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摘要 
 

線性攻擊法是對於像 DES 與替換排列網路(SPN)之類的區塊加密系統最重

要的攻擊之一。在本篇論文中，我們將著重於討論針對 SPN 的線性攻擊，並且

對一個 16位元區塊長度、32位元的密鑰長度、4回合的 SPN作一個完整的攻擊，

我們將詳細的討論所使用的攻擊策略。首先我們由 Piling-up lemma定義何謂一

條路徑的偏差，然後使用有技巧的方式來搜尋可攻擊的路徑，藉此攻擊各路徑所

對應的部份密鑰。最後結合 backtracking的技術提供額外的密鑰候選，以便最後

測試發現所取得的密鑰是錯誤的時候有額外的密鑰可供選擇。最後的效能測試則

顯示了我們策略的有效性。 

 接著第二部份我們轉為研究跟 S-box有關的性質，並且發現非線性度是抵抗

線性攻擊的最重要因素。而 AES 在設計時已針對線性攻擊作了有效的預防，所

以我們將研究其設計 S-box的方法有何特殊之處，最後亦得到一些有趣的性質，

也許可供未來研究之用。 

Keywords: 線性攻擊、替換排列網路、S-box、線性逼近、Backtracking、非線性

度、多輸出布林函數 
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Abstract 
 

 Linear cryptanalysis is one of the most important attacks on block cipher 

systems such as DES and substitution-permutation networks (SPNs). In this thesis, 

we will focus on linear cryptanalysis on SPNs and give complete linear attacks on 

16-bit block and 32-bit key SPNs for 4 rounds. We will discuss in detail over our 

attack strategies. We first define the bias of a trail by using Piling-up lemma, and then 

use an intelligent method to search a candidate trail to attack. Thus the corresponding 

subkeys are derived trail by trail. If the resulting key is tested to be wrong then a 

backtracking method is used to find the next candidate key to be tested.  The 

performance shows the efficiency of these strategies.  

Moreover we will discuss about the properties of S-boxes and show that 

nonlinearity is the most important property S-boxes should have to resist linear 

attacks. Since the AES (Advanced Encryption Standard) is designed properly to resist 

linear attacks, we will study further on its construction method and discover some 

properties which may be useful for later researches. 

Keywords: Linear Cryptanalysis, Substitution-Permutation Networks, S-box, Linear 

Approximation, Backtracking, Nonlinearity, Multiple-Output Boolean Function 
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Chapter 1  Introduction 
 

Shannon [32] suggested that secure, practical ciphers should have two properties: 

confusion and diffusion. The confusion component aims at concealing any algebraic 

structure in the system and is often a nonlinear substitution on a small sub-block. The 

diffusion component aims at spreading out the influence of a minor modification of 

the input data over all outputs and is often a linear mixing of sub-block connections. 

 Feistel [5] was the first to introduce such system based on Shannon’s concepts. 

The confusion part consists of several rounds of substitution and referred to as 

S-boxes. And the diffusion part consists of permutations between rounds. This is why 

such systems are often called substitution-permutation networks (SPNs). DES [22], 

FEAL [31] and many other modern ciphers are the extended concepts of such system. 

 Differential cryptanalysis [2] and linear cryptanalysis [18] can both be applied to 

DES and many other block ciphers. In this thesis, we will emphasize on linear 

cryptanalysis and use it to break SPNs. The linear cryptanalysis requires that there 

exists a linear relationship having probability not equal to 1/2 between several 

plaintext bits and some data bits into the last round. The further the probability is 

from 1/2 the better the attack will succeed.  

The reason that linear cryptanalysis can succeed is due to the poor design of the 

S-boxes. In the past, there were many papers discussing about the properties of 

S-boxes or how to design good S-boxes [7][12][19][23][25][34]. In the first part of 

this thesis, we focus on how to attack the SPN with non-proper S-boxes. In the 

original attack, they just extract a part of the key bits using linear cryptanalysis and 

the rest of them by exhaustive key search. In this thesis, we want to use linear 

cryptanalysis recursively and each time to get a different part of the key bits. We will 
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propose some strategies in deciding many linear expressions all of which should have 

large bias. And we will experiment on these strategies to see their effects.  

In the second main part of this thesis, we will turn to discuss about the properties 

of S-boxes from the viewpoint of multiple-output Boolean functions. Then we will 

analyze what properties S-boxes should have to resist linear cryptanalysis. Since the 

new block cipher AES has proved to be resistant to linear attacks efficiently and its 

construction is very simple, we will focus on this and try to discover some of its 

properties for later researches.  

 The organization of this thesis is as follows: Chapter 2 introduces some basic 

block cipher systems such as Feistel Networks and SPNs. Chapter 3 describes how 

linear attacks work and we will use some new strategies to attack more efficiently. 

Chapter 4 discusses about the relationship between the properties of Boolean 

functions and the resistance of S-boxes to linear attacks. Further, the constructions of 

AES S-boxes are studied to find some interesting properties. Finally, our conclusion 

and future work is given in Chapter 5. 
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Chapter 2  Block Cipher Systems 
 

In this chapter, we will introduce some block cipher systems that are commonly used 

including Feistel Networks and Substitution-Permutation Networks (SPNs). Most 

modern cipher systems are modified from these two ciphers. 

 

2.1  Feistel Networks 

 

 Feistel and some other researchers [5][6] proposed the Feistel Networks based 

on Shannon’s [32] theory in 1973. The most famous block cipher, Data Encryption 

Standard (DES), is an example of Feistel Network. In a Feistel Network, each state (a 

round input) is divided into two halves of equal length (N/2, suppose N is the block 

length), we call Li and Ri respectively. In each round, we only modify one half of the 

round input, which is done by the round function. The round function f takes Ri-1 and 

Ki as inputs and output an equal length as Ri-1.  

22 }1,0{}1,0{:
NN

f →  

Then the output XOR with Li-1 to form Ri while Ri-1 is preserved to form Li. So we 

can see that a Feistel Network requires two rounds to change all the input data. Figure 

1 depicts the Feistel Network structure.  

 As for the design of round function, a common way is to incorporate some 

S-boxes and linear transformations like DES, which uses eight S-boxes and some 

permutations. Note that the round function in Feistel Network does not need to be 

invertible. This gives much flexibility to the design issue. Thus the S-boxes used can 

have n-input and m-output while n ≠ m since it does not need to be bijective.  
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kn 

Round 1 

Round 2 

Round n 

 

 

 Another advantage of Feistel Network is that the decryption algorithm is the 

same as encryption algorithm. That is, we decrypt the ciphertext by processing it 

through the encryption algorithm except for the reverse key order. This feature is very 

convenient for the implementation whether in software or hardware.  

 

2.2  Substitution-Permutation Networks 

 

This is the structure we are going to attack in the next chapter. For convenience, 

the following notations are used: 

Ur: the input to S-box in round r (also the result of rr KW ⊕−1 ) 

Figure 1: Feistel Network Structure 



 5 
 

Vr: the output of S-box in round r 

Wr: the permutated result of round r (also the output of round r)  

K: the initial key 

Kr: the key used in round r 

And we represent the ith bit by using the superscript. For example, K1
4 is the 4th bit of 

round 1 key bits. 

Suppose l and m are positive integers where l is the number of inputs to each S-box 

and m is the number of S-boxes in each round. So l×m is the block length of the 

cipher. An SPN contains two parts: Sπ  and Pπ .  

ll
S }1,0{}1,0{: →π  

is a permutation (or substitution), and 

},...,2,1{},...,2,1{: lmlmP →π  

is also a permutation. Sπ  is the S-box we mentioned above and it is used to replace l 

bits by another l bits and it should be a bijective operation. Pπ  is the permutation to 

permute the outputs of S-boxes which is lm bits in total in a round.  

The key-scheduling algorithm we use here is a simple shift operation. Thus the 

first round key bits are the first lm bits of the initial key K, i.e., K1 to Klm. And the 

second round key bits shift l bits and become Kl+1 to Klm+l. The rest of the round keys 

are derived in a similar way.  

The encryption algorithm consists of the following steps. The SPN consists of Nr 

rounds. In each round, we will perform m substitutions by Sπ , then followed by the 

permutation Pπ  (except for the last round, there is no permutation needed since it 

contributes no security). And before each S-box, we will XOR with round key bits 

(this is called round key mixing). After the substitution of the last round, we perform 

another round key mixing. So in an Nr-round SPN, there will be Nr+1 round keys 

needed. The very first and last XOR with round key is called whitening, which was 
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proposed by Schneier [30]. Figure 2 is a pictorial representation of such SPN.  

 
plaintext 

S11 S12 S14 S13 

Subkey K1 mixing 

S21 S22 S24 S23 

Subkey K2 mixing 

SNr1 SNr2 SNr4 SNr3 

Subkey KNr mixing 

Subkey K3 mixing 

Subkey KNr+1 mixing 

ciphertext 

… 

Round 1 

Round 2 

Round Nr 
UNr 

VNr 

U2 

V2 

W2 

U1 

V1 

W1 

Figure 2: SPN structure 
 

Example 2.1: Suppose l=m=Nr=4. Let the S-box Sπ  be defined as follows, where 

the input (x) and the output ( )(xSπ ) are written in hexadecimal:  

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 
)(xSπ  E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

And the permutation Pπ  be defined as follows: 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
)(xPπ  1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 

Suppose the key is 

 K= 0011 1010 1001 0100 1101 0110 0011 1111 

Then the round keys according to the key scheduling above are: 
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  K1= 0011 1010 1001 0100 

  K2= 1010 1001 0100 1101 

  K3= 1001 0100 1101 0110 

  K4= 0100 1101 0110 0011 

  K5= 1101 0110 0011 1111 

Suppose the plaintext is  

  x= 0010 0110 1011 0111 

We see how the encryption processes for the first two rounds: 

  W0=x= 0010 0110 1011 0111 

  K1= 0011 1010 1001 0100 

  U1= W0 ⊕ K1= 0001 1100 0010 0011 

  V1= 0100 0101 1101 0001 

  W1= 0010 1110 0000 0111 

  K2= 1010 1001 0100 1101 

  U2= W1 ⊕ K2= 1000 0111 0100 1010 

  V2= 0011 1000 0010 0110 

  W2= 0100 0001 1011 1000 

The remaining rounds can be processed in a similar way. 

