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低耗電的位址匯流排編碼方法 

學生：翁綜禧 

 

指導教授：鍾崇斌 博士 

國立交通大學資訊工程學系﹙研究所﹚碩士班 

摘 要  

近年來如何降低電腦系統中的耗電量已經是個非常重要的課題了。一般

而言，系統中耗用在連接處理器與記憶體之間匯流排上的電量高達 50%以

上，這些電能是被傳送資料時各個匯流排線路產生的電位變化所消耗掉

的，因此藉由資料編碼/解碼方法減少匯流排線路產生的電位變化就成了降

低匯流排耗電量最有效的方法。在此，我針對指令位址匯流排、資料位址

匯流排，以及混和指令/資料位址匯流排分別設計了編碼機制，來減少匯流

排上產生的電位變化，以減少其上的電能消耗。對於指令位址匯流排，設

計了 DAT (Discontinuous Address Table)與 T0 搭配，以同時處理連續位址

以及 branch 指令造成的不連續位址；對於資料位址匯流排，設計了一方法，

其中結合 T0 與 BI、動態改變位址跨距(Stride)，以及區別讀/寫位址分別編

碼，可因應資料位址中連續位址與不連續位址混雜的特性來做處理；對於

混和指令/資料位址匯流排，利用了指令記憶體位址與資料記憶體位址之間

的關係，設計了 Stride Table 方法，並與 DAT 搭配，作為此環境的編碼設

計。實驗結果顯示，這樣的方法能夠減少指令位址匯流排上 90.5%的電位

變化、資料位址匯流排上 26%的電位變化、以及混和指令/資料位址匯流排

上 77.4%的電位變化。 
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ABSTRACT 

Reducing power consumption of computer systems has gained much 

research attention recently. In a typical system, the memory bus power 

constitute will over 50% of all system power; and this power is required due to 

bus signal transitions (0 1 or 1 0). Reducing the number of memory bus 

transitions is hence an effective way to reduce system power. I present 

encoding schemes to reduce instruction address bus, data address bus, and 

instruction/data mixed address bus power consumption. For instruction address 

bus, T0 with DAT (Discontinuous Address Table) is proposed to handle both 

consecutive addresses and the branch target addresses; for data address bus, 

combination of T0 and BI method, variable-stride, and SRWEC (Separated 

Read/Write Encoding Contents) is proposed to handle both the randomness and 

continuities of data address sequence; as for instruction/data mixed address bus, 

DAT is used for instruction address sequence and Stride-Table which can take 

use of the relationship between instruction address and data address is applied 

for data address sequence. Simulation results show that the overall bus line 

switching reduction is 90.5% of unencoded instruction address bus, 26% of 

unencoded data address bus, and 77.4% of unencoded instruction/data mixed 

address bus. 
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1 Introduction 
The increase in complexity of system-on-chip (SoC) designs has led to the power 

consumption, hence cooling, and reliability problems. Power consumption is becoming 

one of the most important design issues especially for embedded systems. On the other 

hand, we are witnessing a dramatic market size increase for portable electronic devices 

such as mobile phones and personal digital assistants. While these products are 

battery-powered, and their functional requirements due to users are even increasing, low 

power design for these systems hence becomes a very important research topic. 

1.1 Power Consumption of System Bus 

In a digital computer system, the major power consumption comes from the 

off-chip processor-memory bus traffic. And it has been estimated that the 

capacitance driven by the I/O nodes is usually three orders of magnitude [1] that of 

the one seen by the internal nodes of a microprocessor. As a result, it is imperative 

to reduce Bus power for the purpose of low-power. 

How the system bus consume power? The power consumption equation of 

typical buses is as following: 

P = ½ ．SBT ． Cs ． Vdd
2 

 P : Power Consumption of Bus 

 SBT :  the # of bus bit transitions 

 Cs : self-capacitance 

 Vdd : Bus supply voltage 

Here we can find that the power consumptions of bus are dominated on three 

parameters: SBT, Cs, and Vdd. For achieving low-power in CMOS circuits, Cs or 

Vdd must be minimized. Decreasing Vdd has a quadratic effect and is a very 

efficient way of reducing power consumption. However, the decrease of lower Vdd 
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is still not enough[1] as required by portable applications. As a result, lowering Vdd 

must be done together with other methods for decreasing more power consumption. 

Here, reducing the bit-transitions (0 1 or 1 0) on the bus, means SBT value, is a 

marvelous way of further decreasing power consumption. 

1.2 The Existing Methods 

In [4] Stan and Burleson proposed the Bus-Invert method to reduce the 

bit-transition number of randomly distributed bus patterns. In [5] Benini et al. 

proposed T0 code to reduce the bit-transition number of consecutive bus patterns, 

which occupy a large portion in instruction address stream. In [6], Benini et al. 

proposed T0_BI method. This method can handle both randomly distributed and 

consecutive patterns. This method can be applied on data address bus, but there are 

still some improvements can be done. I will show these improvements in this 

paper. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows: Section 2 describes the 

background of low-power address bus encoding. Section 3 presents the proposed 

designs for reducing the bit transitions on kinds of address buses. Section 4 gives 

the performance results. The last section summarizes the work. 
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2 Background 
In this section, the behaviors of how CPU requests memory data are described. 

After that, the Bus architecture in general systems and what happened while 

transmitting address/data via these Buses are introduced. And then I will show you the 

related low-power bus encoding techniques and some potential improvements to these 

existing designs. Here, my design issues are also unveiled. 

2.1 How CPU request memory data? 

While CPU executing programs in a general computer system, the processor 

will unceasingly access the memory for fetching instructions, reading input data, 

and write the computation results. All these transmissions have to be done by the 

system Buses. Following shows the needed transmissions between CPU and 

memory, and the behaviors of them: 

1. Instruction Address Stream 

The behavior of instruction address sequence is usually consecutive, and the 

stride of instruction address is equal to the size of instruction words. The 

instruction address is usually consecutive under general condition. However, 

when the branch instructions (goto, if, call, return, etc.) are executed, the next 

instruction address sequence is depend on the branch result. When branch 

taken, the next instruction address will not be sequential to the address of the 

branch instruction. Though the branch target addresses are not sequential to 

addresses of the branch instructions, the target addresses are seldom changed 

when program executed. As a result, the behavior of instruction addresses is 

quite regular and predictable. 
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2. Data Address Stream 

The behavior of data address sequence may be randomly distributed at 

sometimes and sequential at the other time, and the stride of data address will 

vary with time. The data address is usually randomly distributed under general 

condition. However, when applications access arrays or scalar data in loops, the 

accessed data addresses may contain some continuity. Besides this, even if the 

data addresses are sequential in loop, the stride between addresses will differ 

with the size of accessed objects and the continuity will be contaminated for 

the intervention of reads and writes. 

3. Instruction Stream 

Generally, there are almost no continuity in two instructions, and are never 

changed after compilation. The behavior of instruction sequence is randomly 

distributed in the run-time. However, most RISC-based ISAs exhibit some 

regularity and can be partitioned into fixed-location fields. So many 

optimizations on instructions are done in the compile time. 

4. Data Stream 

The behavior of data sequence is randomly distributed in all times. Because the 

input data may vary with time, the value of data is quite irregular and 

non-predictable. However, there are some characteristics in data value. For 

example: leading with 0 or 1, repeating, etc. 

 

This thesis will take the characteristics of instruction address stream and data 

address stream into consideration in later design. 
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2.2 Bus Architectures 

The four streams discussed in previous section are all transmitted though 

system buses. Now the typical bus architectures are introduced following: 

4 Buses 

CPU
Instruction Address

Instruction
Data Address

Data
Instruction
Memory

Data
Memory

 
Figure 2.2.1: Bus Architectures－4 Buses 

In this Bus architecture, each stream is transmitted using its dedicated bus. 
Streams will never inference other streams. As a result, the characteristic of the 
four streams will be preserved on the Bus, and it’s easy to make use of while 
encoding. 

2 Buses 

CPU
Instruction/Data Address

Instruction/Data Memory
 

Figure 2.2.2: Bus Architectures－2 Buses 
In this architecture, instruction address stream is mixed with data address 
stream, and instruction stream is mixed with data stream. The stream 
individualisms are broken because of the intervention of each other. Moreover, 
the offline optimization of instructions might get poor performance here. 

