-

— ,

Er S

T
:

%’1

TR R A el 2 MM ST F T Y

Linear Attacks on

Substitution-Permutation Networks

i & Xl Je o & 4 K

R L M E SR Ui e iy
Linear Attacks on

Substitution-Permutation Networks

7FPI P N e e Student : Wei-Ting Liu
?F,i%‘l%f’ 0 PRES B Advisor : Dr. Rong-Jaye Chen
Wl F
T ARE X

A Thesis
Submitted to Department of Computer Science and
Information Engineering
College of Electric Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Master
in

Computer Science and Information Engineering
June 2005

Hsinchu, Taiwan, Republic of China

P EARAY e £

7 &

g > ol B R ot e
E[fllejIFEJi $ &FUF—S«%]L il | PPy AR

fl[ll

P WIS G R e py ¥,
02 R FUT ;cf’;g_a;, %L[Ij%mu_f_ ,
SRS e s R g B P AL

E 70 Ry b [ISR
st JF’??ELIIijL[[?%K P SRR I P poss m ;'% #
i LVETEI LR (ST - IS D PSR R

e Sy P B
J%i iﬁfiﬁﬁijgff“ij AR > P
e +—~ < S~ o 6 SIIERES juﬁ%q:ﬁlﬂ“ ngﬂ“'é?y b
i M'?? >4 Epgeass = : [IF%%_:‘EE
'WFE , | 1 ?%r IFWELE@IJ?IH FESS o ;%i*JFS«%f& ﬁﬁﬁﬁ%ﬁf'[ﬁ%»&lﬁ%m ’ @

Eﬁp‘%“[g‘\kﬁﬂi? ;&%W ﬁifﬂé r?j ez ie EA e En N
HAEE ML E eﬁ“WWW*%Eﬂ%’*%%“ﬁ

& o %ﬁ&ﬁ@;h}o*a
5~ j’:ﬁ_{ﬂ-“yi L , G A
T b e T BT

R

RUEIS B LU [DES 2 FREIRAEE (SPN).L B AL = ﬁﬁ}g
RIS B~ o B e £l 25 PR A Gaatsh SPN froisu s, o
£ fld 16 5 7 BhiR - 32 B AV R Y 4[pl ([SPN il SRS B
I‘/*IF'EHfj'F 'E‘F”ﬂ‘ﬁﬁ”’ﬁ?ﬁ‘l“ TS BRI © 125 MEN Piling-up lemma JL;;[FIF?H'
[EHE Y [’Hr: > SRSl TR R 2 S R [BRI T aiﬂwfﬂs@ifm& -
SR i o B i 1 backiracking [IOfs PEHLAETE O IR 1) (R
TSI SRRV P R LSRR P (RE O P R R s pu SRR
B IS PP E I

91 DI (M VP L Sbox FTJFU[*’?"T’T - 2RI LT
ATV Eifl N5 <] AES i?ﬁﬁﬁ“'%ﬁ’@\li“ﬂil“ ISP o B

VI oAbl @t S-box [k Bk bl e v fR) i o R

SFER A e]
Keywords: 458 ﬁ}ii}élgylj,%’{ﬁi% ~ S-hox ~ 7E3E T ~ Backtracking ~ ZESUE

R

Abstract

Linear cryptanalysis is one of the most important attacks on block cipher
systems such as DES and substitution-permutation networks (SPNs). In this thesis,
we will focus on linear cryptanalysis on SPNs and give complete linear attacks on
16-hit block and 32-bit key SPNs for 4 rounds. We will discuss in detail over our
attack strategies. We first define the bias of atrail by using Piling-up lemma, and then
use an intelligent method to search a candidate trail to attack. Thus the corresponding
subkeys are derived trail by trail. If the resulting key is tested to be wrong then a
backtracking method is used to find the next candidate key to be tested. The
performance shows the efficiency of these strategies.

Moreover we will discuss+about _the properties of S-boxes and show that
nonlinearity is the most important property: S-boxes should have to resist linear
attacks. Since the AES (Advanced Eneryption-Standard) is designed properly to resist
linear attacks, we will study further-on its construction method and discover some
properties which may be useful for later researches.

Keywords: Linear Cryptanalysis, Substitution-Permutation Networks, S-box, Linear

Approximation, Backtracking, Nonlinearity, Multiple-Output Boolean Function

ChiNESE ADSIIE ACE. e iiieiiiiiiiiiiieiieeeiiieeetiaeeeenteecnsensesensessnsensnsansnscnsanes [
(=101 TS WA oIS £ - Vo S PPN i
(610]1] 1< 0| £ i
LISt Of FIgUI S ueniieiieiniieiiieeeiinteeintiaceeensescesensscnsessnsensescnsansesansessnsannns v
LiSt Of TADIES.cuiuiuieieiieiiiiiiiieieeeeeeeieeteterternsnsnsasesesessssesssssesnsnsnsnnnn vii
Chapterl INtrodUCHION....ceeecaeiee e i eiadieeeeeenceecnseecescnsescnsescnsanseseranes 1
Chapter2 BIlock Cipher SystBmMS. ceeeieide iiuadieiateceeeeeneeneeecescncescnsascsannnn. 3
21 Feistel NetWOrkS. .. G e 3

2.2 Substitution Permutation.Networks. ...cooo ..o 4

2.3 Standard Block Cipher Systems........c.coovviiiiiiie e 7
2.3 DS i 8

2,33 AES 10

24 Other Block Cipher SYyStems.oviiiiii e 14
241 RCB.. . 14

242 IDEA. 16
Chapter3 Linear CryptanalySiS.cccceceeeeeeeeeeeereecerenseecnseacesensescasensscnsions 19
31 Matsui’sAttack ONDES..... ... 19

3.2 Linear CryptanalySISON SPNS.oiniiiiiiiie e 20
321 ThePRiling-uplemma...............oooiiiii 21

3.2.2 Linear approximation of Sboxes...............ccooviiiiiiiiiiinn.. 21

3.2.3 Linearexpression of atrail..............cooviiiiiiiiiiiiii 23

324 Subkeysattack............coiiiiiii i 25
3.3 MoreonLinear CryptanalySiS........ccoouiiiniiiiiii i 25
331 Linear hull..... ..o 26

332 KeyranKing........ooouiiiiiii 27

3.3.3 Multiple linear approXimations...............ccooviiiiiiiiiiiiiiin.n. 28

34 OurAttaCk DESION. ..., 28
341 ODSEIVALiONS.oueiii 29

342 SHAEGIES. ..ot 29

34.3 Algorithm. .. . 33

344 PerfOrmManCe........ocuiuenie i 33
Chapter4 Design of S-boxes against Linear. CryptanalysiS......cevuveininenannens 35
4.1 Boolean FUNCLIONS. .. s cie e i it e 35

4.2 Multiple-Output Boolean FUnctions(S-boxes)..............ccccevevveveninnnn 41

4.3 The Linear Approximationof S-box.i....................o 43

4.4 Construction of S-BOXES...........oviiiiiiiii 46
441 Random generation...........c.ooouiiriiiriiiieeie e 46

4.4.2 Generationusing finitefield..................... 47

A5 DeSigNANAYSIS. ... 49
45.1 Analysisof randomgeneration..............ccceoiiiiiiiiiiiiiiiee, 49

45.2 Analysisof generation using finitefield................................ 50
ChapterS CoONCIUSION..iiuiiiiiieieiiiieiiieeetineeeeteecsensescnsessnsensescnsansnsnns 57
S = = T 59

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Figure 22

List of Figures

Feistel Network StrUCtUre. ... 4
SPN SITUCIUIE. ... e 6
DESSIUCIUIE. ...t e 8
The DEST fUNCHION. ... 9
Key scheduling of DES...... ..o 10
AES state representationfor Nb=4, 6, 8. 11
AES SUDBYLE fUNCLION.o 13
AES ShiftROW Operation............coouvriiiiiie e 13
AES MixColumn Operati 0N st b iis v e e 13
Encryption agorithmwith-RCe-W/t/b. v, ... 15
Decryption agorithmwith RC-W/r/b....cc..........oooooiiiiii 16
The IDEA StruCturés. ... ki e 17
A possible attack trail ... 24
Probability distribution..................oo 30
The backtrackingscheme................oooo 32
AES S-hOX geNeration.c.oviiuiiii e 48
Properties of (6,6) S-box generated from random........................... 49
Properties of (8,8) S-box generated from random........................... 50
S-box and its linear approximationtable....................cooocviiiin 52
Linear approximation table with different constant vector C............... 53
Linear approximation table with different matrix B......................... 55
Linear approximation table with different irreducible polynomial......... 56

vi

Table 1

Table 2

Table 3

Table4

Table5

Table 6

Table 7

Table 8

List of Tables

Shift offsetswith different Nb..............coooi 13
Linear approximation table of Example 3.1.................cooiiiiiiinn... 23
The success rate of linear cryptanalysSiS..........c.oooviviiiiiiiiiiee, 30
Thetrail data..........c.ooieiiii 34
Success rate with different number of candidate keys......................... 34
3-variable affineand linear functions..................oooiiiiiii i, 37
Nonlinearity eXample...........oooiriiiiiii e 39
Properties of different (n,n) S-box generated from GF(2").................... 50

Vil

viii

Chapter 1 Introduction

Shannon [32] suggested that secure, practical ciphers should have two properties:
confusion and diffusion. The confusion component aims at concealing any algebraic
structure in the system and is often a nonlinear substitution on a small sub-block. The
diffusion component aims at spreading out the influence of a minor modification of
the input data over all outputs and is often alinear mixing of sub-block connections.

Feistel [5] was the first to introduce such system based on Shannon’s concepts.
The confusion part consists of several rounds of substitution and referred to as
S-boxes. And the diffusion part consists of permutations between rounds. This is why
such systems are often called substitution-per mutation networks (SPNs). DES [22],
FEAL [31] and many other modern ciphers are the extended concepts of such system.

Differential cryptanalysis{2] and linear cryptanalysis [18] can both be applied to
DES and many other block ciphers:. In.this thesis, we will emphasize on linear
cryptanalysis and use it to break SPNs. The linear cryptanalysis requires that there
exists a linear relationship having probability not equal to 1/2 between several
plaintext bits and some data bits into the last round. The further the probability is
from 1/2 the better the attack will succeed.

The reason that linear cryptanalysis can succeed is due to the poor design of the
S-boxes. In the past, there were many papers discussing about the properties of
S-boxes or how to design good S-boxes [7][12][19][23][25][34]. In the first part of
this thesis, we focus on how to attack the SPN with non-proper S-boxes. In the
original attack, they just extract a part of the key bits using linear cryptanalysis and
the rest of them by exhaustive key search. In this thesis, we want to use linear

cryptanalysis recursively and each time to get a different part of the key bits. We will

propose some strategies in deciding many linear expressions all of which should have
large bias. And we will experiment on these strategies to see their effects.

In the second main part of thisthes's, we will turn to discuss about the properties
of S-boxes from the viewpoint of multiple-output Boolean functions. Then we will
analyze what properties S-boxes should have to resist linear cryptanalysis. Since the
new block cipher AES has proved to be resistant to linear attacks efficiently and its
construction is very simple, we will focus on this and try to discover some of its
properties for later researches.

The organization of this thesis is as follows: Chapter 2 introduces some basic
block cipher systems such as Feistel Networks and SPNs. Chapter 3 describes how
linear attacks work and we will use some new strategies to attack more efficiently.
Chapter 4 discusses about thesrelationship. between the properties of Boolean
functions and the resistance of*S-boxes to linear attacks. Further, the constructions of
AES S-boxes are studied to find some’interesting properties. Finally, our conclusion

and future work is given in Chapter. 5.

Chapter 2 Block Cipher Systems

In this chapter, we will introduce some block cipher systems that are commonly used
including Feistel Networks and Substitution-Permutation Networks (SPNs). Most

modern cipher systems are modified from these two ciphers.

