
國 立 交 通 大 學

資訊工程系

碩 士 論 文

低耗電的位址匯流排編碼方法

Low-Power Address BUS Encoding

研 究 生：翁綜禧

指導教授：鍾崇斌 教授

中 華 民 國 九十四 年 六 月

低耗電的位址匯流排編碼方法

Low-Power Address BUS Encoding

研 究 生：翁綜禧 Student：Tsung-Hsi Weng

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 - i -

低耗電的位址匯流排編碼方法

學生：翁綜禧

指導教授：鍾崇斌 博士

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

近年來如何降低電腦系統中的耗電量已經是個非常重要的課題了。一般

而言，系統中耗用在連接處理器與記憶體之間匯流排上的電量高達 50%以

上，這些電能是被傳送資料時各個匯流排線路產生的電位變化所消耗掉

的，因此藉由資料編碼/解碼方法減少匯流排線路產生的電位變化就成了降

低匯流排耗電量最有效的方法。在此，我針對指令位址匯流排、資料位址

匯流排，以及混和指令/資料位址匯流排分別設計了編碼機制，來減少匯流

排上產生的電位變化，以減少其上的電能消耗。對於指令位址匯流排，設

計了 DAT (Discontinuous Address Table)與 T0 搭配，以同時處理連續位址

以及 branch 指令造成的不連續位址；對於資料位址匯流排，設計了一方法，

其中結合 T0 與 BI、動態改變位址跨距(Stride)，以及區別讀/寫位址分別編

碼，可因應資料位址中連續位址與不連續位址混雜的特性來做處理；對於

混和指令/資料位址匯流排，利用了指令記憶體位址與資料記憶體位址之間

的關係，設計了 Stride Table 方法，並與 DAT 搭配，作為此環境的編碼設

計。實驗結果顯示，這樣的方法能夠減少指令位址匯流排上 90.5%的電位

變化、資料位址匯流排上 26%的電位變化、以及混和指令/資料位址匯流排

上 77.4%的電位變化。

 - ii -

Low-Power Data Address BUS Encoding Method

Student: Tsung-Hsi Weng Advisors: Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Reducing power consumption of computer systems has gained much

research attention recently. In a typical system, the memory bus power

constitute will over 50% of all system power; and this power is required due to

bus signal transitions (0 1 or 1 0). Reducing the number of memory bus

transitions is hence an effective way to reduce system power. I present

encoding schemes to reduce instruction address bus, data address bus, and

instruction/data mixed address bus power consumption. For instruction address

bus, T0 with DAT (Discontinuous Address Table) is proposed to handle both

consecutive addresses and the branch target addresses; for data address bus,

combination of T0 and BI method, variable-stride, and SRWEC (Separated

Read/Write Encoding Contents) is proposed to handle both the randomness and

continuities of data address sequence; as for instruction/data mixed address bus,

DAT is used for instruction address sequence and Stride-Table which can take

use of the relationship between instruction address and data address is applied

for data address sequence. Simulation results show that the overall bus line

switching reduction is 90.5% of unencoded instruction address bus, 26% of

unencoded data address bus, and 77.4% of unencoded instruction/data mixed

address bus.

 - iii -

誌 謝

感謝鍾老師與單老師兩年來的指導，實驗室各位學長同學給予的寶貴意

見，以及家中父母親給予我的關懷和支持。有了這麼多人的幫忙和支持，

我才得以順利完成這份論文。

祝所有幫助過我、關懷過我的人，

身體健康、事事順利！

翁綜禧 2005/08/29

 - iv -

Table of Contents
摘要 i

ABSTRACT ii

Table of Contents iii

List of Figures v

List of Tables vii

Chapter 1 Introduction 1

1.1 Power Consumption of System Bus 1

1.2 The Existing Methods 2

1.3 Thesis Organization 2

Chapter 2 Background 3

2.1 How CPU request memory data? 3

2.2 Bus Architectures 5

2.3 Related Bus Encoding 6

2.3.1 Bus-Invert (BI) 6

2.3.2 Zero-Transition (T0) 8

2.3.3 Combining T0 & BI (T0_BI) 11

2.4 Summary & Observation 14

Chapter 3 Designs 16

3.1 Design Overview 16

3.2 Instruction Address Bus Encoding:

T0 with Discontinuous Address Table (T0 DAT) 17

3.3 Data Address Bus Encoding 22

3.3.1 Combining T0 & BI using single control line (T0_BI_1) 22

3.3.2 T0_BI_1 with Variable-Stride capability (T0_BI_1/S) 27

 - v -

3.3.3 Preserving Read/Write Continuities in a multiplexed data address

sequence (T0_BI_1/S/RW) 32

3.4 Instruction/Data Mixed Address Bus Encoding 35

3.4.1 Preserving Instruction/Data Continuities in a multiplexed

address sequence (I/D Selector) 36

3.4.2 Applying different stride value on each data access

(Stride-Table) 37

3.5 Summary 43

Chapter 4 Simulation 44

4.1 Simulation Environment 44

4.2 Simulation Results 47

4.2.1 Results of Instruction Address Bus Encoding 47

4.2.2 Results of Data Address Bus Encoding 48

4.2.3 Results of Inst/Data mixed Address Bus Encoding 49

Chapter 5 Conclusions 51

Chapter 6 References 52

問題討論 53

 - vi -

List of Figures

Figure 2.2.1: Bus Architectures－4 Buses 5

Figure 2.2.2: Bus Architectures－2 Buses 5

Figure 2.2.3: Bus Architectures－1 Bus 5

Figure 2.3.1: diagram of Bus-Invert 6

Figure 2.3.2: Example of Bus-Invert Encoding 7

Figure 2.3.3: diagram of T0 9

Figure 2.3.4: Example of T0 Encoding 10

Figure 2.3.5: diagram of T0_BI 11

Figure 2.3.6: Example of T0_BI Encoding 13

Figure 3.1: Address Bus Encoding Architecture 16

Figure 3.2.1: diagram of T0 DAT 17

Figure 3.2.2: example of T0 DAT Encoding 20

Figure 3.3.1: diagram of T0_BI_1 22

Figure 3.3.2: Example of T0_BI_1 24

Figure 3.3.3 Special Cases of T0_BI_1 25

Figure 3.3.4: diagram of T0_BI_1/S 27

Figure 3.3.5: Example of T0_BI1/S, endurance=1 30

Figure 3.3.6 T0_BI_1/S/RW block diagram 32

Figure 3.4.1: diagram of general instruction/data mixed address bus 35

Figure 3.4.2: diagram of my instruction/data mixed address bus encoding 35

Figure 3.4.3: diagram of I/D selector 36

Figure 3.4.4: diagram of I/D selector with T0 DAT and Stride-Table 37

Figure 3.4.5: example of I/D Selector with T0 DAT and Stride-Table,

At Start 39

Figure 3.4.6: example of I/D Selector with T0 DAT and Stride-Table,

Iteration 1 40

 - vii -

Figure 3.4.7: example of I/D Selector with T0 DAT and Stride-Table,

Iteration 2 41

Figure 3.4.8: example of I/D Selector with T0 DAT and Stride-Table,

Iteration 3 42

Figure 3.4.9: diagram of Stride-Table combining with Bus-Invert 42

Figure 4.1: Simulation flowchart 46

Figure 4.2.1: effects of DAT size 47

Figure 4.2.2: Results of T0 DAT 48

Figure 4.2.3: Results of T0_BI_1/S/RW 48

Figure 4.2.4: effects of Stride-Table Size 49

Figure 4.2.5: Results of I/D Selector with T0 DAT and Stride-Table 50

 - viii -

List of Tables

Table 1: Summary of BI, T0, and T0_BI 14

 - 1 -

1 Introduction
The increase in complexity of system-on-chip (SoC) designs has led to the power

consumption, hence cooling, and reliability problems. Power consumption is becoming

one of the most important design issues especially for embedded systems. On the other

hand, we are witnessing a dramatic market size increase for portable electronic devices

such as mobile phones and personal digital assistants. While these products are

battery-powered, and their functional requirements due to users are even increasing, low

power design for these systems hence becomes a very important research topic.

1.1 Power Consumption of System Bus

In a digital computer system, the major power consumption comes from the

off-chip processor-memory bus traffic. And it has been estimated that the

capacitance driven by the I/O nodes is usually three orders of magnitude [1] that of

the one seen by the internal nodes of a microprocessor. As a result, it is imperative

to reduce Bus power for the purpose of low-power.

How the system bus consume power? The power consumption equation of

typical buses is as following:

P = ½ ．SBT ． Cs ． Vdd
2

 P : Power Consumption of Bus

 SBT : the # of bus bit transitions

 Cs : self-capacitance

 Vdd : Bus supply voltage

Here we can find that the power consumptions of bus are dominated on three

parameters: SBT, Cs, and Vdd. For achieving low-power in CMOS circuits, Cs or

Vdd must be minimized. Decreasing Vdd has a quadratic effect and is a very

efficient way of reducing power consumption. However, the decrease of lower Vdd

 - 2 -

is still not enough[1] as required by portable applications. As a result, lowering Vdd

must be done together with other methods for decreasing more power consumption.

Here, reducing the bit-transitions (0 1 or 1 0) on the bus, means SBT value, is a

marvelous way of further decreasing power consumption.

