

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

內 容 感 知 的 快 速 運 動 估 計 演 算 法

Content-Aware Fast Motion Estimation Algorithm

 研 究 生： 劉祺昱

 指導教授： 李素瑛 教授

中 華 民 國 九 十 四 年 六 月

 i

內容感知的快速運動估計演算法

Content-Aware Fast Motion Estimation Algorithm

 研究生：劉祺昱 Student: Chi-Yu Liu

 指導教授：李素瑛 教授 Advisor: Suh-Yin Lee

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao-Tung University

In partial Fulfillment of the Requirements

For the Degree of

Master

In

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 ii

內容感知的快速運動估計演算法

研究生：劉祺昱 指導教授：李素瑛 教授

國立交通大學資訊工程研究所

摘要

在這篇論文中，我們提出內容感知的快速運動估計演算法 (CAFME, Content-Aware Fast

Motion Estimation Algorithm) 可以減少運動估計 (Motion Estimation) 所需要的計算量，並且

保持幾乎相同的壓縮效率 (Coding Efficiency)。運動估計大致可以分為搜尋 (Search Phase) 與

比對 (Matching Phase) 。在搜尋部分，我們基於影片的特性提出動態搜尋範圍演算法 (SDSR,

Simple Dynamic Search Range) 以減少需要檢查的搜尋點。在比對部分，我們整合連續排除演

算法(SEA, Successive Elimination Algorithm) 與積分影像 (Integral Frame) ，提出一套適合

H.264/AVC 壓縮標準的連續排除演算法。此外，我們以比對誤差 SAD (Sum of Absolute

Difference)為量測，提出提前結束演算法 (ETA, Early Termination Algorithm) 。

我們所提出的動態搜尋範圍演算法的基本概念是利用運動向量 (Motion Vector) 在空間

(Temporal) 與時間 (Spatial) 的相關性，對目前方塊的搜尋範圍作調整。而我們提出的連續排

除演算法則是利用積分影像來計算方塊和 (Block Sum) 且調整原本的連續排除演算法架

構，使在運動估計時計算 SAD 的次數可以減少並且重複利用。最後，提前結束演算法則是使

用目前方塊預測 SAD 與目前找到最好的 SAD 來衡量運動向量的準確度，以決定是否要結束

目前方塊的運動估計。在 H.264/AVC 參考軟體 JM9.4 上實作，實驗結果顯示我們提出的方法

所減少的搜尋點可達 93.1%，減少編碼時間大約 42%，而位元率與 PSNR 幾乎相同。

檢索詞：運動估計、連續排除演算法、積分影像、搜尋範圍、H.264/AVC, SAD, 運動向量

 i

Content-Aware Fast Motion Estimation Algorithm

Student: Chi-Yu Liu Advisor: Prof. Suh-Yin Lee

Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

In this paper, we propose the Content-Aware Fast Motion Estimation Algorithm (CAFME) that

reduces computation of motion estimation (ME) while maintains almost the same coding efficiency.

Motion estimation can be divided into two phases, searching phase and matching phase. In

searching phase, we propose the Simple Dynamic Search Range algorithm (SDSR) based on video

characteristics to reduce the number of search points (SP). In matching phase, we integrate the

Successive Elimination Algorithm (SEA) and the integral frame to develop a new SEA for

H.264/AVC video compression standard, called Successive Elimination Algorithm with Integral

Frame (SEAIF). Besides, based on sum of absolute difference (SAD), we also propose the Early

Termination Algorithm (ETA) to terminate motion estimation of current block early.

The basic idea of Simple Dynamic Search Range algorithm is to adjust the search range of

current block by using temporal and spatial correlations of motion vector (MV). Our SEAIF uses

“integral frame” to compute block sum and reuses SAD already computed. Finally, the proposed

Early Termination Algorithm uses prediction of SAD of current block to measure the accuracy of

matching, and then decides to terminate motion estimation or not. We implement in H.264/AVC

reference software JM9.4 and the experimental results show that our proposed algorithm can reduce

the number of Search Points about 93.1%, encoding time about 42%, while maintains almost the

same bitrate and PSNR.

Index Terms: motion estimation, successive elimination algorithm, integral frame, search

range, H.264/AVC, SAD, motion vector

 ii

Acknowledgement

I greatly appreciate the kind guidance of my advisor, Prof. Suh-Yin Lee. In virtue of her

graceful suggestions and encouragement, I can complete this thesis. Besides, thanks are extended to

all my friends and all the members in the Information System Laboratory for suggestions. I am

also grateful to my girl friend because she gives me power and support all the time. Finally, I would

like to express my appreciation to my parents for their cares and supports. This thesis is dedicated

to them.

 iii

Table of Contents

Abstract (Chinese)... i

Abstract (English) .. ii

Acknowledgement ... iii

Table of Contents... iv

List of Tables.. vi

List of Figures... vii

Chapter 1 Introduction.. 1

1.1 Motivation.. 1

1.2 Related Works .. 1

1.3 Organization... 4

Chapter 2 Background Knowledge .. 6

2.1 Block Motion Estimation and Compensation .. 6

2.2 Matching Criterion... 7

2.3 Integral Frame .. 8

2.4 Fast Motion Estimation Algorithms... 10

2.4.1 Diamond Search (DS) ..11

2.4.2 Successive Elimination Algorithm (SEA)... 12

2.4.3 Partial Distortion Elimination (PDE).. 13

2.4.4 Modified Window Follower Algorithm (MWFA) .. 14

Chapter 3 Content-Aware Fast Motion Estimation Algorithm ... 16

3.1 Analysis of Search Range .. 16

3.1.1 Search Range and Frame Rate .. 17

3.1.2 Search Range and Frame Resolution .. 17

3.1.3 Search Range and Motion Activity ... 18

3.1.4 Search Range, QP, and SAD of Best-matched Block 19

3.2 Simple Dynamic Search Range (SDSR).. 20

 iv

3.3 Successive Elimination Algorithm with Integral Frame (SEAIF) 23

3.3.1 Reusing of sea value ... 23

3.3.2 Reusing of SAD value... 24

3.3.3 Spiral Search ... 24

3.3.4 Analysis of complexity ... 25

3.4 Early Termination Algorithm (ETA) .. 26

Chapter 4 Experimental Results and Discussions... 30

4.1 Experimental Environment .. 30

4.2 Opponent: Fast Full Pel Search.. 32

4.3 Simple Dynamic Search Range.. 33

4.4 Successive Elimination Algorithm with Integral Frame.. 37

4.5 Early Termination Algorithm ... 39

4.6 Content-Aware Fast Motion Estimation Algorithm (CAFME).................................. 40

4.7 Summary .. 42

Chapter 5 Conclusions and Future Works .. 44

Bibliography ... 45

 v

List of Tables

Table 1-1 Advantages and drawbacks of fast motion estimation algorithms 5

Table 3-1 The relation between SR and FPS ... 17

Table 3-2 The relation between SR and resolution ... 18

Table 3-3 The relation between SR and motion activity... 18

Table 3-4 The relation between SR, QP, and SAD .. 19

Table 4-1 Descriptions of test video sequences .. 31

Table 4-2 Snapshots of test video sequences .. 32

Table 4-3 Search Points of FS and SDSR ... 34

Table 4-4 Bitrates of FS and SDSR... 34

Table 4-5 Total Encoding Time of FS and SDSR... 35

Table 4-6 Search Points of FS and SEAIF (all block size enabled).................................... 37

Table 4-7 Total Encoding Time of FS and SEAIF (all block size enabled) 37

Table 4-8 Search Points of FS and SEAIF (16x16 block size only) 38

Table 4-9 Total Encoding Time of FS and SEAIF (16x16 block size only)........................ 38

Table 4-10 SEAIF with different spiral search patterns ... 39

Table 4-11 Search Points of FS and ETA ... 39

Table 4-12 Bitrates of FS and ETA ... 40

Table 4-13 Total Encoding Time of FS and ETA ... 40

Table 4-14 Search Points of FS and CAFME .. 41

Table 4-15 Bitrates of FS and CAFME .. 41

Table 4-16 Total Encoding Time of FS and CAFME .. 42

 vi

List of Figures

Figure 2-1 Motion estimation.. 7

Figure 2-2 Different partition sizes in a macroblock .. 7

Figure 2-3 Integral frame .. 9

Figure 2-4 Computation of block sum.. 10

Figure 2-5 Diamond search patterns ...11

Figure 2-6 Example for search process of Diamond Search .. 12

Figure 3-1 SR and motion activity in foreman QCIF frame by frame.............................. 20

Figure 3-2 SAD of foreman CIF frame by frame .. 21

Figure 3-3 Current and neighbor blocks (variable block size) .. 22

Figure 3-4 Spiral search in JM 9.4 ... 25

Figure 3-5 Real spiral search pattern... 25

Figure 4-1 24th and 25th frame of football CIF sequence .. 36

Figure 4-2 SAD and SR of SDSR frame by frame in Foreman QCIF 36

Figure 4-3 SAD and SR of SDSR frame by frame in Football CIF................................... 36

 vii

Chapter 1
Introduction

1.1 Motivation
Block matching based motion estimation (ME) and compensation is a fundamental process in

international video compression standards, such as MPEG-1, MPEG-2, MPEG-4, ITU-T H.263,

and H.264, which can efficiently remove temporal redundancy. Since a ME module is usually the

most computational intensive part in a typical video encoder (about 50%~90% of the entire system),

the efficient ME module is needed.

