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基於深度神經網路之圖層三維深度排序技術研究 

 

研究生：廖姿婷      指導教授：王聖智 教授 

                              簡鳳村 教授 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

在這篇論文裡，我們提出一套方法用來找出單張影像的三維深度。不同於利用場景

幾何資訊來推論深度的做法，我們不對場景有任何的幾何假設，且只擷取影像裡小區域

的深度特徵來幫助我們找到深度。在我們的做法中，首先將影像切割成數個區塊，我們

主要專注在小區域裡的深度排序。利用深度神經網路去分類小區域裡深度排序的類別，

且自動學習出適合的特徵，然而利用傳統的方式學習深度神經網路會面臨梯度消失的問

題。因此，我們的學習過程有兩部分：無監督式預先學習以及有監督式微調模型。學習

完深度神經網路後，對於一張影像我們把影像切割成小區域進行測試。然而小區域對於

深度排序的結果會不一致。因此，我們結合小區域的相對深度資訊並且把這些資訊轉換

成有向圖。再藉由找出最小反饋邊集合以得到整體一致的深度排序結果。 
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National Chiao Tung University 

 

Abstract 

 

In this thesis, we propose a method to estimate 3-D depth map from a single image. 

Unlike approaches employing a geometric model behind the scene to infer the depth map, we 

propose to estimate the 3-D scenes by extracting local depth cues without any structure 

assumptions in the scene instead. In our approach, first we partition the image into several 

regions. We focus on inferring the depth ordering in a local patch. Then we apply the model of 

deep neural network to figure out which depth order class the local patch belong and to 

automatically learn the appropriate features in our problem. However, training the deep neural 

network by classical method will encounter the vanishing gradient problem. To tackle the 

problem, our training algorithm consists two phase: the unsupervised pre-training phase and 

the supervised fine-tuning phase. After training the deep neural network, we test the image by 

feeding the local patch into the deep neural network. In practice, the resultant depth orders 

that are sorted by the deep neural network and from different local patches may be 

contradictory. Hence, we combine these local depth order reasoning to construct a direct 

graph. By finding the minimum feedback arc set, we can obtain a depth order with global 

consistency. 
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Chapter 1. Introduction 

3-D depth estimation is a fundamental issue of computer vision. 3-D depth information is 

required in many applications, such as segmentation, object recognition, and scene 

understanding. Up to now, many techniques have been explored [1, 2]. Most of the prior 

works focus on stereo, structure from motion and multi-view images that are taken at the 

same scene, but from different view points. Then 3-D depth can be estimated based on 

binocular or motion cues. However, in some applications, it is usually that we only have a 

single image and want to recover the 3-D depth [3-9]. 

It is well known that the image is a projection of the real world. Humans can 

immediately grasp the 3-D structure of a single scene but it is still a challenging task for 

computers. We want to make the computer understand the 3-D depth structure from a single 

image, just like what humans can do. When the 3-D real world is projected onto a 2-D image 

plane, it often occurs occlusion between two objects. Objects in the image are mostly mutual 

occlusion. Hence, for a computer to comprehend the 3-D knowledge, it needs to understand 

the occlusion relationship in an image. 

In recent work, the study of occlusion reasoning focuses on how to recover the hidden 

information behind the 2-D image plane. Some researchers [3, 4, 7] investigated monocular 

cues, such as color and texture, surface layout, boundary, contour, junction, etc., to extract the 

3D information in very specific scenes. Another approach [5, 6, 9] infers the 3-D depth based 

on the semantic labels of the scene, such as “ground” always supports “vertical surface,” and 

these are placed before “sky.” Nevertheless, these semantic labels are not always used in most 

images. 

In this thesis, the major goal of our approach is to infer the depth order directly based on 

monocular cues instead of relying on any contextual information or prior knowledge of the 

scene structure. Our monocular cues are similar to T-junctions or boundaries in an image [3, 
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7]. However, in previous work, Dimiccoli[3] and Palou[7] used hand-crafted features to 

describe T-junctions or boundaries. And the proposed rules in [3, 7] of inferences didn’t 

employ any learning process. 

The proposed algorithm first uses a segmentation algorithm to partition the image into 

several regions. The assumption is that these regions are with topological depth ordering. 

Hence, cyclic occlusion can’t be dealt with the proposed method. Second, the local depth 

order is found by discovering the depth information from the local patches which have been 

partitioned into more than one part by segmentation. Therefore, the deep neural network is 

used to explore the depth features and infer the depth relation in the local patches. Deep 

neural network consists of feature detector units in each layer. The units of lower layers detect 

simple features. Then, the output of lower-layer feature detector will be fed into a higher layer 

which detects more complex features. These features are automatically learned by training 

data instead of by hand-crafting. In the past years, the classical methods are efficient when 

applied to shallow neural networks but not efficient when adapted to deep neural networks 

[10]. Until recent year, the Restricted Boltzmann Machine (RBM) proposed by Hinton et al. 

[11, 12] has been proved useful to perform per-training in the neural network in the training 

processes. The training strategy consists two phases: the unsupervised pre-training phase and 

the supervised fine-tuning phase. After training the deep neural network, we can infer the 

depth order of local patch. However, the depth reasoning of local patches may be inconsistent. 

We can combine the local depth reasoning to construct a direct graph. By removing the 

minimum feedback arc set, we can find a globally consistent result across the segments. 

This thesis is organized as follows. We will first discuss some related works in Chapter 2. 

In Chapter 3, we describe the proposed method that infers the 3-D depth order for a single 

image. Some experimental results are shown in Chapter 4 and we provide our conclusion in 

Chapter 5. 
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Chapter 2. Backgrounds 

In the past few years, many depth estimation algorithms have been proposed [4, 6]. In 

this chapter, we will introduce some related works about depth estimation of a single image in 

vision-based systems. These algorithms can be roughly classified into two groups depending 

on the type of the information and assumption which have been used: the geometric models 

and the depth perception models. The former estimates the 3-D depth of a single image by 

considering the 3D scene geometry [5, 6, 9]. The latter strategy infers the 3D depth from the 

monocular features in the image without any assumptions about the scene structure [3, 4, 7, 8]. 

