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3D Depth Ordering based on Deep Neural Network

Student : Tzu-Ting Liao  Advisor : Prof. Sheng-Jyh Wang
Prof. Feng-Tsun Chien

Department of Electronics Engineering, Institute of Electronics
National Chiao Tung University

Abstract

In this thesis, we propose a method to estimate 3-D depth map from a single image.
Unlike approaches employing a geometric model behind the scene to infer the depth map, we
propose to estimate the 3-D scenes by extracting local depth cues without any structure
assumptions in the scene instead. In our approach, first we partition the image into several
regions. We focus oninferring the depth ordering in a local patch. Then we apply the model of
deep neural network to figure out which depth:order cclass the local patch belong and to
automatically learn the appropriate features in our problem. However, training the deep neural
network by classical method will encounter the vanishing gradient problem. To tackle the
problem, our training algorithm consists two phase: the unsupervised pre-training phase and
the supervised fine-tuning phase. After training the deep neural network, we test the image by
feeding the local patch into the deep neural network. In practice, the resultant depth orders
that are sorted by the deep neural network and from different local patches may be
contradictory. Hence, we combine these local depth order reasoning to construct a direct
graph. By finding the minimum feedback arc set, we can obtain a depth order with global

consistency.
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Chapter 1. Introduction

3-D depth estimation is a fundamental issue of computer vision. 3-D depth information is
required in many applications, such as segmentation, object recognition, and scene
understanding. Up to now, many techniques have been explored [1, 2]. Most of the prior
works focus on stereo, structure from motion and multi-view images that are taken at the
same scene, but from different view points. Then 3-D depth can be estimated based on
binocular or motion cues. However, in some applications, it is usually that we only have a
single image and want to recover the 3-D. depth [3-9].

It is well known that the image is a projection of the real world. Humans can
immediately grasp the 3-D structure of a single scene but it is still a challenging task for
computers. We want to make the computer understand the 3-D depth structure from a single
image, just like what humans can do. When the 3-D real world is projected onto a 2-D image
plane, it often occurs-occlusion between two objects. Objects in the image are mostly mutual
occlusion. Hence, for a computer to comprehend the 3-D knowledge, it needs to understand
the occlusion relationship.in an image.

In recent work, the study of occlusion reasoning focuses on how to recover the hidden
information behind the 2-D image plane. Some researchers [3, 4, 7] investigated monocular
cues, such as color and texture, surface layout, boundary, contour, junction, etc., to extract the
3D information in very specific scenes. Another approach [5, 6, 9] infers the 3-D depth based
on the semantic labels of the scene, such as “ground” always supports “vertical surface,” and
these are placed before “sky.” Nevertheless, these semantic labels are not always used in most
images.

In this thesis, the major goal of our approach is to infer the depth order directly based on
monocular cues instead of relying on any contextual information or prior knowledge of the
scene structure. Our monocular cues are similar to T-junctions or boundaries in an image [3,
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7]. However, in previous work, Dimiccoli[3] and Palou[7] used hand-crafted features to
describe T-junctions or boundaries. And the proposed rules in [3, 7] of inferences didn’t
employ any learning process.

The proposed algorithm first uses a segmentation algorithm to partition the image into
several regions. The assumption is that these regions are with topological depth ordering.
Hence, cyclic occlusion can’t be dealt with the proposed method. Second, the local depth
order is found by discovering the depth information from the local patches which have been
partitioned into more than one part by segmentation. Therefore, the deep neural network is
used to explore the depth features and infer the depth relation in the local patches. Deep
neural network consists of feature detector units in each layer. The units of lower layers detect
simple features. Then, the output of lower-layer feature detector will be fed into a higher layer
which detects more complex features.. These features are automatically learned by training
data instead of by hand-crafting. In the past years, the classical methods are efficient when
applied to shallow neural networks but not efficient when adapted to deep neural networks
[10]. Until recent year, the Restricted Boltzmann-Machine (RBM) proposed by Hinton et al.
[11, 12] has been proved useful to perform per-training in the neural network in the training
processes. The training strategy consists two phases: the unsupervised pre-training phase and
the supervised fine-tuning phase. After training the deep neural network, we can infer the
depth order of local patch. However, the depth reasoning of local patches may be inconsistent.
We can combine the local depth reasoning to construct a direct graph. By removing the
minimum feedback arc set, we can find a globally consistent result across the segments.

This thesis is organized as follows. We will first discuss some related works in Chapter 2.
In Chapter 3, we describe the proposed method that infers the 3-D depth order for a single
image. Some experimental results are shown in Chapter 4 and we provide our conclusion in

Chapter 5.



Chapter 2. Backgrounds

In the past few years, many depth estimation algorithms have been proposed [4, 6]. In
this chapter, we will introduce some related works about depth estimation of a single image in
vision-based systems. These algorithms can be roughly classified into two groups depending
on the type of the information and assumption which have been used: the geometric models
and the depth perception models. The former estimates the 3-D depth of a single image by
considering the 3D scene geometry [5, 6, 9]. The latter strategy infers the 3D depth from the
monocular features in the image without any assumptions about the scene structure [3, 4, 7, 8].
In Section 2.1 and Section 2.2, some relevant works about geometric models and depth

perception models will be introduced, respectively.