 

 We decrypt the ciphertext in reverse order of the encryption algorithm. That is, 

the keys are given in reverse order and the S-boxes are bijective so that we can 

recover the input, which is unlike the Feistel Network. 

 

2.3  Standard Block Cipher Systems 

 

In this section we introduce two standard block cipher systems: DES and AES.  
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2.3.1  DES 

 

 Data Encryption Standard (DES) originates from the Lucifer which was 

developed by IBM and later modified by NIST (National Institute of Standards and 

Technology) to become a block cipher standard in 1977. DES is one type of Feistel 

structure we described earlier. The block length is 64-bit and also 64-bit key length 

(including 8 parity check bits). Figure 3 is an overview of the DES structure. 

 
plaintext 

IP 

L0 R0 

f 

f 

R1=L0+f(R0,K1) L1=R0 

R16=L15+f(R15,K16) L16=R15 

K1 

f 

R2=L1+f(R1,K2) L2=R1 

K2 

R15=L14+f(R14,K15) L15=R14 

K16 

IP-1 

ciphertext 

Figure 3: DES structure 
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The IP and IP-1 are initial permutation and inverse permutation, respectively. Each Li 

and Ri is 32 bits in length. The f function takes Ri-1 and Ki as inputs and we show the f 

function in Figure 4. 

 
Ri-1 

E(Ri-1) 

Ki 

f(A,J) 

E 

+ 

B1 B2 B3 B4 B5 B6 B7 B8 

S1 S2 S3 S4 S5 S6 S7 S8 

C1 C2 C3 C4 C5 C6 C7 C8 

P 

Figure 4: The DES f function 

32 bits 

48 bits 

48 bits 

32 bits 

 

Ri-1 is first extended to 48 bits and then XOR with round key (48-bit). The result is 

then divided into 8 blocks each with 6 bits. These 8 blocks are then input to the 8 

S-boxes which output 4 bits each. The 8 blocks of Ci are permutated according to P 

and the output of f function is then the output of permutation P.  

 The key scheduling will generate 16 subkeys each with 48 bits from the initial 

56 (64) bits key. We show the scheduling in Figure 5. The PC-1 and PC-2 are also 

permutations. 
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Figure 5: Key scheduling of DES 

K 

PC-1 

C0 D0 

LS1 LS1 

LS16 LS16 

LS2 LS2 

C1 D1 

D2 C2 

C16 D16 

PC-2 

PC-2 

K1 

K2 

K16 PC-2 

28 28 

LSi (Left Circular Shift) 

Iteration 

i 
Number of 

Left Shifts 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 
1 
2 
2 
2 
2 
2 
2 
1 
2 
2 
2 
2 
2 
2 
1 

 

2.3.2  AES 

 

 On January 2, 1997, NIST began the process of choosing a replacement of DES, 

which is called the Advanced Encryption Standard (AES). AES requires a block 

length with 128-bit and supporting key length with 128, 192, 256 bits (Nk=4, 6, 8). 

On October 2, 2000, Rijndael [3][4] was selected as the new standard.  

 AES has block length with 128, 192, 256 (Nb=4, 6, 8) bits whose number of 

rounds Nr, are 10, 12, and 14, respectively. All operations in AES are byte oriented. 

State is the input cut into byte array (Figure 6). AES first generates the subkeys we 

need using KeyExpansion algorithm from the initial key. Then for the first Nr-1 

rounds, it performs the Round function, which contains the ByteSub、ShiftRow、

MixColumn and AddRoundKey. Finally we apply the FinalRound, which is the same 
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as Round except for no MixCloumn. The algorithm is given in Algorithm 2.1 in 

pseudo C language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KeyExpansion generates the Nr+1 round subkeys from the initial key. The expanded 

key is a linear array of 4-byte word. The first Nk words contain the cipher key. All 

other words are defined recursively in terms of words with smaller indices. The 

algorithm is given in Algorithm 2.2. 

 

 

Rijndael(State, Key) 
{ 
 KeyExpansion(Key); 
 AddRoundKey(State, RoundKey); 
 For(i=1; i<Nr; i++) 
 { 
  Round(State, RoundKey); 
 } 
 FinalRound(State, RoundKey); 
} 

Round(State, RoundKey) 
{ 
 ByteSub(State); 
 ShiftRow(State); 
 MixColumn(State); 
 AddRoundKey(State, RoundKey); 
} 

FinalRound(State, RoundKey) 
{ 
 ByteSub(State); 
 ShiftRow(State); 
 AddRoundKey(State, RoundKey); 
} 

S3,6 

S2,6 

S1,6 

S0,6 

S3,5 

S2,5 

S1,5 

S0,5 

S3,3 

S2,3 

S1,3 

S0,3 

S3,4 

S2,4 

S1,4 

S0,4 

S3,7 

S2,7 

S1,7 

S0,7 

S3,2 S3,1 S3,0 

S2,2 S2,1 S2,0 

S1,2 S1,1 S1,0 

S0,2 S0,1 S0,0 

Figure 6: AES State representation for Nb=4, 6, 8 

Algorithm2.1: AES algorithm 
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The round constants are independent of Nk and defined by: 

Rcon[i] = (RC[i],‘00’,‘00’,‘00’) with RC[i] representing an element in GF(28) with a 

value of x( i - 1) so that: 

RC[1] = 1 (i.e. ‘01’) 

RC[i] = x (i.e. ‘02’) ·(RC[i-1]) = x(i-1) 

RotByte is a rotate of the bytes, i.e., RotByte(B0,B1,B2,B3)=(B1,B2,B3,B0). Then the 

RoundKey i is given by the Round Key buffer word W[Nb*i] to W[Nb*(i+1)]. 

For the first Nr-1 rounds, we perform Round function, which contains four 

sub-function: ByteSub, ShiftRow, MixColumn, and AddRoundKey. The FinalRound 

is the same as Round except for no MixColumn. Next, we briefly introduce the 

sub-functions. 

 ByteSub is the function to replace one byte by another byte, i.e., it acts as a 

S-box. The detailed algorithm will be given in Chapter 4. 

 

 

 

Algorithm 2.2: 
KeyExpansion(byte Key[4*Nk] word W[Nb*(Nr+1)]) 
{ 

for(i = 0; i < Nk; i++) 
W[i] = (Key[4*i],Key[4*i+1],Key[4*i+2],Key[4*i+3]); 

for(i = Nk; i < Nb * (Nr + 1); i++) 
{ 

temp = W[i - 1]; 
if (i % Nk == 0) 

temp = SubByte(RotByte(temp)) ⊕  Rcon[i / Nk]; 
W[i] = W[i - Nk] ⊕  temp; 

} 
} 
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Figure 7: AES ByteSub function 

The ShiftRow is a cyclic left shift of the State according to the offsets (Table 1).  

Table 1: Shift offsets with different Nb 

Nb C1 C2 C3 

4 1 2 3 

6 1 2 3 

8 1 3 4 

 

 

a b c d …  

e f g …   

h i j …   

k l m n …  

Figure 8: AES ShiftRow operation 

MixColumn replaces a column by a new one formed by multiplying the column with 

a matrix.  

 

 

 

 

 

Figure 9: AES MixColumn operation 

x0,0 x0,1 x0,2 x0,3 

x1,0 x1,1 A1,2 x1,3 

x2,0 x2,1 x2,2 x2,3 
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y0,0 y0,1 y0,2 y0,3 

y1,0 y1,1 b1,2 y1,3 

y2,0 y2,1 b2,2 y2,3 

y3,0 y3,1 y3,2 y3,3 
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x2,0 x2,1 a2,2 x2,3 

x3,0 x3,1 a3,2 x3,3 
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⊗
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And the AddRoundKey is simply add the State with the RoundKey.  

 

2.4  Other Block Cipher Systems 

 

 Although the previous two ciphers are the most commonly used today, there are 

still other systems not belonging to these two kinds. However, there exists one 

common feature in all of them: they use repeated rounds to achieve security 

requirement.  

 

2.4.1  RC6 

 

 RC6 [28] is a block cipher designed to meet the requirements of AES. The 

design is based on RC5 and modified to increase security and performance. It has 

block length with 128-bit and can be seen as extending RC5 from 64-bit to 128 bit. 

However, instead of using two 64-bit registers, they change to use four 32-bit 

registers since the AES architecture does not support 64-bit operations. Like RC5, 

RC6 makes an extensive use of data-dependant rotations. The philosophy of RC5 is to 

exploit operations (such as rotations) that are efficiently implemented on modern 

processors. RC6 follows the trend and it includes the 32-bit integer multiplication 

since this operation is now implemented on almost all processors. The advantage of 

the integer multiplication is to “diffuse” effectively. RC6 uses it to compute the 

rotation amounts, so that the rotation amounts are dependent on all of the bits of 

another register. Thus RC6 has much faster diffusion than RC5 and increases security 

with fewer rounds. 

 A version of RC6 is more accurately specified as RC6-w/r/b where the word size 

is w bits, encryption consists of a nonnegative number of rounds r, and b denotes the 
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length of the encryption key in bytes. RC6 consists of the following six basic 

operations:  

a + b: integer addition modulo 2w 

a－b: integer subtraction modulo 2w 

a ⊕ b: bitwise exclusive-or of w-bit words 

a × b: integer multiplication modulo 2w 

a<<<b: rotate the w-bit word a to the left by the amount given by the least 

significant wlg  bits of b 

a>>>b: rotate the w-bit word a to the right by the amount given by the least 

significant wlg  bits of b 

The key scheduling is as follows. The user supplies a key of b bytes, where 0≦b

≦255. From this key, 2r + 4 words (w bits each) are derived and stored in the array 

S[0,1,…, 2r + 3]. This array is used in both encryption and decryption. The encryption 

and decryption algorithms are shown in the following figures.  