A conventional block-matching algorithm called full search algorithm (FS) exhaustively

examines every search point within a search window to find the global optimal matched block in

the reference frame. However, FS is too computationally intensive to fit the requirement of real

time encoding. Therefore, many fast algorithms have been proposed to alleviate the huge

computation of FS.

These fast algorithms can be classified into two categories. One is to reduce search points,

such as the Three-Step Search (TSS) [1] and Diamond Search (DS) [2]. Another is to simplify the

matching operations, such as pixel decimation [3] and SAD-BS measurement [4]. The first category

is usually based on the assumption that the MVs are center-biased and the matching error decreases

monotonically as the search point moves close to the global minimum position. Since the

assumption is often not true in real world videos, these algorithms are often trapped into local

minimum. The second category often seriously impairs the accuracy of matching. The algorithms

of the two categories suffer for considerable PSNR degradation compared to FS, especially when

the motion field is large and complex. Therefore, we would like to propose a new fast algorithm

which can avoid local minimum problem and reduce computational cost in matching phase.

1.2 Related Works
In recent years, many fast motion estimation algorithms have been proposed. The Three-Step

Search (TSS) [1], New Three-Step Search (NTSS) [4], 2-D Logarithmic Search (2-D LOGS) [6],

 1

Four-Step Search (4SS) [7], Diamond Search (DS) [2], Cross-Diamond Search (CDS) [8] [9] [10],

Hexagon-Based Search (HEXBS) [11], Adaptive Rood Pattern Search (ARPS) [12] [13] [14], and

Pentagonal Fast Block-Matching Algorithm (PFBMA) [15] are developed to limit the search points

to a small subset of all candidate points with certain search pattern. They usually cannot perform

well for all kinds of motion activity. Although these algorithms are often trapped into local

minimum when motion field is large and complicated, they can considerably reduce the

computational cost.

Some algorithms like pixel decimation [3] suggest pixel decimation schemes for measuring

the block matching based on a set of pixel patterns. SAD-BS [4] partitions a block into sub-blocks

and computes the sum of absolute difference (SAD) between the sums of pixel values in the

corresponding sub-blocks as the block matching measure. These algorithms determine the tradeoff

between accuracy and computational cost in block matching.

The Successive Elimination Algorithm (SEA) [16] and Partial Distortion Elimination (PDE)

[17] are lossless approaches. The SEA avoids unnecessary SAD calculations by comparing the

minimum SAD already found with the absolute difference between the sum of pixel values in

current block and the sum of pixel values in candidate block. Due to the advantage of SEA, [18],

[19], and [20] are proposed in recent years. The PDE approach uses the partial SAD to eliminate

impossible candidates before the complete computation of SAD is performed. The SEA and PDE

will perform well when a good candidate point is found at early stage. Because the successive tests

will have a tighter distortion bound and may be skipped. Spiral scan order [17] and a good initial

MV make more search points be skipped [18].

The Dynamic Search-Window Adjustment (DSWA) [21] adjusts the size of search window in

the Three-Step Search (TSS) according to the mean absolute difference (MAD) between current

block and candidate block. DSWA compares the first two minimum MADs for each stage of TSS to

determine the search direction. The Adaptive Full-Search Block Matching (AFSBM) [22] considers

the MAD at the initial search point reflects the degree of motion for a block. Then AFSMB

classifies each block into three motion classes by comparing the MAD with thresholds. The two

approaches take the block matching error into account for the degree of motion, but there is no

 2

significant correlation between them [23].

The Dynamic Adjustment of Search Window with Variable block size (DASWA) [23] sorts all

blocks in a frame according to homogeneity and performs motion estimation for the first block. For

the other blocks, the size of search window is set to the magnitude of the MV of adjacent blocks

and the search center is set to the position that is pointed to by the MV of adjacent block, which has

the largest block similarity. This approach requires the cost of sorting homogeneity and computing

similarity. The approach proposed in [24] divides the blocks of a frame into two groups just like

chessboard. The blocks in the first groups are motion estimated first. Then the motion estimations

for the blocks in second group are performed with dynamic search range depending on the MVs of

their neighbor blocks. The Context Adaptive Search (CAS) [25] uses spatial correlation of the

motion field and the median predictor. If the median values for both coordinates come from the

same macroblock (MB), CAS assumes that motion field is smooth and applies the 3x3 search

window. Otherwise, CAS chooses other window size (3x5, 5x3, and 5x5). These approaches only

exploit the spatial correlation of motion field.

The Window Follower Algorithm (WFA) [26] takes the maximum displacement of MVs in

previous frame plus one unit as the size of search window for the current frame. The algorithm fails

in the case of sudden motion changes or frames with objects characterized by different motion

activities. The modified version of WFA (MWFA) [27] alleviates the problem by exploiting both

temporal and spatial correlations in the motion field and adopting the SAD values as a measure of

the efficiency of the ME. MWFA needs proper thresholds to measure the accuracy of block

matching, however, the thresholds should be determined adaptively by the characteristics of video.

The Motion Adaptive Search (MAS) [28] introduces the global motion activity and local motion

activity for frame basis and macroblock basis, respectively. Global motion activity uses the mean

and variance of the MVs in the previous frame with Chebyshev’s Rule to determine the search

range. Then local motion activity adjusts the search range for each MB. In [29], Siou-Shen Lin et al.

proposed a motion estimation algorithm with multi-mode by adopting MV variance and SAD

threshold. The algorithm changes scheme adaptively according to characteristics of video

sequences.

 3

In the previous works, there are some drawbacks such as considerable degradation of PSNR,

requirement of appropriate thresholds, substantial overhead, and unsuitable for high motion activity.

The drawbacks and advantages of these algorithms are shown in Table 1-1.

Because the drawbacks of previous works, we propose the Content-Aware Fast Motion

Estimation (CAFME) algorithm to overcome these drawbacks. The CAFME consists of the Simple

Dynamic Search Range algorithm (SDSR), Successive Elimination Algorithm with Integral Frame

(SEAIF), and Early Termination algorithm (ETA). The SDSR adjusts search range adaptively

according to motion activity and performs well regardless of low or high motion. The SEAIF is

designed for H.264/AVC visual compression standard and the ETA terminates the search process if

the up-to-date block is good enough. Although the CAFME consists of the SDSR, SEAIF, and ETA,

these three algorithms can be used independently. The experimental result shows that the proposed

SDSR can find a very good search range for each block and maintain almost the same coding

efficiency compared with Full Search.

1.3 Organization
The paper is organized as follows. Chapter 2 introduces the related background knowledge,

including motion estimation, integral frame, and related algorithms. In Chapter 3, we present how

the Content-Aware Fast Motion Estimation Algorithm is designed and developed. Chapter 4 reports

the significant experimental results. Finally, the conclusions and future works are given in Chapter

5.

 4

Table 1-1 Advantages and drawbacks of fast motion estimation algorithms

Category Advantage Drawback

Follow certain

search pattern

 # of SP is very small

 Reduce considerable

computation

 Local minimum problem

 Unsuitable for high motion

 Coding efficiency degradation

Adjust search

window size

 # of SP is small

 Reduce considerable

computation

 Need thresholds

 Unsuitable for sudden motion change

 Substantial overhead

 Coding efficiency degradation

Reduce matching

complexity

 Reduce considerable

computation

 Lossless approach

 Substantial overhead

 Unsuitable for hardware

 Coding efficiency degradation

 5

Chapter 2
Background Knowledge

In this chapter, we introduce some background knowledge related to our proposed approaches.

At first, we acquaint you with block motion estimation and compensation. Second, matching

criterions for motion estimation are described briefly. Next, integral frame is presented. Finally,

some fast motion estimation algorithms are presented in detail.

2.1 Block Motion Estimation and Compensation
Motion estimation and compensation techniques are used to remove temporal redundancy of

inter frames. An ideal approach is to segment the frame into some objects including moving and

stationary objects. However, the segmentation of objects is difficult and impractical. A practical and

widely used method of motion compensation is to compensate for movement of blocks of the

currents frame. We call this method as block-based motion estimation and compensation. Usually

the block is a 16x16-pixel region of a frame, called macroblock (MB). The MB is the basic unit for

motion compensated prediction in many of visual coding standards including MPEG-1, MEEG-2,

MPEG-4, H.263 and H.264.

Motion estimation of a macroblock involves finding a 16x16-pixel block in a reference frame

that closely matches the current macroblock. The reference frame may be before or after the current

frame in display order. An area in the reference frame centered on the search center is searched and

the 16x16-pixel block within the search area that minimizes the matching criterion is chosen as the

best-matched block. The height and width of the search area are considered as the size of search

window as shown in Figure 2-1.

 6

Reference frame Current frame

Current MB

Best matched block

Search range

MV

Figure 2-1 Motion estimation

The new visual coding standard H.264/AVC introduces the overlapped variable block size to

improve coding efficiency. There are seven block sizes, 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4,

forming the following partitions of a 16x16 macroblock as depicted in Figure 2-2. When P8x8 type

is considered, the 8x8, 8x4, 4x8, and 4x4 type must be considered for each of the four individual

8x8 sub-blocks. Note that each partition has its own unique motion vector [30].

