ol
1k
=
|-
?\\3

——

GESEE SL T Sr R R

Low-Power Address BUS Encoding

. . I\ Sy
o3 o2 L EFER

B A R

PoE R R4t B2 8

(5% ST N A IIE = Y 4 R ES

Low-Power Address BUS Encoding

S S SR < Student : Tsung-Hsi Weng
ERR HIG Advisor : Chung-Ping Chung

Bz 2« 7
TOMOIOAR Lk
ML G <

A Thesis
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National'Chiao Tung-University
in partial Fulfillment-of‘the Requirements
for the Degree of
Master
in

Computer Science and Information Engineering
June 2005

Hsinchu, Taiwan, Republic of China

PERRA, e £

[Sl A L S Y R

ERF ¥ TS AN T ERE

|

RE2d ~FFN1/E 5 (F79) ALs

3 £

WE R MR R AT R SEBAY LR AT - &

"\~
T
s
s
F_&
b
P
&
\\‘é\
\v
%

Rz fa iz BRI T £ B E 50%
o e A AARETHE BRI ARAE S DT DR AT AR
s F]) Lbfﬁ—ﬂ TGRS SR R R AL A 4 n T e)T}ug» 7t
MR AL T B B pnen T R e s A 4 b R R g
R 0 L2 R fedy £ FOR SRR RE 4 B3 T BB 8] o kR D R
BFrAA DR gl RS H ;g 4o %:’—'ﬁ?a‘ﬁ L izphmiag o K
3+ 71 DAT (Discontinuous Address Table)sr TO 457 » 14 Ie BF i i nk

™ % branch a‘ﬁ L2 @ R H TR R R R - 2
Hoe 28 TO2 Bl -~ & iy sc % 2 u IS EE(Stride) » 11 2 F Q]38 =5t & B 5%
FE o P FIEF O ab ¢ i a7 7 i ah R e e [R U
BAedn £ /3R Eab R > It 7 g 4 e R a2 TR R a2 B
ehBf % > 23t Stride Table = ;2 » i 27 DAT 5 > iF 5 2 TR B il %
VoA REEHT BRDDFRAF L Ea R 90.5%F =
gL 1L hk R b 26% 0T g it s U E ,Mfriﬁ */E L f J T
F T1A% g % o

Low-Power Data Address BUS Encoding Method

Student: Tsung-Hsi Weng Advisors: Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Reducing power consumption of computer systems has gained much
research attention recently. In a typical system, the memory bus power
constitute will over 50% of all system power; and this power is required due to
bus signal transitions (04 or 1-20)..Reducing the number of memory bus
transitions is hence an effective“way. to feduce system power. | present
encoding schemes to reduce instruction address bus, data address bus, and
instruction/data mixed address bus power consumption. For instruction address
bus, TO with DAT (Discontinuous Address Table) is proposed to handle both
consecutive addresses and the branch target addresses; for data address bus,
combination of TO and Bl method, variable-stride, and SRWEC (Separated
Read/Write Encoding Contents) is proposed to handle both the randomness and
continuities of data address sequence; as for instruction/data mixed address bus,
DAT is used for instruction address sequence and Stride-Table which can take
use of the relationship between instruction address and data address is applied
for data address sequence. Simulation results show that the overall bus line
switching reduction is 90.5% of unencoded instruction address bus, 26% of
unencoded data address bus, and 77.4% of unencoded instruction/data mixed

address bus.

* #

R TR Lfrs & kel AL EFERELS SRT L
B E RSP ARG MM 0§ @A S i ot #
A @RI E R

A BT ~ BERE A A

LREERE S T E A

&g 2005/08/29

Table of Contents

TE R eSS RR AR R AR i
ABSTRACT ...t essesssssssssssssessessessssssssssesesssesssssssassessessssessssssssassessssesssssess i
TabIe OF CONENTScoeeeeeeereeeseseeeseees s eesseessssssseessessssssssessesss s eessessssessessesssennns ii
LIS OF FIQUIESooooooeeeeeeeeeeeeeeeeeeesesesesssesssssesssesesessssssesesesesesesssesesesessseseseseseseseseseseeneee v
LISEOF TADIES...........ooooreeeeeerceesseeeeesessseseessesssseseesssssssseseessessssenssessesssseseessesssssneesees vii
Chapter L INTrOQUCTION ... eeeeeeereeeeeeeseessssssssssssssssssesessesessseseessessssssens 1
1.1 Power Consumption of System BUS _................cccooorreeeeeossesssseeseeeessssnessen 1
1.2 The EXISting MEtNOUS ._.............o.ooeeeeeeeeeeoeseeseseseeeeeeeeeseseeeeeeesesssssssssessssesseessee 2
1.3 Thesis Organization. .. i i eeeeeeeeeeeeeeeeeeeeeeesesesesssesesesesssssssssesssessseesene 2
Chapter 2 BaCKgroUNG........ i il ot st eeeeeeseesesssssssssmssessssssessssessssssessssessssenenns 3
2.1 How CPU request memory data? . [. 3
2.2 BUS ATChIteCtUNES o oo eeeeeeeere s 5
2.3 Related Bus ENCOUING. . i eeeeeeeeseseseeeseesesssssssssssessesssssssssssssesseees 6
2.3 L BUS-INVEI (BI). ..o eeeeeeeeeesnenns 6
2.3.2 Zero-Transition (TO)..........oooooceeeueeseeeneeeeeeessesssesseseessssssssssessssssesssenaes 8
2.3.3 Combining TO & BI (TO_BI).............ooooreeeeeeeseseeeeeeeeesesessseeesenneeens 11
2.4 Summary & ODBSEIVALION,coooooreeeeeeeeesesessesesseesssssessssesessessssssssssseenes 14
ChapLer 3 DESIGNS.ooeeeceeeeeeeessesesessseseeseeeseeseseessseeeessssssssssmssssssessssesessesesesesessssees 16
3.1 DESIGN OVEIVIBW, ||| (oo esee s 16

3.2 Instruction Address Bus Encoding:
TO with Discontinuous Address Table (TO DAT).........cccnee 17
3.3 Data Address Bus ENCOAING..............oooooooeeeeeeemesssmeneeeeessssessssssseseesssssssssseenen 22
3.3.1 Combining TO & Bl using single control line (TO_BI 1) 22
3.3.2 TO_BI_1 with Variable-Stride capability (TO BI _1/S).. ... 27

3.3.3 Preserving Read/Write Continuities in a multiplexed data address

3.4 Instruction/Data Mixed Address Bus Encoding

sequence (TO_BI_1/S/RW)

3.4.1 Preserving Instruction/Data Continuities in a multiplexed

address sequence (1/D Selector)

3.4.2 Applying different stride value on each data access

3.5 Summary
Chapter 4 Simulation

(Stride-Table)

4.1 Simulation Environment

4.2 Simulation Results

4.2.1 Results of Instruction Address Bus Encoding
4.2.2 Results of Data Address:Bus Encoding
4.2.3 Results of Inst/Data;mixed.Address Bus Encoding
Chapter 5 Conclusions
Chapter 6 References
A3t 3

32
35

36

37
43
44
44
47
47
48
49
51
52
53

List of Figures

Figure 2.2.1: Bus Architectures—4 Buses
Figure 2.2.2: Bus Architectures —2 Buses
Figure 2.2.3: Bus Architectures—1 Bus
Figure 2.3.1: diagram of Bus-Invert
Figure 2.3.2: Example of Bus-Invert Encoding
Figure 2.3.3: diagram of TO
Figure 2.3.4: Example of TO Encoding
Figure 2.3.5: diagram of TO_BI
Figure 2.3.6: Example of TO_BI Encoding

Figure 3.1: Address Bus Encoding Architecture
Figure 3.2.1: diagram of TO DAT.___ e oo sseenee
Figure 3.2.2: example of TO.DAT Encoding
Figure 3.3.1: diagram of TO_BI 1.
Figure 3.3.2: Example of TOZBI L. il ssseeseeesssssssess s snseee
Figure 3.3.3 Special Cases of TO ‘BI'1
Figure 3.3.4: diagram of TO_BI_L/S............cooeeecrrmesmeneeresssssseesssessssssssssssssssseees
Figure 3.3.5: Example of TO_BI1/S, endurance=1
Figure 3.3.6 TO_BI_1/S/RW block diagram

Figure 3.4.1: diagram of general instruction/data mixed address bus

Figure 3.4.2: diagram of my instruction/data mixed address bus encoding

Figure 3.4.3: diagram of I/D SEIECIONooocevcvrerseeneeresesssseesssesssssnsesssssnseee

Figure 3.4.4: diagram of I/D selector with TO DAT and Stride-Table ...

