IR I TR
- R %
R + #m N

~ Y s FaA > N 55 KA
U S C R SRl S NP ES

pOF R Ao
Content-Aware Fast Maotion Estimation Algorithm

Foyod o IR
TES S RNES F
pa Ak

P %@« ipElfJ‘[‘J{ﬁiﬁ_fEﬁ fﬁ[%flﬁﬂ &8

Content-Aware Fast Motion Estimation Algorithm

’FIJIZE;E D) Student: Chi-Yu Liu
?ﬁﬁf’?ﬁt‘; PR R Advisor: Suh-Yin Lee

A Thesis
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao-Tung University
In partial Fulfillment of the Requirements
For the Degree of
Master

In

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

FlEE Sl o P 4 F]

PR AT B R IR 2

ayg
K

AL B HIEL G DR
B 2 3 ST R

i &

fii?;%ﬁﬁ%d’ FlTo 2% I'F'EJFE%['IPJ”’FH"E‘%?[IEI@‘I‘J{ﬁ{E_f‘*J ffHFijE (CAFME, Content-Aware Fast
Motion Estimation Algorithm) i’ I' |5 ’J}}ﬁéb[’ﬁ?ﬁ (Motion Estimation) t’l”rﬁ‘,ﬁ%lp@%ﬂﬁl vt
ﬁijﬁ:ﬁﬁx‘}*‘—“ﬁl[ﬂ JES§E#>F (Coding Efficiency)- ﬁ;{h]ﬁﬁ*fﬂ)57 Ebfg=l (Search Phase) =2
=¥} (Matching Phase) - [i%zi:arﬁ[n > FH IR pURy I S R R R (SDSR,
Simple Dynamic Search Range) I'}¥i# Lﬁﬁ%%ﬁ@ EIU%%'@P TR Tﬁ IR IF'EJ%ZF SRR
EI£(SEA, Successive Elimination Algorithm) ==Ai55gy (g (Integral Frame) - $Hi1i- ﬁ
H.264/AVC Eﬁ{ﬁ@fﬁl%@@}iﬁﬁiﬁﬁﬁ o PG 2 I 122 SAD (Sum of Absolute
Difference) £ ENH] » FT I?Ef*rj%?ﬁdﬁgﬁi (ETA, Early Termination Algorithm)

5 PR PO B RS R AR ENA L 4 A GRLA | [&l (Motion Vector) 7 2 fi]
(Temporal) == ﬁF (Spatial) fi Jﬁ@%[i » SFE T R E*'[El?ﬁf@f =5 PR s
[357 ik FLRLA(E 55 8 (i 5 p AT (Block Sum) = ﬁﬁﬁ?&i SR P BT T A
fey > UL SEIE G FH R B SAD Fu- KB T p ST ETRAIM] o 6 e FR A O R LR
HTETE ﬁbf@bgl I SAD == I #; Zs Y SADir;rE'lﬁ;#J[m EJEFERS’) ﬁ&i7 FIRT N
RS - T H.264/AVC B BT IMO.A s FERAHA R 2 HELY
Fryi Dp Jf&zm&#‘p # 93.1% > & J)“ﬂﬁ?ﬁﬂjf A 42% o [N SR PSNR ﬁ%«‘—*"ﬁifﬁj °

WAk | SEEF HABEERTE TR PSR - H.264/AVC, SAD, BRI E

Content-Aware Fast Motion Estimation Algorithm

Student: Chi-Yu Liu Advisor: Prof. Suh-Yin Lee
Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

In this paper, we propose the Content-Aware Fast Motion Estimation Algorithm (CAFME) that
reduces computation of motion estimation (ME) while maintains almost the same coding efficiency.
Motion estimation can be divided into two phases, searching phase and matching phase. In
searching phase, we propose the Simple Dynamic Search Range algorithm (SDSR) based on video
characteristics to reduce the number of :search points (SP). In matching phase, we integrate the
Successive Elimination Algorithm (SEA)' and the. integral frame to develop a new SEA for
H.264/AVC video compression standard, called Successive Elimination Algorithm with Integral
Frame (SEAIF). Besides, based on sum“of absolute difference (SAD), we also propose the Early
Termination Algorithm (ETA) to terminate motion estimation of current block early.

The basic idea of Simple Dynamic Search Range algorithm is to adjust the search range of
current block by using temporal and spatial correlations of motion vector (MV). Our SEAIF uses
“integral frame” to compute block sum and reuses SAD already computed. Finally, the proposed
Early Termination Algorithm uses prediction of SAD of current block to measure the accuracy of
matching, and then decides to terminate motion estimation or not. We implement in H.264/AVC
reference software JM9.4 and the experimental results show that our proposed algorithm can reduce
the number of Search Points about 93.1%, encoding time about 42%, while maintains almost the
same bitrate and PSNR.

Index Terms: motion estimation, successive elimination algorithm, integral frame, search

range, H.264/AVC, SAD, motion vector

Acknowledgement

| greatly appreciate the kind guidance of my advisor, Prof. Suh-Yin Lee. In virtue of her
graceful suggestions and encouragement, | can complete this thesis. Besides, thanks are extended to
all my friends and all the members in the Information System Laboratory for suggestions. | am
also grateful to my girl friend because she gives me power and support all the time. Finally, I would
like to express my appreciation to my parents for their cares and supports. This thesis is dedicated

to them.

Table of Contents

ADSTFACT (CNINESE).....eieeiie bbbttt bbbt eneas i
F N 0] € - (ol A (= 1o 1]) S PSSRI ii
ot g 0111 =T [0 T=T 1= o | SRR iii
TabIE OF CONTENTS. ...ttt bbb n e iv
LISE OF TABIES. ... vi
[TS o) B T 18 XSRS Vil
Chapter 1 INTrOTUCTION......cc.iiiiiiiiieiee ettt bbbt n s 1
1.1 MIOTIVAEION ...ttt bbbt 1

1.2 REIAEA WOIKS ...ttt 1

1.3 OrQANIZATION ...ttt bbbttt bbbt bt 4
Chapter 2 Background KNOWIEAQEciieeeiee et 6
2.1 Block Motion Estimation and-CompenSation:,...ic. e vevereerrerieieerieeieseesie e seesee e 6

2.2 MaAtChING CrILEIIONeiiveeies etk f i s e ee s essae e shsms e eseesseesteaneesssesseeseeaseesseeneesreeseanes 7

2.3 INtegral Framecoouiie e i st ea ettt enes 8

2.4 Fast Motion Estimation AIgOrithms............ccooiiiiiii s 10
2.4.1 DIamond SEArch (DS)ccooiiiiiiiiiiieieieesie et 11

2.4.2 Successive Elimination Algorithm (SEA)........ccovveiviie i 12

2.4.3 Partial Distortion Elimination (PDE)........cccccovviiiiiiicieee e 13

2.4.4 Modified Window Follower Algorithm (MWFA) ..o 14

Chapter 3 Content-Aware Fast Motion Estimation Algorithmccccccoovvvieiiececieneen, 16
3.1 Analysis Of SEArch RANGEocuiiuiiiiiieiee e e 16
3.1.1 Search Range and Frame RaLEcccceriiiiiriiirieieee e 17

3.1.2 Search Range and Frame ReSOIULIONcccccvvevverie i 17

3.1.3 Search Range and Motion ACHIVILYccoveveiiieiieie e 18

3.1.4 Search Range, QP, and SAD of Best-matched Blockc.ccccovvviinennnne. 19

3.2 Simple Dynamic Search Range (SDSR).......ccccoiiiiiieniinie e 20

3.3 Successive Elimination Algorithm with Integral Frame (SEAIF)ccccccecvvvvveienen, 23

3.3.1 Reusing Of SBA VAIUEccoe e 23

3.3.2 Reusing Of SAD VAlUE..........ccoueiieiice et 24

3.3.3 SPITAl SEAICH ...t 24

3.3.4 Analysis Of COMPIEXILYeoiveiiiiieiiiie e e 25

3.4 Early Termination AIGOrithm (ETA)ccoeveiiieiiiesieeeee e 26
Chapter 4 Experimental Results and DiSCUSSIONS..........c.ccoveiiiieieniieneeneeee e 30
4.1 Experimental ENVIFONMENTc.oiiiiiiieireie et 30

4.2 Opponent: Fast FUll Pel SEArch...........cccoiviiiic e 32

4.3 Simple DynamicC Search RANGE.........c.oiiiiiiiiiieieee e e 33

4.4 Successive Elimination Algorithm with Integral Frame............ccociviieniiniieien 37

4.5 Early Termination AlGOrithm ..o 39

4.6 Content-Aware Fast Motion Estimation Algorithm (CAFME).........cccccevviievveinee. 40

4.7 SUMMANY .oeveirererrerenreeennnessns At g bt s UM B . vveeveveeesreneserenesanesensnessnnnessanes 42
Chapter 5 Conclusions and FULUre WOTKS @i i e ihie e 44
2711 Lo 0T =10] 1 | OSSR 45