1 Bus 

CPU
Instruction/Data
Address/Data Memory

 
Figure 2.2.3: Bus Architectures－1 Bus 

In this architecture, all the four streams are mixed together. As a result, almost 
all characteristics of these streams are broken now. 

In my thesis, I study the address bus encoding. Buses focused here are 

instruction address bus and data address bus in “4 Buses” architecture, and 

instruction/data address bus in “2 Buses” architecture. I will design suitable 

encoding algorithms for each of the three Bus. 
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2.3 Related Bus Encoding 

Followings are related researches on low-power bus encoding. The Bus-Invert 

(BI) method is suitable for Common Buses, Zero-Transition (T0) method is 

design for Instruction Address Bus, and T0_BI design can be applied on Data 

Address Bus. 

2.3.1 Bus-Invert (BI) 

In [4] Stan and Burleson proposed the Bus-Invert method as explained next. 

Consider an N-bit bus. The idea is that if the hamming distance between two 

consecutive patterns is larger than N/2, then the second pattern can be inverted so 

as to reduce the inter-pattern Hamming distance to below N/2. One extra bit is 

needed to distinguish between the original and inverted patterns that are 

transmitted on the bus. The BI method tends to perform well when transmitting 

random patterns, which is often the case on data busses.  

The Figure 2.3.1 is a diagram of 

BI encoding method: 

 

decoder

BUS

INVencoder decoderdecoderdecoder

BUS

INVencoderencoderencoder

 
Figure 2.3.1: diagram of Bus-Invert 

Following is the encoding algorithm of this method 

BI encoding{ 
int INV; 
while (receive data address){ 

current address = received data address; 
if (transition #＞bus_width/2) { 

INV ＝ 1; data address bus ＝ inverted current address; 
}else{ 

INV ＝ 0; data address bus ＝ current address; 
}}} 

“INV” means the control signal to be sent to the decoder, “current address” means the address value to 

be transferred, and the “data address bus” means the code that to be transferred via data address bus. 
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And the corresponding BI decoding algorithm is: 

BI decoding{ 
while (receive data address bus value and INV signal){ 

if (INV ＝ 1){ 
data address ＝ inverted data address bus value; 

}else{ 
data address ＝ the data address bus value; 

} 
} 

} 
“INV” means the control signal from the encoder, and the “data address” means the real address in this 

transmittion. 

The Figure 2.3.2 shows an example of the Bus-Invert 

7 F F 27 F F 2

N o  E n c o d e

1 2T o ta l  T ra n s i t io n s

7 F F 0
0 0 1 0
0 0 0 0

A d d re s s  o n  B U S
0 0 0 0
0 0 1 0
7 F F 0

in i t ia l
A d d re s s  to  b e  t r a n s fe r

7 F F 27 F F 2

N o  E n c o d e

1 2T o ta l  T ra n s i t io n s

7 F F 0
0 0 1 0
0 0 0 0

A d d re s s  o n  B U S
0 0 0 0
0 0 1 0
7 F F 0

in i t ia l
A d d re s s  to  b e  t r a n s fe r

 
(a): No Encoding 

B u s - In v e r t  (B I )

18 0 0 D7 F F 2
9T o ta l T ra n s i t io n s

1
0
0

I N V

8 0 0 F
0 0 1 0
0 0 0 0

A d d re s s  o n  B U S
0 0 0 0
0 0 1 0
7 F F 0

in it ia l
A d d re s s  to  b e  t ra n s fe r

B u s - In v e r t  (B I )

18 0 0 D7 F F 2
9T o ta l T ra n s i t io n s

1
0
0

I N V

8 0 0 F
0 0 1 0
0 0 0 0

A d d re s s  o n  B U S
0 0 0 0
0 0 1 0
7 F F 0

in it ia l
A d d re s s  to  b e  t ra n s fe r

 
(b): Bus-Invert Encoding 

Figure 2.3.2: Example of Bus-Invert Encoding 
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The Figure 2.3.2 shows an easy example of bus transfer. The initial bus value 

is ‘0000’, the bus width N=16, and the addresses to be transfer with time is ‘0010’ 

 ‘7FF0’  ‘7FF2’. The original non-encoded transfer is shown in Figure 2.3.2a, 

the total transition number is 12. The BI-encoded transfer is shown in Figure 

2.3.2b . While transferring from ‘0000’ to ‘0010’, the Hamming distance is 1, 

which is less than N/2, so that ‘0010’ is not inverted. While transferring from 

‘0010’ to ‘7FF0’, the Hamming distance is 10, larger than N/2, so that ‘7FF0’ is 

inverted to ‘800F’ and the INV is asserted. Here, the real transition number of this 

transfer is 6. Next, while transferring from ‘800F’ to ‘7FF2’, the Hamming 

distance is 15 (note that the real meaning is still from ‘7FF0’ to ‘7FF2’), so it is 

also inverted to ‘800D’ and the INV is still asserted. The real transition number of 

this transfer is 1. As a result, the total transition number is 9, and it is better than 

that of non-encoded bus. 

 

2.3.2 Zero-Transition (T0) 

In [5] Benini et al. proposed T0 code technique, which exploits data 

continuity to reduce the switching activity on the instruction address bus. The 

observation is that instruction addresses are sequential except when control flow 

instructions are encountered or exceptions occur. T0 adds a redundant bus line, 

called INC. If the addresses are sequential, the sender freezes the value on the bus 

and sets the INC line. Otherwise, INC is de-asserted and the original address is 

sent. On average 60% reduction in address bus switching activity is achieved by 

T0 coding. 
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The Figure 2.3.3 is a diagram of 

T0 encoding method: 

 

decoder

BUS

INCencoder decoderdecoderdecoder

BUS

INCencoderencoderencoder

 
Figure 2.3.3: diagram of T0 

Following is the encoding algorithm of this method: 

T0 encoding{ 
int last_address＝current instruction address bus value, stride＝4, INC; 
while (receive instruction address){ 

current address = received instruction address; 
if(stride ＝ current address － last_address){ 

INC ＝ 1; 
}else{ 

INC ＝ 0; instruction address bus ＝ current address; 
} 
last_address ＝ current address; 

} 
} 

“INC” means the control signal to be sent to the decoder, “current address” means the address value to 

be transferred, and the “instruction address bus” means the code that to be transferred via instruction 

address bus. 

And the corresponding T0 decoding algorithm is: 

T0 decoding{ 
int last_address＝current instruction address bus value, stride＝4; 
while (receive instruction address bus value and INC signal){ 

if (INC ＝ 1){ 
instruction address ＝ last_address ＋ stride; 

}else{ 
instruction address ＝ the instruction address bus value; 

} 
last_address ＝ instruction address; 

} 
} 

“INC” means the control signal from the encoder, and the “instruction address” means the real address 

in this transmittion. 
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The Figure 2.3.4 shows an example of the T0 

07 F F 67 F F 6

1- -0 0 0 C
1- -0 0 1 0
07 F F 07 F F 0
07 F F 27 F F 2
07 F F 47 F F 4

Z e r o - T r a n s i t i o n  ( T 0 )

07 F F 87 F F 8
2 0T o t a l  T r a n s i t i o n s

1
1
0

I N V

- -
- -

0 0 0 0
A d d r e s s  o n  B U S

0 0 0 0
0 0 0 4
0 0 0 8

i n i t i a l
A d d r e s s  t o  b e  t r a n s f e r

07 F F 67 F F 6

1- -0 0 0 C
1- -0 0 1 0
07 F F 07 F F 0
07 F F 27 F F 2
07 F F 47 F F 4

Z e r o - T r a n s i t i o n  ( T 0 )

07 F F 87 F F 8
2 0T o t a l  T r a n s i t i o n s

1
1
0

I N V

- -
- -

0 0 0 0
A d d r e s s  o n  B U S

0 0 0 0
0 0 0 4
0 0 0 8

i n i t i a l
A d d r e s s  t o  b e  t r a n s f e r

 

Figure 2.3.4: Example of T0 Encoding 

The Figure 2.3.4 shows an easy example of T0 encoding. The initial bus value 

is ‘0000’, the bus width N=16, the stride applied here is 4, and the addresses to be 

transfer with time is listed in first column. In the first 4 transfers (‘0004’ ~ ’0010’), 

these values are all equal to last value plus 4, so the BUS is frozen and the INC is 

asserted while transferring these values in sequence. While transferring from 

‘0010’ to ‘7FF0’, ‘7FF0’ must be transferred directly and INC must be de-asserted 

because (7FF0 – 0010)≠4. There are 12 transitions in this transfer, including 11 

transitions on address bus and 1 transition on INC line. In the last 4 transfers 

(‘7FF2’ ~ ‘7FF8’), these value must be transferred through bus even if they are all 

in sequence. It is because that their stride (=2) do not equal to the stride applied by 

T0 in this example. 
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2.3.3 Combining T0 & BI (T0_BI) 

Thinking about the properties of BI (section 2.1) and T0 (section 2.2). The BI 

encoding method can only works well with randomly distributed data, and the T0 

encoding method can only works well with sequential data. Because addresses on 

data bus may sometimes be accessed sequentially and randomly at the other time, 

combinations of the two encoding methods are required in order to get benefit of 

both the combined techniques. However, combination may result conflicts or 

confusions, and these problem should be resolved carefully. 

