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SUMMARY

Wang et al. (Softw. Pract. Exper. 2007; 37(7):727–745) observed a phenomenon of performance incon-
sistency in the graphics of Java Abstract Window Toolkit (AWT)/Swing among different Java runtime
environments (JREs) on Windows XP. This phenomenon makes it difficult to predict the performance
of Java game applications. Therefore, they proposed a portable AWT/Swing architecture, called CYC
Window Toolkit (CWT), to provide programmers with high and consistent rendering performance for
Java game development among different JREs. They implemented a DirectX version to demonstrate
the feasibility of the architecture. This paper extends the above research to other environments in two
aspects. First, we evaluate the rendering performance of the original Java AWT with different combi-
nations of JREs, image application programming interfaces, system properties and operating systems
(OSs), including Windows XP, Windows Vista, Fedora and Mac OS X. The evaluation results indicate that
the performance inconsistency of Java AWT also exists among the four OSs, even if the same hardware
configuration is used. Second, we design an OpenGL version of CWT, named CWT-GL, to take advantage
of modern 3D graphics cards, and compare the rendering performance of CWT with Java AWT/Swing.
The results show that CWT-GL achieves more consistent and higher rendering performance in JREs 1.4
to 1.6 on the four OSs. The results also hint at two approaches: (a) decouple the rendering pipelines of
Java AWT/Swing from the JREs for faster upgrading and supporting old JREs and (b) use other graphics
libraries, such as CWT, instead of Java AWT/Swing to develop cross-platform Java games with higher
and more consistent rendering performance. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since it was released in 1995, Java [1] has attracted much attention in the game industry. Along
with the growth ofWorld Wide Web in the late 1990s, many Java casual applet games were deployed
over the Internet, including Yahoo! Games [2], ArcadePod.com [3] and CYC games [4,5]. It is
because these games can be easily distributed over the Internet and played on multiple operating
systems (OSs). Other than the applet games, several commercial stand-alone Java games were also
developed, such as You Don’t Know Jack [6], Law & Order: Dead on the Money [7] and Tribal
Trouble [8]. Examples of commercial massively multiplayer online Java games include RuneScape
[9], Puzzle Pirates [10] and Wurm Online [11]. Java games also appeared on mobile devices and
soon became the mainstream language for game development on these devices. For example, Age
of Empires II [12] was ported to mobile devices [13].
Although PCs have great support of Java, many of the current Java games on PCs are still

low-profile games‡. The most discussed reasons include the runtime speed and the rendering perfor-
mance of Java, because early implementations of the JVM and graphic user interface (GUI) compo-
nents, also called widgets, normally delivered poorer performance, which made game developers
hesitate to use it for high-profile games‡.
In view of these problems, research for Java Graphics that is reviewed in Section 1.1 has been

done to make Java more suitable for game development. However, some problems that are identified
in Section 1.2 still remain in the GUI part of Java, in terms of Abstract Window Toolkit (AWT)
and Swing, especially when programmers try to deploy cross-platform Java games with consistent
rendering performance. By consistent rendering performance, we mean to deliver similar rendering
performance on different OSs or different rendering environments (REs) when using the same
hardware or equivalent-power hardware. The consistency of rendering performance is quite impor-
tant, since programmers would expect Java programs to run with similar performance on multiple
OSs. Section 1.3 briefly describes our goals for solving these problems and also summarizes the
organization of the rest of this paper.

1.1. Evolution of Java Graphics

This section reviews the graphics part of Java, which is of great concern to game developers today
and is the focus of this paper.
For high rendering performance, game developers commonly employ DirectDraw and Direct3D

ofMicrosoft DirectX (or DirectGraphics in DirectX 7.0 and beyond) [15] or Open Graphics Library
(OpenGL) [16] to access specialized hardware features, such as direct access to the video memory
in graphics cards and constructing 3D scenes.
The standard way to perform 2D graphics in Java is the use of Java AWT/Swing. However,

Java AWT/Swing did not take full advantage of graphics cards, before J2SE 1.4. Therefore, the
rendering performance of AWT/Swing programs (before J2SE 1.4) is not as good as programs
accelerated by the graphics hardware.

‡According to [14], high-profile games usually attempt to attract the highest attention from retailers and media. Such games
normally require several millions of U.S. dollars to advance in technologies, such as graphics. On the other hand, low-profile
games target at niche groups of players and try to lower down developing costs.
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Realizing this fact, Sun has started to access graphics hardware features via DirectX since J2SE
1.4 [17] and OpenGL since J2SE 5.0 (or 1.5) [18]. Full-screen mode has been supported and
new types of images, such as volatile images and managed (or compatible) images, have been
designed to take advantage of graphics hardware [17]. Since then, the rendering performance of
Java AWT/Swing has had a great boost. In particular, the use of OpenGL that is supported by
multiple platforms is quite important to Java in which the cross-platform feature is critical.
However, currently the OpenGL-based Java 2D pipeline (abbreviated as OpenGL pipeline) can

only be enabled in Java runtime environments (JREs) 1.5 and beyond on Windows and Linux, and
JRE 1.6 on Mac OS X 10.5.2. It is disabled by default, because it does not work well in some cases
[19]. Although Java SE 6 (or 1.6) introduces a newly designed OpenGL pipeline that gives much
better stability and performance than that in J2SE 5.0, the pipeline is again disabled by default for
robustness issues [19].
In addition to the 2D graphical libraries, several 3D graphical libraries were also developed to

build cross-platform Java games with high rendering performance, including the OpenGL for Java
(GL4Java) [20], Java binding for OpenGL (JOGL) [21], Lightweight Java Game Library (LWJGL)
[22] and Java 3D [23]. The first three libraries are OpenGL bindings, which provide low-level
one-to-one mapped application programming interfaces (APIs) to OpenGL. Using GL4Java, JOGL
or LWJGL, Java programmers can access hardware features supported in OpenGL without writing
Java Native Interface (JNI) wrappers. On the other hand, Java 3D provides high-level APIs, which
use OpenGL and DirectX internally, for creating, rendering and manipulating 3D scene graphs.
Using these libraries not only improves greatly the rendering performance on supported platforms,

but also helps to build modern 3D games with realistic scenes. As a result, several cross-platform
3D Java games, including Law & Order: Dead on the Money [7], Jake2 [24] and Wurm Online
[11], were created using these 3D graphical libraries, instead of using AWT/Swing, to achieve high
rendering performance.

1.2. Problems of Java Graphics

Although the graphics part of Java evolves as described in the previous section, some problems are
still identified when Java AWT/Swing is employed to develop cross-platform games. This section
lists six problems: The first three were identified by Wang et al. [25], while the last three are
identified in this paper.

(1) Backward compatibility with the old JREs without graphics acceleration.
As described in Section 1.1, Java AWT/Swing and most 3D libraries require at least J2SE
1.4 to achieve high rendering performance. However, according to the statistical data in [26]
during April and May in 2008, the percentages of Web browser users of popular JREs, as
shown in Table I, indicate that about 11% of Web browser users still used JREs below
1.4, where game applications cannot obtain the benefit of hardware acceleration mentioned
above. Thus, this problem is significant when game programmers particularly for applets
need to take the legacy Java users into consideration.

(2) Unexpected rendering performance and visual effects when mixing Java AWT/Swing compo-
nents with these 3D libraries, supported in DirectX and OpenGL.
Directly accessing the 3D graphics libraries instead of Java AWT/Swing usually achieves
good rendering performance. However, these libraries do not provide widget systems.
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Table I. Current state of JREs.

Percentage of Web
Java Released JRE download size browser users Available CWT
version Supported OSs time on Windows (MB) (April to May 2008) implementation

MSVM Windows 02/1997 5 10.75 DirectX (in [25])
(Java 1.1.4)

J2SE 1.3 Windows, 05/2000 7.9 0.48 AWT (in [25])
J2SE 1.4 Mac OS, 02/2002 15.2 10.27

OpenGL (in this paper)J2SE 5.0 Linux, 09/2004 15.8 23.77
Java SE 6 Solaris 11/2006 13.2 54.73

Consequently, when mixing Java AWT/Swing components with these 3D libraries, the
performance may still be limited to that of the widget systems, or even worse [27]. In
addition, the AWT/Swing components typically control their repainting timing and process,
which may cause some unexpected visual effects, such as flickering and tearing. Thus,
game programmers typically build their own widget systems for their games. However, this
reduces the productivity of programming.