 

 

 

 

 

 

 

 

 

 

 

 

Input:  Plaintext stored in four w-bit input registers A, B, C, D 
Number r of rounds 
w-bit round keys S[0,1,…,2r + 3] 

Output:  Ciphertext stored in A, B, C, D 
Steps: B = B + S[0] 

]32[
]22[

}
),,,(),,,(    

]12[))(    
]2[))((    

lg))12((    
lg))12((    

{
do      to1for  

]1[

++=
++=

=
++<<<⊕=

+<<<⊕=
<<<+×=

<<<+×=

=
+=

rSCC
rSAA

ADCBDCBA
iStuCC
iSutAA
wDDu

wBBt

ri
SDD

 

Figure 10. Encryption algorithm with RC6-w/r/b 
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2.4.3  IDEA 

 

 IDEA (International Data Encryption Algorithm) [16][17] was developed by Lai 

in 1991. IDEA is used in PGP (Pretty Good Privacy), the cryptographic system for 

Internet and E-mail security. IDEA is also 64-bit block length as DES and the round 

number is 8 and the key size is 128-bit. 

 The algorithm is illustrated in Figure 12. The 64-bit plaintext is divided into four 

16-bit blocks, X1,X2,X3,X4. In each round, six 16-bit subkeys are used, denoted by 

Ki,1,Ki,2,…,Ki,6 for round i. Since there are 8 rounds, 48 subkeys are used, plus 4 extra 

subkeys used after the last round to transform the output. And the four output 

Input:  Ciphertext stored in four w-bit input registers A, B, C, D 
Number r of rounds 
w-bit round keys S[0,1,…,2r + 3] 
 

Output:  Plaintext stored in A, B, C, D 
 
Steps: C = C－S[2r+3] 

]0[
]1[

}
)])2[((    

)])12[((    
lg))12((    
lg))12((    

),,,(),,,(    
{

do  1  downto  for  
]22[

SBB
SDD

tuiSAA
utiSCC

wBBt
wDDu

CBADDCBA

ri
rSAA

−=
−=

⊕>>>−=
⊕>>>+−=

<<<+×=
<<<+×=

=

=
+−=

 

Figure 11. Decryption algorithm with RC6-w/r/b 
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ciphertext blocks are denoted by Y1,Y2,Y3,Y4. 

 
 

 

 

 

In each round, the 16-bit blocks are XORed, added and multiplied as the figure 

shows. The multiplication modulo 216+1 can be regarded as the S-box of IDEA. After 

the last step, each of the resulting 16-bit blocks is multiplied modulo 216+1 by its 

corresponding subkey. 

 The key scheduling is very simple as follows. The initial key of 128 bits is 

divided into 8 blocks of 16 bits and they become K1,1,…,K1,6, and K2,1,K2,2. Then the 

initial key is shifted 25 bits left and divided into 8 blocks of new subkeys. The 

procedure continues until 52 subkeys are generated.  

 The decryption algorithm is the same as encryption. The keys are used in reverse 

order with some modifications; they are the inverse of the encryption keys for 

Figure 12. The IDEA structure 

⊕ : bit by bit XOR 
: addition modulo 216 
: multiplication modulo 216+1 with zero corresponds to 216 .  
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multiplications as well as addition.  

 

In this chapter, we introduced several block cipher systems from basic schemes, 

Feistel Networks and SPNs, to standard systems, DES and AES. In the next chapter, 

we will start to use linear cryptanalysis to attack the SPNs and use our strategies to 

attack them more efficiently.  
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Chapter 3  Linear Cryptanalysis 
 

In this chapter, we introduce linear cryptanalysis, which is the most important attack 

on block cipher systems. Section 1 briefly introduces the Matsui’s attack concept on 

DES. Section 2 gives an entire procedure of the attack on SPNs. Section 3 introduces 

some other improved techniques proposed by other researchers. Section 4 illustrates 

our new strategies, which can find trails with good bias to attack and we also show 

the performance of our new strategies in the end. 

 

3.1  Matsui’s Attack on DES 

 

Originally, Matsui and Yamagishi [21] developed the linear cryptanalysis against the 

FEAL [31] (Fast Data Encipherment Algorithm) cipher in 1992. In 1994, Matsui 

modified it and used it on DES [18] in a theoretical attack on the full 16-round DES, 

which requires 247 known plaintext-ciphertext pairs and successfully obtaines 14 key 

bits. Now it has become the most important attack against block ciphers. In Matsui’s 

paper, he introduced two versions of attack algorithms. The first one, called 

Algorithm 1, can only attack one key bit information. The second one, called 

Algorithm 2, can extract more key bits in one attack. 

Algorithm 1: 

Step 1: Let T be the number of plaintexts such that the left side of equation, 

],...,,[],...,,[],...,,[ 212121 cba kkkKjjjCiiiP =⊕ , 

is equal to zero. 

Step 2: If T>N/2 (N denotes the number of plaintexts), 
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then guess 0],...,,[ 21 =ckkkK  (when p>1/2) or 1 (when p<1/2), 

else guess 1],...,,[ 21 =ckkkK  (when p>1/2) or 0 (when p<1/2). 

 

Algorithm 2: 

Step 1: For each candidate ,...)2,1( )( =iK i
n  of Kn, let Ti be the number of 

plaintexts such that the left side of equation 

],...,,[],...,,)[,(],...,,[],...,,[ 21212121 cdnLnba kkkKlllKCFjjjCiiiP =⊕⊕  

is equal to zero. 

Step 2: Let Tmax be the maximal value and Tmin be the minimal value of all Ti’s. 

l If |2/||2/| minmax NTNT −>− , then adopt the key candidate corresponding to 

Tmax and guess 0],...,,[ 21 =ckkkK  (when p>1/2) or 1 (when p<1/2). 

l If |2/||2/| minmax NTNT −<− , then adopt the key candidate corresponding to 

Tmin and guess 1],...,,[ 21 =ckkkK  (when p>1/2) or 0 (when p<1/2). 

 

In the remaining parts of this thesis, we focus on Algorithm 2 since it is much more 

powerful. 

 

3.2   Linear Cryptanalysis on SPNs 

 

Here we briefly explain how linear cryptanalysis works on SPNs. The detailed 

introduction is described in [11][33]. Keliher also discussed linear attacks on SPN in 

[14]. To apply linear attacks, we need to find a subset of bits that their XOR behaves 

in a non-random way. First, we introduce a useful lemma in linear attacks. 
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3.2.1 The Piling-up lemma 

 

Suppose X1, X2,…∈{0,1} are independent random variables. p1, p2,…are real 

numbers such that 0≦pi≦1, and suppose that Pr[Xi=0]=pi and Pr[Xi=1]=1-pi. Then 

we define the bias of Xi to be 2
1−= ii pε . Let kiii ,...,, 21

ε  denote the bias of the 

random variable 
kii XX ⊕⊕ ...

1
. It is easy to see that 

2121
2, iiii εεε = . And we can 

generalize it in the following lemma. 

 

Lemma 3.1 (Piling-up Lemma) [18]: Let 
kiii ,...,, 21

ε  denote the bias of the random 

variable 
kii XX ⊕⊕ ...

1
. Then 

jk i

k

j

k
iii εε Π

=

−=
1

1
,...,, 2

21
. 

 

3.2.2 Linear approximations of S-boxes 

 

Next, we need to compute the linear approximation table of an S-box so that we 

can determine the XOR of which bits is not random. 

Example 3.1: Consider the following S-box: 44 }1,0{}1,0{: →Sπ . 

X1 X2 X3 X4 Y1 Y2 Y3 Y4 
0 0 0 0 1 1 1 0 

0 0 0 1 0 1 0 0 

0 0 1 0 1 1 0 1 

0 0 1 1 0 0 1 0 

0 1 0 0 0 0 0 1 

0 1 0 1 1 1 1 1 

0 1 1 0 1 0 1 1 

0 1 1 1 1 0 0 0 
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1 0 0 0 0 0 1 1 

1 0 0 1 1 0 1 0 

1 0 1 0 0 1 1 0 

1 0 1 1 1 1 0 0 

1 1 0 0 0 1 0 1 

1 1 0 1 0 0 0 0 

1 1 1 0 1 0 0 1 

1 1 1 1 0 1 1 1 

If we want to know the probability of 0322 =⊕⊕ YYX , then we count the number of 

rows in the above table where 0322 =⊕⊕ YYX and denote this number as NL value. 

Then we divide NL by 24 (4 is the number of S-box input) to get the probability of 

0322 =⊕⊕ YYX . Here NL=4, thus the probability is 4/16 and the bias is –1/4. 

 

In a similar way, we can record all possible input-output XOR in a linear 

approximation table (Table 2). We read the table by using the following notation: 

}1,0{, ,
4

1

4

1
∈






⊕






 ⊕⊕

==
iiii

i
ii

i
baYbXa . 