16×16 type 16×8 type 8×16 type P8×8 type

8×8 type 8x4 type 4x8 type 4x4 type

Different partition sizes for a macroblock subtype in P8×8 mode

Figure 2-2 Different partition sizes in a macroblock

2.2 Matching Criterion
In order to choose the best-matched block, a matching criterion is needed. Mean square

 7

difference (MSD), mean absolute difference (MAD), and sum of absolute difference (SAD) are

frequently used criterions. Their definitions can be described by the following equations.

()
1 1

2

0 0

1(, (,)) (,) (,)
M N

c r c r
i j

MSD f f m n f i j f i m j n
MN

− −

= =

= − + +∑∑ (2.1)

1 1

0 0

1(, (,)) (,) (,)
M N

c r c r
i j

MAD f f m n f i j f i m j n
MN

− −

= =

= − + +∑∑ (2.2)

1 1

0 0
(, (,)) (,) (,)

M N

c r c r
i j

SAD f f m n f i j f i m j n
− −

= =

= − + +∑∑ (2.3)

M and N is the width and height of the block, respectively. m and n are horizontal and vertical

component of motion vector, respectively. fc and fr are the current and reference blocks, respectively.

MSD, MAD, and SAD have very high accuracy in block matching. However, SAD does not need

any multiplication operations. Therefore, SAD is the most popular criterion used in the

international video coding standards.

Unlike other video coding standards, H.264 uses the Lagrange multiplier to compute the rate

distortion cost for each partition within a macroblock. The best-matched block is selected by

minimizing the following Lagrange cost.

(,) (, (,)) ()motion c r motion PJ MV SAD f f m n Rate MV MVλ λ= + ⋅ − (2.4)

MV = (m, n) is the motion vector, MVP = (mPx, nP) is the prediction for motion vector, andλ

motion is the Lagrange multiplier. The function Rate(MV－MVP) represents the predicted motion

error and is implemented by a look up table [31].

2.3 Integral Frame
In this section, we introduce integral frame technique which is used in our Successive

Elimination Algorithm (SEA) to compute the sum of pixel values in a block efficiently. We denote

the sum of pixel values in a block as block sum (BS). Viola et al. [31] proposed the integral frame

 8

technique for sum of pixel values within any rectangular area in a frame. Given a video frame f, the

value of its integral frame at pixel (p, q) is denoted as If (p, q), as defined in the equation (2.5).

0 0
(,) (,)

p q

f
i j

I p q f i j
= =

= ∑∑ (2.5)

The integral frame is shown in Figure 2-3

X

Y

p(0, 0)

f (p, q)

If (p, q)

q

Figure 2-3 Integral frame

The computational cost for an integral frame is described as follows. Let Rf (p, q) be the

cumulative row sum of pixel values in frame f. The definitions are:

0

(,) (,)
p

f

i

R p q f i q
=

= ∑ (2.6)

(-1,) 0fR q = (2.7)
(, -1) 0fI p = (2.8)
(,) (1,) (,)f fR p q R p q f p q= − + (2.9)

(,) (, 1) (,)f f fI p q I p q R p q= − + (2.10)

 9

By using equation (2.9) and (2.10) recursively, one can compute the integral frame If in one

pass. For a frame with W x H pixels, 2WH additions are required to compute an integral frame. The

sum of pixel values in any rectangular block in a frame can be computed by three arithmetic

operations. For example, as illustrated in Figure 2-4, the BS of block D can be computed by

equation (2.11).

1 1
() (,) (,) (,) (,) (,)

p q

f f f f
i r j s

BS D f i j I p q I r q I p s I r s
= + = +

= = − − +∑ ∑ (2.11)

X

Y

p(0, 0)

q

A

B

C

D

r

s

Figure 2-4 Computation of block sum

2.4 Fast Motion Estimation Algorithms
In this section, we introduce some fast motion estimation algorithms, including Diamond

Search [2], Successive Elimination Algorithm [16], Partial Distortion Elimination [17], and

modified Window Follower Algorithm [27].

 10

2.4.1 Diamond Search (DS)
Just as other conventional fast motion estimation algorithms, DS [2] is also designed to reduce

the number of search points in motion estimation. DS has very good performance compared with

the Three-Step Search (TSS), New Three-Step Search (NTSS), and Four-Step Search (4SS).

However, DS are still often trapped into local minimum problem. DS employs two search patterns

in motion estimation, as illustrated in Figure 2-5.

The first pattern called large diamond search pattern (LDSP) is repeatedly used until the step

in which the minimum block distortion occurs at the center point. After that, the second pattern

called small diamond search pattern (SDSP) is used as the final step. The minimum block distortion

point found in SDSP is the final solution of MV, which points to the best -matched block. See

Figure 2-6 for example of search process.

Large diamond search pattern
(LDSP)

 Small diamond search pattern
(SDSP)

Figure 2-5 Diamond search patterns

 11

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Figure 2-6 Example for search process of Diamond Search

2.4.2 Successive Elimination Algorithm (SEA)
In motion estimation, the SAD of each block in the search window is compared with the

current minimum SAD. If the SAD of the current block is smaller than the current minimum SAD,

the block is considered as up-to-date best-matched block. In order to reduce the computation of

SAD, Successive Elimination Algorithm (SEA) [16] was proposed. The SEA is a lossless fast

motion estimation algorithm based on mathematical inequality. The main idea of SEA can be

shown in the equation (2.12).

1 1

0 0

1 1 1 1

0 0 0 0

(, (,)) (,) (,)

(,) (,)

(,)
(, (,))

M N

c r c r
i j

M N M N

c r
i j i j

c r

c

SAD f f m n f i j f i m j n

f i j f i m j n

BS BS m n
sea f fr m n

− −

= =

− − − −

= = = =

= − + +

≥ − + +

≡ −

≡

∑∑

∑∑ ∑∑ (2.12)

In equation (2.12), BSc and BSr are the block sums in the current block and candidate block,

 12

respectively. Because SAD(fc, fr(m, n)) is equal to or larger than sea(fc, fr(m, n)), if sea(fc, fr(m, n)) is

larger than the current minimum SAD, SAD(fc, fr(m, n)) must be larger than the current minimum

SAD. Therefore, computation of SAD(fc, fr(m, n)) can be skipped.

To compute sea value is easier than to compute SAD, because BSc has to be calculated only

once and BSr(m, n) can be derived from the previous value of BSr(m－1, n). Hence, SEA can reduce

the computation of SAD efficiently.

Multilevel SEA (MSEA) proposed in [20] is a generalized SEA. MSEA divides a macroblock

into sub-blocks and calculates the BS for each sub-block. Then we compute the sum of absolute

differences of the corresponding BSs as mesa(fc, fr(m, n)). The mesa(fc, fr(m, n)) is always equal to

or larger than sea(fc, fr(m, n)). Consequently, the mesa(fc, fr(m, n)) is a lower bound of SAD. The

equation (2.13) describes the idea.

2

1 1

0 0

2 1

0

(, (,)) (,) (,)

(,)

(, (,))
(,)

(, (,))

L

M N

c r c r
i j

ck rk

k

c r

c r

c

SAD f f m n f i j f i m j n

BS BS m n

msea f f m n
BS BS m n
sea f fr m n

− −

= =

−

=

= − + +

≥ −

≡

≥ −

≡

∑∑

∑
 (2.13)

In Equation (2.13), k is the index of sub-block and L is the level of division. For example,

when N=16 and M=16, msea with level L=0 is reduced to sea, and msea with level L=4 is the same

as SAD. Obviously, the bound is lower when the level is higher; however, the computational cost is

higher.

2.4.3 Partial Distortion Elimination (PDE)
The concept of PDE [17] uses the partial sum of difference to eliminate impossible candidates

before the complete calculation of SAD. The basic concept is shown in equation (2.14).

 13

1 1

0 0
(, (,)) (,) (,) (, (,))

M k

k c r c r c r
i j

SAD f f m n f i j f i m j n SAD f f m n
− −

= =

= − + + ≥∑∑ (2.14)

In the process of computation of SAD, we compute the partial SAD and compare the partial

SAD with the current minimum SAD. If the partial SAD is equal to or larger than the current

minimum SAD, the calculation of SAD can be terminated and the search point can be skipped.

Owing to the overhead of testing inequality, the testing is performed every row. Like SEA, if we

can find a smaller SAD early, the more candidates can be skipped.

2.4.4 Modified Window Follower Algorithm (MWFA)
Window follower algorithm (WFA) [26] takes the maximum displacement of MV in previous

frame plus one unit as the search range for the current frame. The algorithm is presented as follows.

Window Follower Algorithm [27]

Step 1: For the kth frame, compute the maximum horizontal and vertical displacement from all

MVs in (k－1)th frame. The maximum value D is defined as equation (2.15). The dt represents the

maximum displacement of two components of MV of tth block.

max[]tD d= (2.15)

max ,t x yd MVt MVt= ⎢ ⎥⎣ ⎦ (2.16)

Step 2: Perform motion estimation for kth frame with search range P=D+1. For the first frame, the

search range P is set to max search range.

 14

WFA assumes that [26]:

(1) The change of motion content between frames is gradual and not sudden.

(2) The motion content is constant over a large number of successive frames.

