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Abstract—Java applications for embedded systems are 
becoming popular today. CLDC/MIDP is the standard 
application platform for mobile phones while CDC/PBP is 
the emerging application platform for next generation digital 
TV set-top boxes. Although software-based Java Virtual 
Machines (VM) are prevalent, most of these VMs require a 
host processor running at much higher clock rate than 
300MHz to reach reasonable performance. This is beyond 
the recommended specification of handsets and set-top boxes. 
In this paper, we have proposed a double-issue java 
processor for embedded systems. The design is not tied to 
any host processors and can be used as an efficient binary 
execution engine for a full Java Runtime Environment 
implementation. When synthesized on a Virtex IV FPGA 
(4VFX12FF66-10), the RTL model can reach over 100MHz 
and consumes less than 22% resources of the device. 

I.  INTRODUCTION 
 

Java Runtime Environment (JRE) is adopted by many 
organizations as the portable application platform for 
embedded systems such as mobile phones and set-top 
boxes. In order to support a large variety of devices while 
maintaining interoperability, Sun Microsystems has 
created the Java 2 Micro Edition (J2ME) specification and, 
under this framework, define different profiles and 
configurations for different applications [1]. For mobile 
phones, the Connected Limited Device Configuration 
(CLDC) with Mobile Information Device Profile (MIDP) 
has become the standard environment for Java applications. 
The virtual machine (VM) underneath CLDC/MIDP is a 
reduced-capability version of Java VM, called KVM. For 
DTV set-top boxes, the Connected Device Configuration 
(CDC) with Personal Basis Profile (PBP) are adopted as 
the de facto standard application environment [2]. The VM 
underneath CDC/PBP is a full capability VM. However, 
the reference implementation of CDC/PBP from Sun 
Microsystems is a specially engineered VM, named CVM, 
to facilitate porting to various embedded platforms. 

There are many performance issues for adopting Java 
for embedded systems. First of all, object-oriented 
programs rely a lot on dynamic memory allocation/de-
allocation which is very inefficient for embedded devices. 
Secondly, the Java VM model is based on a stack machine 
[3]. Excessive access of stack memory to store 
intermediate computation results is very inefficient. Finally, 
most embedded systems use a RISC CPU running at less 
than 300MHz as the host processor. The RISC architecture 

is usually not efficient for the execution of a software 
interpreter of a byte-oriented machine language [4][5]. 

There have been many efforts to improve the 
performance of a Java VM [4]. For embedded devices, 
software-based approaches such as Just-in-Time (JIT) 
compilation are less suitable since JIT compilers requires 
extra memory and the overhead of the on-the-fly 
compilation process is more noticeable and intrusive for 
embedded systems with slow RISC processors. For 
hardware-based solution, there are co-processor 
approaches (such as ARM Jazella) and java processor 
approaches [5][6]. An interesting work is the Java 
processor, JOP, designed by Schoberl [5] since the 
complete RTL model (written in VHDL) is available to 
general public. JOP defines its own application 
profile/configuration, which is closer to CLDC than to a 
full JVM. The RTL model of JOP has been ported to many 
devices. However, the performance still has a lot of room 
for improvement. 

In this paper, the design of a double-issue Java 
processor is proposed. The advantage of designing a stand-
alone Java processor instead of a co-processor is that the 
design will not be tied to certain host processor. However, 
since a stack machine is not efficient for I/O and control 
tasks, a general purpose processor is still required to 
complete the system.  The paper is organized as follows.  
Section II provides an overview to a full Java Runtime 
Environment design and discusses how a Java processor 
can be integrated into the environment. The proposed 
double-issue Java processor is presented in section III. 
Section IV describes the target platform and shows the 
synthesis report of the RTL model. Finally, some 
discussions are given in section V. 

II. JAVA RUNTIME AND INTEGRATION OF A 
JAVA PROCESSOR 

 
A complete JRE is a sophisticated software system. 

The key components of a JRE include a bytecode 
execution engine (BEE), a dynamic class loader, a garbage 
collector, and standard class libraries (Fig. 1). Among 
these components, only the BEE can be reasonably 
implemented in hardware. For software-based VM, the 
BEE is implemented as an interpreter. The integration of 
this “virtual hardware” with the rest of the software 
components is simpler since everything is implemented in 
software. However, for a hardware-assisted JRE, the BEE 
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will be replaced by a Java processor. In this case, the JRE 
becomes a highly integrated hardware/software system. 
The link between a Java processor and the rest of the JRE 
is the dynamic class loader. 

When the JRE is assigned to run a Java program, the 
initial class file will be loaded and parsed. All the static 
content of the classes inside the class file (e.g. method 
codes and data field information) will be registered in the 
method area. An object will be allocated on the heap to 
instantiate the root class. The object will contain a copy of 
the private data fields of the root class. At this point, the 
program counter of the Java processor will be set to point 
to the initial method in the method area. During execution, 
the Java processor will fetch bytecodes from the method 
area and access data fields of the object in the heap and in 
the method area. 