Figure 3.4.5: example of I/D Selector with TO DAT and Stride-Table,
AUSIAIT........eeeeeeeveeeeeesse e esssseesses s ssssseessssassesses s sssaseesessaassnseses

Figure 3.4.6: example of 1/D Selector with TO DAT and Stride-Table,
Iteration 1

- Vi -

© N o o1 o1 o1

Figure 3.4.7: example of 1/D Selector with TO DAT and Stride-Table,

Iteration 2

Figure 3.4.8: example of 1/D Selector with TO DAT and Stride-Table,
Iteration 3

Figure 3.4.9: diagram of Stride-Table combining with Bus-Invert

Figure 4.1: Simulation fIOWChart ... e
Figure 4.2.1: effects of DAT size
Figure 4.2.2: Results Of TO DAT .. ooooooeee
Figure 4.2.3: Results 0f TO_BI_L/SIRW.............eeeeeeeeeeeeeeeeeseseeeeesesseeseseseeseeee
Figure 4.2.4: effects of Stride-Table Size ...

Figure 4.2.5: Results of 1/D Selector with TO DAT and Stride-Table

- Vii -

41

42
42
46
47
48
48
49
50

List of Tables

Table 1: Summary of BI, TO, and TO_BI

- viii -

1 Introduction

The increase in complexity of system-on-chip (SoC) designs has led to the power
consumption, hence cooling, and reliability problems. Power consumption is becoming
one of the most important design issues especially for embedded systems. On the other
hand, we are witnessing a dramatic market size increase for portable electronic devices
such as mobile phones and personal digital assistants. While these products are
battery-powered, and their functional requirements due to users are even increasing, low

power design for these systems hence becomes a very important research topic.

1.1 Power Consumption of System Bus

In a digital computer system, the major power consumption comes from the
off-chip processor-memary: bus ‘traffic. And it has been estimated that the
capacitance driven by.the I/0O nodes is:usually three orders of magnitude [1] that of
the one seen by the internal nodes of a microprocessor. As a result, it is imperative
to reduce Bus power for.the purpose of low-power.

How the system bus consume power? The power consumption equation of
typical buses is as following:

P=% -SBT - Cs - Vad
> P: Power Consumption of Bus
» SBT : the # of bus bit transitions
» Cs: self-capacitance
» V. Bussupply voltage

Here we can find that the power consumptions of bus are dominated on three
parameters: SBT, Cs, and Vyq. For achieving low-power in CMOS circuits, Cs or
Vgg must be minimized. Decreasing Vg has a quadratic effect and is a very

efficient way of reducing power consumption. However, the decrease of lower Vgq

1.2

1.3

is still not enough[1] as required by portable applications. As a result, lowering Vgq
must be done together with other methods for decreasing more power consumption.
Here, reducing the bit-transitions (0=>»1 or 1=»0) on the bus, means SBT value, is a

marvelous way of further decreasing power consumption.

The Existing Methods

In [4] Stan and Burleson proposed the Bus-Invert method to reduce the
bit-transition number of randomly distributed bus patterns. In [5] Benini et al.
proposed TO code to reduce the bit-transition number of consecutive bus patterns,
which occupy a large portion in instruction address stream. In [6], Benini et al.
proposed TO_BI method. This method can handle both randomly distributed and
consecutive patterns. This method can be applied on data address bus, but there are

still some improvements can. be done. L. will show these improvements in this
paper.
Thesis Organization

The rest of the thesis is organized as follows: Section 2 describes the
background of low-power address bus encoding. Section 3 presents the proposed

designs for reducing the bit transitions on kinds of address buses. Section 4 gives

the performance results. The last section summarizes the work.

2 Background

In this section, the behaviors of how CPU requests memory data are described.
After that, the Bus architecture in general systems and what happened while
transmitting address/data via these Buses are introduced. And then I will show you the
related low-power bus encoding techniques and some potential improvements to these

existing designs. Here, my design issues are also unveiled.

2.1 How CPU request memory data?

While CPU executing programs in a general computer system, the processor
will unceasingly access the memory for fetching instructions, reading input data,
and write the computation results. All these transmissions have to be done by the
system Buses. Following«shows the needed transmissions between CPU and

memory, and the behaviors of them:

1. Instruction Address Stream

The behavior of instruction_address sequence is usually consecutive, and the
stride of instruction address is equal to the size of instruction words. The
instruction address is usually consecutive under general condition. However,
when the branch instructions (goto, if, call, return, etc.) are executed, the next
instruction address sequence is depend on the branch result. When branch
taken, the next instruction address will not be sequential to the address of the
branch instruction. Though the branch target addresses are not sequential to
addresses of the branch instructions, the target addresses are seldom changed
when program executed. As a result, the behavior of instruction addresses is

quite regular and predictable.

2. Data Address Stream

The behavior of data address sequence may be randomly distributed at
sometimes and sequential at the other time, and the stride of data address will
vary with time. The data address is usually randomly distributed under general
condition. However, when applications access arrays or scalar data in loops, the
accessed data addresses may contain some continuity. Besides this, even if the
data addresses are sequential in loop, the stride between addresses will differ
with the size of accessed objects and the continuity will be contaminated for

the intervention of reads and writes.

3. Instruction Stream

Generally, there are almost nocoentinuity in two instructions, and are never
changed after compilation. ;The behavior of instruction sequence is randomly
distributed in the:run-time: However,-most RISC-based ISAs exhibit some
regularity and can: be partitioned" into fixed-location fields. So many

optimizations on instructions are done in the compile time.

4. Data Stream

The behavior of data sequence is randomly distributed in all times. Because the
input data may vary with time, the value of data is quite irregular and
non-predictable. However, there are some characteristics in data value. For

example: leading with 0 or 1, repeating, etc.

This thesis will take the characteristics of instruction address stream and data

address stream into consideration in later design.

2.2 Bus Architectures
The four streams discussed in previous section are all transmitted though

system buses. Now the typical bus architectures are introduced following:

4 Buses
Instruction Address
Data |e—DRalaAddress P! Instruction
Memory < Data > CPU | —nstruction Memory

Figure 2.2.1: Bus Architectures —4 Buses
In this Bus architecture, each stream is transmitted using its dedicated bus.
Streams will never inference other streams. As a result, the characteristic of the
four streams will be preserved on the Bus, and it’s easy to make use of while

encoding.

2 Buses

Instruction/Data Address >

< Instruction/Data >

Figure 2.2:2: Bus Architectures—2 Buses
In this architecture,. instruction-address stream is mixed with data address
stream, and instruction stream.-iss mixed with data stream. The stream
individualisms are broken because of the intervention of each other. Moreover,
the offline optimization of instructions might get poor performance here.

1 Bus

CPU Memory

< Instruction/Data >
CPU Address/Data

Memory

Figure 2.2.3: Bus Architectures—1 Bus
In this architecture, all the four streams are mixed together. As a result, almost
all characteristics of these streams are broken now.

In my thesis, | study the address bus encoding. Buses focused here are
instruction address bus and data address bus in “4 Buses” architecture, and

instruction/data address bus in “2 Buses” architecture. | will design suitable

encoding algorithms for each of the three Bus.

2.3 Related Bus Encoding

Followings are related researches on low-power bus encoding. The Bus-Invert
(B1) method is suitable for Common Buses, Zero-Transition (TO) method is
design for Instruction Address Bus, and TO_BI design can be applied on Data

Address Bus.

2.3.1 Bus-Invert (BI)

In [4] Stan and Burleson proposed the Bus-Invert method as explained next.
Consider an N-bit bus. The idea is that if the hamming distance between two
consecutive patterns is larger than N/2, then the second pattern can be inverted so
as to reduce the inter-pattern Hamming distance to below N/2. One extra bit is
needed to distinguish hetween the, original and inverted patterns that are
transmitted on the bus. The BE method tends to perform well when transmitting

random patterns, which is often-the case on:data busses.

The Figure 2.3.1 isa diagram of EXV

hgfrghu ghfrghu
Bl encoding method: Y

Figure 2.3.1: diagram of Bus-Invert

Following is the encoding algorithm of this method

Bl encoding{
int INV;
while (receive data address){
current address = received data address;
if (transition # > bus_width/2) {
INV = 1; data address bus = inverted current address;

Yelse{

INV = 0; data address bus = current address;

33

“INV” means the control signal to be sent to the decoder, “current address” means the address value to

be transferred, and the “data address bus” means the code that to be transferred via data address bus.

And the corresponding Bl decoding algorithm is:

Bl decoding{
while (receive data address bus value and INV signal){
if INV = 1){
data address = inverted data address bus value;
}else{
data address = the data address bus value;
}
}

}

“INV” means the control signal from the encoder, and the “data address” means the real address in this

transmittion.