(3) Inconsistent rendering performance among different JREs
The problem of inconsistent rendering performance among different JREs occurs since signif-
icant changes are made in the graphics part of newer JREs. For example, J2SE 1.2 introduced
software rendering for outputting equal rendering quality on different platforms [28], J2SE
1.3 introduced AWTNative Interface that enables native code to draw directly on Java drawing
surface [29], J2SE 1.4 introduced DirectX pipeline, while Java SE 5.0 introduced OpenGL
pipeline. These significant changes result in two phenomena. First, these changes are tightly
bound to the versions of the JREs and are rarely ported back to old JREs. Second, not all of
the changes improve rendering performance. As observed in [25], the rendering performance
of texts and figures drops seriously from Java 1.1 to J2SE 1.2 and from J2SE 1.3 to J2SE
1.4. Therefore, such a phenomenon may make it difficult for programmers to tune up the
performance for all of the JRE versions.

(4) Inconsistent rendering performance among different OSs.
The rendering performance of Java AWT/Swing is inconsistent among different OSs, even
when the same hardware configuration and JRE are used. The problem is caused by different
implementations of graphics systems as follows. Java 2D rendering pipelines are built on
different graphics systems on different OSs, such as Window graphics device interface (GDI)
and DirectX on Microsoft Windows platforms, X Window System (X) [30] on Linux and
Quartz graphics layer (Quartz) [31] on Mac OS X. In addition, Windows Vista has a new
graphics system called Desktop Window Manager (DWM), which runs on top of Direct3D
and through which GDI rendering is redirected [32]. Other than the above graphics systems,
OpenGL is supported on all of the four OSs. Since the JREs involve these different graphics
systems on different OSs, the optimization of Java games for one OS may not be applicable
to other OSs. Therefore, more efforts are required for testing and optimizing the games on
all targeted OSs.
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(5) Inconsistent rendering performance on choosing different image APIs.
In order to let programmers access hardware features, J2SE 1.4 introduced volatile images and
managed images (or so-called compatible images). Later, J2SE 5.0 introduced translucent-
supported volatile images. Using these new APIs properly may improve the overall rendering
performance but lose the backward compatibility with the old JREs.When programmers want
to support legacy Java users, they may either only use old image API or write several versions
of programs that access different image APIs in different JREs. However, the problem of
inconsistent rendering performance still occurs in either way.

(6) Inconsistent rendering performance on setting different system properties.
Besides the choices of image APIs described in the fifth problem, system properties also
need to be set carefully for better rendering performance. For example, the system property
‘sun.java2d.opengl’ needs to be specified to enable the OpenGL pipeline [33,34].
However, these system properties need to be set before the startup of Java AWT/Swing,
which means that programmers cannot dynamically change the settings during runtime. It
is even worse that some of these need to be specified by users, not just by programmers.
Consequently, it is difficult for users to use the proper settings that programmers want, or
to set these system properties without the administrator’s rights or help, e.g., the system
properties in the Java applets of the Web browsers [35]. Thus, this problem makes it difficult
for programmers to predict rendering performance on end users’ systems.

1.3. Goals of this paper

In view of the first three problems listed in Section 1.2, Wang et al. [25] developed a toolkit, named
CYC Window Toolkit (CWT), and implemented a DirectX version on Microsoft Windows XP to
deal with the problems. In this paper, in order to solve all the six problems, we extend their work
to various JREs on more OSs in the following two aspects:

(1) Evaluate the rendering performance of the original Java AWT with different combina-
tions of JREs, image APIs, system properties and OSs, including Windows XP, Windows
Vista, Fedora and Mac OS X. These OSs are selected according to population percentages
shown in Table II. The evaluation results indicate that the performance inconsistency of Java
AWT/Swing also exists among the four OSs, even if the same hardware configuration is
used. In addition, the results also show that no specific image APIs and system properties
are guaranteed to obtain high and consistent rendering performance in different JREs. These
problems weaken the merits of the Write-Once-Run-Anywhere (WORA) feature of Java.

(2) Propose solutions to solve the above problems of Java AWT and compare the results with
those of Java AWT/Swing.We implement an OpenGL version of CWT [25] via JOGL, named
CWT-GL. The results show that CWT-GL achieves more consistent and higher rendering

Table II. Percentages of OSs in April 2008 [36].
OS Percentage

Windows XP 73.3
Vista 8.8

Mac OS 4.6
Linux 3.7
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performance in JRE 1.4 to 1.6 on the four OSs. The results also hint two approaches. First,
decouple the rendering pipelines of Java AWT/Swing from the JREs for faster upgrading
and supporting old JREs. Second, allow programmers to use other graphics libraries, such
as CWT, instead of Java AWT/Swing to develop cross-platform Java games with higher and
more consistent rendering performance.

The rest of this paper is organized as follows. Section 2 presents the design of CWT-GL. Section 3
describes the configurations of JREs and the benchmark programs used in this paper. Section 4
analyzes the experimental results. Finally, Section 5 presents conclusions and future work.

2. DESIGN OF CWT-GL

This section describes the design of CWT-GL. For this implementation, CWT accesses 3D graphics
hardware acceleration via OpenGL. Several OpenGL bindings are available, including GL4Java
[20], JOGL [21] and LWJGL [22]. Among these bindings, JOGL is chosen due to the official support
from Sun Microsystems. Based on JOGL, CWT-GL not only renders graphical primitives through
3D hardware acceleration, but also optimizes the rendering performance by several techniques.
Therefore, CWT-GL achieves high and consistent rendering performance when compared with
Java AWT/Swing. Finally, we summarize work related to CWT, including Agile2D, FengGUI, and
Minueto.

2.1. Introduction to JOGL

JOGL is an open-sourced project initiated by the Game Technology Group at Sun Microsystems
[21]. JOGL is a Java binding for OpenGL and provides access to the latest OpenGL API, including
writing shader code. JOGL abstracts the OpenGL functionality from platform-specific libraries,
such as wgl, glx and agl, to create a platform-independent OpenGL API. The abstraction greatly
improves the portability of JOGL on different OSs. JOGL is a development version of the JSR-231
(Java binding for the OpenGL API) [37] and will possibly be included in the Java SE core library
in the future.

2.2. Introduction to CWT

CWT was proposed by Wang et al. [25] to provide high and similar rendering performance for
Java game development on different platforms. Their approach aimed to enhance the graphics
performance by directly using DirectX and OpenGL to render all widgets, figures, images and texts.
For ease of use and backward compatibility, CWT provides AWT/Swing compatible APIs for Java
1.1 and beyond. In other words, CWT has been designed to adapt the DirectX and OpenGL APIs
into the graphics APIs of AWT/Swing of Java 1.1.
The architecture of CWT is shown in Figure 1. Supporting Java AWT/Swing compatible APIs,

CWT defines component hierarchy, event model and painting model [25]. The component hierarchy
models a component hierarchy similar to Java AWT/Swing 1.1. The event model specifies the
event-handling process. The painting model defines an abstract class called Graphics that is
required to be implemented in the wrapper implementations of CWT: CWT-DX, CWT-GL and
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Figure 1. Architecture of CWT.

CWT-AWT, respectively, described as follows:

• For DirectX, CWT accesses DirectX 3.0, which is supported in Microsoft Java Virtual Machine
(MSVM) [38] via a wrapper identified as CWT-DX3, and DirectX 9.0, which is supported in
.NET J# [39] via a wrapper identified as CWT-DX9. The two together are called CWT-DX.

• For OpenGL, CWT accesses it via a wrapper, identified as CWT-GL. There are several candi-
date libraries: GL4Java (supporting OpenGL 1.3), JOGL and LWJGL (supporting OpenGL
2.0). All these libraries are available in various OSs, including Microsoft Windows, Mac OS
X, Linux and Solaris. In this paper, we use JOGL.

• When neither DirectX nor OpenGL is supported by the underlying OSs, CWT accesses Java
AWT via a simple wrapper, identified as CWT-AWT.