List of Tables

Table 1-1 Advantages and drawbacks of fast motion estimation algorithms...................... 5
Table 3-1 The relation between SR and FPS ..o 17
Table 3-2 The relation between SR and resolUtion ..o 18
Table 3-3 The relation between SR and motion actiVity.........ccccceovevveriniesncie e, 18
Table 3-4 The relation between SR, QP, anNd SADccccocvveiiieeiie i 19
Table 4-1 Descriptions Of teSt VIAE0 SEQUENCEScceeiueeiieiieiecie e sie e sre e 31
Table 4-2 Snapshots Of teSt VIAE0 SEQUENCESccveiiriiiieiieiieeie e 32
Table 4-3 Search Points of FS and SDSR..........coooiiiiiiiiieee s 34
Table 4-4 Bitrates of FS and SDSR.........cociiiiiiieicee s 34
Table 4-5 Total Encoding Time of FS and SDSR.........ccccccv i 35
Table 4-6 Search Points of FS and SEAIF (all block size enabled)..........c..ccccccovvevvennn, 37
Table 4-7 Total Encoding Time of FS:and SEAIF (all block size enabled) 37
Table 4-8 Search Points of FS and SEAIF(16x16 block size only).........c.ccocvvviiiiiieinennn, 38
Table 4-9 Total Encoding Time of FS and SEAIF (16x16 block size only)...........cccceve.e. 38
Table 4-10 SEAIF with different spiral search patterns............ccoceoeiennininininicicee, 39
Table 4-11 Search Points of FS and ETA ... 39
Table 4-12 Bitrates 0f FS and ETA ... 40
Table 4-13 Total Encoding Time of FS and ETA ..o 40
Table 4-14 Search Points of FS and CAFME ... 41
Table 4-15 Bitrates of FS and CAFME ..o 41
Table 4-16 Total Encoding Time of FS and CAFME ... 42

Vi

List of Figures

Figure 2-1 MOtioN eSTIMATION.........cuiiiiiiiie e sb e neesreas 7
Figure 2-2 Different partition sizes in a macroblocK ..., 7
Figure 2-3 INTegral framcooiiiee et 9
Figure 2-4 Computation of BIOCK SUM.........cooiiiiiii e 10
Figure 2-5 Diamond Search PatterNScccveveeiiiiiie e 11
Figure 2-6 Example for search process of Diamond Searchcccooeveiiiiiic e, 12
Figure 3-1 SR and motion activity in foreman QCIF frame by frame.............ccccooven 20
Figure 3-2 SAD of foreman CIF frame by frame............ccocoiiiiiiiiiee 21
Figure 3-3 Current and neighbor blocks (variable block Size) ..o 22
Figure 3-4 Spiral search iN JM 9.4ooii e 25
Figure 3-5 Real spiral search pattern...ci oot 25
Figure 4-1 24" and 25™ frame of foothall CIF SEQUENCE r.........veeeeeeeeeeeeeeeereeveseeeeenes 36
Figure 4-2 SAD and SR of SDSR frame by frame in Foreman QCIFcccccoceo 36
Figure 4-3 SAD and SR of SDSR frame by frame inFootball CIF..............ccocooviiiiennnn. 36

Vi

Chapter 1
Introduction

1.1 Motivation

Block matching based motion estimation (ME) and compensation is a fundamental process in
international video compression standards, such as MPEG-1, MPEG-2, MPEG-4, ITU-T H.263,
and H.264, which can efficiently remove temporal redundancy. Since a ME module is usually the
most computational intensive part in a typical video encoder (about 50%~90% of the entire system),
the efficient ME module is needed.

A conventional block-matching algorithm called full search algorithm (FS) exhaustively
examines every search point within a search window to find the global optimal matched block in
the reference frame. However, FS is too computationally intensive to fit the requirement of real
time encoding. Therefore, many fast .algorithms have been proposed to alleviate the huge
computation of FS.

These fast algorithms can be classified into two categories. One is to reduce search points,
such as the Three-Step Search (TSS) [1]‘and Diamond Search (DS) [2]. Another is to simplify the
matching operations, such as pixel decimation [3] and SAD-BS measurement [4]. The first category
is usually based on the assumption that the MVs are center-biased and the matching error decreases
monotonically as the search point moves close to the global minimum position. Since the
assumption is often not true in real world videos, these algorithms are often trapped into local
minimum. The second category often seriously impairs the accuracy of matching. The algorithms
of the two categories suffer for considerable PSNR degradation compared to FS, especially when
the motion field is large and complex. Therefore, we would like to propose a new fast algorithm

which can avoid local minimum problem and reduce computational cost in matching phase.

1.2 Related Works

In recent years, many fast motion estimation algorithms have been proposed. The Three-Step

Search (TSS) [1], New Three-Step Search (NTSS) [4], 2-D Logarithmic Search (2-D LOGS) [6],

1

Four-Step Search (4SS) [7], Diamond Search (DS) [2], Cross-Diamond Search (CDS) [8] [9] [10],
Hexagon-Based Search (HEXBS) [11], Adaptive Rood Pattern Search (ARPS) [12] [13] [14], and
Pentagonal Fast Block-Matching Algorithm (PFBMA) [15] are developed to limit the search points
to a small subset of all candidate points with certain search pattern. They usually cannot perform
well for all kinds of motion activity. Although these algorithms are often trapped into local
minimum when motion field is large and complicated, they can considerably reduce the
computational cost.

Some algorithms like pixel decimation [3] suggest pixel decimation schemes for measuring
the block matching based on a set of pixel patterns. SAD-BS [4] partitions a block into sub-blocks
and computes the sum of absolute difference (SAD) between the sums of pixel values in the
corresponding sub-blocks as the block matching measure. These algorithms determine the tradeoff
between accuracy and computational cost in block matching.

The Successive Elimination Algorithm (SEA) [16].and Partial Distortion Elimination (PDE)
[17] are lossless approaches. The SEA avoids unnecessary SAD calculations by comparing the
minimum SAD already found with the absolute difference between the sum of pixel values in
current block and the sum of pixel values in candidate block. Due to the advantage of SEA, [18],
[19], and [20] are proposed in recent years. The PDE approach uses the partial SAD to eliminate
impossible candidates before the complete computation of SAD is performed. The SEA and PDE
will perform well when a good candidate point is found at early stage. Because the successive tests
will have a tighter distortion bound and may be skipped. Spiral scan order [17] and a good initial
MV make more search points be skipped [18].

The Dynamic Search-Window Adjustment (DSWA) [21] adjusts the size of search window in
the Three-Step Search (TSS) according to the mean absolute difference (MAD) between current
block and candidate block. DSWA compares the first two minimum MADs for each stage of TSS to
determine the search direction. The Adaptive Full-Search Block Matching (AFSBM) [22] considers
the MAD at the initial search point reflects the degree of motion for a block. Then AFSMB
classifies each block into three motion classes by comparing the MAD with thresholds. The two

approaches take the block matching error into account for the degree of motion, but there is no

2

significant correlation between them [23].

The Dynamic Adjustment of Search Window with Variable block size (DASWA) [23] sorts all
blocks in a frame according to homogeneity and performs motion estimation for the first block. For
the other blocks, the size of search window is set to the magnitude of the MV of adjacent blocks
and the search center is set to the position that is pointed to by the MV of adjacent block, which has
the largest block similarity. This approach requires the cost of sorting homogeneity and computing
similarity. The approach proposed in [24] divides the blocks of a frame into two groups just like
chessboard. The blocks in the first groups are motion estimated first. Then the motion estimations
for the blocks in second group are performed with dynamic search range depending on the MVs of
their neighbor blocks. The Context Adaptive Search (CAS) [25] uses spatial correlation of the
motion field and the median predictor. If the median values for both coordinates come from the
same macroblock (MB), CAS assumes that motion field is smooth and applies the 3x3 search
window. Otherwise, CAS chooses other window size (3x5, 5x3, and 5x5). These approaches only
exploit the spatial correlation of motion field.

The Window Follower Algorithm (WFEA)-[26] takes the maximum displacement of MVs in
previous frame plus one unit as the size of search window for the current frame. The algorithm fails
in the case of sudden motion changes or frames with objects characterized by different motion
activities. The modified version of WFA (MWFA) [27] alleviates the problem by exploiting both
temporal and spatial correlations in the motion field and adopting the SAD values as a measure of
the efficiency of the ME. MWFA needs proper thresholds to measure the accuracy of block
matching, however, the thresholds should be determined adaptively by the characteristics of video.
The Motion Adaptive Search (MAS) [28] introduces the global motion activity and local motion
activity for frame basis and macroblock basis, respectively. Global motion activity uses the mean
and variance of the MVs in the previous frame with Chebyshev’s Rule to determine the search
range. Then local motion activity adjusts the search range for each MB. In [29], Siou-Shen Lin et al.
proposed a motion estimation algorithm with multi-mode by adopting MV variance and SAD
threshold. The algorithm changes scheme adaptively according to characteristics of video

sequences.

In the previous works, there are some drawbacks such as considerable degradation of PSNR,
requirement of appropriate thresholds, substantial overhead, and unsuitable for high motion activity.
The drawbacks and advantages of these algorithms are shown in Table 1-1.

Because the drawbacks of previous works, we propose the Content-Aware Fast Motion
Estimation (CAFME) algorithm to overcome these drawbacks. The CAFME consists of the Simple
Dynamic Search Range algorithm (SDSR), Successive Elimination Algorithm with Integral Frame
(SEAIF), and Early Termination algorithm (ETA). The SDSR adjusts search range adaptively
according to motion activity and performs well regardless of low or high motion. The SEAIF is
designed for H.264/AVC visual compression standard and the ETA terminates the search process if
the up-to-date block is good enough. Although the CAFME consists of the SDSR, SEAIF, and ETA,
these three algorithms can be used independently. The experimental result shows that the proposed
SDSR can find a very good search range for each block and maintain almost the same coding

efficiency compared with Full Search.

1.3 Organization

The paper is organized as follows. ‘Chapter 2 introduces the related background knowledge,
including motion estimation, integral frame, and related algorithms. In Chapter 3, we present how
the Content-Aware Fast Motion Estimation Algorithm is designed and developed. Chapter 4 reports
the significant experimental results. Finally, the conclusions and future works are given in Chapter

5.