2.1 Depth Estimation-using Geometric Maodels

In [5], Jung et al. used object classification based on Bayesian-learning algorithm to
extract the depth value. In their approach, they estimate the depth map based on the linear
perspective depth cue with the condition that the type of input images need to contain the
vanishing point and be outdoor scene. Before object classification, the vanishing point is
detected and the image is divided into several segments. Objects in a single-view image are

classified into four types: sky, ground, cubic, and plane. (See Figure 2-1)

Figure 2-1 Examples of object types : SKY, GROUND, PLANE, and CUBIC.
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According to the inferred type, relative depth values are assigned to each type to generate
a 3D model. Ground can be regarded as a horizontal plane. The depth value of GROUND
increases as it is getting closer to the vanishing point. Figure 2-2 illustrates the depth
assignment for the cubic type and plane type. For plane-type objects, such as cars, they have a
constant depth depending on where the bottom position of the object is. For cubic objects,
such as buildings, the depth value varies with the distance from the vanishing point. Their

results are shown in Figure 2-3.

PLANE CuUBIC

Figure 2-2 Depth assignment for type PLANE and CUBIC.

(b)
Figure 2-3 Experimental result of Jung et al. in [5]. (a) Input image. (b) Depth map.

In [6], Hoiem et al. described an algorithm that recovers the occlusion boundary from an
image. They argued that people can perceive the depth of a scene if they get the whole
structure of the scene. By recovering the occlusion relationship between objects, relative
depth ordering could be determined. Specifically, their work can be divided into two parts. To

4



understand the geometry of an image, they labeled the image into geometric classes to form
the surface layout of a scene [13]. With the geometric labels, they used the classification
results to learn the occlusion boundaries in an image. Using the vertical/ground structure, they
estimated objects depth by detecting the attachment of ground and vertical objects. For some
regions which are occluded by other regions, the occlusion relationship is used to estimate the
max/min depth of these regions.

In their approach, they used the results of surface layout estimation [13]. Each pixel
belongs to ground plane, vertical surface or sky. Figure 2-4 shows a classification result.
Different colors mean different main classes (ground,. vertical, sky). The marks represent
different subclass labels of vertical regions. These surface layout cues are part of the
occlusion cues and are helpful to get the.information boundaries. They also used other cues to
recognize the boundaries, such as-boundary cues, region cues, and depth-based cues. The
detail cues are listed in Figure 2-5. Surface layout cues use the result of the surface layout
algorithm and are very useful for detecting the occlusion boundaries since most edges
between different surface labels are occlusion boundaries. Geometric labels of surface layout

can also reveal figure/ground information.

Figure 2-4 Geometric labels of Hoiem’s system [6].



Occlusion Cue Descriptions | Num |

Boundary 7
B1. Strength: average Pb value 1
B2. Length: length / (perimeter of smaller side) 1
B3. Smoothness: length / (L1 endpoint distance) 1
B4. Orientation: directed orientation 1
B5. Continuity: minimum diff angle at each junction 2
B6. Long-Range: number of chained boundaries 1
Region 18
R1. Color: distance in L*a*b* space 1
R2. Color: difference of L*a*b* histogram entropy 1
R3. Area: area of region on each side 2
R4. Position: differences of bounding box coordinates 10
RS. Alignment: extent overlap (x,y,overall,at boundary) 4
3D Cues 34
S1. GeomContext: average confidence, each side 10
S2. GeomContext: signed difference of S1 between sides 5
S3. GeomContext: sum absolute S2 1
S4. GeomContext: most likely main class, both sides 1
S5. GeomTluncts: two kinds for each junction 4
S6. GeomTluncts: if both junctions are GeomTJuncts 2
S7. Depth: three estimates (log scale), each side 6
S8. Depth: diffs of S7, abs diff of first estimate 4
S9. Depth: diff of min overestimate, max underestimage 1

Figure 2-5 The occlusion cues. used.in Hoiem’s boundary system.

nitial Segmentation Occlusion Cues Soft Boundary Map Next Segmentation i

Figure 26 lustration of Hoiem’s algorithm [6].

To identify occlusion boundary, they learned a classifier which classifies boundaries to
three different types: non-occlusion, occluded and occlusion. Their proposed algorithm starts
with an over-segmentation algorithm, which assumes most boundaries are preserved in the
edges between these segmented regions. Usually there are thousands of regions at the
beginning and then the algorithm gradually removes these unlikely edges to get the final
boundaries. They used the cues to predict the likelihood of being a boundary for each edge. At
each time, the boundary likelihood of each edge is re-calculated and the most unlikely edges
are removed until the boundary likelihood of all the remaining edges are above a given

threshold. As regions grow larger and edges become larger, they refine the boundary
6



prediction and remove unlikely boundaries again. This process continues iteratively until no
new region forms. The flow chart of their system is shown in Figure 2-6.

In order to estimate the likelihood of boundary labels, they used CRF (Conditional
Random Field) model to enforce boundary continuity and consistency. More precisely, the
boundary likelihoods of connected edges are related. Hoiem et al. considered all possible
labels of the image, instead of estimating each boundary confidence alone. For example, in a
junction where three edges are connected, there are 27 combinations of junctions but only 5 of
them are possible. The valid types are shown in Figure 2-7. Figure 2-8 (b) shows one of their

results, the region to the left of an arrow is in front of the region to the right of the arrow.

s
€3, 3 & e
s

SFH €25 €12t

Figure 2-7 lllustration of five valid junctions [6].

(@) (b)
Figure 2-8 Result of Hoiem’s occlusion boundary algorithm. (a) Occlusion boundary result. (b) (Top row)
Estimated max depth. (Down row) Estimated min depth.

In these aforementioned methods [5, 6], depth can be roughly estimated using scene
geometric. However, these algorithms can’t estimate the depth, when there are no semantic

labels in the image.