The Figure 2.3.2 shows an example of the Bus-Invert

No Encode
Address to bejtransfer Addresson BUS
initial [@000 0000
0010 0010
7FFO 7FFO
7FF2 7TFF2
Total Transitions 12

(a): No Encoding

Bus-Invert (B1)
Address to be transfer Address on BUS INV
initial | 0000 0000 0
0010 0010 0
7FFO 800F 1
7TFF2 800D 1
Total Transitions 9

(b): Bus-Invert Encoding

Figure 2.3.2: Example of Bus-Invert Encoding

The Figure 2.3.2 shows an easy example of bus transfer. The initial bus value
is “0000’, the bus width N=16, and the addresses to be transfer with time is ‘0010
- ‘TFFO’ = “7FF2’. The original non-encoded transfer is shown in Figure 2.3.23,
the total transition number is 12. The Bl-encoded transfer is shown in Figure
2.3.2b . While transferring from ‘0000’ to *0010°, the Hamming distance is 1,
which is less than N/2, so that *0010° is not inverted. While transferring from
‘0010’ to ‘“7FF0’, the Hamming distance is 10, larger than N/2, so that ‘7FF0’ is
inverted to ‘800F” and the INV is asserted. Here, the real transition number of this
transfer is 6. Next, while transferring from ‘800F’ to ‘7FF2’, the Hamming
distance is 15 (note that the real meaning is still from ‘7FF0’ to ‘7FF2’), so it is
also inverted to ‘800D’ and the INV is still asserted. The real transition number of
this transfer is 1. As a result, the total transition number is 9, and it is better than

that of non-encoded bus.

2.3.2 Zero-Transition(T0)

In [5] Benini et al. proposed TO code technique, which exploits data
continuity to reduce the switching activity on the instruction address bus. The
observation is that instruction addresses are sequential except when control flow
instructions are encountered or exceptions occur. TO adds a redundant bus line,
called INC. If the addresses are sequential, the sender freezes the value on the bus
and sets the INC line. Otherwise, INC is de-asserted and the original address is
sent. On average 60% reduction in address bus switching activity is achieved by

TO coding.

The Figure 2.3.3 is a diagram of EXV
hgfrghu IOF ghfrghu

TO encoding method:

Figure 2.3.3: diagram of TO

Following is the encoding algorithm of this method:

TO encoding{
int last_address=current instruction address bus value, stride=4, INC;
while (receive instruction address){
current address = received instruction address;
if(stride = current address — last_address){
INC = 1,
Yelse{

INC = O0; instruction address bus = current address;

¥

last_address = current address;

}

“INC” means the control signal to-bie sent to the decoder, “current address” means the address value to
be transferred, and the *instruction address bus” means the code that to be transferred via instruction

address bus.

And the corresponding TO'decoding algorithm is:

TO decoding{
int last_address=current instruction address bus value, stride=4;

while (receive instruction address bus value and INC signal){

if INC = 1){
instruction address = last_address + stride;
Yelse{
instruction address = the instruction address bus value;
}
last_address = instruction address;
}

}

“INC” means the control signal from the encoder, and the “instruction address” means the real address

in this transmittion.

The Figure 2.3.4 shows an example of the TO

Zero-Transition (TO)

Address to be transfer Address on BUS NV
initial [0000 0000 0
0004 -- 1
0008 -- 1
ooocC -- 1
0010 -- 1
7TFFO TFFO 0
TFF2 TFF2 0
7TFF4 7TFF4 0
7TFF6 7TFF6 0
7TFF8 7TFF8 0
Total Transitions 20

The Figure 2.3.4 shows an easy example of TO encoding. The initial bus value
is ‘0000’, the bus width N=16, the stride applied here is 4, and the addresses to be
transfer with time is listed in first column. In the first 4 transfers (‘0004’ ~ *0010°),
these values are all equal to last value plus 4, so the BUS is frozen and the INC is
asserted while transferring these values in sequence. While transferring from
‘0010’ to “7FFO’, “7FFO’ must be transferred directly and INC must be de-asserted
because (7FF0 — 0010)+#4. There are 12 transitions in this transfer, including 11
transitions on address bus and 1 transition on INC line. In the last 4 transfers
(‘7FF2’ ~ “7TFF8’), these value must be transferred through bus even if they are all

in sequence. It is because that their stride (=2) do not equal to the stride applied by

TO in this example.

Figure 2.3.4: Example of TO Encoding

10

2.3.3 Combining TO & BI (TO_BI)

Thinking about the properties of Bl (section 2.1) and TO (section 2.2). The Bl
encoding method can only works well with randomly distributed data, and the TO
encoding method can only works well with sequential data. Because addresses on
data bus may sometimes be accessed sequentially and randomly at the other time,
combinations of the two encoding methods are required in order to get benefit of
both the combined techniques. However, combination may result conflicts or

confusions, and these problem should be resolved carefully.

The Figure 2.3.5 is the diagram

EXV

of the TO_BI method. This design _is hgfrghu IOF ghfrghu
I0Y

proposed by Benini et al. in paper [6]:
Figure 2.3.5: diagram of TO_BI

The main idea of TO: Bl .design s using two separated control lines, INC and
INV, to control the two functions, and the INC line is prior than the INV line. If the
INC line is asserted, the BUS value is calculated by the INC function and the INV

line is ignored. Else the INV line is treated as the control line of INV function.

11

Following is the TO_BI encoding algorithm:

TO_BI encoding{
int last_address=current data address bus value, stride=4, INC,INV;

while (receive data address){
current address = received data address;

if(stride = current address — last_address){
INC = 1;
}else if(transition #>bus_width/2) {
INC = 0;
INV = 1; data address bus = inverted current address;
Yelse{
INC = 0;
INV = 0; data address bus = current address;
}
last_address = current address;

}

Both “INC” and “INV”.mean thecontrol signals to be sent to the decoder, “current address” means the
address value to be transferred, and the “data address bus” means the code that to be transferred via data

address bus.

And the corresponding T0.Bl.decoding algorithm is:

TO_BI decoding{
int last_address=current data address bus value, stride =4;

while (receive data address bus value and INC, INV signals){

if INC = 1){

data address = last_address + stride;
Yelseif (INV = 1){

data address = inverted data address bus value;
Yelse{

data address = the data address bus value;
}
last_address = data address;

¥

Both “INC” and “INV” mean the control signals from the encoder, and the “data address” means the

real address in this transmittion.

12

The Figure 2.3.6 shows an example of the TO_BI

TO BI
Address to be transfer | Address on BUS | INC | INV
initial | 0000 0000 0
0004 -- 1 0
0008 -- 1 0
7FFO0 800F 0 1
7FF4 -- 1 1
Total Transitions 9

Figure 2.3.6: Example of TO_BI Encoding

The Figure 2.3.6 shows an easy example of TO_BI encoding. The initial bus
value is ‘0000, the bus width N=16, the.stride applied here is 4, and the addresses
to be transfer with time.is listed in first. column. In the first 2 transfers (‘0004
~’0008’), these values areall-equal-to last value plus 4, so the BUS is frozen and
the INC is asserted while transferring these values in sequence. While transferring
from ‘0008’ to ‘7FF0’, the Hamming distance from ‘0000’ to ‘7FF0’ is 11, larger
than N/2, so that ‘7FFO0’ is inverted to “‘800F’, the INV is asserted, and the INC is
de-asserted. There are 7 transitions in this transfer, including 5 transitions on data
address bus, 1 transition on INC line, and 1 transition on INV control lines. Next,
while transferring from ‘800F’ to ‘7FF4’, because the real meaning is from ‘7FF0’
to ‘7FF4’ and *7FF4’ is equal to ‘7FF0’ plus 4, the BUS is frozen and the INC is
asserted while transferring these values in sequence. Note that the INV line is still
asserted because it is ignored here when the INC line is asserted. The total number

of switching activities is 9.

13

2.4 Summary & Observation

Bus-Invert (BI) method inverts the transferring BUS value when it produces
bit-transitions more than half of BUS width. An extra control line, called INV, is
used to indicate which value is inverted. Zero-Transition (TO) method avoids the
transfer of sequential addresses. An extra control line, called INC, is used to
indicate which value is sequential to last address. TO_BI method, which combines
both BI and TO methods, uses two extra control signals, the INV and the INC, to
control both two methods separately. However, these two control lines may result

in many bit-transitions if functions switch frequently.

The following table shows. the effect if applying these related works on 5
kinds of Buses:

Table 1: Summary of Bl, T, and TO_BI

Inst Data Inst/Data
Inst. Data
Address Address Address
Bus-Invert — AN /\ QO /\
TO O — AN — /\
TO_BI O AN O O /\
— not suitable /\: not good (O: good

I think that there exists some improvement space in previous designs and new
design issues for further study.

1. Instruction Address Bus
In TO code, a discontinuous address breaks the consecution, and the address
has to be sent explicitly to bus. This is the major restriction to the performance
of TO code. The sources of the discontinuous address are mainly come from

branches, subroutine calls, and exception/interrupt handlings. Although the

14

instructions are mostly sequential, branches still occurred frequently in
common programs. The frequency of branch is ranged from about 10~20%,
and strongly impact the result of TO code. However, only few branches will
change the target addresses. If the history taken branch targets are recored, it
should be useful information while encoding.

. Data Address Bus

First, the two control lines of TO_BI method may reduce to one control line to
indicate both invert and sequential condition.

Second, the stride value of data address may be replaced dynamically to meet
the current data address stride.