2.1 Festel Networks

Feistel and some other researchers [5][6] proposed the Feistel Networks based
on Shannon’s [32] theory in 1973. The most famous block cipher, Data Encryption
Standard (DES), is an example of FeisteliNetwork. In a Feistel Network, each state (a
round input) is divided into two halves of egual Iength (N/2, suppose N is the block
length), we call L' and R' respectively. In each round,we only modify one half of the
round input, which is done by the round function. The round function f takes R™ and

K; as inputs and output an equal length as R

f:{01:® {0]*
Then the output XOR with L™ to form R' while R™ is preserved to form L'. So we
can see that a Feistel Network requires two rounds to change al the input data. Figure
1 depicts the Feistel Network structure.

As for the design of round function, a common way is to incorporate some
S-boxes and linear transformations like DES, which uses eight S-boxes and some
permutations. Note that the round function in Feistel Network does not need to be
invertible. This gives much flexibility to the design issue. Thus the S-boxes used can

have n-input and m-output while n? m since it does not need to be bijective.

-k > Round 1

Lt R!
|
< ko
> Round 2
L2 R?)
Ln'l Rn-l N
< Kn
> Roundn
\ 4
R" L ’

Figure 1: Feistel Network Structure
Another advantage of Feistel Network is that the decryption agorithm is the
same as encryption algorithm. That is, we decrypt the ciphertext by processing it
through the encryption algorithm except for the reverse key order. Thisfeatureis very

convenient for the implementation whether in software or hardware.

2.2 Substitution-Per mutation Networks

This is the structure we are going to attack in the next chapter. For convenience,
the following notations are used:

Ur: theinput to S-box in round r (also the result of W, ; A K,)

V;: the output of S-box inround r

W;: the permutated result of round r (also the output of round r)

K: theinitial key

K:: the key used in round r

And we represent the i"" bit by using the superscript. For example, K1* is the 4™ bit of
round 1 key bits.

Suppose | and m are positive integers where | is the number of inputs to each S-box
and m is the number of S-boxes in each round. So Ixm is the block length of the

cipher. An SPN containstwo parts: pg and p;.

pS :{Olj}l ® {Olj}l

isa permutation (or substitution), and
Pr:{L2,..,Im ® {12,... lm

isalso apermutation. p¢ isthe S-box we mentioned-above and it is used to replace |
bits by another | bits and it should be abijective operation. p, is the permutation to
permute the outputs of S-boxes whichis|m bitsintotal in around.

The key-scheduling algorithm we use here is a simple shift operation. Thus the
first round key bits are the first Im bits of the initial key K, i.e,, K! to K™ And the
second round key bits shift | bits and become K'** to K™'. The rest of the round keys
are derived in asimilar way.

The encryption algorithm consists of the following steps. The SPN consists of Nr
rounds. In each round, we will perform m substitutions by pg, then followed by the
permutation p, (except for the last round, there is no permutation needed since it
contributes no security). And before each S-box, we will XOR with round key bits
(thisis called round key mixing). After the substitution of the last round, we perform
another round key mixing. So in an Nr-round SPN, there will be Nr+1 round keys

needed. The very first and last XOR with round key is called whitening, which was

5

proposed by Schneier [30]. Figure 2 is a pictorial representation of such SPN.

plaintext
I L1 1] Qllrlmkclalelnlﬂ |i l_,l [111 ! ~
U] | T
S Si2 Si3 S Round 1
Vi
Wy y
[Subkey K, mixing [
Uz][] | T
So1 S Sos Sos Round 2
\Z!
W, p,

[Subkey Ko mixing |

| Ihkey Ky mixing |
Unv [L1 [l [etedabed s
Snr1 Snr2 Snr3 Snra Round Nr
W [T [[st [
TSP e
ciphertext

Figure 2: SPN structure

Example 2.1: Suppose |=m=Nr=4. Let the S-box pg be defined as follows, where

the input (x) and the output (p(x)) are written in hexadecimal:

x|0|1}2,3|4,5]6,78|9A|B|C|D|E|F

(63}
[(e]
o
~

psX)|E|4 |D|1|2|F | B|8|3|A|6|C

And the permutation p, be defined asfollows:

x |1]12|3|4|5|6|7|89|1011|12|13|14 15|16

Pe(X)|1 |5|9|13|2 |6 (101243 |7 |11 |15|4 |8 |12|16

Suppose the key is
K= 0011 1010 1001 0100 1101 0110 0011 1111

Then the round keys according to the key scheduling above are:

6

K;= 0011 1010 1001 0100
K>=1010 1001 0100 1101
Ks= 1001 0100 1101 0110
K,= 0100 1101 0110 0011
Ks= 1101 0110 0011 1111
Suppose the plaintext is
x= 0010 0110 1011 0111
We see how the encryption processes for the first two rounds:
Wp=x= 0010 0110 1011 0111
K;= 0011 1010 1001 0100
U= Wp A K= 0001 1100 0010 0011
V;= 0100 0101 1101 0001
W;= 0010 1110 0000-0111
K>= 1010 1001 0100-1101
U= Wi A K2= 1000 0111.0200 1010
V,= 0011 1000 0010 0110
W,= 0100 0001 1011 1000

The remaining rounds can be processed in asimilar way. [l
We decrypt the ciphertext in reverse order of the encryption algorithm. That is,

the keys are given in reverse order and the S-boxes are bijective so that we can

recover the input, which is unlike the Feistel Network.

2.3 Sandard Block Cipher Systems

In this section we introduce two standard block cipher systems: DES and AES.

7

231 DES

Data Encryption Standard (DES) originates from the Lucifer which was
developed by IBM and later modified by NIST (National Institute of Standards and
Technology) to become a block cipher standard in 1977. DES is one type of Feistel
structure we described earlier. The block length is 64-bit and also 64-hit key length

(including 8 parity check bits). Figure 3 is an overview of the DES structure.

plaintext

Lo RO
) 4 P
Eg)‘Z “
L1=Ro R1=Lo+f(Ro,K1)
) 4 a
& ‘ g
Lo=R; Ro=L1+f(R1,K2)
L1s=R14 Ris=L14+f(R14,K15)
) 4 P
SO
y
Ri6=L15+f(R15,K 16) L16=Rus

ciphertext

Figure 3: DES structure

The IPand IP* are initial permutation and inverse permutation, respectively. Each L;
and R; is 32 bitsin length. The f function takes R;.; and K; as inputs and we show the f

functionin Figure 4.

Ri—l Ki

32 bits .
48 bits

v 48bits
E(Ri-1)

\@

v

B: B, Bs B4 Bs Be B~ Bs
&éééé%éé
‘ ; I
C, C, Cs Ca Cs Cs C; Cs
C? 32 bits
f(A,J)

Figure 4: The DESf function

Ri.1 is first extended to 48 bits and then XOR with round key (48-bit). The result is
then divided into 8 blocks each with 6 bits. These 8 blocks are then input to the 8
S-boxes which output 4 bits each. The 8 blocks of Ci are permutated according to P
and the output of f function isthen the output of permutation P,

The key scheduling will generate 16 subkeys each with 48 bits from the initial
56 (64) bits key. We show the scheduling in Figure 5. The PC-1 and PC-2 are also

permutations.

LS (Left Circular Shift)

Iteration Number of
i Left Shifts

0
%IU
N;

© o ~NoOUAWN R

e
O
I\)
B R e
N PO

B
A W

O
5
o
5
=
()]
P NDNNNNNMNNMNEPEPENMNDMNMNNDNNDDNPREPRP

Figure 5:' Key scheduling of-DES

=
(]

232 AES

On January 2, 1997, NIST began the process of choosing a replacement of DES,
which is called the Advanced Encryption Standard (AES). AES requires a block
length with 128-bit and supporting key length with 128, 192, 256 bits (Nk=4, 6, 8).
On October 2, 2000, Rijndael [3][4] was selected as the new standard.

AES has block length with 128, 192, 256 (Nb=4, 6, 8) bits whose number of
rounds Nr, are 10, 12, and 14, respectively. All operations in AES are byte oriented.
Sate is the input cut into byte array (Figure 6). AES first generates the subkeys we
need using KeyExpansion algorithm from the initial key. Then for the first Nr-1
rounds, it performs the Round function, which contains the ByteSub ~ ShiftRow -

MixColumn and AddRoundKey. Finally we apply the FinalRound, which is the same

10

as Round except for no MixCloumn. The algorithm is given in Algorithm 2.1 in

pseudo C language.

S0 | So1 | So2 | Sos | Soa | Sos | Sos | Soz
S1o [S1a | S12 | S13 [S14a | Sis | Sie | Saz7
S20 | S21 | S22 | So3 | Spa | So5 | S26 | Saz
S30 | S31 | Ss2 | Ss3 | Ssa | Sss | Szs | Saz

Figure 6: AES Sate representation for Nb=4, 6, 8

Rijndael (State, Key)

Algorithm2.1: AES algorithm

{
KeyExpansion(Key);
AddRoundKey(State, RoundKey);
For(i=1; i<Nr; i++)
{
Round(State, RoundK ey);
}
FinalRound(State, RoundK ey);
}
Round(State, RoundK ey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundK ey(State, RoundK ey);
}

FinalRound(State, RoundK ey)

{
ByteSub(State);
ShiftRow(State);
AddRoundKey(State, RoundKey);

KeyExpansion generates the Nr+1 round subkeys from the initial key. The expanded

key is alinear array of 4-byte word. The first Nk words contain the cipher key. All

other words are defined recursively in terms of words with smaller indices. The

algorithm is given in Algorithm 2.2.

Algorithm 2.2:
KeyExpansion(byte Key[4* NK] word W[Nb* (Nr+1)])
{
for(i =0; i < NkK; i++)
WI[i] = (Key[4*i],Key[4*i+1] Key[4*i+2] Key[4*i+3]);
for(i = Nk; i <Nb* (Nr + 1); i++)
{
temp = WI[i - 1];
if (i % Nk ==0)
temp = SubByte(RotByte(temp)) A Rcon[i / NK];
WI[i] =WI[i-Nk] A temp;
}
}

The round constants are independent of Nk and defined by:
Reon[i] = (RC]i],00’,“00°,°00") with RC[i] representing an element in GF(2%) with a
value of x''"? so that:
RC[1] =1(i.e ‘01"
RC[i] = x (i.e. ‘02") -(RC[i-1]) = x":®
RotByte is a rotate of the bytes, i.e., RotByte(Bo,B1,B2,B3)=(B1,B2,B3,Bp). Then the
RoundKey i is given by the Round Key buffer word W[Nb*i] to W[Nb* (i+1)].
For the first Nr-1 rounds, we perform Round function, which contains four
sub-function: ByteSub, ShiftRow, MixColumn, and AddRoundKey. The FinalRound
is the same as Round except for no MixColumn. Next, we briefly introduce the
sub-functions.

ByteSub is the function to replace one byte by another byte, i.e, it acts as a

S-box. The detailed algorithm will be given in Chapter 4.

12

/\A S-box /\

Xoo0 | Xoa | Xo,g/r Xo3 Yoo | Yoi \/o,z Yos
Xpo | Xl Xjj | X3 Yio | Y11 VYij | Vi3
X20 | X21 , X23 Y20 | Y2, , Y23
X30 | X31 | X32 | X33 Y30 | Y31 | Y32 | Y33

Figure 7: AES ByteSub function
The ShiftRow is acyclic left shift of the State according to the offsets (Table 1).

Table 1: Shift offsets with different Nb

Nb C1 C2 C3

a b jc |d .. | nosnift >la |b |c

shift C1 '
e [f lg |.. | ift | | : 11/> e
ho i | shift C2 — l> h i
k|l m [n ... | shift C3 : | :>k I m

Figure 8: AES ShiftRow operation

MixColumn replaces a column by a new one formed by multiplying the column with

amatrix.
> & 3 1 1 ’ji
u
; . A 2 3 1 :
Xoo | Xof XOi /Xo,s A€ u Yoo | Yol Y% | yos
€L 1 2 3
Xio | X101 Xij | X13 g?: 11 28 Yio | Yl Yij | Y13
X20 | X21 X23 Y20 | Y21 Y23
X2 Y2,
X30 | X31 X33 Y30 | Y31 Y33
X3 Y3

Figure 9: AES MixColumn operation

13

And the AddRoundKey is simply add the State with the RoundKey.

