
A DOUBLE-ISSUE JAVA PROCESSOR DESIGN FOR EMBEDDED APPLICATIONS

Hou-Jen Ko and Chun-Jen Tsai

Department of Computer Science
National Chiao Tung University, Hsinchu, Taiwan

Abstract—Java applications for embedded systems are
becoming popular today. CLDC/MIDP is the standard
application platform for mobile phones while CDC/PBP is
the emerging application platform for next generation digital
TV set-top boxes. Although software-based Java Virtual
Machines (VM) are prevalent, most of these VMs require a
host processor running at much higher clock rate than
300MHz to reach reasonable performance. This is beyond
the recommended specification of handsets and set-top boxes.
In this paper, we have proposed a double-issue java
processor for embedded systems. The design is not tied to
any host processors and can be used as an efficient binary
execution engine for a full Java Runtime Environment
implementation. When synthesized on a Virtex IV FPGA
(4VFX12FF66-10), the RTL model can reach over 100MHz
and consumes less than 22% resources of the device.

I. INTRODUCTION

Java Runtime Environment (JRE) is adopted by many
organizations as the portable application platform for
embedded systems such as mobile phones and set-top
boxes. In order to support a large variety of devices while
maintaining interoperability, Sun Microsystems has
created the Java 2 Micro Edition (J2ME) specification and,
under this framework, define different profiles and
configurations for different applications [1]. For mobile
phones, the Connected Limited Device Configuration
(CLDC) with Mobile Information Device Profile (MIDP)
has become the standard environment for Java applications.
The virtual machine (VM) underneath CLDC/MIDP is a
reduced-capability version of Java VM, called KVM. For
DTV set-top boxes, the Connected Device Configuration
(CDC) with Personal Basis Profile (PBP) are adopted as
the de facto standard application environment [2]. The VM
underneath CDC/PBP is a full capability VM. However,
the reference implementation of CDC/PBP from Sun
Microsystems is a specially engineered VM, named CVM,
to facilitate porting to various embedded platforms.

There are many performance issues for adopting Java
for embedded systems. First of all, object-oriented
programs rely a lot on dynamic memory allocation/de-
allocation which is very inefficient for embedded devices.
Secondly, the Java VM model is based on a stack machine
[3]. Excessive access of stack memory to store
intermediate computation results is very inefficient. Finally,
most embedded systems use a RISC CPU running at less
than 300MHz as the host processor. The RISC architecture

is usually not efficient for the execution of a software
interpreter of a byte-oriented machine language [4][5].

There have been many efforts to improve the
performance of a Java VM [4]. For embedded devices,
software-based approaches such as Just-in-Time (JIT)
compilation are less suitable since JIT compilers requires
extra memory and the overhead of the on-the-fly
compilation process is more noticeable and intrusive for
embedded systems with slow RISC processors. For
hardware-based solution, there are co-processor
approaches (such as ARM Jazella) and java processor
approaches [5][6]. An interesting work is the Java
processor, JOP, designed by Schoberl [5] since the
complete RTL model (written in VHDL) is available to
general public. JOP defines its own application
profile/configuration, which is closer to CLDC than to a
full JVM. The RTL model of JOP has been ported to many
devices. However, the performance still has a lot of room
for improvement.

In this paper, the design of a double-issue Java
processor is proposed. The advantage of designing a stand-
alone Java processor instead of a co-processor is that the
design will not be tied to certain host processor. However,
since a stack machine is not efficient for I/O and control
tasks, a general purpose processor is still required to
complete the system. The paper is organized as follows.
Section II provides an overview to a full Java Runtime
Environment design and discusses how a Java processor
can be integrated into the environment. The proposed
double-issue Java processor is presented in section III.
Section IV describes the target platform and shows the
synthesis report of the RTL model. Finally, some
discussions are given in section V.

II. JAVA RUNTIME AND INTEGRATION OF A
JAVA PROCESSOR

A complete JRE is a sophisticated software system.

The key components of a JRE include a bytecode
execution engine (BEE), a dynamic class loader, a garbage
collector, and standard class libraries (Fig. 1). Among
these components, only the BEE can be reasonably
implemented in hardware. For software-based VM, the
BEE is implemented as an interpreter. The integration of
this “virtual hardware” with the rest of the software
components is simpler since everything is implemented in
software. However, for a hardware-assisted JRE, the BEE

35021-4244-0921-7/07 $25.00 © 2007 IEEE.

will be replaced by a Java processor. In this case, the JRE
becomes a highly integrated hardware/software system.
The link between a Java processor and the rest of the JRE
is the dynamic class loader.