At last, the read and write data addresses usually have its individual continuity
so as that it can be encoded separately to preserve the continuity.
Instruction/Data.Mixed Address Bus

There are no previous.design—performs well on this Bus because of the
continuity corruption’of instruction‘and data address. | think that there are two
design issues for encoding algorithms on this Bus:

First, the instruction and data addresses own its individual continuity so that it
can be encoded separately to preserve the continuity.

Second, the data addresses are generated from load/store instructions. There
should be some relationships between instruction and data address. The

encoding method might make use of these relationships while encoding.

15

3 Designs

My low-power address bus encoding schemes are described in this section. Section
3.1 will introduce the overview of my designs, section 3.2 to 3.4 will show the design

details, and section 3.5 gives the design summary.

3.1 Design Overview

CPU Memory

Encoded Address
Address encoder decoder Address >
Control sig_ngls_a’

Read/Write |
MemRequest |

Figure 3.1: Address Bus Encoding Architecture

Figure 3.1 shows my low-power address bus encoding architecture. The
encoder gets addresses from,CPU and outputs the encoded address and some
control signals. Encoded .addresses:and.control signals are transmitted to the
decoder of memory. :When the decoder réceives encoded addresses and control
signals, it converts this information-into original data address. Two control lines,
called Read/Write and MemRequest; are traditional memory control signals.

Designs for instruction address bus, data address bus, and instruction/data
mixed address bus will be explained in section 3.2~3.4. Following are brief
descriptions of these designs:
1. Instruction Address Bus - recoding history branch targets as encoding information
2. Data Address Bus - wusing only 1 control line combining TO and BI, adding

Variable-Stride capability, and Preserving read/write continuities

3. Instruction/Data mixed Address Bus - preserving instruction/data continuities and

making use of relationships between instruction and data address.

16

3.2 Instruction Address Bus Encoding:

TO with Discontinuous Address Table (TO DAT)

hgfrghu _— ghfrghu Discontinuous Address Table
Source address|Target address
GDW [OF@GDH eow «— | o | e

~ .

Figure 3.2.1: diagram of TO DAT

The Figure 3.2.1 shows the diagram of TO with Discontinuous Address Table
(DAT). The approach is based on TO code, and adds a discontinuous address table
(DAT) into both encoder and decoder to record the address pairs that are sent in
sequence but with discontinuous values. Each entry of DAT records two values:
“Source address” and “Target address”. “Source address” is equal to the address of
branch instruction, and “Target-address” is the target if branch taken. Afterward,
this approach is called as “T0O DAT™.

TO DAT uses one“control line;-called INC-DAT, to control both DAT table and
TO function to transmit an instruction address sequence. First, the encoder of TO
DAT detects “DAT-hit” of the transferred address sequence. The “DAT-hit” means
that the address pair (previous address, this address) exists in the DAT table.
Transmission of an address with “DAT-hit” property is done with an asserted
INC-DAT and a frozen address bus. If “DAT-hit” test fail, then the encoder checks
to see if the to-be transferred address is consecutive to previous address and the
previous address does not exist in the “Source address” field of DAT. Transmission
of an address consecutive to previous address and the previous address does not
exist in the “Source address” field of DAT is done with an asserted INC-DAT and a
frozen address bus, too. Otherwise, the INC-DAT control line is de-asserted and

the address is sent directly. Moreover, the discontinuous pair — “previous address

17

and this address” is inserted into the DAT. After inserting into the DAT, this pair
will be found in DAT in the future, and the next time the INC-DAT signal will be
asserted if this address pair appears again.

Following is the TO DAT encoding algorithm:

TODAT encoding{
int last_address=current instruction address bus value, stride=4, INC-DAT;
pair[] DAT;
while (receive instruction address){
current address = received instruction address;
if(pair(last_address, current address) found in the DAT)

INC-DAT = 1;
}else if(current address — last_address = stride &&
last_address does not exist in “Source Address” of DAT) {
INC-DAT = 1;
}else{

INC-DAT.*= 0; instruction.address bus = current address;
DAT.insert (last_address, current address);

}

last_address .—current-address;

}

“INC-DAT” means the control signal to be sent to the decoder, “current address” means the address
value to be transferred, and the “instruction address bus” means the code that to be transferred via

instruction address bus.

18

And the corresponding TO DAT decoding algorithm is:

TODAT decoding{
int last_address=current instruction address bus value, stride=4;
pair[] DAT;
while (receive instruction address bus value and INC-DAT signal){
if INC-DAT = 0){
instruction address = the instruction address bus value;
DAT.insert (last_address, the instruction address bus value);
Yelse if (last_address exists in “Source Address” of DAT){

instruction address = “Target Address” in that pair;
Yelse{
instruction address = last_address + stride;
}
last_address = instruction address;
}
}

“INC-DAT” means the control'signal from thé encoder, and the “instruction address” means the real

address in this transmittion.

Note that the decoder . interprets.the meaning of the asserted INC-DAT line
according to if the previous address exists in the “Source Address” field of DAT. If
the encoder intends to transmit one consecutive address but the previous address
happens to exist in the “Source Address” field of DAT, the decoder may
erroneously interpret this as a discontinuous address pair. As a result, to avoid this
error, the encoder simply sends the current address out directly. This situation
might occur when leaving a loop, and the probability of this situation is much less
than that of on-going loop. What have to be done is to take the precaution

carefully.

19

Following is an example of TO DAT

TO with Discontinuous Address Table

Address to be transfer | Address on BUS | INC-DAT DAT operation
|
0004 -- 1(inc)
0008 -- 1(inc)
0100 0100 0 insert(0008,0100)
0104 - 1(inc)
0000 0000 0 insert(0104,0000)
0004 - 1(inc)
0008 -- 1(inc)
0100 -- 1(dat-hit) | (0008,0100) found
0104 -- 1(inc)
0000 -- 1(dat-hit) | (0104,0000) found
0004 -- 1(inc)
0008 -- 1(inc)
0100 -- 1(dat-hit) | (0008,0100) found
0104 -- 1(inc)
0108 0108 0 (0104,0000) found

Total Transitions

9

Figure 3.2.2:example of TO DAT Encoding

In figure 3.2.2, there are.two discontinuous address pairs from “0000” to
“0104”, and these are-*0008”—>“0100” and “0104”->“0000”. The consecutive
address sequences in the table are transmitted similar to TO method, but these
discontinuous address pairs are different treated here. While first transmission from
“0008” to “0100”, “0100” is directly sent to the address bus and the INC-DAT line
is de-asserted because “0100” is not sequential to “0008” and (0008, 0100) pair
does not exist in DAT table. After transmission, the (0008, 0100) pair will be
inserted into DAT table. When next time we meet “0008”->“0100” again, “0100”
needn’t to be sent to the address bus because the (0008, 0100) pair is in the DAT.

So the transmission of “0100” is just asserting the INC-DAT line. Similar

operations will be occurred on “0104”->*“0000”, and (0104, 0000) pair is added.

20

Now we come to transmission from “0104” to “0108”. Thought “0108” is
sequential to “0104”, “0108” has to be sent to the address bus to avoid the
miss-understanding. Because the (0104, 0000) pair exists in the DAT table, if the
encoder assert the INC-DAT line to mean that consecutive address is outputting,
the decoder will miss-understand and get the “0000” as the transmitted address.

Here, transitions of both address Bus and INC-DAT line are counted. There

are totally 9 transitions in this example.

21

3.3 Data Address Bus Encoding

Three versions of data address bus encoding scheme are proposed in this
section, with the second and third built upon its predecessor version:

1. TO_BI_1- combining TO & BI using a single control line;

2. TO_BI_1/S — with Variable-Stride capability added,;

3. TO_BI_1/S/IRW - preserving read/write continuities in a multiplexed data

address sequence.

3.3.1 Combining TO & BI using single control line (TO_BI 1)

The Figure 3.3.1 shows the diagram EXV
hgfrghu IOFY ghfrghu

of TO_BI_1 design.

Figure 3.3.1: diagram of TO_BI 1

TO_BI_1 design uses only:one control line, called INCV, to control both INC
and INV functions to‘transmit a data address, the encoder of TO_BI 1 first detects
the continuity of the transferred address-Sequence. The continuity means that the
current address is equal to the sum of the previous address and the stride.
Transmission of an address with continuity property is done with an asserted INCV
and a frozen address bus. If continuity test fails, then the encoder checks to see if
the address pattern produces bus bit-transitions on more than half of the address
bus lines and the inverted address pattern is not equal to the previous bus value
(special cases), then the INCV is also asserted and the inverted address is sent over
the address bus. Otherwise, the INCV line is de-asserted and the address will be
sent directly. Upon activation, the decoder needs to identify the meaning of an
asserted INCV line according to the received bus value. If the bus value is
unchanged, the INCV line is interpreted as an “increment-by-stride” indicator.

Otherwise, it is interpreted as an “invert” indicator. In this way, the single INCV

22

line can act as both INC and INV control signals, and address encoding still benefit
from both Bl and TO schemes.