Table 1-1 Advantages and drawbacks of fast motion estimation algorithms

Category

Advantage

Drawback

Follow certain

search pattern

of SP is very small
Reduce considerable

computation

Local minimum problem
Unsuitable for high motion

Coding efficiency degradation

Adjust search

window size

of SP is small
Reduce considerable

computation

Need thresholds
Unsuitable for sudden motion change
Substantial overhead

Coding efficiency degradation

Reduce matching

complexity

Reduce considerable
computation

Losslesssapproach

Substantial overhead
Unsuitable for hardware

Coding efficiency degradation

Chapter 2
Background Knowledge

In this chapter, we introduce some background knowledge related to our proposed approaches.
At first, we acquaint you with block motion estimation and compensation. Second, matching
criterions for motion estimation are described briefly. Next, integral frame is presented. Finally,

some fast motion estimation algorithms are presented in detail.

2.1 Block Motion Estimation and Compensation

Motion estimation and compensation techniques are used to remove temporal redundancy of
inter frames. An ideal approach is to segment the frame into some objects including moving and
stationary objects. However, the segmentation of objects is difficult and impractical. A practical and
widely used method of motion compensation is to compensate for movement of blocks of the
currents frame. We call this method as block-based. .motion-estimation and compensation. Usually
the block is a 16x16-pixel region of a frame, called macroblock (MB). The MB is the basic unit for
motion compensated prediction in many‘of visual coding standards including MPEG-1, MEEG-2,
MPEG-4, H.263 and H.264.

Motion estimation of a macroblock involves finding a 16x16-pixel block in a reference frame
that closely matches the current macroblock. The reference frame may be before or after the current
frame in display order. An area in the reference frame centered on the search center is searched and
the 16x16-pixel block within the search area that minimizes the matching criterion is chosen as the
best-matched block. The height and width of the search area are considered as the size of search

window as shown in Figure 2-1.

Reference frame W
est matched block
A -

:V\i\ Current MB
v - MV =TT i |j

% /
Search range

Figure 2-1 Motion estimation

The new visual coding standard H.264/AVC introduces the overlapped variable block size to
improve coding efficiency. There are seven block sizes, 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4,
forming the following partitions of a 16x16 macroblock as depicted in Figure 2-2. When P8x8 type
is considered, the 8x8, 8x4, 4x8, and 4x4 type must-be considered for each of the four individual

8x8 sub-blocks. Note that each partition has.its‘'own unique motion vector [30].

16x16 type 16x8 type 8x16 type P8x8 type

8x8 type 8x4 type 4x8 type 4x4 type

Different partition sizes for a macroblock subtype in P8x8 mode

Figure 2-2 Different partition sizes in a macroblock

2.2 Matching Criterion

In order to choose the best-matched block, a matching criterion is needed. Mean square

7

difference (MSD), mean absolute difference (MAD), and sum of absolute difference (SAD) are

frequently used criterions. Their definitions can be described by the following equations.

MSD(fs, f(m, n)) :M_lNZZ((i,) - fe(i+m, j+n))’ 2.1)
MAD(., f:(m, n)) = M—ll\lh.ﬂ_lﬁ_j fe(i, j) - fei+m, j+1) 2.2)
SAD(s, f(m,n)) = MZlNzﬂ (i, j)— fe(i+m, j+n)| 2.3)

i=0 j=

M and N is the width and height of the block, respectively. m and n are horizontal and vertical
component of motion vector, respectively. f. and f, are the current and reference blocks, respectively.
MSD, MAD, and SAD have very high accuracy in block matching. However, SAD does not need
any multiplication operations. Therefore, SAD 15 the most popular criterion used in the
international video coding standards.

Unlike other video coding standards, H:264 uses-the /LLagrange multiplier to compute the rate
distortion cost for each partition within. a.macroblock: The best-matched block is selected by

minimizing the following Lagrange cost.

J (MV) ﬂ,motion) = SAD(fc, fr(m, n)) + Amotion - Rate(MV — MVP) (24)

MV = (m, n) is the motion vector, MVp = (mpy, Np) is the prediction for motion vector, and 4
motion 1S the Lagrange multiplier. The function Rate(MV—MVp) represents the predicted motion

error and is implemented by a look up table [31].

2.3 Integral Frame
In this section, we introduce integral frame technique which is used in our Successive
Elimination Algorithm (SEA) to compute the sum of pixel values in a block efficiently. We denote

the sum of pixel values in a block as block sum (BS). Viola et al. [31] proposed the integral frame

8

technique for sum of pixel values within any rectangular area in a frame. Given a video frame f, the

value of its integral frame at pixel (p, q) is denoted as Iz (p, q), as defined in the equation (2.5).

q

2 G0 (2.5)

p
i=0 j=0

lr(p,q) =

The integral frame is shown in Figure 2-3

0,0) p — > X
If(p’ Q)

g W a)

Y

Figure 2-3 Integral frame

The computational cost for an integral frame is described as follows. Let Rs (p, q) be the

cumulative row sum of pixel values in frame f. The definitions are:

Ri(p.)= 1 (0.0) (2.6)
Ri(-1,q) =0 (2.7)
li(p,-1) =0 (2.8)
Ri(p,q)=Ri(p-1,9)+ f(p,q) (2.9)
lk(p,q) = lt(p,q-1)+Re(p,q) (2.10)

By using equation (2.9) and (2.10) recursively, one can compute the integral frame I in one
pass. For a frame with W x H pixels, 2WH additions are required to compute an integral frame. The
sum of pixel values in any rectangular block in a frame can be computed by three arithmetic
operations. For example, as illustrated in Figure 2-4, the BS of block D can be computed by

equation (2.11).

BS(D):Zp: Zq: f(i,j)=1k(p,q)—l(r,q)=1l(p,s)+ le(r,s) (2.11)
(0,0) r p —> X
A C
S
B D
q
Y

Figure 2-4 Computation of block sum

2.4 Fast Motion Estimation Algorithms
In this section, we introduce some fast motion estimation algorithms, including Diamond
Search [2], Successive Elimination Algorithm [16], Partial Distortion Elimination [17], and

modified Window Follower Algorithm [27].

10

2.4.1 Diamond Search (DS)

Just as other conventional fast motion estimation algorithms, DS [2] is also designed to reduce
the number of search points in motion estimation. DS has very good performance compared with
the Three-Step Search (TSS), New Three-Step Search (NTSS), and Four-Step Search (4SS).
However, DS are still often trapped into local minimum problem. DS employs two search patterns
in motion estimation, as illustrated in Figure 2-5.

The first pattern called large diamond search pattern (LDSP) is repeatedly used until the step
in which the minimum block distortion occurs at the center point. After that, the second pattern
called small diamond search pattern (SDSP) is used as the final step. The minimum block distortion
point found in SDSP is the final solution of MV, which points to the best -matched block. See

Figure 2-6 for example of search process.

L
0, \0
0, \0
¢ L o
4 \. ./ \

4 \. ’ N
¢ ® 9 o—0 9
N ‘/ N 4
N .I A Y 4
| L L

\. ./
\. ./
¢
Large diamond search pattern Small diamond search pattern
(LDSP) (SDSP)

Figure 2-5 Diamond search patterns

11

./
.'
1 &
."'
0 &
\.
1 L
\\. .,b,
2 & -

Figure 2-6 Example for search process of Diamond Search

2.4.2 Successive Elimination Algorithm (SEA)

In motion estimation, the SAD of each block-in the-search window is compared with the
current minimum SAD. If the SAD ofthe current block is;smaller than the current minimum SAD,
the block is considered as up-to-date best-matched block. In order to reduce the computation of
SAD, Successive Elimination Algorithm (SEA) [16] was proposed. The SEA is a lossless fast
motion estimation algorithm based on mathematical inequality. The main idea of SEA can be

shown in the equation (2.12).

M-1N-1

SAD(fs, fi(m,m) = > | fe(i,)~ fo(i+m, j+1)
> 1Nzl foi,) - lNzl fi(i+m, j+n) (2.12)

= | BS: - BSr(m, n)|
= sea(f, fr(m,n))

In equation (2.12), BS; and BS; are the block sums in the current block and candidate block,

12

respectively. Because SAD(f, f,(m, n)) is equal to or larger than sea(fc, f,(m, n)), if sea(f;, f.(m, n)) is
larger than the current minimum SAD, SAD(f., f.(m, n)) must be larger than the current minimum
SAD. Therefore, computation of SAD(f., f,(m, n)) can be skipped.

To compute sea value is easier than to compute SAD, because BS; has to be calculated only
once and BS;(m, n) can be derived from the previous value of BS;(m —1, n). Hence, SEA can reduce
the computation of SAD efficiently.

Multilevel SEA (MSEA) proposed in [20] is a generalized SEA. MSEA divides a macroblock
into sub-blocks and calculates the BS for each sub-block. Then we compute the sum of absolute
differences of the corresponding BSs as mesa(f., f.(m, n)). The mesa(fc, f,(m, n)) is always equal to
or larger than sea(f;, fr(m, n)). Consequently, the mesa(f., f.(m, n)) is a lower bound of SAD. The

equation (2.13) describes the idea.

M-1N-1

SAD(fe, fr(m,n) = > 3| (i,) < fe(iremm, j)

i=0 j=0
22t

> " |BSu— BSw(m, n)|
k=0

= msea(f, fr(m,n)) (2.13)
>|BSc—BSr(m, n)|
= sea(f, fr(m,n))

In Equation (2.13), k is the index of sub-block and L is the level of division. For example,
when N=16 and M=16, msea with level L=0 is reduced to sea, and msea with level L=4 is the same
as SAD. Obviously, the bound is lower when the level is higher; however, the computational cost is

higher.