However, the characteristics of motion in natural video sequences are various and hardly

predictable. The assumptions of WFA may not be true in natural video sequences. MWFA [27]

modifies WFA by exploiting both temporal and spatial information and adopting SAD as a measure

of accuracy of MV. MWFA algorithm is presented as follows.

Modified Window Follower Algorithm [28]

Step 1: For the kth frame, compute the displacement D as defined in WFA.

Step 2: Perform motion estimation for each block in kth frame with search range Pt, for tth block. Pt

is determined by the following mutually exclusive rules.

 (1) If (SADmint-1 >= TH1) Pt = Pmax, F = 1

 (2) If (SADmint-1 <= TH1 and F == 1) Pt = max (D, d t-1) + 1

 If (SADmint-1 <= TH1 and F == 0) Pt = D + 1

 (3) If (SADmint-1 <= TH2 and F == 1) Pt = max (D, d t-1)

 If (SADmint-1 <= TH2 and F == 0) Pt = D

SADmint-1 and d t-1 represent the minimum SAD and the maximum MV displacement for the (t

－1)th block in the current frame, respectively. The flag F is set to zero at the beginning of each

frame. When the flag F is set to zero, only temporal information is considered; when the flag F is

set to one, both temporal and spatial information are taken into account. The threshold TH1 and TH2

are set to 4096 and 2048, respectively, derived from simulations of typical video sequences.

 15

Chapter 3
Content-Aware Fast Motion Estimation Algorithm

In this chapter, we present our proposed Content-Aware Fast Motion Estimation Algorithm

(CAFME), which consists of SDSR, SEAIF, and ETA. At first, section 3.1 presents some

observations and analyses of search range in motion estimation. Simple dynamic search range

algorithm (SDSR) and SEA with integral frame (SEAIF) are presented in section 3.2 and 3.3,

respectively. Finally, our early termination algorithm (ETA) is given in section 3.4.

3.1 Analysis of Search Range
In this section, we want to explore the relationships among the parameters in the motion

estimation. Because adjustment of search range needs some information, the relationships can help

us to develop a good algorithm. We did some experiments to observe and analyze the relationships

between search range (SR) and frame rate, frame resolution, motion activity, quantization

parameter (QP), and SAD of best-matched block. The experimental environment is as follows.

 Platform: H.264/AVC reference software JM 9.4 [32]

 Machine: Athlon XP 1700+ with 512 MB memory

 Profile: baseline

 Level: 3.0

 Block match algorithm (BMA): full search

 Group of picture (GOP): 15

 Frame structure: IPPP

 Number of reference frame: 1

 Hadamard transform: enable

 All block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4): enable

 Rate-distortion optimized (RDO): enable

 Fast ME (UMHexagonS) [33]: disable

 Fast mode selection [34]: disable

 16

 Rate control (RC): disable

 16x16 MB observed

3.1.1 Search Range and Frame Rate
Since the frame rate affects the difference of successive frames, so we observe the relationship

between SR and frame rate. The test data are foreman sequence with FPS=30 and FPS=15. The

temporal distance of sequence with FPS=30 is 1/30 second and the temporal distance of sequence

with FPS=15 is 1/15 second. In theory, when the frame rate is higher, the motion estimation needs

smaller search range.

The Quantization parameter (QP) is mapped into quantization step and affects the bitrate

significantly. In our experiments, the QP is fixed and RC is disabled. Therefore, we only need to

observe the bitrate field for different search ranges. In Table 3-1, the gray areas represent the

bitrates are stable and the search ranges are enough to find true MVs in motion estimation. We can

observe that the bitrates are approximately stable when the SR≧4 with FPS=30 and the SR≧8

with FPS=15. Experimental results show a larger search range is required to find the true MV when

the frame rate is lower. The experimental results conform to the theory.

Table 3-1 The relation between SR and FPS

Foreman, QCIF (176 x 144), QP=36

FPS=30 100 Frames FPS=15 50 Frames
SR

SNR (dB) Bitrate (Kbps) SNR (dB) Bitrate (Kbps)
32 31.478 69.528 31.582 46.851

16 31.469 69.365 31.561 46.640

8 31.448 69.400 31.561 46.733

4 31.443 69.224 31.555 47.187

2 31.424 69.771 31.495 48.627

1 31.406 71.155 31.465 50.547

0 31.227 79.122 30.077 60.005

3.1.2 Search Range and Frame Resolution
We test the coastguard sequence in QCIF and CIF resolution. In Table 3-2, the gray areas in

 17

QCIF resolution represent the bitrates change slightly when the SR is from 2 to 32 and the gray

areas in CIF resolution represent the bitrates change slightly when the SR is from 4 to 32. These

observations present the SR≧2 is large enough to find the true MVs in QCIF resolution and SR≧4

is large enough to find the true MVs in CIF resolution. Therefore we conclude that the search range

is required to increase adaptively for the larger resolution.

Table 3-2 The relation between SR and resolution
Coastguard, QP=36, FPS=30, Encoded frames=90

QCIF (176 x 144) CIF (352 x 288)
SR

SNR (dB) Bitrate (Kbps) SNR (dB) Bitrate (Kbps)
32 29.178 71.992 29.315 375.003
16 29.183 72.304 29.312 375.539
8 29.185 72.325 29.299 374.728
4 29.168 71.747 29.289 376.667
2 29.144 72.520 29.271 387.957
1 29.107 76.120 29.225 420.099
0 28.799 113.893 28.920 639.923

3.1.3 Search Range and Motion Activity
We divide the foreman sequence into two parts, which represent the low and high motion

sequences. The first part consists of first 90 frames and the second part consists of frames from

frame 151 to 240. In Table 3-3, we observe that the bitrates are approximately stable when the SR

≧4 in low motion sequence and the SR≧8 in high motion sequence. As we expect, the search

range should be increased adaptively for high motion sequences.

Table 3-3 The relation between SR and motion activity

Foreman QCIF QP=36 FPS=30
Frame 0~89 (low motion) Frame 151~240 (high motion)

SR
SNR (dB) Bitrate (Kbps) SNR (dB) Bitrate (Kbps)

32 31.478 69.528 31.245 84.747
16 31.469 69.365 31.242 84.949
8 31.448 69.400 31.223 85.307
4 31.443 69.224 31.166 89.931

 18

2 31.424 69.771 31.024 112.832
1 31.406 71.155 30.954 130.109
0 31.227 79.122 30.633 185.883

3.1.4 Search Range, QP, and SAD of Best-matched Block
In block matching, SAD is used as matching criterion. If SR is too small, then the true MV

may not be found and the SAD found at the best-matched block will be large. Besides, the QP also

affects SAD obviously. Therefore, this experiment considers these factors. In Table 3-4, the field

SAD best average means the average of SAD value causes the minimum rate distortion cost in

H.264/AVC encoder. The experimental result shows the true MVs can be found as long as SR≧8

regardless of QP while QP only affects the magnitude of SAD. We also show the SAD best average

frame by frame in Figure 3-1. In foreman sequence, the motion is higher than the rest of the

sequence from frame 150 to 220. Therefore, SR≦4 is not large enough to find the true MVs.

Table 3-4 The relation between SR, QP, and SAD

Foreman QCIF 300 Frames FPS=30
SAD best average SR

QP=18 QP=24 QP=30 QP=36
32 921.2 1024.0 1221.3 1577.5
16 924.7 1027.8 1226.0 1584.9
8 942.9 1045.6 1244.6 1605.3
4 1068.8 1165.5 1353.8 1702.9
2 1252.9 1344.9 1524.4 1860.9
1 1413.7 1503.7 1585.9 2001.9
0 1831.9 1911.4 2081.7 2330.1

Foreman QCIF QP36

0

1000

2000

3000

4000

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

26
0

27
3

28
6

29
9

Frame

S
A

D SR4

SR32

 19

Figure 3-1 SR and motion activity in foreman QCIF frame by frame

In Summary, if we can find a SR for a frame or a block in motion estimation such that the true

MVs can be found, the local minimum problem can be avoided and the computational cost of

motion estimation can be reduced dramatically.

In our experiments, the search range should be changed adaptively according to motion

activity of video and parameters of encoder. However, the parameters of encoder should be used by

comparing with each other. Hence, we develop SDSR to adjust SR dynamically based on motion

activity.

3.2 Simple Dynamic Search Range (SDSR)
In this section, we present our proposed Simple Dynamic Search Range algorithm (SDSR). In

order to adjust search range for motion estimation, some approaches have already been

implemented in DSWA [21], AFSBM [22], MWFA [27], and MAS [28]. These approaches may be

classified into block matching error based and motion vector based.

The block matching error is usually measured in MSD, MAD or SAD. The block matching

error represents the degree of matching between current block and candidate block. The value of

block matching error is determined by many factors including motion activity, texture, and

quantization parameter. See Figure 3-2 for example. From frame 220, the values of SAD are much

higher than the rest. The reason is the complicated video texture, not the motion activity. However,

from frame 150 to 170, the values of SAD are raised sharply due to the sudden motion change

instead of video texture. Consequently, the approaches based on block matching error are usually

unsuitable to evaluate the motion activity.

On the contrary, motion vector represents the motion activity more precisely [28]. For this

reason, our proposed approach is based on motion vector information. Due to the wide variations of

motion activity in video sequences and different motion activity in various areas within a single

frame, we would like to adjust search range on both frame level and block level. The adjustments of

SR in frame level and block level are based on temporal correlation and spatial correlation of

 20

motion field, respectively.