 

The Figure 2.3.5 is the diagram 

of the T0_BI method. This design is 

proposed by Benini et al. in paper [6]. 

decoder

BUS

INCencoder
INV

decoderdecoderdecoder

BUS

INCencoderencoderencoder
INV  

Figure 2.3.5: diagram of T0_BI 

 

The main idea of T0_BI design is using two separated control lines, INC and 

INV, to control the two functions, and the INC line is prior than the INV line. If the 

INC line is asserted, the BUS value is calculated by the INC function and the INV 

line is ignored. Else the INV line is treated as the control line of INV function. 
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Following is the T0_BI encoding algorithm: 

T0_BI encoding{ 
int last_address＝current data address bus value, stride＝4, INC,INV; 
while (receive data address){ 

current address = received data address; 
if(stride ＝ current address － last_address){ 

INC ＝ 1; 
}else if(transition #＞bus_width/2) { 

INC ＝ 0; 
INV ＝ 1; data address bus ＝ inverted current address; 

}else{ 
INC ＝ 0; 
INV ＝ 0; data address bus ＝ current address; 

} 
last_address ＝ current address; 

} 
} 

Both “INC” and “INV” mean the control signals to be sent to the decoder, “current address” means the 

address value to be transferred, and the “data address bus” means the code that to be transferred via data 

address bus. 

And the corresponding T0_BI decoding algorithm is: 

T0_BI decoding{ 
int last_address＝current data address bus value, stride＝4; 
while (receive data address bus value and INC, INV signals){ 

if (INC ＝ 1){ 
data address ＝ last_address ＋ stride; 

}else if (INV ＝ 1){ 
data address ＝ inverted data address bus value; 

}else{ 
data address ＝ the data address bus value; 

} 
last_address ＝ data address; 

} 
} 

Both “INC” and “INV” mean the control signals from the encoder, and the “data address” means the 

real address in this transmittion. 
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The Figure 2.3.6 shows an example of the T0_BI 

1

1

0

0

0

INV

0800F7FF0
1--7FF4

T0_BI

9Total Transitions

1
1
0

INC

--
--
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Figure 2.3.6: Example of T0_BI Encoding 

The Figure 2.3.6 shows an easy example of T0_BI encoding. The initial bus 

value is ‘0000’, the bus width N=16, the stride applied here is 4, and the addresses 

to be transfer with time is listed in first column. In the first 2 transfers (‘0004’ 

~ ’0008’), these values are all equal to last value plus 4, so the BUS is frozen and 

the INC is asserted while transferring these values in sequence. While transferring 

from ‘0008’ to ‘7FF0’, the Hamming distance from ‘0000’ to ‘7FF0’ is 11, larger 

than N/2, so that ‘7FF0’ is inverted to ‘800F’, the INV is asserted, and the INC is 

de-asserted. There are 7 transitions in this transfer, including 5 transitions on data 

address bus, 1 transition on INC line, and 1 transition on INV control lines. Next, 

while transferring from ‘800F’ to ‘7FF4’, because the real meaning is from ‘7FF0’ 

to ‘7FF4’ and ‘7FF4’ is equal to ‘7FF0’ plus 4, the BUS is frozen and the INC is 

asserted while transferring these values in sequence. Note that the INV line is still 

asserted because it is ignored here when the INC line is asserted. The total number 

of switching activities is 9. 
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2.4 Summary & Observation 

Bus-Invert (BI) method inverts the transferring BUS value when it produces 

bit-transitions more than half of BUS width. An extra control line, called INV, is 

used to indicate which value is inverted. Zero-Transition (T0) method avoids the 

transfer of sequential addresses. An extra control line, called INC, is used to 

indicate which value is sequential to last address. T0_BI method, which combines 

both BI and T0 methods, uses two extra control signals, the INV and the INC, to 

control both two methods separately. However, these two control lines may result 

in many bit-transitions if functions switch frequently. 

 

The following table shows the effect if applying these related works on 5 

kinds of Buses: 

Table 1: Summary of BI, T0, and T0_BI 

 
Inst. 

Address 
Inst. 

Data 
Address 

Data 
Inst/Data 
Address 

Bus-Invert － △ △ ○ △ 

T0 ○ － △ － △ 

T0_BI ○ △ ○ ○ △ 

－: not suitable   △: not good    ○: good 

 

I think that there exists some improvement space in previous designs and new 

design issues for further study. 

1. Instruction Address Bus 

In T0 code, a discontinuous address breaks the consecution, and the address 

has to be sent explicitly to bus. This is the major restriction to the performance 

of T0 code. The sources of the discontinuous address are mainly come from 

branches, subroutine calls, and exception/interrupt handlings. Although the 
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instructions are mostly sequential, branches still occurred frequently in 

common programs. The frequency of branch is ranged from about 10~20%, 

and strongly impact the result of T0 code. However, only few branches will 

change the target addresses. If the history taken branch targets are recored, it 

should be useful information while encoding. 

2. Data Address Bus 

First, the two control lines of T0_BI method may reduce to one control line to 

indicate both invert and sequential condition. 

Second, the stride value of data address may be replaced dynamically to meet 

the current data address stride. 

At last, the read and write data addresses usually have its individual continuity 

so as that it can be encoded separately to preserve the continuity. 

3. Instruction/Data Mixed Address Bus 

There are no previous design performs well on this Bus because of the 

continuity corruption of instruction and data address. I think that there are two 

design issues for encoding algorithms on this Bus: 

First, the instruction and data addresses own its individual continuity so that it 

can be encoded separately to preserve the continuity. 

Second, the data addresses are generated from load/store instructions. There 

should be some relationships between instruction and data address. The 

encoding method might make use of these relationships while encoding. 
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3 Designs 
My low-power address bus encoding schemes are described in this section. Section 

3.1 will introduce the overview of my designs, section 3.2 to 3.4 will show the design 

details, and section 3.5 gives the design summary. 

3.1 Design Overview 
CPU

encoderAddress

Memory

decoder Address
Encoded Address

Control signals

Read/Write
MemRequest

 
Figure 3.1: Address Bus Encoding Architecture 

Figure 3.1 shows my low-power address bus encoding architecture. The 

encoder gets addresses from CPU and outputs the encoded address and some 

control signals. Encoded addresses and control signals are transmitted to the 

decoder of memory. When the decoder receives encoded addresses and control 

signals, it converts this information into original data address. Two control lines, 

called Read/Write and MemRequest, are traditional memory control signals. 

Designs for instruction address bus, data address bus, and instruction/data 

mixed address bus will be explained in section 3.2~3.4. Following are brief 

descriptions of these designs: 

1. Instruction Address Bus – recoding history branch targets as encoding information 

2. Data Address Bus – using only 1 control line combining T0 and BI, adding 

Variable-Stride capability, and Preserving read/write continuities 

3. Instruction/Data mixed Address Bus – preserving instruction/data continuities and 

making use of relationships between instruction and data address. 
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3.2 Instruction Address Bus Encoding: 

T0 with Discontinuous Address Table (T0 DAT) 

......

......

Source address

......

......

Target address

Discontinuous Address Table

......

......

Source address

......

......