1.2 The Existing Methods

In [4] Stan and Burleson proposed the Bus-Invert method to reduce the

bit-transition number of randomly distributed bus patterns. In [5] Benini et al.

proposed T0 code to reduce the bit-transition number of consecutive bus patterns,

which occupy a large portion in instruction address stream. In [6], Benini et al.

proposed T0_BI method. This method can handle both randomly distributed and

consecutive patterns. This method can be applied on data address bus, but there are

still some improvements can be done. I will show these improvements in this

paper.

1.3 Thesis Organization

The rest of the thesis is organized as follows: Section 2 describes the

background of low-power address bus encoding. Section 3 presents the proposed

designs for reducing the bit transitions on kinds of address buses. Section 4 gives

the performance results. The last section summarizes the work.

 - 3 -

2 Background
In this section, the behaviors of how CPU requests memory data are described.

After that, the Bus architecture in general systems and what happened while

transmitting address/data via these Buses are introduced. And then I will show you the

related low-power bus encoding techniques and some potential improvements to these

existing designs. Here, my design issues are also unveiled.

2.1 How CPU request memory data?

While CPU executing programs in a general computer system, the processor

will unceasingly access the memory for fetching instructions, reading input data,

and write the computation results. All these transmissions have to be done by the

system Buses. Following shows the needed transmissions between CPU and

memory, and the behaviors of them:

1. Instruction Address Stream

The behavior of instruction address sequence is usually consecutive, and the

stride of instruction address is equal to the size of instruction words. The

instruction address is usually consecutive under general condition. However,

when the branch instructions (goto, if, call, return, etc.) are executed, the next

instruction address sequence is depend on the branch result. When branch

taken, the next instruction address will not be sequential to the address of the

branch instruction. Though the branch target addresses are not sequential to

addresses of the branch instructions, the target addresses are seldom changed

when program executed. As a result, the behavior of instruction addresses is

quite regular and predictable.

 - 4 -

2. Data Address Stream

The behavior of data address sequence may be randomly distributed at

sometimes and sequential at the other time, and the stride of data address will

vary with time. The data address is usually randomly distributed under general

condition. However, when applications access arrays or scalar data in loops, the

accessed data addresses may contain some continuity. Besides this, even if the

data addresses are sequential in loop, the stride between addresses will differ

with the size of accessed objects and the continuity will be contaminated for

the intervention of reads and writes.

3. Instruction Stream

Generally, there are almost no continuity in two instructions, and are never

changed after compilation. The behavior of instruction sequence is randomly

distributed in the run-time. However, most RISC-based ISAs exhibit some

regularity and can be partitioned into fixed-location fields. So many

optimizations on instructions are done in the compile time.

4. Data Stream

The behavior of data sequence is randomly distributed in all times. Because the

input data may vary with time, the value of data is quite irregular and

non-predictable. However, there are some characteristics in data value. For

example: leading with 0 or 1, repeating, etc.

This thesis will take the characteristics of instruction address stream and data

address stream into consideration in later design.

 - 5 -

2.2 Bus Architectures

The four streams discussed in previous section are all transmitted though

system buses. Now the typical bus architectures are introduced following:

4 Buses

CPU
Instruction Address

Instruction
Data Address

Data
Instruction
Memory

Data
Memory

Figure 2.2.1: Bus Architectures－4 Buses

In this Bus architecture, each stream is transmitted using its dedicated bus.
Streams will never inference other streams. As a result, the characteristic of the
four streams will be preserved on the Bus, and it’s easy to make use of while
encoding.

2 Buses

CPU
Instruction/Data Address

Instruction/Data Memory

Figure 2.2.2: Bus Architectures－2 Buses
In this architecture, instruction address stream is mixed with data address
stream, and instruction stream is mixed with data stream. The stream
individualisms are broken because of the intervention of each other. Moreover,
the offline optimization of instructions might get poor performance here.

1 Bus

CPU
Instruction/Data
Address/Data Memory

Figure 2.2.3: Bus Architectures－1 Bus

In this architecture, all the four streams are mixed together. As a result, almost
all characteristics of these streams are broken now.

In my thesis, I study the address bus encoding. Buses focused here are

instruction address bus and data address bus in “4 Buses” architecture, and

instruction/data address bus in “2 Buses” architecture. I will design suitable

encoding algorithms for each of the three Bus.

 - 6 -

2.3 Related Bus Encoding

Followings are related researches on low-power bus encoding. The Bus-Invert

(BI) method is suitable for Common Buses, Zero-Transition (T0) method is

design for Instruction Address Bus, and T0_BI design can be applied on Data

Address Bus.

2.3.1 Bus-Invert (BI)

In [4] Stan and Burleson proposed the Bus-Invert method as explained next.

Consider an N-bit bus. The idea is that if the hamming distance between two

consecutive patterns is larger than N/2, then the second pattern can be inverted so

as to reduce the inter-pattern Hamming distance to below N/2. One extra bit is

needed to distinguish between the original and inverted patterns that are

transmitted on the bus. The BI method tends to perform well when transmitting

random patterns, which is often the case on data busses.

The Figure 2.3.1 is a diagram of

BI encoding method:

decoder

BUS

INVencoder decoderdecoderdecoder

BUS

INVencoderencoderencoder

Figure 2.3.1: diagram of Bus-Invert

Following is the encoding algorithm of this method

BI encoding{
int INV;
while (receive data address){

current address = received data address;
if (transition #＞bus_width/2) {

INV ＝ 1; data address bus ＝ inverted current address;
}else{

INV ＝ 0; data address bus ＝ current address;
}}}

“INV” means the control signal to be sent to the decoder, “current address” means the address value to

be transferred, and the “data address bus” means the code that to be transferred via data address bus.

 7

And the corresponding BI decoding algorithm is:

BI decoding{
while (receive data address bus value and INV signal){

if (INV ＝ 1){
data address ＝ inverted data address bus value;

}else{
data address ＝ the data address bus value;

}
}

}
“INV” means the control signal from the encoder, and the “data address” means the real address in this

transmittion.

The Figure 2.3.2 shows an example of the Bus-Invert

7 F F 27 F F 2

N o E n c o d e

1 2T o ta l T ra n s i t io n s

7 F F 0
0 0 1 0
0 0 0 0

A d d re s s o n B U S
0 0 0 0
0 0 1 0
7 F F 0

in i t ia l
A d d re s s to b e t r a n s fe r

7 F F 27 F F 2

N o E n c o d e

1 2T o ta l T ra n s i t io n s

7 F F 0
0 0 1 0
0 0 0 0

A d d re s s o n B U S
0 0 0 0
0 0 1 0
7 F F 0

in i t ia l
A d d re s s to b e t r a n s fe r

(a): No Encoding

B u s - In v e r t (B I)

18 0 0 D7 F F 2
9T o ta l T ra n s i t io n s

1
0
0

I N V

8 0 0 F
0 0 1 0
0 0 0 0

A d d re s s o n B U S
0 0 0 0
0 0 1 0
7 F F 0

in it ia l
A d d re s s to b e t ra n s fe r

B u s - In v e r t (B I)

18 0 0 D7 F F 2
9T o ta l T ra n s i t io n s

1
0
0

I N V

8 0 0 F
0 0 1 0
0 0 0 0

A d d re s s o n B U S
0 0 0 0
0 0 1 0
7 F F 0

in it ia l
A d d re s s to b e t ra n s fe r

(b): Bus-Invert Encoding

Figure 2.3.2: Example of Bus-Invert Encoding

 8

The Figure 2.3.2 shows an easy example of bus transfer. The initial bus value

is ‘0000’, the bus width N=16, and the addresses to be transfer with time is ‘0010’

 ‘7FF0’ ‘7FF2’. The original non-encoded transfer is shown in Figure 2.3.2a,

the total transition number is 12. The BI-encoded transfer is shown in Figure

2.3.2b . While transferring from ‘0000’ to ‘0010’, the Hamming distance is 1,

which is less than N/2, so that ‘0010’ is not inverted. While transferring from

‘0010’ to ‘7FF0’, the Hamming distance is 10, larger than N/2, so that ‘7FF0’ is

inverted to ‘800F’ and the INV is asserted. Here, the real transition number of this

transfer is 6. Next, while transferring from ‘800F’ to ‘7FF2’, the Hamming

distance is 15 (note that the real meaning is still from ‘7FF0’ to ‘7FF2’), so it is

also inverted to ‘800D’ and the INV is still asserted. The real transition number of

this transfer is 1. As a result, the total transition number is 9, and it is better than

that of non-encoded bus.

2.3.2 Zero-Transition (T0)

In [5] Benini et al. proposed T0 code technique, which exploits data

continuity to reduce the switching activity on the instruction address bus. The

observation is that instruction addresses are sequential except when control flow

instructions are encountered or exceptions occur. T0 adds a redundant bus line,

called INC. If the addresses are sequential, the sender freezes the value on the bus

and sets the INC line. Otherwise, INC is de-asserted and the original address is

sent. On average 60% reduction in address bus switching activity is achieved by

T0 coding.