All of the wrapper implementations share the component model and event model, but realize
the Graphics class using different graphics libraries. As shown in Figure 2, CWT-AWT, CWT-
GL and CWT-DX, respectively, use Java AWT, OpenGL API and DirectX API to implement the
operations defined in the Graphics class. The greater details of these models are described in [25].

With this architecture, CWT offers the following features:

(1) Take full advantage of the hardware acceleration for most commonly used JREs even
including 1.1, since CWT is implemented using DirectX and OpenGL.

(2) Allow to access the DirectX and OpenGL objects directly to manipulate more hardware
features and to tune performance.
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Figure 2. Three implementations of the Graphics interface in CWT.

(3) Adapt DirectX and OpenGL APIs for AWT/Swing interfaces.
(4) Allow to use AWT/Swing widgets while accessing DirectX and OpenGL.

This architecture also helps to solve and improve the six problems mentioned in Section 1.2, as
follows:

(1) For the problem of backward compatibility with the old JREs without graphics acceleration,
Wang et al. [25] have improved the rendering performance by implementing CWT-DX3 for
MSVM. Together with CWT-GL for J2SE 1.4 and beyond on multiple OSs designed in this
paper, CWT covers in total 99.52% of Web browser users in Table I, whereas MSVM, J2SE
1.4, Java SE 5.0 and Java SE 6 are used by 10.75, 10.27, 23.77 and 54.73% Web browser
users, respectively.

(2) For the problem caused by mixing Java AWT/Swing components with the 3D libraries, CWT
supports AWT/Swing compatible widgets rendered by the 3D libraries, including DirectX
and JOGL. Since 3D scenes and the widgets are rendered by the same libraries, this problem
no longer exists.

(3) For the problem of inconsistent rendering performance among different JREs, CWT is inde-
pendent of JREs so that CWT can be applied to almost all the JREs, even including JDK 1.1
(backwards) and future JREs (forwards). Therefore, rendering performance among different
JREs becomes more consistent.

(4) For the problem of inconsistent rendering performance among different OSs, CWT directly
uses hardware acceleration supported on the OSs to avoid the problem of inconsistent
rendering performance caused by the different rendering pipelines on different OSs.

(5) For the problem of inconsistent rendering performance on choosing different image APIs,
CWT provides one set of graphics API that is compatible with Java 1.1, and internally uses
hardware acceleration features. This improves the compatibility issue and reduces test effort.
The details are described in Section 4.1.

(6) For the problem of inconsistent rendering performance when setting different system proper-
ties, users do not need to set system properties before the startup of the CWT programs, since
CWT lets users (including programmers) configure the rendering behaviors during runtime.
The details are described in Section 4.1.
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CWT is available on our web site [40]. Since CWT provides an AWT/Swing-like API, the way to
use CWT instead of Java AWT is replacing the ‘import’ statements of code from ‘java.awt.*’
to ‘com.cyc.lib.cwt.*’. More details of the porting guide are also available on the web
site [40].

2.3. Design of CWT-GL

In this section, we briefly introduce how CWT-GL implements the Graphics class using JOGL.
We divide the functionalities of the Graphics class into five parts: figures, images, texts, off-
screen buffers and graphics states, whose design issues and strategies are described in Sections
2.3.1–2.3.5, respectively.

2.3.1. Figures

In Java 1.1, the Graphics class allows programs to draw several kinds of figures, including lines,
rectangles, ovals, round rectangles, polylines and polygons. These figures are mainly of two types –
outline and solid figures. In OpenGL, outline figures can be assembled by lines, while solid figures
can be filled by triangles. Therefore, we use lines and solid triangles for these figure-drawing
and figure-filling methods, respectively. Most importantly, we use the number of lines or triangles
as small as possible to achieve high rendering performance for game development. For example,
CWT-GL uses just enough one-pixel lines to approximate a round circle [41].

2.3.2. Images

In CWT-GL, images are loaded onto so-called texture maps to fill rectangles. In practice, there are
several limitations when we use texture mapping for the simulation of drawing AWT images. These
limitations and the corresponding solutions are described as follows.
First, the size of each texture has a maximum bound. For example, the limitation on texture size

of ATI X1600 series, which are used as our test beds, is up to (4096×4096)-pixel2 [42]. The values
of the bounds may vary, depending on users’ systems and graphics cards. Currently, CWT-GL does
not support images larger than the bounds of the underlying system.
Second, some old graphics cards only support power-of-two-sized texture [41]. Therefore, if

the image is not power-of-two in dimension and the graphics card does not support non-power-
of-two image, JOGL pads the image by creating a power-of-two texture image and then draws
the original image onto the new one. However, the price to pay is more memory consumed. For
example, a 65×33-pixel2 image has to be padded to a 128×64-pixel2 size before it can be used
as a texture map. This problem can be solved by introducing texture mosaicing [43] (or called
texture packing [44]), which groups small images into a single power-of-two texture to utilize
memory. This technique is commonly used in the game applications [44]. Note that the problem
of optimizing texture packing can be reduced to the 2D Knapsack problem, which is known to be
NP-hard [45].
Finally, the size of texture memory is also limited [41]. Thus, OpenGL as well as CWT-GL

needs to manage the texture memory by moving textures in and out according to the priority of
the textures. The method glPrioritizeTextures() can set the priority to minimize texture
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memory thrashing. Therefore, CWT-GL adds a corresponding attribute (named priority) in the
Image class for programmers to manage the texture memory.

2.3.3. Texts

Since text drawing is not directly supported in OpenGL, two alternatives are used in OpenGL
applications: image-based and geometry-based approaches [43]. The image-based approach draws
texts by rendering images on which texts are pre-rendered or dynamically rendered during runtime.
This approach is further divided into two methods, bitmaps and texture maps. The former is simpler
and more efficient in memory utilization. However, the latter is normally faster than the former
since the latter is directly supported by hardware acceleration.
Although the image-based approach is easy to implement, it has two drawbacks. First, a pre-

rendered text has fixed resolution, so the quality of scaled texts would not be as good as that of the
originals. Second, when the font size is large, the images consume more memory and rendering
time. For example, a 32×32-sized character costs three times more memory than a 16×16-sized
character does.
On the other hand, the geometry-based approach represents texts in a series of lines, curves and

polygons. Since the texts are presented in 3D models, scaling the texts will not cause the effect of
artifact. However, the more complex the shape of the texts, the more the polygons and processing
power needed. For example, Asian languages, such as Chinese, typically require more polygons to
emulate.
According to the analysis above, CWT-GL implements both approaches described as follows:

• In the image-based approach, the text engine first renders the texts into texture maps in a
character-by-character basis, and then uses the texture maps to display the texts. The texts
will be cached in the texture maps for later uses. We use the Least Frequently Used algorithm
to maintain the character cache. The number of texture bindings can be reduced by putting a
number of the characters in one texture map instead of generating each individual character in
its own texture map, since drawing a string typically involves drawing a series of characters.

• In the geometry-based approach, we follow the common method described in [43]. The text
engine generates glyphs for each character and also caches them in display lists for later use.
Since most glyphs contain curves, such as quadratic parametric curves and Bezier curves, the
text engine needs to use cubic interpolation to draw the curves. Similar to the way we optimize
circle drawing described in Section 2.3.1, we only interpolate each curve by a limited number
of steps according to the distance between two ends of the curves.

Since both approaches have cons and pros, CWT-GL lets programmers configure the rendering
behaviors of the text engine during runtime, such as the size of texture cache and the threshold of
font size for enabling geometry-based rendering. According to our experimental results in [40], we
set 1MB as the default size of the texture cache and 32 as the default threshold of the font size to be
a balanced point between the rendering speed and memory consumption. When font size is larger
than the threshold, CWT-GL uses the geometry-based approach to draw texts; otherwise, CWT-GL
uses the texture-based approach.
We adopt two methods to reduce the memory used by the texture map for the text cache as

follows: First, in order to reduce the number of cached texts, the color information of the texts is
removed, i.e. we let characters with different colors share the same cache space in the texture map.
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To do this, the cached texts are drawn in white color with a black background. Then, we enable the
blending function to blend the designated color§ before drawing the texts. The blending function
is also specified so that the white color of the cached texts will be drawn by the designated color
and the black background will become transparent¶ . Second, since the color information is not
needed in the cached texts, we use a one-byte-per-pixel grayscale texture map, which can still be
accelerated by hardware.