In Section 2.1 and Section 2.2, some relevant works about geometric models and depth 

perception models will be introduced, respectively. 

2.1 Depth Estimation using Geometric Models 

In [5], Jung et al. used object classification based on Bayesian learning algorithm to 

extract the depth value. In their approach, they estimate the depth map based on the linear 

perspective depth cue with the condition that the type of input images need to contain the 

vanishing point and be outdoor scene. Before object classification, the vanishing point is 

detected and the image is divided into several segments. Objects in a single-view image are 

classified into four types: sky, ground, cubic, and plane. (See Figure 2-1) 

 

Figure 2-1 Examples of object types : SKY, GROUND, PLANE, and CUBIC. 
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According to the inferred type, relative depth values are assigned to each type to generate 

a 3D model. Ground can be regarded as a horizontal plane. The depth value of GROUND 

increases as it is getting closer to the vanishing point. Figure 2-2 illustrates the depth 

assignment for the cubic type and plane type. For plane-type objects, such as cars, they have a 

constant depth depending on where the bottom position of the object is. For cubic objects, 

such as buildings, the depth value varies with the distance from the vanishing point. Their 

results are shown in Figure 2-3. 

 

Figure 2-2 Depth assignment for type PLANE and CUBIC. 

 

 

(a)                                 (b) 

Figure 2-3 Experimental result of Jung et al. in [5]. (a) Input image. (b) Depth map. 

In [6], Hoiem et al. described an algorithm that recovers the occlusion boundary from an 

image. They argued that people can perceive the depth of a scene if they get the whole 

structure of the scene. By recovering the occlusion relationship between objects, relative 

depth ordering could be determined. Specifically, their work can be divided into two parts. To 
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understand the geometry of an image, they labeled the image into geometric classes to form 

the surface layout of a scene [13]. With the geometric labels, they used the classification 

results to learn the occlusion boundaries in an image. Using the vertical/ground structure, they 

estimated objects depth by detecting the attachment of ground and vertical objects. For some 

regions which are occluded by other regions, the occlusion relationship is used to estimate the 

max/min depth of these regions. 

In their approach, they used the results of surface layout estimation [13]. Each pixel 

belongs to ground plane, vertical surface or sky. Figure 2-4 shows a classification result. 

Different colors mean different main classes (ground, vertical, sky). The marks represent 

different subclass labels of vertical regions. These surface layout cues are part of the 

occlusion cues and are helpful to get the information boundaries. They also used other cues to 

recognize the boundaries, such as boundary cues, region cues, and depth-based cues. The 

detail cues are listed in Figure 2-5. Surface layout cues use the result of the surface layout 

algorithm and are very useful for detecting the occlusion boundaries since most edges 

between different surface labels are occlusion boundaries. Geometric labels of surface layout 

can also reveal figure/ground information. 

 

Figure 2-4 Geometric labels of Hoiem’s system [6]. 
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Figure 2-5 The occlusion cues used in Hoiem’s boundary system. 

 

Figure 2-6 lustration of Hoiem’s algorithm [6]. 

To identify occlusion boundary, they learned a classifier which classifies boundaries to 

three different types: non-occlusion, occluded and occlusion. Their proposed algorithm starts 

with an over-segmentation algorithm, which assumes most boundaries are preserved in the 

edges between these segmented regions. Usually there are thousands of regions at the 

beginning and then the algorithm gradually removes these unlikely edges to get the final 

boundaries. They used the cues to predict the likelihood of being a boundary for each edge. At 

each time, the boundary likelihood of each edge is re-calculated and the most unlikely edges 

are removed until the boundary likelihood of all the remaining edges are above a given 

threshold. As regions grow larger and edges become larger, they refine the boundary 
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prediction and remove unlikely boundaries again. This process continues iteratively until no 

new region forms. The flow chart of their system is shown in Figure 2-6. 

In order to estimate the likelihood of boundary labels, they used CRF (Conditional 

Random Field) model to enforce boundary continuity and consistency. More precisely, the 

boundary likelihoods of connected edges are related. Hoiem et al. considered all possible 

labels of the image, instead of estimating each boundary confidence alone. For example, in a 

junction where three edges are connected, there are 27 combinations of junctions but only 5 of 

them are possible. The valid types are shown in Figure 2-7. Figure 2-8 (b) shows one of their 

results, the region to the left of an arrow is in front of the region to the right of the arrow. 

 

Figure 2-7 Illustration of five valid junctions [6]. 

 

     (a)                                (b) 

Figure 2-8 Result of Hoiem’s occlusion boundary algorithm. (a) Occlusion boundary result. (b) (Top row) 

Estimated max depth. (Down row) Estimated min depth. 

In these aforementioned methods [5, 6], depth can be roughly estimated using scene 

geometric. However, these algorithms can’t estimate the depth, when there are no semantic 

labels in the image. 
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2.2 Depth Estimation using Depth Perception Models 

In contrast to algorithms that attempt to get the absolute depth value by using depth 

perception models, some authors have developed methods that infer relative depth 

information with local depth perception only. 

In [4], Saxena et al. presented an algorithm that used the Markov Random Field (MRF) 

model to infer the 3-D structure based on super-pixel features. They used the superpixel 

segmentation algorithm to divide the image into small uniform regions. And they assumed 

that each region is a planar surface. They used two kinds of 3-D structure perceptions. First, 

for each superpixel, they computed some features to capture the monocular cues. Figure 2-9 

shows the filters used for texture energies and gradients. Since local image features are 

insufficient to estimate the depth, they appended local features to multi-scale features and 

combined features from neighboring superpixels to capture more “contextual” information 

(See Figure 2-10). Second, they also computed features for boundaries in the image. When 

two neighboring superpixels of an image have different appearance, they are often grasped to 

different objects. 

 

Figure 2-9 The convolutional filters used by Saxena [4]. 