 9

The Figure 2.3.3 is a diagram of

T0 encoding method:

decoder

BUS

INCencoder decoderdecoderdecoder

BUS

INCencoderencoderencoder

Figure 2.3.3: diagram of T0

Following is the encoding algorithm of this method:

T0 encoding{
int last_address＝current instruction address bus value, stride＝4, INC;
while (receive instruction address){

current address = received instruction address;
if(stride ＝ current address － last_address){

INC ＝ 1;
}else{

INC ＝ 0; instruction address bus ＝ current address;
}
last_address ＝ current address;

}
}

“INC” means the control signal to be sent to the decoder, “current address” means the address value to

be transferred, and the “instruction address bus” means the code that to be transferred via instruction

address bus.

And the corresponding T0 decoding algorithm is:

T0 decoding{
int last_address＝current instruction address bus value, stride＝4;
while (receive instruction address bus value and INC signal){

if (INC ＝ 1){
instruction address ＝ last_address ＋ stride;

}else{
instruction address ＝ the instruction address bus value;

}
last_address ＝ instruction address;

}
}

“INC” means the control signal from the encoder, and the “instruction address” means the real address

in this transmittion.

 10

The Figure 2.3.4 shows an example of the T0

07 F F 67 F F 6

1- -0 0 0 C
1- -0 0 1 0
07 F F 07 F F 0
07 F F 27 F F 2
07 F F 47 F F 4

Z e r o - T r a n s i t i o n (T 0)

07 F F 87 F F 8
2 0T o t a l T r a n s i t i o n s

1
1
0

I N V

- -
- -

0 0 0 0
A d d r e s s o n B U S

0 0 0 0
0 0 0 4
0 0 0 8

i n i t i a l
A d d r e s s t o b e t r a n s f e r

07 F F 67 F F 6

1- -0 0 0 C
1- -0 0 1 0
07 F F 07 F F 0
07 F F 27 F F 2
07 F F 47 F F 4

Z e r o - T r a n s i t i o n (T 0)

07 F F 87 F F 8
2 0T o t a l T r a n s i t i o n s

1
1
0

I N V

- -
- -

0 0 0 0
A d d r e s s o n B U S

0 0 0 0
0 0 0 4
0 0 0 8

i n i t i a l
A d d r e s s t o b e t r a n s f e r

Figure 2.3.4: Example of T0 Encoding

The Figure 2.3.4 shows an easy example of T0 encoding. The initial bus value

is ‘0000’, the bus width N=16, the stride applied here is 4, and the addresses to be

transfer with time is listed in first column. In the first 4 transfers (‘0004’ ~ ’0010’),

these values are all equal to last value plus 4, so the BUS is frozen and the INC is

asserted while transferring these values in sequence. While transferring from

‘0010’ to ‘7FF0’, ‘7FF0’ must be transferred directly and INC must be de-asserted

because (7FF0 – 0010)≠4. There are 12 transitions in this transfer, including 11

transitions on address bus and 1 transition on INC line. In the last 4 transfers

(‘7FF2’ ~ ‘7FF8’), these value must be transferred through bus even if they are all

in sequence. It is because that their stride (=2) do not equal to the stride applied by

T0 in this example.

 11

2.3.3 Combining T0 & BI (T0_BI)

Thinking about the properties of BI (section 2.1) and T0 (section 2.2). The BI

encoding method can only works well with randomly distributed data, and the T0

encoding method can only works well with sequential data. Because addresses on

data bus may sometimes be accessed sequentially and randomly at the other time,

combinations of the two encoding methods are required in order to get benefit of

both the combined techniques. However, combination may result conflicts or

confusions, and these problem should be resolved carefully.

The Figure 2.3.5 is the diagram

of the T0_BI method. This design is

proposed by Benini et al. in paper [6].

decoder

BUS

INCencoder
INV

decoderdecoderdecoder

BUS

INCencoderencoderencoder
INV

Figure 2.3.5: diagram of T0_BI

The main idea of T0_BI design is using two separated control lines, INC and

INV, to control the two functions, and the INC line is prior than the INV line. If the

INC line is asserted, the BUS value is calculated by the INC function and the INV

line is ignored. Else the INV line is treated as the control line of INV function.

 12

Following is the T0_BI encoding algorithm:

T0_BI encoding{
int last_address＝current data address bus value, stride＝4, INC,INV;
while (receive data address){

current address = received data address;
if(stride ＝ current address － last_address){

INC ＝ 1;
}else if(transition #＞bus_width/2) {

INC ＝ 0;
INV ＝ 1; data address bus ＝ inverted current address;

}else{
INC ＝ 0;
INV ＝ 0; data address bus ＝ current address;

}
last_address ＝ current address;

}
}

Both “INC” and “INV” mean the control signals to be sent to the decoder, “current address” means the

address value to be transferred, and the “data address bus” means the code that to be transferred via data

address bus.

And the corresponding T0_BI decoding algorithm is:

T0_BI decoding{
int last_address＝current data address bus value, stride＝4;
while (receive data address bus value and INC, INV signals){

if (INC ＝ 1){
data address ＝ last_address ＋ stride;

}else if (INV ＝ 1){
data address ＝ inverted data address bus value;

}else{
data address ＝ the data address bus value;

}
last_address ＝ data address;

}
}

Both “INC” and “INV” mean the control signals from the encoder, and the “data address” means the

real address in this transmittion.

 13

The Figure 2.3.6 shows an example of the T0_BI

1

1

0

0

0

INV

0800F7FF0
1--7FF4

T0_BI

9Total Transitions

1
1
0

INC

--
--

0000
Address on BUS

0000
0004
0008

initial
Address to be transfer

1

1

0

0

0

INV

0800F7FF0
1--7FF4

T0_BI

9Total Transitions

1
1
0

INC

--
--

0000
Address on BUS

0000
0004
0008

initial
Address to be transfer

Figure 2.3.6: Example of T0_BI Encoding

The Figure 2.3.6 shows an easy example of T0_BI encoding. The initial bus

value is ‘0000’, the bus width N=16, the stride applied here is 4, and the addresses

to be transfer with time is listed in first column. In the first 2 transfers (‘0004’

~ ’0008’), these values are all equal to last value plus 4, so the BUS is frozen and

the INC is asserted while transferring these values in sequence. While transferring

from ‘0008’ to ‘7FF0’, the Hamming distance from ‘0000’ to ‘7FF0’ is 11, larger

than N/2, so that ‘7FF0’ is inverted to ‘800F’, the INV is asserted, and the INC is

de-asserted. There are 7 transitions in this transfer, including 5 transitions on data

address bus, 1 transition on INC line, and 1 transition on INV control lines. Next,

while transferring from ‘800F’ to ‘7FF4’, because the real meaning is from ‘7FF0’

to ‘7FF4’ and ‘7FF4’ is equal to ‘7FF0’ plus 4, the BUS is frozen and the INC is

asserted while transferring these values in sequence. Note that the INV line is still

asserted because it is ignored here when the INC line is asserted. The total number

of switching activities is 9.

 14

2.4 Summary & Observation

Bus-Invert (BI) method inverts the transferring BUS value when it produces

bit-transitions more than half of BUS width. An extra control line, called INV, is

used to indicate which value is inverted. Zero-Transition (T0) method avoids the

transfer of sequential addresses. An extra control line, called INC, is used to

indicate which value is sequential to last address. T0_BI method, which combines

both BI and T0 methods, uses two extra control signals, the INV and the INC, to

control both two methods separately. However, these two control lines may result

in many bit-transitions if functions switch frequently.

The following table shows the effect if applying these related works on 5

kinds of Buses:

Table 1: Summary of BI, T0, and T0_BI

Inst.

Address
Inst.

Data
Address

Data
Inst/Data
Address

Bus-Invert － △ △ ○ △

T0 ○ － △ － △

T0_BI ○ △ ○ ○ △

－: not suitable △: not good ○: good

I think that there exists some improvement space in previous designs and new

design issues for further study.

1. Instruction Address Bus

In T0 code, a discontinuous address breaks the consecution, and the address

has to be sent explicitly to bus. This is the major restriction to the performance

of T0 code. The sources of the discontinuous address are mainly come from

branches, subroutine calls, and exception/interrupt handlings. Although the

 15

instructions are mostly sequential, branches still occurred frequently in

common programs. The frequency of branch is ranged from about 10~20%,

and strongly impact the result of T0 code. However, only few branches will

change the target addresses. If the history taken branch targets are recored, it

should be useful information while encoding.

2. Data Address Bus

First, the two control lines of T0_BI method may reduce to one control line to

indicate both invert and sequential condition.

Second, the stride value of data address may be replaced dynamically to meet

the current data address stride.

At last, the read and write data addresses usually have its individual continuity

so as that it can be encoded separately to preserve the continuity.

3. Instruction/Data Mixed Address Bus

There are no previous design performs well on this Bus because of the

continuity corruption of instruction and data address. I think that there are two

design issues for encoding algorithms on this Bus:

First, the instruction and data addresses own its individual continuity so that it

can be encoded separately to preserve the continuity.

Second, the data addresses are generated from load/store instructions. There

should be some relationships between instruction and data address. The

encoding method might make use of these relationships while encoding.

 16

3 Designs
My low-power address bus encoding schemes are described in this section. Section

3.1 will introduce the overview of my designs, section 3.2 to 3.4 will show the design

details, and section 3.5 gives the design summary.

3.1 Design Overview
CPU

encoderAddress

Memory

decoder Address
Encoded Address

Control signals

Read/Write
MemRequest

Figure 3.1: Address Bus Encoding Architecture

Figure 3.1 shows my low-power address bus encoding architecture. The

encoder gets addresses from CPU and outputs the encoded address and some

control signals. Encoded addresses and control signals are transmitted to the

decoder of memory. When the decoder receives encoded addresses and control

signals, it converts this information into original data address. Two control lines,

called Read/Write and MemRequest, are traditional memory control signals.