In general, the class loader is responsible for 
locating/loading the class files (Java application images) 
and setting up the method area for the BEE. Therefore, it is 
more suitable to execute the class loader on the host 
processor. The proposed JRE is shown in Fig. 2. In this 
paper, we only focus on the design of a Java processor that 
can be used to replace the BEE. 
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Fig. 1. A standard Java runtime system 
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Fig. 2. The proposed Java runtime system 

 

III. PROPOSED DOUBLE-ISSUE JAVA 
PROCESSOR 

 
In this section, the detail design of a double-issue Java 

Processor is presented. For a double-issue processor, two 
machine instructions are executed per cycle. It is important 
to point out that a Java processor in general does not 
execute bytecodes directly because some bytecodes are 
much more complex than a traditional machine instruction. 
Therefore, for the proposed processor, the native 
instruction set (referred to as the microcodes, following the 

convention in [5]) is different from the bytecode 
instruction set. A bytecode will be translated into one or 
more microcodes on-the-fly. The proposed processor has a 
four-stage pipeline which is shown in Fig. 3. 
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Fig. 3. Overall Java processor architecture 

 

III.1 Pre-translation Stage 

The Java bytecodes are divided into simple bytecodes 
and complex bytecodes. At the pre-translation stage, each 
simple bytecode is translated into a microcode, while a 
complex bytecode is translated into a pointer that points to 
the address of a microcode sequence stored in ROM. A 
Java bytecode instruction may be followed by zero, one, or 
more operand bytes. Therefore, it is not trivial to fetch two 
bytecode instructions per cycle (along with the operand 
bytes) due to this variable length instruction nature of Java 
bytecodes. Obviously, the instruction must be decoded to 
some degree before the fetch stage so that the processor 
knows how many bytes it has to fetch in order to retrieve 
two complete instructions with operands. The pre-
translation module is designed to classify-and-tag the 
bytecode streams so that the fetch module can identify the 
number of bytes to fetch. 

As shown in Fig. 4, the pre-translation module fetches 
four bytes at a time from the bytecode section of the 
method area. The bus_wr signal triggers the counting of 
the Pre-Fetch Program Counter (PFPC). The PFPC signal 
will select one byte per cycle. Each byte is sent to the 
Translation ROM and the Operand Count ROM. These 
two modules classify the bytecode into one of three types, 
namely, one-to-one mapping, one-to-many mapping, and 
operand. For the first two cases, the translation ROM 
produces instruction data which could be a native 
microcode (for one-to-one mapping) or an address (for 
one-to-many mapping). If the translated instruction data is 
a microcode, it means that the Java bytecode can be 
mapped to this Java Processor microcode. If the translated 
instruction data is an address, the address will be used in 
the fetch stage to retrieve the corresponding microcodes. 
At the same time, the value retrieved from the Operand 
Count ROM is decreased by one, which indicates the 
number of remaining operand bytes. 
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III.2 Fetch Stage 

After the pre-translation stage, the translated 
instructions and the tags are stored in the Translated RAM 
and Type RAM, the fetch module (see Fig. 5) retrieves the 
translated values. At the fetch stage, the Type Management 
module determines the type of the next two translated 
instruction/operand data to be decoded. 

First of all, the fetch stage must ensure that the data 
fetched from the RAM have been translated. Otherwise, it 
will trigger an exception to translate the corresponding 
method area and lock the current JPC (Java Program 
Counter) until the translated data arrive. For every two 
instructions fetched, the second one is always stored in a 
register first in case the processor could not execute two 
instructions simultaneously. When this happens (when the 
LSB of the JPC is one), the registered instruction will be 
send to the decode unit, alone with the next translated 
instruction fetched from the RAM. 

Secondly, the mode register stores the current status to 
distinguish between “simple bytecode mode” and “one-to-
many mapping mode.” In the simple bytecode mode, the 
fetch stage always fetches two translated values from the 
pre-translation module. A translated value could be a 
microcode or an operand value. The translated value is 
stored to the operand buffer if they are of operand type. In 
the “one-to-many mapping” mode, the instruction is 
extracted from the one-to-many instruction ROM table, 
indexed by the corresponding translated instruction data, 
namely, an address. At the same time, this address also 
adds to the offset value to index the next address and stores 
the result to the address register. During one-to-many 
translation mode, the instructions are fetched from the one-
to-many instruction ROM. This mode is maintained until 
the next signal is extracted from the one-to-many ROM 
indicating that the microcode sequence of the complex 
bytecode instruction is complete (This design is similar to 
that in [5]). 

Finally, the last two signals, “decode.opd_cnt” and 
“decode.fetch_one,” are the signals from the decode stage. 
The signal “opd_cnt” indicates the number of bytes of the 
microcdes the decode stage needs. The Type Management 
module will determine the opd_cnt value and update the 
operand buffers. The other signal “fetch_one” indicates 
that the microcodes of the decode stage encountered a 

structure hazard that the Java processor can not execute 
this combination of the two microcodes in one cycle. 
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Fig. 5. Fetch stage 

III.3 Decode Stage 

At the fetch stage, two complete microcode instructions 
and the operands that these microcodes need are fetched 
into the processor. The next stage is the decode stage 
which is shown in Fig. 6. The opd_cnt signal is the number 
of bytes of operands that the microcode instructions needed 
and the fetch.wait_opd signal indicates that the operands is 
not ready and these microcodes should wait until the fetch 
stage fetches enough operands. 