When the JRE is assigned to run a Java program, the
initial class file will be loaded and parsed. All the static
content of the classes inside the class file (e.g. method
codes and data field information) will be registered in the
method area. An object will be allocated on the heap to
instantiate the root class. The object will contain a copy of
the private data fields of the root class. At this point, the
program counter of the Java processor will be set to point
to the initial method in the method area. During execution,
the Java processor will fetch bytecodes from the method
area and access data fields of the object in the heap and in
the method area.

In general, the class loader is responsible for
locating/loading the class files (Java application images)
and setting up the method area for the BEE. Therefore, it is
more suitable to execute the class loader on the host
processor. The proposed JRE is shown in Fig. 2. In this
paper, we only focus on the design of a Java processor that
can be used to replace the BEE.

Support Code :
Exceptions
Threads
Security
…

Garbage
Collector

Heap

Byte Code
Execution Engine

Class
and

Method
Area

Native
Method

Area

Dynamic
Class

Loader
And

Verifier

Native
Method

Link-Loader

Operating System

The Java Runtime System

application
class files

Standard
Java API
Classes

Network

Native Methods
(.dll or .so files)

Fig. 1. A standard Java runtime system

Proposed Java Runtime System

Operating System

Support Code :
Exceptions
Threads
Security
…

Garbage
Collector

Bytecode
Execution Engine
(Java Processor)

Class
and

Method
Area

Dynamic
Class Loader
And Verifier

Application
class files

Standard
Build-in

Java
Classes

Network

Native
Methods

Host Processor JNI

Fig. 2. The proposed Java runtime system

III. PROPOSED DOUBLE-ISSUE JAVA
PROCESSOR

In this section, the detail design of a double-issue Java

Processor is presented. For a double-issue processor, two
machine instructions are executed per cycle. It is important
to point out that a Java processor in general does not
execute bytecodes directly because some bytecodes are
much more complex than a traditional machine instruction.
Therefore, for the proposed processor, the native
instruction set (referred to as the microcodes, following the

convention in [5]) is different from the bytecode
instruction set. A bytecode will be translated into one or
more microcodes on-the-fly. The proposed processor has a
four-stage pipeline which is shown in Fig. 3.

Pre-translated Fetch Decode Execute

JPC
++

Delay_tmp1

‘1’

branchfetch_one

wait_opd

opd_cnt

control

jpc_sel
Fetch.jpc_offset

translated

bus

Fig. 3. Overall Java processor architecture

III.1 Pre-translation Stage

The Java bytecodes are divided into simple bytecodes
and complex bytecodes. At the pre-translation stage, each
simple bytecode is translated into a microcode, while a
complex bytecode is translated into a pointer that points to
the address of a microcode sequence stored in ROM. A
Java bytecode instruction may be followed by zero, one, or
more operand bytes. Therefore, it is not trivial to fetch two
bytecode instructions per cycle (along with the operand
bytes) due to this variable length instruction nature of Java
bytecodes. Obviously, the instruction must be decoded to
some degree before the fetch stage so that the processor
knows how many bytes it has to fetch in order to retrieve
two complete instructions with operands. The pre-
translation module is designed to classify-and-tag the
bytecode streams so that the fetch module can identify the
number of bytes to fetch.

As shown in Fig. 4, the pre-translation module fetches
four bytes at a time from the bytecode section of the
method area. The bus_wr signal triggers the counting of
the Pre-Fetch Program Counter (PFPC). The PFPC signal
will select one byte per cycle. Each byte is sent to the
Translation ROM and the Operand Count ROM. These
two modules classify the bytecode into one of three types,
namely, one-to-one mapping, one-to-many mapping, and
operand. For the first two cases, the translation ROM
produces instruction data which could be a native
microcode (for one-to-one mapping) or an address (for
one-to-many mapping). If the translated instruction data is
a microcode, it means that the Java bytecode can be
mapped to this Java Processor microcode. If the translated
instruction data is an address, the address will be used in
the fetch stage to retrieve the corresponding microcodes.
At the same time, the value retrieved from the Operand
Count ROM is decreased by one, which indicates the
number of remaining operand bytes.