2.2 Depth Estimation using Depth Perception Models

In contrast to algorithms that attempt to get the absolute depth value by using depth
perception models, some authors have developed methods that infer relative depth
information with local depth perception only.

In [4], Saxena et al. presented an algorithm that used the Markov Random Field (MRF)
model to infer the 3-D structure based on super-pixel features. They used the superpixel
segmentation algorithm to divide the image into small uniform regions. And they assumed
that each region is a planar surface. They used two kinds of 3-D structure perceptions. First,
for each superpixel, they computed some features to capture the monocular cues. Figure 2-9
shows the filters used for texture energies and gradients. Since local image features are
insufficient to estimate the depth, they appended local features to multi-scale features and
combined features from neighboring superpixels to capture more “contextual” information
(See Figure 2-10). Second, they also computed features for boundaries in the image. When
two neighboring superpixels of an image have different appearance, they are often grasped to
different objects.

Figure 2-9 The convolutional filters used by Saxena [4].

N B | T SIT (34
; | s2t SIB |34

r 24s2¢fs2i
) s S2p [l
. — 7

S1B [ |S3T
53US3Cfs3R W [ |m
S3B r { Shape |14

(@) (b) (©)
Figure 2-10 Multiple scale structure of features in [1]. () An illustration of neighboring location with multi scale
features. (b) Actual neighborhood of the superpixel S3C. (c) Collected features for superpixel S3C.
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With depth perceptions, they inferred the “plan parameters” that capture both the 3-D
location and orientation of the 3-D surface for each superpixel in the image using an MRF
model. By supervised learning, the MRF models the relationship between superpixels and
infer both the 3-D location and orientation of the 3-D surface for each superpixel. Moreover,
the MRF model also considers the relationship between adjacent regions, such as connected
structure, co-planar structure, and co-linearity. For connected structure, except in the case of
occlusion, neighboring planes are more likely to be connected to each other. For co-planarity
structure, neighboring regions are more likely to belong to the same plane if they have similar
features. For co-linearity, long straight lines in the image represent straight lines in 3-D, such

as edges of buildings. Their results are shown in Figure 2-11.

Near
Figure 2-11 (a) Original.images. (b) Ground truth depth map. (c) Depth map by [4].

In [8], Jia et al. argued that boundary and junction characteristics are important cues for
depth ordering. They designed new features on boundaries and junctions, and used these as
basic elements to learn the local depth ordering. However, the local depth order reasoning
may be inconsistent. Therefore, they used an MRF model to get a globally consistent ordering.
In addition, in order to produce a better object segmentation for depth ordering, they proposed
to explicitly enforce closed loops and long edges for the occlusion boundary detection.

Jia et al. detected the occlusion boundaries in an image and used the result of detecting to

partition the image into segments. There are two sets of feature for depth ordering: the



junction feature and the boundary feature. The boundary convexity is calculated for the
possibility of the top layer.

After the local inference for depth ordering, they use MRF graph to infer a globally
consistent depth ordering. The node potential is defined by the local depth reasoning. The
edge potential is defined as the consistency between the segment’s orders. Figure 2-12 shows

the detail of the MRF model. Their results are shown in Figure 2-13.

: ABD

N/ Q @ ADBY VN

OLONR O Y /

\ ¥ ¥/ BDA /
) -:" ¥ 7

(a) (b) (€ (d)
Figure 2-12 MRF model by [10] (a) Global depth reasoning. (b) Each junction produces three directed edges in the
depth order graph. (c) MRF to encourage the global consistency. (d) The edge potential in our MRF gives high
penalties (solid) if the segments’ orders contradict between two nodes.

(b)
Figure 2-13 (a) Original images. (b) Ground truth depth ordering. (c) Depth ordering by [8].
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Chapter 3. 3D Depth Order Reasoning

The goal of our work is to estimate the 3-D depth ordering from a single image. We aim
to use local perceptions as the main cues for depth estimation. We directly use the local patch
information: the shape information and the appearance information. In our approach, the
assumption is that the depth order of regions which are partitioned by segmentation exists, so
the image is partitioned by a perfect segmentation and doesn’t have cyclic occlusion.

Our work has the following aspects: a) the rules of inferences are designed with learning
process which is data-driven, b) we consider both the T-junction features and the boundary
features, c) the global ordering is produced by aggregating local decisions and contradictory
decisions can be dealt with by a graphical approach.

Our system starts from dividing an image into several regions. Because we assume each
region in distinct depth order, we can use the local depth cues to find the depth order of
neighbor segments. Due to possible inconsistent depth reasoning resulted from the previous
step, we combine the information to produce a better consistent depth order. In Figure 3-1, we
illustrate the flowchart of the proposed algorithm. In this chapter, first we introduce which

data set we used and the details of our model will be introduced latter.

Image Local Depth Global Depth Depth

Image Segmentation Ordering Ordering Ordering Map

Figure 3-1 Flowchart of our algorithm

3.1 Data Set

The proposed algorithm is evaluated based on the Berkeley Segmentation Data Set
(BSD500) [14]. Some similar works on this topic also use this data set [3, 15]. The
ground-truth segmentation boundaries are hand-drawn by different human subjects. Based on

these segmentation results, we produce human-labeled depth order for each segment. Figure

11



3-2 shows an example of this data set.
The Berkeley Segmentation Dataset contains 500 images. Here, we use 400 images as
the training data and 100 images as the testing data.