2.4.3 Partial Distortion Elimination (PDE)

The concept of PDE [17] uses the partial sum of difference to eliminate impossible candidates

before the complete calculation of SAD. The basic concept is shown in equation (2.14).

13

SAD«(fe, fr(m,n)) = Mzilki

1
i=0 j=0

| fe(i,) — fo(i +m, j+n)|> SAD(f, fr(m,n)) (2.14)

In the process of computation of SAD, we compute the partial SAD and compare the partial
SAD with the current minimum SAD. If the partial SAD is equal to or larger than the current
minimum SAD, the calculation of SAD can be terminated and the search point can be skipped.
Owing to the overhead of testing inequality, the testing is performed every row. Like SEA, if we

can find a smaller SAD early, the more candidates can be skipped.

2.4.4 Modified Window Follower Algorithm (MWFA)
Window follower algorithm (WFA) [26] takes the maximum displacement of MV in previous

frame plus one unit as the search range for the current frame. The algorithm is presented as follows.

Window Follower Algorithm [27]

Step 1: For the kth frame, compute the ‘maximum horizontal and vertical displacement from all
MVs in (k—21)th frame. The maximum value D is defined as equation (2.15). The d; represents the

maximum displacement of two components of MV of tth block.

D = max[di] (2.15)

di= maXLMVtx, MVtyJ (216)

Step 2: Perform motion estimation for kth frame with search range P=D+1. For the first frame, the

search range P is set to max search range.

14

WFA assumes that [26]:

(1) The change of motion content between frames is gradual and not sudden.

(2) The motion content is constant over a large number of successive frames.

However, the characteristics of motion in natural video sequences are various and hardly
predictable. The assumptions of WFA may not be true in natural video sequences. MWFA [27]
modifies WFA by exploiting both temporal and spatial information and adopting SAD as a measure

of accuracy of MV. MWFA algorithm is presented as follows.

Modified Window Follower Algorithm [28]

Step 1: For the kth frame, compute the displacement D as defined in WFA.
Step 2: Perform motion estimation for each block in kth frame with search range Py, for tth block. Py
is determined by the following mutually exclusive rules.
(1) If (SADnint-1>= TH3) Pi=Pmax, F =1
(2) If (SADmint1 <= TH; and F ==1) Py=max (D, d¢1) + 1
If (SADpint.1 <= TH; and F==0) -P;=D +1
(3) If (SADnint-1 <=THzand F==1) P;=max (D, d 1)
If (SADpint1 <= TH, and F==0) P;=D

SADpint.1 and d 1 represent the minimum SAD and the maximum MV displacement for the (t
—1)th block in the current frame, respectively. The flag F is set to zero at the beginning of each
frame. When the flag F is set to zero, only temporal information is considered; when the flag F is
set to one, both temporal and spatial information are taken into account. The threshold TH; and TH,

are set to 4096 and 2048, respectively, derived from simulations of typical video sequences.

15

Chapter 3
Content-Aware Fast Motion Estimation Algorithm

In this chapter, we present our proposed Content-Aware Fast Motion Estimation Algorithm
(CAFME), which consists of SDSR, SEAIF, and ETA. At first, section 3.1 presents some
observations and analyses of search range in motion estimation. Simple dynamic search range
algorithm (SDSR) and SEA with integral frame (SEAIF) are presented in section 3.2 and 3.3,

respectively. Finally, our early termination algorithm (ETA) is given in section 3.4.

3.1 Analysis of Search Range

In this section, we want to explore the relationships among the parameters in the motion
estimation. Because adjustment of search range needs some information, the relationships can help
us to develop a good algorithm. We did some experiments to observe and analyze the relationships
between search range (SR) and frame rate, frame ‘reselution, motion activity, quantization
parameter (QP), and SAD of best-matched block: Theexperimental environment is as follows.

B Platform: H.264/AVC reference software JM 9.4 [32]

B Machine: Athlon XP 1700+ with 512 MB memory

B Profile: baseline

B level: 3.0

B Block match algorithm (BMA): full search

B Group of picture (GOP): 15

B Frame structure: IPPP

B Number of reference frame: 1

B Hadamard transform: enable

B All block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4): enable

B Rate-distortion optimized (RDO): enable

B Fast ME (UMHexagonS) [33]: disable

B Fast mode selection [34]: disable

16

B Rate control (RC): disable

B 16x16 MB observed

3.1.1 Search Range and Frame Rate

Since the frame rate affects the difference of successive frames, so we observe the relationship
between SR and frame rate. The test data are foreman sequence with FPS=30 and FPS=15. The
temporal distance of sequence with FPS=30 is 1/30 second and the temporal distance of sequence
with FPS=15 is 1/15 second. In theory, when the frame rate is higher, the motion estimation needs
smaller search range.

The Quantization parameter (QP) is mapped into quantization step and affects the bitrate
significantly. In our experiments, the QP is fixed and RC is disabled. Therefore, we only need to
observe the bitrate field for different search ranges. In Table 3-1, the gray areas represent the
bitrates are stable and the search ranges are enough tofind true MVs in motion estimation. We can
observe that the bitrates are approximately stable when the SR=4 with FPS=30 and the SR=8
with FPS=15. Experimental results shaw a larger search range is required to find the true MV when

the frame rate is lower. The experimental‘results conform:to the theory.

Table 3-1 The relation between SR and FPS

Foreman, QCIF (176 x 144), QP=36
SR FPS=30 100 Frames FPS=15 50 Frames
SNR (dB) | Bitrate (Kbps) | SNR (dB) | Bitrate (Kbps)

32 31.478 69.528 31.582 46.851

16 31.469 69.365 31.561 46.640

8 31.448 69.400 31.561 46.733

4 31.443 69.224 31.555 47.187

2 31.424 69.771 31.495 48.627

1 31.406 71.155 31.465 50.547

0 31.227 79.122 30.077 60.005

3.1.2 Search Range and Frame Resolution

We test the coastguard sequence in QCIF and CIF resolution. In Table 3-2, the gray areas in

17

QCIF resolution represent the bitrates change slightly when the SR is from 2 to 32 and the gray
areas in CIF resolution represent the bitrates change slightly when the SR is from 4 to 32. These
observations present the SR=2 is large enough to find the true MVs in QCIF resolution and SR=4
is large enough to find the true MVs in CIF resolution. Therefore we conclude that the search range

is required to increase adaptively for the larger resolution.

Table 3-2 The relation between SR and resolution

Coastguard, QP=36, FPS=30, Encoded frames=90
SR QCIF (176 x 144) CIF (352 x 288)
SNR (dB) | Bitrate (Kbps) | SNR (dB) | Bitrate (Kbps)
32 29.178 71.992 29.315 375.003
16 29.183 72.304 29.312 375.539
8 29.185 72.325 29.299 374.728
4 29.168 71.747 29.289 376.667
2 29.144 72.520 29.271 387.957
1 29.107 76.120 29.225 420.099
0 28.799 113.893 28.920 639.923

3.1.3 Search Range and Motion Activity.

We divide the foreman sequence into two ‘parts, which represent the low and high motion
sequences. The first part consists of first 90 frames and the second part consists of frames from
frame 151 to 240. In Table 3-3, we observe that the bitrates are approximately stable when the SR
=4 in low motion sequence and the SR=8 in high motion sequence. As we expect, the search

range should be increased adaptively for high motion sequences.

Table 3-3 The relation between SR and motion activity

Foreman QCIF QP=36 FPS=30
SR Frame 0~89 (low motion) |Frame 151~240 (high motion)
SNR (dB) | Bitrate (Kbps) | SNR (dB) | Bitrate (Kbps)
32 31.478 69.528 31.245 84.747
16 31.469 69.365 31.242 84.949
8 31.448 69.400 31.223 85.307
4 31.443 69.224 31.166 89.931

18

2 31.424 69.771 31.024 112.832
1 31.406 71.155 30.954 130.109
0 31.227 79.122 30.633 185.883

3.1.4 Search Range, QP, and SAD of Best-matched Block

In block matching, SAD is used as matching criterion. If SR is too small, then the true MV
may not be found and the SAD found at the best-matched block will be large. Besides, the QP also
affects SAD obviously. Therefore, this experiment considers these factors. In Table 3-4, the field
SAD best average means the average of SAD value causes the minimum rate distortion cost in
H.264/AVC encoder. The experimental result shows the true MVs can be found as long as SR=8
regardless of QP while QP only affects the magnitude of SAD. We also show the SAD best average

frame by frame in Figure 3-1. In foreman sequence, the motion is higher than the rest of the

sequence from frame 150 to 220. Therefore, SR =4 is not large enough to find the true MVs.

Table 3-4 The-relation between SR, QP, and SAD

Foreman QCIE300 Frames-FPS=30

SR SAD best average
QP=18 QP=24 QP=30 QP=36
32 921.2 1024.0 1221.3 1577.5
16 924.7 1027.8 1226.0 1584.9
8 942.9 1045.6 1244.6 1605.3
4 1068.8 1165.5 1353.8 1702.9
2 1252.9 1344.9 1524.4 1860.9
1 1413.7 1503.7 1585.9 2001.9
0 1831.9 1911.4 2081.7 2330.1

Foreman QCIF QP36

4000

3000
2 2000
1000

19

Figure 3-1 SR and motion activity in foreman QCIF frame by frame

In Summary, if we can find a SR for a frame or a block in motion estimation such that the true
MVs can be found, the local minimum problem can be avoided and the computational cost of
motion estimation can be reduced dramatically.