 

           (a)                          (b)             (c) 

Figure 2-10 Multiple scale structure of features in [1]. (a) An illustration of neighboring location with multi scale 

features. (b) Actual neighborhood of the superpixel S3C. (c) Collected features for superpixel S3C. 
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With depth perceptions, they inferred the “plan parameters” that capture both the 3-D 

location and orientation of the 3-D surface for each superpixel in the image using an MRF 

model. By supervised learning, the MRF models the relationship between superpixels and 

infer both the 3-D location and orientation of the 3-D surface for each superpixel. Moreover, 

the MRF model also considers the relationship between adjacent regions, such as connected 

structure, co-planar structure, and co-linearity. For connected structure, except in the case of 

occlusion, neighboring planes are more likely to be connected to each other. For co-planarity 

structure, neighboring regions are more likely to belong to the same plane if they have similar 

features. For co-linearity, long straight lines in the image represent straight lines in 3-D, such 

as edges of buildings. Their results are shown in Figure 2-11. 

 

(a)              (b)             (c)              (a)             (b)              (c) 

 

Figure 2-11 (a) Original images. (b) Ground truth depth map. (c) Depth map by [4]. 

In [8], Jia et al. argued that boundary and junction characteristics are important cues for 

depth ordering. They designed new features on boundaries and junctions, and used these as 

basic elements to learn the local depth ordering. However, the local depth order reasoning 

may be inconsistent. Therefore, they used an MRF model to get a globally consistent ordering. 

In addition, in order to produce a better object segmentation for depth ordering, they proposed 

to explicitly enforce closed loops and long edges for the occlusion boundary detection. 

Jia et al. detected the occlusion boundaries in an image and used the result of detecting to 

partition the image into segments. There are two sets of feature for depth ordering: the 
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junction feature and the boundary feature. The boundary convexity is calculated for the 

possibility of the top layer. 

After the local inference for depth ordering, they use MRF graph to infer a globally 

consistent depth ordering. The node potential is defined by the local depth reasoning. The 

edge potential is defined as the consistency between the segment’s orders. Figure 2-12 shows 

the detail of the MRF model. Their results are shown in Figure 2-13. 

 

  (a)                    (b)                      (c)                      (d) 

Figure 2-12 MRF model by [10] (a) Global depth reasoning. (b) Each junction produces three directed edges in the 

depth order graph. (c) MRF to encourage the global consistency. (d) The edge potential in our MRF gives high 

penalties (solid) if the segments’ orders contradict between two nodes. 

 

(a)                     (b)                        (c) 

Figure 2-13 (a) Original images. (b) Ground truth depth ordering. (c) Depth ordering by [8]. 
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Chapter 3. 3D Depth Order Reasoning 

The goal of our work is to estimate the 3-D depth ordering from a single image. We aim 

to use local perceptions as the main cues for depth estimation. We directly use the local patch 

information: the shape information and the appearance information. In our approach, the 

assumption is that the depth order of regions which are partitioned by segmentation exists, so 

the image is partitioned by a perfect segmentation and doesn’t have cyclic occlusion. 

Our work has the following aspects: a) the rules of inferences are designed with learning 

process which is data-driven, b) we consider both the T-junction features and the boundary 

features, c) the global ordering is produced by aggregating local decisions and contradictory 

decisions can be dealt with by a graphical approach. 

Our system starts from dividing an image into several regions. Because we assume each 

region in distinct depth order, we can use the local depth cues to find the depth order of 

neighbor segments. Due to possible inconsistent depth reasoning resulted from the previous 

step, we combine the information to produce a better consistent depth order. In Figure 3-1, we 

illustrate the flowchart of the proposed algorithm. In this chapter, first we introduce which 

data set we used and the details of our model will be introduced latter. 

 

Figure 3-1 Flowchart of our algorithm 

3.1 Data Set 

The proposed algorithm is evaluated based on the Berkeley Segmentation Data Set 

(BSD500) [14]. Some similar works on this topic also use this data set [3, 15]. The 

ground-truth segmentation boundaries are hand-drawn by different human subjects. Based on 

these segmentation results, we produce human-labeled depth order for each segment. Figure 
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3-2 shows an example of this data set. 

The Berkeley Segmentation Dataset contains 500 images. Here, we use 400 images as 

the training data and 100 images as the testing data. 

 

(a)                       (b)                      (c) 

Figure 3-2  (a) Image, (b) Segmentation results, (c) Depth Order. 

3.2 Image Segmentation 

In the aforementioned work [4, 6], they used over-segmentation techniques and perform 

grouping segments in regions. The reason they used small regions was to prevent incorrect 

segmentation results and to collect useful cues, such as colors, textures, to reduce the 

probability of incorrect segmentation. In contrast, since our local depth inference is 

region-based, we need to do image segmentation work at first. 

There are numerous research works dealing with image segmentation. In our approach, 

our algorithm is based on the results of ground truth segmentation or Arbelaez’s work [14]. 

Figure 3-2 shows an example of the ground truth segmentation In 3.2.1, we will introduce 

Arbelaaz’s work. 

3.2.1 Contour Detection and Image Segmentation 

Arbelaez [11] proposed an algorithm that dealt with two computer vision tasks: contour 

detection and image segmentation. The contour detector combines multiple local cues into a 

globalization framework based on spectral clustering. Then, the major part of the 

segmentation algorithm is to transform the result of contour detector into a hierarchical region 

tree. 
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In Section 3.2.1.1 and Section 3.2.1.2, we will briefly introduce the contour detection 

and the segmentation algorithm. 

3.2.1.1 Contour Detection 

For contour detection, Arbelaez used a function 𝑃𝑏(𝑥, 𝑦, 𝜃) that predicts the posterior 

probability of the a boundary with orientation 𝜃  at each pixel (𝑥, 𝑦) . This posterior 

probability measures in local image brightness, color, and texture channels.  

The 𝑃𝑏 contour detector is the combination of oriented gradient signals  (𝑥, 𝑦, 𝜃) on four 

channels. The oriented gradient signal  (𝑥, 𝑦, 𝜃) processes each channel independently. The 

brightness and color channels correspond to the CIE Lab color space. The texture channel 

computed by a set of 17 Gaussian derivative and center surround filter. (See Figure 3-3) 

 

Figure 3-3 Filters for creating textons in [14]. 