Foreman CIF SR32 SADavg=1350

0

500

1000

1500

2000

2500

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

26
0

27
3

28
6

29
9

Frame

S
A

D

SAD

Figure 3-2 SAD of foreman CIF frame by frame

The proposed Simple Dynamic Search Range algorithm is described as follows.

Simple Dynamic Search Range Algorithm

Step 1: Determine the search range in frame level. The search range called SR_FRAMEk is

computed by the maximum horizontal and vertical displacement from all MVs in (k－1)th frame

plus one unit. The definition is:

{ }
_ max[,] 1
all blocks in (-1)th frame

k t tSR FRAME MVx MVy
t k

= +

∈
 (3.1)

Step 2: Adjust the search range in macroblock level. Let MV_MAXt denote the maximum

displacement of two components of MVs in neighbor blocks of tth block, described as in the

following rules.

s ﹛The left, above left, above, above right blocks of tth block﹜ ∈

If any of neighbor blocks is not available

_ max[max[,], _]t s s kMV MAX MVx MVy SR FRAME=

Else

 21

_ max[,t s]sMV MAX MVx MVy=

Step 3: Determine the final search range for tth block, called SR_BLOCKt by the following rules.

//Adjust SR in block level

If (_ _)
 _ _ 1
Else
 _ _ (_ _) / 2

t k

t t

t t k

MV MAX SR FRAME
SR BLOCK MV MAX

SR BLOCK MV MAX SR FRAME MV MAX

≥
= +

= + − t

//SR constraint

If (_ 1)
 _ 1
Else if (_ max search range)
 _ max search range

t

t

t

t

SR BLOCK
SR BLOCK

SR BLOCK
SR BLOCK

≤

≥

=

=

Because the prediction of MV may not be zero MV in motion estimation, the displacement of

MV may be larger than the SR. Hence the SR in frame level may increase more than one unit

between frames. The adjustment of SR in block level ensures that the SR is large enough to find the

true MV.

Note that the neighbor block of current block may not be a complete macroblock (16x16) in

H.264/AVC video compression standard, shown in Figure 3-3.

D (8x4) B (8x4)

C
(16x8)

 A
(8x8)

E
(16x16)

Figure 3-3 Current and neighbor blocks (variable block size)

 22

3.3 Successive Elimination Algorithm with Integral Frame (SEAIF)
The SEA and integral frame technique had been introduced in section 2.4.2 and 2.3. In this

section, we integrate them to form a new SEA called SEAIF for H.264/ACV standard. In

H.264/AVC standard, rate-distortion optimization (RDO) is recommended for mode selection. The

modes include nine intra modes and seven inter modes (see Figure 2-2). In inter-coding, a total of

41 motion estimations is required for a 16x16 macroblock while the RDO is enabled. (One for

16x16, two for 16x8, two for 8x16, four for 8x8, eight for 8x4, eight for 4x8, and sixteen for 4x4)

Therefore, the ME cost increases dramatically.

In order to reduce the intensive computation caused by RDO. In the H.264/AVC reference

software JM 9.4 [32], a Fast Full Pel Search algorithm is implemented by reusing SAD values of

the smallest 4x4 block. Before a new macroblock is motion estimated, it computes the SAD values

for all 4x4 block at all search points within the search window. After that, it merges the SAD values

to get the SAD values of larger blocks. In this way, computation of SAD for a macroblock with all

block size enabled is about equal to the computation of SAD with only a 16x16 block.

We take the concept of reusing SAD and integrate it into our proposed SEAIF. The main idea

of the SEAIF for H.264/AVC is to reuse sea values and SAD values. The following sub-sections

present the detail of the design. Section 3.3.1 and 3.3.2 present the techniques of reusing sea and

SAD values. Section 3.3.3 presents the spiral search pattern used by SEAIF algorithm. Finally,

analysis of complexity for SEAIF is presented in Section 3.3.4.

3.3.1 Reusing of sea value
For each search point, calculate the sea values of sixteen 4x4 blocks of the current macroblock

by using integral frame technique. These sea values of 4x4 blocks are the basis for sea values of

larger blocks. Then the sea values of larger blocks are derived from these sea values of 4x4 blocks,

described as follows.

 For 8x4 or 4x8 block, sum up sea values of two 4x4 blocks.

 23

 For 8x8 block, sum up sea values of two 8x4 blocks.

 For 16x8 or 8x16 block, sum up sea values of two 8x8 blocks.

 For 16x16 block, sum up sea values of two 16x8 blocks.

In this way, we can get all sea values of all blocks. These sea values of larger blocks are

always equal to or larger than the sea values computed directly from BS of corresponding blocks.

Therefore, the sea values of larger blocks derived from 4x4 block sea values are lower bound of

SAD and the more computations of SAD can be skipped.

3.3.2 Reusing of SAD value
In SEAIF, if the sea value is less than the current minimum SAD value, complete calculation

of SAD will be preformed. In H.264/AVC, overlapped blocks are used in motion estimation. In

order to reduce the computations of SAD, we take the 4x4 block SAD values as the basis of the

larger block SAD values. The following is the approach.

Reusing SAD value algorithm

Regardless of block size, Calculation of SAD for the block is:

Step1: Find out all 4x4 blocks within the block.

Step2: Check the SAD values of these 4x4 blocks. If any SAD value of 4x4 blocks is not available,

compute the SAD value.

Step3: Get the SAD value of the target block by adding up SAD values of these 4x4 blocks.

In this way, there is no redundant computation of SAD.

3.3.3 Spiral Search
In JM 9.4, the spiral search for full search is not really spiral shape. Therefore, we modified it

 24

to the real spiral shape shown in Figure 3-4 and Figure 3-5, respectively. Chapter 4 will show the

experimental results for comparisons.

 49
 35 25 27 29 31 33 36
 37 15 9 11 13 16 38
 39 17 3 1 4 18 40
 41 19 5 0 6 20 42
 43 21 7 2 8 22 44
 45 23 10 12 14 24 46
 47 26 28 30 32 34 48
 …

49 …
48 25 26 27 28 29 30
47 24 9 10 11 12 31
46 23 8 1 2 13 32
45 22 7 0 3 14 33
44 21 6 5 4 15 34
43 20 19 18 17 16 35
42 41 40 39 38 37 36

Figure 3-4 Spiral search in JM 9.4 Figure 3-5 Real spiral search pattern

3.3.4 Analysis of complexity
The reason of adopting SEA is to reduce the computational cost in block matching

measurement. The overhead of SEA should be considered and analyzed. The overheads of SEA are

mainly the computations of block sum. In SEA [16], Salari et al. proposed a fast algorithm to

compute the block sums. We compare three approaches and present the analysis of overhead as

follows.

Let W denote image width, H image height, M block width, and N block height. Operations

required for block sums of all M x N blocks in a reference frame are:

 Straightforward approach:

Number of block sum in a frame: (W－M + 1)(H－N + 1)

Operations required for a block sum: MN－1

Total cost: (MN－1) (W－M + 1)(H－N + 1)

Approximate cost: MNWH

 SEA approach in [16]:

Total cost: 4WH－(H－N)(M + 3)－3W(N + 1)

 25

Approximate cost: 4WH

 Integral frame approach:

Operations required for an integral frame: 2WH

Operations required for all block sum: ≈2(W－M + 1)(H－N + 1) 1

Total cost: 2WH + 2(W－M + 1)(H－N + 1)

Approximate cost: 4WH

Although integral frame approach and the SEA approach in [16] have approximately the same

complexity, there is an advantage in integral frame approach. Integral frame approach is flexible to

get block sum of any rectangle block.

For example, if we want to use the multilevel SEA for each block size in H.264/AVC, the

implementation will be easier with integral frame approach. (Note that our approach uses the

tighter lower bound in SEA, not multilevel SEA.) Computing msea value of 16x16 block with level

L=0 only needs 5 operations (5 = 3 for get BS + 1 subtraction + 1 absolute). Nevertheless, merging

16 4x4 sea values to get the sea value of 16x16 block with level L=0 needs 15 addition operations

while the sea value is tighter lower bound. Trade-off is between the tighter lower bound and

computational complexity.

3.4 Early Termination Algorithm (ETA)
In this section, we preset our proposed Early Termination Algorithm (ETA) in detail. In [29],

Siou-Shen Lin et al. introduce the variance of motion vectors. They show the probability is about

79% in average when the variance of the current block and neighbor blocks is smaller than 3. They

consider that it is high probability that the current block and the neighbor blocks might belong to

the same object when the variance of the motion vectors in the neighbor blocks is small.

We exploit and modify the variance of motion vectors proposed in [29] to classify the motion

1 In [4], Viet Anh Nguyen and Yap-Pen Tan proposed a fast approach to calculate block sum by exploiting the adjacent
property of the blocks.

 26

activity of current block and neighbor blocks into simple motion and complex motion. The variance

of motion vectors is defined in equation (3.3).

() / 4MVmean MVa MVb MVc MVd= + + + (3.2)

MVvar MVa MVmean MVb MVmean

MVc MVmean MVd MVmean

= − + −

+ − + −
 (3.3)

If any of neighbor blocks is not available, MVvar is set to a large value (999999). For accuracy,

we compare the MVvar with 5 instead of 3 to classify motion activity, shown in equation (3.4).