In our experiments, the search range should be changed adaptively according to motion
activity of video and parameters of encoder. However, the parameters of encoder should be used by
comparing with each other. Hence, we develop SDSR to adjust SR dynamically based on motion

activity.

3.2 Simple Dynamic Search Range (SDSR)

In this section, we present our proposed Simple Dynamic Search Range algorithm (SDSR). In
order to adjust search range for motion estimation; some approaches have already been
implemented in DSWA [21], AFSBM {22], MWEFA [27];.and MAS [28]. These approaches may be
classified into block matching error based and motion vector based.

The block matching error is usually:measured in-MSD, MAD or SAD. The block matching
error represents the degree of matching between current block and candidate block. The value of
block matching error is determined by many factors including motion activity, texture, and
quantization parameter. See Figure 3-2 for example. From frame 220, the values of SAD are much
higher than the rest. The reason is the complicated video texture, not the motion activity. However,
from frame 150 to 170, the values of SAD are raised sharply due to the sudden motion change
instead of video texture. Consequently, the approaches based on block matching error are usually
unsuitable to evaluate the motion activity.

On the contrary, motion vector represents the motion activity more precisely [28]. For this
reason, our proposed approach is based on motion vector information. Due to the wide variations of
motion activity in video sequences and different motion activity in various areas within a single
frame, we would like to adjust search range on both frame level and block level. The adjustments of

SR in frame level and block level are based on temporal correlation and spatial correlation of

20

motion field, respectively.

Foreman CIF SR32 SADavg=1350

2500
2000

o) s
%1000 MF Q

500

Figure 3-2 SAD of foreman CIF frame by frame

The proposed Simple Dynamic Search Range algorithm is described as follows.

Simple Dynamic Search Range Algorithm

Step 1: Determine the search range-in._frame level. The search range called SR_FRAMEy is

computed by the maximum horizontal and.vertical displacement from all MVs in (k —1)th frame

plus one unit. The definition is:

SR FRAME« = max[MVx;, MVy:] +1

t {all blocks in (k -1)th frame} (3.1)

Step 2: Adjust the search range in macroblock level. Let MV_MAX; denote the maximum
displacement of two components of MVs in neighbor blocks of tth block, described as in the
following rules.
s e { The left, above left, above, above right blocks of tth block }
If any of neighbor blocks is not available
MV _ MAX: = max[max[MVxs, MVys], SR _ FRAME«]

Else

21

MV MAX: = max[MVxs, MVys]

Step 3: Determine the final search range for tth block, called SR_BLOCK; by the following rules.

/IAdjust SR in block level

If (MV _MAX:> SR _ FRAMEX)
SR_BLOCK:=MV _MAX:+1

Else
SR _BLOCK:=MV _MAX:t+ (SR _FRAMEkx—MV _ MAX:)/2

/ISR constraint

If (SR_BLOCK:<1)
SR_BLOCK:=1

Else if (SR _ BLOCK: > max search range)
SR _ BLOCK: = max search range

Because the prediction of MV may not be zerosMV in motion estimation, the displacement of
MV may be larger than the SR. Hence the SR in frame level may increase more than one unit

between frames. The adjustment of SRin block level ensures that the SR is large enough to find the

true MV.

Note that the neighbor block of current block may not be a complete macroblock (16x16) in

H.264/AVC video compression standard, shown in Figure 3-3.

C
D (8x4) | B (8x4) (16x8)
A
(8x8) s
(16x16)

Figure 3-3 Current and neighbor blocks (variable block size)

22

3.3 Successive Elimination Algorithm with Integral Frame (SEAIF)

The SEA and integral frame technique had been introduced in section 2.4.2 and 2.3. In this
section, we integrate them to form a new SEA called SEAIF for H.264/ACV standard. In
H.264/AVC standard, rate-distortion optimization (RDO) is recommended for mode selection. The
modes include nine intra modes and seven inter modes (see Figure 2-2). In inter-coding, a total of
41 motion estimations is required for a 16x16 macroblock while the RDO is enabled. (One for
16x16, two for 16x8, two for 8x16, four for 8x8, eight for 8x4, eight for 4x8, and sixteen for 4x4)
Therefore, the ME cost increases dramatically.

In order to reduce the intensive computation caused by RDO. In the H.264/AVC reference
software JM 9.4 [32], a Fast Full Pel Search algorithm is implemented by reusing SAD values of
the smallest 4x4 block. Before a new macroblock is motion estimated, it computes the SAD values
for all 4x4 block at all search points within the search window. After that, it merges the SAD values
to get the SAD values of larger blocks. In this way, computation of SAD for a macroblock with all
block size enabled is about equal to the:computation of SAD with only a 16x16 block.

We take the concept of reusing SAD.and integrate it'into our proposed SEAIF. The main idea
of the SEAIF for H.264/AVC is to reuse sea values and SAD values. The following sub-sections
present the detail of the design. Section 3.3.1 and 3.3.2 present the techniques of reusing sea and
SAD values. Section 3.3.3 presents the spiral search pattern used by SEAIF algorithm. Finally,

analysis of complexity for SEAIF is presented in Section 3.3.4.

3.3.1 Reusing of sea value

For each search point, calculate the sea values of sixteen 4x4 blocks of the current macroblock
by using integral frame technique. These sea values of 4x4 blocks are the basis for sea values of
larger blocks. Then the sea values of larger blocks are derived from these sea values of 4x4 blocks,

described as follows.

B For 8x4 or 4x8 block, sum up sea values of two 4x4 blocks.

23

B For 8x8 block, sum up sea values of two 8x4 blocks.
B For 16x8 or 8x16 block, sum up sea values of two 8x8 blocks.

B For 16x16 block, sum up sea values of two 16x8 blocks.

In this way, we can get all sea values of all blocks. These sea values of larger blocks are
always equal to or larger than the sea values computed directly from BS of corresponding blocks.
Therefore, the sea values of larger blocks derived from 4x4 block sea values are lower bound of

SAD and the more computations of SAD can be skipped.

3.3.2 Reusing of SAD value

In SEAIF, if the sea value is less than the current minimum SAD value, complete calculation
of SAD will be preformed. In H.264/AVC, overlapped blocks are used in motion estimation. In
order to reduce the computations of SAD, we take the 4x4 block SAD values as the basis of the

larger block SAD values. The following is the approach.

Reusing SAD value algorithm

Regardless of block size, Calculation of SAD for the block is:

Stepl: Find out all 4x4 blocks within the block.

Step2: Check the SAD values of these 4x4 blocks. If any SAD value of 4x4 blocks is not available,
compute the SAD value.

Step3: Get the SAD value of the target block by adding up SAD values of these 4x4 blocks.

In this way, there is no redundant computation of SAD.

3.3.3 Spiral Search

In JM 9.4, the spiral search for full search is not really spiral shape. Therefore, we modified it

24

to the real spiral shape shown in Figure 3-4 and Figure 3-5, respectively. Chapter 4 will show the

experimental results for comparisons.

49 49|...

35(25|27|29|31|33|36 48(25|26|27|28(29|30
37|15/ 9 |11/13|16|38 47(24|9 (10/11|12|31
39(17/3 | 1|4 18|40 46(23|8 | 1|2 (13|32
41119/ 510 | 6 (20|42 45/122| 710 | 3 14|33
43|21\ 7 | 2|8 |22|44 4412116 | 5|4 15|34
45/23|10(12(14 24|46 43|20(19(18(17|16|35
47|26(28|30(32|34 48 42141|40|39|38|37|36

Figure 3-4 Spiral search in JM 9.4 Figure 3-5 Real spiral search pattern

3.3.4 Analysis of complexity

The reason of adopting SEA is.to reduce .the “computational cost in block matching
measurement. The overhead of SEA should be considered and analyzed. The overheads of SEA are
mainly the computations of block sum. In.SEA-[16]; Salari et al. proposed a fast algorithm to
compute the block sums. We compare three.approaches and present the analysis of overhead as
follows.

Let W denote image width, H image height, M block width, and N block height. Operations

required for block sums of all M x N blocks in a reference frame are:

B Straightforward approach:
Number of block sum in a frame: (W—M + 1)(H—N + 1)
Operations required for a block sum: MN —1
Total cost: (MN—1) (W—M + 1)(H—N + 1)

Approximate cost: MNWH

B SEAapproach in [16]:
Total cost: 4AWH —(H—N)(M + 3) —3W(N + 1)

25

Approximate cost: 4WH

B Integral frame approach:
Operations required for an integral frame: 2WH
Operations required for all block sum: ~2(W—M + 1)(H—N + 1) *
Total cost: 2WH + 2(W—M + 1)(H—N + 1)

Approximate cost: 4WH

Although integral frame approach and the SEA approach in [16] have approximately the same
complexity, there is an advantage in integral frame approach. Integral frame approach is flexible to
get block sum of any rectangle block.

For example, if we want to use the multilevel SEA for each block size in H.264/AVC, the
implementation will be easier with integral frame approach. (Note that our approach uses the
tighter lower bound in SEA, not multilevel SEA.) Computing msea value of 16x16 block with level
L=0 only needs 5 operations (5 = 3 for.get BS+1 subtraction + 1 absolute). Nevertheless, merging
16 4x4 sea values to get the sea value of 16x16 block-with level L=0 needs 15 addition operations
while the sea value is tighter lower bound. Trade-off is between the tighter lower bound and

computational complexity.