Near

(a) (b) (c)
Figure 3-2 (a) Image, (b) Segmentation results, (c) Depth Order.

3.2 Image Segmentation

In the aforementioned work [4, 6], they used over-segmentation techniques and perform
grouping segments in regions. The reason they used small regions was to prevent incorrect
segmentation results-and to collect useful cues, such as colors, textures, to reduce the
probability of incorrect segmentation. In contrast, since our local depth inference is
region-based, we need to do image segmentation work at first.

There are numerous research works dealing with image segmentation. In our approach,
our algorithm is based on the results of ground truth segmentation or Arbelaez’s work [14].
Figure 3-2 shows an example of the ground truth segmentation In 3.2.1, we will introduce

Arbelaaz’s work.

3.2.1 Contour Detection and Image Segmentation

Arbelaez [11] proposed an algorithm that dealt with two computer vision tasks: contour
detection and image segmentation. The contour detector combines multiple local cues into a
globalization framework based on spectral clustering. Then, the major part of the
segmentation algorithm is to transform the result of contour detector into a hierarchical region

tree.
12



In Section 3.2.1.1 and Section 3.2.1.2, we will briefly introduce the contour detection

and the segmentation algorithm.

3.2.1.1 Contour Detection

For contour detection, Arbelaez used a function Pb(x,y,8) that predicts the posterior
probability of the a boundary with orientation 6 at each pixel (x,y). This posterior
probability measures in local image brightness, color, and texture channels.

The Pb contour detector is the combination of oriented gradient signals G(x,y, 8) on four
channels. The oriented gradient signal G(x,y,8) processes each channel independently. The
brightness and color channels correspond to the CIE Lab color space. The texture channel

computed by a set of 17 Gaussian derivative and center surround filter. (See Figure 3-3)

Figure 3-3 Filters for creating textons.in [14].

In order to detect fine as well as coarse structure, they extended the Pb detector to three

scales. Then they linearly combined these local cues into a single multi scale oriented signal:
me(x' Y, 9) = Z Z ai,sGi,a(i,s) (x, Y, 9) ’ (3-1)
s i

where s indexes scales, i indexes. feature channels (brightness, color a, color b, and
texture), and G; ,(; ) (x,y,6) measures the oriented gradient of histogram in channel i with
radius o(i,s) centerd at (x,y) and angle 6. The parameters a; weight the relative

contribution of each gradient signal. Figure 3 4 shows the multiscale Pb.
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Figure 3-4 Multiscale Pb by [14]. Left Column, Top to Bottom: The brightness, color a, color b and texture
channels. Rows: The Oriented gradient of histograms for 6=0 and 6=n/2, and the maximum response over eight
orientations . Beside the original image, the combination of oriented gradients. The lower right panel, the final

output of the multiscale contour detector.

To generate a globalization results, the multiscale local cues are considered as
information of spectral clustering. The affinity value W;; is defined by the maximal value of

mPb along the line connecting pixels i and pixels j. The equation is as fallow:

14



(3-2)

ma_X{me(p)}>
PEL] _

Wij = exp <_ P

To circumvent this difficulty, they observed that the eigenvectors themselves carry contour
information. Treating each eigenvector v, as an image, they convolved with Gaussian
directional derivative filters at multiple orientations obtaining oriented signals {Vyv,(x,y)}.
The information from different eigenvectors is then combined to provide the “spectral”

component of the boundary detector:

n
1
sPb(x,y,0) = Z — Vv (x,y), (3-3)
=

where the parameters A, weight the directional derivatives. Figure 3-5 presents an example

of the eigenvectors, their directional derivatives, and the resulting sPb: signal.

(a) (b) (c) (d) (e)
Figure 3-5 (a) Image. (b)A sparse affinity matrix connecting pixels within a fixed radius. Pixels i and j have a
low affinity, hereas i and k have high affinity. (c) The first four generalized eigenvectors resulting. (d)
Partitioning the image by clustering on the eigenvectors , (e) Spectral Pb.

The signals mPb and sPb covey different information, as the former fires at all the
edge, while the latter extracts only the most salient curves in the image. They used linear
combination to get both behaviors. So the final globalized probability of boundary is the

written as follow:

gpb(x' Y, 6) = z z ﬂi,SGi,O'(i,S) (X, Y, 0) + Y- SPb(x, Y, 0): (3-4)
i

N

where the parameter f;¢, ¥ weight the contribution of mPb and sPb.
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3.2.1.2 Segmentation

The suppressed gPb contours produced in the previous section are often not closed. To
produce high-quality image segmentations, they linked this contour detector with a generic
grouping algorithm consisting of two steps.

First, they introduced a new image transformation called the Oriented Watershed
Transform for constructing a set of initial regions from an oriented contour signal. Second,
using an agglomerative clustering procedure, they formed these regions into a hierarchy
which can be represented by an Ultrametric Contour Map, the real-valued image obtained by

weighting each boundary by its scale of disappearance.

(d) (e) U]

Figure 3-6 Hierarchical segmentation from contours by [14] . (a) Image, (b) Maximal response of contour detector
gPb, (c) Oriented Watershed Transform-Ultrametric Contour Map (OWT-UCM), (d) The initial oversegmentation
corresponding to the finest level of the UCM, (e)(f) Contoursand corresponding segmentation obtained by
thresholding the UCM at level 0.5.

3.3 Local Depth Ordering

With the segmentation results of the image, we want to find the depth relation of each
region. However, in [3, 7], these authors design the rules of inferences without any learning
process. They use hand-crafting local cues to infer the depth. On the contrary, our approach is
a learning-based framework and is data-driven. We use a deep architecture to automatically
learn the depth perceptions to solve this task.