There are two immediate value ROMs at the decode 
stage because we must support two immediate load 
operations. The tmp1 and tmp2 signals could represent 
various items: an immediate value, a stack address of the 
RAM and an address of register bank. There is an 
advantage to generate these addresses at the decode stage. 
Due to RAM read pipelining, if the addresses are prepared 
early, the data can be read from RAM without any wait 
cycle. Finally, for store operations, it takes one cycle delay 
to store the tmp1 and tmp2 values in the registers. 
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Fig. 6. Decode stage 
 

III.4 Execution Stage 

The data path of the execution stage is shown in Fig. 7. 
The top of stack is store in the register labeled A. The top-
1 and top-2 entries of the stack are labeled B and C, 
respectively. Each operation is performed with registers or 
load values as sources. This data path can handle parallel 
execution of any combinations of two instructions except 
two ALU operations because of the structure hazard. The 
load values could be from the local variables or the stack 
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data. When the stack pointer decreases, the registers should 
update the values and the stack value needs to load from 
the memory for more top values. On the other hand, when 
the stack point increase, the new value store to the top 
registers and the value that spill from the register should be 
write back to the memory. 
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Fig. 7. Data path of Execution Stage 

 
In order to execute two instructions per cycle, the 

memory bandwidth requirement would also increases. In 
the proposed design, two RAM devices are used to serve 
this purpose (Fig. 8). One of the RAM handles memory 
requests for addresses with LSB 0, and the other one 
handles requests for addresses with LSB 1. The read 
address or the stack pointer is generated at the decode stage 
without any delay. There is a condition that causes conflict 
between these two RAM devices. When two read and write 
addresses have the same LSB value, it would try to access 
the same RAM devices. Fortunately, the only condition for 
this case to happen is when two operations try to load or 
store the local variables with the same LSB. The 
probability of this scenario is relatively low, so we do not 
add extra logics to support it. We simply avoid this 
condition at the decode stage, and it will not happen at the 
execution stage. 

TABLE I. Synthesis report of the Java Processor 
Device utilization summary: 
Device: 4vfx12ff66-10 
Number of Slices: 
Number of Slice Flip Flops: 
Number of 4 input LUTs: 
Number of bonded IOBs: 
Number of FIFO16/RAM16s 
Number of GCLKs: 
Number of DSP48s: 

1190 
398 

2237 
67 

4 
1 
3   

out of 
out of 
out of 
out of 
out of 
out of 
out of 

5472 
10944 
10944 

320 
36 
32 
32 

21% 
3% 

20% 
20% 
11% 

3% 
9% 

Minimum period: 9.485ns (Maximum Frequency: 105.430MHz) 
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Fig. 8. Memory Architecture 

 

IV. IMPLEMENTATION RESULT 
 

The proposed Java processor is implemented on an 
SoC emulation platform, the Xilinx ML-403. The platform 
is based on a Virtex 4 FPGA with a PowerPC core 
running at 300MHz. The RTL model of the Java processor 
is written in VHDL and the synthesis report using 
SynplifyPro for the Virtex IV device is shown in TABLE 
I. The full JRE software system proposed in section II is 
still under development so the integration of the Java 
processor and the JRE is not done yet. However, the 
proposed JRE will be based on the CVM implementation, 
which has been ported to the target platform already.  
 

V. CONCLUSIONS 
For embedded systems with host processors running 

under 300 MHz, hardware-assisted JRE is the most 
efficient way of supporting Java applications. This paper 
proposes a double-issue Java processor and the design 
have been implemented on a Xilinx Virtex-4 FPGA. We 
also propose the architecture of a full JRE that can be 
integrated with this Java processor. Future works will be 
focusing on modifying CVM to fit the proposed system. 

 
VI. ACKNOWLEDGEMENT 

This research is partly funded by National Science 
Council, Taiwan, R.O.C., under grant number NSC 95-
2219-E-002-012.

 
REFERENCES 

 
[1] Q. H. Mahmoud, J2ME for Home Appliances and 

Consumer Electronics Devices, Sun Microsystems White 
Paper, Jan. 2003. 

[2] Digital Video Broadcasting (DVB), Multimedia Home 
Platform (MHP) Specification 1.0.2, ETSI TS 101 812, 
June, 2002. 

[3] T. Lindholm and F. Yelling, The Java Virtual Machine 
Specification, Addison-Wesley, 1996. 

[4] A. Krall, K. Ertl, and M. Gschwind, Java VM 
Implementation: Compilers versus Hardware, John Morris 

(ed.), Computer Architecture (ACAC ’98), Perth, pp. 101-
110, 1998. 

[5] Martin Schoberl, JOP: A Java Optimized Processor for 
Embedded Real-Time Systems, Ph.D. Thesis, Tech. 
Universitaet Wien, Jan 2005. 

[6] A. Kim and M. Chang, “Designing a Java Microprocessor 
Core Using FPGA Technology,” Computing & Control 
Engineering Journal, June 2000, pp.135-141. 

3505