3503

Translate ROM

opd cnt
ROM

bus[31:24]

bus[23:16]

bus[15:8]

bus[7:0]

opd

type RAM

Translated RAM

1
--

3

one

PFPC[1:0]

PFPC
+

1

CEACTbus_wr

PFPC[0]
PFPC[1]

PFPC
++

1

CEACTbus_wr

PFPC[0]
PFPC[1]

method
CE

invoke
method

type buffer

DIA

ADDRA

DIA

PFPC[10:2]
Fig. 4. Pre-translation stage

III.2 Fetch Stage

After the pre-translation stage, the translated
instructions and the tags are stored in the Translated RAM
and Type RAM, the fetch module (see Fig. 5) retrieves the
translated values. At the fetch stage, the Type Management
module determines the type of the next two translated
instruction/operand data to be decoded.

First of all, the fetch stage must ensure that the data
fetched from the RAM have been translated. Otherwise, it
will trigger an exception to translate the corresponding
method area and lock the current JPC (Java Program
Counter) until the translated data arrive. For every two
instructions fetched, the second one is always stored in a
register first in case the processor could not execute two
instructions simultaneously. When this happens (when the
LSB of the JPC is one), the registered instruction will be
send to the decode unit, alone with the next translated
instruction fetched from the RAM.

Secondly, the mode register stores the current status to
distinguish between “simple bytecode mode” and “one-to-
many mapping mode.” In the simple bytecode mode, the
fetch stage always fetches two translated values from the
pre-translation module. A translated value could be a
microcode or an operand value. The translated value is
stored to the operand buffer if they are of operand type. In
the “one-to-many mapping” mode, the instruction is
extracted from the one-to-many instruction ROM table,
indexed by the corresponding translated instruction data,
namely, an address. At the same time, this address also
adds to the offset value to index the next address and stores
the result to the address register. During one-to-many
translation mode, the instructions are fetched from the one-
to-many instruction ROM. This mode is maintained until
the next signal is extracted from the one-to-many ROM
indicating that the microcode sequence of the complex
bytecode instruction is complete (This design is similar to
that in [5]).

Finally, the last two signals, “decode.opd_cnt” and
“decode.fetch_one,” are the signals from the decode stage.
The signal “opd_cnt” indicates the number of bytes of the
microcdes the decode stage needs. The Type Management
module will determine the opd_cnt value and update the
operand buffers. The other signal “fetch_one” indicates
that the microcodes of the decode stage encountered a

structure hazard that the Java processor can not execute
this combination of the two microcodes in one cycle.

translated[15:8]

translated[7:0]

translated[7:0]
translated[15:8]

trans1

trans2

One to Many
ROM

Type Managetype1[1:0]
type2[1:0]

address++
offset

mode

mode

trans1

Instr1

Instr2

opd_buf1

opd_buf2

trans1

trans2

next

decode.opd_cnt decode.fetch_one

=method

method_tag

JPC ++
JPC_offset

CE

next_JPC

jpc_anchor

jpc_anchor

branch_dis[10:1]

branch

method opd1
opd2wait_opd

trans2
nop

trans1
trans2

nop

Fig. 5. Fetch stage

III.3 Decode Stage

At the fetch stage, two complete microcode instructions
and the operands that these microcodes need are fetched
into the processor. The next stage is the decode stage
which is shown in Fig. 6. The opd_cnt signal is the number
of bytes of operands that the microcode instructions needed
and the fetch.wait_opd signal indicates that the operands is
not ready and these microcodes should wait until the fetch
stage fetches enough operands.

There are two immediate value ROMs at the decode
stage because we must support two immediate load
operations. The tmp1 and tmp2 signals could represent
various items: an immediate value, a stack address of the
RAM and an address of register bank. There is an
advantage to generate these addresses at the decode stage.
Due to RAM read pipelining, if the addresses are prepared
early, the data can be read from RAM without any wait
cycle. Finally, for store operations, it takes one cycle delay
to store the tmp1 and tmp2 values in the registers.

instr1

instr2
Decode

immROMInstr1[3:0]

Instr2[3:0]

Instr1[2:0]
opd_val ++

fetch.wait_opd

immROM

D_tmp1

opd_cnt

tmp1

D_tmp2

tmp2

0
vp

Instr2[2:0]
opd_val ++

0
vp

jpc

D_tmp2
jpc

branch_cal

Fig. 6. Decode stage

III.4 Execution Stage

The data path of the execution stage is shown in Fig. 7.
The top of stack is store in the register labeled A. The top-
1 and top-2 entries of the stack are labeled B and C,
respectively. Each operation is performed with registers or
load values as sources. This data path can handle parallel
execution of any combinations of two instructions except
two ALU operations because of the structure hazard. The
load values could be from the local variables or the stack

3504

data. When the stack pointer decreases, the registers should
update the values and the stack value needs to load from
the memory for more top values. On the other hand, when
the stack point increase, the new value store to the top
registers and the value that spill from the register should be
write back to the memory.