In Section 3.3.1, we will introduce our deep neural network model. In Section 3.3.2, we
will introduce how to train deep neural network. In Section 3.3.3, we will show some testing

results.
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3.3.1 Deep Neural Network

We want to use deep neural network to find the depth relation in a local patch. In our
work, the local patches we used are 16 x 16 pixels. We can use sliding widow searching for
the segmentation results of the image to get lots of training data to our models. In our model,
we only deal with the local region partitioned into 2 or 3 parts. Because there are few local
patches which is partitioned into more than 3 parts, there are 2 deep neural network model
that one deal with 2 parts in a local patch, another one deal with 3 parts in a local patch.

The input of the deep neural network contains shape and appearance information of the
local patch. The shape information is the group of pixels that the part contains and shows in
binary value. The appearance information is the RGB color of the local patch with real value
between 0 and 1. Figure 3-7 shows an example of input data. Top row means the input of

2-part model. Bottom row means the input of 3-part model.

(a) (b) (©) (d)
Figure 3-7 (a) Image, (b)(c)(d) Segments of the image, (e)(f)(g) RGB color of the image.

The target of the deep neural network is the depth ordering of segment in local patch. We
consider this as a classification problem. For example, if the local region contains part A, B,
and C, there are 6 possible depth ordering ABC, ACB, BAC, BCA, CAB, and CBA. Each
depth order belongs to one of class. Figure 3-8 and Figure 3-9 show an example of possible

depth ordering.
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Figure 3-8 2 possible depth ordering of 2-part model.
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Figure 3-9 6 possible depth ordering of 3-part model.

In the neural network, the hidden units and the target units apply a sigmoid function and
softmax function as active function respectively. The model deals with 2 segments in local
patch with layers of size (2*16*16+3*16*16)-700-800-800-2. The other model deals with 3
segments in local patch with layers of size (2*16*16+3*16*16)- 800-900-900-6. Figure 3-9

shows our deep neural network model.
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3.3.2 Training

There are three major problems when training a deep neural network. First, the classical
methods are efficient when applied to a shallow neural network but not efficient when adapted
to a deep neural network. For example, using backpropagation to train a deep neural network
will get stuck in local optima. The gradients in the early layers are tiny, making it infeasible to
train neural network with many hidden layers. That is why the neural networks are limited to
few hidden layers. Second, the classical methods require labeling all the training data. But in
the real world almost all data are unlabeled. Third, a discriminative training procedure like
backpropagation ignores the structure in the input and only tries to model the relationship
between inputs and outputs. This idea is not sufficient when the input contains a lot of
structure that can be modeled by features and the output is a class label that is more related to
these latent variables than it is to the raw input.

Using unsupervised pre-training can solve these problems. Unsupervised pre-training

initializes parameters, which are close to good solution. It also can discover features, which
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model the structure of the training images. Once a good set of features has been discovered by
unsupervised learning, discriminative learning models the relationship between the features
and the class labels. So fine-tuning the model works better than discrimination with random
initialization. These features are found by the input data which contain a lot of information,
which is enough for labeling the target which typically contain much less information.

Hinton introduced a greedy learning algorithm for unsupervised pre-training in [16].
They used the pre-training result as the initial parameters of model and fine-tuning the model
in a supervised fashion. The greedy layer-by-layer learning can find model parameters quickly
even when the model contains many layers. It also can make efficient use of very large sets of
unlabeled data. The greedy layer-by-layer learning algorithm is_that treating each layer as a
Restricted Boltzmann Machine (RBM).which is trained in an unsupervised way. Once the
previous layers have been trained, the next layer Is trained from the transformation of input by

the previous layer. Inthis section, we will introduce the details of the training algorithm.

3.3.2.1 Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is a two layer, bipartite, undirected graphical
model with a set of binary or real-valued visible units v and a set of binary hidden units h
(See Figure 3-11). The connections of RBM are only between visible units v € {0,1} and
hidden units h € {0,1}. In this section, we describe RBM with binary visible units. The

real-valued case having similar properties with binary case will be introduced latter.

Q00000

elelelole}

Figure 3-11 Restricted Boltzmann Machine (RBM)

RBM is an energy-based model with the energy function being defined as follows:
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Energy(v,h; 0) = — z bjv; — Z cjhj — Z viWishy, (3-5)
i j ij

where v;, h; are the binary states of visible units i and hidden units j, b;, ¢; are their
biases, W;; is the weight between them, and 6 = {b,c, W} are the model parameters. The
probability distribution to every pair of a visible and a hidden vector defined by in terms of
the energy function:

e—Energy(v,h;(-))

it (3-6)

P(v,h;0) =

The constant Z is a normalizing factor which is called the partition function, is given by

summing over all possible pairs of visible and hidden vector:

— -E .h;0
> = z e ~Energy(v,h;0) (3-7)
v,h

The probability distribution over visible vector v-is defined as follows:

1
P(v;0) = = Z g ~Energy(vh;o) (3-8)
B

Because there are no connects between visible units-and between hidden units in RBM, it is

very easy to get the conditional distributions:

P(h|v) = HP(hj =1|v) and P(h; =1|v) = 0<cj + Z viWi,-> (3-9)
j i

P(v|h) = HP(vl- —1/h) and P(v; = 1lh) = o[ b; +Zhjwi,- (3-10)
i J

where o(x) is the logistic sigmoid function According to the conditional

(1+exp(-x)) "
independent property, it performs block Gibbs sampling in training stage.