2.4 Other Block Cipher Systems

Although the previous two ciphers are the most commonly used today, there are
still other systems not belonging to these two kinds. However, there exists one
common feature in all of them: they use repeated rounds to achieve security

requirement.

241 RCo6

RC6 [28] is a block cipher: designed to meet the requirements of AES. The
design is based on RC5 and modified to' inerease security and performance. It has
block length with 128-bit and can be seen-as-extending RC5 from 64-bit to 128 bit.
However, instead of using two ‘64-bit registers, they change to use four 32-bit
registers since the AES architecture does not support 64-bit operations. Like RC5,
RC6 makes an extensive use of data-dependant rotations. The philosophy of RC5isto
exploit operations (such as rotations) that are efficiently implemented on modern
processors. RC6 follows the trend and it includes the 32-bit integer multiplication
since this operation is now implemented on amost al processors. The advantage of
the integer multiplication is to “diffuse” effectively. RC6 uses it to compute the
rotation amounts, so that the rotation amounts are dependent on all of the bhits of
another register. Thus RC6 has much faster diffusion than RC5 and increases security
with fewer rounds.

A version of RC6 is more accurately specified as RC6-w/r/b where the word size

isw bits, encryption consists of a nonnegative number of rounds r, and b denotes the

14

length of the encryption key in bytes. RC6 consists of the following six basic
operations:
a+ b: integer addition modulo 2"
a— b: integer subtraction modulo 2"
aA b: bitwise exclusive-or of w-bit words
ax b: integer multiplication modulo 2"
a<<<hb: rotate the w-hit word a to the left by the amount given by the least
significant Igw bitsof b
a>>>b: rotate the w-bit word a to the right by the amount given by the least
significant Igw bitsof b
The key scheduling is as follows. The user supplies a key of b bytes, where 0=b
= 255. From this key, 2r + 4 words (w bits each) are derived and stored in the array
S[0,1,..., 2r + 3]. This array isused in both encryption and decryption. The encryption

and decryption algorithms are shown.inthe followingfigures.

Input: Plaintext stored in four w-bit input registers A, B, C, D
Number r of rounds
w-bit round keys §0,1,...,2r + 3]

Output: Ciphertext storedin A, B, C, D

Stepss B=B+ 0]

D=D+d1]
fori=1tor do
{

t=(B" (2B+1) <<<lgw
u=(D" (2D +1)) <<<lIgw
A=((AA 1) <<<u) + 92i]
C=(CAu)<<<t)+ 92 +]]
(A/B,C,D)=(B,C,D,A)

}

A=A+92r +2]

C=C+g2r+3

Figure 10. Encryption agorithm with RC6-w/r/b

15

Input: Ciphertext stored in four w-bit input registers A, B, C, D
Number r of rounds
w-bit round keys §0,1,...,2r + 3]

Output: Paintext storedin A, B, C, D

Steps:. C=C—g2r+3]

A=A- J2r +2]
for i =r downto 1 do
{

(AB,C,D)=(D,AB,C)
u=(D" (2D +1)) <<<Igw
t=(B" (2B+1) <<<lIgw
C=((C- g2 +1) >>>t)Au
A=((A- g2i]) >>>u)At

}

D=D-]

B=B- (]

Figure 11. Deeryption algorithm with RC6-w/r/b

243 |DEA

IDEA (International Data Encryption Algorithm) [16][17] was developed by Lai
in 1991. IDEA is used in PGP (Pretty Good Privacy), the cryptographic system for
Internet and E-mail security. IDEA is aso 64-bit block length as DES and the round
number is 8 and the key size is 128-hit.

The algorithm isillustrated in Figure 12. The 64-hit plaintext is divided into four
16-hit blocks, X1,X2,X3,X4. In each round, six 16-bit subkeys are used, denoted by
Ki 1,Ki2,...,Kig for round i. Since there are 8 rounds, 48 subkeys are used, plus 4 extra

subkeys used after the last round to transform the output. And the four output

16

ciphertext blocks are denoted by Y1,Y2,Y3,Y4.

¥, %. " -
L4 ‘ i
LR SO RECLR J =2 zt— FH Zin—e (o
J - =
L — |
* o
onc round 13 —w(a) %
+ -
B0 1
Ty .
e :

ronmids

I =——
| |
s

r.——'—" ——
2 —w(+) Z@ -+ output emstormation Ei'ﬂ"% L —{r)
T Ty : !

A : bit by bit XOR
FH: addition modulo 2™
O : multiplication madulo.2'%+1 With zero corresponds to 2*°

Figure 12. The IDEA structure

In each round, the 16-bit blocks are XORed, added and multiplied as the figure
shows. The multiplication modulo 2'%+1 can be regarded as the S-box of IDEA. After
the last step, each of the resulting 16-hit blocks is multiplied modulo 2'°+1 by its
corresponding subkey.

The key scheduling is very ssimple as follows. The initial key of 128 bits is
divided into 8 blocks of 16 bits and they become Ky 1,...,K16, and K,1,K22. Then the
initial key is shifted 25 bits left and divided into 8 blocks of new subkeys. The
procedure continues until 52 subkeys are generated.

The decryption agorithm is the same as encryption. The keys are used in reverse

order with some modifications; they are the inverse of the encryption keys for

17

multiplications as well as addition.

In this chapter, we introduced several block cipher systems from basic schemes,
Feistel Networks and SPNs, to standard systems, DES and AES. In the next chapter,
we will start to use linear cryptanalysis to attack the SPNs and use our strategies to

attack them more efficiently.

18

Chapter 3 Linear Cryptanalysis

In this chapter, we introduce linear cryptanalysis, which is the most important attack
on block cipher systems. Section 1 briefly introduces the Matsui’s attack concept on
DES. Section 2 gives an entire procedure of the attack on SPNs. Section 3 introduces
some other improved techniques proposed by other researchers. Section 4 illustrates
our new strategies, which can find trails with good bias to attack and we also show

the performance of our new strategies in the end.

3.1 Matsui’sAttack on DES

Originally, Matsui and Yamagishi'[21] developed the linear cryptanalysis against the
FEAL [31] (Fast Data Encipherment. Algorithm) cipher in 1992. In 1994, Matsui
modified it and used it on DES [18] in atheoretical attack on the full 16-round DES,
which requires 2*’ known plaintext-ciphertext pairs and successfully obtaines 14 key
bits. Now it has become the most important attack against block ciphers. In Matsui’s
paper, he introduced two versions of attack algorithms. The first one, caled
Algorithm 1, can only attack one key bit information. The second one, called
Algorithm 2, can extract more key bits in one attack.
Algorithm 1:
Sep 1: Let T be the number of plaintexts such that the left side of equation,
Plis,ineeri] A CLiL Tpreees o] = KIKL Ky K T
isequal to zero.

Sep 2: If T>N/2 (N denotes the number of plaintexts),

19

then guess K[k;,K,,....k.] =0 (when p>1/2) or 1 (when p<1/2),

elseguess K[k, K,,....k.] =1 (when p>1/2) or O (when p<l/2).

Algorithm 2:
Sep 1. For each candidate KU (i=12,..) of K, let T; be the number of

plaintexts such that the left side of equation
Plis,ineeesi JA CLiL Tpres Jo] A F(CLK ey] = KK, Ko e K
isequal to zero.
Sep 2: Let Ta be the maximal value and Tpyi, be the minimal value of all T;’s.
I If T, - N/2PT,, - N/2|, then adopt the key candidate corresponding to

Tmax and guess K[k, K, ..., K _].50 1(when p>1/2) or 1 (when p<1/2).

I If T, - N/2K|T,, - N/2|, then adopt the key candidate corresponding to

in

Tmin and guess K[k, Ky,...,k.] =1 (whenp>1/2) or O (when p<1/2).

In the remaining parts of this thesis, we focus'on Algorithm 2 since it is much more

powerful.

3.2 Linear Cryptanalysison SPNs

Here we briefly explain how linear cryptanalysis works on SPNs. The detailed
introduction is described in [11][33]. Keliher also discussed linear attacks on SPN in
[14]. To apply linear attacks, we need to find a subset of bits that their XOR behaves

in a non-random way. First, we introduce a useful lemmain linear attacks.

20

3.21 ThePiling-up lemma

Suppose X1, Xz,...1 {0,1} areindependent random variables. p;, p»,...are real

numbers such that 0=p; =1, and suppose that Pr[Xi=0]=p; and Pr[Xi=1]=1-p;. Then

we define the bias of X to be ¢ =p -3. Let € denote the bias of the

i ey
random variable X; A..A X, . It is easy to see that € ; =2€,€ . And we can
generalizeit in the following lemma

Lemma 3.1 (Piling-up Lemma) [18]: Let € ; ; denote the bias of the random

..... K

varisgble X, A..A X, . Then

3.2.2 Linear approximations of Stboxes

Next, we need to compute the linear approximation table of an S-box so that we

can determine the XOR of which bitsis not random.

Example 3.1: Consider the following S-box: p<:{03*® {03".

X1 X2 X3 [Xa |[Y1 |Y2 |Y3 |Y4
o 0o o 0o 1 1 1 |0
o (o0 |0 |1 0o |1 0 |0
o o0 1 o0 |1 1 0 |1
o (o |12 |1 0o |0 |11 |0
o |1 [0 0 o |0 |0 |1
o 11 |0 |1 |1 |1 1 1
o |1 11 o0 1 0 1 |1
o 1 |12 |1 |1 |0 |0 |0

N
=

RP|O[O|FRL,r|O|FL|O
O|O (R, ||, |O|O

EEEEEE R R
R EEEEEEEEREE
R, |lO|O|F, |, |O|O
RO, O, |O|Rr|O
ENEEEIEEEEEEEEE

P | OO |OC|O|F,|FP |k

0 1

If we want to know the probability of X, AY,AY, =0, then we count the number of
rows in the above table where X, A'Y, A'Y, = 0and denote this number as N value.

Then we divide N by 2! (4 is the number of S-box input) to get the probability of

X, AY,AY, =0. Here N_=4, thus the probability is 4/16 and the biasis—1/4. O

In a similar way, we can record®al possible input-output XOR in a linear

approximation table (Table 2). We read the table by using the following notation:

4 O 4 0 ~
A ax “AZAbY2a,01{0F.
ei=1 g ei= a

Take (a,...,a) asindex of rows and (b;,...,bs) asindex of columns. The valuesin the
table indicate N ’s-8. Thus, X,AY,AY, of Example 3.1 is expressed as a=0100, b=
0110 and the corresponding N_-8 is in the shaded place of the table which is -4 as
Example 3.1 counts. This table consists of 2"" 2™ entries where n and m denote the

number of X variables and Y variables respectively (in Example 3.1, n=m=4). In the

linear cryptanalysis, we are searching for the pattern with alarge bias size to attack.

22

Table 2: Linear approximation table of Example 3.1

0 1] 2 3|14 |5 6 | 7 |8 |9 1011|1213 |14 | 15
oj+8(0|0|(0}|0O0|O0O|]O0O|O|O|]O|O0]O]O|O0O]O0]|O
i14,0|4|0|4|0|40|+4|0|0,0|0]|]0]|]O0]O0]O
2 0 0 0 0 0 0 0 O |+2 | -2 | +6 | +2 | +2 | -2 | -2 | +2
3]0/ 0|0|0|O0 |0 |0 |0 |+2]|6]|2|2]|4+2|+2]|-2]|-2
410 |*+4|-2|-2|-2|-2|4|0|0]|]0]|-2|+2|+2]-2]0] 0
5 0 0 | -2 |+2 | -2 |+2 |+ | +4 | O O |-2|+2|+2|-2 |0 0
6 |0 0|2 |+2|+2|-2|0|0|-2]|-2|0|+4|-4|0]-2]-2
7 0 0 |-2 |+2|+2] -2 0 0O |-2|+2]| O O | +4 | +4 | -2 | +2
8| 0|0|0]|]O0O|]O0O|O0O|O0|O0|-2|+2|+2|-2|+2)|-2)|-2]|-6
9 0 0 0 0 0 0 0 O | -2 | -2 |+2|+2 |+2 | +2 | +6 | -2

wjo;o|o|0|-4|4|+4|4|0|0|0]O0O]|JO|0O0]O0]|O0
mnjyo|+4,0|-4|+4|0\|+4|0|0|0|0O0|O0O|]O0O]|O]O0]|O
12| O 0O |[+2 | -2 | -2 |+2,[10 O |'#21,.+2 | 0 |+4 | O | +4 | -2 | -2
13|00 |+2|-2]|-2 |21 |0}-0.-6]2|0]|0]|0|0]|-2]|+2
140 |+4|+2 | +2 | -2 =20 0 | #4410 | 0" +2 | -2 | -2 |+2] 0 | O
50 |0 |-6|-2]|-2 |42 |00 [0 |0 |+2]|-2]|-2|+2]| 0 | O

3.2.3 Linear expression of atrail

We then use such weakness (large bias) to find atrail through entire SPN to get a

linear expression involving only parts of plaintext bits and data bits into the last round

(bits of Uyr) and all subkeys encountered in the path. All other intermediate data bits

of U, ~ V., where r<Nr, will be cancelled. Thus we produce a linear expression in the

following:

PAC,AK, =0,

(3.1)

where P;, C; and Kk denote the XOR of some plaintext bits, data bits of Uy, and

encountered key bits respectively. But what we care is only

PAC, =0.