C

load_val2

ALU
A

B
ALU

RAM load_val1

load_val2

SD1

SD2

A
C

load_val1

load_val2

ALUopd2
C

load_val1

ALU
B

ALU
ALUopd1

A
load_val1

B

AorC

ALUopd2
C
A

AorC

B
Fig. 7. Data path of Execution Stage

In order to execute two instructions per cycle, the

memory bandwidth requirement would also increases. In
the proposed design, two RAM devices are used to serve
this purpose (Fig. 8). One of the RAM handles memory
requests for addresses with LSB 0, and the other one
handles requests for addresses with LSB 1. The read
address or the stack pointer is generated at the decode stage
without any delay. There is a condition that causes conflict
between these two RAM devices. When two read and write
addresses have the same LSB value, it would try to access
the same RAM devices. Fortunately, the only condition for
this case to happen is when two operations try to load or
store the local variables with the same LSB. The
probability of this scenario is relatively low, so we do not
add extra logics to support it. We simply avoid this
condition at the decode stage, and it will not happen at the
execution stage.

TABLE I. Synthesis report of the Java Processor
Device utilization summary:
Device: 4vfx12ff66-10
Number of Slices:
Number of Slice Flip Flops:
Number of 4 input LUTs:
Number of bonded IOBs:
Number of FIFO16/RAM16s
Number of GCLKs:
Number of DSP48s:

1190
398

2237
67

4
1
3

out of
out of
out of
out of
out of
out of
out of

5472
10944
10944

320
36
32
32

21%
3%

20%
20%
11%

3%
9%

Minimum period: 9.485ns (Maximum Frequency: 105.430MHz)

LSB0

rdaddr1

wraddr1

wrdata1

rddata1

LSB1

rdaddr2

wraddr2

wrdata2

rddata2

WE

WE

SD1
SD2

SD2
SD1

D_tmp1

load_val1

load_val2

tmp1[?:1]
tmp2[?:1]

D_tmp1[?:1]
D_tmp2[?:1]

tmp2[?:1]
tmp1[?:1]

D_tmp2[?:1]
D_tmp1[?:1]

SP

SP

WE1
WE2

WE2
WE1

SP[?:1]
1 ±±

D_tmp2

Fig. 8. Memory Architecture

IV. IMPLEMENTATION RESULT

The proposed Java processor is implemented on an
SoC emulation platform, the Xilinx ML-403. The platform
is based on a Virtex 4 FPGA with a PowerPC core
running at 300MHz. The RTL model of the Java processor
is written in VHDL and the synthesis report using
SynplifyPro for the Virtex IV device is shown in TABLE
I. The full JRE software system proposed in section II is
still under development so the integration of the Java
processor and the JRE is not done yet. However, the
proposed JRE will be based on the CVM implementation,
which has been ported to the target platform already.

V. CONCLUSIONS
For embedded systems with host processors running

under 300 MHz, hardware-assisted JRE is the most
efficient way of supporting Java applications. This paper
proposes a double-issue Java processor and the design
have been implemented on a Xilinx Virtex-4 FPGA. We
also propose the architecture of a full JRE that can be
integrated with this Java processor. Future works will be
focusing on modifying CVM to fit the proposed system.

VI. ACKNOWLEDGEMENT

This research is partly funded by National Science
Council, Taiwan, R.O.C., under grant number NSC 95-
2219-E-002-012.

REFERENCES

[1] Q. H. Mahmoud, J2ME for Home Appliances and

Consumer Electronics Devices, Sun Microsystems White
Paper, Jan. 2003.

[2] Digital Video Broadcasting (DVB), Multimedia Home
Platform (MHP) Specification 1.0.2, ETSI TS 101 812,
June, 2002.

[3] T. Lindholm and F. Yelling, The Java Virtual Machine
Specification, Addison-Wesley, 1996.

[4] A. Krall, K. Ertl, and M. Gschwind, Java VM
Implementation: Compilers versus Hardware, John Morris

(ed.), Computer Architecture (ACAC ’98), Perth, pp. 101-
110, 1998.

[5] Martin Schoberl, JOP: A Java Optimized Processor for
Embedded Real-Time Systems, Ph.D. Thesis, Tech.
Universitaet Wien, Jan 2005.

[6] A. Kim and M. Chang, “Designing a Java Microprocessor
Core Using FPGA Technology,” Computing & Control
Engineering Journal, June 2000, pp.135-141.

3505