3.4 Early Termination Algorithm (ETA)

In this section, we preset our proposed Early Termination Algorithm (ETA) in detail. In [29],
Siou-Shen Lin et al. introduce the variance of motion vectors. They show the probability is about
79% in average when the variance of the current block and neighbor blocks is smaller than 3. They
consider that it is high probability that the current block and the neighbor blocks might belong to
the same object when the variance of the motion vectors in the neighbor blocks is small.

We exploit and modify the variance of motion vectors proposed in [29] to classify the motion

! In [4], Viet Anh Nguyen and Yap-Pen Tan proposed a fast approach to calculate block sum by exploiting the adjacent
property of the blocks.

26

activity of current block and neighbor blocks into simple motion and complex motion. The variance

of motion vectors is defined in equation (3.3).

MVmean = (MVa+ MVb+ MVc+MVd)/4 (3.2)

MVvar = | MVa— MVmean| + | MVb — MVmean|

(3.3)
+|MVc — MVmean| + |Mvd — MVmean|

If any of neighbor blocks is not available, MVvar is set to a large value (999999). For accuracy,

we compare the MVvar with 5 instead of 3 to classify motion activity, shown in equation (3.4).

If (MVWvar = 5)

Mactivity = simple_motion (3.4)
Else

Mactivity = complex_motion

If motion activity is simple motian, we ‘consider-the current block and neighbor blocks are in
the same object for simple. On the contrary; the current block and neighbor blocks are considered
not in the same block. The SAD values of blocks within the same object should be similar and the
SAD values of blocks not in the same object should be different largely. Based on the concept, the

lower bound for the condition of termination is determined in equation (3.5).

If (Mactivity == simple_motion)
SAD _threshold = SAD_prediction (3.5)
Else

SAD threshold = SAD_prediction — SAD_standard_deviatoin
The SAD_prediction and SAD_standard_deviation represent the prediction of SAD of current

block and the standard deviation of SAD of all blocks in the previous frame, respectively. The

definitions are defined in equation (3.6) and (3.8):

27

SAD_prediction = (SADa+ SADb + SADc + SADd) / 4 (3.6)

1 Number _ MB-1

SAD mean=———— SAD 3.7
- Number _MB tZ:O: t 3.7)

M1 12
SAD_standard_deviatoin = [ﬁ (SAD: - SAD_mean)Zj (3.8)
4 t=0
The SADy is the SAD value of tth block in a frame. Number_MB is the total number of MB in
a frame. If there is no any neighbor block near the current block, SAD_prediction is set to a small
value (-999999). Note that the SAD_prediction and SAD_standard_deviation are calculated for
16x16 macroblock. In H.264/AVC standard, there are seven block sizes used in motion estimation.

We determine the SAD_prediction and SAD_standard_deviation for other block size according to

the area occupied by the block. The calculations are shown in the following rules.

Adjustment of SAD_prediction and SAD. variance for H:264/AVC standard

If (block size == 16x8 or 8x16)

SAD_prediction = SAD_prediction /2

SAD_standard_deviation = SAD_standard_deviation / 2
Else if (block size == 8x8)

SAD_prediction = SAD_prediction/ 4

SAD_standard_deviation = SAD_standard_deviation / 4
Else if (block size == 8x4 or 4x8)

SAD_prediction = SAD_prediction/ 8

SAD_standard_deviation = SAD_standard_deviation / 8
Else if (block size == 4x4)

SAD_prediction = SAD_prediction/ 16

SAD_standard_deviation = SAD_standard_deviation / 16

28

Finally, the condition of termination is tested when a new up-to-date best-matched block is
found. If the SAD value of the up-to-date block is equal to or smaller than SAD _threshold, the

motion estimation is terminated.

29

Chapter 4
Experimental Results and Discussions

In this chapter, we present the experimental results of the proposed approaches including
simple dynamic search range algorithm, successive elimination algorithm with integral frame, and
early termination algorithm. Finally, the experimental results of integrated algorithm called
Content-Aware Fast Motion Estimation Algorithm (CAFME) are presented.

We modify the H.264/AVC reference software JM 9.4 and implement the proposed algorithms
on it. In the experiments, we compare the proposed algorithm with Full Search (FS). We observe
the number of search points for each block to measure the performance of the proposed algorithms.
We also measure the coding efficiency. In order to measure the coding efficiency, we compare the
bitrates of encoded sequences with the same quantization parameter and disabling rate control.
Besides, we exploit the SAD value as a criterion to measure whether the determined search range is
large enough. Finally, we compare the-total encoding time to measure the improvement in practical

situation.

4.1 Experimental Environment

In this section, we present the experimental environment. The descriptions and snapshots of
test video sequences are listed in Table 4-1 and Table 4-2, respectively. Except specifically
described parameters, the following parameters are applied to all experiments. Note that the
maximum search range is set to 24.

B Platform: H.264/AVC reference software JM 9.4 [32]

B Machine: Athlon XP 1700+ with 512 MB memory

B Profile: baseline

B level:3.0

B Block match algorithm (BMA): Full Search

B Group of picture (GOP): 15

B Quantization parameter (QP): 36

30

Frame rate (FPS): 30

Max search range: 24

Frame structure: IPPP

Number of reference frame: 1

Hadamard transform: enable

All block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4): enable
Rate-distortion optimized (RDO): enable

Fast ME (UMHexagonS) [33]: disable

Fast mode selection [34]: disable

Rate control (RC): disable

Table 4-1 Descriptions of test video sequences

ID Name Resolution | #of Frames Motion activity
A Foreman QCIF 150 Medium
B Mobile QCIF 150 Slow
C Coastguard QCIF 150 Medium
D Foreman CIF 150 Medium
E Tempete CIF 150 Slow, Zooming
F Flower CIF 90 Slow
G Stefan SIF 150 High
H Football CIF 90 Very High
I Table tennis SIF 90 Medium, Scene change, Zooming

31

Table 4-2 Snapshots of test video sequences

Stefan SIF Football CIF Table tennis SIF

4.2 Opponent: Fast Full Pel Search

In our experiments, we compare our proposed algorithms with Fast Full Pel Search?. The Fast
Full Pel Search is implemented by reusing SAD values of the smallest 4x4 block. Before a new
macroblock is motion estimated, it computes the SAD values for all 4x4 block at all search points

within the search window. After that, it merges the SAD values to get the SAD values of larger

% The Fast Full Pel Search is implemented in H.264/AVC Reference Software JM 9.4

32

blocks. In this way, computation of SAD for a macroblock with all block size enabled is about
equal to the computation of SAD with only a 16x16 block.

Note that the performances of the Fast Full Pel Search and a conventional Full Search are the
same but the Fast Full Pel Search is faster than a conventional Full Search in H.264/AVC. In the

following experiments, we denote the Fast Full Pel Search as FS.

4.3 Simple Dynamic Search Range

In this section, we experiment on nine sequences with our proposed Simple Dynamic Search
Range (SDSR). The nine test sequences include the various motion activities. In Table 4-3, the
proposed SDSR outperforms the Fast Full Pel Search (FS) greatly. For the low and medium
motions, SDSR reduces the number of search points about 77% ~ 98%. For the high motion, SDSR
reduces the size of search window much less reasonably. For example, the reduced rate is 41% for
Football sequence which represents the high -motion activity. In Table 4-4, we can observe that the
bitrates increases slightly, except Football sequence: In.the Table 4-5, the total encoding time is
reduced about 40~50%, except Stefan;and [Football sequences. The motion activity of Stefan and
Football sequences are higher than others. The Figure 4-1 presents the two successive frames of
Football sequence for illustration.

In order to measure whether the search ranges determined by the SDSR is large enough. We
depict Figure 4-2 and Figure 4-3 to present the measurement. The Figure 4-2 is the average SAD
values frame by frame in Foreman QCIF sequence with SDSR and FS. We can observe the SAD
values of SDSR and FS are very similar. This observation shows that SDSR can find true MVs in
most of the motion estimations. The Figure 4-3 is the average SAD values frame by frame in
Football CIF sequence with SDSR and FS. We can observe the differences between SAD values of
SDSR and FFS are larger in some frames because the motion activities are much higher.

In average, the number of search points is reduced about 80%, bit rate increases about 0.11%,
and total encoding time is reduced about 43%. Hence, we claim the proposed SDSR can keep

almost the same coding efficiency.