Following is the TO_BI_1 encoding algorithm:

TO_BI_1 encoding{
int last_address=current data address bus value, stride=4, INCV;
while (receive data address){
current address = received data address;
if(stride = current address — last_address){
INCV = 1,
}else if(transition #>bus_width/2 &&
inverted address current data address bus value) {

INCV = 1; data address bus = inverted current address;
Yelse{

INCV = O0; data address bus = current address;
}
last_address =" -current address;

}

“INCV” means the control signal-fo’be sent-to the decoder, “current address” means the address value to

be transferred, and the “data address bus™ means the code that to be transferred via data address bus.

And the corresponding TO_BI_1 decoding algorithm is:

TO_BI_1 decoding{
int last_address=current data address bus value, stride =4;
while (receive data address bus value and INCV signal){
if INCV = 0
data address = the data address bus value;
}else if (the data address bus is frozen){

data address = last_address + stride;
Yelse{

data address = inverted data address bus value;
}
last_address = data address;

¥

“INCV” means the control signal from the encoder, and the “data address” means the real address in this

transmittion.

23

Note that the decoder interprets the meaning of the asserted INCV line
according to the received bus value. If the encoder intends to invert the bus value
but the inverted value happens to equal the current bus value, the decoder may
erroneously interpret this as a frozen address bus. As a result, to avoid this error,
the encoder simply sends the current address out directly. | think that this is a very

unlikely situation, but precaution must be carefully taken.

Following is an example of TO_BI_1

T0 Bl 1
Address to be transfer | Address on BUS | INCV
initial | 0000 0000 0
0004 0004 0
0008 -- 1(inc)
7FFO 800F 1(inv)
TFF4 -- 1(inc)
Total Transitions 6

Figure 3.3.2: Example of TO_BI_1
The Figure 3.3.2 shows that transferring the same sequence in Figure 2.3.6.
Compare with Figure 2.3.6, it is obviously that the major difference is that TO_BI
uses two control signals but TO_BI_1 uses only one. The decoder of TO_BI_1 will
not misunderstanding the meaning of encoder because that the TO method always

freezes the BUS while address are sequential.

24

There are two special cases that should be concerned to avoid confusion in

transfers via TO_BI_1 method. The Figure 3.3.3 shows examples of these two

cases:
T0 Bl 1
Address to be transfer | Address on BUS | INCV
000C 000C 0
0010 -- 1 (inc)
FFF3 000C 1 (inv)
=>FFF3 =0
(a): Special Case 1
TO Bl 1
Address to be transfer | Address on BUS | INCV
000C FFF3 1 (inv)
000C FFF3 1 (inv)
=>000C =0

(b): Special Case2
Figure 3.3.3 Special Cases of TO_BI 1

In Figure 3.3.3a, the problem happens while transferring ‘FFF3’. In this case,
if inverting ‘FFF3’ to ‘000C’, the decoder will misunderstand the meaning and use
INC function to decode the value because the BUS value is un-changed. In Figure
3.3.3b, the problem happens while transferring ‘000C’. In this case, the first ‘000C’
has been inverted and transferred. If the second ‘000C’ is inverted, the decoder will
misunderstand again.

Both the two cases in Figure 3.3.3 have to force the value directly transferred
through BUS in order not to make the decoder misunderstand the meaning of

encoder, and will get the worst result, whose transition number (33) is equal to the

25

BUS width (32) plus 1, while address being transferred. Case 1 seldom happen
because the probability of two sequential addresses with just inverted value is quite
small. However, the Case 2 may happen easier for the reason that it will occur
when two sequential addresses are equal, and here is one simple example: a[i] = a[i]

+ ¢, where a is an array and c is a constant value.

26

3.3.2 TO_BI 1 with Variable-Stride capability (TO_BI_1/S)

Many data are structured (arrays, matrices, etc.), and accesses to such
structured data have very predictable data addresses. The term “stride” is used to
describe the byte offset between consecutive access addresses of this kind. Two
factors affect the stride value: one is the data item size (64 bits for scientific data,
32 bits for general-purpose computing, and 16 or 8 bits for multimedia
applications). The other is the access pattern (column, row, diagonal, ...) interacted
with the storage scheme (row-major, column-major, others). These complicate the
stride value computation and identification; different stride values may even mix in
the code sequence. Here the changing stride problem is dealt with. Interleaved

stride problem will be tackled in.next section.

encoder decoder
LastAddress EXV Last Address
Applied Stride Applied Stride
New Stride IOFY New Stride
logics logics

Figure 3.3.4: diagram of TO_BI_1/S

The major goal of variable-stride capability is to make the stride applied by
TO changes with the behavior of data address sequence in order to fit the actual
stride of data address. Figure 3.3.4 shows the main idea of TO Bl 1 with
Variable-Stride Capability added in. First, the chosen stride is applied by TO
method while transferring addresses. Second, the candidate stride is modified when
current address stride is not equal to chosen stride. After the candidate stride
matures, it is used to replace the chosen stride. At last, how to make the candidate
stride mature? Setting an endurance value (e) as a method parameter, which means

that the candidate stride will be applied if it appears e times continuously.

Following is the TO _BI_1/S encoding algorithm, in which italic and

27

underlined contents are newly added:

TO_BI_1/S encoding{
int last_address=current data address bus value;
int chosen_stride =4, INCV, ¢;
while (receive data address){
current address = received data address;
if(chosen_stride = current address — last_address){
INCV = 1,
Yelse if(transition # > bus_width/2 &&
inverted address current data address bus value) {

INCV = 1; data address bus = inverted current address;
Yelse{
INCV = O0; data address bus = current address;

}
If (the new stride appears e time continuously)

chosen stride = current address — last address;
last_address =" -current address;

}

“INCV” means the control signal-to’be sent-to the decoder, “current address” means the address value to
be transferred, and the “data address bus” means the code that to be transferred via data address bus.
Variable-Stride Capability uses ‘‘current_stride” and endurance “e” to dynamically change the stride

value depend on the behavior of current data address sequence.

28

And the corresponding TO_BI_1/S decoding algorithm, in which italic and

underlined contents are newly added, is:

TO_BI_1/S decoding{
int last_address=current data address bus value, chosen_stride =4, e;
While (receive data address bus value and INCV signal){
if INCV = 0){
data address = the data address bus value;
}else if (the data address bus is frozen){

data address = last_address -+ chosen_stride;
Yelse{
data address = inverted data address bus value;
}
If (the new stride appears e time continuously)
chosen stride = data address — last address;
last_address = data address;
}
}

“INCV” means the control signal from‘the encoder, and the “data address” means the real address in this
transmittion. Variable-Stride Capability uses “current_stride” and endurance “e” to dynamically change

the stride value depend:on the behavior of current data address sequence.

The above algorithms are very simple and straight forward methods, and work
only with array accesses without any intervening data accesses. Nevertheless, with
these simple ideas as the basis, many innovative schemes can be derived, such as

the one to be introduced next.

29

Following is an example of TO_BI_1/S method and the endurance=1.

TO Bl 1
Address to be transfer | Address on BUS | INCV
0004 -- 0
0008 -- 1 (inc)
7FFO 800F 1 (inv)
TFF2 800D 1 (inv)
7FF4 800B 1 (inv)
Total Transitions 9
(a): TO_BI_1
TO Bl [1/S, endurance = 1
Address to cho_sen (cgrl:gi?jgie) Address | INCV
be transfer stride Stride | on BUS
0004 0 4 0004 0
0008 4 4 -- 1 (inc)
7FFO 4 TFE8 800F | 1 (inv)
TFF2 7FES 2 800D | 1 (inv)
TFF4 2 2 -- 1 (inc)
Total Transitions 7

(b): TO_BI_1/S, endurance =1

Figure 3.3.5: Example of TO_BI1/S, endurance=1

30

There are two additional column (“‘chosen stride’ & “current stride’) in Figure
3.3.5b. The chosen stride means the stride that Variable-Stride ability chooses now,
and the current stride is the stride value while transferring. Because the candidate
stride is always replaced by current stride, they are presented in one column. The
most important thing here is that the chosen stride is changed dynamically to fit the
data address stride.

In order to make it convenient in later discussion, there are some notations
used in this paper.
<~ FS#: meaning Fixed-Stride, whose stride is equal to #

ex: FS4 —Fixed-Stride with stride=4
<~ VS#: meaning Variable-Stride, whose endurance is equal to #

ex: VS1— Variable-Stride, endurance=1, which is used in previous example.

31

3.3.3 Preserving Read/Write Continuities in a multiplexed

data address sequence (TO_BI_1/S/RW)

Data memory are read and written by the CPU, both over the same set of
address and data buses. While data read sequence and write sequence each has its
own stride characteristics, these stride characteristics are unfortunately torn apart
and severely contaminated due to the intervention of the read/write address
sequences in a single address trace. How to preserve and utilize the individual read
and write stride characteristics in bus encoding hence becomes an interesting
problem. As a result, if the read and write address sequences can be individually
encoded , it must gain more power savings.

Figure 3.3.6 shows the TO Bl 1/S/RW block diagram. In this modification,
the read/write control fine, which exists in-all memory systems, is used to indicate
the address being a read or, write address.’ With this, each of the read and write
address sequences can be separately encoded using the variable stride TO_BI_1/S

method.