Take (a1,…,a4) as index of rows and (b1,…,b4) as index of columns. The values in the 

table indicate NL’s-8. Thus, 322 YYX ⊕⊕  of Example 3.1 is expressed as a=0100, b= 

0110 and the corresponding NL-8 is in the shaded place of the table which is -4 as 

Example 3.1 counts. This table consists of mn 22 ×  entries where n and m denote the 

number of X variables and Y variables respectively (in Example 3.1, n=m=4). In the 

linear cryptanalysis, we are searching for the pattern with a large bias size to attack. 
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Table 2: Linear approximation table of Example 3.1 

X Y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 +8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 -4 0 -4 0 -4 0 +4 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 +2 -2 +6 +2 +2 -2 -2 +2 

3 0 0 0 0 0 0 0 0 +2 -6 -2 -2 +2 +2 -2 -2 

4 0 +4 -2 -2 -2 -2 -4 0 0 0 -2 +2 +2 -2 0 0 

5 0 0 -2 +2 -2 +2 +4 +4 0 0 -2 +2 +2 -2 0 0 

6 0 0 -2 +2 +2 -2 0 0 -2 -2 0 +4 -4 0 -2 -2 

7 0 0 -2 +2 +2 -2 0 0 -2 +2 0 0 +4 +4 -2 +2 

8 0 0 0 0 0 0 0 0 -2 +2 +2 -2 +2 -2 -2 -6 

9 0 0 0 0 0 0 0 0 -2 -2 +2 +2 +2 +2 +6 -2 

10 0 0 0 0 -4 -4 +4 -4 0 0 0 0 0 0 0 0 

11 0 +4 0 -4 +4 0 +4 0 0 0 0 0 0 0 0 0 

12 0 0 +2 -2 -2 +2 0 0 +2 +2 0 +4 0 +4 -2 -2 

13 0 0 +2 -2 -2 +2 0 0 -6 -2 0 0 0 0 -2 +2 

14 0 +4 +2 +2 -2 -2 0 +4 0 0 +2 -2 -2 +2 0 0 

15 0 0 -6 -2 -2 +2 0 0 0 0 +2 -2 -2 +2 0 0 

 

3.2.3 Linear expression of a trail 

 

We then use such weakness (large bias) to find a trail through entire SPN to get a 

linear expression involving only parts of plaintext bits and data bits into the last round 

(bits of UNr) and all subkeys encountered in the path. All other intermediate data bits 

of Ur、Vr, where r<Nr, will be cancelled. Thus we produce a linear expression in the 

following: 

0=⊕⊕ KJI KCP ,          (3.1) 

where PI, CJ, and KK denote the XOR of some plaintext bits, data bits of UNr and 

encountered key bits respectively. But what we care is only 

0=⊕ JI CP .           (3.2) 
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plaintext 

S11 S12 S14 S13 

Subkey K1 mixing 

S21 S22 S24 S23 

Subkey K2 mixing 

S41 S42 S44 S43 

Subkey K4 mixing 

Subkey K3 mixing 

Subkey K5 mixing 

ciphertext 

U4 

V4 

U2 

V2 

W2 

U1 

V1 

W1 

S31 S32 S34 S33 
U3 

V3 

W3 

P1 P2 P16 … 

C1 C2 C16 … 

Figure 13: A possible attack trail. 
 

Figure 13 shows a possible attack trail. Here, PI is 875 PPP ⊕⊕  and CJ is 

15
4

14
4

7
4

6
4 UUUU ⊕⊕⊕ . The trail is formed as follows: In S12, we choose 

4431 YXXX ⊕⊕⊕  since it has large bias. Then we follow the output permutation 

and XOR with K2. Now in round 2, they become the input X2 of S24. So we can look 

up in the linear approximation table to check what bits X2 XORing with has large bias 

(row 4, since X2 represents 01002). As procedure continues we have a trail formed. 
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After the trail is determined, the overall bias of the entire SPN can be calculated by 

Piling-up lemma (each S-box encountered viewed as 
jiε ) and we denote the bias as 

ε . 

 

3.2.4 Subkeys attack 

 

Once we have the trail and the bias, we then begin to extract the subkeys of the 

last round. It proceeds as follows: 

1. The subkeys we are going to extract are those involved in the last part of the trail. 

For example, in Figure 13, CJ of (3.2) are the bits into the second and fourth 

S-box. Then the subkeys being extracted are the corresponding position of the 

output bits of those S-boxes, i.e., the circled part in Figure 13. 

2. Since the attack is a known plaintext attack, we have many plaintext- ciphertext 

pairs and we say we have T pairs. We maintain a counter array for each possible 

candidate subkeys. Then we partially decrypt the ciphertext for each candidate 

subkeys. If the linear expression (3.2) holds, then we increment the corresponding 

counter of that subkey. 

3. In the end, we expect the counter, which is closest to T)( 2
1 ε± , is the most likely 

subkey. 

 

3.3  More on Linear Cryptanalysis 

 

In this section we introduce some further researches done as the linear cryptanalysis 

develops. With the help of these techniques, we can increase the success rate and 

reduce the data pairs we need. 
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3.3.1  Linear hull 

 

Nyberg [24] proposed the linear hull effect in 1994. The main result shows that 

the success rate of Algorithm 2 is underestimated in Matsui’s paper. They show this 

by declaring that the data complexity we need can be reduced. Since we may have 

many linear expressions with the same input and output mask but different internal 

subkeys, i.e., PI and CJ are the same but KK is different. For input mask a and output 

mask b, he uses ALH(a,b) to denote the approximation linear hull. We describe the 

definition and theorem in a more understandable version by [15]. 

Definition 3.1: Given nonzero N-bit masks a, b, the approximation linear hull, 

ALH(a,b), is the set of all T-round characteristics, for the T rounds under 

consideration, having a as the input mask for round 1 and b as the output mask for 

round T, i.e., all characteristics of the form b,a,...,a,aa, 32 T=Ω . 

The characteristic Ω  here is like the trail we said before. And we have the following 

theorem. 

Theorem 3.1: Let a and b be fixed nonzero N-bit input and output masks, 

respectively, for T rounds of an SPN. Then 

∑
∈Ω

Ω=
*),(

)(]ba,[
baALH

T LCPE .         (3.3) 

 

The ET[a,b] denotes the expected value of linear probability of mask (a,b) over 

all independent keys. And )(ΩLCP  denotes the linear characteristic probability of a 

characteristic Ω . This theorem shows that under certain masks (a,b), we may have 

many different characteristics and the expected value of masks (a,b) is the sum of 

)(ΩLCP  over a large set of characteristics. In other words, under certain PI and CJ, 

the expected value of bias is the sum of a large set of different trails with the same PI 
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and CJ. Therefore, the linear characteristic probability of best characteristic is strictly 

less than ET[a,b]. This implies that an attacker will overestimate the number of pairs 

required for a given success rate since the best trail we find is always smaller than 

ET[a,b]. 

 

3.3.2  Key ranking 

 

After the linear cryptanalysis was proposed, Matsui experimented on the attack 

in 1994 again with some modifications [20]. In his paper, he uses two new linear 

approximation equations, each of which provides candidates for 13 key bits. Further, 

he adopts the reliability of key candidates into consideration. The key candidates 

means that he stores not only the most likely key bits but also the ith likely candidates. 

That is, he stores the key ,...ˆ,ˆ 21 kk  in order where ik̂  is the ith likely key bits. 

Then if the most likely key tests to be wrong, he can go back to use the second likely 

key bits and so on. The test can be done by given a plaintext-ciphertext pair (P, C), 

and the rest key bits by exhaustive key search to test if the candidate key bits can 

generate C from P. To increase accuracy, a few more pairs {(P1, C1), (P2, C2),…} can 

be given since wrong key bits can generate the correct Ci with negligible probability. 

Thus, if 1̂k  fails the test, then 2k̂  is used and so on until the correct one is found. 

With this simple improvement, he increased the success rate. In his test, he 

successfully attacked the 26 key bits of the full 16-round DES with 243 plaintext- 

ciphertext pairs. The remaining 30 key bits can be found by exhaustive key search. In 

comparison with his original attack, more key bits are attacked with fewer pairs 

needed. 

 



 28 
 

3.3.3  Multiple linear approximations 

 

Kaliski and Robshaw [29] proposed a new idea on linear cryptanalysis by using 

multiple linear approximations in CRYPTO’94. Suppose they have n linear 

approximations, which involve the same key bits but differ in the plaintext and 

ciphertext bits that they use. For each linear approximation they assign a different 

weight ai (this may be decided by their biases) and ∑
=

=
n

i
ia

1
1 . Then for each 

candidate key bits K(j), j=1,2,… and each linear approximation i, let Tj
i be the number 

of the linear equation holds. Then we calculate ∑
=

=
n

i

i
jij TaU

1
for each j. And the rest 

parts are just like the original Algorithm 2 in Matsui’s attack, i.e., we see which Uj is 

furthest from N/2 (N is number of pairs) and we assume it to be the most likely key 

bits. 

This technique is supposed to increase the success rate and reduce the data 

complexity. However, in their experiments, the increase of effectiveness on DES is 

somewhat limited. But, this is still an important skill since it may be generally 

applicable to other block ciphers and be extremely effective in reducing data 

complexity. 

 

3.4 Our Attack Design 

 

As we mentioned in the introduction, we want to use linear cryptanalysis many times 

to get most of the key bits. We use one trail to extract a subset of key bits and another 

trail to get another subset of key bits. Until the last round keys KNr+1 are all extracted 

then we go one level up to extract the key bits of KNr with new trails and so on. 
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3.4.1 Observations 

 

Before we explain our strategies, there are some observations to be made. 

1. The subkeys we are going to attack should not be too many in a single attack, i.e., 

the S-boxes involved in the last round should not be too many. This is because the 

more subkeys we want to extract in one attack the more time we need. For 

example, if we want to get 8 key bits in one time, then we have to test 28 

candidate key bits for all pairs. But if we get 4 bits and then another 4 bits in two 

attacks, we only need to test 2×24 candidate keys for all pairs. 

2. The fewer S-boxes are involved the larger the bias. So, maybe there exists one 

input-output XOR having the largest bias, but its output spreads to many S-boxes 

in the permutation. Then we should consider if it is worthwhile to choose such 

path. 

3. It is easy to see that with first Nr-1 round trail we can get bits of KNr+1. So with 

Nr-2 round trail we can get bits of KNr. Continuing the process we can get all key 

bits up to K3. But there is no linear expression for the first two round keys so we 

can’t use linear cryptanalysis to get them. The rest subkeys may be derived by 

exhaustive search. 

4. We may take advantage of the key schedule such as the shift key schedule to 

know upper round keys from the lower round keys we already get. Thus, we can 

save time in getting the repeated key bits.  