Target address

Discontinuous Address Tabledecoder

DAT

decoder

DAT

BUS

INC-DAT

encoder

DAT

encoder

DAT

 

Figure 3.2.1: diagram of T0 DAT 

The Figure 3.2.1 shows the diagram of T0 with Discontinuous Address Table 

(DAT). The approach is based on T0 code, and adds a discontinuous address table 

(DAT) into both encoder and decoder to record the address pairs that are sent in 

sequence but with discontinuous values. Each entry of DAT records two values: 

“Source address” and “Target address”. “Source address” is equal to the address of 

branch instruction, and “Target address” is the target if branch taken. Afterward, 

this approach is called as “T0 DAT”. 

T0 DAT uses one control line, called INC-DAT, to control both DAT table and 

T0 function to transmit an instruction address sequence. First, the encoder of T0 

DAT detects “DAT-hit” of the transferred address sequence. The “DAT-hit” means 

that the address pair (previous address, this address) exists in the DAT table. 

Transmission of an address with “DAT-hit” property is done with an asserted 

INC-DAT and a frozen address bus. If “DAT-hit” test fail, then the encoder checks 

to see if the to-be transferred address is consecutive to previous address and the 

previous address does not exist in the “Source address” field of DAT. Transmission 

of an address consecutive to previous address and the previous address does not 

exist in the “Source address” field of DAT is done with an asserted INC-DAT and a 

frozen address bus, too. Otherwise, the INC-DAT control line is de-asserted and 

the address is sent directly. Moreover, the discontinuous pair – “previous address 
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and this address” is inserted into the DAT. After inserting into the DAT, this pair 

will be found in DAT in the future, and the next time the INC-DAT signal will be 

asserted if this address pair appears again. 

Following is the T0 DAT encoding algorithm: 

T0DAT encoding{ 
int last_address＝current instruction address bus value, stride＝4, INC-DAT;
pair[] DAT; 
while (receive instruction address){ 

current address = received instruction address; 
if( pair(last_address, current address) found in the DAT) 

INC-DAT ＝ 1; 

}else if(current address － last_address ＝ stride  && 
 last_address does not exist in “Source Address” of DAT) { 

INC-DAT ＝ 1; 
}else{ 

INC-DAT ＝ 0; instruction address bus ＝ current address; 
DAT.insert (last_address, current address); 

} 
last_address ＝ current address; 

} 
} 

“INC-DAT” means the control signal to be sent to the decoder, “current address” means the address 

value to be transferred, and the “instruction address bus” means the code that to be transferred via 

instruction address bus. 
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And the corresponding T0 DAT decoding algorithm is: 

T0DAT decoding{ 
int last_address＝current instruction address bus value, stride＝4; 
pair[] DAT; 
while (receive instruction address bus value and INC-DAT signal){ 

if (INC-DAT ＝ 0){ 
instruction address ＝ the instruction address bus value; 
DAT.insert (last_address, the instruction address bus value); 

}else if (last_address exists in “Source Address” of DAT){ 
instruction address ＝ “Target Address” in that pair; 

}else{ 
instruction address ＝ last_address ＋ stride; 

} 
last_address ＝ instruction address; 

} 
} 

“INC-DAT” means the control signal from the encoder, and the “instruction address” means the real 

address in this transmittion. 

 

Note that the decoder interprets the meaning of the asserted INC-DAT line 

according to if the previous address exists in the “Source Address” field of DAT. If 

the encoder intends to transmit one consecutive address but the previous address 

happens to exist in the “Source Address” field of DAT, the decoder may 

erroneously interpret this as a discontinuous address pair. As a result, to avoid this 

error, the encoder simply sends the current address out directly. This situation 

might occur when leaving a loop, and the probability of this situation is much less 

than that of on-going loop. What have to be done is to take the precaution 

carefully. 
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Following is an example of T0 DAT 

T0 with Discontinuous Address Table 
Address to be transfer Address on BUS INC-DAT DAT operation 
initial 0000 0000 0  

0004 -- 1(inc)  
0008 -- 1(inc)  
0100 0100 0 insert(0008,0100) 
0104 -- 1(inc)  
0000 0000 0 insert(0104,0000) 
0004 -- 1(inc)  
0008 -- 1(inc)  
0100 -- 1(dat-hit) (0008,0100) found
0104 -- 1(inc)  
0000 -- 1(dat-hit) (0104,0000) found
0004 -- 1(inc)  
0008 -- 1(inc)  
0100 -- 1(dat-hit) (0008,0100) found
0104 -- 1(inc)  
0108 0108 0 (0104,0000) found

Total Transitions 9  

Figure 3.2.2: example of T0 DAT Encoding 

In figure 3.2.2, there are two discontinuous address pairs from “0000” to 

“0104”, and these are “0008” “0100” and “0104” “0000”. The consecutive 

address sequences in the table are transmitted similar to T0 method, but these 

discontinuous address pairs are different treated here. While first transmission from 

“0008” to “0100”, “0100” is directly sent to the address bus and the INC-DAT line 

is de-asserted because “0100” is not sequential to “0008” and (0008, 0100) pair 

does not exist in DAT table. After transmission, the (0008, 0100) pair will be 

inserted into DAT table. When next time we meet “0008” “0100” again, “0100” 

needn’t to be sent to the address bus because the (0008, 0100) pair is in the DAT. 

So the transmission of “0100” is just asserting the INC-DAT line. Similar 

operations will be occurred on “0104” “0000”, and (0104, 0000) pair is added. 
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Now we come to transmission from “0104” to “0108”. Thought “0108” is 

sequential to “0104”, “0108” has to be sent to the address bus to avoid the 

miss-understanding. Because the (0104, 0000) pair exists in the DAT table, if the 

encoder assert the INC-DAT line to mean that consecutive address is outputting, 

the decoder will miss-understand and get the “0000” as the transmitted address. 

Here, transitions of both address Bus and INC-DAT line are counted. There 

are totally 9 transitions in this example. 
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3.3 Data Address Bus Encoding 

Three versions of data address bus encoding scheme are proposed in this 

section, with the second and third built upon its predecessor version: 

1. T0_BI_1 – combining T0 & BI using a single control line; 

2. T0_BI_1/S – with Variable-Stride capability added; 

3. T0_BI_1/S/RW – preserving read/write continuities in a multiplexed data 

address sequence. 

3.3.1 Combining T0 & BI using single control line (T0_BI_1) 

The Figure 3.3.1 shows the diagram 

of T0_BI_1 design. 
decoder

BUS

INCVencoder decoderdecoderdecoder

BUS

INCVencoderencoderencoder

 

Figure 3.3.1: diagram of T0_BI_1 

T0_BI_1 design uses only one control line, called INCV, to control both INC 

and INV functions to transmit a data address, the encoder of T0_BI_1 first detects 

the continuity of the transferred address sequence. The continuity means that the 

current address is equal to the sum of the previous address and the stride. 

Transmission of an address with continuity property is done with an asserted INCV 

and a frozen address bus. If continuity test fails, then the encoder checks to see if 

the address pattern produces bus bit-transitions on more than half of the address 

bus lines and the inverted address pattern is not equal to the previous bus value 

(special cases), then the INCV is also asserted and the inverted address is sent over 

the address bus. Otherwise, the INCV line is de-asserted and the address will be 

sent directly. Upon activation, the decoder needs to identify the meaning of an 

asserted INCV line according to the received bus value. If the bus value is 

unchanged, the INCV line is interpreted as an “increment-by-stride” indicator. 

Otherwise, it is interpreted as an “invert” indicator. In this way, the single INCV 
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line can act as both INC and INV control signals, and address encoding still benefit 

from both BI and T0 schemes. 

Following is the T0_BI_1 encoding algorithm: 

T0_BI_1 encoding{ 
int last_address＝current data address bus value, stride＝4, INCV; 
while (receive data address){ 

current address = received data address; 
if(stride ＝ current address － last_address){ 

INCV ＝ 1; 
}else if(transition #＞bus_width/2 && 

 inverted address≠current data address bus value) { 
INCV ＝ 1; data address bus ＝ inverted current address; 

}else{ 
INCV ＝ 0; data address bus ＝ current address; 

} 
last_address ＝ current address; 

} 
} 

“INCV” means the control signal to be sent to the decoder, “current address” means the address value to 

be transferred, and the “data address bus” means the code that to be transferred via data address bus. 