2.3.4. Off-screen buffers

Rendering to off-screen buffers is a common operation in Java AWT. It is useful for performing
double buffering, dynamically creating images during runtime (runtime images) for special effects.
Although there are several ways to do so in OpenGL, only few are hardware-accelerated and fast
enough for game development. Currently, two techniques for fast off-screen rendering are pixel
buffer (pbuffer) [46] and Framebuffer Object (FBO) [47]. Both have been implemented in CWT-GL,
since both have advantages over each other, as described as follows:

• Pbuffer. The pbuffer technique [46] is an OpenGL extension. Pbuffers allow programmers
to create hardware-accelerated off-screen buffers. This method is faster than the old ways
when doing off-screen rendering, such as glReadPixels(), glDrawPixels() and
glCopyTexSubImage2D(), which involves copying pixels between video memory‖ and
system memory∗∗ [41]. However, each pbuffer is associated with one distinct OpenGL context,
which incurs overhead in both time and space as described in the following. Switching to
another pbuffer causes OpenGL context switching, which takes extra time [41]. Moreover,
since pbuffers cannot share space, each pbuffer must contain its own data for some extra
buffers, such as depth buffer, stencil buffers, accumulation buffers [41]. Despite of these disad-
vantages, the pbuffer technique is supported by more graphics cards, since it was introduced
earlier than the FBO.

• FBO. The FBO [47] extension is a good alternative to pbuffer, since it makes off-screen
rendering more efficient and easier to use. Unlike pbuffer, binding a different FBO does not
require context switching, because different FBOs are allowed to share one OpenGL context,
such as depth buffer, stencil buffers and accumulation buffers. The design of sharing context
also helps to reduce memory consumption. Moreover, FBO is easier to set up than pbuffer. As
a result, FBO now becomes the better choice of off-screen rendering in OpenGL. The only
problem of FBO, however, is that it is a new extension and supported by fewer graphics cards
than pbuffer.

According to the analysis above, the order of techniques for off-screen rendering in CWT-GL
is (1) FBO and (2) pbuffer. For backward compatible consideration to make CWT-GL work on

§The designated color is specified by using the glBlendColor() function.
¶The blending function is configured as glBlendFunc(GL CONSTANT COLOR, GL ONE MINUS SRC COLOR). The
color C rendered on target will be Csrc×Cblend+Cdst×(1.0−Csrc), where C denotes each individual red, green and blue
color from 0.0 to 1.0. Therefore, the white color (Csrc=1.0) part of the cached texts will be drawn with Cblend , while
the black background (Csrc=0.0) will be drawn with Cdst .‖Video memory refers to the memory on the video cards that holds data for display devices.

∗∗System memory refers to the memory where a computer holds current programs and data that CPU works with.
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systems with old graphics cards where neither FBO nor pbuffer is available, CWT-GL creates
AWT off-screen buffers for rendering, and then transfers the buffers into textures when rendering
is finished.

2.3.5. Graphics states

Graphics states control rendering behaviors, including origins, clipping areas, colors and fonts. For
example, first set the foreground or background color into the graphics state for subsequent drawing
of such lines or circles. Java AWT encapsulates the graphics states into the Graphics objects,
while OpenGL stores them in the OpenGL contexts. In AWT/Swing applications, a Window
object may contain a number of Component objects, and each Component object maintains its
own graphics states in its Graphics object. However, in multithread environments, concurrently
drawing Component objects in Java must carefully make graphics states of OpenGL contexts
consistent. Therefore, in order to design a mechanism to let CWT run correctly in multithread
environments, we need to take the following two points into consideration.
First, most CWT components are of lightweight [25]. These lightweight components are finally

painted on the four CWT heavyweight components, including Window, Frame, Dialog and Applet.
Heavyweight components independently keep graphics states such as painting colors, while
lightweight components in a single heavyweight component share the same graphics states. Thus,
a single heavyweight component must execute correctly the interleaved rendering operations from
these lightweight components with different graphics states, and set the proper graphics states
before drawing its lightweight components. This implies that we need to serialize the rendering
operations and execute them by a single thread.
Second, OpenGL is mainly designed for single-threaded usage. As suggested by the single-

threaded rendering (STR) [48] introduced in Java SE 6, using a single thread to issue OpenGL
commands is more efficient and reliable than using the multithreaded way, which is common
in AWT/Swing applications. It would be better to avoid the multithreading approach, since it
introduces more unexpected rendering performance issues in Java programs as indicated in [49].
According to the two points, we adopt the design of STR into CWT. We use the Java AWT event

dispatching thread (EDT) as the single command processing thread, since one of the responsibilities
of the EDT is to repaint the components. An example of this design is depicted in Figure 3 and the
steps involved are described as follows:

• Step 1: a rendering request drawImage() is issued to a GlGraphics object.
• Step 2: the request is translated into an internal command with the required state.
• Step 3: the command is put into a command queue.
• Steps 4 and 5: the command queue invokes the method display() of an internal GLCanvas
object in order to activate the EDT to execute this rendering request.

• Step 6: the activated EDT invokes the method display(GLAutoDrawable drawable)
implemented by the command queue.

• Steps 7 and 8: the command is retrieved and executed by the EDT by calling the
drawImageImp() method in the GlGraphics object.

• Step 9: before the command is executed, the GlGraphics object changes the states of the
OpenGL context to match the required state of the command.

• Step 10: the GlGraphics object issues the OpenGL commands.
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Figure 3. Sequence diagram of STR-like design in CWT.

Therefore, all the OpenGL operations are issued by the same thread, and the required states of
the graphics commands are ensured.

2.4. Optimization of CWT-GL

In order to achieve fast rendering for game development, CWT-GL introduces two optimization
methods, (1) disabling unnecessary checking and testing and (2) minimizing the number of state
changes in OpenGL. These optimizations effectively improve the rendering performance of CWT-
GL implementation.
In optimization method (1), we disable some unnecessary checking and testing of OpenGL

before performing certain rendering operations. For example, alpha testing and blending mode are
unnecessary when the programs draw opaque images and figures, while these tests are required for
drawing transparent images, translucent images and texts. Turning off unnecessary checking can
greatly improve the performance.
In optimization method (2), we try to minimize the number of state changes in OpenGL. As

described in Section 2.3.4, OpenGL context switching takes extra overhead in time [41], for
example, binding textures and invoking glBegin()/glEnd(). Others such as changing color
and setting clipping area do not affect speed much. However, since JOGL invokes corresponding
OpenGL API via JNI, it is still a good idea to reduce the number of JNI calls. Therefore, CWT-
GL tries to minimize the number of method calls that change OpenGL states. For example,
Figure 4 shows three cases of unnecessary changes of OpenGL state (pseudo-code with strikeout)
when drawing an image continuously: (a) glBegin()/glEnd(), (b) glBindTexture() and
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Figure 4. Eliminating unnecessary changes of OpenGL state.

(c) glEnable()/glDisable(). In order to achieve this, CWT-GL uses variables to indicate
the current states of bound textures, color, clipping area and type of glBegin(). Before issuing
the rendering operations to OpenGL, CWT-GL changes OpenGL states only when the states are
different from the required ones. Therefore, unnecessary state changes can be avoided.

2.5. Related work

Some research, such as Agile2D [50], focuses on building OpenGL adapters to Java AWT/Swing,
while others, such as FengGUI [51] and Minueto [52], try to create toolkits with different APIs. In
this section, we review the work related to CWT.

2.5.1. Agile2D

Agile2D [50] implements an almost complete set of Java 2D functionalities based on GL4Java to
replace the repaint manager of Swing. Therefore, it improves the rendering part of Swing without the
need of re-implementing Swing components. The authors of Agile2D also showed the improvement
in rendering performance to Sun’s Java 2D implementation. However, there exist some problems
in Agile2D. First, Agile2D supports only J2SE 1.4 and beyond, and it does not support the accel-
eration of Java AWT 1.1, which is still used by many applet games, such as Yahoo! Games [2],
ArcadePod.com [3] and CYC games [4,5]. Second, Agile2D is based on GL4Java that only supports
OpenGL version 1.4 and has no plan for evolution. Finally, Agile2D only supports the first 256
characters in Unicode, e.g. ISO 8859-1. These issues can limit the applications of Agile2D.