23

(3.2)

Ug

V1
W

U,

\'Z!
W,

Us

V3

Uy

\

plaintext

P1P; Pig
I|||| lqur’rlwi)lilnl ||||I
L1 v [[[]]
St S Si3 Sia
[Subkey K, mixing |
[T T TiT] FaN
S Sz3 S
[ing |
L LT v [[]]
Sa1 Sa2 Ss3 Sz
I thkwK,mii% I
L1 Ll HEU_‘
Su Sa2 Sa3 Su

[T DT L
T T SRR o

C.C

Cu

ciphertext

Figure 13 shows a possible attack trail. Here, P, is RAP AR and C; is
USAUJAUFAUP .
X, A X, A X,AY, since it has large bias. Then we follow the output permutation
and XOR with K. Now in round 2, they become the input X; of Sys. So we can look
up in the linear approximation table to check what bits X, XORing with has large bias

(row 4, since X, represents 0100,). As procedure continues we have a trail formed.

Figure 13: A possible attack trail.

The trail

24

is formed as follows:

we choose

After the trail is determined, the overall bias of the entire SPN can be calculated by

Piling-up lemma (each S-box encountered viewed as e,) and we denote the bias as

e.

3.24 Subkeysattack

Once we have the trail and the bias, we then begin to extract the subkeys of the
last round. It proceeds as follows:

1. The subkeys we are going to extract are those involved in the last part of the trail.
For example, in Figure 13, C; of (3.2) are the bits into the second and fourth
S-box. Then the subkeys being extracted are the corresponding position of the
output bits of those S-boxes;i.e.; the circled part in Figure 13.

2. Since the attack is a known plaintext attack, we have many plaintext- ciphertext
pairs and we say we have T.pairs. We matntain a counter array for each possible
candidate subkeys. Then we partially, decrypt the ciphertext for each candidate
subkeys. If the linear expression (3.2) holds, then we increment the corresponding
counter of that subkey.

3. Inthe end, we expect the counter, which is closest to ($+e)T , isthe most likely

subkey.

3.3 Moreon Linear Cryptanalysis

In this section we introduce some further researches done as the linear cryptanaysis
develops. With the help of these techniques, we can increase the success rate and

reduce the data pairs we need.

25

3.3.1 Linear hull

Nyberg [24] proposed the linear hull effect in 1994. The main result shows that
the success rate of Algorithm 2 is underestimated in Matsui’s paper. They show this
by declaring that the data complexity we need can be reduced. Since we may have
many linear expressions with the same input and output mask but different internal
subkeys, i.e., P, and C; are the same but K is different. For input mask a and output
mask b, he uses ALH(a,b) to denote the approximation linear hull. We describe the
definition and theorem in a more understandable version by [15].

Definition 3.1: Given nonzero N-bit masks a, b, the approximation linear hull,
ALH(ab), is the set of all T-round characteristics, for the T rounds under

consideration, having a as the input mask for.round 1 and b as the output mask for

round T, i.e., al characteristicsof the form W= <a,a2,a3,...,aT,b> .

The characteristic W hereis like the trail'we said before. And we have the following
theorem.

Theorem 3.1 Let a and b be fixed nonzero N-bit input and output masks,
respectively, for T rounds of an SPN. Then

Efabl= & LCPW). (33)

W ALH (a,b)*

The Eq[a,b] denotes the expected value of linear probability of mask (a,b) over

all independent keys. And LCP(W) denotes the linear characteristic probability of a
characteristic W. This theorem shows that under certain masks (a,b), we may have

many different characteristics and the expected value of masks (a,b) is the sum of

LCP(W) over alarge set of characteristics. In other words, under certain P, and C;,

the expected value of biasis the sum of alarge set of different trails with the same P,

26

and C;. Therefore, the linear characteristic probability of best characteristic is strictly
less than Ef[a,b]. This implies that an attacker will overestimate the number of pairs
required for a given success rate since the best trail we find is aways smaller than

E+[a,b].

3.3.2 Keyranking

After the linear cryptanalysis was proposed, Matsui experimented on the attack
in 1994 again with some modifications [20]. In his paper, he uses two new linear
approximation equations, each of which provides candidates for 13 key bits. Further,
he adopts the reliability of key candidates into consideration. The key candidates

means that he stores not only the most likely key bits but also thei™ likely candidates.

~

That is, he stores the key KiKji.. in order where K; is the i likely key bits
Then if the most likely key tests to be wrong;-he can go back to use the second likely
key bits and so on. The test can be'done by, given a plaintext-ciphertext pair (P, C),
and the rest key bits by exhaustive key search to test if the candidate key bits can
generate C from P. To increase accuracy, a few more pairs { (P, C1), (P2, Cy),...} can

be given since wrong key bits can generate the correct C; with negligible probability.

~ A

Thus, if K, falsthetest, then K, isused and so on until the correct one is found.

With this simple improvement, he increased the success rate. In his test, he
successfully attacked the 26 key bits of the full 16-round DES with 2* plaintext-
ciphertext pairs. The remaining 30 key bits can be found by exhaustive key search. In
comparison with his original attack, more key bits are attacked with fewer pairs

needed.

27

3.3.3 Multiplelinear approximations

Kaliski and Robshaw [29] proposed a new idea on linear cryptanalysis by using
multiple linear approximations in CRYPTO’94. Suppose they have n linear
approximations, which involve the same key bits but differ in the plaintext and

ciphertext bits that they use. For each linear approximation they assign a different

weight a (this may be decided by their biases) and é a =1. Then for each

i=1

candidate key bits K?, j=1,2,.... and each linear approximation i, let T;' be the number

of the linear equation holds. Then we calculate U; = a T/ for each j. And the rest

i=1
parts are just like the original Algorithm2inMatsui’s attack, i.e., we see which U; is
furthest from N/2 (N is number=0f pairs) and we assume it to be the most likely key
bits.

This technique is supposed: to-ifncrease-the ‘success rate and reduce the data
complexity. However, in their experiments, the increase of effectiveness on DES is
somewhat limited. But, this is still an important skill since it may be generaly
applicable to other block ciphers and be extremely effective in reducing data

complexity.
3.4 Our Attack Design

As we mentioned in the introduction, we want to use linear cryptanalysis many times
to get most of the key bits. We use one trail to extract a subset of key bits and another
trail to get another subset of key bits. Until the last round keys Kn+1 are all extracted

then we go one level up to extract the key bits of Ky, with new trails and so on.

28

3.4.1 Observations

Before we explain our strategies, there are some observations to be made.

1. The subkeys we are going to attack should not be too many in a single attack, i.e.,
the S-boxes involved in the last round should not be too many. This is because the
more subkeys we want to extract in one attack the more time we need. For
example, if we want to get 8 key bits in one time, then we have to test 2°
candidate key bits for all pairs. But if we get 4 bits and then another 4 bits in two
attacks, we only need to test 2x2* candidate keysfor al pairs.

2. The fewer S-boxes are involved the larger the bias. So, maybe there exists one
input-output XOR having the largest bias, but its output spreads to many S-boxes
in the permutation. Then wesshould_consider if it is worthwhile to choose such
path.

3. It iseasy to see that with first Nr-1-round-trail we can get bits of Kyy+1. So with
Nr-2 round trail we can get bits of Ky;. Continuing the process we can get all key
bits up to Ks. But there is no linear expression for the first two round keys so we
can’t use linear cryptanalysis to get them. The rest subkeys may be derived by
exhaustive search.

4. We may take advantage of the key schedule such as the shift key schedule to
know upper round keys from the lower round keys we aready get. Thus, we can

save time in getting the repeated key bits.

3.4.2 Srategies

In general, if alinear expression of entire cipher has bias e, then it is suggested

that we need ce’® pairsto attack for a constant c. See the following table from [18].

29

Table 3: The success rate of linear cryptanalysis.

c 2 4 8 16
Success Rate 48.6% 78.5% 96.7% 99.9%

Here, we give asimple proof for this result.
Proof: Let N denote the number of plaintext-ciphertext pairs we need. And let Y; be

the result of equation (3.1) in the i test.
Y =P AC,AK,,i=12,...N, Y={0,1} (3.4)

Since we have bias equal to e, which means Pr[Y, =0] =% +e. Then the expected
valueof Yiis E(Y)) =%- e.Andwehave

m=E(Y)=4-e,

s?=Var(Y,)=(- e)t+e)=1.6%»1 sinceeissmal.

o +Y, +..+ b N
Thenwe let Y, :%.And we can find it:to be a normal distribution

7N - N(m’s_Nz)
»N(3- ey

So we want to distribute S+e from 1 likethefollowing figure.

7| Easy to distinguish

N
N

Figure 14: Probability distribution

We hope that taking 3 times the standard deviation is still lessthan e .

30

3 i<e
\ 4N
b 3<e” 2JN

P N>ce?

So we can see that it is about to take ce™® pairsto test. O

And from observation 1, the computation time is also related to the number of
key bits being attacked. So we define the cost of a trail with bias e to be e?” 2
where k is the number of key bits being attacked. Then we are ready to introduce our
strategies as follows:
(a) Trailsfinding: We do the process in a “recursive” way. We start it from the first
S-box and look up the linear approximation;table row by row. Here we set a bias
threshold about 1/4. Once we meet avalue =12 or- =4 (bias * 1/4) we then select
the corresponding input-output XOR and follow the output to the next round. The
previous output now becomes the input of .the-S-box, so we only need to look up the
corresponding row of the linear approximation table. The process continues and in the
end, we can get an expression as (3.2) and the bias is calculated by Piling-up lemma.
Every time we finish finding a trail, we record the corresponding data into a queue
including the path it walked, the bias e, and the cost (e " 2*). Then we return and
going to find another trail until all possible trails are found. Since there won’t be too
many biases larger than 1/4 or smaller than —1/4, the search process won’t take too
much time.
(b) Cost of trails updating: When the trails are all found, we select the smallest cost
to be the first step since it takes the fewest time to solve. After this trail solved, we
need to update the cost before we select a next trail to attack since there may be many

trails covering the same key bits we already got. And those key bits don’t need to be

31

extracted again, so the cost can divide by 2°, where s is the number of covered key
bits already derived. After al the cost of trails is updated, we can select next trail
from the smallest cost again. Until all K1 are all extracted, we then move one level
up to attack bits of Ky, using similar method. Continuing the procedure we can solve
al round key bits K3 to Knr+1 as observation 3 stated. The rest two rounds K; and K
can be solved by exhaustive search.

(c) Backtracking: When we try to linear attack the key bits, we choose the one
whose counter is the closest to (£+e)T . In addition, we store r possible candidate
keys whose counters are also close to ($+e)T , wherer is a flexible parameter and
can be modified. In the end, if the key we extracted tests to be wrong, we can go back
to choose another candidate subkey systematically. Figure 15 shows this backtracking

scheme. If we run out all possiblecandidate keys, then we declare this attack fails.