And the corresponding T0_BI_1 decoding algorithm is: 

T0_BI_1 decoding{ 
int last_address＝current data address bus value, stride＝4; 
while (receive data address bus value and INCV signal){ 

if (INCV ＝ 0){ 
data address ＝ the data address bus value; 

}else if (the data address bus is frozen){ 
data address ＝ last_address ＋ stride; 

}else{ 
data address ＝ inverted data address bus value; 

} 
last_address ＝ data address; 

} 
} 

“INCV” means the control signal from the encoder, and the “data address” means the real address in this 

transmittion. 
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Note that the decoder interprets the meaning of the asserted INCV line 

according to the received bus value. If the encoder intends to invert the bus value 

but the inverted value happens to equal the current bus value, the decoder may 

erroneously interpret this as a frozen address bus. As a result, to avoid this error, 

the encoder simply sends the current address out directly. I think that this is a very 

unlikely situation, but precaution must be carefully taken. 

 

Following is an example of T0_BI_1 
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Figure 3.3.2: Example of T0_BI_1 

The Figure 3.3.2 shows that transferring the same sequence in Figure 2.3.6. 

Compare with Figure 2.3.6, it is obviously that the major difference is that T0_BI 

uses two control signals but T0_BI_1 uses only one. The decoder of T0_BI_1 will 

not misunderstanding the meaning of encoder because that the T0 method always 

freezes the BUS while address are sequential. 
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There are two special cases that should be concerned to avoid confusion in 

transfers via T0_BI_1 method. The Figure 3.3.3 shows examples of these two 

cases: 

T0_BI_1
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1 (inc)
0

INCV

000C
FFF3

--
000C

Address on BUS

FFF3
0010
000C

Address to be transfer
T0_BI_1

1 (inv)
0

1 (inc)
0

INCV

000C
FFF3

--
000C

Address on BUS

FFF3
0010
000C

Address to be transfer

 

(a): Special Case 1 

T0_BI_1
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Address to be transfer
T0_BI_1
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0
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INCV
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000C
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(b): Special Case2 

Figure 3.3.3 Special Cases of T0_BI_1 

In Figure 3.3.3a, the problem happens while transferring ‘FFF3’. In this case, 

if inverting ‘FFF3’ to ‘000C’, the decoder will misunderstand the meaning and use 

INC function to decode the value because the BUS value is un-changed. In Figure 

3.3.3b, the problem happens while transferring ‘000C’. In this case, the first ‘000C’ 

has been inverted and transferred. If the second ‘000C’ is inverted, the decoder will 

misunderstand again. 

Both the two cases in Figure 3.3.3 have to force the value directly transferred 

through BUS in order not to make the decoder misunderstand the meaning of 

encoder, and will get the worst result, whose transition number (33) is equal to the 
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BUS width (32) plus 1, while address being transferred. Case 1 seldom happen 

because the probability of two sequential addresses with just inverted value is quite 

small. However, the Case 2 may happen easier for the reason that it will occur 

when two sequential addresses are equal, and here is one simple example: a[i] = a[i] 

+ c, where a is an array and c is a constant value. 
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3.3.2 T0_BI_1 with Variable-Stride capability (T0_BI_1/S) 

Many data are structured (arrays, matrices, etc.), and accesses to such 

structured data have very predictable data addresses. The term “stride” is used to 

describe the byte offset between consecutive access addresses of this kind. Two 

factors affect the stride value: one is the data item size (64 bits for scientific data, 

32 bits for general-purpose computing, and 16 or 8 bits for multimedia 

applications). The other is the access pattern (column, row, diagonal, …) interacted 

with the storage scheme (row-major, column-major, others). These complicate the 

stride value computation and identification; different stride values may even mix in 

the code sequence. Here the changing stride problem is dealt with. Interleaved 

stride problem will be tackled in next section. 

decoder
Last Address
Applied Stride

New Stride
logics

encoder
Last Address
Applied Stride

New Stride
logics

BUS

INCV

decoder
Last Address
Applied Stride

New Stride
logics

encoder
Last Address
Applied Stride

New Stride
logics

BUS

INCV
 

Figure 3.3.4: diagram of T0_BI_1/S 

The major goal of variable-stride capability is to make the stride applied by 

T0 changes with the behavior of data address sequence in order to fit the actual 

stride of data address. Figure 3.3.4 shows the main idea of T0_BI_1 with 

Variable-Stride Capability added in. First, the chosen stride is applied by T0 

method while transferring addresses. Second, the candidate stride is modified when 

current address stride is not equal to chosen stride. After the candidate stride 

matures, it is used to replace the chosen stride. At last, how to make the candidate 

stride mature? Setting an endurance value (e) as a method parameter, which means 

that the candidate stride will be applied if it appears e times continuously. 

 

Following is the T0_BI_1/S encoding algorithm, in which italic and 
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underlined contents are newly added: 

T0_BI_1/S encoding{ 
int last_address＝current data address bus value; 
int chosen_stride＝4, INCV, e; 
while (receive data address){ 

current address = received data address; 
if(chosen_stride ＝ current address － last_address){ 

INCV ＝ 1; 
}else if(transition # ＞ bus_width/2 && 

inverted address≠current data address bus value) { 
INCV ＝ 1; data address bus ＝ inverted current address; 

}else{ 
INCV ＝ 0; data address bus ＝ current address; 

} 
If (the new stride appears e time continuously) 

chosen_stride ＝ current address － last_address; 
last_address ＝ current address; 

} 
} 

“INCV” means the control signal to be sent to the decoder, “current address” means the address value to 

be transferred, and the “data address bus” means the code that to be transferred via data address bus.  

Variable-Stride Capability uses “current_stride” and endurance “e” to dynamically change the stride 

value depend on the behavior of current data address sequence. 
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And the corresponding T0_BI_1/S decoding algorithm, in which italic and 

underlined contents are newly added, is: 

T0_BI_1/S decoding{ 
int last_address＝current data address bus value, chosen_stride＝4, e; 
While (receive data address bus value and INCV signal){ 

if (INCV ＝ 0){ 
data address ＝ the data address bus value; 

}else if (the data address bus is frozen){ 
data address ＝ last_address ＋ chosen_stride; 

}else{ 
data address ＝ inverted data address bus value; 

} 
If (the new stride appears e time continuously) 

chosen_stride ＝ data address － last_address; 
last_address ＝ data address; 

} 
} 

“INCV” means the control signal from the encoder, and the “data address” means the real address in this 

transmittion. Variable-Stride Capability uses “current_stride” and endurance “e” to dynamically change 

the stride value depend on the behavior of current data address sequence. 

The above algorithms are very simple and straight forward methods, and work 

only with array accesses without any intervening data accesses. Nevertheless, with 

these simple ideas as the basis, many innovative schemes can be derived, such as 

the one to be introduced next. 
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Following is an example of T0_BI_1/S method and the endurance=1. 
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(b): T0_BI_1/S, endurance = 1 

Figure 3.3.5: Example of T0_BI1/S, endurance=1 
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There are two additional column (‘chosen stride’ & ‘current stride’) in Figure 

3.3.5b. The chosen stride means the stride that Variable-Stride ability chooses now, 

and the current stride is the stride value while transferring. Because the candidate 

stride is always replaced by current stride, they are presented in one column. The 

most important thing here is that the chosen stride is changed dynamically to fit the 

data address stride. 

In order to make it convenient in later discussion, there are some notations 

used in this paper. 

 FS#: meaning Fixed-Stride, whose stride is equal to # 

ex: FS4－Fixed-Stride with stride=4 

 VS#: meaning Variable-Stride, whose endurance is equal to # 

ex: VS1－Variable-Stride, endurance=1, which is used in previous example. 
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3.3.3 Preserving Read/Write Continuities in a multiplexed 

data address sequence (T0_BI_1/S/RW) 

Data memory are read and written by the CPU, both over the same set of 

address and data buses. While data read sequence and write sequence each has its 

own stride characteristics, these stride characteristics are unfortunately torn apart 

and severely contaminated due to the intervention of the read/write address 

sequences in a single address trace. How to preserve and utilize the individual read 

and write stride characteristics in bus encoding hence becomes an interesting 

problem. As a result, if the read and write address sequences can be individually 

encoded , it must gain more power savings. 