2.5.2. FengGUI

FengGUI [51] is a Java graphics toolkit based on JOGL and LWJGL. This toolkit specially focuses
on the rendering performance for multimedia and game applications, and has been used in several
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commercial projects. FengGUI provides a new set of commonly used widgets and graphics API
with easy-to-use design. In addition, FengGUI can also be combined with several 3D game engines,
including jMonkey Engine [53], jPCT [54] and Xith3D [55]. Programmers can also directly access
JOGL or LWJGL, since FengGUI does not encapsulate these two APIs. However, using FengGUI,
programmers need to learn not only the new API, but also the JOGL or LWJGL, which may reduce
the programmers’ productivity. In addition, FengGUI supports only JRE 1.5 and beyond, which
also limits the possible Web users.

2.5.3. Minueto

Minueto [52] is a Java 2D game framework based on Java AWT/Swing. The author designed it
especially for undergraduate students in order to ease the work of Java game programming, including
graphics, input and sound. Therefore, the API of Minueto is different from Java AWT/Swing, which
requires extra efforts to port existing Java games to Minueto. For high rendering performance,
Minueto provides an expansion module called MinuetoGL using JOGL. Unfortunately, although
testing the rendering performance of their engine on Windows XP, Linux and Mac OS, the author
did not address how different settings can affect the Java rendering performance, which is one of
the objectives in this paper.

3. EXPERIMENTS

In order to evaluate the consistency of rendering performance of a Java program running in possible
combinations of toolkit, JREs, image APIs, system properties and OSs, we implemented two testing
programs as our benchmarks, available on the web site [40]. One benchmark tests the performance
of rendering primitives, while the other focuses on the performance of the Bomberman game, which
is measured by two metrics: frame rate and Anomaly. All the benchmarks were performed on two
computers with roughly equivalent computing power. Since there are numerous combinations of
the five factors, we introduce a five-tuple identifier to represent each combination, called RE. In the
remaining part of this section, we will briefly present our experiments.

3.1. Test programs

We implemented two test programs, available on our web site [40]. One is a micro-benchmark and
the other is a macro-benchmark. The micro-benchmark program opens a 600×300-sized window
and counts the number of times an image, text or figure is rendered within a given time. The image
test is further divided into six subtests, including opaque images, transparent images, translucent
images, runtime opaque images, runtime transparent images and runtime translucent images. Each
subtest renders as many corresponding 110×110-sized images as possible in a given time. The
text test has two subtests: simple texts (using the word ‘Running’) and articles (consisting of about
13 000 characters on the screen, including 1562 different characters in Chinese, English and other
languages). The font size in both tests is 12. In addition, in order to decide the performance of
our text engine, the rendering speeds of texts with different font sizes, from 10 to 64, are also
measured. The figure test includes 12 subtests that draw lines, polylines, polygons, rectangles, round
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Figure 5. A screenshot of the Bomberman game.

rectangles, arcs, ovals, solid polygons, solid rectangles, solid round rectangles, pies and solid ovals.
The metric for these tests is ‘rendered items per second’.
The macro-benchmark program is to simulate a Bomberman game, an applet game developed by

[4], as shown in Figure 5. The panel size of the game is 560×395. On average, the game draws 196
opaque images, 122 transparent images and 14 text characters in each frame. Among the transparent
images, about 58 are runtime images, which are dynamically created during runtime. We measured
the average frame rate of the Bomberman game in rendering 20 000 frames.
Since we want to shorten and simplify the analysis part of this paper, we only focus on the

macro-benchmark. The results of the micro-benchmark are reported on our web site [40], instead.
Both the benchmarks use double buffering to avoid flickering. The programs first rendered items

into a back buffer and then copied the back buffer to the front buffer, which was shown on the screen.
Since game programmers normally try to optimize the frame rates of their games by using

different combinations of image APIs, we also measure the rendering performance of different
combinations of image APIs, as shown in Table III, four APIs for creating back buffers and three
APIs for creating runtime images for dynamic processing. In order to simplify the names of the
image APIs, we abbreviate these sets of APIs in the remaining paper. The APIs for back buffers are
identified by Img (Java 1.0/1.1 Image), Cpt (Compatible Image), Vlt (Volatile Image) and CptVlt
(Compatible Volatile Image), while the APIs for runtime images are identified by Img, Cpt and
CptVlt. Since it is possible to test all the cases of choosing APIs for back buffers and for runtime
images, there are in total 12 test cases of choosing these APIs.
According to JDK documents [33,34], some system properties allow programmers to customize

how Java 2D performs rendering operations. Therefore, we also specified these system properties
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Table V. System hardware, configuration and OSs.

Graphics Card
Computer Hardware OS Driver

1 • AMD X2 3800+2.0GHz Windows XP Professional SP2 ATI Catalyst 8.4
• 1GB DDR 400 Windows Vista Business
• ATI Radeon X1650 with 256MB Fedora Core 6
GDDR2 AGP

2 • Intel Core 2 Due 2.0GHz Mac OS X 10.4.11 Bundled driver
• 1GB DDR2 667
• ATI Mobility Radeon X1600 with 128MB
GDDR3 PCIe

Table VI. JRE versions in the benchmarks.

OS

Windows XP and Vista Fedora Mac OS X

MSVM (Java 1.1.4) 5.0.0.3810 N/A N/A
Sun Java 1.1 1.1.8 10 N/A N/A
Sun J2SE 1.2 1.2.2 17 N/A N/A
Sun J2SE 1.3 1.3.1 20 1.3.1 20 1.3.1 16
Sun J2SE 1.4 1.4.2 17 1.4.2 17 1.4.2 16
Sun J2SE 5.0 1.5.0 15 1.5.0 15 1.5.0 13
Sun Java SE 6 1.6.0 05 1.6.0 05 N/A

when running our benchmarks and selected the most significant parts that influenced the rendering
performance of the benchmarks most, as shown in Table IV.

3.2. System configuration

We performed our benchmarks on four OSs, including Windows XP Professional SP2, Windows
Vista Business, Fedora Core 6 and Mac OS X 10.4.11, which were chosen according to the popu-
lation percentages shown in Table II.
In order to make a fair comparison, we used two computers with roughly equivalent computing

power to install the four OSs, as shown in Table V. For the hardware part, Computer 1 is a desktop
PC with AMD X2 3800+2.0GHz, 1GB DDR 400 RAM and ATI Radeon X1650 with 256MB
GDDR2 via AGP bus, while Computer 2 is an iMac with Intel Core 2 Due 2.0GHz, 1GB DDR2
667 RAM and ATI Mobility Radeon X1600 with 128MB GDDR3 via PCIe bus. As for the OSs,
Computer 1 has Windows XP Professional, Windows Vista Business and Fedora Core 6 installed
with ATI Catalyst 8.4. Computer 2 has Mac OS X 10.4.11 installed with bundled graphics card
driver. Both computers worked in true color mode and disabled font anti-aliasing.
We installed most of the popular JREs on these OSs. The versions of the JREs are given in

Table VI. However, we did not perform the benchmarks in JRE 1.1 and 1.2 on Fedora and Mac OS
X, since we could not successfully configure these old versions.
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Since JOGL is still under development, there are several release builds available on the web site
[21]. The release build we used to run the benchmarks in this paper was JSR-231 1.1.1-rc8.

3.3. Rendering environments (REs)

In this paper, we ran test programs in all the REs with the combination of using different JREs,
image APIs, system properties and OSs. In order to easily point out which RE we are referring to, we
identify each RE by an identifier, a tuple of five attributes (Toolkit, JRE, ImageAPI, SystemProperty,
OS).

• Toolkit∈{AWT,CWT−DX,CWT−GL}. ‘AWT’ represents the Java AWT graphics library,
‘CWT-DX’ represents the DirectX implementation of CWT in [25] and ‘CWT-GL’ represents
the OpenGL implementation of CWT in this paper.