In order to detect fine as well as coarse structure, they extended the 𝑃𝑏 detector to three 

scales. Then they linearly combined these local cues into a single multi scale oriented signal: 

𝑚𝑃𝑏(𝑥, 𝑦, 𝜃) =∑∑𝛼𝑖,𝑠 𝑖,𝜎(𝑖,𝑠)(𝑥, 𝑦, 𝜃)

𝑖

,

𝑠

 (3-1) 

where 𝑠  indexes scales, 𝑖  indexes feature channels (brightness, color  a, color b, and 

texture), and  𝑖,𝜎(𝑖,𝑠)(𝑥, 𝑦, 𝜃) measures the oriented gradient of histogram in channel 𝑖 with 

radius 𝜎(𝑖, 𝑠)  centerd at (𝑥, 𝑦)  and angle 𝜃 . The parameters 𝛼𝑖,𝑠  weight the relative 

contribution of each gradient signal. Figure 3 4 shows the multiscale 𝑃𝑏. 
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Figure 3-4  Multiscale Pb by [14]. Left Column, Top to Bottom: The brightness, color a, color b and texture 

channels. Rows: The Oriented gradient of histograms for θ=0 and θ=π/2, and the maximum response over eight 

orientations . Beside the original image, the combination of oriented gradients. The lower right panel, the final 

output of the multiscale contour detector. 

To generate a globalization results, the multiscale local cues are considered as 

information of spectral clustering. The affinity value 𝑊𝑖𝑗 is defined by the maximal value of 

𝑚𝑃𝑏 along the line connecting pixels 𝑖 and pixels 𝑗. The equation is as fallow: 
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𝑊𝑖𝑗 = exp(−
max
𝑝∈𝑖�̅�

{𝑚𝑃𝑏(𝑝)}

𝜌
). (3-2) 

To circumvent this difficulty, they observed that the eigenvectors themselves carry contour 

information. Treating each eigenvector 𝐯𝑘  as an image, they convolved with Gaussian 

directional derivative filters at multiple orientations obtaining oriented signals {∇𝜃𝐯𝑘(𝑥, 𝑦)}. 

The information from different eigenvectors is then combined to provide the “spectral” 

component of the boundary detector: 

𝑠𝑃𝑏(𝑥, 𝑦, 𝜃) = ∑
 

√𝜆𝑘
∙ ∇𝜃𝐯𝑘(𝑥, 𝑦)

𝑛

𝑘=1

, (3-3) 

where the parameters λ𝑘 weight the directional derivatives. Figure 3-5 presents an example 

of the eigenvectors, their directional derivatives, and the resulting 𝑠𝑃𝑏 signal. 

 

(a)               (b)              (c)                (d)              (e) 

Figure 3-5 (a) Image. (b)A sparse affinity matrix connecting pixels within a fixed radius. Pixels i and j have a 

low affinity, hereas i and k have high affinity. (c) The first four generalized eigenvectors resulting. (d) 

Partitioning the image by clustering on the eigenvectors , (e) Spectral Pb. 

The signals 𝑚𝑃𝑏 and 𝑠𝑃𝑏 covey different information, as the former fires at all the 

edge, while the latter extracts only the most salient curves in the image. They used linear 

combination to get both behaviors. So the final globalized probability of boundary is the 

written as follow: 

𝑔𝑃𝑏(𝑥, 𝑦, 𝜃) =∑∑𝛽𝑖,𝑠 𝑖,𝜎(𝑖,𝑠)(𝑥, 𝑦, 𝜃) + 𝛾 ∙ 𝑠𝑃𝑏(𝑥, 𝑦, 𝜃)

𝑖𝑠

, (3-4) 

where the parameter 𝛽𝑖,𝑠, 𝛾 weight the contribution of 𝑚𝑃𝑏 and 𝑠𝑃𝑏. 
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3.2.1.2 Segmentation 

The suppressed 𝑔𝑃𝑏 contours produced in the previous section are often not closed. To 

produce high-quality image segmentations, they linked this contour detector with a generic 

grouping algorithm consisting of two steps. 

First, they introduced a new image transformation called the Oriented Watershed 

Transform for constructing a set of initial regions from an oriented contour signal. Second, 

using an agglomerative clustering procedure, they formed these regions into a hierarchy 

which can be represented by an Ultrametric Contour Map, the real-valued image obtained by 

weighting each boundary by its scale of disappearance. 

 

(a)              (b)             (c)             (d)              (e)             (f) 

Figure 3-6 Hierarchical segmentation from contours by [14] . (a) Image, (b) Maximal response of contour detector 

gPb, (c) Oriented Watershed Transform-Ultrametric Contour Map (OWT-UCM), (d) The initial oversegmentation 

corresponding to the finest level of the UCM, (e)(f) Contours and corresponding segmentation obtained by 

thresholding the UCM at level 0.5. 

3.3 Local Depth Ordering 

With the segmentation results of the image, we want to find the depth relation of each 

region. However, in [3, 7], these authors design the rules of inferences without any learning 

process. They use hand-crafting local cues to infer the depth. On the contrary, our approach is 

a learning-based framework and is data-driven. We use a deep architecture to automatically 

learn the depth perceptions to solve this task. 

In Section 3.3.1, we will introduce our deep neural network model. In Section 3.3.2, we 

will introduce how to train deep neural network. In Section 3.3.3, we will show some testing 

results. 
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3.3.1 Deep Neural Network 

We want to use deep neural network to find the depth relation in a local patch. In our 

work, the local patches we used are  6 ×  6 pixels. We can use sliding widow searching for 

the segmentation results of the image to get lots of training data to our models. In our model, 

we only deal with the local region partitioned into 2 or 3 parts. Because there are few local 

patches which is partitioned into more than 3 parts, there are 2 deep neural network model 

that one deal with 2 parts in a local patch, another one deal with 3 parts in a local patch.  

The input of the deep neural network contains shape and appearance information of the 

local patch. The shape information is the group of pixels that the part contains and shows in 

binary value. The appearance information is the RGB color of the local patch with real value 

between 0 and 1. Figure 3-7 shows an example of input data. Top row means the input of 

2-part model. Bottom row means the input of 3-part model. 

 

(a)            (b)           (c)           (d)             (e)            (f)          (g) 

Figure 3-7 (a) Image, (b)(c)(d) Segments of the image, (e)(f)(g) RGB color of the image. 