=y

candidate subkey; candidate subkey, .. candidate subkey, subkey inK s
/

¥ v T

candidate subkey, subkey in K3

candidate subkey; candidate subkey,

candidate subkey, candidate subkey, vee candidate subkey, subkey in K 3

\ﬂ? wrong

Check the correctness of the key

correct ¢

Output the key

Figure 15: The backtracking scheme

32

3.4.3 Algorithm

With the three strategies introduced in the previous section, we come up with the
algorithm as follows. We first need to find all possible trails with large bias by using
the TrailsFinding part. After this process is done, we then have many trails stored in
the queue with corresponding bias, costs, and the paths they walk. Thus we can select
the smallest cost to attack first. After the trail is attacked, we then do the
CostUpdating to update the cost and get the next smallest trail to attack. Once a round
key bits are all extracted, we can go up one round to repeat the attack with similar
strategies. Finally, we use several plaintext-ciphertext pairs to verify the keys we
extracted. If the keys are tested to be wrong, we then apply the BackTracking to use

other candidate keys we stored. The algorithm is given below in pseudo C.

1 TrailsFinding() // Thisfunction corresponds to (@) in Section 3.4.2
fori=Nr+1to3
r 2 select atrail with the smallest.cost
3 linear attack K;
3.1 choose the key with counter closestto ($+e)T
do { 3.2 save some other keysalso closeto ($+e)T
4 CostsUpdating() // Thisfunction correspondsto (b) in Section 3.4.2
5 If not al bitsin K; are extracted
\ Thengoto?2
6 Exhaustive search (Kq, K2)
7 Check the correctness
7.1 If success then return the key
7.2 ElseBackTracking() // Thisfunction corresponds to (c) in Section 3.4.2
7.2.1 If dl candidate keys are failed
Then return Failure

3.4.4 Perfor mance

We use SPN with 16-bit block length ~ 32-bit initial key and with 4 rounds to do the

33

experiment. The 5 round keys are derived from initial 32-bit key by simple shift operation.

All S-boxes used in the SPN are the same as follows:

x 0ot 2 |13 4 5 |6 |7 |8 9 |A B I[Cc D [E
PsXE 4 D1 |2 [F B 18 3 |A |6 |[C |5 |9 [0 |7

We run the experiment on Pentium 111 733 CPU with 256MB RAM under FreeBSD OS
using C Language

We simulate 100 batches with different keys. Each batch randomly chooses around 8x
e ? plaintext-ciphertext pairs (data complexity). Table 4 shows the subkey length, bias,
and data complexity for the two trails used in searching the key bits of the last round.
Note that although the 2" trail seemsto have large bias, it is not being attacked first. This
is because the 2" trail actually attacks 12 bits and 4 of them are attacked by trail 1. Thus
in the original cost, trail 2 haslarger costthantrail 1.

Tablel4:- The trail data

Subkeylength'| Biasof trail |- Data complexity

1% trail 8 bits 0.059326 2272

2™ trail 8 bits 0.079102 2272

If backtracking strategy is used, Table 5 shows the success rate of these 100 batches in
the two trails with different number of candidate subkeys stored. It illustrates the merit of
this method.

Table 5: Success rate with different number of candidate keys

of candidates, r 1 2 3 4 5 6 7 8 9 10

1% trail |Success rate (%) 6 | 12| 22 | 34 | 44 | 52 | 62 | 70 | 78 | 96

2" trail |Success rate (%) 8 | 20| 27 | 36 | 46 | 55 | 65 | 72 | 82 | 97

Chapter 4 Design S-boxes against Linear

Cryptanalysis

In this chapter, we will introduce the properties of Boolean functions and
multiple-output Boolean functions. Then we discuss about the similarities of S-boxes
and multiple output Boolean functions. And we will analyze the linear approximation
table to see what properties S-boxes should have to resist linear cryptanalysis. Finally

we introduce the construction method of AES S-box and further analyze it.

4.1 Boolean Functions

First, let’s see some notations that are commonly used in Boolean functions. Let
F, =GF(2). We consider thezdomain of -a Boolean function to be the vector space
(F),A) over F,, where A is used to denote the addition operator over both F, and

FI' (XOR in this case). Suppose X=(X1,%z,...,%,)I FI is a length n vector. Then an
n-variable Boolean function is defined to be amapping from F, to F,. Weuse W,

to denote the set of all n-variable Boolean functions. For a Boolean function f(X)I W, ,

we can represent it uniquely by the algebraic normal form (ANF):

F(X)=ay+ax +..+aX, +a,X% +a:XX +... % &, XXX, (4.1)

where the coefficient a; can be 0 or 1. Note we sometimes use + to represent A for
simplicity. And al the outputs of f(X) form the 0-1 sequence called truth table,

denoted by f.

35

Example 4.1: Suppose the ANF of f(X)T W, isf(X)=x1+xixz, then the truth tablef is:

X1 Xe | XXz | XatXpXe
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 0
f isthe output of all possibleinputs, i.e., f=0010. L]

The inner product of two vectors f,gl F} (f and g can be viewed as the output

truth table of f(X) and g(X)) will be denoted by (f,g). The Hamming weight of an

n-bit vector u is the number of nonzero elements (number of onesinthiscase) in f and
denoted by wit(f). The Hamming distance between two vectors f, g is the number of
places where they differ and denoted by d(f, g). And we have d(f, g)= wt(f+g).

Example 4.2: If f=0110 - g=1101, then the Hamming weight of f and g are wt(f)=2,

wt(g)=3 respectively and the Hamming distance d(f, g)=3=wt(f+g). O

Next let’s define two important properties of Boolean functions. balancedness and
algebraic degree.

Definition 4.1: For an n-variable Boolean function f(X), if wt(f)=2"", then f(X) has the
property of balancedness.

Definition 4.2: The algebraic degree of an n-variable Boolean function f(X) is the
largest number of variables of the termsin its ANF, denoted by deg(f).

Example 4.3: Suppose f(X)=xi1+x. and g(X)=xix2 both belong to W,, then the
corresponding truth table output are 0110 and 0001. We can see that f(X) is
bal ancedness while g(X) is not. In addition, deg(f)=1 and deg(g)=2 since g(X) has two

variablesin one term. [

36

For those Boolean functions with degree less than or equal to 1, we call them affine
functions or linear functions.
Definition 4.3: For an n-variable Boolean function f(X) and deg(f)=1, we can

represent them as
f(X) =8y tax tax +..+ax, (4.2)
Where a1 GF(2), 0£i £n. We cal such Boolean function as affine function. If

=0, then it is also caled linear function. A(n) and L(n) denote the set of all

n-variable affine functions and linear functions respectively.

For an n-variable linear function f(X), it can be represented in the inner product form
f(x)=a>X or f(x)=(a X).Let:sseeanexample to illustrate affine functions and

linear functions.

Example 4.4: If f(X)T W,=and deg(f)=1, thenall possible f(X) are listed as

follows:

Table 6: 3-variable affine and linear functions

AQR)
L3
0 1
X1, X2, X3 1+Xp, 1+Xo, 1+X3
X1HtX2, XoX3, X1+X3 1+ XX, 1+XotXs, 14X +X3
X1+Xo+Xs 1+ X1+Xo+X3 0

Next let’s define the Walsh transformation, which is a very useful tool in the analysis

of Boolean functions.

Definition 4.4: For an n-variable Boolean function f(X), the Walsh transform W, (u)

37

is defined to be:

W, ()= g (-0 4.3)
X1 FJ
Also we let V\/(f)(u)=2—1nWf (v). (4.4)

Here, u>X isalinear function. Since f(X)+u:X isOwhen f(X)=u:X and1l

when f(X)*u>*X . So we can view the Walsh transformation as
W, (u) =H{ X | f(X)=u> X}-#H{ X | f(X)* u>X}, i.e, the number of f(X) equa to

u:> X minus the number of unequals. Then we can derive the relationship between
Walsh transformation and the Hamming distance d(f,u:X).
W, () = X | £(X) =w> X}-#H X | () * u> X}
=2"- 28{ X | f (X)L uxX}
=2"- 2d(f,uxX)
P d(f,uxX)=2"%-1W, (u)

(4.5)

Next, let’s define an important property of. Boolean functions.

Definition 4.5: The nonlinearity nl(f) of ‘an n-variable Boolean function f(X) is
defined to be the minimum distance between f(X) and all n-variable affine functions,
i.e,

ni(f)= grTnAi(nn)d(f ,09) (4.6)

In addition, the affine function that has minimum distance with f(X) is called the best

affine approximation of f(X).

We can deduce the relation between nonlinearity and Walsh transformation.
Theorem 4.1: For an n-variable Boolean function f(X), the nonlinearity of f(X) can be
represented as

nl(f) =2~ mad W, ()} (47)

38

Proof: From Equation (4.5) we know
d(f,uxx)=2"*- W, (u)
p ux)r(rglg(ln){d(f ,uxX)}

= rT"F n{ 2" - IW, (u)}

b nl(f)=2""- mg{lwf O} m

Example 4.5 f(X)T W, and the truth table output f=01100011. Then from the

following table we can find that nl(f)=2.

Table 7: Nonlinearity example

Truth table (for c=0) d(f, ux)

Function | (000) | (001) | (010) | (011) | (100) | (101) | (110) | (111) | =0 | c=1

f 0 | 1 | 280 00d0 20 | 1 | 1

c o | o |@yg o000 | o]0 a]|a
X1+C 0 0 0 0 i§ 1 1 1 4 4
XotC 0| 0| 19 t0l o 1] 1 6
Xg+c ol 1|0 10| 1|0o]1]|a]|a

X1HXo+C 0 0 1 1 1 1 0 0 6

X1+X3+C 0 1 0 1 1 0 1 0 4 4

Xo+Xa+C 0 1 1 0 0 1 1 0 6

XiHxotxs+c | 0 1 1 0 1 0 0 1 2 6

O

We can also use Wal sh transformation to state the balancedness of Boolean functions.

Theorem 4.2: An n-variable Boolean function is balanced if and only if W, (0) =0.

Proof: From the definition of Walsh transformation, we know when u=0,

39

W (0)= & (- D' =#{X|f(X)=0-#X|f(X)=3

X1 Ry

(4.8)

Case b : Since f(X) is balanced, #{X|f(X)=0 =#{X|f(X)=1=2"", 0

W, (0)=2"- 271 =0,

Case U :Since W, (0) =0, we have

HXTF(X)=0-#HX[F(X)=1=0
P #HX|f(X)=0=#{X]|f(X)=0=2""

So f(X) is balanced.

Finally, we introduce a special Boolean function called Bent function.
Definition 4.6: Suppose f(X)T W, andniseven. If foral ul F

é (_ 1)f(X)+u><X :izg

PO

Then we call f(X) a Bent function;

Theorem 4.3: For an f(X)T'W, .and n_is-even; then the following properties

describe the same thing:

(2) f(X) isaBent function.

(2) ni(fy=2""- 2! and ni(f) is the largest nonlinearity of al n-variable Boolean

functions.
(B #H{X|f(X)=B=2""+2"" #{X | f(X)=0=2""F2"".

(4) f(X) is perfect nonlinear.

From properties (3) we can see that Bent functions are not balanced. However, they

have the largest nonilinearity, and this makes Bent functions an important component

in cipher systems.

4.2 Multiple-Output Boolean Functions (S-boxes)

In this section, we turn to introduce the properties of multiple-output Boolean

functions. An n-input, m-output Boolean function F(X) isamap
F:{03"® {01".

It can be viewed as the combination of m single-output Boolean functions, i.e.,
F(X)=(f1(X), f2(X),...,fn(X)). The S-boxes we used in SPNs are multiple-output
Boolean functions, too. Note that the S-boxes used in SPNs or Feistel Networks
require certain properties, not all multiple output Boolean functions are satisfied. This
will be described later. And from now on, we call n-input, m-output Boolean functions
as (n,m) S-boxes.
Example 4.6: Suppose F(X) is,a (3,2) S-box and, F(X)=(f1(X), f2(X))=(x1+X2, X2X3).