CPU | \L Memory
hgfrghu [Encoded Address ghfrghu Data >
Address

Read Write INCV Read Write | JAddress
RIW stride stride _ “|| stride stride
——>| |LastAddr|LastAddr Read/Write ||| LastAddr|LastAddr
endurance|endurance enable N endurance|endurance
logic logic i logic logic

Figure 3.3.6 TO_BI_1/S/RW block diagram

32

Following is the TO_BI_1/S/RW encoding algorithm, in which italic and

underlined contents are newly added:

TO_BI_1/S/RW encoding{
intINCV,R_e, W _e;
int R_last_address=current data address bus value;
int W_last_address=current data address bus value;
int R_chosen_stride =4, W_chosen_stride =4;

while (receive data address and RW signal){
current address = received data address;
if ((RW=1&&R_chosen_stride=current address — R_last_address) ||
(RW=0 &&W_chosen_stride=currentaddress — W_last_address) {
INCV = 1,
}else if(transition # > bus_width/2 &&
inverted address # current data address bus value) {

INCV = 1; data address bus = inverted current address;
}else{

INCV =.0; data.address bus = current address;
}
if(RW=1}¢{

If (the new stride"appears e time continuously)
R_chosen_stride = .current address — R_last_address;
R_last_address =" current address;
Yelse{

If (the new stride appears e time continuously)
W chosen stride = current address — W last address;

W last address = current address;

}

“INCV” means the control signal to be sent to the decoder, “current address” means the address value to
be transferred, and the “data address bus” means the code that to be transferred via data address bus.

Terms start with “R_" or “W_" are duplicated registers needed for Preserving Read/Write Sequence.

33

And the corresponding TO_BI_1/S/RW decoding algorithm, in which italic

and underlined contents are newly added, is:

TO_BI_1/S/RW decoding{
intR_e, W_e;
int R_last_address=current data address bus value;
int W_last_address=current data address bus value;
int R_chosen_stride =0, W_chosen_stride =0;

while(receive data address bus value and INCV signal and RW signal){
if INCV = 0){
data address = the data address bus value;
}else if (the data address bus is frozen){
if (RW=1) data address = R_last address + R_chosen_stride;
else data address = W_last_address + W_chosen_stride;

Yelse{

data address = inverted data address bus value;
}
if(RW=1){
If (the new stride appears e time continuously)
R_chosen stride” = data address — R_last_address;
R_last_address <=7 dataaddress;
Yelse{
If (the new stride appears e time continuously)
W_chosen_stride = data address — W_last_address;

W last address = data address;

}

“INCV” means the control signal from the encoder, and the “data address” means the real address in this
transmittion. Terms start with “R_" or “W_" are duplicated registers needed for Preserving Read/Write

Sequence.

34

3.4 Instruction/Data Mixed Address Bus Encoding

CRU

Inst Address

Memory

Inst/Data Address > Inst/Data Address

Read/Write 3

MemReqguest |

Data Address

Figure 3.4.1: diagram of general instruction/data mixed address bus

Figure 3.4.1 shows the diagram of general instruction/data mixed address bus.
CPU multiplex the instruction address stream and data address stream into one
stream, and transfer this stream via instruction/data mixed address bus. Two
control lines, called Read/Write and MemRequest, are traditional memory control
signals.

In my design for instruction/data mixed address bus, encoder/decoder is
added into CPU/memory. The encoder.separately receives two address streams:
instruction address stream and data address stream, and transmit the encoded
address to the decoder inithe-memory. The decoder has to output the original
addresses to the memory. Needed decading information may be sent through some
extra control signals. Figure 3.4.2 is the diagram of my instruction/data mixed

address bus encoding.

CRU Memory
Inst Address Encoded Address
encoder decoder| nst/Data Addres>
Data Address |[Control signals_ >
Read/Write
MemRequest

Figure 3.4.2: diagram of my instruction/data mixed address bus encoding
Two versions of instruction/data mixed address bus encoding scheme are
proposed in this section, with the second built upon its predecessor version:
1. 1/D Selector — preserving instruction/data continuities in a multiplexed
address sequence

2. Stride-Table — Applying different stride value on each data access

35

3.4.1 Preserving Instruction/Data Continuities in a

multiplexed address sequence (I/D Selector)

In “2 Buses” architecture, both instruction and data transmitted over the same
set of address and data buses. While instruction sequence and data access sequence
each has its own stride characteristics, these stride characteristics are unfortunately
torn apart and severely contaminated due to the intervention of the instruction/data
address sequence in one single address trace. How to preserve and utilize the
individual instruction and data access stride characteristics in bus encoding hence
becomes an interesting problem. As a result, if the instruction and data address
sequences can be encoded individually, it must gain more power savings.

Figure 3.4.3 shows the**I/D selector” block diagram. In this modification, the
extra read/write control line is|used to indicate the address being a instruction or
data address. With this, each of the read and write address sequences can

separately be encoded using methods suitable for them.

hgfrghu EXV ghfrghu
I D IOF (G DW I D
DAT ? 12¢ vhdvFwru DAT ?

Figure 3.4.3: diagram of 1/D selector
Here two encoding methods are needed, one for instruction address sequence
and one for data address sequence. For the instruction address sequence, the “TO
DAT” proposed in section 3.2 should be good enough because it avoid the
transmission of both consecutive address sequence and regular taken branch target
addresses. For the data address sequence, the “TO_BI_1/S/RW”cproposed in
section 3.3 could also be applied here. However, this method does not make use of

the relationships between instruction and data address. | will propose one new

36

design, called “Stride-Table”, to make use of these relationships and reduce more

bus transitions.

3.4.2 Applying different stride value on each data access

(Stride-Table)

Data addresses are resulted from load/store instructions, and each load/store
instruction usually generates consecutive address sequence when it is executed
more than once. While data access of each load/store instruction has its own stride
characteristics, these stride characteristics are unfortunately torn apart and severely
contaminated due to the intervention of these data accesses in a single data address
trace. How to preserve and utilize the stride characteristics of data access of each
load/store instruction hence’ becomes an interesting problem. As a result, if
individual stride value is applied for.data access of each load/store instruction,
more power saving must be gained.

How to tell which:lead/store instruction is executed in the instruction/data
mixed address bus? The main idea is that because the data access is resulted by
execution load/store instruction, the last instruction address before this data access
should be the address of load/store instruction. Even if taking the pipelining effect
of CPU, the real address of load/store instruction should equal to the last
instruction address minus an offset value. As a result, | take the last instruction
address before data access as the key information of telling which load/store

instructions is executed in this design.

Stride Table
EXV
l;qurgh; Applied Last
Stride LOFGDWAN Stride | Address
DAT | Taple | | 128 vhdnfwru | | DAT 1 Tapiesc— | ... | ... | ...,

Figure 3.4.4: diagram of 1/D selector with TO DAT and Stride-Table

37

The Figure 3.4.4 shows the diagram of I/D selector with TO DAT and
Stride-Table. This approach adds a “Stride Table” into both encoder and decoder.
Each entry of Stride-Table records three values: “Index Address”, “Applied Stride”,
and “Last Address”. The “Index Address” records the address of last instruction
address before data access; the “Applied Stride” records the stride value to be
applied when executing this load/store instruction; the “Last Address” records the
data address accessed by the load/store instruction last time. Moreover, one control
signal, called ST, is required to indicate which address is not transmitted on the bus
but the decoder could calculate the address by information in the Stride-Table.
Here, this control signal can be combined with the INC-DAT line of TO DAT
method.

How this approach:works? While transferring the instruction addresses, the
I/D Selector is asserted.and TO DAT .method works as if it is applied in the
instruction address bus. BesSides—this, ‘the encoder will memorize the latest
instruction address in mind, and so.do the decoder.

When one data address arrives, the 1/D selector will be de-asserted and the
encoder uses the latest instruction address as index value to access the Stride-Table.
If there is one entry whose “Index Address” is equal to the latest instruction
address, the encoder will get the “Applied Stride” and “Last Address” of this
load/store instruction. Depending on the to-be transferred data address is equal to
“Last Address” +“Applied Stride” or not, the encoder decides to assert ST line and
freeze the bus or de-assert ST line and transmit this data address directly via bus.
After that, the “Applied Stride” and “Last Address” of this entry will be updated. If
there is no entry whose “Index Address” is equal to the latest instruction address,
the encoder has to de-assert ST line, transmit this data address directly via bus, and

insert one entry (latest instruction address, default stride, this data address) into

38

Stride-Table. (The default stride is 4 in my design.)

While the decoder receiving address transfer with de-asserted 1/D signal,
actions differ depending on the ST signal. If the ST line is asserted, the decoder
uses the latest instruction address as index value to access the Stride-Table and gets
the “Applied Stride” and “Last Address” for this data access. The original data
address equals to “Last Address” + “Applied Stride”. Otherwise, the decoder
receives data address directly from the bus. After this data address transmission,
decoder has to insert one entry (latest instruction address, default stride, this data
address) into Stride-Table if no entry whose “Index Address” is equal to the latest
instruction address, or update the “Applied Stride” and “Last Address” otherwise.