The target of the deep neural network is the depth ordering of segment in local patch. We 

consider this as a classification problem. For example, if the local region contains part A, B, 

and C, there are 6 possible depth ordering ABC, ACB, BAC, BCA, CAB, and CBA. Each 

depth order belongs to one of class. Figure 3-8 and Figure 3-9 show an example of possible 

depth ordering. 



 

18 

 

Figure 3-8 2 possible depth ordering of 2-part model. 

 

Figure 3-9 6 possible depth ordering of 3-part model. 

In the neural network, the hidden units and the target units apply a sigmoid function and 

softmax function as active function respectively. The model deals with 2 segments in local 

patch with layers of size (2*16*16+3*16*16)-700-800-800-2. The other model deals with 3 

segments in local patch with layers of size (2*16*16+3*16*16)- 800-900-900-6. Figure 3-9 

shows our deep neural network model. 
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(a)                                     (b) 

Figure 3-10 (a) Deep Neural Network for 2-part model, (b) Deep Neural Network for 3-part model. 

3.3.2 Training 

There are three major problems when training a deep neural network. First, the classical 

methods are efficient when applied to a shallow neural network but not efficient when adapted 

to a deep neural network. For example, using backpropagation to train a deep neural network 

will get stuck in local optima. The gradients in the early layers are tiny, making it infeasible to 

train neural network with many hidden layers. That is why the neural networks are limited to 

few hidden layers. Second, the classical methods require labeling all the training data. But in 

the real world almost all data are unlabeled. Third, a discriminative training procedure like 

backpropagation ignores the structure in the input and only tries to model the relationship 

between inputs and outputs. This idea is not sufficient when the input contains a lot of 

structure that can be modeled by features and the output is a class label that is more related to 

these latent variables than it is to the raw input.  

Using unsupervised pre-training can solve these problems. Unsupervised pre-training 

initializes parameters, which are close to good solution. It also can discover features, which 
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model the structure of the training images. Once a good set of features has been discovered by 

unsupervised learning, discriminative learning models the relationship between the features 

and the class labels. So fine-tuning the model works better than discrimination with random 

initialization. These features are found by the input data which contain a lot of information, 

which is enough for labeling the target which typically contain much less information. 

Hinton introduced a greedy learning algorithm for unsupervised pre-training in [16]. 

They used the pre-training result as the initial parameters of model and fine-tuning the model 

in a supervised fashion. The greedy layer-by-layer learning can find model parameters quickly 

even when the model contains many layers. It also can make efficient use of very large sets of 

unlabeled data. The greedy layer-by-layer learning algorithm is that treating each layer as a 

Restricted Boltzmann Machine (RBM) which is trained in an unsupervised way. Once the 

previous layers have been trained, the next layer is trained from the transformation of input by 

the previous layer. In this section, we will introduce the details of the training algorithm. 

3.3.2.1 Restricted Boltzmann Machine 

The Restricted Boltzmann Machine (RBM) is a two layer, bipartite, undirected graphical 

model with a set of binary or real-valued visible units 𝐯 and a set of binary hidden units   

(See Figure 3-11). The connections of RBM are only between visible units 𝐯 ∈ {0, } and 

hidden units  ∈ {0, }. In this section, we describe RBM with binary visible units. The 

real-valued case having similar properties with binary case will be introduced latter. 

 

Figure 3-11 Restricted Boltzmann Machine (RBM) 

RBM is an energy-based model with the energy function being defined as follows: 
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Energy(𝐯,  ; 𝛉) = −∑𝑏𝑖𝑣𝑖
𝑖

−∑𝑐𝑗ℎ𝑗
𝑗

−∑𝑣𝑖𝑊𝑖𝑗ℎ𝑗
𝑖,𝑗

, (3-5) 

where 𝑣𝑖, ℎ𝑗  are the binary states of visible units 𝑖 and hidden units 𝑗,  𝑏𝑖, 𝑐𝑗 are their 

biases, 𝑊𝑖𝑗 is the weight between them, and 𝛉 = {𝐛, 𝐜,𝐖} are the model parameters. The 

probability distribution to every pair of a visible and a hidden vector defined by in terms of 

the energy function: 

𝑃(𝐯,  ; 𝛉) =
𝑒−Energy(𝐯, ;𝛉)

𝒵
, (3-6) 

The constant 𝒵 is a normalizing factor which is called the partition function, is given by 

summing over all possible pairs of visible and hidden vector: 

𝒵 =∑𝑒−Energy(𝐯, ;𝛉)

𝐯, 

. (3-7) 

The probability distribution over visible vector 𝐯 is defined as follows: 

P(𝐯; 𝛉) =
 

𝒵
 ∑𝑒−Energy(𝐯, ;𝛉)

 

. (3-8) 

Because there are no connects between visible units and between hidden units in RBM, it is 

very easy to get the conditional distributions: 

𝑃( |𝐯) =∏𝑃(ℎ𝑗 =  |𝐯)

𝑗

   and   𝑃(ℎ𝑗 =  |𝐯) = 𝜎 (𝑐𝑗 +∑𝑣𝑖𝑊𝑖𝑗

𝑖

) (3-9) 

𝑃(𝐯| ) =∏𝑃(𝑣𝑖 =  | )

𝑖

   and   𝑃(𝑣𝑖 =  | ) = 𝜎 (𝑏𝑖 +∑ℎ𝑗𝑊𝑖𝑗

𝑗

) (3-10) 

where 𝜎(𝑥)  is the logistic sigmoid function 
1

(1+exp(−𝑥))
. According to the conditional 

independent property, it performs block Gibbs sampling in training stage. 