Then the truth table output 1ooks like:

K_L
X1 X2 X3 f1 f2
0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 0
1 1 0 0 0
1 1 1 0 1

[

Now, let’s see some properties of (n,m) S-box.
Definition 4.7: An (n,m) S-box F(X)=(f1(X),f2(X),...,fm(X)) is said to be balanced
(uniformly distributed) if and only if al nonzero linear combinations of f, fa,..., fn are

41

balanced.
The S-boxes used in SPNs should be balanced.
Definition 4.8: The algebraic degree of an (n,m) S-box F(X)=(f1(X),f2(X),...,fn(X)) is
defined to be the minimum degree of all nonzero linear combinations of fy, fa,..., fm,
i.e,

deg(F) = min{deg(9) g =Aa f,,aT Fy (8,88, 0. (49)
Definition 4.9: The nonlinearity of an (n,m) S-box F(X)=(f1(X),f2(X),...,fn(X) is
defined to be the minimum nonlinearity among all nonzero linear combinations of fy,
fo,..., fm, 1€,

n(F)=min(nl(@)[g=Aaf ,al F(@a,..a,)* 0. (410
The definition of nl(F) was first antroduced by.Nyberg in [26]. We then take an

example to illustrate the above ideas.

Example 4.7: For an (n,m) S-hox F(X)=(XaXa+Xs, X3)-

X1 X3 X3 f1 f | fi+fy
0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 0 1 1
R Y K

balanced not balanced

All nonzero linear combinations of fy,f> are fy, f», f1+f,. And we can see that f;+f5 is not
bal anced. Although f; and f, are balanced, F(X) is still not balanced.

The algebraic degree of F(X) is min{deg(f1), deg(f2), deg(fi+f2)} =min{2,1,2} =1.

42

The nonlinearity nl(F)=min{nl(f1), nl(f2), nl(fi1+f2)} .

In the next section, we will show that nonlinearity is the most important property as

far as the linear approximation table is concerned.

4.3 TheLinear Approximation of S-boxes

In this section, we will analyze the linear approximation table and see what is it

related to the properties we introduced in the previous section. Also we hope to find

out what properties can help to resist the linear cryptanalysis. First, let’s see the

following lemma.

Theorem 4.4: The sum of any rew or any_column, in the linear approximation table

will equal to +2"* for an (n,n) S-box.

Proof: Let’s take the sum of row as an‘example to prove, the sum of columnis similar.

Since this is a bijective S-box, any nenzero linear combination of the output will be

balanced, i.e., there are equal zeros and ones. See the following n=3 case.

>ba| anced

Y1 Y Ys Yi+Yo | Yo+Ys | Yi+Y3 |Y1+Y+Y3 0
0 0 1 0 1 1 1 0
1 1 1 1 0 0
0 1 1 1 0 1 0 0
1 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0
1 0 0 1 0 1 1 0
1 1 1 0 0 0
0 0 0 0 0 0 0 0
balanced

From the above table we see that not only nonzero linear combinations of output truth
table are balanced, but also the row they formed except for the all zero one. From the

definition of linear approximation table,

gﬁaixig,&ﬁm(igzo,forsomeaﬂqi{O,]}, the sum of one row of linear
€i=1 g €= a

approximation table means we fix on a certain linear combination of X; (1=i=n) and

test all linear combination of Y, (1=i=n). Let r be the truth table of certain

combination of ﬁ axX, Qand r? (21 {1,2,...,2"}) the bit corresponding to the all zero
ei=1 (4]

row (the shaded row). Then there are two cases.

(@) r=0: Since 0A 0 must be 0 and there are 2" combination of Y2 o the
¢ i
ei=1 a

sum of row now has at least 2".
(b) r’=1: Since 1A 0=1, this bit‘contributes no weight to the sum.

Let’s see the rest 2"-1 bits of *. From the above table, we know the combination of

ﬁ thg form a balanced truth table. Thus-no matter the rest bits of r are zeros or
€i=1 (%]

ones, they each add 2™ weight to the'sim. So we have the total sum to be
2"-1(2"H+2" in case (a) and 2"-1(2™) in case (b). Since we minus 2" for each entry
in advance in the linear approximation table, we have to minus 2™x2" in total for one

row. Thus we have the sum of linear approximation table to be +2"*. O

Next, let’s see the relation between the linear approximation table and the
nonlinearity. In [12], they have the following equation. The best linear approximation
of an S-box occurs with probability p, where

2"t - NL,,

> (4.11)

Ip.- 37
and NL, is the nonlinearity of the S-box. Here, we state this in another way and

prove it.

Theorem 4.4: The nonlinearity of an (n,n) S-box is equal to 2™* minus the maximum
absolute value, denoted by |k|, of the linear approximation table.

Proof: From Definition 4.8, we know that the nonlinearity of an (n,n) S-box is the
minimum nonlinearity of al nonzero linear combination of f;, where the S-box is

F=(f1,f,,...,fr). And from the definition of the linear approximation table, each column

of éthi contains the al linear combination of fi. Thus the smallest nonlinearity

among all éth is the nonlineairty of the S-box. Now we view éthi as one f(X)

and prove the theorem by the Wal sh transformation. From Theorem 4.1, we know the

nonlinearity using Walsh transformation is nl(f)=2"*- Imax{|W, (u) [} . And the
ul B}

Walsh transformation is
W, (u)= § (-1

X F}
=# T (X) = uxX}=#{ £ (X) * uxX}
=2"- 2d(f(X),uxX)
Since each row represents one uXfor “ul F,', we have the following:

nl(f)=2"" - Smax{|W, (u) }

=2mt- é&“ezmz“- 2d(f (X),uxX)] e
The maximum u happens in two cases:
Case 1. 2"-2d(f(X),uX) is positive maximum, thus d(f(X),uX) must be the minimum
value. This means that number of f(X)=uX is the largest one; that is to say, when it
minus 2™, it becomes the largest positive k.
Case 2: 2"-2d(f(X),uX) is negative minimum, thus d(f(X), uX) must be the maximum
value. This means that number of f(X)=uX is the smallest one; that is to say, when it
minus 2™, it becomes negative smallest k.

Combine Case 1 and Case 2 and apply them into the Equation 4.12, we get the

nonlinearity of the S-box is nl(Sbox)=2"*-|k]. O

45

In fact, thislemmais the same as Equation (4.11) asfollows.

nl(Soox) =2"* - k
nl(Sbox) _ 2"*'- k
2" 2
k _2""- nl(Sbox)

b = =
2" 2"

b

2kn is the bias, which is p, - 3 and nl(Sbox) is NLin. With this lemma, we know

that the larger k is the smaller the nonlinearity of S-box. Since the value will affect the
bias of linear expression, we conclude that the smaller the values in the linear
approximation table the smaller the biases. In other words, if the nonlinearity of the

S-box islarger, then it can resist linear attack more efficiently.
4.4 Construction of S-boxes

In this section, we introduce two common construction methods of S-boxes which can

be used in SPNs.
441 Random Generation

Since the (n,n) S-box we need should be bijective, generating the S-box by
randomly permuting the output seems to be the most easy and common way. See the
following example.

Example 4.8: We take (3,3) and (4,4) S-boxes as examples and we denote the inputs

and outputs in octal and hexadecimal format, respectively.

input) O 1 2 3 4 5 6 7

S-box 1 2 4 7 5 3 1 0 6

S-box 2 6 2 7 1 0 4 5 3

oputf 0 | 11234 |5|6|7|8|]9|A|B|C|D|E

Sbox1{A| 3|4 B|E|2|5|C|1|6,0|8|D|7]|9

Sbox2| 6 A|5/9|0|B|4|D|1|E|7]2|C|3 |8

The advantage of this method is that it is very simple. However, the
corresponding properties are usually not very good. Thus we may take more time in
filtering out the properties we need. There are also some other randomly generated

methods like [1][10].

4.4.2 Generation using finitefield

This method is used in the AES (Rijindael) 3] and it seems to work very well in
resisting the linear attack. The AES makesuse of the Galois Field over 2" and we give
the algorithm in Algorithm 4.1. This is a very simple algorithm and with good
properties, which we will check later. First we denote the S-box input and output in a
field element. For example, (00110101) becomes x>+x*+x*+1. The S-box input is first
represented as field element and then we find the inverse of this element and transfer
back to binary form. And we set a constant vector C and a nonsingular matrix B. The
final step is to multiply the matrix B with the binary inverse element and add with
vector C. The result is then becoming the output of the S-box. The matrix we use
comes from choosing the first row and the remains are cyclic shift one bit right from
the above row. Notice that the resulting matrix should be nonsingular, otherwise there

won’t be a bijective mapping. Figure 16 shows the process of generating the output of

47

the S-box.

Algorithm 4.1:

external FIELDINV, BINARY TOFIELD, FIELDTOBINARY
z < BINARYTOFILED (&85858,8458,8,8;)
if z#0
then z < FIELDINV(2)
(3y858584852,28,) <— FIELDTOBINARY (2)
(C,€6C5C4C5CC1Cy) < (01100011)
comment: In the following loop, all subscripts are to be reduced modulo 8
fori < Oto7
do bi<(a+a+s+a+5+a+6+a+7+C) mod 2
return (b,bgbsb,bsb,b,by)

Note: The field elements and their inverses are generated from the
irreducible polynomial h(X)=1+x+x>+x*+x®.

FIELDINV transfer afield element to itsinverse element.

BINARY TOFIELD transfer a binary sequence to afield element and
FIELDTOBINARY does the inverse operation.

@ 000111 1uél el
Cyclic shift u e, u gu u
y 43110001110@%“2%
€ 1100 0 1 10 &0 &0 &l
e ue u eu u
<:é1 11100 0 1y gag, do_axg
. € 11110 0 o0&, &0 &
- € ue uweu e u
111110 05en ela e
011111 1Y &Y GU HU
e ue'ueu e-u
@ 001111 1gég &4 éxp

Inverse element /

. output

of input

Figure 16: AES S-box Generation

From the construction method, we can see that three parameters could be changed: the

48

irreducible polynomial h(X), the matrix B, and the constant vector C. In the next
section, we will discuss over these three parameters and check the difference among

them.

45 Design Analysis

In this section, we analyze the properties of the construction methods proposed in the

previous section.

45.1 Analysisof random generation

Generally, the properties of ,S-boxes generated.by random are not very good. We
tested about a few hundreds and the maximum absolute value of linear approximation
table ranged from 32 to 42 for (8,8)-S-boxes and 12 to 18 for (6,6) S-boxes.
Interestingly, the average number of appearance will decrease as the maximum

absolute value increases. See the following figures.

60,
50

40 O Average (%)

30
B Number of

20F
I appearance

10f

0 L

12 14 16 18

Figure 17: Properties of (6,6) S-box generated from random

49

50

40

30 O Average (%)

20 B Number of

10]:t appearance
0

32 34 36 38 40

Figure 18: Properties of (8,8) S-box generated from random

45.2 Analysisof Generation using finite field

From the end of the previous section, we know three parameters could be
changed: the irreducible polynomial, the matrix B, and the constant vector C. Then,
we tested these three cases; we find that_no matter, what we changed, the values are
still the same. See the following table (Number of appearance means how many times
the maximum value appears in the table).

Table 8: The properties of different (n,n) S-box constructed from GF(2")

Number of variables 4 5 6 8
Maximum value 4 6 8 16
Number of appearance 30 31 189 1275

In their original design [3], Daemen and Rijmen declared that the chosen polynomial
and the matrix were in simple format. The constant was chosen so that no fixed points
exist (no x=5(x)) and no opposite points (X =5(x)), either. And we further analyze this
construction in the following parts. Let’s first see what the linear approximation table
looks like if no matrix and constant vector are used, i.e., the outputs of S-box is the

field elements inverse. It appears that this construction will result in a symmetric

linear approximation table.

Proposition 4.1: The S-boxes generated using finite field with no matrix and constant
vector applied will result in the linear approximation table with row i equal to column
i (asymmetric table).