In order to train RBM as a probabilistic model, the criterion to maximize is
log-likelihood. The gradient of the log-likelihood of a training data v can be written as

follows:
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dlog P(v) 0Energy(v, h) d0Energy(v, h)
— =LA pevh) |[——=— |- (3-11)

26 _E"“"V>l a6 a6
This leads to very simple learning rule for performing stochastic steepest ascent in the

log-likelihood of the training data v:

AW;j = €(Eqata[Vili] = Emoder|vily]), (3-12)
Ab; = E(Edata [vi] - Emodel[vi])' (3'13)
ch = E(Edata [hj] - Emodel [hj])' (3-14)

where € is a learning rate, Eg.+q[] 1S referred as the data-dependent expectation, and
Emoaet[] 1s referred as the model expectation. The data-dependent expectation term is an
expectation under the training set-empirical distribution P (h]v). Because of the conditional
independent property, this term is-easy-to calculate in parallel. The model expectation term is
an expectation under the model distribution P(v,h). This term is intractable. However, it can
be approximated by the Markov chain Monte Carlo (MCMC) algorithm such as Gibbs
sampling. The idea is simple: starting from any configuration v, and alternating Gibbs
sampling vt and h® by conditional distribution P(vt|ht71) and P(ht|v'). Figure 3-12

shows the MCMC algorithm.

h° ht h®
000 OO0 000
00 00 = ©0

Figure 3-12 Markov chain that uses alternating Gibbs sampling.
However, running a long MCMC chain is still expensive. A much faster algorithm proposed
by Hinton [16] is called Contrastive Divergence (CD). Contrastive Divergence reduces the
Markov chain with a sample from training dataset. When the Markov chain is reduced to

alternate one time, the v! can be considered as the reconstruction data. It still gives good
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results. According to the Contrastive Divergence (CD) learning algorithm, the gradient of

log-likelihood can be approximated by follows:

AW;; = E(Edata [Uihj] - Erecon[vihj]): (3-15)
Ab; = G(Edata [vi] - Erecon[vi])' (3'16)
ch = E(Edata[hj] - Erecon[hj])f (3-17)

where E,.conl] is referred as reconstruction data expectation. Figure 3-13 shows the

Contrastive Divergence (CD) learning algorithm.

500 O8O
O LD

Vdata Vreconstruction
Figure 3-13 Contrastive Divergence (CD).

Although the maximized criterion is not log-likelihood anymore, the experimental results
show that the parameter update almost always decreases the log-likelihood.

3.3.2.2 Gaussian Restricted Boltzmann Machine

For real-valued visible units, we use Gaussian RBM. The Gaussian RBM has a similar

property with the RBM. Their energy function is defined as follows:
O (= by)? v
Energy(v,h; 0) = N R cjhj — ) —W;jh, (3-18)
; 9i 7 7 i

and the conditional distribution becomes:

P(h|v) = HP(hj =1|v) and P(h; =1|v) = a(cj +Z%le), (3-19)
j r
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P(Vlh) = l_IP(Ui = 1|h) and P(Ui = 1|h) =N vilbi + Gth]WU , (3'20)
L J

The conditional distribution is also easy to compute in parallel. The Gaussian RBM still uses
the Contrastive Divergence (CD) learning algorithm to approximate the gradient of
log-likelihood.

RBM and Gaussian RBM can be considered as a set of feature detectors to the
higher-order correlations between visible units. However, a single layer of binary features is
not sufficient to model the structure in a set of images. We can treat the activities of hidden
units h given the training data as the visible units for learning a second layer of features.

3.3.2.3 Greedy Layer-wise Pre-training

In order to learn more structured features, we need more layers to model the structure in
a set of images. The greedy layer-wise pre-training treats the activities of hidden units h in
the previous RBM as the visible units in the next RBM. It can be thought that the previous
layer of feature detectors is considered as the visible units for learning the next RBM. Units of
lower layers detect simple features and feed into high- layers, which detect more complex
features. This layer-by-layer learning can be repeated as many times as desired.

The detail of greedy layer-wise pre-training is as follows: (1) learning the first RBM in
which the visible units are the training data, (2) freezing the weights of first RBM W?! and
treating the real-valued of probabilities of the conditional distribution E[P(h!|v; W1)] as the
visible units in second RBM, and (3) Freezing the weights of first and second RBM W?! and
W2 and treating the real-valued of probabilities of the conditional distribution
E[P(h?|hl; W?)] x E[P(h|v; W1)] as the visible units in third RBM. Figure 3-14 shows the

flow of greedy layer-wise pre-training.
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Figure 3-14 Greedy Layer-Wise Pre-training
In our approach, our models have 3 hidden layers, so we need to use 3 stacked RBM to
pre-train our models. Otherwise, the inputs of our models are shape information with
binary-value and appearance information with real-valued, so the first layer will be the
combination of RBM and Gaussian RBM. (See Figure 3-15) The detailed greedy layer-wise
pre-training is the same as above. (See Figure 3-16)
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Figure 3-15 The Combination of RBM and Gaussian RBM (3-part Model).
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Figure 3-16 Greedy Layer-Wise Pre-training of our model (3-part Model).

oS}

With greedy layer-wise pre-training, our proposed model is capable of discovering a lot
of hierarchical features. We show the features of hidden units h® by directly displaying the
weights. The weights connecting to the segment visible units show in a gray image. The
weights connecting to the appearance visible units are shown in a RGB image. The features of
hidden units h? are the linear combination of features of hidden units h® with the

contribution weight between hidden units h* and hidden units h?. (See Figure 3-17)

Segment A Segment B Segment C RGB Segment A Segment B Segment C RGB

Figure 3-17 The meaning of features of hidden units h' and h* (3-part Model).