Designs for instruction address bus, data address bus, and instruction/data

mixed address bus will be explained in section 3.2~3.4. Following are brief

descriptions of these designs:

1. Instruction Address Bus – recoding history branch targets as encoding information

2. Data Address Bus – using only 1 control line combining T0 and BI, adding

Variable-Stride capability, and Preserving read/write continuities

3. Instruction/Data mixed Address Bus – preserving instruction/data continuities and

making use of relationships between instruction and data address.

 17

3.2 Instruction Address Bus Encoding:

T0 with Discontinuous Address Table (T0 DAT)

......

......

Source address

......

......

Target address

Discontinuous Address Table

......

......

Source address

......

......

Target address

Discontinuous Address Tabledecoder

DAT

decoder

DAT

BUS

INC-DAT

encoder

DAT

encoder

DAT

Figure 3.2.1: diagram of T0 DAT

The Figure 3.2.1 shows the diagram of T0 with Discontinuous Address Table

(DAT). The approach is based on T0 code, and adds a discontinuous address table

(DAT) into both encoder and decoder to record the address pairs that are sent in

sequence but with discontinuous values. Each entry of DAT records two values:

“Source address” and “Target address”. “Source address” is equal to the address of

branch instruction, and “Target address” is the target if branch taken. Afterward,

this approach is called as “T0 DAT”.

T0 DAT uses one control line, called INC-DAT, to control both DAT table and

T0 function to transmit an instruction address sequence. First, the encoder of T0

DAT detects “DAT-hit” of the transferred address sequence. The “DAT-hit” means

that the address pair (previous address, this address) exists in the DAT table.

Transmission of an address with “DAT-hit” property is done with an asserted

INC-DAT and a frozen address bus. If “DAT-hit” test fail, then the encoder checks

to see if the to-be transferred address is consecutive to previous address and the

previous address does not exist in the “Source address” field of DAT. Transmission

of an address consecutive to previous address and the previous address does not

exist in the “Source address” field of DAT is done with an asserted INC-DAT and a

frozen address bus, too. Otherwise, the INC-DAT control line is de-asserted and

the address is sent directly. Moreover, the discontinuous pair – “previous address

 18

and this address” is inserted into the DAT. After inserting into the DAT, this pair

will be found in DAT in the future, and the next time the INC-DAT signal will be

asserted if this address pair appears again.

Following is the T0 DAT encoding algorithm:

T0DAT encoding{
int last_address＝current instruction address bus value, stride＝4, INC-DAT;
pair[] DAT;
while (receive instruction address){

current address = received instruction address;
if(pair(last_address, current address) found in the DAT)

INC-DAT ＝ 1;

}else if(current address － last_address ＝ stride &&
 last_address does not exist in “Source Address” of DAT) {

INC-DAT ＝ 1;
}else{

INC-DAT ＝ 0; instruction address bus ＝ current address;
DAT.insert (last_address, current address);

}
last_address ＝ current address;

}
}

“INC-DAT” means the control signal to be sent to the decoder, “current address” means the address

value to be transferred, and the “instruction address bus” means the code that to be transferred via

instruction address bus.

 19

And the corresponding T0 DAT decoding algorithm is:

T0DAT decoding{
int last_address＝current instruction address bus value, stride＝4;
pair[] DAT;
while (receive instruction address bus value and INC-DAT signal){

if (INC-DAT ＝ 0){
instruction address ＝ the instruction address bus value;
DAT.insert (last_address, the instruction address bus value);

}else if (last_address exists in “Source Address” of DAT){
instruction address ＝ “Target Address” in that pair;

}else{
instruction address ＝ last_address ＋ stride;

}
last_address ＝ instruction address;

}
}

“INC-DAT” means the control signal from the encoder, and the “instruction address” means the real

address in this transmittion.

Note that the decoder interprets the meaning of the asserted INC-DAT line

according to if the previous address exists in the “Source Address” field of DAT. If

the encoder intends to transmit one consecutive address but the previous address

happens to exist in the “Source Address” field of DAT, the decoder may

erroneously interpret this as a discontinuous address pair. As a result, to avoid this

error, the encoder simply sends the current address out directly. This situation

might occur when leaving a loop, and the probability of this situation is much less

than that of on-going loop. What have to be done is to take the precaution

carefully.

 20

Following is an example of T0 DAT

T0 with Discontinuous Address Table
Address to be transfer Address on BUS INC-DAT DAT operation
initial 0000 0000 0

0004 -- 1(inc)
0008 -- 1(inc)
0100 0100 0 insert(0008,0100)
0104 -- 1(inc)
0000 0000 0 insert(0104,0000)
0004 -- 1(inc)
0008 -- 1(inc)
0100 -- 1(dat-hit) (0008,0100) found
0104 -- 1(inc)
0000 -- 1(dat-hit) (0104,0000) found
0004 -- 1(inc)
0008 -- 1(inc)
0100 -- 1(dat-hit) (0008,0100) found
0104 -- 1(inc)
0108 0108 0 (0104,0000) found

Total Transitions 9

Figure 3.2.2: example of T0 DAT Encoding

In figure 3.2.2, there are two discontinuous address pairs from “0000” to

“0104”, and these are “0008” “0100” and “0104” “0000”. The consecutive

address sequences in the table are transmitted similar to T0 method, but these

discontinuous address pairs are different treated here. While first transmission from

“0008” to “0100”, “0100” is directly sent to the address bus and the INC-DAT line

is de-asserted because “0100” is not sequential to “0008” and (0008, 0100) pair

does not exist in DAT table. After transmission, the (0008, 0100) pair will be

inserted into DAT table. When next time we meet “0008” “0100” again, “0100”

needn’t to be sent to the address bus because the (0008, 0100) pair is in the DAT.

So the transmission of “0100” is just asserting the INC-DAT line. Similar

operations will be occurred on “0104” “0000”, and (0104, 0000) pair is added.

 21

Now we come to transmission from “0104” to “0108”. Thought “0108” is

sequential to “0104”, “0108” has to be sent to the address bus to avoid the

miss-understanding. Because the (0104, 0000) pair exists in the DAT table, if the

encoder assert the INC-DAT line to mean that consecutive address is outputting,

the decoder will miss-understand and get the “0000” as the transmitted address.

Here, transitions of both address Bus and INC-DAT line are counted. There

are totally 9 transitions in this example.

 22

3.3 Data Address Bus Encoding

Three versions of data address bus encoding scheme are proposed in this

section, with the second and third built upon its predecessor version:

1. T0_BI_1 – combining T0 & BI using a single control line;

2. T0_BI_1/S – with Variable-Stride capability added;

3. T0_BI_1/S/RW – preserving read/write continuities in a multiplexed data

address sequence.

3.3.1 Combining T0 & BI using single control line (T0_BI_1)

The Figure 3.3.1 shows the diagram

of T0_BI_1 design.
decoder

BUS

INCVencoder decoderdecoderdecoder

BUS

INCVencoderencoderencoder

Figure 3.3.1: diagram of T0_BI_1

T0_BI_1 design uses only one control line, called INCV, to control both INC

and INV functions to transmit a data address, the encoder of T0_BI_1 first detects

the continuity of the transferred address sequence. The continuity means that the

current address is equal to the sum of the previous address and the stride.

Transmission of an address with continuity property is done with an asserted INCV

and a frozen address bus. If continuity test fails, then the encoder checks to see if

the address pattern produces bus bit-transitions on more than half of the address

bus lines and the inverted address pattern is not equal to the previous bus value

(special cases), then the INCV is also asserted and the inverted address is sent over

the address bus. Otherwise, the INCV line is de-asserted and the address will be

sent directly. Upon activation, the decoder needs to identify the meaning of an

asserted INCV line according to the received bus value. If the bus value is

unchanged, the INCV line is interpreted as an “increment-by-stride” indicator.

Otherwise, it is interpreted as an “invert” indicator. In this way, the single INCV

 23

line can act as both INC and INV control signals, and address encoding still benefit

from both BI and T0 schemes.

Following is the T0_BI_1 encoding algorithm:

T0_BI_1 encoding{
int last_address＝current data address bus value, stride＝4, INCV;
while (receive data address){

current address = received data address;
if(stride ＝ current address － last_address){

INCV ＝ 1;
}else if(transition #＞bus_width/2 &&

 inverted address≠current data address bus value) {
INCV ＝ 1; data address bus ＝ inverted current address;

}else{
INCV ＝ 0; data address bus ＝ current address;

}
last_address ＝ current address;

}
}

“INCV” means the control signal to be sent to the decoder, “current address” means the address value to

be transferred, and the “data address bus” means the code that to be transferred via data address bus.

And the corresponding T0_BI_1 decoding algorithm is:

T0_BI_1 decoding{
int last_address＝current data address bus value, stride＝4;
while (receive data address bus value and INCV signal){

if (INCV ＝ 0){
data address ＝ the data address bus value;

}else if (the data address bus is frozen){
data address ＝ last_address ＋ stride;

}else{
data address ＝ inverted data address bus value;

}
last_address ＝ data address;

}
}

“INCV” means the control signal from the encoder, and the “data address” means the real address in this

transmittion.