If (MVvar ≦ 5)
 Mactivity = simple_motion (3.4)
Else
 Mactivity = complex_motion

If motion activity is simple motion, we consider the current block and neighbor blocks are in

the same object for simple. On the contrary, the current block and neighbor blocks are considered

not in the same block. The SAD values of blocks within the same object should be similar and the

SAD values of blocks not in the same object should be different largely. Based on the concept, the

lower bound for the condition of termination is determined in equation (3.5).

If (Mactivity == simple_motion)
 SAD_threshold = SAD_prediction (3.5)
Else
 SAD_threshold = SAD_prediction – SAD_standard_deviatoin

The SAD_prediction and SAD_standard_deviation represent the prediction of SAD of current

block and the standard deviation of SAD of all blocks in the previous frame, respectively. The

definitions are defined in equation (3.6) and (3.8):

 27

() / 4SAD_prediction SADa SADb SADc SADd= + + + (3.6)
_ 1

0

1
_

Number MB

t
t

SAD_mean SAD
Number MB

−

=

= ∑ (3.7)

()
1/ 21

2

0

1
1

M

t

t

SAD_standard_deviatoin SAD SAD_mean
M

−

=

⎛ ⎞= −⎜ ⎟−⎝ ⎠
∑ (3.8)

The SADt is the SAD value of tth block in a frame. Number_MB is the total number of MB in

a frame. If there is no any neighbor block near the current block, SAD_prediction is set to a small

value (-999999). Note that the SAD_prediction and SAD_standard_deviation are calculated for

16x16 macroblock. In H.264/AVC standard, there are seven block sizes used in motion estimation.

We determine the SAD_prediction and SAD_standard_deviation for other block size according to

the area occupied by the block. The calculations are shown in the following rules.

Adjustment of SAD_prediction and SAD_variance for H.264/AVC standard

If (block size == 16x8 or 8x16)

 SAD_prediction = SAD_prediction / 2

 SAD_standard_deviation = SAD_standard_deviation / 2

Else if (block size == 8x8)

 SAD_prediction = SAD_prediction / 4

 SAD_standard_deviation = SAD_standard_deviation / 4

Else if (block size == 8x4 or 4x8)

 SAD_prediction = SAD_prediction / 8

 SAD_standard_deviation = SAD_standard_deviation / 8

Else if (block size == 4x4)

 SAD_prediction = SAD_prediction / 16

 SAD_standard_deviation = SAD_standard_deviation / 16

 28

Finally, the condition of termination is tested when a new up-to-date best-matched block is

found. If the SAD value of the up-to-date block is equal to or smaller than SAD_threshold, the

motion estimation is terminated.

 29

Chapter 4
Experimental Results and Discussions

In this chapter, we present the experimental results of the proposed approaches including

simple dynamic search range algorithm, successive elimination algorithm with integral frame, and

early termination algorithm. Finally, the experimental results of integrated algorithm called

Content-Aware Fast Motion Estimation Algorithm (CAFME) are presented.

We modify the H.264/AVC reference software JM 9.4 and implement the proposed algorithms

on it. In the experiments, we compare the proposed algorithm with Full Search (FS). We observe

the number of search points for each block to measure the performance of the proposed algorithms.

We also measure the coding efficiency. In order to measure the coding efficiency, we compare the

bitrates of encoded sequences with the same quantization parameter and disabling rate control.

Besides, we exploit the SAD value as a criterion to measure whether the determined search range is

large enough. Finally, we compare the total encoding time to measure the improvement in practical

situation.

4.1 Experimental Environment
In this section, we present the experimental environment. The descriptions and snapshots of

test video sequences are listed in Table 4-1 and Table 4-2, respectively. Except specifically

described parameters, the following parameters are applied to all experiments. Note that the

maximum search range is set to 24.

 Platform: H.264/AVC reference software JM 9.4 [32]

 Machine: Athlon XP 1700+ with 512 MB memory

 Profile: baseline

 Level: 3.0

 Block match algorithm (BMA): Full Search

 Group of picture (GOP): 15

 Quantization parameter (QP): 36

 30

 Frame rate (FPS): 30

 Max search range: 24

 Frame structure: IPPP

 Number of reference frame: 1

 Hadamard transform: enable

 All block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4): enable

 Rate-distortion optimized (RDO): enable

 Fast ME (UMHexagonS) [33]: disable

 Fast mode selection [34]: disable

 Rate control (RC): disable

Table 4-1 Descriptions of test video sequences

ID Name Resolution # of Frames Motion activity

A Foreman QCIF 150 Medium

B Mobile QCIF 150 Slow

C Coastguard QCIF 150 Medium

D Foreman CIF 150 Medium

E Tempete CIF 150 Slow, Zooming

F Flower CIF 90 Slow

G Stefan SIF 150 High

H Football CIF 90 Very High

I Table tennis SIF 90 Medium, Scene change, Zooming

 31

Table 4-2 Snapshots of test video sequences

Foreman QCIF

Mobile QCIF

Coastguard QCIF

Foreman CIF

Tempete CIF

Flower CIF

Stefan SIF

Football CIF

Table tennis SIF

4.2 Opponent: Fast Full Pel Search
In our experiments, we compare our proposed algorithms with Fast Full Pel Search2. The Fast

Full Pel Search is implemented by reusing SAD values of the smallest 4x4 block. Before a new

macroblock is motion estimated, it computes the SAD values for all 4x4 block at all search points

within the search window. After that, it merges the SAD values to get the SAD values of larger

2 The Fast Full Pel Search is implemented in H.264/AVC Reference Software JM 9.4

 32

blocks. In this way, computation of SAD for a macroblock with all block size enabled is about

equal to the computation of SAD with only a 16x16 block.

Note that the performances of the Fast Full Pel Search and a conventional Full Search are the

same but the Fast Full Pel Search is faster than a conventional Full Search in H.264/AVC. In the

following experiments, we denote the Fast Full Pel Search as FS.

4.3 Simple Dynamic Search Range
In this section, we experiment on nine sequences with our proposed Simple Dynamic Search

Range (SDSR). The nine test sequences include the various motion activities. In Table 4-3, the

proposed SDSR outperforms the Fast Full Pel Search (FS) greatly. For the low and medium

motions, SDSR reduces the number of search points about 77% ~ 98%. For the high motion, SDSR

reduces the size of search window much less reasonably. For example, the reduced rate is 41% for

Football sequence which represents the high motion activity. In Table 4-4, we can observe that the

bitrates increases slightly, except Football sequence. In the Table 4-5, the total encoding time is

reduced about 40~50%, except Stefan and Football sequences. The motion activity of Stefan and

Football sequences are higher than others. The Figure 4-1 presents the two successive frames of

Football sequence for illustration.

In order to measure whether the search ranges determined by the SDSR is large enough. We

depict Figure 4-2 and Figure 4-3 to present the measurement. The Figure 4-2 is the average SAD

values frame by frame in Foreman QCIF sequence with SDSR and FS. We can observe the SAD

values of SDSR and FS are very similar. This observation shows that SDSR can find true MVs in

most of the motion estimations. The Figure 4-3 is the average SAD values frame by frame in

Football CIF sequence with SDSR and FS. We can observe the differences between SAD values of

SDSR and FFS are larger in some frames because the motion activities are much higher.

In average, the number of search points is reduced about 80%, bit rate increases about 0.11%,

and total encoding time is reduced about 43%. Hence, we claim the proposed SDSR can keep

almost the same coding efficiency.

 33

Table 4-3 Search Points of FFS and SDSR

Number of Search Points
Sequence Name

Fast Full Pel Search SDSR
Improvement

Foreman QCIF 2401 144 － 94%

Mobile QCIF 2401 52 － 98%

Coastguard QCIF 2401 88 － 96%

Foreman CIF 2401 365 － 85%

Tempete CIF 2401 261 － 89%

Flower CIF 2401 563 － 77%

Stefan SIF 2401 860 － 64%

Football CIF 2401 1411 － 41%

Table tennis SIF 2401 497 － 79%

Average － 80%

Table 4-4 Bitrates of FS and SDSR

Bitrates (Kbps)
Sequence Name

Fast Full Pel Search SDSR
Improvement

Foreman QCIF 69.203 68.858 － 0.5%

Mobile QCIF 173.016 173.250 ＋ 0.1%

Coastguard QCIF 76.134 76.022 － 0.1%

Foreman CIF 188.773 188.490 － 0.1%

Tempete CIF 425.392 425.810 ＋ 0.1%

Flower CIF 669.312 669.333 ＋ 0.003%

Stefan SIF 505.450 505.693 ＋ 0.05%

Football CIF 413.301 416.525 ＋ 0.8%

Table tennis SIF 256.259 257.925 ＋ 0.65%

Average ＋ 0.11%

 34

 Table 4-5 Total Encoding Time of Fast Full Pel Search and SDSR

Total Encoding Time (Second)
Sequence Name

Fast Full Pel Search SDSR
Improvement

Foreman QCIF 156 74 － 53%

Mobile QCIF 151 75 － 50%

Coastguard QCIF 151 70 － 54%

Foreman CIF 602 319 － 47%

Tempete CIF 583 324 － 44%

Flower CIF 374 221 － 41%

Stefan SIF 508 340 － 33%

Football CIF 363 280 － 23%

Table tennis SIF 298 169 － 43%

Average － 43%

 35

Figure 4-1 24th and 25th frame of football CIF sequence

Figure 4-2 SAD and SR of SDSR frame by frame in Foreman QCIF

Figure 4-3 SAD and SR of SDSR frame by frame in Football CIF

 36

4.4 Successive Elimination Algorithm with Integral Frame
In Table 4-6 and Table 4-7, SEAIF reduces the number of search points about 76%, while the

total encoding time increases about 14% in average. The reason is the overlapped block used in

H.264/AVC standard. When SEAIF is applied for overlapped blocks, the condition of computing

SAD is tested more than once for the same area. Hence, the probability of computing SAD rises,

and then the computational cost of calculation of SAD cannot be reduced largely. In addition to the

overhead of SEAIF, the encoding time is more slightly. In Table 4-8 and Table 4-9, only 16x16

block size is enabled for motion estimation. There is no overlapped block. Therefore, the

performance of SEAIF is better and the encoding time is less.