• JRE∈{MSVM,1.1,1.2,1.3,1.4,1.5,1.6}. ‘MSVM’ denotes Microsoft Java VM [38] and ‘1.1’
to ‘1.6’ denote Sun JRE version 1.1 to 1.6, respectively.

• ImageAPI∈{BackBufferAPI+RuntimeImageAPI}, where BackBufferAPI={Img,Vlt,Cpt,
CptVlt} and RuntimeImageAPI={Img,Cpt,CptVlt}, as shown in Table III. Therefore, there
are in total 12 combinations tested in this paper.

• SystemProperty∈{None,OpenGL,Special}. ‘None’ represents the case that no system prop-
erties are specified for JREs, ‘OpenGL’ denotes the case that OpenGL pipeline is enabled
(by setting the system property sun.java2d.opengl to true) and ‘Special’ refers to the
system properties specified for JREs according to Table IV, which follows the hints in [33,34].

• OS∈{XP,Vista,Fedora,MacOS}. ‘XP’, ‘Vista’, ‘Fedora’ and ‘MacOS’, respectively, represent
the following OSs, Windows XP, Windows Vista, Fedora Core 6 and Mac OS X 10.4.11.

For example, RE(AWT,1.6,Vlt+Cpt,OpenGL,XP) refers to the RE that uses AWT, runs in
JRE version 6, chooses the method createVolatileImage() in Component class for
back buffers and the method createCompatibleImage() in GraphicsConfiguration
class for runtime images, enables OpenGL pipeline and runs on Windows XP; RE(CWT−
GL,1.4,None, Img+Img,MacOS) refers to the RE that uses CWT-GL, runs in JRE version
1.4, uses Java 1.0/1.1 image APIs for both back buffers and runtime images and runs on Mac
OS X 10.4.11.
For simplicity, we introduce the wildcard character ‘*’ to indicate a group of REs for all cases

in the attribute. For example, RE(AWT,∗,Vlt+Cpt,None,MacOS) means all the REs with AWT
and with the combinations of ImageAPI∈{Vlt+Cpt} and SystemProperty∈{None} on Mac OS X.

3.4. Definitions of metrics

To measure the rendering performance of the macro-benchmark, we use two metrics: frame rate
and Anomaly. Frame rate is commonly employed to measure the rendering speed expressed by
frames per second (FPS). For an RE r , FrameRate(r) denotes the frame rate in r . Anomaly for a
set of REs, say R, is defined as follows:

Anomaly(R)= max∀r∈R(FrameRate(r))

min∀r∈R(FrameRate(r))
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The metrics Anomaly is defined specifically for the worst case, which could happen out of program-
mers’ expectation. Since programmers may believe that the rendering performance of Java is also
similar when porting to other REs, they may optimize their games by only testing in some limited
REs. However, the users who use other REs may experience much worse rendering performance.
Therefore, we use the above definition for Anomaly, instead of some other metrics such as standard
deviation.

4. ANALYSIS

This paper focuses on analyzing the results of the macro-benchmark, as shown in Table AI in
Appendix A. As mentioned in Section 3.1, results of the micro-benchmark are listed on our web
site [40] in order to shorten the length of this paper.
In order to simplify our analysis in advance, we select different aspects of the results that can

represent the performance inconsistency of Java AWT. The three chosen aspects are (1) grouped
by OSs, (2) grouped by the combinations of image APIs and system properties and (3) grouped by
JREs.
In the following sections, we first summarize the results in the three aspects mentioned above.

Next, we discuss the results and our suggestions for cross-platform Java game development.

4.1. Summary of macro-benchmark results

We summarize the results of Java AWT as follows.

• The rendering performance of Java AWT is inconsistent among the four OSs. First of all,
we compare the rendering performance of a Java 1.1 program among the four OSs. In this
case, Java 1.0/1.1 image APIs are used, i.e. ImageAPI∈{Img+Img}. As shown in Figure 6,
Fedora normally delivers much slower frame rates than those on other OSs, which is the main
source of performance inconsistency among the four OSs. For all jre∈{1.3,1.4,1.5,1.6},
Anomaly(AWT, jre, Img+Img,None,∗) ranges from 3.06 to 9.10. This means that the
rendering performance of the Java 1.1 program would be quite different on the four OSs,
especially on Fedora.
This phenomenon also exists when we use new image APIs and system properties avail-

able since JRE 1.4, as shown in Figures 7 and 8. In the combinations of SystemProperty∈
{None,Special}, the frame rates on Fedora are still slower than those on other OSs by a factor
of 2.33 to 5.10.
In Figure 9, when OpenGL pipeline is enabled (SystemProperty∈{OpenGL}), using the

combinations of ImageAPI∈{CptVlt+Cpt,CptVlt+CptVlt,Vlt+Cpt,Vlt+CptVlt} in JRE
1.6, achieves high and consistent frame rates on all OSs. However, the OpenGL pipeline is
not reliable enough since it renders incomplete screens in some of these REs during our test.
Therefore, if the OpenGL pipeline of Java AWT is not considered (that is, SystemProperty∈
{None,Special}), the inconsistent performance among different OSs exists even when we use
new image APIs and system properties to tune up the Bomberman game.

• The rendering performance of using different combinations of image APIs and system
properties is inconsistent. Typically, using different image APIs results in different rendering
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Figure 6. Frame rates and Anomaly among OSs using Java 1.0/1.1 image APIs.

performance. As mentioned in Sections 3.1 and 3.3, Java AWT provides several types of
image APIs and system properties for tuning up the performance. However, we observe that
the image APIs and system properties have irregular impacts on the rendering performance in
different REs. In other words, programmers may need to use different combinations of image
APIs and system properties in different REs to achieve the best rendering performance.
Table VII summarizes the best combinations of image APIs and system properties for

achieving the best frame rates in given REs and Figure 10 shows the results of comparing
different combinations of Image APIs and system properties. From these results, we do
not find a combination of image APIs and system properties that can deliver high and
consistent frame rates in all REs, as illustrated in the following examples. (a) On Windows
XP, Vista and Fedora, using the combinations of ImageAPI∈{Img+Img,Cpt+Img} and
SystemProperty∈{None,Special} often achieves the best results. (b) However, using the combi-
nations of ImageAPI∈{CptVlt+Cpt,Vlt+CptVlt} and SystemProperty∈{Special} instead in
JRE 1.6 on Windows XP delivers 1.57 times faster frame rate. (c) As for Mac OS X, program-
mers should use the combinations of ImageAPI∈{Vlt+Cpt} to achieve the best frame rates. (d)
Moreover, when OpenGL pipeline enabled (SystemProperty∈{OpenGL}), the combinations
for the best frame rates are also different from those above. The combinations of ImageAPI∈
{Img+Cpt,CptVlt+Cpt,Vlt+Cpt} achieve the best frame rates in JRE 1.5, while the combi-
nations of ImageAPI∈{CptVlt+CptVlt,Vlt+CptVlt} achieve the best frame rates in JRE 1.6.
(e) Even worse, using wrong combinations of image APIs with the OpenGL pipeline would
cause serious consequences. The frame rates may become as low as only two FPS.
Therefore, the inconsistent rendering performance of the combinations of image APIs and

system properties makes it difficult to decide which combinations should be used in developing
cross-platform Java games.

• The rendering performance of Java AWT is inconsistent among commonly used JREs. As
mentioned in Section 1.1, Java 2D rendering pipelines evolve over JREs. Therefore, it is
normal that the rendering performance is inconsistent among different JREs. However, since
the old JREs are still used by a portion of users, programmers should take the inconsistency
of rendering performance among JREs into consideration.
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Figure 7. Frame rates and Anomaly among OSs using SystemProperty∈{None}.

As shown in Figure 11, older JREs normally delivered worse frame rates, especially MSVM.
In the case of using Java 1.0/1.1 image APIs, for all os∈{XP,Vista,Fedora,MacOS},
Anomaly(AWT,∗, Img+Img,None,os) ranges from 1.18 to 3.31.
When new image APIs are used, the performance inconsistency among JREs also exists.