Figure 3-18 and Figure 3-19 show the feature learning by the proposed models. As expected,

high level features are the combination of low level features.
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Figure 3-19 Feature of hldden unlts hl(bottom) hz(mlddle) and h3(t0p) in 3-part model.

3.3.2.4 Fine- tunlng

With greedy Iayer Wlse pre tramlng the proposed rr;odel can discover a lot of
hierarchical features which contaln a Iot of mformatlon about inputs. The global fine-tuning
then learns the model between features and targets for discrimination. We replace stochastic
activities by deterministic, real-valued probabilities and use backpropagation through the
whole models to fine-tune the weights for optimal outputs. Initializing by unsupervised
pre-training produces a much better results than random initialization. Figure 3-20 and Figure

3-21 show the feature learning by our models.
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Figure 3-21 Feature of hldd_en units hl(bottom) h*(middle) and h3(top) in 3- part model after fine-tuning.

3.3.3 Testing

After our models have bvee-'n_ -t-raihed., ‘we wa'nvtvt;)_,infe'vr the depth ordering given the
original image and the segmentation -re}sults. Wé use sliding widow searching for the
segmentation results to find the local patches which are partitioned into 2 or 3 parts. Then, we
use the deep neural networks as a classifier to compute the posterior of all possible depth
ordering. If a patch is partitioned into part A and part B, the posterior values are considered as
the possibility of depth ordering AB and BA. If a patch is partitioned into part A, part B and
part C, the posterior values are considered as the possibility of depth ordering ABC, ACB,
BAC, BCA, CAB and CBA. Figure 3-22 shows the results of nearest posterior value of each

segment in local patch. The nearest posterior value nPost of each segment is defined as
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follows:

nPosty g(A) = Post, g(depth order AB), (3-21)

nPosty g c(A) = Posty g c(depth order ABC) + Posty g ¢ ( depth order ACB), (3-22)

where A,B,C idex segment, Posty g c(depth order ABC) is the posterior values of depth
order ABC calculated by deep neural network in the local patch partitioned into segment A, B
and C, and nPost, g c(A) messures the nearest posterior value of segment A in the local

patch partitioned into segment A, B and C.

(b)
Figure 3-22 Nearest posterior (a) 2-part patch, (b) 3-part patch.

3.4 Global Depth Ordering

Because the depth ordering of segments in local patches may be inconsistent, we
combine the local depth reasoning and find a global consistency results across the segments.
First, we combine the local depth order reasoning that infers the same neighboring regions.
Second, we construct a direct graph with the weights of adjacent matrix being defined by the
combination of local depth order reasoning. Because we assume there is no cyclic occlusion

existing in our image, we transform the direct graph to the direct acyclic graph with optimal
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solution. As we find out the direct acyclic graph, the global ordering can be accomplished.
In Section 3.4.1, we will introduce how to combine the local depth ordering. In Section
3.4.2, we will introduce how to construct a direct graph and transform it to a direct acyclic

graph.

3.4.1 Combine the Local Depth Ordering

Since the local depth ordering is based on sliding window the find the local patch. There
are a lot of different depth order posterior values inferring the same neighboring regions. We

average the posterior values of neighboring regions to get a combination posterior value:

:
cPost, g(depth order d) = NZ Post, g(depth order d, patch i) (3-23)
i

1
cPosty g c(depth order d) = ﬁz Posty g ¢ (depth order d, patch i) (3-24)
i

where i indexes ‘the depth ordering results, cPostsg(depth order d) measure the
combination posterior values of depth order d in the local patch partitioned into part A and B,
cPost, g measure the combination posterior values of depth order d in the local patch
partitioned into part A, B and C, Post, g(depth order d, patch i) is the posterior value of
patch i partitioned into segment A.and B with depth-order d which is calculated by the deep
neural network, Post, g c(depth orderd, i) is the posterior value of patch i partitioned into
segment A, B and C with depth order d which is calculated by the deep neural network and

N is the number of local patches with the same segments.

3.4.2 Direct Acyclic Graph

As we have seen from the discussion in Sec. 3.4.1, the combined posterior values of
neighboring regions can’t directly give a globally consistent result of depth ordering. We in
this section propose a heuristic approach to a consistent result. We treat each segment as a

node of a direct graph (See Figure 3-23). The direct edge from node A to node B with weight
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w is interpreted as that segment A is in front of segment B with probability w. We construct
two depth relation matrixes, one for relation of 2 segments and the other one for relation of 3

segments and then combine them into an adjacency matrix for the direct graph.

Figure 3-23 Nodes of direct graph.

For relation matrix of 2 segments, it is directly constructed by combining the posterior

values. It is defined as follows:
RelationMatrix2;; = cPost;;(depth order i)), (3-25)

where i,j index the segment. For relation matrix of 3 segments, it IS more complex. It is

defined as follows:

RelationMatrix3;

= Z cPost;; (depth order ijk) + cPost;; x(depth order ikj) (3-26)
k
+ cPost;; (depth order kij).
Then, we use a simple linear combination to construct adjacency matrix.