Proof: Since the only operation now is to calculate the field elements inverse. If
element a has inverse b, then element b will have inverse a. Thus the S-box input a
will output its inverse b, and in the same way, if the output of the S-box is a, then its
input will be b. From the definition of the linear approximation table, row i means that

we fix on a certain input pattern (i is represented in a;a...a, in bianry) and compute

ﬁ axX, 94 ﬁ QYi9= 0 for all output patterns (for all by). Now since every S-box
ei=1 g ei=1 (%]

input-output i a pair, if the bit in_SAJAX2.is different from the bit in &R by,
ei=1 a9 €i=1 9

wecan findthe bitin A hY, 2 (for acertain by isrepresented in byb,...by in bianry)
€i=1 a9

is aso different from the bit in ﬁ a,.xig. Thus'whenever we find a pair (a)-(b)
ei=1 a

contributes a distance to row i column j, we can find another pair (b)-(a) contributes
the same distance to column i row j. Thus the values of row i in the linear

approximation table will equal to columni.]

Example 4.9: See the following (4,4) S-box which is generated from irreducible
polynomial h(X)=1+x+x* and the corresponding linear approximation table.

From the S-box and the linear approximation table, we see that row 1 is equal to
column 1 and row 2 is equal to column 2, and...etc. We take row 8 and column 8 to
explain more. Row 8 means (1000) in binary, i.e., we see the first column of the truth
table of S-box input and it is 00000000 11111111. And we said that the field element

and its inverse becomes a pair, i.e., (0000)-(0000), (0001)-(1111), (0010)-(1012), ...,

51

(1111)-(0001). The first one is the S-box input and the second is the output. The

underlined bit becomes the truth table we check in row 8.

15 I I T I
a +2+

a
B 8 8 Brh4el-24+2-
B B+4+2+2+2-2 B A

aa
2+2-
B+4- -
2-2

2 —

G+2+2 Q+4-2+42 Prh+2-

8
8
8
8 B+h @+2+2+2-242-7-
a8
8

G+2+2+4 B-2+2-2-2 B8 O+

+

aa
2+2
2-2
G+y
aa
2-2
B+4+2+2-2-2+4 @ 8 @+2-2+2-2

a
2
2
a
2
a
a
B+4-2-2+42+42 B+4+2-2 B B B B-2+2

a
2
2
a
2_
M
a
2

+

8-2 8+2 B-2 0+2-2 B+2 B+2+4-2+4

B+2 B-2+4-2 B-2 @+2+4+2 B+2 0-2
B-2 8-2+2 0+2 B9+2+4-2 [+4-2 BG+2

B+2+44-2-2 B-2 @ 9+2 9+2-2 B+2+y

B-2-2 0 9+2+2 0+2 B+4-2-2 B+4+2
B+2-2+4 B-2-2 @+4+2-2 @ B+2+2 0

B+2-2 B-2+4 0-2-2 8 @+2+4+2+2 8

0-2+2 8-2 0 0+2+4-2+42+4+7 8 B-2

Pl PR PP R R r|lolo| ool ol oo o
Pl ||l |l ool ook kRl olololo
|| ol ol ||l ook k|l ookl koo
|l olr|l ol r|lo|lr|olr| ol olr|l or|l o
o|lo|r|o|lo|lr| ol |kl kRl olkrl o rlrl o
o|lr|lolr|o|lr|r|lolr|lr|l olo|lr|l or|l o
o|lr|r|lr|r|lolololo|lr|lrlol ol rlrlo
|l ool r|o|lr|olo|lol o r|lkr kRl krlrl o

Figure 19: S-box and its linear approximation table

Now if the underlined bit i's different.from the'bold bit, we can find that the same
situation in column 8 to row 1. For example, the (0001)-(1111) pair contributes 1
distance to row 8 and column 1. We can find the corresponding pair (1111)-(0001)
contributes 1 distance to column 8 and row 1. The (0010)-(1011) pair contributes 1
distance to row 8 and column 1. We can also find the (1011)-(0010) pair contributes 1
distance to column 8 and row 1. Thus whenever we find a pair (a)-(b) contributes a
distance to row 8 column 1, we can find ancther pair (b)-(a) contributes the same
distance to column 8 and row 1. So we have the values in row 8 egual to the valuesin

[l
column 8.

Next, let’s see what happen when we apply the constant vector. It seemsto only affect

the sign in the linear approximation table.

52

Proposition 4.2: The S-boxes generated using finite field with different constant
vectors will only affect the sign of the values in the linear approximation table.

Proof: Suppose the two vectors are different in one place k, and then the two
corresponding outputs of S-boxes are different in the kth column. And the kth

columns are exactly complement of each other due to the construction method of AES

S-box. Thus when we check the equation ﬁ a X 2 ﬁ thg=O for the linear
€i=1 g ei=1 (%]

approximation table, we find that whenever b=1, the linear approximation tables of

the two S-boxes will differ in their sign. This is because if the equation

gﬁ aX, 24 gﬁ bY, 2-0 holdst times for the first S-box, then it holds 2"t for the
€i=1 g e€i=1 a

second S-box. Thus after we minus 2*! to construct the table, they become
+(2"* - t) . When the two constant vectors différ in more than one place, we still can

derive asimilar result by usingthe I nelusion-Exclusion Principle. (]

Example 4.10: See the foIIowi‘ng figufes Thé left .one uses vector 0110 and the right
one uses 0101. They differ in bz and by, SO whenever bs=1 or b,=1 but not both, their

sign will be different.

& SR I R T T T I TR
B(e2 -2 B -2 @ +n -F oy <7 4T B+ B B2 W=7 «3 0 =2 0 =4 =7 «f =7 =F @3 @ 0-7
B(=2 =2| =k =k =2 = -2 B B=2=- @ B Wle2 -3 -& &%/« -3 B-2 B p-2«3 8 0}
B @ - B2 -2 +P e2 -3 -2 3 -2 f-h oBoA o ool @ oep|ez -f a7 -f 47 -F -7 e BB
B(-2 B[-% +2|-0 -2 @Y h-F B P-T B-2 Wez @) =% o3| ek +3 0 +F =B WF 0D § T Q-7
Bf=h =2/ -2 B B-2-2=3-2 B-4-F-2 B I @& -3 -2 B B oed -2 3 2 Pk -2 2 BAR
B @ =2 -2 +2+2 +f @ B B -F =2 -F -2 ko0 o B8 -2 -7 ep[-2 -4 @ @ @ ap ez -F e kB
B-z b=z 8- *T sl -2 W -T Pk sy e Mez 0«2 D)7 P +7 +H 7 [=T § =F =f 7
B|=2 =n|=2 @z =2 =3 B=3 B=F B=F+k Ble2 o -2 B -2 B -2 3 BeP B -1 8Pk
BB -2 e2 -2 2 a2 2 - -k f OB e} -d o o« e -2-2 0 0-2 -7 k-5 @ 0-f-2
@ B =2(+2 B @ =2 <2 @b+ -2 -h B -R 2 W 0 =3 «3 0 0 =F 3 @ =k =F =F =K @@ f 7
B|=2 B|=2 -2| B -2 B B =2 B =2+ -h +F % Bl-2 G2 -2 B3 B OB -2 PR oed vk Pk
@l B @ =P|-2 = <T B @ -4 B P -7 a7 Bl-5 @ B2 -2 22 B Bk b eI -3 of e}
=2 =2(=-6 B|+2 -2 =4 W=+ =3 B Q=2 =7 1 o-2 +8 -5 B -F +F +n @ -2 -F 0 0 -F F 0
af=2 -2(@ -2[-h -2 -3 B B2 -hoe2 e D=2 3 D=2 +«& 0= -3 D {2 =K =F =5 [
a0 B @-5 B sy 83 -2 -F +2 -p -2 -F -2 @B 8 B -& B @ ek e e2 el wR -3 e} o -}
@ (b)
Figure 20: Linear approximation table with different constant vector C n

Then, we check the result when we apply affine matrix B. It shows that the columns

of the linear approximation table will be permutated.

53

Proposition 4.3: The S-boxes generated using finite field with different matrix B will
permute the columns of the linear approximation table.

Proof: Let’s first assume the constant vector is 0 since we proved that it only affects
the sign. Now we are using the same irreducible polynomial but different affine
matrix. From the construction method, we see the outputs of S-box come from
B” A+C for all 2" possible A (inverse of inputs), where B is affine matrix and C is
0 now. Then, let’s see what is the relation between two linear approximation tables of

different S-boxes using different B. Recall that the columns of linear approximation

table is the condition gi\ajxi gAgﬁthg:O for all possible & and certain by.
€i=1 g e€i= (%)

Thus we can view it as a vector [bgby,...,by] to multiply the outputs

é uéu éu gé u éu éu
é 0. é 0, é~0 . (- U- é,0, é-0"
= = SAZ+ C = 2 SAC+ Co
& B 4 &N gCu, i.e, [bybs,...,bsl ge B o &N gCu;. And we focus
g HEH EH ée HEH EH

onbjand B, [b,b,,...,b]" since A and'C are fixed.

@D D D D
[ox ¥ en ¥ end

Suppose the two S-boxes use B; and B, respectively. We can always find

€ u € U
bbb & B U=mb..b1§ B U
g i g f

So the columns [by’,by’,...,by"] of second S-box is identical to [by,by,...,by] of first

S-box. O

Example 4.11: See the following figure. The left one is constructed using

\u,u,u.,u,uAu
a o dd

O « «

I = 1 O

QT BaD

and theright oneusing B, =

g R R R R [
- 1 O

- O «

O « «

D T T D
Il
of’

SH NN I E D NN E S
R T -
n??nﬂ?eﬁ.h??ﬂn??.ﬂ_

|
- & & & |]
n2.ﬂ?h2n?ﬂ?n2n?ﬂ?
R A LR
ol
S B S ENANE DN S
" " - " T
0223_022.3_2.9#22.3..12
]

ttttt
0212262.902.922#2.
Vo ow . | 'y "

EESssSsSsEsESEsasaEE®
*

ﬂzzﬂznnznzz.‘zg.‘z
% 0 ® 4 &

ﬂznzaznzznzaz...zn
[T]

Do DD T NPT RPN
iiiiiiiiii

ﬂ“!ﬂ#—!t.ﬂ.ﬂ.ﬂi#—:!.ﬂ.ﬂ

i i
n_ﬂ.ﬂ.l...z!zn._.ﬂ._ﬂ.ﬂ_“z?_.zz
[R I = = =5 |

ﬂﬂ.!!“ﬂzzzzﬂ.ﬂ.zﬂ_“ﬂ
= %

n.:!.n.ﬂ.!z.ﬂ.:ﬂi.:z.ﬂ_.ﬂ!
ﬂZHEZﬂzﬁ.ﬂ.!.ﬂ_Zz_ﬂZH
* & | * L - ®

ﬂqzzanzﬁc#‘.ﬂczuﬁzz
| 0® & & |

ﬂquﬂzzzzzzzzﬂ.‘“n

EMENNENT NS IND RN
i () * * & | 3] -
n.:!.-.ﬂ.!z.n_“!.?_ﬂ.n_?_.u_ﬂ
ﬂ#—ﬂ!“!ﬂ!.ﬂ.!ﬂ#—ﬂ!.ﬂ.!
L .
ﬂn—!.ﬂ.!ﬁnzﬁ_ﬂ.ﬂ_z.ﬂzzu
*
n.“!.?_.zz.u.l..z!.ﬂ_ﬂ.n_.n_.z!

Al

Al
Al

(b)

(@

Figure 21: Linear approximation table with different matrix B

We can see that column 1 of (b) is id'enticalrto column 8 of (a) (regardless of sign)

[1011]. And column 3 of (b)

Al
(DIDNS DS

O A

0111

1110

Do B

1’

o

o

(@)

e

I
P en Hen Fem R Yom |
a — &4
— O d d

O i -

D T T D

since [1000]"

isidentical to column 9 of (a) (ignoring the'sign) since

=[1100] . The rest cases are similar

g R s R s (4]
- O -

O 1 -

- « « O

D T B b

=[0011]"

\U,U,U,U,UAU
- = O

- O «

O I I

D T T D

[1001]"

and we omit them here.

Finaly we also tested different irreducible polynomials and it seems that they still

have the same maximum absolute value and the value appears in the table the same

times.

Example 4.12: See the following figure. The left one is constructed with irreducible

=1+x*+x*. Though they look very

1+x+x* and the right one is hy(X)

polynomial h;(X)

55

different, they still have the same maximum absolute value 4 and appear in the table

the same 30 times.