 24

Note that the decoder interprets the meaning of the asserted INCV line

according to the received bus value. If the encoder intends to invert the bus value

but the inverted value happens to equal the current bus value, the decoder may

erroneously interpret this as a frozen address bus. As a result, to avoid this error,

the encoder simply sends the current address out directly. I think that this is a very

unlikely situation, but precaution must be carefully taken.

Following is an example of T0_BI_1

T0_BI_1

1(inc)--7FF4
6Total Transitions

1(inv)
1(inc)

0
0

INCV

800F
--

0004
0000

Address on BUS
0000
0004

7FF0
0008

initial
Address to be transfer

T0_BI_1

1(inc)--7FF4
6Total Transitions

1(inv)
1(inc)

0
0

INCV

800F
--

0004
0000

Address on BUS
0000
0004

7FF0
0008

initial
Address to be transfer

Figure 3.3.2: Example of T0_BI_1

The Figure 3.3.2 shows that transferring the same sequence in Figure 2.3.6.

Compare with Figure 2.3.6, it is obviously that the major difference is that T0_BI

uses two control signals but T0_BI_1 uses only one. The decoder of T0_BI_1 will

not misunderstanding the meaning of encoder because that the T0 method always

freezes the BUS while address are sequential.

 25

There are two special cases that should be concerned to avoid confusion in

transfers via T0_BI_1 method. The Figure 3.3.3 shows examples of these two

cases:

T0_BI_1

1 (inv)
0

1 (inc)
0

INCV

000C
FFF3

--
000C

Address on BUS

FFF3
0010
000C

Address to be transfer
T0_BI_1

1 (inv)
0

1 (inc)
0

INCV

000C
FFF3

--
000C

Address on BUS

FFF3
0010
000C

Address to be transfer

(a): Special Case 1

T0_BI_1

1 (inv)
0

1 (inv)
INCV

FFF3
000C

FFF3
Address on BUS

000C
000C

Address to be transfer
T0_BI_1

1 (inv)
0

1 (inv)
INCV

FFF3
000C

FFF3
Address on BUS

000C
000C

Address to be transfer

(b): Special Case2

Figure 3.3.3 Special Cases of T0_BI_1

In Figure 3.3.3a, the problem happens while transferring ‘FFF3’. In this case,

if inverting ‘FFF3’ to ‘000C’, the decoder will misunderstand the meaning and use

INC function to decode the value because the BUS value is un-changed. In Figure

3.3.3b, the problem happens while transferring ‘000C’. In this case, the first ‘000C’

has been inverted and transferred. If the second ‘000C’ is inverted, the decoder will

misunderstand again.

Both the two cases in Figure 3.3.3 have to force the value directly transferred

through BUS in order not to make the decoder misunderstand the meaning of

encoder, and will get the worst result, whose transition number (33) is equal to the

 26

BUS width (32) plus 1, while address being transferred. Case 1 seldom happen

because the probability of two sequential addresses with just inverted value is quite

small. However, the Case 2 may happen easier for the reason that it will occur

when two sequential addresses are equal, and here is one simple example: a[i] = a[i]

+ c, where a is an array and c is a constant value.

 27

3.3.2 T0_BI_1 with Variable-Stride capability (T0_BI_1/S)

Many data are structured (arrays, matrices, etc.), and accesses to such

structured data have very predictable data addresses. The term “stride” is used to

describe the byte offset between consecutive access addresses of this kind. Two

factors affect the stride value: one is the data item size (64 bits for scientific data,

32 bits for general-purpose computing, and 16 or 8 bits for multimedia

applications). The other is the access pattern (column, row, diagonal, …) interacted

with the storage scheme (row-major, column-major, others). These complicate the

stride value computation and identification; different stride values may even mix in

the code sequence. Here the changing stride problem is dealt with. Interleaved

stride problem will be tackled in next section.

decoder
Last Address
Applied Stride

New Stride
logics

encoder
Last Address
Applied Stride

New Stride
logics

BUS

INCV

decoder
Last Address
Applied Stride

New Stride
logics

encoder
Last Address
Applied Stride

New Stride
logics

BUS

INCV

Figure 3.3.4: diagram of T0_BI_1/S

The major goal of variable-stride capability is to make the stride applied by

T0 changes with the behavior of data address sequence in order to fit the actual

stride of data address. Figure 3.3.4 shows the main idea of T0_BI_1 with

Variable-Stride Capability added in. First, the chosen stride is applied by T0

method while transferring addresses. Second, the candidate stride is modified when

current address stride is not equal to chosen stride. After the candidate stride

matures, it is used to replace the chosen stride. At last, how to make the candidate

stride mature? Setting an endurance value (e) as a method parameter, which means

that the candidate stride will be applied if it appears e times continuously.

Following is the T0_BI_1/S encoding algorithm, in which italic and

 28

underlined contents are newly added:

T0_BI_1/S encoding{
int last_address＝current data address bus value;
int chosen_stride＝4, INCV, e;
while (receive data address){

current address = received data address;
if(chosen_stride ＝ current address － last_address){

INCV ＝ 1;
}else if(transition # ＞ bus_width/2 &&

inverted address≠current data address bus value) {
INCV ＝ 1; data address bus ＝ inverted current address;

}else{
INCV ＝ 0; data address bus ＝ current address;

}
If (the new stride appears e time continuously)

chosen_stride ＝ current address － last_address;
last_address ＝ current address;

}
}

“INCV” means the control signal to be sent to the decoder, “current address” means the address value to

be transferred, and the “data address bus” means the code that to be transferred via data address bus.

Variable-Stride Capability uses “current_stride” and endurance “e” to dynamically change the stride

value depend on the behavior of current data address sequence.

 29

And the corresponding T0_BI_1/S decoding algorithm, in which italic and

underlined contents are newly added, is:

T0_BI_1/S decoding{
int last_address＝current data address bus value, chosen_stride＝4, e;
While (receive data address bus value and INCV signal){

if (INCV ＝ 0){
data address ＝ the data address bus value;

}else if (the data address bus is frozen){
data address ＝ last_address ＋ chosen_stride;

}else{
data address ＝ inverted data address bus value;

}
If (the new stride appears e time continuously)

chosen_stride ＝ data address － last_address;
last_address ＝ data address;

}
}

“INCV” means the control signal from the encoder, and the “data address” means the real address in this

transmittion. Variable-Stride Capability uses “current_stride” and endurance “e” to dynamically change

the stride value depend on the behavior of current data address sequence.

The above algorithms are very simple and straight forward methods, and work

only with array accesses without any intervening data accesses. Nevertheless, with

these simple ideas as the basis, many innovative schemes can be derived, such as

the one to be introduced next.

 30

Following is an example of T0_BI_1/S method and the endurance=1.

T0_BI_1

9Total Transitions
1 (inv)
1 (inv)
1 (inv)
1 (inc)

0
0

INCV

800B
800D
800F

--
--

0000
Address on BUS

0000
0004

7FF4
7FF2
7FF0
0008

initial
Address to be transfer

T0_BI_1

9Total Transitions
1 (inv)
1 (inv)
1 (inv)
1 (inc)

0
0

INCV

800B
800D
800F

--
--

0000
Address on BUS

0000
0004

7FF4
7FF2
7FF0
0008

initial
Address to be transfer

(a): T0_BI_1

2
2

7FE8
4
4
0

current
(candidate)

Stride

T0_BI_1/S, endurance ＝ 1

7Total Transitions
1 (inc)
1 (inv)
1 (inv)
1 (inc)

0
0

INCV

--
800D
800F

--
0004
0000

Address
on BUS

2
7FE8

4
4
0
0

chosen
stride

0000
0004

7FF4
7FF2
7FF0
0008

init

Address to
be transfer

2
2

7FE8
4
4
0

current
(candidate)

Stride

T0_BI_1/S, endurance ＝ 1

7Total Transitions
1 (inc)
1 (inv)
1 (inv)
1 (inc)

0
0

INCV

--
800D
800F

--
0004
0000

Address
on BUS

2
7FE8

4
4
0
0

chosen
stride

0000
0004

7FF4
7FF2
7FF0
0008

init

Address to
be transfer

(b): T0_BI_1/S, endurance = 1

Figure 3.3.5: Example of T0_BI1/S, endurance=1

 31

There are two additional column (‘chosen stride’ & ‘current stride’) in Figure

3.3.5b. The chosen stride means the stride that Variable-Stride ability chooses now,

and the current stride is the stride value while transferring. Because the candidate

stride is always replaced by current stride, they are presented in one column. The

most important thing here is that the chosen stride is changed dynamically to fit the

data address stride.

In order to make it convenient in later discussion, there are some notations

used in this paper.

 FS#: meaning Fixed-Stride, whose stride is equal to #

ex: FS4－Fixed-Stride with stride=4

 VS#: meaning Variable-Stride, whose endurance is equal to #

ex: VS1－Variable-Stride, endurance=1, which is used in previous example.

 32

3.3.3 Preserving Read/Write Continuities in a multiplexed

data address sequence (T0_BI_1/S/RW)

Data memory are read and written by the CPU, both over the same set of

address and data buses. While data read sequence and write sequence each has its

own stride characteristics, these stride characteristics are unfortunately torn apart

and severely contaminated due to the intervention of the read/write address

sequences in a single address trace. How to preserve and utilize the individual read

and write stride characteristics in bus encoding hence becomes an interesting

problem. As a result, if the read and write address sequences can be individually

encoded , it must gain more power savings.