Table 4-6 Search Points of FS and SEAIF (all block size enabled)

Number of Search Points
Sequence Name

Fast Full Pel Search SEAIF
Improvement

Foreman QCIF 2401 491 － 80%

Mobile QCIF 2401 553 － 77%

Tempete CIF 2401 584 － 76%

Stefan SIF 2401 669 － 72%

Average － 76%

Table 4-7 Total Encoding Time of Fast Full Pel Search and SEAIF

(all block size enabled)

Total Encoding Time (Second)
Sequence Name

Fast Full Pel Search SEAIF
Improvement

Foreman QCIF 156 157 ＋ 0.64%

Mobile QCIF 151 172 ＋ 14%

Tempete CIF 583 690 ＋ 18%

Stefan SIF 508 579 ＋ 14%

 37

Average ＋ 12%

Table 4-8 Search Points of FS and SEAIF (16x16 block size only)

Number of Search Points
Sequence Name

Fast Full Pel Search SEAIF
Improvement

Foreman QCIF 2401 61 － 97%

Mobile QCIF 2401 71 － 97%

Tempete CIF 2401 114 － 95%

Stefan SIF 2401 193 － 92%

Average － 95%

Table 4-9 Total Encoding Time of Fast Full Pel Search and SEAIF

(16x16 block size only)

Total Encoding Time (Second)
Sequence Name

Fast Full Pel Search SEAIF
Improvement

Foreman QCIF 112 77 － 31%

Mobile QCIF 117 84 － 28%

Tempete CIF 458 332 － 28%

Stefan SIF 369 289 － 27%

Average － 29%

In the section 3.3.3, we modified the spiral search pattern in JM 9.4. The experimental result is

presented in Table 4-10. Although the search patterns are different, all the search points are

examined. The best-matched blocks with the same RD cost may not be the same due to the

different search order. Therefore, the results in bitrate field are slightly different.

The effects of both patterns are almost the same, so we use the spiral search pattern in JM 9.4

with our proposed SEAIF.

 38

Table 4-10 SEAIF with different spiral search patterns

Bitrate (Kbps) Total Encoding Time (Sec)
Sequence Name

JM 9.4 Ours Improvement JM 9.4 Ours Improvement

Foreman QCIF 69.203 68.981 ＋0.3% 157 155 －1.3%

Mobile QCIF 173.016 173.413 ＋0.2% 172 167 －2.9%

Tempete CIF 425.392 425.678 ＋0.07% 690 649 －5.9%

Stefan SIF 505.450 505.566 ＋0.02% 579 546 －5.7%

Average ＋0.15% －3.95%

4.5 Early Termination Algorithm
In Table 4-11, Table 4-12, and Table 4-13, our proposed Early Termination Algorithm (ETA)

reduces the number of SP about 44.5% and the bit rate is nearly the same with FS. However, the

encoding time is not reduced as we expect. In motion estimation, each search point is estimated in

matching criterion, usually SAD. The proposed ETA terminates the searching process early to

reduce the computations of SAD. In this experiment, our ETA is used with the Fast Full Pel Search

algorithm3 and the algorithm calculates all SAD values in advance. Although our ETA can skip a

large number of search points, it can not save the computations of SAD. So the encoding time can

not be saved in this experiment. The proposed Early Termination Algorithm should be used with

other algorithms instead of the algorithms computing SAD in advance.

Table 4-11 Search Points of FS and ETA

Number of Search Points
Sequence Name

Fast Full Pel Search ETA
Improvement

Foreman QCIF 2401 1484 － 38%

Mobile QCIF 2401 1197 － 50%

3 The algorithm is proposed in H.264/AVC reference software JM9.4.

 39

Tempete CIF 2401 1306 － 46%

Stefan SIF 2401 1350 － 44%

Average － 44.5%

Table 4-12 Bitrates of FS and ETA

Bitrates (Kbps)
Sequence Name

Fast Full Pel Search ETA
Improvement

Foreman QCIF 69.203 69.365 ＋ 0.2%

Mobile QCIF 173.016 173.366 ＋ 0.2%

Tempete CIF 425.392 424.898 － 0.1%

Stefan SIF 505.450 505.987 ＋ 0.1%

Average ＋ 0.1%

Table 4-13 Total Encoding Time of Fast Full Pel Search and ETA

Total Encoding Time (Second)
Sequence Name

Fast Full Pel Search ETA
Improvement

Foreman QCIF 156 140 － 10.3%

Mobile QCIF 151 152 ＋ 0.7%

Tempete CIF 583 594 ＋ 1.9%

Stefan SIF 508 498 － 2.0%

Average － 2.4%

4.6 Content-Aware Fast Motion Estimation Algorithm (CAFME)
In this section, we integrate the simple dynamic search range (SDSR), successive elimination

algorithm with integral frame (SEAIF), and early termination algorithm (ETA) to form the

Content-Aware Fast Motion Estimation Algorithm (CAFME).

In the Table 4-14, Table 4-15, and Table 4-16, the number of search points can be reduced

 40

more than 90% in most of the sequences. Especially, for the slow and median motion, the reduced

rates of search points are about 99%. For high motion, the reduced rates of search points should be

lower. The reduced rate of search points is 73.8% for football sequence. In average, the increment

of bit rate in CAFME is very small, about 0.26%. The total encoding time is reduced about 41.9%,

and the number of SP is reduced about 93.1%.

Table 4-14 Search Points of FS and CAFME

Number of Search Points
Sequence Name

Fast Full Pel Search CAFME
Improvement

Foreman QCIF 2401 37 － 98.5%

Mobile QCIF 2401 12 － 99.5%

Coastguard QCIF 2401 29 － 98.8%

Foreman CIF 2401 100 － 95.8%

Tempete CIF 2401 69 － 97.1%

Flower CIF 2401 199 － 91.7%

Stefan SIF 2401 184 － 92.3%

Football CIF 2401 628 － 73.8%

Table tennis SIF 2401 224 － 90.7%

Average － 93.1%

Table 4-15 Bitrates of FS and CAFME

Bitrates (Kbps)
Sequence Name

Fast Full Pel Search CAFME
Improvement

Foreman QCIF 69.203 69.118 － 0.12%

Mobile QCIF 173.016 173.285 ＋ 0.16%

Coastguard QCIF 76.134 75.862 － 0.36%

Foreman CIF 188.773 188.784 ＋ 0.005%

 41

Tempete CIF 425.392 425.955 ＋ 0.13%

Flower CIF 669.312 670.211 ＋ 0.13%

Stefan SIF 505.450 504.782 － 0.13%

Football CIF 413.301 419.357 ＋ 1.5%

Table tennis SIF 256.259 258.939 ＋ 1.04%

Average ＋ 0.26%

Table 4-16 Total Encoding Time of Fast Full Pel Search and CAFME

Total Encoding Time (Second)
Sequence Name

Fast Full Pel Search CAFME
Improvement

Foreman QCIF 156 69 － 56%

Mobile QCIF 151 77 － 49%

Coastguard QCIF 151 68 － 55%

Foreman CIF 602 314 － 48%

Tempete CIF 583 318 － 45%

Flower CIF 374 224 － 40%

Stefan SIF 508 324 － 36%

Football CIF 363 325 － 10%

Table tennis SIF 298 184 － 38%

Average － 41.9%

4.7 Summary
The proposed Simple Dynamic Search Range (SDSR) can reduce the number of search points

about 80% while sustaining the coding efficiency (bitrate increases 0.11% in average). We also

integrate the Successive Elimination Algorithm with Integral Frame (SEAIF) and the Early

Termination Algorithm (ETA) with SDSR to form the Content-Aware Fast Motion Estimation

Algorithm (CAFME). The CAFME improves the SDSR and the number of search points is reduced

 42

to 93.1% while the bit rate increases just a little (0.26%). The overall encoding time is reduced

about 41.9% in our implementation.

 43

Chapter 5
Conclusions and Future Works

The motion estimation plays an important role in the video compression. However, motion

estimation module is usually the most computational intensive part in a typical video encoder.

Hence, the efficient motion estimation algorithm is needed. We proposed a fast algorithm called

Content-Aware Fast Motion Estimation Algorithm (CAFME). CAFME consists of the Simple

Dynamic Search Range (SDSR), Successive Elimination Algorithm with Integral Frame (SEAIF),

and Early Termination Algorithm (ETA). The SDSR adjusts the search range for every block

adaptively. The SEAIF reduces the number of computation of SAD without loss. The ETA

terminates the search process early when finding a good candidate block.