- =

a
-z
a

L]

@ @
a e~
B =& =2 @ =7

=2 =2
= =2

@ @ @8 @
a
a =2

=2 B =2

@ @8 a
=k =k =F =2

=2

L]
-7
A -k =2 +2 B O@-2 2 -2 -2 B -k os2 -2

L]
B -2 =h -2 B+F B-T 2 B-T BT +h e o0

| =2
a -2

-§

a
B~ +h - -% -F -2 *Z *2 -1 -2
s =2 &2 =2 =2 B B W -k =2 =3 4242
B -2 e R -3 D 2 -R e3 B+ BB

a
B B2 -2 Bosh o+ T BB ST ST B B2

8 0
L
aa
L

=2 =2 -4 B
B -l +2 -2 2 -2 -h @ B B2 2 -2 -2 2R

=2 =2 =2 =2 0

B =2 =2 =k

A B -2 -2 2 42 BB P e2 sh -k B DR e}
@+ +3 B2 B B =2 +h -T 27 B+ B -H -}

B =2 =2 =2 =7

B =2 =2 =2=2 B 0=k

B-h -3 +% -F +3 B+ s B B B B2

L B W
. = % 0
[T I I e
1 1 [
@S S E S E
* & * L
L L B
[* | 1
Lol RN R]
[A
B B RSB
1 L] 1 L
L B
+ 11 -
FE R]
* [I B |
LT)
1 % & | #
L B]
[| * [l |
BB NS NE NS
1 1+ =% + ¥
A]
[I B |
B M BSOS S NN
L [
- EoL- kB
[[| i
L R
* L 1
[N - N N3 NN
AR T)
o T
oy W R Cu o Cd o
B LI
&y oy B OE py ru S
LN | -
BB S fg S E S
1 I & @ o
RS B
1 [[
BE MBS E N
L | ® 1 +
B @S E M
[| 1 *
B S B eSS
1 * L
R L R 1 B
& | [
B S BB
I & 1 ®
BN S E NN S S
[I L
B &N EE AN
rrow L]
Bl O B S =
1+ % & 1
[N
« 111 %
B B BB S S
1 % 1 &1 |
HE S EEE S

(b)

Figure 22: Linear approximation table with different irreducible polynomial

@

From the above propositions, we know that changing any one of the parameters

won’t affect the nonlinearity of the Shox. However, from Proposition 4.1 and

Proposition 4.3, we know that ‘with matrix B applied will permute the columns of the

linear approximation table so'thhat it. wont-be too regular (symmetric if no matrix).

Besides, the Rijndael designers said the congtant vector C can avoid S-box with x=5(X)

S(x). We found in Proposition 4.2 that the constant vector will affect the signin

X =

or

the linear approximation table.

56

Chapter 5 Conclusion

In this thesis, we discussed about the linear cryptanalysis over small substitution-
permutation networks. To apply linear cryptanalysis, we first analyzed the linear
approximation table of the S-box. With this table we know which bits of input-output
XOR of the S-box act in a nonrandom fashion. Then we combined several such
input-output patterns to form atrail through the entire SPN. This trail finally becomes
an equation P AC, A K, =0 and indicates what plaintext bits and data bits into
last round XOR with extra high or low probability. We calculated the bias of this trail
by Piling-up lemma and denote it as e. Then we started to attack the key bits by
partially decrypting the plaintext-ciphertext:pairs and we had to check whether the
equation holds or not. In the end, the key counter closest to (5 +e)T is supposed to
be the most likely key bits, whereT is the number-of plaintext-ciphertext we have.

We thus proposed a simple strategy-to-determine the trails efficiently by the
definition of the cost, e " 2, where @ isthe bias of the trail and k is the number
of bits to attack. The cost tells us how much effort we need to succeed in the attack.
By scanning the linear approximation table, we derived many trails and stored their
corresponding bias, cost, etc., in a queue. Then we selected the one with the smallest
cost to attack first. By using the CostUpdating we introduced in Chapter 3 we updated
the cost in the queue and decided which trail to attack next. Finally we combined the
Backtracking technique by storing extra candidate keys and we thus improved our
success rate.

In the second part of this thesis, we turned to study the resistance of the S-box to
linear attacks. We first introduced many properties of Boolean functions since S-box

can be viewed as a kind of multiple-output Boolean function. And we found that

57

nonlinearity is the most important property S-box should have to resist the attack.
With larger nonlinearity the values in the linear approximation table will be smaller
and thus becomes hard to find a trail with a large bias to attack. Then we turned to
discuss about the construction method of AES S-box since the design of AES S-box is
proved to be resistant efficiently to linear attacks. And we aso found severa
interesting properties when we changed the three parameters: the constant vector, the
affine matrix and the irreducible polynomial. Though there are still several things we
don’t understand, we believe our result may be useful for the future research.

In the future, we think there are two directions worthy of further study. First, to
further analyze the linear attack and try to find new attack strategies. This includes
designing strategies to find good linear trails with higher bias so that we can attack
with less cost. And we can try,to design_a brand new strategy to attack or try to
combine several techniques we aready know, such-as key ranking, multiple linear
approximations, etc. Second, we can design-the construction method of S-boxes with
high nonlinearity to resist linear attacks. There.are'many papers about constructions of
multiple output Boolean functions [8][9][13][27], but not all of them satisfying the
requirements of S-box. So we can try to modify them without destroying their high

nonlinearity property.

58

References

[1]

[2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]

C. Adamsand S. Tavares, “Good S-boxes are Easy to Find,” Advancesin
Cryptology-CRYPTO ’89, pp. 612-615, 1989.

E. Biham and A. Shmir, “Differential cryptanalysis of DES-like cryptosystems,”
Journal of Cryptology, 4(1):3-72, 1991.

J. Daemen and V. Rijndael, “The Block Cipher Rijndael,” Lecture Notesin
Computer Science, 1820 (2000), 288-296. (Smart Card Research and
Applications.)

J. Daemen and V. Rijndael, “The design of Rijndeal. AES,” The Advanced
Encryption Standard, Springer-Verlag, 2002.

H. Feistel, Cryptography and Computer:Privacy, Scientific American,
228(5):15-23, 1973.

H. Feistel, W. A. Notz, and J."L. Smith,*“Some Cryptographic Techniques for
M achine-to-Machine Data'Communications,” Proceedings of the IEEE, 63(11):
1545-1554, 1975.

J. Fuller and W. Millan, “Linear Redundancy in S-boxes,” FSE 2003 (Lecture
Notes in Computer Science no. 2887), Springer-Verlag, pp. 74-86, 2003.

K. C. Guptaand P. Sarkar, “Construction of Perfect Nonlinear and Maximally
Nonlinear multiple-Output Boolean Functions Satisfying Higher Order Strict
Avalanche Criteria,” |EEE Trans. Info. Theory, vol. 50, no. 11, pp. 2886-2893.
Nov. 2004.

K. C. Guptaand P. Sarkar, “Improved Construction of Nonlinear Resilient

S-boxes,” |EEE Trans. Info. Theory, vol. 51, no. 1, pp. 339-348. Jan. 2005.

[10] F. Hendessi and T. A. Gulliver, A. U. H. Sheikh, “Large S-Box Design Using a

Converging Method,” Information Theory 1997, Proceedings, 1997 |EEE

59

Symposium on Information Theory, pp.177.

[11] H. M. Heys, “A tutorial on Linear and Differential Cryptanalysis,” Technical
report CORR 2001-17, Dep. of Combinatorics and Optimization, University of
Waterloo, Waterloo, Canada, 2001.

[12] H. M. Heysand S. E. Tavares, “Substitution-Permutation Networks Resistant to
Differential and Linear Cryptanalysis,” Journal of Cryptology, 9(1996), 1-19.

[13] T. Johansson and E. Pasalic, “A Congtruction of Resilient Functions with High
Nonlinearity,” IEEE Trans. Info. Theory, vol. 49, no. 2, pp. 494-501. Feb. 2003.

[14] L. Keliher, “Linear Cryptanalysis of Substitution-Permutation Networks,” PhD.
Thesis, 2003.

[15] L. Keliher, H. Meijer and S. Tavares, “New Method for Upper Bounding the
Maximum Average Linear Hull Probability for.SPNs,” EUROCRYPT 2001,
LNCS 2045, pp. 420-436,-2001.

[16] X. Lai and J. Massey, “A propasal fora.new block encryption standard,”
Advances in Cryptology-EUROCRYPT '90; LNCS 473, pp. 389-404,
Springer-Verlag, 1991.

[17] X. Lai, J. Massey, and S. Murphy, “Markov ciphers and differential
cryptanalysis,” Advances in Cryptol ogy-EUROCRYPT '91, LNCS 547, pp. 17-38,
Springer-Verlag, 1991.

[18] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advancesin
Cryptology: Proceedings of EUROCRYPT '93, Springer-Verlag, Berlin, pages
386-397, 1994.

[19] M. Matsui, “On Correlation Between the Order of S-boxes and the Strength of
DES,” Advances in Cryptology- EUROCRYPT '94 (Lecture Notes in Computer
Science no. 950), Springer-Verlag, pp. 366-375, 1995.

[20] M. Matsui, “The First Experimental Cryptanalysis of the Data Encryption

60

Standard,” Advances in Cryptology-CRYPTO 94, LNCS 839, pp. 1-11, 1994.

[21] M. Matsui and A. Yamagishi, “A New method for Known Plaintext Attack of
FEAL Cipher,” Advances in Cryptology-EUROCRYPT '92, Lecture Notesin
Computer Science, Vol. 658, pp. 81-91, 1992.

[22] National Bureau of Standards, Data Encryption Standard (DES), Federal
Information Processing Sandard Publication 46, U. S. Department of
Commerce, January 1977.

[23] K. Nyberg, “Differentially Uniform Mappings for Cryptography,” Advancesin
Cryptology: Proceedings of EUROCRYPT '93, Springer-Verlag, Berlin, pages
55-64, 1994.

[24] K. Nyberg, “Linear Approximation of Block Ciphers,” Advancesin
Cryptology-EUROCRYPT '94, LNCS 950, pp:439-444, 1995.

[25] K. Nyberg, “Perfect Nonlinear. S-boxes;”sAdvances in Cryptology: Proceedings
of EUROCRYPT '91, Springer-Verlag,-Berlin, pages 378-386. 1991.

[26] K. Nyberg, “On the Construction.of Highly Nonlinear Permutations,” in
Advances in Cryptology-EUROCRYPT "92 (Lecture Notes in Computer Science,
vol. 658). Berlin/Heidelberg/New York: Springer-Verlag, 1993, pp. 92-98.

[27] E. Pasdlic and S. Maitra, “Linear Codes in Generalized Construction of Resilient
Functions with Very High Nonlinearity,” IEEE Trans. Info. Theory, vol.48, bo. 8,
pp. 2182-2191, Aug. 2002.

[28] R. Rivest, M. Robshaw, R. Sidney, and Y. Lin, “The RC6 block cipher,” The
First Advanced Encryption Sandard Candidate Conference, Proceedings,
Ventura, California, August 1998.

[29] M. J. B. Robshaw and B. S. Kaliski, “Linear Cryptanalysis Using Multiple
Approximations,” Advancesin Cryptology-CRYPTO '94 (Lecture Notesin

Computer Science no. 839), Springer-Verlag, pp. 1-11, 1994.

61

[30] B. Schneier, Applied Cryptography, Second Edition, John Wiley and Sons, 1996.

[31] A. Shamir and S. Miyaguchi, “Fast Data Encipherment algorithm: FEAL,”
Advances in Cryptology: Proceedings of EUROCRYPT ’87, Springer-Verlag,
Berlin, pages 267-278, 1988.

[32] C. E. Shannon, Communication Theory of Secure systems, Bell System
Technical Journal, 28:656-715, 1949.

[33] D. R. Stinson, Cryptography Theory and Practice, 2™ edition, Chapman &
Hall/CRC, 2002

[34] A. F. Webster and S. E. Tavares, “On the Design of S-boxes,” Advancesin
Cryptology: Proceedings of CRYPTO '85, Springer-Verlag, Berlin, pages

523-534, 1986.

62