In order to train RBM as a probabilistic model, the criterion to maximize is 

log-likelihood. The gradient of the log-likelihood of a training data 𝐯 can be written as 

follows: 
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∂ log 𝑃(𝐯)

𝜕𝜃
= −𝐸𝑃( |𝐯) [

𝜕Energy(𝐯,  )

𝜕𝜃
] + 𝐸𝑃(𝐯, ) [

𝜕Energy(𝐯,  )

𝜕𝜃
]. (3-11) 

This leads to very simple learning rule for performing stochastic steepest ascent in the 

log-likelihood of the training data 𝐯: 

∆𝑊𝑖𝑗 = 𝜖(𝐸𝑑𝑎𝑡𝑎[𝑣𝑖ℎ𝑗] − 𝐸𝑚𝑜𝑑𝑒𝑙[𝑣𝑖ℎ𝑗]), (3-12) 

∆𝑏𝑖 = 𝜖(𝐸𝑑𝑎𝑡𝑎[𝑣𝑖] − 𝐸𝑚𝑜𝑑𝑒𝑙[𝑣𝑖]), (3-13) 

∆𝑐𝑗 = 𝜖(𝐸𝑑𝑎𝑡𝑎[ℎ𝑗] − 𝐸𝑚𝑜𝑑𝑒𝑙[ℎ𝑗]), (3-14) 

where 𝜖  is a learning rate, 𝐸𝑑𝑎𝑡𝑎[∙] is referred as the data-dependent expectation, and 

𝐸𝑚𝑜𝑑𝑒𝑙[∙] is referred as the model expectation. The data-dependent expectation term is an 

expectation under the training set empirical distribution 𝑃( |𝐯). Because of the conditional 

independent property, this term is easy to calculate in parallel. The model expectation term is 

an expectation under the model distribution 𝑃(𝐯,  ). This term is intractable. However, it can 

be approximated by the Markov chain Monte Carlo (MCMC) algorithm such as Gibbs 

sampling. The idea is simple: starting from any configuration 𝐯0, and alternating Gibbs 

sampling 𝐯𝑡  and  𝑡  by conditional distribution P(𝐯𝑡| 𝑡−1) and P( 𝑡|𝐯𝑡). Figure 3-12 

shows the MCMC algorithm. 

 

Figure 3-12 Markov chain that uses alternating Gibbs sampling. 

However, running a long MCMC chain is still expensive. A much faster algorithm proposed 

by Hinton [16] is called Contrastive Divergence (CD). Contrastive Divergence reduces the 

Markov chain with a sample from training dataset. When the Markov chain is reduced to 

alternate one time, the 𝐯1 can be considered as the reconstruction data. It still gives good 
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results. According to the Contrastive Divergence (CD) learning algorithm, the gradient of 

log-likelihood can be approximated by follows: 

∆𝑊𝑖𝑗 = 𝜖(𝐸𝑑𝑎𝑡𝑎[𝑣𝑖ℎ𝑗] − 𝐸𝑟𝑒𝑐𝑜𝑛[𝑣𝑖ℎ𝑗]), (3-15) 

∆𝑏𝑖 = 𝜖(𝐸𝑑𝑎𝑡𝑎[𝑣𝑖] − 𝐸𝑟𝑒𝑐𝑜𝑛[𝑣𝑖]), (3-16) 

∆𝑐𝑗 = 𝜖(𝐸𝑑𝑎𝑡𝑎[ℎ𝑗] − 𝐸𝑟𝑒𝑐𝑜𝑛[ℎ𝑗]), (3-17) 

where 𝐸𝑟𝑒𝑐𝑜𝑛[∙]  is referred as reconstruction data expectation. Figure 3-13 shows the 

Contrastive Divergence (CD) learning algorithm. 

 

Figure 3-13 Contrastive Divergence (CD). 

Although the maximized criterion is not log-likelihood anymore, the experimental results 

show that the parameter update almost always decreases the log-likelihood. 

3.3.2.2 Gaussian Restricted Boltzmann Machine 

For real-valued visible units, we use Gaussian RBM. The Gaussian RBM has a similar 

property with the RBM. Their energy function is defined as follows: 

Energy(𝐯,  ; 𝛉) =∑
(𝑣𝑖 − 𝑏𝑖)

2

 𝜎𝑖
2

𝑖

−∑𝑐𝑗ℎ𝑗
𝑗

−∑
𝑣𝑖
𝜎𝑖
𝑊𝑖𝑗ℎ𝑗

𝑖,𝑗

, (3-18) 

and the conditional distribution becomes: 

𝑃( |𝐯) =∏𝑃(ℎ𝑗 =  |𝐯)

𝑗

   and   𝑃(ℎ𝑗 =  |𝐯) = 𝜎 (𝑐𝑗 +∑
𝑣𝑖
𝜎𝑖
𝑊𝑖𝑗

𝑖

), (3-19) 
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𝑃(𝐯| ) =∏𝑃(𝑣𝑖 =  | )

𝑖

   and   𝑃(𝑣𝑖 =  | ) = 𝒩(𝑣𝑖|𝑏𝑖 + 𝜎𝑖∑ℎ𝑗𝑊𝑖𝑗

𝑗

), (3-20) 

The conditional distribution is also easy to compute in parallel. The Gaussian RBM still uses 

the Contrastive Divergence (CD) learning algorithm to approximate the gradient of 

log-likelihood. 

RBM and Gaussian RBM can be considered as a set of feature detectors to the 

higher-order correlations between visible units. However, a single layer of binary features is 

not sufficient to model the structure in a set of images. We can treat the activities of hidden 

units   given the training data as the visible units for learning a second layer of features. 

3.3.2.3 Greedy Layer-wise Pre-training 

In order to learn more structured features, we need more layers to model the structure in 

a set of images. The greedy layer-wise pre-training treats the activities of hidden units   in 

the previous RBM as the visible units in the next RBM. It can be thought that the previous 

layer of feature detectors is considered as the visible units for learning the next RBM. Units of 

lower layers detect simple features and feed into high layers, which detect more complex 

features. This layer-by-layer learning can be repeated as many times as desired. 

The detail of greedy layer-wise pre-training is as follows: (1) learning the first RBM in 

which the visible units are the training data, (2) freezing the weights of first RBM 𝐖1 and 

treating the real-valued of probabilities of the conditional distribution E[𝑃( 1|𝐯;𝐖1)] as the 

visible units in second RBM, and (3) Freezing the weights of first and second RBM 𝐖1 and 

𝐖2  and treating the real-valued of probabilities of the conditional distribution 

E[𝑃( 2| 1;𝐖2)] × E[𝑃( 1|𝐯;𝐖1)] as the visible units in third RBM. Figure 3-14 shows the 

flow of greedy layer-wise pre-training. 
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Figure 3-14 Greedy Layer-Wise Pre-training 

In our approach, our models have 3 hidden layers, so we need to use 3 stacked RBM to 

pre-train our models. Otherwise, the inputs of our models are shape information with 

binary-value and appearance information with real-valued, so the first layer will be the 

combination of RBM and Gaussian RBM. (See Figure 3-15) The detailed greedy layer-wise 

pre-training is the same as above. (See Figure 3-16) 

 

Figure 3-15 The Combination of RBM and Gaussian RBM (3-part Model). 
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Figure 3-16 Greedy Layer-Wise Pre-training of our model (3-part Model). 