 

3.4.2 Strategies 

 

In general, if a linear expression of entire cipher has bias ε , then it is suggested 

that we need 2−εc  pairs to attack for a constant c. See the following table from [18]. 
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c 2 4 8 16 
Success Rate 48.6% 78.5% 96.7% 99.9% 

 

Here, we give a simple proof for this result. 

Proof: Let N denote the number of plaintext-ciphertext pairs we need. And let Yi be 

the result of equation (3.1) in the ith test. 

i
K

i
J

i
Ii KCPY ⊕⊕=  , i=1,2,…,N, Yi={0,1}      (3.4) 

Since we have bias equal to ε , which means ε+== 2
1]0Pr[ iY . Then the expected 

value of Yi is ε−= 2
1)( iYE . And we have 

small. is  since  ))(()(

,)(

4
12

4
1

2
1

2
12

2
1

εεεεσ

εµ

≈−=+−==

−==

i

i
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YE
 

Then we let 
N

YYYY N
N

+++
=

...21 . And we can find it to be a normal distribution 
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4
1

2
1

2

N

NN

N
NY
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µ σ

−≈
 

So we want to distribute ε±2
1  from 2

1  like the following figure. 

 

2
1

ε−
2
1

ε+
2
1

Easy to distinguish 

Figure 14: Probability distribution  

We hope that taking 3 times the standard deviation is still less than ε . 

Table 3: The success rate of linear cryptanalysis. 
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ε
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N

 

So we can see that it is about to take 2−εc  pairs to test. 

 

And from observation 1, the computation time is also related to the number of 

key bits being attacked. So we define the cost of a trail with bias ε  to be k22 ×−ε  

where k is the number of key bits being attacked. Then we are ready to introduce our 

strategies as follows: 

(a) Trails finding: We do the process in a “recursive” way. We start it from the first 

S-box and look up the linear approximation table row by row. Here we set a bias 

threshold about 1/4. Once we meet a value ≧12 or ≦4 (bias ± 1/4) we then select 

the corresponding input-output XOR and follow the output to the next round. The 

previous output now becomes the input of the S-box, so we only need to look up the 

corresponding row of the linear approximation table. The process continues and in the 

end, we can get an expression as (3.2) and the bias is calculated by Piling-up lemma. 

Every time we finish finding a trail, we record the corresponding data into a queue 

including the path it walked, the bias ε , and the cost ( k22 ×−ε ). Then we return and 

going to find another trail until all possible trails are found. Since there won’t be too 

many biases larger than 1/4 or smaller than –1/4, the search process won’t take too 

much time. 

(b) Cost of trails updating: When the trails are all found, we select the smallest cost 

to be the first step since it takes the fewest time to solve. After this trail solved, we 

need to update the cost before we select a next trail to attack since there may be many 

trails covering the same key bits we already got. And those key bits don’t need to be 
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extracted again, so the cost can divide by 2s, where s is the number of covered key 

bits already derived. After all the cost of trails is updated, we can select next trail 

from the smallest cost again. Until all KNr+1 are all extracted, we then move one level 

up to attack bits of KNr using similar method. Continuing the procedure we can solve 

all round key bits K3 to KNr+1 as observation 3 stated. The rest two rounds K1 and K2 

can be solved by exhaustive search. 

(c) Backtracking: When we try to linear attack the key bits, we choose the one 

whose counter is the closest to T)( 2
1 ε± . In addition, we store r possible candidate 

keys whose counters are also close to T)( 2
1 ε± , where r is a flexible parameter and 

can be modified. In the end, if the key we extracted tests to be wrong, we can go back 

to choose another candidate subkey systematically. Figure 15 shows this backtracking 

scheme. If we run out all possible candidate keys, then we declare this attack fails. 

 

candidate subkey1 candidate subkey2 candidate subkeyn 

candidate subkey1 candidate subkey2 candidate subkeyn 

candidate subkey1 candidate subkey2 candidate subkeyn 

Check the correctness of the key 

… 

… 

… 

…
 

wrong 
wrong wrong 

subkey in K5 

subkey in K3 

subkey in K3 

Output the key 

correct 

Figure 15: The backtracking scheme 
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3.4.3 Algorithm 

 

With the three strategies introduced in the previous section, we come up with the 

algorithm as follows. We first need to find all possible trails with large bias by using 

the TrailsFinding part. After this process is done, we then have many trails stored in 

the queue with corresponding bias, costs, and the paths they walk. Thus we can select 

the smallest cost to attack first. After the trail is attacked, we then do the 

CostUpdating to update the cost and get the next smallest trail to attack. Once a round 

key bits are all extracted, we can go up one round to repeat the attack with similar 

strategies. Finally, we use several plaintext-ciphertext pairs to verify the keys we 

extracted. If the keys are tested to be wrong, we then apply the BackTracking to use 

other candidate keys we stored. The algorithm is given below in pseudo C. 

 

1 TrailsFinding()  // This function corresponds to (a) in Section 3.4.2 
for i = Nr + 1 to 3 

2 select a trail with the smallest cost 
3 linear attack Ki 

3.1  choose the key with counter closest to T)( 2
1 ε±  

3.2  save some other keys also close to T)( 2
1 ε±  

4 CostsUpdating()  // This function corresponds to (b) in Section 3.4.2 
5 If not all bits in Ki are extracted 

Then go to 2 
6 Exhaustive search (K1, K2) 
7 Check the correctness 

7.1 If success then return the key 
7.2 Else BackTracking()  // This function corresponds to (c) in Section 3.4.2 

7.2.1 If all candidate keys are failed 
Then return Failure 

 
3.4.4 Performance 
 

We use SPN with 16-bit block length、32-bit initial key and with 4 rounds to do the 

do 
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experiment. The 5 round keys are derived from initial 32-bit key by simple shift operation. 

All S-boxes used in the SPN are the same as follows: 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 
)(xSπ E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 

We run the experiment on Pentium III 733 CPU with 256MB RAM under FreeBSD OS 

using C Language 

We simulate 100 batches with different keys. Each batch randomly chooses around 8×

2−ε  plaintext-ciphertext pairs (data complexity). Table 4 shows the subkey length, bias, 

and data complexity for the two trails used in searching the key bits of the last round. 

Note that although the 2nd trail seems to have large bias, it is not being attacked first. This 

is because the 2nd trail actually attacks 12 bits and 4 of them are attacked by trail 1. Thus 

in the original cost, trail 2 has larger cost than trail 1. 

Table 4: The trail data 

 Subkey length Bias of trail Data complexity 

1st trail 8 bits 0.059326 2272 

2nd trail 8 bits 0.079102 2272 

 

If backtracking strategy is used, Table 5 shows the success rate of these 100 batches in 

the two trails with different number of candidate subkeys stored. It illustrates the merit of 

this method. 

Table 5: Success rate with different number of candidate keys 

 # of candidates, r 1 2 3 4 5 6 7 8 9 10 

1st trail Success rate (%) 6 12 22 34 44 52 62 70 78 96 

2nd trail Success rate (%) 8 20 27 36 46 55 65 72 82 97 
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Chapter 4  Design S-boxes against Linear 

Cryptanalysis 
 

In this chapter, we will introduce the properties of Boolean functions and 

multiple-output Boolean functions. Then we discuss about the similarities of S-boxes 

and multiple output Boolean functions. And we will analyze the linear approximation 

table to see what properties S-boxes should have to resist linear cryptanalysis. Finally 

we introduce the construction method of AES S-box and further analyze it.  

 

4.1  Boolean Functions 

 

 First, let’s see some notations that are commonly used in Boolean functions. Let 

)2(2 GF=F . We consider the domain of a Boolean function to be the vector space 

),( 2 ⊕nF  over F2, where ⊕  is used to denote the addition operator over both F2 and 

n
2F  (XOR in this case). Suppose X=(x1,x2,…,xn) n

2F∈  is a length n vector. Then an 

n-variable Boolean function is defined to be a mapping from n
2F  to 2F . We use nΩ  

to denote the set of all n-variable Boolean functions. For a Boolean function f(X) nΩ∈ , 

we can represent it uniquely by the algebraic normal form (ANF): 

nnnn xxxaxxaxxaxaxaaXf .........)( 21...1231132112110 +++++++=    (4.1) 

where the coefficient ai can be 0 or 1. Note we sometimes use + to represent ⊕  for 

simplicity. And all the outputs of f(X) form the 0-1 sequence called truth table, 

denoted by f.  
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Example 4.1: Suppose the ANF of f(X) 2Ω∈  is f(X)=x1+x1x2, then the truth table f is: 

x1 x2 x1x2 x1+x1x2 
0 0 0 0 
0 1 0 0 
1 0 0 1 
1 1 1 0 

f is the output of all possible inputs, i.e., f=0010. 

 

The inner product of two vectors ngf 2 , F∈  (f and g can be viewed as the output 

truth table of f(X) and g(X)) will be denoted by gf , . The Hamming weight of an 

n-bit vector u is the number of nonzero elements (number of ones in this case) in f and 

denoted by wt(f). The Hamming distance between two vectors f, g is the number of 

places where they differ and denoted by d(f, g). And we have d(f, g)= wt(f+g).  

Example 4.2: If f=0110、g=1101, then the Hamming weight of f and g are wt(f)=2, 

wt(g)=3 respectively and the Hamming distance d(f, g)=3=wt(f+g). 

 

Next let’s define two important properties of Boolean functions: balancedness and 

algebraic degree. 

Definition 4.1: For an n-variable Boolean function f(X), if wt(f)=2n-1, then f(X) has the 

property of balancedness. 

Definition 4.2: The algebraic degree of an n-variable Boolean function f(X) is the 

largest number of variables of the terms in its ANF, denoted by deg(f). 

Example 4.3: Suppose f(X)=x1+x2 and g(X)=x1x2 both belong to 2Ω , then the 

corresponding truth table output are 0110 and 0001. We can see that f(X) is 

balancedness while g(X) is not. In addition, deg(f)=1 and deg(g)=2 since g(X) has two 

variables in one term. 
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For those Boolean functions with degree less than or equal to 1, we call them affine 

functions or linear functions. 