Figure 3.3.6 shows the T0_BI_1/S/RW block diagram. In this modification,

the read/write control line, which exists in all memory systems, is used to indicate

the address being a read or write address. With this, each of the read and write

address sequences can be separately encoded using the variable stride T0_BI_1/S

method.

CPU
Data

Address
INCV

Read/Write
enable

R/W

encoderencoder

stride
LastAddr
endurance

logic

Read
stride

LastAddr
endurance

logic

Write

Memory
Data

Address
decoderdecoderEncoded Address

stride
LastAddr
endurance

logic

Read
stride

LastAddr
endurance

logic

Write

Figure 3.3.6 T0_BI_1/S/RW block diagram

 33

Following is the T0_BI_1/S/RW encoding algorithm, in which italic and

underlined contents are newly added:

T0_BI_1/S/RW encoding{
int INCV, R_e, W_e;
int R_last_address＝current data address bus value;
int W_last_address＝current data address bus value;
int R_chosen_stride＝4, W_chosen_stride＝4;
while (receive data address and RW signal){

current address = received data address;
if ((RW＝1 && R_chosen_stride＝current address － R_last_address) ||

(RW＝0 && W_chosen_stride＝current address － W_last_address)){
INCV ＝ 1;

}else if(transition # ＞ bus_width/2 &&
 inverted address≠current data address bus value) {

INCV ＝ 1; data address bus ＝ inverted current address;
}else{

INCV ＝ 0; data address bus ＝ current address;
}
if(RW＝1){

If (the new stride appears e time continuously)
R_chosen_stride ＝ current address － R_last_address;

R_last_address ＝ current address;
}else{

If (the new stride appears e time continuously)
W_chosen_stride ＝ current address － W_last_address;

W_last_address ＝ current address;
}

}
}

“INCV” means the control signal to be sent to the decoder, “current address” means the address value to

be transferred, and the “data address bus” means the code that to be transferred via data address bus.

Terms start with “R_” or “W_” are duplicated registers needed for Preserving Read/Write Sequence.

 34

And the corresponding T0_BI_1/S/RW decoding algorithm, in which italic

and underlined contents are newly added, is:

T0_BI_1/S/RW decoding{
int R_e, W_e;
int R_last_address＝current data address bus value;
int W_last_address＝current data address bus value;
int R_chosen_stride＝0, W_chosen_stride＝0;
while(receive data address bus value and INCV signal and RW signal){

if (INCV ＝ 0){
data address ＝ the data address bus value;

}else if (the data address bus is frozen){
if (RW＝1) data address ＝ R_last_address ＋ R_chosen_stride;
else data address ＝ W_last_address ＋ W_chosen_stride;

}else{
data address ＝ inverted data address bus value;

}
if(RW＝1){

If (the new stride appears e time continuously)
R_chosen_stride ＝ data address － R_last_address;

R_last_address ＝ data address;
}else{

If (the new stride appears e time continuously)
W_chosen_stride ＝ data address － W_last_address;

W_last_address ＝ data address;
}

}
}

“INCV” means the control signal from the encoder, and the “data address” means the real address in this

transmittion. Terms start with “R_” or “W_” are duplicated registers needed for Preserving Read/Write

Sequence.

 35

3.4 Instruction/Data Mixed Address Bus Encoding
CPU

Inst Address
Memory

Inst/Data AddressInst/Data Address

Read/Write

Data Address

M
U
X

MemRequest

CPU
Inst Address

Memory

Inst/Data AddressInst/Data Address

Read/Write

Data Address

M
U
X

MemRequest

Figure 3.4.1: diagram of general instruction/data mixed address bus

Figure 3.4.1 shows the diagram of general instruction/data mixed address bus.

CPU multiplex the instruction address stream and data address stream into one

stream, and transfer this stream via instruction/data mixed address bus. Two

control lines, called Read/Write and MemRequest, are traditional memory control

signals.

In my design for instruction/data mixed address bus, encoder/decoder is

added into CPU/memory. The encoder separately receives two address streams:

instruction address stream and data address stream, and transmit the encoded

address to the decoder in the memory. The decoder has to output the original

addresses to the memory. Needed decoding information may be sent through some

extra control signals. Figure 3.4.2 is the diagram of my instruction/data mixed

address bus encoding.

CPU

encoder
Inst Address

Memory

decoder Inst/Data Address
Encoded Address

Control signals

Read/Write

Data Address

MemRequest

CPU

encoder
Inst Address

Memory

decoder Inst/Data Address
Encoded Address

Control signals

Read/Write

Data Address

MemRequest

Figure 3.4.2: diagram of my instruction/data mixed address bus encoding

Two versions of instruction/data mixed address bus encoding scheme are

proposed in this section, with the second built upon its predecessor version:

1. I/D Selector – preserving instruction/data continuities in a multiplexed

address sequence

2. Stride-Table – Applying different stride value on each data access

 36

3.4.1 Preserving Instruction/Data Continuities in a

multiplexed address sequence (I/D Selector)

In “2 Buses” architecture, both instruction and data transmitted over the same

set of address and data buses. While instruction sequence and data access sequence

each has its own stride characteristics, these stride characteristics are unfortunately

torn apart and severely contaminated due to the intervention of the instruction/data

address sequence in one single address trace. How to preserve and utilize the

individual instruction and data access stride characteristics in bus encoding hence

becomes an interesting problem. As a result, if the instruction and data address

sequences can be encoded individually, it must gain more power savings.

Figure 3.4.3 shows the “I/D selector” block diagram. In this modification, the

extra read/write control line is used to indicate the address being a instruction or

data address. With this, each of the read and write address sequences can

separately be encoded using methods suitable for them.

I/D selector

decoder

DAT ?
I D

BUS

INC-DAT

encoder

DAT ?
I D

I/D selector

decoder

DAT ?
I D
decoder

DAT ?
I D

BUS

INC-DAT

encoder

DAT ?
I D
encoder

DAT ?
I D

Figure 3.4.3: diagram of I/D selector

Here two encoding methods are needed, one for instruction address sequence

and one for data address sequence. For the instruction address sequence, the “T0

DAT” proposed in section 3.2 should be good enough because it avoid the

transmission of both consecutive address sequence and regular taken branch target

addresses. For the data address sequence, the “T0_BI_1/S/RW”cproposed in

section 3.3 could also be applied here. However, this method does not make use of

the relationships between instruction and data address. I will propose one new

 37

design, called “Stride-Table”, to make use of these relationships and reduce more

bus transitions.

3.4.2 Applying different stride value on each data access

(Stride-Table)

Data addresses are resulted from load/store instructions, and each load/store

instruction usually generates consecutive address sequence when it is executed

more than once. While data access of each load/store instruction has its own stride

characteristics, these stride characteristics are unfortunately torn apart and severely

contaminated due to the intervention of these data accesses in a single data address

trace. How to preserve and utilize the stride characteristics of data access of each

load/store instruction hence becomes an interesting problem. As a result, if

individual stride value is applied for data access of each load/store instruction,

more power saving must be gained.

How to tell which load/store instruction is executed in the instruction/data

mixed address bus? The main idea is that because the data access is resulted by

execution load/store instruction, the last instruction address before this data access

should be the address of load/store instruction. Even if taking the pipelining effect

of CPU, the real address of load/store instruction should equal to the last

instruction address minus an offset value. As a result, I take the last instruction

address before data access as the key information of telling which load/store

instructions is executed in this design.

I/D selector

decoder

DAT Stride
Table

I D

BUS

INC-DAT/ST

encoder

DAT Stride
Table

I D

I/D selector

decoder

DAT Stride
Table

I D
decoder

DAT Stride
Table

I D

BUS

INC-DAT/ST

encoder

DAT Stride
Table

I D
encoder

DAT Stride
Table

I D

......

......

Index
Address

......

......

Applied
Stride

......

......

Last
Address

Stride Table

......

......

Index
Address

......

......

Applied
Stride

......

......

Last
Address

Stride Table

Figure 3.4.4: diagram of I/D selector with T0 DAT and Stride-Table

 38

The Figure 3.4.4 shows the diagram of I/D selector with T0 DAT and

Stride-Table. This approach adds a “Stride Table” into both encoder and decoder.

Each entry of Stride-Table records three values: “Index Address”, “Applied Stride”,

and “Last Address”. The “Index Address” records the address of last instruction

address before data access; the “Applied Stride” records the stride value to be

applied when executing this load/store instruction; the “Last Address” records the

data address accessed by the load/store instruction last time. Moreover, one control

signal, called ST, is required to indicate which address is not transmitted on the bus

but the decoder could calculate the address by information in the Stride-Table.

Here, this control signal can be combined with the INC-DAT line of T0 DAT

method.

How this approach works? While transferring the instruction addresses, the

I/D Selector is asserted and T0 DAT method works as if it is applied in the

instruction address bus. Besides this, the encoder will memorize the latest

instruction address in mind, and so do the decoder.

When one data address arrives, the I/D selector will be de-asserted and the

encoder uses the latest instruction address as index value to access the Stride-Table.