The SDSR need not predefined any threshold predefined and perform well for all the test

sequences. The SEAIF is designed for overlapped variable block size and applies reusing

techniques. The performance of ETA is good and stable for all kinds of motion activity.

The experimental results show that CAFME can reduce the number of search point about

93.1% and the bitrate only increases 0.26% while sustaining the same PSNR. We modify

H.264/AVC reference software JM 9.4 and implement our proposed algorithms on it. The total

encoding time reduces about 41.9%.

The motion search algorithm currently used in CAFME is full search (FS). However it may be

replaced by any fast motion estimation algorithm like TSS and DS, etc. The future works may be to

develop a fast motion estimation algorithm suitable for dynamic search range, alleviate the

overhead in implementation, and so on.

 44

Bibliography

[1] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion Compensated Interframe

Coding for Video Conferencing” Proc. Nat. Telecommun. Conf., pp. G5.3.1–5.3.5, New

Orleans, LA, Nov. 29–Dec. 3 1981.

[2] S. Zhu and K.-K. Ma, “A New Diamond Search Algorithm for Fast Block-Matching Motion

Estimation”, IEEE Trans. on Image Processing, Volume 9, Issue 2, pp. 287–290, Feb. 2000.

[3] B. Liu and A. Zaccarin, “New Fast Algorithms for the Estimation of Block Motion Vectors”,

IEEE Trans. on Circuits System Video Technology, Volume 3, pp. 148–157, Apr. 1993.

[4] V.-A. Nguyen and Y.-P. Tan, “Fast Block-Based Motion Estimation Using Integral Frames”,

IEEE Signal Processing Letters, Volume 11, Issue 9, pp. 744–747, Sep. 2004.

[5] R. Li, B. Zeng, and M.-L. Liou, “A New Three-Step Search Algorithm for Block Motion

Estimation”, IEEE Trans. on Circuits and Systems for Video Technology, Volume 4, Issue 4,

pp. 438–442, Aug. 1994.

[6] J. Jain and A. Jain, “Displacement Measurement and Its Application in Interframe Image

Coding” IEEE Trans. on Communications, Volume COMM-29, pp. 1799–1808, Dec. 1981.

[7] L.-M. Po and W.-C. Ma, “A Novel Four-Step Search Algorithm for Fast Block Motion

Estimation” IEEE Trans. on Circuits and Systems for Video Technology, Volume 6, Issue 3,

pp. 313–317, Jun. 1996.

[8] C.-H. Cheung and L.-M. Po, “A Novel Cross-Diamond Search Algorithm for Fast Block

Motion Estimation” IEEE Trans. on Circuits and Systems for Video Technology, Volume 12,

Issue 12, pp. 1168–1177, Dec. 2002.

[9] C.-W. Lam, L.-M. Po, and C.-H. Cheung, “A New Cross-Diamond Search Algorithm for Fast

Block Matching Motion Estimation” 2003 International Conf. on Neural Networks and

Signal Processing, Volume 2, pp. 1262-1265, Dec. 14-17 2003.

[10] H. Jia and L. Zhang, ”A New Cross Diamond Search Algorithm for Block Motion

Estimation” Proc. of IEEE International Conf. on Acoustics, Speech, and Signal Processing,

Volume 3, pp. iii-357-60, May 17-21 2004.

 45

[11] C. Zhu, X. Lin, L. Chau, and L.-M. Po, “Enhanced Hexagonal Search for Fast Block Motion

Estimation” IEEE Trans. on Circuits and Systems for Video Technology, Volume 14, Issue 10,

pp. 1210–1214, Oct. 2004.

[12] Y. Nie and K.-K. Ma, “Adaptive Rood Pattern Search for Fast Block-matching motion

estimation” IEEE Trans. on Image Processing, Volume 11, Issue 12, pp. 1442–1449, Dec.

2002.

[13] K.-K. Ma and G. Qiu, “Unequal-Arm Adaptive Rood Pattern Search for Fast Block-Matching

Motion Estimation in the JVT/H.26L” 2003 International Conf. on Image Processing, Volume

1, pp. I-901-4, Sep. 14-17 2003.

[14] K.-K. Ma and G. Qiu, “An Improved Adaptive Rood Pattern Search for Fast Block-Matching

Motion Estimation in JVT/H.26L” Proc. of the 2003 International Symposium on Circuits

and Systems, Volume 2, pp. II-708 - II-711, 25-28 May 2003.

[15] Y.-C. Lim, K.-Y. Min, and J.-W. Chong, “A Pentagonal Fast Block Matching Algorithm for

Motion Estimation Using Adaptive Search Range” IEEE International Conf. on Acoustics,

Speech, and Signal Processing, Volume 3, pp. III - 669-72, Apr. 6-10 2003.

[16] W. Li and E. Salari, “Successive Elimination Algorithm for Motion Estimation” IEEE Trans.

on Image Processing, Volume 4, Issue 1, pp. 105–107, Jan. 1995.

[17] Digital Video Coding Group, ITU-T Recommendation H.263 Software Implementation,

Telenor R&D, 1995.

[18] M. Yang, H. Cui, and K. Tang, “Efficient Tree Structured Motion Estimation Using

Successive Elimination” IEE Proc. on Vision, Image and Signal Processing, Volume 151,

Issue 5, pp. 369–377, Oct. 30 2004.

[19] Yu-Wen Huang, Shao-Yi Chien, Bing-Yu Hsieh, and Liang-Gee Chen, “Global Elimination

Algorithm and Architecture Design for Fast Block Matching Motion Estimation” IEEE Trans.

on Circuits and Systems for Video Technology, Volume 14, Issue 6, pp. 898–907, Jun. 2004.

[20] X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A Multilevel Successive Elimination Algorithm for

Block Matching Motion Estimation” IEEE Trans. on Image Processing, Volume 9, Issue 3, pp.

501–504, Mar. 2000.

 46

[21] L.-W. Lee, J.-F. Wang, J.-Y. Lee, and J.-D. Shie, ”Dynamic Search-Window Adjustment and

Interlaced Search for Block-Matching Algorithm” IEEE Trans. on Circuits and Systems for

Video Technology, Volume 3, Issue 1, pp. 85–87, Feb. 1993.

[22] J. Feng, K.-T. Lo, H. Mehrpour, and A.E. Karbowiak, “Adaptive Block Matching Motion

Estimation Algorithm for Video Coding” IEE Electronics Letters, Volume 31, Issue 18, pp.

1542–1543, Aug. 31 1995.

[23] H.-S. Oh and H.-K. Lee, “Adaptive Adjustment of the Search Window for Block-Matching

Algorithm with Variable Block Size,” IEEE Trans. on Consumer Electronic, Volume 44, No.

3, pp. 659-666, Aug. 1998.

[24] L.-K. Liu, “Dynamic Search Range Motion Estimation for Video Coding” IEEE First

Workshop on Multimedia Signal Processing, pp. 207–212, Jun. 23-25 1997.

[25] H.-M. Kim and T. Acharya, “CAS: Context Adaptive Search for Motion Estimation” Proc. of

International Conf. on Information Technology Coding and Computing, pp. 202–206, Apr.

2-4 2001.

[26] J. Minocha and N.-R. Shanbhag, “A Low Power Data-Adaptive Motion Estimation

Algorithm” IEEE 3rd Workshop on Multimedia Signal Processing, pp. 685–690, Sep. 13-15

1999.

[27] S. Saponara and L. Fanucci, ”Data-Adaptive Motion Estimation Algorithm and VLSI

Architecture Design for Low-Power Video Systems” IEE Proc. on Computers and Digital

Techniques, Volume 151, Issue 1, pp. 51–59, Jan. 15 2004.

[28] P.-I. Hosur, “Motion Adaptive Search for Fast Motion Estimation” IEEE Trans. on Consumer

Electronics, Volume 49, Issue 4, pp. 1330–1340, Nov. 2003.

[29] S.-S. Lin, P.-C. Tseng, C.-P. Lin, and L.-G. Chen, “Multi-Mode Content-Aware Motion

Estimation Algorithm for Power-Aware Video Coding Systems” IEEE Workshop on Signal

Processing Systems, pp. 239–244, 13-15 Oct. 2004.

[30] K.-P. Lim, G. Sullivan, and T. Wiegand, “Text Description of Joint Model Reference

Encoding Methods and Decoding Concealment Methods” ITU-T, Doc. #JVT-N046, Jan.

2005.

 47

[31] P. Viola and M.-J. Jones, “Robust Real-Time Object Detection” Cambridge Res. Lab., Tech.

Rep. CRL 2001/01, Feb. 2001.

[32] H.264/AVC reference software,

http://ftp3.itu.ch/av-arch/jvt-site/reference_software/ and http://iphome.hhi.de/suehring/tml/

[33] Z. Chen, P. Zhou, Y. He, and Y. Chen, “Fast Integer Pel and Fractional Pel Motion Estimation

for JVT” ITU-T, Doc. #JVT-F017, Dec. 2002.

[34] B. Jeon and J. Lee, “Fast Mode Decision for H.264“ ITU-T, Doc. #JVT-J033, Dec. 2003.

 48