With greedy layer-wise pre-training, our proposed model is capable of discovering a lot 

of hierarchical features. We show the features of hidden units  1 by directly displaying the 

weights. The weights connecting to the segment visible units show in a gray image. The 

weights connecting to the appearance visible units are shown in a RGB image. The features of 

hidden units  2  are the linear combination of features of hidden units  1  with the 

contribution weight between hidden units  1 and hidden units  2. (See Figure 3-17) 

 

Figure 3-17 The meaning of features of hidden units    and    (3-part Model). 

Figure 3-18 and Figure 3-19 show the feature learning by the proposed models. As expected, 

high level features are the combination of low level features. 
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Figure 3-18 Feature of hidden units   (bottom),   (middle) and   (top) in 2-part model. 
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Figure 3-19 Feature of hidden units   (bottom),   (middle) and   (top) in 3-part model. 

3.3.2.4 Fine-tuning 

With greedy layer-wise pre-training, the proposed model can discover a lot of 

hierarchical features which contain a lot of information about inputs. The global fine-tuning 

then learns the model between features and targets for discrimination. We replace stochastic 

activities by deterministic, real-valued probabilities and use backpropagation through the 

whole models to fine-tune the weights for optimal outputs. Initializing by unsupervised 

pre-training produces a much better results than random initialization. Figure 3-20 and Figure 

3-21 show the feature learning by our models.  
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Figure 3-20 Feature of hidden units   (bottom),   (middle) and   (top) in 2-part model after fine-tuning. 
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Figure 3-21 Feature of hidden units   (bottom),   (middle) and   (top) in 3-part model after fine-tuning. 

3.3.3 Testing 

After our models have been trained, we want to infer the depth ordering given the 

original image and the segmentation results. We use sliding widow searching for the 

segmentation results to find the local patches which are partitioned into 2 or 3 parts. Then, we 

use the deep neural networks as a classifier to compute the posterior of all possible depth 

ordering. If a patch is partitioned into part A and part B, the posterior values are considered as 

the possibility of depth ordering AB and BA. If a patch is partitioned into part A, part B and 

part C, the posterior values are considered as the possibility of depth ordering ABC, ACB, 

BAC, BCA, CAB and CBA. Figure 3-22 shows the results of nearest posterior value of each 

segment in local patch. The nearest posterior value nPost of each segment is defined as 
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follows: 

nPostA,B(𝐴) = PostA,B(depth order 𝐴𝐵), (3-21) 

nPostA,B,C(𝐴) = PostA,B,C(depth order ABC) + PostA,B,C( depth order ACB), (3-22) 

where A, B, C idex segment, PostA,B,C(depth order ABC) is the posterior values of depth 

order ABC calculated by deep neural network in the local patch partitioned into segment A, B 

and C, and  nPostA,B,C(𝐴) messures the nearest posterior value of segment A in the local 

patch partitioned into segment A, B and C. 

 

                                         (b) 

Figure 3-22 Nearest posterior (a) 2-part patch, (b) 3-part patch. 

3.4 Global Depth Ordering 

Because the depth ordering of segments in local patches may be inconsistent, we 

combine the local depth reasoning and find a global consistency results across the segments. 

First, we combine the local depth order reasoning that infers the same neighboring regions. 

Second, we construct a direct graph with the weights of adjacent matrix being defined by the 

combination of local depth order reasoning. Because we assume there is no cyclic occlusion 

existing in our image, we transform the direct graph to the direct acyclic graph with optimal 
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solution. As we find out the direct acyclic graph, the global ordering can be accomplished. 

In Section 3.4.1, we will introduce how to combine the local depth ordering. In Section 

3.4.2, we will introduce how to construct a direct graph and transform it to a direct acyclic 

graph. 

3.4.1 Combine the Local Depth Ordering 

Since the local depth ordering is based on sliding window the find the local patch. There 

are a lot of different depth order posterior values inferring the same neighboring regions. We 

average the posterior values of neighboring regions to get a combination posterior value: 

cPostA,B(depth order d) =
 

𝑁
∑PostA,B(depth order d, patch i)

𝑖

 (3-23) 

cPostA,B,C(depth order d) =
 

𝑁
∑PostA,B,C(depth order d, patch i)

𝑖

 (3-24) 

where 𝑖  indexes the depth ordering results, cPostA,B(depth order d)  measure the 

combination posterior values of depth order d in the local patch partitioned into part A and B, 

cPostA,B,C measure the combination posterior values of depth order d in the local patch 

partitioned into part A, B and C, PostA,B(depth order d, patch i) is the posterior value of 

patch i partitioned into segment A and B with depth order d which is calculated by the deep 

neural network, PostA,B,C(depth order d, i) is the posterior value of patch i partitioned into 

segment A, B and C with depth order d which is calculated by the deep neural network and 

N is the number of local patches with the same segments. 

3.4.2 Direct Acyclic Graph 

As we have seen from the discussion in Sec. 3.4.1, the combined posterior values of 

neighboring regions can’t directly give a globally consistent result of depth ordering. We in 

this section propose a heuristic approach to a consistent result. We treat each segment as a 

node of a direct graph (See Figure 3-23). The direct edge from node A to node B with weight 
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w is interpreted as that segment A is in front of segment B with probability w. We construct 

two depth relation matrixes, one for relation of 2 segments and the other one for relation of 3 

segments and then combine them into an adjacency matrix for the direct graph. 

 

Figure 3-23 Nodes of direct graph. 

For relation matrix of 2 segments, it is directly constructed by combining the posterior 

values. It is defined as follows: 

RelationMatrix ij = cPosti,j(depth order ij), (3-25) 

where i,j index the segment. For relation matrix of 3 segments, it is more complex. It is 

defined as follows: 

RelationMatrix ij

=∑cPosti,j,k(depth order ijk) + cPosti,j,k(depth order ikj)

𝑘

+ cPosti,j,k(depth order kij). 