Figure 3.3.6 shows the T0_BI_1/S/RW block diagram. In this modification, 

the read/write control line, which exists in all memory systems, is used to indicate 

the address being a read or write address. With this, each of the read and write 

address sequences can be separately encoded using the variable stride T0_BI_1/S 

method. 
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Figure 3.3.6 T0_BI_1/S/RW block diagram 
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Following is the T0_BI_1/S/RW encoding algorithm, in which italic and 

underlined contents are newly added: 

T0_BI_1/S/RW encoding{ 
int INCV, R_e, W_e; 
int R_last_address＝current data address bus value; 
int W_last_address＝current data address bus value; 
int R_chosen_stride＝4, W_chosen_stride＝4; 
while (receive data address and RW signal){ 

current address = received data address; 
if ( (RW＝1 && R_chosen_stride＝current address － R_last_address) || 

(RW＝0 && W_chosen_stride＝current address － W_last_address) ){ 
INCV ＝ 1; 

}else if(transition # ＞ bus_width/2 && 
 inverted address≠current data address bus value) { 

INCV ＝ 1; data address bus ＝ inverted current address; 
}else{ 

INCV ＝ 0; data address bus ＝ current address; 
} 
if(RW＝1){ 

If (the new stride appears e time continuously) 
R_chosen_stride ＝ current address － R_last_address; 

R_last_address ＝ current address; 
}else{ 

If (the new stride appears e time continuously) 
W_chosen_stride ＝ current address － W_last_address; 

W_last_address ＝ current address; 
} 

} 
} 

“INCV” means the control signal to be sent to the decoder, “current address” means the address value to 

be transferred, and the “data address bus” means the code that to be transferred via data address bus.  

Terms start with “R_” or “W_” are duplicated registers needed for Preserving Read/Write Sequence. 
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And the corresponding T0_BI_1/S/RW decoding algorithm, in which italic 

and underlined contents are newly added, is: 

T0_BI_1/S/RW decoding{ 
int R_e, W_e; 
int R_last_address＝current data address bus value; 
int W_last_address＝current data address bus value; 
int R_chosen_stride＝0, W_chosen_stride＝0; 
while(receive data address bus value and INCV signal and RW signal){ 

if (INCV ＝ 0){ 
data address ＝ the data address bus value; 

}else if (the data address bus is frozen){ 
if (RW＝1) data address ＝ R_last_address ＋ R_chosen_stride; 
else data address ＝ W_last_address ＋ W_chosen_stride; 

}else{ 
data address ＝ inverted data address bus value; 

} 
if(RW＝1){ 

If (the new stride appears e time continuously) 
R_chosen_stride ＝ data address － R_last_address; 

R_last_address ＝ data address; 
}else{ 

If (the new stride appears e time continuously) 
W_chosen_stride ＝ data address － W_last_address; 

W_last_address ＝ data address; 
} 

} 
} 

“INCV” means the control signal from the encoder, and the “data address” means the real address in this 

transmittion. Terms start with “R_” or “W_” are duplicated registers needed for Preserving Read/Write 

Sequence. 
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3.4 Instruction/Data Mixed Address Bus Encoding 
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Inst Address
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Data Address
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M
U
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MemRequest  

Figure 3.4.1: diagram of general instruction/data mixed address bus 

Figure 3.4.1 shows the diagram of general instruction/data mixed address bus. 

CPU multiplex the instruction address stream and data address stream into one 

stream, and transfer this stream via instruction/data mixed address bus. Two 

control lines, called Read/Write and MemRequest, are traditional memory control 

signals. 

In my design for instruction/data mixed address bus, encoder/decoder is 

added into CPU/memory. The encoder separately receives two address streams: 

instruction address stream and data address stream, and transmit the encoded 

address to the decoder in the memory. The decoder has to output the original 

addresses to the memory. Needed decoding information may be sent through some 

extra control signals. Figure 3.4.2 is the diagram of my instruction/data mixed 

address bus encoding. 

CPU

encoder
Inst Address

Memory

decoder Inst/Data Address
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Control signals
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Data Address

MemRequest

CPU

encoder
Inst Address

Memory

decoder Inst/Data Address
Encoded Address
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Read/Write

Data Address
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Figure 3.4.2: diagram of my instruction/data mixed address bus encoding 

Two versions of instruction/data mixed address bus encoding scheme are 

proposed in this section, with the second built upon its predecessor version: 

1. I/D Selector – preserving instruction/data continuities in a multiplexed 

address sequence 

2. Stride-Table – Applying different stride value on each data access 
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3.4.1 Preserving Instruction/Data Continuities in a 

multiplexed address sequence (I/D Selector) 

In “2 Buses” architecture, both instruction and data transmitted over the same 

set of address and data buses. While instruction sequence and data access sequence 

each has its own stride characteristics, these stride characteristics are unfortunately 

torn apart and severely contaminated due to the intervention of the instruction/data 

address sequence in one single address trace. How to preserve and utilize the 

individual instruction and data access stride characteristics in bus encoding hence 

becomes an interesting problem. As a result, if the instruction and data address 

sequences can be encoded individually, it must gain more power savings. 

Figure 3.4.3 shows the “I/D selector” block diagram. In this modification, the 

extra read/write control line is used to indicate the address being a instruction or 

data address. With this, each of the read and write address sequences can 

separately be encoded using methods suitable for them. 

I/D selector

decoder

DAT ?
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encoder

DAT ?
I D
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decoder
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BUS
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encoder
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I D
encoder
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Figure 3.4.3: diagram of I/D selector 

Here two encoding methods are needed, one for instruction address sequence 

and one for data address sequence. For the instruction address sequence, the “T0 

DAT” proposed in section 3.2 should be good enough because it avoid the 

transmission of both consecutive address sequence and regular taken branch target 

addresses. For the data address sequence, the “T0_BI_1/S/RW”cproposed in 

section 3.3 could also be applied here. However, this method does not make use of 

the relationships between instruction and data address. I will propose one new 
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design, called “Stride-Table”, to make use of these relationships and reduce more 

bus transitions. 

3.4.2 Applying different stride value on each data access 

(Stride-Table) 

Data addresses are resulted from load/store instructions, and each load/store 

instruction usually generates consecutive address sequence when it is executed 

more than once. While data access of each load/store instruction has its own stride 

characteristics, these stride characteristics are unfortunately torn apart and severely 

contaminated due to the intervention of these data accesses in a single data address 

trace. How to preserve and utilize the stride characteristics of data access of each 

load/store instruction hence becomes an interesting problem. As a result, if 

individual stride value is applied for data access of each load/store instruction, 

more power saving must be gained. 

How to tell which load/store instruction is executed in the instruction/data 

mixed address bus? The main idea is that because the data access is resulted by 

execution load/store instruction, the last instruction address before this data access 

should be the address of load/store instruction. Even if taking the pipelining effect 

of CPU, the real address of load/store instruction should equal to the last 

instruction address minus an offset value. As a result, I take the last instruction 

address before data access as the key information of telling which load/store 

instructions is executed in this design. 
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Figure 3.4.4: diagram of I/D selector with T0 DAT and Stride-Table 
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The Figure 3.4.4 shows the diagram of I/D selector with T0 DAT and 

Stride-Table. This approach adds a “Stride Table” into both encoder and decoder. 

Each entry of Stride-Table records three values: “Index Address”, “Applied Stride”, 

and “Last Address”. The “Index Address” records the address of last instruction 

address before data access; the “Applied Stride” records the stride value to be 

applied when executing this load/store instruction; the “Last Address” records the 

data address accessed by the load/store instruction last time. Moreover, one control 

signal, called ST, is required to indicate which address is not transmitted on the bus 

but the decoder could calculate the address by information in the Stride-Table. 

Here, this control signal can be combined with the INC-DAT line of T0 DAT 

method. 

How this approach works? While transferring the instruction addresses, the 

I/D Selector is asserted and T0 DAT method works as if it is applied in the 

instruction address bus. Besides this, the encoder will memorize the latest 

instruction address in mind, and so do the decoder. 

When one data address arrives, the I/D selector will be de-asserted and the 

encoder uses the latest instruction address as index value to access the Stride-Table. 

If there is one entry whose “Index Address” is equal to the latest instruction 

address, the encoder will get the “Applied Stride” and “Last Address” of this 

load/store instruction. Depending on the to-be transferred data address is equal to 

“Last Address”＋“Applied Stride” or not, the encoder decides to assert ST line and 

freeze the bus or de-assert ST line and transmit this data address directly via bus. 