If there is one entry whose “Index Address” is equal to the latest instruction

address, the encoder will get the “Applied Stride” and “Last Address” of this

load/store instruction. Depending on the to-be transferred data address is equal to

“Last Address”＋“Applied Stride” or not, the encoder decides to assert ST line and

freeze the bus or de-assert ST line and transmit this data address directly via bus.

After that, the “Applied Stride” and “Last Address” of this entry will be updated. If

there is no entry whose “Index Address” is equal to the latest instruction address,

the encoder has to de-assert ST line, transmit this data address directly via bus, and

insert one entry (latest instruction address, default stride, this data address) into

 39

Stride-Table. (The default stride is 4 in my design.)

While the decoder receiving address transfer with de-asserted I/D signal,

actions differ depending on the ST signal. If the ST line is asserted, the decoder

uses the latest instruction address as index value to access the Stride-Table and gets

the “Applied Stride” and “Last Address” for this data access. The original data

address equals to “Last Address＂＋“Applied Stride”. Otherwise, the decoder

receives data address directly from the bus. After this data address transmission,

decoder has to insert one entry (latest instruction address, default stride, this data

address) into Stride-Table if no entry whose “Index Address” is equal to the latest

instruction address, or update the “Applied Stride” and “Last Address” otherwise.

Following is an example of I/D Selector with T0 DAT and Stride-Table:

Addresses leading with “I” mean instruction addresses, and “D” for data

addresses. Address trace of 3 iterations of a simple loop are listed here.

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

Source
Address

Target
Address

DAT

Source
Address

Target
Address

DAT

red&italic: bus frozen
black: transmit value

Index
Address

Applied
Stride

Last
Address

Stride Table

Index
Address

Applied
Stride

Last
Address

Stride Table

Figure 3.4.5: example of I/D Selector with T0 DAT and Stride-Table, At Start

 40

Figure 3.4.5 shows a snapshot at start. The DAT and Stride-Table are both

empty at this time.

Snapshot of first iteration:

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

Source
Address

Target
Address

DAT

Source
Address

Target
Address

DAT

Index
Address

Applied
Stride

Last
Address

Stride Table

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

20 4 60020 4 600

28 4 10028 4 100

32 4 40032 4 400

40 4 90040 4 900
red&italic: bus frozen
black: transmit value

Figure 3.4.6: example of I/D Selector with T0 DAT and Stride-Table, Iteration 1

In the first iteration, all instruction addresses are consecutive and need not to

be transmitted via bus except the first one. Data addresses are transmitted directly

via bus because there are no information in Stride-Table at start. These data

addresses and its previous instruction address are inserted into Stride-Table with

default stride value = 4.

 41

Snapshot of second iteration:

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

Source
Address

Target
Address

DAT

Source
Address

Target
Address

DAT

Index
Address

Applied
Stride

Last
Address

Stride Table

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

20 4 60020 4 600

28 4 10028 4 100

32 4 40032 4 400

40 4 90040 4 900

604

104

396-4 396-4

898-2 898-2

60 2060 20

red&italic: bus frozen
black: transmit value

Figure 3.4.7: example of I/D Selector with T0 DAT and Stride-Table, Iteration 2

In the second iteration, the discontinuous address pair (60, 20) is inserted into

DAT. All instruction addresses except “20” need not to be transmitted via bus, too.

Data addresses “604” & “104” meet the default stride value so that the bus is

frozen and the INC-DAT/ST line is asserted. Data addresses “396” & “898” do not

meet the default stride value so that the two addresses have to transmitted via bus.

The decoder updates “Applied Stride” and “Last Address” of the corresponding

entry for further transfer.

 42

Snapshot of third iteration:

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

Address Sequence
I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

Source
Address

Target
Address

DAT

Source
Address

Target
Address

DAT

Index
Address

Applied
Stride

Last
Address

Stride Table

I 20
D 600
I 24
I 28
D 100
I 32
D 400
I 36
I 40
D 900
I 44
I 48
I 52
I 56
I 60

I 20
D 604
I 24
I 28
D 104
I 32
D 396
I 36
I 40
D 898
I 44
I 48
I 52
I 56
I 60

I 20
D 608
I 24
I 28
D 108
I 32
D 392
I 36
I 40
D 896
I 44
I 48
I 52
I 56
I 60

20 4 60020 4 600

28 4 10028 4 100

32 4 40032 4 400

40 4 90040 4 900

604

104

396-4 396-4

898-2 898-2

608

108

392

896

60 2060 20

red&italic: bus frozen
black: transmit value

Figure 3.4.8: example of I/D Selector with T0 DAT and Stride-Table, Iteration 3

In the third iteration and further iterations, all instruction and data addresses

do not need to be transmitted via bus. Transmissions of these addresses are just

asserting INC-DAT/ST line and switching I/D Selector line respect. This situation

will be held until leaving the loop.

Though Stride-Table avoids the transmission of regular data access, there are

still some data addresses will be transmitted via bus. While transmitting these data

addresses, Bus-Invert could be added for additional power saving. The

combination of Stride-Table and Bus-Invert is shown as diagram in Figure 3.4.9:

I/D selector

decoder

DAT ST
I D

BUS

INC-DAT/ST-INV

encoder

DAT ST
I D

I/D selector

decoder

DAT ST
I D
decoder

DAT ST
I D

BUS

INC-DAT/ST-INV

encoder

DAT ST
I D
encoder

DAT ST
I D

Figure 3.4.9: diagram of Stride-Table combining with Bus-Invert

 43

The INV control line required for Bus-Invert method is combined with

INC-DAT/ST line using similar approach mention in section 3.3.1. The keys to

identify the meaning of an asserted INC-DAT/ST-INV control line are “I/D

Selector” status and bus frozen or not.

3.5 Summary

T0 DAT make use of history branch target to avoid transfer of both regular

taken branch target address and consecutive address sequence. T0_BI_1/S/RW

uses only one control signal controls both BI and T0, dynamically changing

applied stride value, and encoding read/write sequence individually. I/D Selector

with T0 DAT and Stride-Table preserves continuity of both inst and data address,

and make use of relationship between inst and data. These three designs are

respectively suitable for instruction address bus, data address bus, and

instruction/data mixed address bus. The effect of my designs will be shown in next

section.

 44

4 Simulation
I implement my designs using simulation, and use benchmarks to validate these

designs. The target embedded system conforms to a portable personal multimedia/

communication device, and the test programs are selected accordingly. The performance

metric is the ratio of reduced data address bus bit toggles. To simplify the result, only

overall performance improvements are reported. Although readers may be interested in

the effects of each individual technique and their incremental effects on top of other

techniques, these data are not shown here due to page limits.

4.1 Simulation Environment

The simulated embedded system platform assumptions are listed below:

1. The processor is ARM7TDMI, and there is only one processor in the system.

2. The memory is separated into two parts: instruction memory, and data memory.

3. There is no cache memory.

4. All instructions are compiled in ARM mode.

There are four types of benchmarks, and each type has 2 programs in it. These

benchmark programs are selected from MediaBench, a popular benchmark suite

including multi-media and communication applications. These benchmarks are:

1. ADPCM

Description: ADPCM stands for Adaptive Differential Pulse Code Modulation.

It is a family of speech compression and decompression algorithms. A common

implementation takes 16-bit linear PCM samples and converts them to 4-bit

samples, yielding a compression rate of 4:1. The ADPCM code used is the

Intel/DVI ADPCM code which is being recommended by the IMA Digital

Audio Technical Working Group.

 45

2. EPIC

Description: EPIC (Efficient Pyramid Image Coder) is an experimental image

data compression utility written in the C programming language. The

compression algorithms are based on a biorthogonal critically-sampled dyadic

wavelet decomposition and a combined run-length/Huffman entropy coder. The

filters have been designed to allow extremely fast decoding on conventional (ie,

non-floating point) hardware, at the expense of slower encoding and a slight

degradation in compression quality (as compared to a good orthogonal wavelet

decomposition).

3. GSM

Description: As part of this effort we are publishing an implementation of the

European GSM 06.10 provisional standard for full-rate speech transcoding,

prI-ETS 300 036, which uses RPE/LTP (residual pulse excitation/long term

prediction) coding at 13 kbit/s. GSM 06.10 compresses frames of 160 13-bit

samples (8 kHz sampling rate, i.e. a frame rate of 50 Hz) into 260 bits; for

compatibility with typical UNIX applications, our implementation turns frames

of 160 16-bit linear samples into 33-byte frames (1650 Bytes/s). The quality of

the algorithm is good enough for reliable speaker recognition; even music often

survives transcoding in recognizable form (given the bandwidth limitations of

8 kHz sampling rate).

4. JPEG

Description: This package contains C software to implement JPEG image

compression and decompression. JPEG (pronounced "jay-peg") is a

standardized compression method for full-color and gray-scale images. JPEG is

intended for compressing "real-world" scenes; line drawings, cartoons and

other non-realistic images are not its strong suit. JPEG is lossy, meaning that

 46

the output image is not exactly identical to the input image.

Benchmarks

ARM7
TDMI

Trace

Simulator

Result

Figure 4.1: Simulation flowchart

Figure 4.1 shows the flowchart of simulation. The benchmarks are run in the

ARM-Emulator7t, and the emulator dumps the trace of program execution. After

that, a simulator takes the trace as input and counts the number of bus bit

transitions.