Definition 4.3: For an n-variable Boolean function f(X) and deg(f)≦1, we can 

represent them as 

nnxaxaxaaXf ++++= ...)( 22110                     (4.2) 

Where niGFai ≤≤∈ 0  ),2( . We call such Boolean function as affine function. If 

a0=0, then it is also called linear function. A(n) and L(n) denote the set of all 

n-variable affine functions and linear functions respectively. 

 

For an n-variable linear function f(X), it can be represented in the inner product form 

Xaxf ⋅=)(  or Xaxf ,)( = . Let’s see an example to illustrate affine functions and 

linear functions. 

Example 4.4: If 3)( Ω∈Xf  and deg(f)≦1, then all possible f(X) are listed as 

follows: 

 

A(3) 

L(3)  

0 
x1, x2, x3 

x1+x2, x2+x3, x1+x3 
x1+x2+x3 

1 
1+x1, 1+x2, 1+x3 

1+x1+x2, 1+x2+x3, 1+x1+x3 
1+x1+x2+x3 

 

Next let’s define the Walsh transformation, which is a very useful tool in the analysis 

of Boolean functions. 

 

Definition 4.4: For an n-variable Boolean function f(X), the Walsh transform )(uW f  

Table 6: 3-variable affine and linear functions
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is defined to be: 

   ∑
∈

⋅+−=
nFX

XuXf
f uW

2

)()1()(         (4.3) 

Also we let )(
2
1)()( uWuW fnf = .          (4.4) 

 

Here, Xu ⋅  is a linear function. Since XuXf ⋅+)(  is 0 when XuXf ⋅=)(  and 1 

when XuXf ⋅≠)( . So we can view the Walsh transformation as 

})(|{#})(|{#)( XuxfXXuXfXuW f ⋅≠−⋅== , i.e., the number of f(X) equal to 

Xu ⋅  minus the number of unequals. Then we can derive the relationship between 

Walsh transformation and the Hamming distance ),( Xufd ⋅ . 

)(2),(
),(22

})(|{#22

})(|{#})(|{#)(

2
11 uWXufd

Xufd
XuXfX

XuxfXXuXfXuW

f
n

n

n

f

−=⋅⇒

⋅−=

⋅≠−=

⋅≠−⋅==

−

               (4.5) 

Next, let’s define an important property of Boolean functions. 

Definition 4.5: The nonlinearity nl(f) of an n-variable Boolean function f(X) is 

defined to be the minimum distance between f(X) and all n-variable affine functions, 

i.e., 

),(min)(
)(

gfdfnl
nAg∈

=           (4.6) 

In addition, the affine function that has minimum distance with f(X) is called the best 

affine approximation of f(X). 

 

We can deduce the relation between nonlinearity and Walsh transformation. 

Theorem 4.1: For an n-variable Boolean function f(X), the nonlinearity of f(X) can be 

represented as 

|})({|max2)(
2

2
11 uWfnl f

Fu

n
n∈

− −=          (4.7) 
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Proof: From Equation (4.5) we know 

|})({|max2)(

)}(2{min

)},({min

)(2),(

2

2

1

2
11

)(

2
11

uWfnl

uW

Xufd
uWXufd

f
Fu

n

f
n

Fu

nAXu

f
n

n

n

∈

−

−

∈

∈⋅

−

−=⇒

−=

⋅⇒

−=⋅

  

 

Example 4.5: 3)( Ω∈Xf  and the truth table output f=01100011. Then from the 

following table we can find that nl(f)=2. 

 

Truth table (for c=0) d(f, uX)  

Function (000) (001) (010) (011) (100) (101) (110) (111) c=0 c=1 

f 0 1 1 0 0 0 1 1  

c 0 0 0 0 0 0 0 0 4 4 

x1+c 0 0 0 0 1 1 1 1 4 4 

x2+c 0 0 1 1 0 0 1 1 2 6 

x3+c 0 1 0 1 0 1 0 1 4 4 

x1+x2+c 0 0 1 1 1 1 0 0 6 2 

x1+x3+c 0 1 0 1 1 0 1 0 4 4 

x2+x3+c 0 1 1 0 0 1 1 0 2 6 

x1+x2+x3+c 0 1 1 0 1 0 0 1 2 6 

 

We can also use Walsh transformation to state the balancedness of Boolean functions. 

Theorem 4.2: An n-variable Boolean function is balanced if and only if 0)0( =fW . 

Proof: From the definition of Walsh transformation, we know when u=0, 

Table 7: Nonlinearity example 
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∑
∈

=−==−=
nFX

Xf
f XfXXfXW

2

}1)(|{#}0)(|{#)1()0( )(       (4.8) 

Case ⇒ : Since f(X) is balanced, 12}1)(|{#}0)(|{# −==== nXfXXfX , so 

022)0( 11 =−= −− nn
fW . 

Case ⇐ : Since 0)0( =fW , we have  

12}1)(|{#}0)(|{#
0}1)(|{#}0)(|{#

−====⇒

==−=
nXfXXfX

XfXXfX
 

So f(X) is balanced. 

 

Finally, we introduce a special Boolean function called Bent function. 

Definition 4.6: Suppose nXf Ω∈)(  and n is even. If for all nFu 2∈  

  2

2

2)1( )( n

nFX

XuXf ±=−∑
∈

⋅+  

Then we call f(X) a Bent function.  

Theorem 4.3: For an nXf Ω∈)(  and n is even, then the following properties 

describe the same thing: 

(1) f(X) is a Bent function. 

(2) 11 222)( −− −=
nnfnl , and nl(f) is the largest nonlinearity of all n-variable Boolean 

functions. 

(3) 1111 22 22}0)(|{# ,22}1)(|{# −−−− ==±==
nn nn XfXXfX  . 

(4) f(X) is perfect nonlinear. 

From properties (3) we can see that Bent functions are not balanced. However, they 

have the largest nonilinearity, and this makes Bent functions an important component 

in cipher systems.  
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4.2  Multiple-Output Boolean Functions (S-boxes) 

 

 In this section, we turn to introduce the properties of multiple-output Boolean 

functions. An n-input, m-output Boolean function F(X) is a map 

.}1,0{}1,0{: mnF →  

It can be viewed as the combination of m single-output Boolean functions, i.e., 

F(X)=(f1(X), f2(X),…,fm(X)). The S-boxes we used in SPNs are multiple-output 

Boolean functions, too. Note that the S-boxes used in SPNs or Feistel Networks 

require certain properties, not all multiple output Boolean functions are satisfied. This 

will be described later. And from now on, we call n-input, m-output Boolean functions 

as (n,m) S-boxes.  

Example 4.6: Suppose F(X) is a (3,2) S-box and F(X)=(f1(X), f2(X))=(x1+x2, x2x3). 

Then the truth table output looks like: 

 

x1 x2 x3 f1 f2 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 1 0 

0 1 1 1 1 

1 0 0 1 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 1 0 1 

 

Now, let’s see some properties of (n,m) S-box.  

Definition 4.7: An (n,m) S-box F(X)=(f1(X),f2(X),…,fm(X)) is said to be balanced 

(uniformly distributed) if and only if all nonzero linear combinations of f1, f2,…, fm are 

F 
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balanced. 

The S-boxes used in SPNs should be balanced. 

Definition 4.8: The algebraic degree of an (n,m) S-box F(X)=(f1(X),f2(X),…,fm(X)) is 

defined to be the minimum degree of all nonzero linear combinations of f1, f2,…, fm, 

i.e.,  

}0),...,,( , , |){deg(min)deg( 2121
≠∈⊕==

= miii

m

ig
aaaFafaggF .   (4.9) 

Definition 4.9: The nonlinearity of an (n,m) S-box F(X)=(f1(X),f2(X),…,fm(X)) is 

defined to be the minimum nonlinearity among all nonzero linear combinations of f1, 

f2,…, fm, i.e.,  

}0),...,,( , , |)({min)( 2121
≠∈⊕==

= miii

m

ig
aaaFafaggnlFnl .   (4.10) 

The definition of nl(F) was first introduced by Nyberg in [26]. We then take an 

example to illustrate the above ideas. 

Example 4.7: For an (n,m) S-box F(X)=(x1x2+x3, x3).  

x1 x2 x3 f1 f2 f1+f2 

0 0 0 0 0 0 

0 0 1 1 1 0 

0 1 0 0 0 0 

0 1 1 1 1 0 

1 0 0 0 0 0 

1 0 1 1 1 0 

1 1 0 1 0 1 

1 1 1 0 1 1 

 

All nonzero linear combinations of f1,f2 are f1, f2, f1+f2. And we can see that f1+f2 is not 

balanced. Although f1 and f2 are balanced, F(X) is still not balanced. 

The algebraic degree of F(X) is min{deg(f1), deg(f2), deg(f1+f2)}=min{2,1,2}=1.  

not balanced balanced 
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The nonlinearity nl(F)=min{nl(f1), nl(f2), nl(f1+f2)}. 

 

In the next section, we will show that nonlinearity is the most important property as 

far as the linear approximation table is concerned. 

 

4.3  The Linear Approximation of S-boxes 

 

In this section, we will analyze the linear approximation table and see what is it 

related to the properties we introduced in the previous section. Also we hope to find 

out what properties can help to resist the linear cryptanalysis. First, let’s see the 

following lemma. 

Theorem 4.4: The sum of any row or any column in the linear approximation table 

will equal to 12 −± n  for an (n,n) S-box. 

Proof: Let’s take the sum of row as an example to prove, the sum of column is similar. 

Since this is a bijective S-box, any nonzero linear combination of the output will be 

balanced, i.e., there are equal zeros and ones. See the following n=3 case. 