After that, the “Applied Stride” and “Last Address” of this entry will be updated. If 

there is no entry whose “Index Address” is equal to the latest instruction address, 

the encoder has to de-assert ST line, transmit this data address directly via bus, and 

insert one entry (latest instruction address, default stride, this data address) into 
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Stride-Table. (The default stride is 4 in my design.) 

While the decoder receiving address transfer with de-asserted I/D signal, 

actions differ depending on the ST signal. If the ST line is asserted, the decoder 

uses the latest instruction address as index value to access the Stride-Table and gets 

the “Applied Stride” and “Last Address” for this data access. The original data 

address equals to “Last Address＂＋“Applied Stride”. Otherwise, the decoder 

receives data address directly from the bus. After this data address transmission, 

decoder has to insert one entry (latest instruction address, default stride, this data 

address) into Stride-Table if no entry whose “Index Address” is equal to the latest 

instruction address, or update the “Applied Stride” and “Last Address” otherwise. 

Following is an example of I/D Selector with T0 DAT and Stride-Table: 

Addresses leading with “I” mean instruction addresses, and “D” for data 

addresses. Address trace of 3 iterations of a simple loop are listed here. 

I  20
D 600
I  24
I  28
D 100
I  32
D 400
I  36
I  40
D 900
I  44
I  48
I  52
I  56
I  60

Address Sequence
I  20
D 604
I  24
I  28
D 104
I  32
D 396
I  36
I  40
D 898
I  44
I  48
I  52
I  56
I  60

I  20
D 608
I  24
I  28
D 108
I  32
D 392
I  36
I  40
D 896
I  44
I  48
I  52
I  56
I  60

I  20
D 600
I  24
I  28
D 100
I  32
D 400
I  36
I  40
D 900
I  44
I  48
I  52
I  56
I  60

Address Sequence
I  20
D 604
I  24
I  28
D 104
I  32
D 396
I  36
I  40
D 898
I  44
I  48
I  52
I  56
I  60
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I  32
D 392
I  36
I  40
D 896
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I  48
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Figure 3.4.5: example of I/D Selector with T0 DAT and Stride-Table, At Start 
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Figure 3.4.5 shows a snapshot at start. The DAT and Stride-Table are both 

empty at this time. 

 

Snapshot of first iteration: 

I  20
D 600
I  24
I  28
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I  32
D 400
I  36
I  40
D 900
I  44
I  48
I  52
I  56
I  60

Address Sequence
I  20
D 604
I  24
I  28
D 104
I  32
D 396
I  36
I  40
D 898
I  44
I  48
I  52
I  56
I  60

I  20
D 608
I  24
I  28
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I  32
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I  36
I  40
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I  56
I  60
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I  20
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I  32
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I  40
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I  52
I  56
I  60
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I  20
D 600
I  24
I  28
D 100
I  32
D 400
I  36
I  40
D 900
I  44
I  48
I  52
I  56
I  60

20 4 60020 4 600

28 4 10028 4 100

32 4 40032 4 400

40 4 90040 4 900
red&italic:   bus frozen
black: transmit value

Figure 3.4.6: example of I/D Selector with T0 DAT and Stride-Table, Iteration 1 

In the first iteration, all instruction addresses are consecutive and need not to 

be transmitted via bus except the first one. Data addresses are transmitted directly 

via bus because there are no information in Stride-Table at start. These data 

addresses and its previous instruction address are inserted into Stride-Table with 

default stride value = 4. 
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Snapshot of second iteration: 

I  20
D 600
I  24
I  28
D 100
I  32
D 400
I  36
I  40
D 900
I  44
I  48
I  52
I  56
I  60

Address Sequence
I  20
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I  28
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I  32
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I  36
I  40
D 898
I  44
I  48
I  52
I  56
I  60

I  20
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I  24
I  28
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I  32
D 392
I  36
I  40
D 896
I  44
I  48
I  52
I  56
I  60

I  20
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I  32
D 400
I  36
I  40
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I  32
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I  20
D 600
I  24
I  28
D 100
I  32
D 400
I  36
I  40
D 900
I  44
I  48
I  52
I  56
I  60

I  20
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I  24
I  28
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I  32
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I  36
I  40
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I  44
I  48
I  52
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20 4 60020 4 600
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32 4 40032 4 400
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60 2060 20

red&italic:   bus frozen
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Figure 3.4.7: example of I/D Selector with T0 DAT and Stride-Table, Iteration 2 

In the second iteration, the discontinuous address pair (60, 20) is inserted into 

DAT. All instruction addresses except “20” need not to be transmitted via bus, too. 

Data addresses “604” & “104” meet the default stride value so that the bus is 

frozen and the INC-DAT/ST line is asserted. Data addresses “396” & “898” do not 

meet the default stride value so that the two addresses have to transmitted via bus. 

The decoder updates “Applied Stride” and “Last Address” of the corresponding 

entry for further transfer. 
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Snapshot of third iteration: 
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Figure 3.4.8: example of I/D Selector with T0 DAT and Stride-Table, Iteration 3 

In the third iteration and further iterations, all instruction and data addresses 

do not need to be transmitted via bus. Transmissions of these addresses are just 

asserting INC-DAT/ST line and switching I/D Selector line respect. This situation 

will be held until leaving the loop. 

Though Stride-Table avoids the transmission of regular data access, there are 

still some data addresses will be transmitted via bus. While transmitting these data 

addresses, Bus-Invert could be added for additional power saving. The 

combination of Stride-Table and Bus-Invert is shown as diagram in Figure 3.4.9: 
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Figure 3.4.9: diagram of Stride-Table combining with Bus-Invert 
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The INV control line required for Bus-Invert method is combined with 

INC-DAT/ST line using similar approach mention in section 3.3.1. The keys to 

identify the meaning of an asserted INC-DAT/ST-INV control line are “I/D 

Selector” status and bus frozen or not. 

 

3.5 Summary 

T0 DAT make use of history branch target to avoid transfer of both regular 

taken branch target address and consecutive address sequence. T0_BI_1/S/RW 

uses only one control signal controls both BI and T0, dynamically changing 

applied stride value, and encoding read/write sequence individually. I/D Selector 

with T0 DAT and Stride-Table preserves continuity of both inst and data address, 

and make use of relationship between inst and data. These three designs are 

respectively suitable for instruction address bus, data address bus, and 

instruction/data mixed address bus. The effect of my designs will be shown in next 

section. 
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4 Simulation 
I implement my designs using simulation, and use benchmarks to validate these 

designs. The target embedded system conforms to a portable personal multimedia/ 

communication device, and the test programs are selected accordingly. The performance 

metric is the ratio of reduced data address bus bit toggles. To simplify the result, only 

overall performance improvements are reported. Although readers may be interested in 

the effects of each individual technique and their incremental effects on top of other 

techniques, these data are not shown here due to page limits. 

4.1 Simulation Environment 

The simulated embedded system platform assumptions are listed below: 

1. The processor is ARM7TDMI, and there is only one processor in the system. 

2. The memory is separated into two parts: instruction memory, and data memory. 

3. There is no cache memory. 

4. All instructions are compiled in ARM mode. 

There are four types of benchmarks, and each type has 2 programs in it. These 

benchmark programs are selected from MediaBench, a popular benchmark suite 

including multi-media and communication applications. These benchmarks are: 

1. ADPCM 

Description: ADPCM stands for Adaptive Differential Pulse Code Modulation. 

It is a family of speech compression and decompression algorithms. A common 

implementation takes 16-bit linear PCM samples and converts them to 4-bit 

samples, yielding a compression rate of 4:1. The ADPCM code used is the 

Intel/DVI ADPCM code which is being recommended by the IMA Digital 

Audio Technical Working Group. 
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2. EPIC 

Description: EPIC (Efficient Pyramid Image Coder) is an experimental image 

data compression utility written in the C programming language. The 

compression algorithms are based on a biorthogonal critically-sampled dyadic 

wavelet decomposition and a combined run-length/Huffman entropy coder. The 

filters have been designed to allow extremely fast decoding on conventional (ie, 

non-floating point) hardware, at the expense of slower encoding and a slight 

degradation in compression quality (as compared to a good orthogonal wavelet 

decomposition). 