33

Table 4-3 Search Points of FFS and SDSR

Number of Search Points

Sequence Name Improvement
Fast Full Pel Search SDSR
Foreman QCIF 2401 144 — 94%
Mobile QCIF 2401 52 — 98%
Coastguard QCIF 2401 88 — 96%
Foreman CIF 2401 365 — 85%
Tempete CIF 2401 261 — 89%
Flower CIF 2401 563 — 17%
Stefan SIF 2401 860 — 64%
Football CIF 2401 1411 — 41%
Table tennis SIF 2401 497 — 79%
Average — 80%
Table 4-4 Bitratesof FS and SDSR
Bitrates-(Khps)
Sequence Name Improvement
Fast Full Pel Search SDSR
Foreman QCIF 69.203 68.858 — 0.5%
Mobile QCIF 173.016 173.250 + 0.1%
Coastguard QCIF 76.134 76.022 — 0.1%
Foreman CIF 188.773 188.490 — 0.1%
Tempete CIF 425.392 425.810 + 0.1%
Flower CIF 669.312 669.333 + 0.003%
Stefan SIF 505.450 505.693 + 0.05%
Football CIF 413.301 416.525 + 0.8%
Table tennis SIF 256.259 257.925 + 0.65%
Average + 0.11%

34

Table 4-5 Total Encoding Time of Fast Full Pel Search and SDSR

Total Encoding Time (Second)

Sequence Name Improvement
Fast Full Pel Search SDSR

Foreman QCIF 156 74 — 53%
Mobile QCIF 151 75 — 50%
Coastguard QCIF 151 70 — 54%
Foreman CIF 602 319 — 47%
Tempete CIF 583 324 — 44%
Flower CIF 374 221 — 41%
Stefan SIF 508 340 — 33%
Football CIF — 23%
Table tennis SIF — 43%
— 43%

Average

#24 - football cif 91

35

Figure 4-1 24™ and 25" frame of football CIF sequence

=% -'".-:"‘p i qb e

ittt "

" SAD_SDSE $AD and SR of SDSR
2000 —— $AD_Origin 18
— 3R
1500 ¢
(o)
< 1000 |
500 |
0
17 13 19 25 31 37 43 49 55 6l 67 T'F‘3 79 85 91 97 103 109 115 121 127 133 139 145
Tarme
Figure 4-2 SAD and SR of SDSR frame by frame in Foreman QCIF
SaDand SR of SDSR
2500
2000 F
1500 |
E: %
1000 |
500 R
I e 4 +SAD—SDSR
—+—SAD ORI
14 7 10131619 222528 31 34 3740 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 op
Frame —

Figure 4-3 SAD and SR of SDSR frame by frame in Football CIF

36

4.4 Successive Elimination Algorithm with Integral Frame
In Table 4-6 and Table 4-7, SEAIF reduces the number of search points about 76%, while the

total encoding time increases about 14% in average. The reason is the overlapped block used in
H.264/AVC standard. When SEAIF is applied for overlapped blocks, the condition of computing
SAD is tested more than once for the same area. Hence, the probability of computing SAD rises,
and then the computational cost of calculation of SAD cannot be reduced largely. In addition to the
overhead of SEAIF, the encoding time is more slightly. In Table 4-8 and Table 4-9, only 16x16
block size is enabled for motion estimation. There is no overlapped block. Therefore, the

performance of SEAIF is better and the encoding time is less.

Table 4-6 Search Points of FS and SEAIF (all block size enabled)

Number of Search Points
Sequence Name Improvement
Fast Full Pel Search SEAIF

Foreman QCIF 2401 491 — 80%
Mobile QCIF 2401 553 — 77%
Tempete CIF 2401 584 — 76%
Stefan SIF 2401 669 72%
Average — 76%

Table 4-7 Total Encoding Time of Fast Full Pel Search and SEAIF

(all block size enabled)

Total Encoding Time (Second)
Sequence Name Improvement
Fast Full Pel Search SEAIF
Foreman QCIF 156 157 + 0.64%
Mobile QCIF 151 172 + 14%
Tempete CIF 583 690 + 18%
Stefan SIF 508 579 + 14%

37

Average + 12%

Table 4-8 Search Points of FS and SEAIF (16x16 block size only)

Number of Search Points
Sequence Name Improvement
Fast Full Pel Search SEAIF

Foreman QCIF 2401 61 — 97%
Mobile QCIF 2401 71 — 97%
Tempete CIF 2401 114 — 95%
Stefan SIF 2401 193 — 92%
Average — 95%

Table 4-9 Total Encoding Time of Fast Full Pel Search and SEAIF
(16x16 blecksize only)

Total Encoding Time (Second)
Sequence Name Improvement
Fast Full Pel Search SEAIF
Foreman QCIF 112 177 — 31%
Mobile QCIF 117 84 — 28%
Tempete CIF 458 332 — 28%
Stefan SIF 369 289 — 2T%
Average — 29%

In the section 3.3.3, we modified the spiral search pattern in JM 9.4. The experimental result is
presented in Table 4-10. Although the search patterns are different, all the search points are
examined. The best-matched blocks with the same RD cost may not be the same due to the
different search order. Therefore, the results in bitrate field are slightly different.

The effects of both patterns are almost the same, so we use the spiral search pattern in JM 9.4

with our proposed SEAIF.

38

Table 4-10 SEAIF with different spiral search patterns

Bitrate (Kbps) Total Encoding Time (Sec)
Sequence Name
M 9.4 Ours Improvement | JM 9.4 Ours Improvement

Foreman QCIF 69.203 68.981 +0.3% 157 155 —1.3%
Mobile QCIF 173.016 173.413 +0.2% 172 167 —2.9%
Tempete CIF 425.392 | 425.678 +0.07% 690 649 —5.9%
Stefan SIF 505.450 | 505.566 +0.02% 579 546 —5.7%
Average +0.15% —3.95%

4.5 Early Termination Algorithm

In Table 4-11, Table 4-12, and Table 4-13, our proposed Early Termination Algorithm (ETA)
reduces the number of SP about 44.5%:.and the-bit rate is nearly the same with FS. However, the
encoding time is not reduced as we expect: In motion estimation, each search point is estimated in
matching criterion, usually SAD. The propesed-E+A terminates the searching process early to
reduce the computations of SAD. In this experiment;-our ETA is used with the Fast Full Pel Search
algorithm® and the algorithm calculates all SAD values in advance. Although our ETA can skip a
large number of search points, it can not save the computations of SAD. So the encoding time can
not be saved in this experiment. The proposed Early Termination Algorithm should be used with

other algorithms instead of the algorithms computing SAD in advance.

Table 4-11 Search Points of FS and ETA

Number of Search Points
Sequence Name Improvement
Fast Full Pel Search ETA
Foreman QCIF 2401 1484 — 38%
Mobile QCIF 2401 1197 — 50%

® The algorithm is proposed in H.264/AVC reference software JM9.4.
39

Tempete CIF 2401 1306 — 46%

Stefan SIF 2401 1350 — 44%

Average — 44.5%

Table 4-12 Bitrates of FS and ETA

Bitrates (Kbps)
Sequence Name Improvement
Fast Full Pel Search ETA

Foreman QCIF 69.203 69.365 + 0.2%
Mobile QCIF 173.016 173.366 + 0.2%
Tempete CIF 425.392 424.898 — 0.1%
Stefan SIF 505.450 505.987 + 0.1%
Average + 0.1%

Table 4-13 Total Encoding Time of Fast Full Pel Search and ETA

Total Enceding Time (Second)
Sequence Name Improvement
Fast Full Pel Search ETA
Foreman QCIF 156 140 — 10.3%
Mobile QCIF 151 152 + 0.7%
Tempete CIF 583 594 + 1.9%
Stefan SIF 508 498 — 2.0%
Average — 2.4%

4.6 Content-Aware Fast Motion Estimation Algorithm (CAFME)

In this section, we integrate the simple dynamic search range (SDSR), successive elimination
algorithm with integral frame (SEAIF), and early termination algorithm (ETA) to form the
Content-Aware Fast Motion Estimation Algorithm (CAFME).

In the Table 4-14, Table 4-15, and Table 4-16, the number of search points can be reduced

40

more than 90% in most of the sequences. Especially, for the slow and median motion, the reduced
rates of search points are about 99%. For high motion, the reduced rates of search points should be
lower. The reduced rate of search points is 73.8% for football sequence. In average, the increment
of bit rate in CAFME is very small, about 0.26%. The total encoding time is reduced about 41.9%,

and the number of SP is reduced about 93.1%.

Table 4-14 Search Points of FS and CAFME

Number of Search Points
Sequence Name Improvement
Fast Full Pel Search CAFME
Foreman QCIF 2401 37 — 98.5%
Mobile QCIF 2401 12 — 99.5%
Coastguard QCIF 2401 29 — 98.8%
Foreman CIF 2401 100 — 95.8%
Tempete CIF 2401 69 — 97.1%
Flower CIF 2401 199 — 91.7%
Stefan SIF 2401 184 — 92.3%
Football CIF 2401 628 — 73.8%
Table tennis SIF 2401 224 — 90.7%
Average — 93.1%
Table 4-15 Bitrates of FS and CAFME
Bitrates (Kbps)
Sequence Name Improvement
Fast Full Pel Search CAFME

Foreman QCIF 69.203 69.118 — 0.12%
Mobile QCIF 173.016 173.285 + 0.16%
Coastguard QCIF 76.134 75.862 — 0.36%
Foreman CIF 188.773 188.784 + 0.005%

4

Tempete CIF 425.392 425.955 + 0.13%
Flower CIF 669.312 670.211 + 0.13%
Stefan SIF 505.450 504.782 — 0.13%
Football CIF 413.301 419.357 + 1.5%
Table tennis SIF 256.259 258.939 + 1.04%
Average + 0.26%

Table 4-16 Total Encoding Time of Fast Full Pel Search and CAFME

Total Encoding Time (Second)
Sequence Name Improvement
Fast Full Pel Search CAFME

Foreman QCIF 156 69 — 56%
Mobile QCIF 151 77 — 49%
Coastguard QCIF 151 68 — 55%
Foreman CIF 602 314 — 48%
Tempete CIF 583 318 — 45%
Flower CIF 374 224 — 40%
Stefan SIF 508 324 — 36%
Football CIF 363 325 — 10%
Table tennis SIF 298 184 — 38%
Average — 41.9%

4.7 Summary

The proposed Simple Dynamic Search Range (SDSR) can reduce the number of search points
about 80% while sustaining the coding efficiency (bitrate increases 0.11% in average). We also
integrate the Successive Elimination Algorithm with Integral Frame (SEAIF) and the Early
Termination Algorithm (ETA) with SDSR to form the Content-Aware Fast Motion Estimation

Algorithm (CAFME). The CAFME improves the SDSR and the number of search points is reduced

42

to 93.1% while the bit rate increases just a little (0.26%). The overall encoding time is reduced

about 41.9% in our implementation.