(3-26) 

Then, we use a simple linear combination to construct adjacency matrix. 

Adjacencymatrix = α ∙ RelationMatrix + ( − 𝛼) ∙ RelationMatrix , (3-27) 

where the parameters α and ( − 𝛼)  respectively weight the relation contribution of 

RelationMatrix2 and RelationMatrix3. Here we use α=0.2, because RelationMatrix3 contain 

more information about depth ordering. Figure 3-25 shows an example of the direct graph. 
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Figure 3-24 Example of computing the depth relation between node E and F. 

 

Figure 3-25 Direct graph. 

After constructing the direct graph, it is instinctive that we can remove the edges that 

form a direct acyclic graph. A direct acyclic graph is a result of depth ordering of each 

segment. The best result is that the summation of weights which have been removed is 

minimum. This is called the minimum feedback arc set problem. However, it is an NP-hard 

problem. In our approach, we limit the number of segments to be lower than 15 and use 

exhaustive search to find the minimum cost. Figure 3-26 (b) shows an example of direct 

acyclic graph. Figure 3-27 shows the results of an example. 
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(a)                               (b) 

Figure 3-26 (a) Direct graph, (b)Direct acyclic graph with feedback minimum arc set. 

 

Figure 3-27 Depth ordering. 
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Chapter 4. Experimental Results 

In this chapter, we will show several simulation results of the proposed algorithm. First, 

we will show the accuracy of the deep neural network and local depth reasoning. Second, we 

will show the global depth ordering based on the ground truth segmentation or Arbelaez’s 

work. 

4.1 Deep Neural Networks 

We evaluate deep neural networks on validation data. Figure 4-1 shows how the 

evaluations work. Given an image, a sliding window moves in the image to find 2-part or 

3-part parches. We can compute the accuracy rate of validation data. The accuracy is defined 

as whether the prediction is equal to the ground truth or not. For example, if a local patch is 

partitioned into part A, B and C with depth ordering ABC, the accuracy is 1 whenever the 

prediction of depth ordering is ABC. If the prediction of depth ordering is ACB, the accuracy 

is still 0. Table 4-1 shows the accuracy rate. We can see that the accuracy rate is higher than 

50% (2-part randomly guesses) or 17% (3-part randomly guesses).  

 

Figure 4-1Testing 
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4.2 Local Depth Ordering 

Figure 4-2 shows some results of local depth ordering. As we expect, the deep neural 

networks almost can predict correct depth ordering. The posterior means the confidence of 

depth ordering. 

 

Table 4-1 Accuracy rate. 

 Data Accuracy Rate(Validation Data) 

2-part model 
Training Data: 382,600 

Validation Data: 164,100 
71.5% 

3-part model 
Training Data: 366,200 

Validation Data: 157,000 
42.4% 

 

   

        

                   

(a)                           (b)                         (c) 

Figure 4-2 Local Depth Ordering, (a) Image, (b) 2-part patch, (c) 3-part patch 
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4.3 Global Depth Ordering 

In this section, we will show simulation results of the proposed single image 3-D depth 

order algorithm. We use 100 test images from Berkeley Segmentation Dataset (BSD500). Our 

algorithm is based on the results of ground truth segmentation or Arbelaez’s work. In Section 

4.3.1 and Section 4.3.2, the results of ground truth segmentation and Arbelaez’s work will be 

shown, respectively. 

4.3.1 Based on Ground Truth Segmentation 

Since the ground truth segmentation has human-labeled ground truth depth order, we can 

compute the accuracy rate of global depth order: 

Given a direct graph, which is produced by the proposed algorithm, we compute the ratio of 

number of correct edge to number of edge. It checks every edge of the direct graph with the 

ground truth depth order. Our accuracy rate on 100 testing images is 74%. Figure 4-3 shows 

the histogram of accuracy rate. Most of image exceed 65% accuracy rate. 

Accuracy =
# of correct edge

# of edge
 ×  00%. 

(4-1) 

 

 

Figure 4-3 Histogram of accuracy rate. 
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Figure 4-4 Results based on ground truth segmentation 
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Figure 4-5 Results based on ground truth segmentation 
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Figure 4-4 and Figure 4-5 show the results that the accuracy rate is higher than 70%. 

Most of depth relation between two objects is correct. Figure 4-6 shows the results that the 

accuracy rate is lower than 50%. It often occurs that the number of segments is small, so the 

accuracy rate is small when only rare edges are correct. 

 

    

   

    

           

           

Figure 4-6 Results based on ground truth segmentation 
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4.3.2 Based on Contour Detection and Image Segmentation 

Since our approach relies on the segmentation result, the accuracy of depth order will be low 

with poor segmentation result. Figure 4-7 and Figure 4-8 show some results based on Arbelaez’s 

work. 

    

    

    

    

    

Figure 4-7 Results based on Arbelaez’s work 
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There are some limitations in our algorithm. First, our approach assumes that we have a 

perfect segmentation results. However, the segmentation results are not correct when adjacent 

objects are similar in color or texture. This incorrect segmentation result will affect the depth 

order. Second, since we use exhaustive search to solve the feedback arc problem, we can’t 

            

            

            

            

Figure 4-8 Results based on Arbelaez’s work 
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deal with the image which is partitioned into too many regions. 
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Chapter 5. Conclusion 

In this thesis, we have proposed a method to infer the depth ordering of object from a 

single image based on local shape and appearance information. Our approach has assumed the 

segmentation result is perfect. With the segmentation result, we know the number of segment 

in local patch. Then, we can individually train the deep neural networks for 2 segments and 3 

segments. The deep neural network can automatically learn the features from the training data. 

We have used the unsupervised pre-training and the supervised fine-tuning to train our 

networks, which proves to be better than the classical training scheme. After training the 

network, local patch with 2 or 3 segments in the image will be tested by feeding into our deep 

neural networks model to obtain the local depth ordering. Then, we transform the problem of 

obtaining a consistent global depth order into minimum feedback arc set problem. In our 

approach, we can obtain the depth ordering based on the segmentation result with no 

geometric assumption in the image. 
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