Y1 Y2 Y3 Y1+Y2 Y2+Y3 Y1+Y3 Y1+Y2+Y3 0 

0 0 1 0 1 1 1 0 

1 0 1 1 1 0 0 0 

0 1 1 1 0 1 0 0 

1 1 0 0 1 1 0 0 

0 1 0 1 1 0 1 0 

1 0 0 1 0 1 1 0 

1 1 1 0 0 0 1 0 

0 0 0 0 0 0 0 0 

 
balanced 

balanced 
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From the above table we see that not only nonzero linear combinations of output truth 

table are balanced, but also the row they formed except for the all zero one. From the 

definition of linear approximation table, 

}1,0{, somefor  ,0
11

∈=





⊕






 ⊕⊕

==
iiii

n

i
ii

n

i
baYbXa , the sum of one row of linear 

approximation table means we fix on a certain linear combination of Xi (1≦i≦n) and 

test all linear combination of Yi (1≦i≦n). Let r be the truth table of certain 

combination of 





⊕

=
ii

n

i
Xa

1
and rz ( }2,...,2,1{ nz ∈ ) the bit corresponding to the all zero 

row (the shaded row). Then there are two cases:  

(a) rz=0: Since 00 ⊕  must be 0 and there are 2n combination of 





⊕

=
ii

n

i
Yb

1
 so the 

sum of row now has at least 2n. 

(b) rz=1: Since 101 =⊕ , this bit contributes no weight to the sum. 

Let’s see the rest 2n-1 bits of r. From the above table, we know the combination of 







⊕

=
ii

n

i
Yb

1
 form a balanced truth table. Thus no matter the rest bits of r are zeros or 

ones, they each add 2n-1 weight to the sum. So we have the total sum to be 

2n-1(2n-1)+2n in case (a) and 2n-1(2n-1) in case (b). Since we minus 2n-1 for each entry 

in advance in the linear approximation table, we have to minus 2n-1×2n in total for one 

row. Thus we have the sum of linear approximation table to be 12 −± n . 

 

Next, let’s see the relation between the linear approximation table and the 

nonlinearity. In [12], they have the following equation. The best linear approximation 

of an S-box occurs with probability εp  where 

n

n NLp
2

2|| min
1

2
1 −

=−
−

ε           (4.11) 

and NLmin is the nonlinearity of the S-box. Here, we state this in another way and 

prove it. 
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Theorem 4.4: The nonlinearity of an (n,n) S-box is equal to 2n-1 minus the maximum 

absolute value, denoted by |k|, of the linear approximation table. 

Proof: From Definition 4.8, we know that the nonlinearity of an (n,n) S-box is the 

minimum nonlinearity of all nonzero linear combination of fi, where the S-box is 

F=(f1,f2,…,fn). And from the definition of the linear approximation table, each column 

of ii

n

i
Yb

1=
⊕  contains the all linear combination of fi. Thus the smallest nonlinearity 

among all ii

n

i
Yb

1=
⊕  is the nonlineairty of the S-box. Now we view ii

n

i
Yb

1=
⊕  as one f(X) 

and prove the theorem by the Walsh transformation. From Theorem 4.1, we know the 

nonlinearity using Walsh transformation is |})({|max2)(
2

2
11 uWfnl f

Fu

n
n∈

− −= . And the 

Walsh transformation is  

)),((22
})({#})({#

)1()(
2

)(

XuXfd
XuXfXuXf

uW

n

FX

XuXf
f

n

⋅−=

⋅≠−⋅==

−= ∑
∈

⋅+

 

Since each row represents one uX for nFu 2∈ , we have the following: 

|})),((22{|max2

|})({|max2)(

2

2

2
11

2
11

XuXfd

uWfnl

n

Fu

n

f
Fu

n

n

n

⋅−−=

−=

∈

−

∈

−

      (4.12) 

The maximum u happens in two cases: 

Case 1: 2n-2d(f(X),uX) is positive maximum, thus d(f(X),uX) must be the minimum 

value. This means that number of f(X)=uX is the largest one; that is to say, when it 

minus 2n-1, it becomes the largest positive k. 

Case 2: 2n-2d(f(X),uX) is negative minimum, thus d(f(X), uX) must be the maximum 

value. This means that number of f(X)=uX is the smallest one; that is to say, when it 

minus 2n-1, it becomes negative smallest k. 

Combine Case 1 and Case 2 and apply them into the Equation 4.12, we get the 

nonlinearity of the S-box is nl(Sbox)=2n-1-|k|.  
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In fact, this lemma is the same as Equation (4.11) as follows.  

n

n

n

n

n

n

n

Sboxnlk

kSboxnl
kSboxnl

2
)(2

2

2
2

2
)(
2)(

1

1

1

−
=⇒

−
=⇒

−=

−

−

−

 

n
k
2

 is the bias, which is 2
1−εp  and nl(Sbox) is NLmin. With this lemma, we know 

that the larger k is the smaller the nonlinearity of S-box. Since the value will affect the 

bias of linear expression, we conclude that the smaller the values in the linear 

approximation table the smaller the biases. In other words, if the nonlinearity of the 

S-box is larger, then it can resist linear attack more efficiently.  

 

4.4  Construction of S-boxes 

 

In this section, we introduce two common construction methods of S-boxes which can 

be used in SPNs.  

 

4.4.1  Random Generation 

 

 Since the (n,n) S-box we need should be bijective, generating the S-box by 

randomly permuting the output seems to be the most easy and common way. See the 

following example. 

Example 4.8: We take (3,3) and (4,4) S-boxes as examples and we denote the inputs 

and outputs in octal and hexadecimal format, respectively.  

input 0 1 2 3 4 5 6 7 

S-box 1 2 4 7 5 3 1 0 6 

S-box 2 6 2 7 1 0 4 5 3 



 47 
 

 

input 0 1 2 3 4 5 6 7 8 9 A B C D E 

S-box 1 A 3 4 B E 2 5 C 1 6 0 8 D 7 9 

S-box 2 6 A 5 9 0 B 4 D 1 E 7 2 C 3 8 

 

 

The advantage of this method is that it is very simple. However, the 

corresponding properties are usually not very good. Thus we may take more time in 

filtering out the properties we need. There are also some other randomly generated 

methods like [1][10].  

 

4.4.2  Generation using finite field 

 

 This method is used in the AES (Rijndael) [3] and it seems to work very well in 

resisting the linear attack. The AES makes use of the Galois Field over 2n and we give 

the algorithm in Algorithm 4.1. This is a very simple algorithm and with good 

properties, which we will check later. First we denote the S-box input and output in a 

field element. For example, (00110101) becomes x5+x4+x2+1. The S-box input is first 

represented as field element and then we find the inverse of this element and transfer 

back to binary form. And we set a constant vector C and a nonsingular matrix B. The 

final step is to multiply the matrix B with the binary inverse element and add with 

vector C. The result is then becoming the output of the S-box. The matrix we use 

comes from choosing the first row and the remains are cyclic shift one bit right from 

the above row. Notice that the resulting matrix should be nonsingular, otherwise there 

won’t be a bijective mapping. Figure 16 shows the process of generating the output of 
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the S-box.  
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Figure 16: AES S-box Generation 

…
 

 

From the construction method, we can see that three parameters could be changed: the 

Algorithm 4.1:  

external FIELDINV, BINARYTOFIELD, FIELDTOBINARY 
z ← BINARYTOFILED (a7a6a5a4a3a2a1a0) 
if z≠0 
  then z ← FIELDINV(z) 
(a7a6a5a4a3a2a1a0) ← FIELDTOBINARY(z) 
(c7c6c5c4c3c2c1c0) ← (01100011) 
comment: In the following loop, all subscripts are to be reduced modulo 8 
for i ← 0 to 7 
  do bi←(ai+ai+4+ai+5+ai+6+ai+7+ci) mod 2 
return (b7b6b5b4b3b2b1b0) 
 
Note: The field elements and their inverses are generated from the 
irreducible polynomial h(X)=1+x+x3+x4+x8. 
FIELDINV transfer a field element to its inverse element. 
BINARYTOFIELD transfer a binary sequence to a field element and 
FIELDTOBINARY does the inverse operation.  
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irreducible polynomial h(X), the matrix B, and the constant vector C. In the next 

section, we will discuss over these three parameters and check the difference among 

them. 

 

4.5  Design Analysis  

 

In this section, we analyze the properties of the construction methods proposed in the 

previous section. 

 

4.5.1  Analysis of random generation 

 

 Generally, the properties of S-boxes generated by random are not very good. We 

tested about a few hundreds and the maximum absolute value of linear approximation 

table ranged from 32 to 42 for (8,8) S-boxes and 12 to 18 for (6,6) S-boxes. 

Interestingly, the average number of appearance will decrease as the maximum 

absolute value increases. See the following figures. 

0

10

20

30

40

50

60

12 14 16 18

Average (%)

Number of
appearance

 
Figure 17: Properties of (6,6) S-box generated from random 
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4.5.2  Analysis of Generation using finite field  

 

 From the end of the previous section, we know three parameters could be 

changed: the irreducible polynomial, the matrix B, and the constant vector C. Then, 

we tested these three cases; we find that no matter what we changed, the values are 

still the same. See the following table (Number of appearance means how many times 

the maximum value appears in the table).  

 

Number of variables 4 5 6 8 

Maximum value 4 6 8 16 

Number of appearance 30 31 189 1275 

 

In their original design [3], Daemen and Rijmen declared that the chosen polynomial 

and the matrix were in simple format. The constant was chosen so that no fixed points 

exist (no x=S(x)) and no opposite points ( x =S(x)), either. And we further analyze this 

construction in the following parts. Let’s first see what the linear approximation table 

looks like if no matrix and constant vector are used, i.e., the outputs of S-box is the 

field elements inverse. It appears that this construction will result in a symmetric 

Table 8: The properties of different (n,n) S-box constructed from GF(2n) 

Figure 18: Properties of (8,8) S-box generated from random 
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linear approximation table. 

Proposition 4.1: The S-boxes generated using finite field with no matrix and constant 

vector applied will result in the linear approximation table with row i equal to column 

i (a symmetric table).  