For example, programmers may tune their programs to achieve very high frame rates
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Figure 8. Frame rates and Anomaly among OSs using SystemProperty∈{Special}.

in certain JREs, such as RE(AWT,1.5,Vlt+Cpt,None,MacOS) and RE(AWT,1.6,Vlt+
Cpt,Special,XP), but the same programs would not perform as well in other JREs. For
example, in our benchmark, Anomaly(AWT,∗,Vlt+Cpt,None,MacOS) and Anomaly
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Figure 9. Frame rates and Anomaly among OSs using SystemProperty∈{OpenGL}.

(AWT,∗,Vlt+Cpt,Special,XP) are 1.71 and 2.60, respectively. Therefore, since old JREs
are still used, programmers need to deal with the performance inconsistency among JREs.

To sum up the results of Java AWT, we find it difficult to optimize the rendering performance in
the combinations of JREs, image APIs, system properties and OSs for cross-platform Java games.
In order to solve the problem of performance inconsistency among different REs, we try to use
a number of different combinations of image APIs and system properties. However, according to
our experimental results, we find no combinations that can achieve high, consistent and reliable
rendering performance among all REs. When optimizing the rendering performance for one RE, we
observe that the same programwould perform differently in other REs. Thus, efforts for performance
testing are required for programmers to develop cross-platform Java games requiring consistently
high rendering performance.
It is even worse that some of the parameters, such as JRE versions, system properties and OSs,

are controlled by users, not by the programmers, especially for Java applet games, where the
programmers have fewer choices. Therefore, Java AWT/Swing programmers need to pay more
attention to the issue when consistently high rendering performance is required for cross-platform
Java games.
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Figure 10. Frame rates and Anomaly on choosing different image APIs.
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Figure 11. Frame rates and Anomaly in commonly used JREs.

Next, we summarize the results of the CWT as follows:

• CWT-GL achieves higher and more consistent rendering performance among the four OSs
than Java AWT does. In Figures 6–9, CWT-GL often delivers the highest frame rates,
and also more consistent rendering performance than Java AWT. For example, for all
jre∈{1.4,1.5,1.6}, Anomaly(CWT−GL, jre, Img+Img,None,∗) ranges from 1.34 to 1.49,
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while Anomaly(AWT, jre, Img+Img,None,∗) ranges from 3.06 to 3.64. Therefore, CWT-GL
performs more consistently than AWT does among the four OSs.

• CWT-GL needs fewer efforts to test the combinations of image APIs and system properties.
CWT-GL supports Java 1.0/1.1 image APIs and requires no system properties before the
startup of programs. Therefore, the efforts to optimize the rendering performance in all of the
REs can be greatly reduced. In fact, although only old image APIs are supported, CWT-GL still
achieves almost the highest rendering performance when compared with the Java AWT, which
has a number of image APIs and system properties to tune up the rendering performance.

• CWT delivers higher andmore consistent rendering performance in the set of JRE{MSVM,1.4,
1.5,1.6}, which covers most Web users. It is important that games deliver high and
consistent rendering performance in commonly used JREs. As shown in Figure 11, CWT
achieves the best frame rates in the set of JRE∈{MSVM,1.4,1.5,1.6}. Meanwhile, CWT
also delivers more consistent frame rates than Java AWT does. For example, for all
os∈{XP,Vista,Fedora,MacOS}, Anomaly(CWT,∗, Img+Img,None,os) ranges from 1.08 to
2.22, while Anomaly(AWT,∗, Img+Img,None,os) ranges from 1.18 to 3.31.

Generally speaking, the rendering performance of CWT-GL is higher and more consistent on
supported REs than those in Java AWT. This is quite important especially when games run in users’
computers with various REs. Furthermore, the image APIs and system properties in CWT-GL are
simpler than Java AWT, which also helps to reduce the testing efforts. Therefore, our experimental
results suggest that CWT-GL is more suitable for cross-platform Java game development than
Java AWT.

4.2. Discussion

Although the WORA feature is very attractive to Java game developers and Java has been greatly
improved on performance in terms of JVM and graphics, the inconsistency of rendering performance
weakens the merit of WORA for game development, especially for cross-platform games running in
various REs. In this section, we further discuss the problems of current Java 2D rendering pipelines
including implementations on the four OSs. Then, we give suggestion for developing Java 2D
rendering pipelines. Finally, the limitations of CWT are presented.

4.2.1. Problems of current Java 2D rendering pipelines

This section discusses the problems of different graphics systems on the four OSs and corresponding
implementations of Java 2D rendering pipelines. These include Window GDI and DirectX on
MicrosoftWindows platforms,DWM onMicrosoftWindowsVista, XWindow System (X) on Fedora,
Quartz graphics layer (Quartz) on Mac OS X and OpenGL on all of the four OSs.
On Microsoft Windows platforms, the main rendering pipelines of Java AWT/Swing rely on

GDI and DirectX. GDI was used in Java AWT since Java 1.0/1.1, while DirectX was introduced
since J2SE 1.4 to greatly improve the rendering performance of Java AWT/Swing. In addition,
Windows Vista has a new graphics system called DWM, which runs on top of Direct3D instead
of GDI. In order to make Java programs run well with DWM, Sun Microsystems introduced some
changes to the Java 2D rendering pipelines [56]. Consequently, these changes altered the rendering
performance on Windows Vista.
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On Fedora, Java AWT/Swing is built on X, which is designed according to the client–server
model so as to operate over network. When the X server and X clients are located in the same
machine, shared memory extension (SHM) is introduced into X to allow them to jointly access shared
memory rapidly. According to the macro-benchmark results, when using SHM, the Bomberman
game delivered on an average 20% more frames per second. However, the frame rate was still much
slower than that on the other three OSs, which is due to the lack of full hardware acceleration on
the graphics system. This is an example of low rendering performance when Java games run in the
different rendering pipelines on different OSs.
On Mac OS X, Apple has its own peer implementation of Java AWT atop Quartz. Therefore, the

performance factors are different from those on Windows platforms and Fedora, especially for the
system properties [34]. Properly configuring the behaviors of Quartz may improve the rendering
performance, since some rendering operations are anti-aliased [34].
For cross-platform Java games, OpenGL is available on all of the four OSs. According to our

benchmarking results, the OpenGL pipeline of Java AWT/Swing has shown its potential on cross-
platform Java game development. For example, Figure 9 shows that the OpenGL pipeline in some
cases delivered equivalent frame rates on Windows platforms and Fedora. However, the OpenGL
pipeline may deliver very poor frame rates in other cases when different image APIs are used. This
shows inconsistent rendering performance of the OpenGL pipeline when Java games use improper
image APIs. In contrast, CWT-GL achieves high and consistent rendering performance on all of
the four OSs by direct access to OpenGL via JOGL.
The current approach by Sun to solving the problem is to bundle the OpenGL pipeline in JRE,

since J2SE 5.0 [18]. However, this approach also incurs the following three problems:

(1) Since the new OpenGL pipeline is bundled with new JREs and is not ported back to the old
JREs, users need to upgrade to one of the new JREs.

(2) In order to obtain new features or fix bugs in the OpenGL pipeline, programmers and users
have to upgrade their entire JREs, not only the part of the OpenGL pipeline.

(3) Programmers must wait for newer JREs to improve the reliability, performance or more
support of the OpenGL pipeline. For example, future JREs are required, since the OpenGL
pipeline is currently not reliable enough, and that Mac OS X 10.4 and below do not support
the OpenGL pipeline.

These problems weaken the motivation of using Java AWT/Swing to develop cross-platform
Java games with high and consistent rendering performance.

4.2.2. Decoupling of Java rendering pipelines from JREs

According to the discussion in the previous section, we suggest that the rendering pipeline of
Java AWT/Swing should be decoupled from JREs, since both Java AWT and Swing provide the
capability of extension, for example, implement new peers of AWT to replace those in the old
JREs, such as CWT, or replace the repaint manager of Swing, such as Agile2D. Once the rendering
pipelines are decoupled, they are independent of the JRE versions and can be applied to the older
JREs. To sum up, the benefits of decoupling the graphics part from the JRE are listed as follows.