43

Chapter 5
Conclusions and Future Works

The motion estimation plays an important role in the video compression. However, motion
estimation module is usually the most computational intensive part in a typical video encoder.
Hence, the efficient motion estimation algorithm is needed. We proposed a fast algorithm called
Content-Aware Fast Motion Estimation Algorithm (CAFME). CAFME consists of the Simple
Dynamic Search Range (SDSR), Successive Elimination Algorithm with Integral Frame (SEAIF),
and Early Termination Algorithm (ETA). The SDSR adjusts the search range for every block
adaptively. The SEAIF reduces the number of computation of SAD without loss. The ETA
terminates the search process early when finding a good candidate block.

The SDSR need not predefined any threshold predefined and perform well for all the test
sequences. The SEAIF is designed for overlapped wvariable block size and applies reusing
techniques. The performance of ETA:S good and stable for all kinds of motion activity.

The experimental results show that CAFME can reduce the number of search point about
93.1% and the bitrate only increases “0.26% while sustaining the same PSNR. We modify
H.264/AVC reference software JM 9.4 and implement our proposed algorithms on it. The total
encoding time reduces about 41.9%.

The motion search algorithm currently used in CAFME is full search (FS). However it may be
replaced by any fast motion estimation algorithm like TSS and DS, etc. The future works may be to
develop a fast motion estimation algorithm suitable for dynamic search range, alleviate the

overhead in implementation, and so on.

44

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

T. Koga, K. linuma, A. Hirano, Y. lijima, and T. Ishiguro, “Motion Compensated Interframe

Coding for Video Conferencing” Proc. Nat. Telecommun. Conf., pp. G5.3.1-5.3.5, New

Orleans, LA, Nov. 29-Dec. 3 1981.
S. Zhu and K.-K. Ma, “A New Diamond Search Algorithm for Fast Block-Matching Motion

Estimation”, IEEE Trans. on Image Processing, Volume 9, Issue 2, pp. 287-290, Feb. 2000.

B. Liu and A. Zaccarin, “New Fast Algorithms for the Estimation of Block Motion Vectors”,

IEEE Trans. on Circuits System Video Technology, Volume 3, pp. 148-157, Apr. 1993.

V.-A. Nguyen and Y.-P. Tan, “Fast Block-Based Motion Estimation Using Integral Frames”,

IEEE Signal Processing Letters, Volume 11, Issue 9, pp. 744-747, Sep. 2004.

R. Li, B. Zeng, and M.-L. Liou, “A New Three-Step Search Algorithm for Block Motion

Estimation”, IEEE Trans. on Circuits and Systems for Video Technology, Volume 4, Issue 4,

pp. 438-442, Aug. 1994.
J. Jain and A. Jain, “Displacement Measurement and Its Application in Interframe Image

Coding” IEEE Trans. on Communications, Volume COMM-29, pp. 1799-1808, Dec. 1981.

L.-M. Po and W.-C. Ma, “A Novel Four-Step Search Algorithm for Fast Block Motion

Estimation” IEEE Trans. on Circuits and Systems for Video Technology, Volume 6, Issue 3,

pp. 313-317, Jun. 1996.
C.-H. Cheung and L.-M. Po, “A Novel Cross-Diamond Search Algorithm for Fast Block

Motion Estimation” IEEE Trans. on Circuits and Systems for Video Technology, Volume 12,

Issue 12, pp. 1168-1177, Dec. 2002.
C.-W. Lam, L.-M. Po, and C.-H. Cheung, “A New Cross-Diamond Search Algorithm for Fast

Block Matching Motion Estimation” 2003 International Conf. on Neural Networks and

Signal Processing, Volume 2, pp. 1262-1265, Dec. 14-17 2003.

H. Jia and L. Zhang, "A New Cross Diamond Search Algorithm for Block Motion

Estimation” Proc. of IEEE International Conf. on Acoustics, Speech, and Signal Processing,

Volume 3, pp. 1ii-357-60, May 17-21 2004.

45

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. Zhu, X. Lin, L. Chau, and L.-M. Po, “Enhanced Hexagonal Search for Fast Block Motion

Estimation” IEEE Trans. on Circuits and Systems for Video Technology, Volume 14, Issue 10,

pp. 1210-1214, Oct. 2004.
Y. Nie and K.-K. Ma, “Adaptive Rood Pattern Search for Fast Block-matching motion

estimation” IEEE Trans. on Image Processing, Volume 11, Issue 12, pp. 1442-1449, Dec.

2002.

K.-K. Ma and G. Qiu, “Unequal-Arm Adaptive Rood Pattern Search for Fast Block-Matching
Motion Estimation in the JVT/H.26L” 2003 International Conf. on Image Processing, Volume
1, pp. 1-901-4, Sep. 14-17 2003.

K.-K. Ma and G. Qiu, “An Improved Adaptive Rood Pattern Search for Fast Block-Matching
Motion Estimation in JVT/H.26L” Proc. of the 2003 International Symposium on Circuits
and Systems, Volume 2, pp. 11-708 - 11-711, 25-28 May 2003.

Y.-C. Lim, K.-Y. Min, and J.-W. Chong, “A Pentagonal Fast Block Matching Algorithm for

Motion Estimation Using Adaptive Search Range” IEEE International Conf. on Acoustics,

Speech, and Signal Processing, Volume 3,pp. H1-- 669-72, Apr. 6-10 2003.

W. Li and E. Salari, “Successive Elimination Algorithm for Motion Estimation” IEEE Trans.

on Image Processing, Volume 4, Issue 1, pp. 105-107, Jan. 1995.

Digital Video Coding Group, ITU-T Recommendation H.263 Software Implementation,
Telenor R&D, 1995.
M. Yang, H. Cui, and K. Tang, “Efficient Tree Structured Motion Estimation Using

Successive Elimination” IEE Proc. on Vision, Image and Signal Processing, Volume 151,

Issue 5, pp. 369-377, Oct. 30 2004.
Yu-Wen Huang, Shao-Yi Chien, Bing-Yu Hsieh, and Liang-Gee Chen, “Global Elimination
Algorithm and Architecture Design for Fast Block Matching Motion Estimation” IEEE Trans.

on Circuits and Systems for Video Technology, Volume 14, Issue 6, pp. 898-907, Jun. 2004.

X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A Multilevel Successive Elimination Algorithm for

Block Matching Motion Estimation” IEEE Trans. on Image Processing, Volume 9, Issue 3, pp.

501-504, Mar. 2000.

46

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

L.-W. Lee, J.-F. Wang, J.-Y. Lee, and J.-D. Shie, ”Dynamic Search-Window Adjustment and

Interlaced Search for Block-Matching Algorithm” IEEE Trans. on Circuits and Systems for

Video Technology, Volume 3, Issue 1, pp. 85-87, Feb. 1993.

J. Feng, K.-T. Lo, H. Mehrpour, and A.E. Karbowiak, “Adaptive Block Matching Motion

Estimation Algorithm for Video Coding” IEE Electronics Letters, Volume 31, Issue 18, pp.

1542-1543, Aug. 31 1995.
H.-S. Oh and H.-K. Lee, “Adaptive Adjustment of the Search Window for Block-Matching

Algorithm with Variable Block Size,” IEEE Trans. on Consumer Electronic, Volume 44, No.

3, pp. 659-666, Aug. 1998.
L.-K. Liu, “Dynamic Search Range Motion Estimation for Video Coding” IEEE First

Workshop on Multimedia Signal Processing, pp. 207-212, Jun. 23-25 1997.

H.-M. Kim and T. Acharya, “CAS: Context Adaptive Search for Motion Estimation” Proc. of

International Conf. on Information:Technology Coding and Computing, pp. 202-206, Apr.

2-4 2001.
J. Minocha and N.-R. Shanbhag, .“A~Low-Power Data-Adaptive Motion Estimation
Algorithm” IEEE 3rd Workshop on Multimedia Signal Processing, pp. 685-690, Sep. 13-15

1999.
S. Saponara and L. Fanucci, ”Data-Adaptive Motion Estimation Algorithm and VLSI

Architecture Design for Low-Power Video Systems” IEE Proc. on Computers and Digital

Techniques, Volume 151, Issue 1, pp. 51-59, Jan. 15 2004.

P.-1. Hosur, “Motion Adaptive Search for Fast Motion Estimation” IEEE Trans. on Consumer

Electronics, Volume 49, Issue 4, pp. 1330-1340, Nov. 2003.
S.-S. Lin, P-C. Tseng, C.-P. Lin, and L.-G. Chen, “Multi-Mode Content-Aware Motion

Estimation Algorithm for Power-Aware Video Coding Systems” IEEE Workshop on Signal

Processing Systems, pp. 239-244, 13-15 Oct. 2004.

K.-P. Lim, G Sullivan, and T. Wiegand, “Text Description of Joint Model Reference
Encoding Methods and Decoding Concealment Methods” ITU-T, Doc. #JVT-N046, Jan.
2005.

47

[31] P. Viola and M.-J. Jones, “Robust Real-Time Object Detection” Cambridge Res. Lab., Tech.
Rep. CRL 2001/01, Feb. 2001.
[32] H.264/AVC reference software,

http://ftp3.itu.ch/av-arch/jvt-site/reference software/ and http://iphome.hhi.de/suehring/tml/

[33] Z. Chen, P. Zhou, Y. He, and Y. Chen, “Fast Integer Pel and Fractional Pel Motion Estimation
for JVT” ITU-T, Doc. #JVT-F017, Dec. 2002.
[34] B.Jeonand J. Lee, “Fast Mode Decision for H.264“ ITU-T, Doc. #JVT-J033, Dec. 2003.

48

