, Nevin Heintze

"Embedded applications : AES and the cryptonite crypto processor"

 Proceedings of the 2003 international conference on Compilers, architecture and

synthesis for embedded systems, October 2003

 [15] Henry Kuo, Ingrid Verbauwhede

"Architectural Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael

Algorithm"

Proceedings of the Third International Workshop on Cryptographic Hardware and

Embedded Systems, May 2001

[16] Akashi Satoh, Sumio Morioka, Kohji Takano, Seiji Munetoh

"A Compact Rijndael Hardware Architecture with S-Box Optimization“

Proceedings of the 7th International Conference on the Theory and Application of

Cryptology and Information Security: Advances in Cryptology December 2001

[17] Gaël Rouvroy, Francois-Xavier Standaert, Jean-Jacques Quisquater, Jean-Didier Legat

"Efficient Uses of FPGAs for Implementations of DES and Its Experimental Linear

 Cryptanalysis“

 IEEE Transactions on Computers, Volume 52 Issue 4 April 2003

[18] Chih-Yuang Su; Shih-Am Hwang; Po-Song Chen; Cheng-Wen Wu

"An Improved Montgomery’s Algorithm for High-Speed RSA Public-Key

Cryptosystem"

 - 72 -

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on

Volume 7, Issue 2, June 1999 Page(s):280 - 284

[19] Thomas Blum, Christof Paar

"High-Radix Montgomery Modular Exponentiation on Reconfigurable Hardware“

 IEEE Transactions on Computers, Volume 50 Issue 7 July 2001

[20] Zhijie Shi and Ruby B. Lee,

“Bit Permutation Instructions for Accelerating Software

Cryptography”, Proceedings of the IEEE International Conference on

Application-Specific Systems, Architectures and Processors, pp. 138-148, July 2000

[21] Xiao Yang and Ruby B. Lee,

“Fast Subword Permutation Instructions Using Omega

and Flip Network Stages”, Proceedings of the International Conference on Computer

Design , pp. 15-22, September 2000

[22] Xiao Yang, Manish Vachharajani and Ruby B. Lee,

“Fast Subword Permutation Instructions Based on Butterfly Networks”,

Proceedings of Media Processors 1999

IS&T/SPIE Symposium on Electric Imaging: Science and Technology, pp. 80-86,

January 2000

[23] Ruby B. Lee, Zhijie Shi and Xiao Yang,

“How a Processor can Permute n bits in O(1) cycles,”,

Proceedings of Hot Chips 14 – A symposium on High Performance Chips,

August 2002

[24] Zhijie Shi, Xiao Yang and Ruby B. Lee,

“Arbitrary Bit Permutations in One or Two Cycles”,

Proceedings of the IEEE International Conference on Application-Specific

 Systems, Architectures and Processors, June 2003

 - 73 -

Appendix

A-1 Result of Integrated DES design

 In this section, we show the space-time result which integrated DES with RSA and

AES. In the Fig., A-1 is symmetric result which execute the AES encryption, AES

decryption and DES. Fig. A-2 is asymmetric result which execute the MON. Fig. A-3 is the

result which combines symmetric and asymmetric result.

Fig. A-1 Symmetric result

Fig. A-2 Asymmetric result

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

4.5E+08

5.0E+08

AES_E AES_D AES DES Symmetric

ASIC

My Design

Space-time product

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

4.0E+08

ASIC My Design

ASIC

My Design

 - 74 -

Fig. A-3 Total result

A-2 Related Product

AT91SC FAMILY: Atmel

Atmel’s AT91SC Series of 32-bit RISC based secure microcontrollers provide the

computing power and security levels required to meet the worldwide demand for

next-generation applications.

Fig. A-4 Organization of AT91SC

Total result

0.0E+00

8.0E+08

1.6E+09

ASIC My Design

ASIC

My Design

 - 75 -

The following is its key feature and application example

Key Features

1. 32-bit RISC ARM® SecurCoreTM Up to 50 MHz Clock

2. JavaCard Hardware Accelerator

3. Advance Crypto Co-processor AdvXTM : RSA/DSA/ECC

4. Hardware DES and TDES

5. Advanced Interfaces : Two I/O Ports.

6. ISO 7816 Controller

7. SPI Interface

8. USB Full-Speed

Application Examples

1. SIM/USIM/UICC Cards

2. High Performance Smart Cards

3. Banking/IT/Pay TV, …

4. Secure Storage

5. Software Protection, e-token

6. Secure Access Module

7. High Security Applications