(1) The rendering pipelines can be applied to the older JREs.
(2) The rendering pipelines are easier to upgrade due to smaller size when compared with the

whole JRE.
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(3) New features and bug fixes of the rendering pipelines can be released faster (without waiting
for new JRE releases).

(4) The responsibility of performance is shifted to supporting graphics libraries such as CWT.
(5) JRE developers such as Sun Microsystems can focus on other design issues.

4.2.3. Drawbacks of CWT

Although CWT seems ideal as described in the above subsections, this subsection lists the potential
drawbacks of CWT as follows:

• CWT is not designed for general-purpose applications. For example, CWT-GL needs modern
video cards with 3D hardware acceleration for delivering better results.

• When no hardware acceleration is available, the CWT switches to use CWT-AWT implemen-
tation, which incurs extra overhead (about 10.3% [25]). For example, when neither FBO nor
pbuffer is available, CWT-GL will use Java AWT internally to perform off-screen rendering.

• Using CWT will not benefit from any additional features supported by new Java versions,
since currently we implement only Java AWT/Swing 1.1 compatible API.

In order to access the hardware acceleration via JNI, applets using CWT-GL need to be signed and
acquire permissions from users when executed in Web browsers.

5. CONCLUSIONS

This paper designs an OpenGL version (CWT-GL) of the CWT architecture defined in [25] using
JOGL and compares its rendering performance with that of Java AWT on four OSs, including
Windows XP, Windows Vista, Fedora and Mac OS X. The results indicate that CWT-GL generally
reaches higher and more consistent rendering performance in J2SE 1.4 to 6 on the four OSs.
Furthermore, it also helps to reduce the efforts of tuning the rendering performance by choosing
different image APIs and system properties.
The contributions of this paper that differ from [25] are as follows:
• Evaluate the rendering performance of the original Java AWT with different combinations
of JREs, image APIs, system properties and OSs. The evaluation results indicate that the
performance inconsistency of Java AWT also exists among the four OSs, even if the same
hardware configuration is used. This concludes that programmers can hardly optimize the
rendering performance of Java AWT using different combinations of image APIs and system
properties for mostly used JREs on the four OSs. This weakens the merit of WORA of Java
for game development.

• Implement an OpenGL version of CWT [25] via JOGL, which takes advantage of 3D hard-
ware acceleration on multiple OSs. Compared with the Java AWT, CWT-GL achieves more
consistent and higher rendering performance in JRE 1.4 to 1.6 on the four tested OSs.

• The experimental results also reveal two points: (1) the rendering pipelines of Java AWT/Swing
should be decoupled from the JREs for higher and more consistent rendering performance,
faster upgrades and better support of the old JREs, and (2) programmers can use other graphics
libraries, such as CWT, instead of Java AWT/Swing to develop cross-platform Java games
with higher and more consistent rendering performance.
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We have established a web site [40] for releasing the latest implementations of CWT. The benchmark
programs and results are also available on the web site, as well as the demonstrations and a porting
guide.
Future extension includes more optimizations on CWT-GL and the cooperation with JOGL to

apply our work to 3D game development in Java. We will also introduce more game-related features
into CWT, such as animations and visual effects, to further improve the usability of CWT.

APPENDIX A

The results of macro-benchmark is given in Table AI.

Table AI. Average frame rate (in FPS) of the Bomberman game.

OS
System

Toolkit JRE property Image API Windows XP Windows Vista Fedora Core 6 Mac OS X 10.4.11

AWT MSVM None Img+Img 101 99 N/A N/A
1.1 None Img+Img 98 94 N/A N/A
1.2 None Img+Img 98 67 N/A N/A
1.3 None Img+Img 182 99 62 20
1.4 None Img+Img 306 232 100 218

Img+Cpt 293 217 94 225
Cpt+Img 301 227 100 216
Cpt+Cpt 217 222 94 227
Vlt+Img 220 288 101 217
Vlt+Cpt 258 132 94 271

Special Img+Img 304 234 116 217
Img+Cpt 285 224 75 225
Cpt+Img 307 237 115 217
Cpt+Cpt 286 222 108 226
Vlt+Img 210 290 118 217
Vlt+Cpt 200 292 110 272

1.5 None Img+Img 322 295 88 322
Img+Cpt 295 274 97 341

Img+CptVlt 296 272 96 343
Cpt+Img 321 295 74 321
Cpt+Cpt 242 277 97 343

Cpt+CptVlt 299 273 98 345
CptVlt+Img 220 299 88 320
CptVlt+Cpt 256 275 97 344

CptVlt+CptVlt 259 278 97 345
Vlt+Img 222 291 88 356
Vlt+Cpt 256 275 91 464

Vlt+CptVlt 259 273 97 467
Special Img+Img 318 291 121 269

Img+Cpt 299 277 115 244
Img+CptVlt 294 277 117 245
Cpt+Img 317 294 120 265
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Table AI. Continued.

OS
System

Toolkit JRE property Image API Windows XP Windows Vista Fedora Core 6 Mac OS X 10.4.11

Cpt+Cpt 299 277 116 240
Cpt+CptVlt 297 277 116 241
CptVlt+Img 212 294 121 265
CptVlt+Cpt 199 274 116 240

CptVlt+CptVlt 205 273 117 237
Vlt+Img 211 298 122 264
Vlt+Cpt 202 271 117 287

Vlt+CptVlt 204 273 117 285
OpenGL Img+Img ∗86 37 37 N/A

Img+Cpt 127 47 178 N/A
Img+CptVlt 90 39 40 N/A
Cpt+Img 45 ∗33 110 N/A
Cpt+Cpt 44 32 94 N/A

Cpt+CptVlt 44 32 105 N/A
AWT CptVlt+Img 85 38 37 N/A

CptVlt+Cpt 124 47 178 N/A
CptVlt+CptVlt 90 39 37 N/A

Vlt+Img ∗85 38 37 N/A
Vlt+Cpt 127 47 178 N/A

Vlt+CptVlt 89 39 40 N/A
1.6 None Img+Img 340 315 108 N/A

Img+Cpt 325 301 98 N/A
Img+CptVlt 323 304 111 N/A
pt+Img 339 316 84 N/A
Cpt+Cpt 324 303 111 N/A

Cpt+CptVlt 326 301 110 N/A
CptVlt+Img 227 312 104 N/A
CptVlt+Cpt 274 300 112 N/A

CptVlt+CptVlt 275 300 112 N/A
Vlt+Img 224 312 104 N/A
Vlt+Cpt 274 296 73 N/A

Vlt+CptVlt 277 297 112 N/A
Special Img+Img 331 307 124 N/A

Img+Cpt 319 296 118 N/A
Img+CptVlt 324 296 119 N/A
Cpt+Img 340 311 122 N/A
Cpt+Cpt 327 301 117 N/A

Cpt+CptVlt 323 296 118 N/A
CptVlt+Img 283 316 116 N/A
CptVlt+Cpt 510 303 119 N/A

CptVlt+CptVlt 272 300 120 N/A
Vlt+Img 281 313 124 N/A
Vlt+Cpt 519 300 119 N/A

Vlt+CptVlt 272 301 119 N/A
OpenGL Img+Img 43 ∗30 113 N/A

Img+Cpt 43 32 108 N/A
Img+CptVlt 2 2 2 N/A
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Table AI. Continued.

OS
System

Toolkit JRE property Image API Windows XP Windows Vista Fedora Core 6 Mac OS X 10.4.11

Cpt+Img 43 32 113 N/A
Cpt+Cpt 43 ∗32 85 N/A

Cpt+CptVlt 2 2 2 N/A
CptVlt+Img 104 78 115 N/A
CptVlt+Cpt 327 304 302 N/A

CptVlt+CptVlt 338 319 308 N/A
Vlt+Img 104 79 115 N/A
Vlt+Cpt 327 303 ∗302 N/A

Vlt+CptVlt 338 319 308 N/A
CWT-DX MSVM None Img+Img 245 280 N/A N/A
CWT-GL 1.4 None Img+Img 484 408 357 412

1.5 None Img+Img 518 395 387 449
1.6 None Img+Img 544 405 365 N/A

The numbers with ‘*’ mean that the screen was not rendered correctly.
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