Adjacencymatrix = a - RelationMatrix2 + (1 — a) - RelationMatrix3, (3-27)

where the parameters o and (1 — a) respectively weight the relation contribution of
RelationMatrix2 and RelationMatrix3. Here we use a=0.2, because RelationMatrix3 contain

more information about depth ordering. Figure 3-25 shows an example of the direct graph.
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Figure 3-25 Direct graph.

After constructing the direct graph, it is instinctive that we can remove the edges that
form a direct acyclic graph. A direct acyclic graph is a result of depth ordering of each
segment. The best result is that the summation of weights which have been removed is
minimum. This is called the minimum feedback arc set problem. However, it is an NP-hard
problem. In our approach, we limit the number of segments to be lower than 15 and use
exhaustive search to find the minimum cost. Figure 3-26 (b) shows an example of direct
acyclic graph. Figure 3-27 shows the results of an example.
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@ (b)
Figure 3-26 (a) Direct graph, (b)Direct acyclic graph with feedback minimum arc set.

Near

Near

Figure 3-27 Depth ordering.
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Chapter 4. Experimental Results

In this chapter, we will show several simulation results of the proposed algorithm. First,
we will show the accuracy of the deep neural network and local depth reasoning. Second, we
will show the global depth ordering based on the ground truth segmentation or Arbelaez’s

work.

4.1 Deep Neural Networks

We evaluate deep neural networks .on- validation data. Figure 4-1 shows how the
evaluations work. Given an_image, a sliding window moves .in the image to find 2-part or
3-part parches. We can compute the accuracy rate of validation data. The accuracy is defined
as whether the prediction is equal to the ground truth or not. For example, if a local patch is
partitioned into part A, B and C with depth ordering ABC, the accuracy is 1 whenever the
prediction of depth ordering is ABC. If the prediction of depth ordering.is ACB, the accuracy
is still 0. Table 4-1 shows the accuracy rate. \We can see that the accuracy rate is higher than

50% (2-part randomly guesses) or 17% (3-part randomly guesses).
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Figure 4-1Testing
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Table 4-1 Accuracy rate.

Data

Accuracy Rate(Validation Data)

2-part model

Training Data: 382,600
Validation Data: 164,100

71.5%

3-part model

Training Data: 366,200
Validation Data: 157,000

42.4%

4.2 Local Depth Ordering

Figure 4-2 shows some results of local depth ordering. As we expect, the deep neural

networks almost can predict correct depth ordering. The posterior means the confidence of

depth ordering.

()
Figure 4-2 Local Depth Ordering, (a) Image, (b) 2-part patch, (c) 3-part patch

(b)
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4.3 Global Depth Ordering

In this section, we will show simulation results of the proposed single image 3-D depth
order algorithm. We use 100 test images from Berkeley Segmentation Dataset (BSD500). Our
algorithm is based on the results of ground truth segmentation or Arbelaez’s work. In Section
4.3.1 and Section 4.3.2, the results of ground truth segmentation and Arbelaez’s work will be

shown, respectively.

4.3.1 Based on Ground Truth Segmentation

Since the ground truth segmentation has human-labeled ground truth depth order, we can

compute the accuracy rate of global depth order:

# of correct edge (4-1)
Accuracy = % ofedge % 100%.

Given a direct graph, which is produced by the proposed algorithm, we compute the ratio of
number of correct edge to number of edge. It checks every edge of the direct graph with the
ground truth depth order. Our accuracy rate on 100 testing images is 74%. Figure 4-3 shows

the histogram of accuracy rate. Most of image exceed 65% accuracy rate.

2Far

xRl

1REE

1R

Sar

42
4] 10 .o 30 40 0 &0 70 =0 S0 100

Figure 4-3 Histogram of accuracy rate.
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Figure 4-4 Results based on ground truth segmentation
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Figure 4-5 Results based on ground truth segmentation



Figure 4-6 Results based on ground truth segmentation

Figure 4-4 and Figure 4-5 show the results that the accuracy rate is higher than 70%.
Most of depth relation between two objects is correct. Figure 4-6 shows the results that the
accuracy rate is lower than 50%. It often occurs that the number of segments is small, so the

accuracy rate is small when only rare edges are correct.



4.3.2 Based on Contour Detection and Image Segmentation
Since our approach relies on the segmentation result, the accuracy of depth order will be low
with poor segmentation result. Figure 4-7 and Figure 4-8 show some results based on Arbelaez’s

work.

Figure 4-7 Results based on Arbelaez’s work
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Figure 4-8 Results based on Arbelaez’s work

There are some limitations in our algorithm. First, our approach assumes that we have a
perfect segmentation results. However, the segmentation results are not correct when adjacent
objects are similar in color or texture. This incorrect segmentation result will affect the depth

order. Second, since we use exhaustive search to solve the feedback arc problem, we can’t
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deal with the image which is partitioned into too many regions.
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Chapter 5. Conclusion

In this thesis, we have proposed a method to infer the depth ordering of object from a
single image based on local shape and appearance information. Our approach has assumed the
segmentation result is perfect. With the segmentation result, we know the number of segment
in local patch. Then, we can individually train the deep neural networks for 2 segments and 3
segments. The deep neural network can automatically learn the features from the training data.
We have used the unsupervised pre-training and the supervised fine-tuning to train our
networks, which proves to be better than the classical training scheme. After training the
network, local patch with 2 or'3 segments in the image will be tested by feeding into our deep
neural networks model to obtain the local depth ordering. Then, we transform the problem of
obtaining a consistent global depth-order into minimum feedback arc set problem. In our
approach, we can obtain the depth ordering based on the segmentation result with no

geometric assumption in the image.
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