Proof: Since the only operation now is to calculate the field elements inverse. If 

element a has inverse b, then element b will have inverse a. Thus the S-box input a 

will output its inverse b, and in the same way, if the output of the S-box is a, then its 

input will be b. From the definition of the linear approximation table, row i means that 

we fix on a certain input pattern (i is represented in a1a2…an in bianry) and compute 

0
11

=





⊕






 ⊕⊕

==
ii

n

i
ii

n

i
YbXa  for all output patterns (for all bi ). Now since every S-box 

input-output is a pair, if the bit in 





⊕

=
ii

n

i
Xa

1
 is different from the bit in 
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=
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Yb

1
, 

we can find the bit in 





⊕

=
ii

n

i
Yb

1
 (for a certain bi, i is represented in b1b2…bn in bianry) 

is also different from the bit in 





⊕

=
ii

n

i
Xa

1
. Thus whenever we find a pair (a)-(b) 

contributes a distance to row i column j, we can find another pair (b)-(a) contributes 

the same distance to column i row j. Thus the values of row i in the linear 

approximation table will equal to column i.  

 

Example 4.9: See the following (4,4) S-box which is generated from irreducible 

polynomial h(X)=1+x+x4 and the corresponding linear approximation table. 

From the S-box and the linear approximation table, we see that row 1 is equal to 

column 1 and row 2 is equal to column 2, and…etc. We take row 8 and column 8 to 

explain more. Row 8 means (1000) in binary, i.e., we see the first column of the truth 

table of S-box input and it is 00000000 11111111. And we said that the field element 

and its inverse becomes a pair, i.e., (0000)-(0000), (0001)-(1111), (0010)-(1011), …, 
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(1111)-(0001). The first one is the S-box input and the second is the output. The 

underlined bit becomes the truth table we check in row 8. 

  
 

 

 

 

Figure 19: S-box and its linear approximation table 

Now if the underlined bit is different from the bold bit, we can find that the same 

situation in column 8 to row 1. For example, the (0001)-(1111) pair contributes 1 

distance to row 8 and column 1. We can find the corresponding pair (1111)-(0001) 

contributes 1 distance to column 8 and row 1. The (0010)-(1011) pair contributes 1 

distance to row 8 and column 1. We can also find the (1011)-(0010) pair contributes 1 

distance to column 8 and row 1. Thus whenever we find a pair (a)-(b) contributes a 

distance to row 8 column 1, we can find another pair (b)-(a) contributes the same 

distance to column 8 and row 1. So we have the values in row 8 equal to the values in 

column 8.  

 

Next, let’s see what happen when we apply the constant vector. It seems to only affect 

the sign in the linear approximation table. 

0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 
0 0 1 0 1 0 1 1 

0 0 1 1 0 1 0 1 

0 1 0 0 1 0 0 1 
0 1 0 1 0 0 1 1 

0 1 1 0 1 1 1 0 

0 1 1 1 1 1 0 0 
1 0 0 0 1 0 0 0 
1 0 0 1 0 1 0 0 

1 0 1 0 1 1 0 1 
1 0 1 1 0 0 1 0 

1 1 0 0 0 1 1 1 

1 1 0 1 1 0 1 0 
1 1 1 0 0 1 1 0 

1 1 1 1 0 0 0 1 
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Proposition 4.2: The S-boxes generated using finite field with different constant 

vectors will only affect the sign of the values in the linear approximation table. 

Proof: Suppose the two vectors are different in one place k, and then the two 

corresponding outputs of S-boxes are different in the kth column. And the kth 

columns are exactly complement of each other due to the construction method of AES 

S-box. Thus when we check the equation 0
11

=





⊕






 ⊕⊕

==
ii

n

i
ii

n

i
YbXa  for the linear 

approximation table, we find that whenever bk=1, the linear approximation tables of 

the two S-boxes will differ in their sign. This is because if the equation 

0
11

=





⊕






 ⊕⊕

==
ii

n

i
ii

n

i
YbXa  holds t times for the first S-box, then it holds 2n-t for the 

second S-box. Thus after we minus 2n-1 to construct the table, they become 

)2( 1 tn −± − . When the two constant vectors differ in more than one place, we still can 

derive a similar result by using the Inclusion-Exclusion Principle.  

 

Example 4.10: See the following figures. The left one uses vector 0110 and the right 

one uses 0101. They differ in b3 and b4, so whenever b3=1 or b4=1 but not both, their 

sign will be different. 

  
(a) (b) 

Figure 20: Linear approximation table with different constant vector C 
 

Then, we check the result when we apply affine matrix B. It shows that the columns 

of the linear approximation table will be permutated.  
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Proposition 4.3: The S-boxes generated using finite field with different matrix B will 

permute the columns of the linear approximation table. 

Proof: Let’s first assume the constant vector is 0 since we proved that it only affects 

the sign. Now we are using the same irreducible polynomial but different affine 

matrix. From the construction method, we see the outputs of S-box come from 

CAB +×  for all 2n possible A (inverse of inputs), where B is affine matrix and C is 

0 now. Then, let’s see what is the relation between two linear approximation tables of 

different S-boxes using different B. Recall that the columns of linear approximation 

table is the condition 0
11

=





⊕






 ⊕⊕

==
ii

n

i
ii

n

i
YbXa  for all possible ai and certain bi. 

Thus we can view it as a vector [b1,b2,…,bn] to multiply the outputs 
















+
















×
















CAB , i.e., 
































+
















×
















× CABbbb n ],...,,[ 21 . And we focus 

on bi and B, 















× Bbbb n ],...,,[ 21  since A and C are fixed.  

Suppose the two S-boxes use B1 and B2, respectively. We can always find  
















×=
















× 221121 ]',...,','[],...,,[ BbbbBbbb nn .  

So the columns [b1’,b2’,…,bn’] of second S-box is identical to [b1,b2,…,bn] of first 

S-box. 

 

Example 4.11: See the following figure. The left one is constructed using 
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2B . 

Figure 21: Linear approximation table with different matrix B 
(a) (b) 

 

We can see that column 1 of (b) is identical to column 8 of (a) (regardless of sign) 

since ]1011[

1101
1110
0111
1011

]0001[

1110
0111
1011
1101

]1000[ =
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× . And column 3 of (b) 

is identical to column 9 of (a) (ignoring the sign) since 

]1100[

1101
1110
0111
1011

]0011[

1110
0111
1011
1101

]1001[ =



















×=



















× . The rest cases are similar 

and we omit them here.  

 

Finally we also tested different irreducible polynomials and it seems that they still 

have the same maximum absolute value and the value appears in the table the same 

times.  

 

Example 4.12: See the following figure. The left one is constructed with irreducible 

polynomial h1(X)=1+x+x4 and the right one is h2(X)=1+x3+x4. Though they look very 
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different, they still have the same maximum absolute value 4 and appear in the table 

the same 30 times. 

   
(a) (b) 

Figure 22: Linear approximation table with different irreducible polynomial 

 

From the above propositions, we know that changing any one of the parameters 

won’t affect the nonlinearity of the S-box. However, from Proposition 4.1 and 

Proposition 4.3, we know that with matrix B applied will permute the columns of the 

linear approximation table so that it won’t be too regular (symmetric if no matrix). 

Besides, the Rijndael designers said the constant vector C can avoid S-box with x=S(x) 

or x =S(x). We found in Proposition 4.2 that the constant vector will affect the sign in 

the linear approximation table.  
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Chapter 5  Conclusion 
 

In this thesis, we discussed about the linear cryptanalysis over small substitution- 

permutation networks. To apply linear cryptanalysis, we first analyzed the linear 

approximation table of the S-box. With this table we know which bits of input-output 

XOR of the S-box act in a nonrandom fashion. Then we combined several such 

input-output patterns to form a trail through the entire SPN. This trail finally becomes 

an equation 0=⊕⊕ KJI KCP  and indicates what plaintext bits and data bits into 

last round XOR with extra high or low probability. We calculated the bias of this trail 

by Piling-up lemma and denote it as ε . Then we started to attack the key bits by 

partially decrypting the plaintext-ciphertext pairs and we had to check whether the 

equation holds or not. In the end, the key counter closest to T)( 2
1 ε±  is supposed to 

be the most likely key bits, where T is the number of plaintext-ciphertext we have.  

 We thus proposed a simple strategy to determine the trails efficiently by the 

definition of the cost, k22 ×−ε , where ε  is the bias of the trail and k is the number 

of bits to attack. The cost tells us how much effort we need to succeed in the attack. 

By scanning the linear approximation table, we derived many trails and stored their 

corresponding bias, cost, etc., in a queue. Then we selected the one with the smallest 

cost to attack first. By using the CostUpdating we introduced in Chapter 3 we updated 

the cost in the queue and decided which trail to attack next. Finally we combined the 

Backtracking technique by storing extra candidate keys and we thus improved our 

success rate. 

 In the second part of this thesis, we turned to study the resistance of the S-box to 

linear attacks. We first introduced many properties of Boolean functions since S-box 

can be viewed as a kind of multiple-output Boolean function. And we found that 
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nonlinearity is the most important property S-box should have to resist the attack. 

With larger nonlinearity the values in the linear approximation table will be smaller 

and thus becomes hard to find a trail with a large bias to attack. Then we turned to 

discuss about the construction method of AES S-box since the design of AES S-box is 

proved to be resistant efficiently to linear attacks. And we also found several 

interesting properties when we changed the three parameters: the constant vector, the 

affine matrix and the irreducible polynomial. Though there are still several things we 

don’t understand, we believe our result may be useful for the future research.  

 In the future, we think there are two directions worthy of further study. First, to 

further analyze the linear attack and try to find new attack strategies. This includes 

designing strategies to find good linear trails with higher bias so that we can attack 

with less cost. And we can try to design a brand new strategy to attack or try to 

combine several techniques we already know, such as key ranking, multiple linear 

approximations, etc. Second, we can design the construction method of S-boxes with 

high nonlinearity to resist linear attacks. There are many papers about constructions of 

multiple output Boolean functions [8][9][13][27], but not all of them satisfying the 

requirements of S-box. So we can try to modify them without destroying their high 

nonlinearity property.  
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