3. GSM  

Description: As part of this effort we are publishing an implementation of the 

European GSM 06.10 provisional standard for full-rate speech transcoding, 

prI-ETS 300 036, which uses RPE/LTP (residual pulse excitation/long term 

prediction) coding at 13 kbit/s. GSM 06.10 compresses frames of 160 13-bit 

samples (8 kHz sampling rate, i.e. a frame rate of 50 Hz) into 260 bits; for 

compatibility with typical UNIX applications, our implementation turns frames 

of 160 16-bit linear samples into 33-byte frames (1650 Bytes/s). The quality of 

the algorithm is good enough for reliable speaker recognition; even music often 

survives transcoding in recognizable form (given the bandwidth limitations of 

8 kHz sampling rate).  

4. JPEG 

Description: This package contains C software to implement JPEG image 

compression and decompression. JPEG (pronounced "jay-peg") is a 

standardized compression method for full-color and gray-scale images. JPEG is 

intended for compressing "real-world" scenes; line drawings, cartoons and 

other non-realistic images are not its strong suit. JPEG is lossy, meaning that 



 46

the output image is not exactly identical to the input image. 

 

Benchmarks

ARM7
TDMI

Trace

Simulator

Result
 

Figure 4.1: Simulation flowchart 

Figure 4.1 shows the flowchart of simulation. The benchmarks are run in the 

ARM-Emulator7t, and the emulator dumps the trace of program execution. After 

that, a simulator takes the trace as input and counts the number of bus bit 

transitions. 
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4.2 Simulation Results 

The goal of address bus encoding methods is to reduce the transitions on 

address bus, so the result of encodings will be presented as percentage of reduced 

transitions, which is calculated as 

(% of Reduced Transitions) ＝ (Reduced Transitions) ÷ (unencoded Transitions). 

The higher this value is, the more effective the corresponding design. 

4.2.1 Results of Instruction Address Bus Encoding 

Figure 4.2.1 shows the effects of different DAT size: 
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Figure 4.2.1: effects of DAT size 

In this figure, two DAT sizes are chosen. The first one is size＝4, it gets good 

performance for most applications. If viewing T0 DAT with infinite size as optimal 

case, it is 97.6% of the optimal case. The second one is size＝32, it satisfies all 

applications in the applied benchmarks, and is 99.8% of optimal case. 
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Figure 4.2.2: Results of T0 DAT 

In figure 4.2.2, we can see that averagely T0 DAT(4) achieves 88.7% 

reduction of the original bit transitions, which is 6.2% more than the T0 method 

can do. T0 DAT(32) achieves 90.5% reduction of the original bit transitions, which 

is 8.1% more than the T0 method can do. 

4.2.2 Results of Data Address Bus Encoding 

Figure 4.2.3 shows the simulation results of T0_BI_1/S/RW method. 
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Figure 4.2.3: Results of T0_BI_1/S/RW 
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In figure 4.2.3, the newly proposed T0_BI_1/S/RW method achieves 26% 

reduction of the original bit transitions. Comparing with T0_BI method, it reduces 

14.5% transitions more than T0_BI method. 

4.2.3 Results of Inst/Data mixed Address Bus Encoding 

Figure 4.2.4 shows the effects of different Stride-Table size: 
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Figure 4.2.4: effects of Stride-Table Size 

In this figure, two Stride-Table size are chosen, too. The first choice is size＝

32, it gets good performance for more than half applications in the applied benchmarks. 

If viewing Stride-Table size with infinite size as optimal case, it is 91.4% of the optimal 

case. The second choice is size＝128, it satisfies all applications in the applied 

benchmarks, and is 99% of optimal case. 
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Figure 4.2.5: Results of I/D Selector with T0 DAT and Stride-Table  

In figure 4.2.5, it’s easy to find that I/D Selector with T0 DAT and 

Stride-Table(32) achieves 70.8% transition reduction of the un-encoded bus, which 

is 24.7% more than T0_BI method and 7.5% more than that of I/D Selector with 

T0 DAT and T0_BI_1/S/RW. I/D Selector with T0 DAT and Stride-Table(128) 

achieves 77.4% transition reduction of the un-encoded bus, which is 33.8% more 

that T0_BI method and 16.6% more than that of I/D Selector with T0 DAT and 

T0_BI_1/S/RW. 
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5 Conclusions 
In my thesis, I study the low-power address bus encoding techniques. First, T0 

DAT method is proposed for instruction address bus. It avoids transmission of both 

consecutive addresses and regular taken branch targets. Compared with the T0 method, 

T0 DAT achieves 90.5% reduction of the original bit-transitions, 8.1% more than the T0 

method. 

Second, T0_BI_1/S/RW method is proposed for data address bus. It integrates T0 

and BI methods using only one control line, introduces a variable-stride methods which 

deals with dynamically changing strides, and preserves the continuities of read and 

write addresses using separated sets of encoding information. Compared with the T0_BI 

method, my design achieves 26% reduction of the original bit transitions, 14.5% more 

than the T0_BI method. 

Lastly, I propose one encoding method for instruction/data mixed address bus. It 

preserves the individuality of instruction and data address, and applies strides for each 

load/store instruction. Compared with the T0_BI method, my design achieves 77.4% 

reduction of the original bit transitions, 33.8% more than the T0_BI method. 

The simulation results show that my address bus encoding methods have much less 

bit transitions. To make the power estimation results more precise, a bus power model 

needs to be carefully constructed. And the hardware overheads for the additional control 

lines/logic, include silicon area, delay, and power, also need to be evaluated. 
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問題討論 

問題一：一般 BUS 傳送資料之前已將 data 與上一筆做 XOR；應加入考慮！ 

答： 

一般來說， XOR 的的方法如下圖所示： 

 

在傳送 data pattern 時，將它與上一筆 data pattern 做 xor 之後再傳送到 BUS 上，

而接收端則將收到的資料與上一次解開的 data pattern 再做一次 xor 得到傳送的資

料。 

此一方法能夠減少有連續特性的資料(如 instruction address)傳輸時所產生的

bit-transitions，同時也不會增加一直傳送同一筆資料(bus frozen)時的 bit-transition；

對於 random distributed 的資料則影響不大。而本論文設計的方法，是針對 instruction 

address bus、data address bus、以及 instruction/data mixed address bus 上可利用的連續

性所設計，儘量將傳送的 pattern 藉由 decoder 計算出來，將 BUS frozen 以避免不必

要的 bit-transitions。因此，只要將本論文中設計的方法，encoder 放在 XOR encoder

之前，decoder 放在 XOR decoder 之後，就可以正確傳送，同時能夠利用 XOR 

encoder/decoder 進一步減少 BUS 上的 bit-transition 數。 
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問題二：Table size 等的 overhead 要有更明確的評估 

答： 

一般來說，external bus 上單一條 bus line 的電容值約是 50pF，假設 BUS 的電壓差為

1.7V，如此可以推算出 bus 上一個 bit-transition 所造成的耗電為： 

pJpFVCE ddtransitionbit 25.727.1)(50
2
1

2
1 22 =××=××=−  

DAT Table 與 Stride Table 所帶來的 Power Overhead 則以 CACTI 這一套 Power 

Evaluation 工具推估得到下列耗電數據： (假設使用 90nm 製程) 

DAT Size 1 2 4 8 16 32 64 128 256 

Access Power (pJ) 40 41 42 43 45 49 65 87 120 

 

StrideTable Size 1 2 4 8 16 32 64 128 256 

Access Power (pJ) 79.5 80 80.5 82 84 89 106 128 162 

 

由上述數據可以發現，論文中推薦的 DAT Table size=8 or 32 每次 Access 的 Power

約略小於一個 bit-transition 所帶來的耗電，因此只要能夠藉由此方法減少 bit-transition，

就能夠降低 BUS 上的總耗電。而 DAT Table 所記錄 branch address pair 其中的 bit-transition

都是多餘 1 個 transition 的，所以能夠藉由 DAT Table 來降低傳送 branch target 的耗電就

能夠達到省電的目的。 

在 Stride Table 的部分，雖然耗電較比一個 bit-transition 所帶來的耗電稍大，但是由

於 data address 具有 randomly distributed 的特性，鮮少會有 bit-transition 數等於 2 以下的，

因此也可以說 StrideTable 在論文中推薦的 size=32 or 128 可以為 BUS 帶來省電的效果。 

 