Following is an example of 1/D Selector with TO DAT and Stride-Table:

Addresses leading .with “I” mean.instruction addresses, and “D” for data

addresses. Address trace.of 3 iterations of a-simple loop are listed here.

Address Sequence DAT

Source Target
Address | Address

Stride Table

Index Applied Last
Address | Stride | Address

red&italic: bus frozen :
black: transmit value

Figure 3.4.5: example of I/D Selector with TO DAT and Stride-Table, At Start

39

Figure 3.4.5 shows a snapshot at start. The DAT and Stride-Table are

empty at this time.

Snapshot of first iteration:

both

Address Sequence

[20

D 600

[2

I 28

D 100

[32

DAT

Source
Address

Target
Address

Stride Table

Index
Address

Applied
Stride

Last
Address

20

4

600

28

100

red&italic:
black:

bus frozen

transmit value

32

400

40

4
4
4

900

Figure 3.4.6: example of I/D Selector with TO DAT and Stride-Table, Iteration 1

In the first iteration, all instruction addresses are consecutive and need not to

be transmitted via bus except the first one. Data addresses are transmitted directly

via bus because there are no information in Stride-Table at start. These data

addresses and its previous instruction address are inserted into Stride-Table with

default stride value = 4.

40

Snapshot of second iteration:

Address Sequence DAT
I 20f11 20 Source Target
1} 628{ ? 522 Address | Address
[28511/ 28 60 20
D 100 [2 704
[32\ [32
D 400 [[D 396
[/ Soll /[36
[401l [40
1} 98{2 1} 822 Stride Table
7 481 7 48 Index Applled Last
7 s/ Address Stride | Address
[S0ll /7 S0 20 4 604
[o0/ o0
28 4 104
— 32 -4 396
red&italic: bus frozen
black: transmit value 40 -2 898

Figure 3.4.7: example of I/D Selector with TO DAT and Stride-Table, Iteration 2
In the second iteration, the discontinuous address pair (60, 20) is inserted into
DAT. All instruction addresses except “20” need not to be transmitted via bus, too.
Data addresses “604” & “104” meet the default stride value so that the bus is
frozen and the INC-DAT/ST line is asserted. Data addresses “396” & “898” do not
meet the default stride value so that the two addresses have to transmitted via bus.
The decoder updates “Applied Stride” and “Last Address” of the corresponding

entry for further transfer.

41

Snapshot of third iteration:

Address Sequence DAT
e
il Address | Address
[285\ 7 25|/ 25 60 20

D 100 || £ 104 || D 108
[2\ L 32 L 32
D 400 [[D 396 || 2 592

D200 (D /;5’55 Stride Table
7 481 7 481l 7 48 Index Applied Last
7 o7 o7 52 Address | Stride | Address
[S0l /7 S0l 50 20 4 608
VARG | ARG | WA
28 4 108
32 -4 392
red&italic: bus frozen
black: transmit value 40 -2 896

Figure 3.4.8: example of I/D Selector with TO DAT and Stride-Table, Iteration 3
In the third iteration and further iterations, all instruction and data addresses
do not need to be transmitted wia bus. Transmissions of these addresses are just
asserting INC-DAT/ST line and switching 1/D Selector line respect. This situation
will be held until leaving the loop.
Though Stride-Table avoids the transmission of regular data access, there are
still some data addresses will be transmitted via bus. While transmitting these data
addresses, Bus-Invert could be added for additional power saving. The

combination of Stride-Table and Bus-Invert is shown as diagram in Figure 3.4.9:

hgfrghu EXV ghfrghu
l D IQF@EDW2VWAQY I D
DAT ST 1 vhdvFwru DAT ST

Figure 3.4.9: diagram of Stride-Table combining with Bus-Invert

42

3.5

The INV control line required for Bus-Invert method is combined with
INC-DAT/ST line using similar approach mention in section 3.3.1. The keys to
identify the meaning of an asserted INC-DAT/ST-INV control line are “I/D

Selector” status and bus frozen or not.

Summary

TO DAT make use of history branch target to avoid transfer of both regular
taken branch target address and consecutive address sequence. TO_BI_1/S/IRW
uses only one control signal controls both Bl and TO, dynamically changing
applied stride value, and encoding read/write sequence individually. 1/D Selector
with TO DAT and Stride-Table preserves continuity of both inst and data address,
and make use of relationship=between ‘inst and data. These three designs are
respectively suitable® for instruction: address bus, data address bus, and
instruction/data mixed-address bus.Fhe effect of my designs will be shown in next

section.

43

4 Simulation

I implement my designs using simulation, and use benchmarks to validate these
designs. The target embedded system conforms to a portable personal multimedia/
communication device, and the test programs are selected accordingly. The performance
metric is the ratio of reduced data address bus bit toggles. To simplify the result, only
overall performance improvements are reported. Although readers may be interested in
the effects of each individual technique and their incremental effects on top of other

techniques, these data are not shown here due to page limits.

4.1 Simulation Environment

The simulated embedded system platform assumptions are listed below:
1. The processor is ARMZTDMI, and there is only one processor in the system.
2. The memory is separated into fwo parts: instruction memory, and data memory.
3. There is no cache:memory.
4. All instructions are compiled in ARM'mode.

There are four types of benchmarks, and each type has 2 programs in it. These
benchmark programs are selected from MediaBench, a popular benchmark suite
including multi-media and communication applications. These benchmarks are:

1. ADPCM
Description: ADPCM stands for Adaptive Differential Pulse Code Modulation.
It is a family of speech compression and decompression algorithms. A common
implementation takes 16-bit linear PCM samples and converts them to 4-bit
samples, yielding a compression rate of 4:1. The ADPCM code used is the
Intel/DVI ADPCM code which is being recommended by the IMA Digital

Audio Technical Working Group.

44

EPIC

Description: EPIC (Efficient Pyramid Image Coder) is an experimental image
data compression utility written in the C programming language. The
compression algorithms are based on a biorthogonal critically-sampled dyadic
wavelet decomposition and a combined run-length/Huffman entropy coder. The
filters have been designed to allow extremely fast decoding on conventional (ie,
non-floating point) hardware, at the expense of slower encoding and a slight
degradation in compression quality (as compared to a good orthogonal wavelet
decomposition).

GSM

Description: As part of this effort we are publishing an implementation of the
European GSM 06.10 provisional standard for full-rate speech transcoding,
prI-ETS 300 0365 which uses RPE/LLTFP (residual pulse excitation/long term
prediction) coding at 13-kbit/s..GSM 06.10 compresses frames of 160 13-bit
samples (8 kHz sampling. rate, i.e.-a frame rate of 50 Hz) into 260 bits; for
compatibility with typical UNIX applications, our implementation turns frames
of 160 16-bit linear samples into 33-byte frames (1650 Bytes/s). The quality of
the algorithm is good enough for reliable speaker recognition; even music often
survives transcoding in recognizable form (given the bandwidth limitations of
8 kHz sampling rate).

JPEG

Description: This package contains C software to implement JPEG image
compression and decompression. JPEG (pronounced "jay-peg”) is a
standardized compression method for full-color and gray-scale images. JPEG is
intended for compressing "real-world" scenes; line drawings, cartoons and

other non-realistic images are not its strong suit. JPEG is lossy, meaning that

45

the output image is not exactly identical to the input image.

Benchmarks

Trace

J

Result

Figure 4.1: Simulation flowchart
Figure 4.1 shows the flowchart of simulation. The benchmarks are run in the
ARM-Emulator7t, and the emulator dumps the trace of program execution. After
that, a simulator takes the trace as input and counts the number of bus bit

transitions.

46

4.2 Simulation Results

The goal of address bus encoding methods is to reduce the transitions on
address bus, so the result of encodings will be presented as percentage of reduced
transitions, which is calculated as
(% of Reduced Transitions) = (Reduced Transitions) + (unencoded Transitions).

The higher this value is, the more effective the corresponding design.

4.2.1 Results of Instruction Address Bus Encoding

Figure 4.2.1 shows the effects of different DAT size:

‘ —e— qudio —®— epic toast jpeg =M= Average

100%

95% [> * * . * *
=
;%9()% L X S K
=
585% N
B80%

= = = n
575% B .\._—_.\././'—_'

°70%
IS

65% I

60% . Y

1 2 4 8 16 @ 64 128 256 o0
DAT Size

Figure 4.2.1: effects of DAT size
In this figure, two DAT sizes are chosen. The first one is size=4, it gets good
performance for most applications. If viewing TO DAT with infinite size as optimal
case, it 1s 97.6% of the optimal case. The second one 1S size=32, 1t satisfies all

applications 1n the applied benchmarks, and 1s 99.8% of optimal case.