 47

4.2 Simulation Results

The goal of address bus encoding methods is to reduce the transitions on

address bus, so the result of encodings will be presented as percentage of reduced

transitions, which is calculated as

(% of Reduced Transitions) ＝ (Reduced Transitions) ÷ (unencoded Transitions).

The higher this value is, the more effective the corresponding design.

4.2.1 Results of Instruction Address Bus Encoding

Figure 4.2.1 shows the effects of different DAT size:

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 4 8 16 32 64 128 256 ∞
DAT Size

%
 o

f
R

ed
uc

ed
 T

ra
n
si

ti
on

audio epic toast jpeg Average

Figure 4.2.1: effects of DAT size

In this figure, two DAT sizes are chosen. The first one is size＝4, it gets good

performance for most applications. If viewing T0 DAT with infinite size as optimal

case, it is 97.6% of the optimal case. The second one is size＝32, it satisfies all

applications in the applied benchmarks, and is 99.8% of optimal case.

 48

60%

65%

70%

75%

80%

85%

90%

95%

100%

audio epic toast jpeg Average

%
 o

f
R

ed
uc

ed
 T

ra
ns

it
io

ns

T0 DAT(4) DAT(32)

Figure 4.2.2: Results of T0 DAT

In figure 4.2.2, we can see that averagely T0 DAT(4) achieves 88.7%

reduction of the original bit transitions, which is 6.2% more than the T0 method

can do. T0 DAT(32) achieves 90.5% reduction of the original bit transitions, which

is 8.1% more than the T0 method can do.

4.2.2 Results of Data Address Bus Encoding

Figure 4.2.3 shows the simulation results of T0_BI_1/S/RW method.

0.6%

7.8%

20.0%

9.2% 9.4%

4.1% 4.6%

0.6%
2.4% 2.9%

4.7%

9.7%

20.7%

11.2% 11.5%

32.0%

20.1%

30.8%

21.3%

26.0%

0%

5%

10%

15%

20%

25%

30%

35%

audio epic toast jpeg Average

%
 o

f
R

ed
uc

ed
 T

ra
ns

iti
on

s

BI T0 T0_BI T0_BI_1/S/RW

Figure 4.2.3: Results of T0_BI_1/S/RW

 49

In figure 4.2.3, the newly proposed T0_BI_1/S/RW method achieves 26%

reduction of the original bit transitions. Comparing with T0_BI method, it reduces

14.5% transitions more than T0_BI method.

4.2.3 Results of Inst/Data mixed Address Bus Encoding

Figure 4.2.4 shows the effects of different Stride-Table size:

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256 512 1024 ∞
StrideTable Size

%
 o

f
R

ed
uc

ed
 T

ra
ns

iti
on

s

audio epic toast jpec Average

Figure 4.2.4: effects of Stride-Table Size

In this figure, two Stride-Table size are chosen, too. The first choice is size＝

32, it gets good performance for more than half applications in the applied benchmarks.

If viewing Stride-Table size with infinite size as optimal case, it is 91.4% of the optimal

case. The second choice is size＝128, it satisfies all applications in the applied

benchmarks, and is 99% of optimal case.

 50

40%

50%

60%

70%

80%

90%

100%

audio epic toast jpec Average

%
 o

f
R

ed
uc

ed
 T

ra
ns

it
io

ns

T0-BI T0DAT-T0 BI 1/S/RW T0DAT-ST(32) T0DAT-ST(128) T0DAT-STINV(128)

Figure 4.2.5: Results of I/D Selector with T0 DAT and Stride-Table

In figure 4.2.5, it’s easy to find that I/D Selector with T0 DAT and

Stride-Table(32) achieves 70.8% transition reduction of the un-encoded bus, which

is 24.7% more than T0_BI method and 7.5% more than that of I/D Selector with

T0 DAT and T0_BI_1/S/RW. I/D Selector with T0 DAT and Stride-Table(128)

achieves 77.4% transition reduction of the un-encoded bus, which is 33.8% more

that T0_BI method and 16.6% more than that of I/D Selector with T0 DAT and

T0_BI_1/S/RW.

 51

5 Conclusions
In my thesis, I study the low-power address bus encoding techniques. First, T0

DAT method is proposed for instruction address bus. It avoids transmission of both

consecutive addresses and regular taken branch targets. Compared with the T0 method,

T0 DAT achieves 90.5% reduction of the original bit-transitions, 8.1% more than the T0

method.

Second, T0_BI_1/S/RW method is proposed for data address bus. It integrates T0

and BI methods using only one control line, introduces a variable-stride methods which

deals with dynamically changing strides, and preserves the continuities of read and

write addresses using separated sets of encoding information. Compared with the T0_BI

method, my design achieves 26% reduction of the original bit transitions, 14.5% more

than the T0_BI method.

Lastly, I propose one encoding method for instruction/data mixed address bus. It

preserves the individuality of instruction and data address, and applies strides for each

load/store instruction. Compared with the T0_BI method, my design achieves 77.4%

reduction of the original bit transitions, 33.8% more than the T0_BI method.

The simulation results show that my address bus encoding methods have much less

bit transitions. To make the power estimation results more precise, a bus power model

needs to be carefully constructed. And the hardware overheads for the additional control

lines/logic, include silicon area, delay, and power, also need to be evaluated.

 52

6 References
[1] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, “Global communication and

memory optimizing transformati ons for low power signal processing systems,”

IWLPD-94: ACM/IEEE International Workshop on Low Power Design, Apr. 1994, pp.

203-208.

[2] C. L. Su, C. Y. Tsui, A. M. Despain, “Saving Power in the Control Path of Embedded

Processors,” IEEE Design and Test of Computers, Vol. 11, No. 4, pp. 24-30, Winter

1994

[3] Y. Aghaghiri, F. Fallah, and M. Pedram, “Irredundant address bus encoding for

low-power,” in Proc. IEEE Int. Symp. Low-Power Electronics and Design, Aug. 2001,

pp. 182–187.

[4] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,” IEEE

Transactions on VLSI Systems, Vol. 3, No. 1, pp. 49-58, 1995

[5] L. Benini, G. DeMicheli, E.Macii, D. Sciuto, and C. Silvano, “Asymptotic

zero-transition activity encoding for address busses in low-power microprocessor-based

systems” GLS-VLSI-97: IEEE 7th Great Lakes Symposium on VLSI,pp. 77-82,

Urbanana-Champaign, IL, March 1997.

[6] L. Benini, G. DeMicheli, E.Macii, D. Sciuto, and C. Silvano, “Address bus encoding

techniques for system-level power optimization,” Proc. Of Design Automation and Test

in Europe, pp. 861-866, Feb. 1998

 53

問題討論

問題一：一般 BUS 傳送資料之前已將 data 與上一筆做 XOR；應加入考慮！

答：

一般來說， XOR 的的方法如下圖所示：

在傳送 data pattern 時，將它與上一筆 data pattern 做 xor 之後再傳送到 BUS 上，

而接收端則將收到的資料與上一次解開的 data pattern 再做一次 xor 得到傳送的資

料。

此一方法能夠減少有連續特性的資料(如 instruction address)傳輸時所產生的

bit-transitions，同時也不會增加一直傳送同一筆資料(bus frozen)時的 bit-transition；

對於 random distributed 的資料則影響不大。而本論文設計的方法，是針對 instruction

address bus、data address bus、以及 instruction/data mixed address bus 上可利用的連續

性所設計，儘量將傳送的 pattern 藉由 decoder 計算出來，將 BUS frozen 以避免不必

要的 bit-transitions。因此，只要將本論文中設計的方法，encoder 放在 XOR encoder

之前，decoder 放在 XOR decoder 之後，就可以正確傳送，同時能夠利用 XOR

encoder/decoder 進一步減少 BUS 上的 bit-transition 數。

 54

問題二：Table size 等的 overhead 要有更明確的評估

答：

一般來說，external bus 上單一條 bus line 的電容值約是 50pF，假設 BUS 的電壓差為

1.7V，如此可以推算出 bus 上一個 bit-transition 所造成的耗電為：

pJpFVCE ddtransitionbit 25.727.1)(50
2
1

2
1 22 =××=××=−

DAT Table 與 Stride Table 所帶來的 Power Overhead 則以 CACTI 這一套 Power

Evaluation 工具推估得到下列耗電數據： (假設使用 90nm 製程)

DAT Size 1 2 4 8 16 32 64 128 256

Access Power (pJ) 40 41 42 43 45 49 65 87 120

StrideTable Size 1 2 4 8 16 32 64 128 256

Access Power (pJ) 79.5 80 80.5 82 84 89 106 128 162

由上述數據可以發現，論文中推薦的 DAT Table size=8 or 32 每次 Access 的 Power

約略小於一個 bit-transition 所帶來的耗電，因此只要能夠藉由此方法減少 bit-transition，

就能夠降低 BUS 上的總耗電。而 DAT Table 所記錄 branch address pair 其中的 bit-transition

都是多餘 1 個 transition 的，所以能夠藉由 DAT Table 來降低傳送 branch target 的耗電就

能夠達到省電的目的。

在 Stride Table 的部分，雖然耗電較比一個 bit-transition 所帶來的耗電稍大，但是由

於 data address 具有 randomly distributed 的特性，鮮少會有 bit-transition 數等於 2 以下的，

因此也可以說 StrideTable 在論文中推薦的 size=32 or 128 可以為 BUS 帶來省電的效果。