47

OTO MDAT(4) BDAT(32)

100%
95% |
0% [
85% |
80% [
5% [
0%
05% |
60%

% of Reduced Transitions

audio epic toast eg

— |

Average

Figure 4.2.2: Results of TO DAT

In figure 4.2.2, we can see that averagely TO DAT(4) achieves 88.7%
reduction of the original bit transitions, which is 6.2% more than the TO method

can do. TO DAT(32) achieves 90.5% reduction of the original bit transitions, which

is 8.1% more than the<T0.method can do.

4.2.2 Results of Data 'Address Bus Encoding

Figure 4.2.3 shows the simulation results of TO_BI_1/S/RW method.

O BI W TO LJTO_BI LJTO_BI_1/SRW

32.0% 30.8%

N W W

G &S O

RN R
T

20.1% 200% 2071 2%

N

w2
=
.8
+—
Z
=
—
= 20% | me
o)
S
S B
3 15% 11.29 15)
2% 9.7% 92% 94% T
LS 10% T.8% . ||
= 41879 5
5% 4 2
O% 1 1 I 1 1
audio epic toast jpeg Average

Figure 4.2.3: Results of TO_BI_1/S/RW

48

In figure 4.2.3, the newly proposed TO_BI_1/S/RW method achieves 26%
reduction of the original bit transitions. Comparing with TO_BI method, it reduces
14.5% transitions more than TO_BI method.

4.2.3 Results of Inst/Data mixed Address Bus Encoding

Figure 4.2.4 shows the effects of different Stride-Table size:

—— audio —=— epic toast Jpec == Average
., 100%
5
= 90% [
§ 80%
g 0 * ¥ x
B 710% [
O
- - - n
3 60% [
o'’
B 50% |
IS
40% | v | | | |
1 2 4 8 16 @ 64 (128) 256 512 1024 oo
StrideTable Size<>

Figure 4.2.4: effects of Stride-Table Size
In this figure, two Stride-Table size are chosen, too. The first choice is size=
32, it gets good performance for more than half applications in the applied benchmarks.
If viewing Stride-Table size with infinite size as optimal case, it 1 91.4% of the optimal
case. The second choice is size=128, it satisfies all applications in the applied

benchmarks, and 1s 99% of optimal case.

49

‘ OT0-BI ETODAT-TO BI I/SRW B TODAT-ST(32) M TODAT-ST(128) O TODAT-STINV(128)
100%

0% [

80% [
0% [
60%
50% F

% of Reduced Transitions

40%
audio epic toast Jpec Average

Figure 4.2.5: Results of I/D Selector with TO DAT and Stride-Table

In figure 4.2.5, it’s easy to find that I/D Selector with TO DAT and
Stride-Table(32) achieves 70.8% transition reduction of the un-encoded bus, which
is 24.7% more than TO .BI method and.7.5% more than that of I/D Selector with
TO DAT and TO_BI=1/S/IRW. I/D Selector with TO DAT and Stride-Table(128)
achieves 77.4% transition reduction-of the un-encoded bus, which is 33.8% more
that TO_BI method and 16.6% more than that of I/D Selector with TO DAT and

TO_BI_1/S/IRW.

50

5 Conclusions

In my thesis, | study the low-power address bus encoding techniques. First, TO
DAT method is proposed for instruction address bus. It avoids transmission of both
consecutive addresses and regular taken branch targets. Compared with the TO method,
TO DAT achieves 90.5% reduction of the original bit-transitions, 8.1% more than the TO
method.

Second, TO_BI_1/S/RW method is proposed for data address bus. It integrates TO
and Bl methods using only one control line, introduces a variable-stride methods which
deals with dynamically changing strides, and preserves the continuities of read and
write addresses using separated sets of encoding information. Compared with the TO_BI
method, my design achieves 26%_reduction of the original bit transitions, 14.5% more
than the TO_BI method.

Lastly, | propose one“encoding method for instruction/data mixed address bus. It
preserves the individuality "of instruction-and data address, and applies strides for each
load/store instruction. Compared ‘with the TO_BI method, my design achieves 77.4%
reduction of the original bit transitions, 33.8% more than the TO_BI method.

The simulation results show that my address bus encoding methods have much less
bit transitions. To make the power estimation results more precise, a bus power model
needs to be carefully constructed. And the hardware overheads for the additional control

lines/logic, include silicon area, delay, and power, also need to be evaluated.

51

6 References

[1]

[2]

[3]

[4]

[5]

[6]

S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, “Global communication and
memory optimizing transformati ons for low power signal processing systems,”
IWLPD-94: ACM/IEEE International Workshop on Low Power Design, Apr. 1994, pp.
203-208.

C. L. Su, C. Y. Tsui, A. M. Despain, “Saving Power in the Control Path of Embedded
Processors,” IEEE Design and Test of Computers, Vol. 11, No. 4, pp. 24-30, Winter
1994

Y. Aghaghiri, F. Fallah, and M. Pedram, “lrredundant address bus encoding for
low-power,” in Proc. IEEE Int. Symp. Low-Power Electronics and Design, Aug. 2001,
pp. 182-187.

M. R. Stan and W. P. Burleson;“Bus-invert coding for low-power 1/0O,” IEEE
Transactions on VLSI Systems, Vol. 3, No. 1, pp- 49-58, 1995

L. Benini, G DeMicheli, E.Macii;~D. Sciuto, and C. Silvano, “Asymptotic
zero-transition activity encoding for:address busses in low-power microprocessor-based
systems” GLS-VLSI-97: IEEE 7th Great Lakes Symposium on VLSIpp. 77-82,
Urbanana-Champaign, IL, March 1997.

L. Benini, G. DeMicheli, E.Macii, D. Sciuto, and C. Silvano, “Address bus encoding
techniques for system-level power optimization,” Proc. Of Design Automation and Test

in Europe, pp. 861-866, Feb. 1998

52

PO

IR~ 4% BUS {uRe¥] V=~ UK] data ™ - it XOR ; o+ 5 |
’FAT:
~ AP XOR URY LR [
encoder | T decoder |
N\ . BUS 35
H [M

7t 52 data pattern [- K =2 F~ 27 data pattern fit"xor & F | #1355 BUS >
ez 2k JE'“}HLVTUE' VPR - CVEZEFAY data pattern F| it % xor B £ {HURRUEY
Bl e

I ke b T e [ERue e (4 instruction address) [iR ik 2 [y

bit-transitions ° fﬁJE?j =i Tﬁiﬁﬁ[l El[LTH *T?WH (bus frozen)E\ﬂj‘ H% bit-transition

54 random distibuted 15l MRUAREEE o iy ¢ et 12 AL instrucion
address bus ~ data address bus ~ I'f " iinstruction/data mixed address bus " F{[= |[i3158
MR - DR IS2AY pattern A1 decoder 7HETH Y > K] BUS frozen I'J3ed -4
felfiY bit-transitions « A/ F’\Iglfﬁigﬁﬁ@ i ‘]%'L%F[fﬁj 1 > encoder ¥+ XOR encoder
Jfii] » decoder ¥t XOR decoder [V # » Wi I IR » [l = 7" XOR

encoder/decoder 3%~ HY&i " BUS Y bit-transition v e

53

filjg =+ Table size 1Y overhead fol ® JEIFIEJ’F]%EI?J? (F‘[
’FAT :

— J&sF > external bus H1— % bus line E VEEFR TRkl SOpF - f@? BUS El@?&f@t%; £,
LIV P PJFERTE S bus b [bit-transition 7 =5 i

1

E :ExCdefj :%XSO(pF)xl.72=72.25pJ

bit —transition
DAT Table = Stride Table "’I"Ttﬁ'ﬂé H* Power Overhead [[[I'] CACTI iﬁ— = Power
Evaluation ~ = T%I"‘:ﬁ HE F%Ei(j%? : (T@?fﬁl] 90nm FIFH)

DAT Size 1 2 4 8 16 32 64 128 256

Access Power (pJ) 40 | 41 42 43 45 49 65 87 120

StrideTable Size 1 2 4 8 16 32 64 128 256

Access Power (pJ) | 79.5 = 80.--80.5 |82 84 39 106 128 162

P B go g s ﬁﬁﬂ/ F HER A DAT Table size=8 or 32 7% Access [V Power
AP~ [bit-transition "Ti[” ?EJ%”“FL,] WIPT"F\‘E/[S3wEE =R D bit-transition
Hippic Sl (S5 BUS _-posféR w e 1] DAT Table ﬁ?ﬁt'éﬁﬁabranch address pair I f[1fi bit-transition
kL 6% 1 il transition 1V » 77l f= S8Rt DAT Table 1 (X 32 branch target I Fik

féu},_ L[Ehkpjﬁ THY o

vt Stride Table V175 » AESo Pk~ {af bit-transition "y e AV FAfi~S - fLLRLET

#* data address ' ¥| randomly distributed fi J’F‘j 1 g J/FT | bit-transition By 2 | ™™ fiv

PF= i I3t StrideTable riTuTif RSy size=32 or 128 'l £5 BUS iﬁ‘ﬂ\‘ d’i%ﬁ’l@j{‘”f?)\' o

54

