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Abstract 

We introduce a novel approach to deal with image segmentation which takes into 

account the consistent structure of the backgrounds. The concept is from background 

subtraction. Our method only needs users to specify their target objects by a bounding 

box. The system then finds the object contour by maximizing the consensus between 

the predicted background and the original image. We combine principles from image 

completion and foreground extraction approaches into a powerful unified engine. 

Besides, a new and harder dataset is introduced with images which have structural 

background objects. 
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Chapter 1

Introduction

(a) (b) (c) (d)

Figure 1.1: (A) The input image with a user-provided bounding box. (B) The result
of GrabCut [Rother et al., 2004]. (C) The result of LVK [Lempitsky et al., 2009]. (D)
Our result. Here is an example of the indistinguishable object and the results of three
methods. By exploiting the structural background, our method obtains the best result

(D).

Image segmentation techniques have been wildly developed nowadays. It is the process

of assigning a label to every pixel in an image such that pixels with the same label share

certain visual characteristics. For instance, graph-based partitioning methods [Boykov and

Jolly, 2001] tries to analyze the similarity between adjacent pixels. Image cosegmentation

[Rother et al., 2006], exploiting the evidence from other images, segments objects in

different images simultaneously by analyzing the coherence of the objects. Some other

1



Chapter 1. Introduction 2

works extended the concept of image segmentation for video sequences [Friedman and

Russell, 1997] or saliency map [Goferman et al., 2012].

Nevertheless, it is still challenging to automatically and precisely segment objects from

images. In the domain of interactive image segmentation, they aim to use little user

assistance for better segmentation results. Most of existing methods separate foregrounds

and backgrounds by their color distribution and achieved impressive results in most cases.

However, this strategy lacks ability to handle images whose color distribution of the desired

object is quite similar to the background objects. We found that existing state-of-the-arts,

such as GrabCut [Rother et al., 2004] or context-aware saliency map [Goferman et al.,

2012] will fail to separate objects in such case. It is because these methods are driven by

low-level stimulus such as intensity, color, orientation, and local texture. Without precise

initial color of the foreground object, they will classify part or whole foreground region

to the background. As a result, these methods have to ask for more user-intervention or

require more obvious information about the objects. This situation, however, conflicts

the demand of an automatic system.

Actually, we human beings distinguish an object not only the low-level but

also higher level attributes. The structure of objects is a good feature for

recognizing an object. However, we have not seen such an useful feature utilized in

image segmentation researches. As a result, we develop a novel approach exploiting the

consistent structure of backgrounds, and use the consensus to discriminate foregrounds.

Besides, for automatic applications, it is easier for systems to indicate a bounding box

than provide precise strokes within a target. Thus, we use merely one boundary box

embraced the object as the user input and aim at accurately segmenting the foreground

object.



Chapter 2

Related Work

Our research is about image segmentation. We will briefly introduce recent state-of-the-

arts in interactive image segmentation and image cosegmentation. Besides, our method

can also be used in saliency detection. We will compare our research with saliency de-

tection approaches. In addition, our background prediction method is based on image

completion, we introduce several image completion articles as well.

Interactive image segmentation- Graph Cut, introduced by Boykov et al. [2001] par-

titions images into two parts based on the color distributions from user-indicated strokes.

The concept is by treating each pixel in the image as a node in a graph and finding energy

minimizing cuts in the graph. This method is efficient and effective and becomes a seminal

core of many advanced methods. GrabCut [Rother et al., 2004], as an improved version

of Graph Cut, allows a considerably reduced degree of user interaction. They employed

Gaussian Mixture Model to approximate foreground and background probability distribu-

tions for digital matting. And instead of one-shot Graph cut, they proposed an iterative

energy minimization. They used provisional labels on some pixels in the foreground which

can subsequently be retracted in next iteration. This benefits to simple initial interactions.

Users are allowed to use just a rectangle around the desired object instead of marking

strokes on their targets. Lempitsky et al. [2009] further adds a bounding box prior into

3



Chapter 2. Related Work 4

the GrabCut framework. This strategy prevents the solution from excessive shrinking

and ensures that the user-provided box bounds the segmentation in a sufficiently tight

way. Nieuwenhuis and Cremers [2013] considered not only the color distributions of user-

provided strokes, but also the spatial distribution of the strokes. It can handle difficult

images which exhibit strongly overlapping foreground and background color distributions

due to large lighting variations.

Lazy Snapping [Li et al., 2004], an useful UI design for image cutout, proposes two steps:

a quick object marking step and a simple boundary editing step. The first step specifies

the object of interest by a few marking lines. The second step allows the user to edit the

object boundary by simply clicking and dragging polygon vertices. This design is hard

to handle thin and branch structures. Gulshan et al. [2010] demonstrated the power of

shape constraints. This approach restricts the space of possible segmentations to a small

subset and help to eliminate false segmentations. They manager to extend the notion of

star-convexity from single to multiple centers in a traced way, and further generalized this

notion from the Euclidean to geodesic.

(a) (b)

(c) (d)

Figure 2.1: Some examples of hard to segment objects and our segmented results.
Many image segmentation methods will fail to detect regions like the stem of the bill-

board in (A), while our method obtains a good result.
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Image cosegmentation techniques denote the task of simultaneously segmenting com-

mon objects of different images. Rother et al. [2006] presented a generative model with an

MRF term encoding spatial coherency, and a global constraint which attempts to match

the appearance histograms of the common parts. They demonstrated that supplying just

one additional image can be sufficient to segment both together. Cosegmentation pro-

vides higher accuracy than that achieved with either one alone. Image cosegmentation

techniques shows how useful it is if we give one more image to the segmentation system.

From the other aspect, this also show the difficulty of precise single image segmentation.

Saliency detection techniques are used to detect the salient regions of an image.

Goferman et al. [2012] proposes a novel algorithm for context-aware saliency detection.

The idea is that salient regions are distinctive with respect to both their local and global

surroundings. Although they try to use psychological evidence of human visual attention,

their analyses are still regarding low-level considerations such as local texture and color.

If the color of an object is similar to the surroundings (like the stem of the billboard in

Figure 2.1), it will fail to detect this region out.

Image completion techniques, also referred to as inpainting or image filling, is an

image editing tool for object removal and replacement or digital photograph restoration.

It is used to fill holes after objects are removed. Criminisi et al. [2003] proposed an al-

gorithm for removing large objects in images and replacing them with visually plausible

backgrounds. They employ an exemplar-based texture synthesis technique modulated by

a unified scheme for determining the fill order of the target region. It is capable of propa-

gating both linear structure and two-dimensional texture into the target region. Shift-Map

Image Editing [Pritch et al., 2009] described a new geometric rearrangement of images.

They treated problems as an optimal graph labeling where the shift-map represents the

selected label for each output pixel. Image Melding [Darabi et al., 2012] built upon a

patch-based optimization foundation. They enriched the patch search space with addi-

tional geometric and photometric transformations, and integrated image gradients into

the patch representation. With these improvements, it enables patch-based solutions to a
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broad class involving inconsistent sources. We find this technique is helpful for predicting

background objects, and thus use the predicted background to distinguish foregrounds.



Chapter 3

Overview

We propose an iterative framework of image segmentation based on structural inconsis-

tency. We first take image segmentation as an background subtraction problem. Unlike

the traditional video-based background subtraction, we propose predicted the complete

background by modified inpainting techniques. Given a user indicated bounding box, we

assume the foreground object can be precisely extracted with perfect background filling.

Therefore, we aim at reasonably filling the box region by known background regions. With

this assumption, we can get a predicted background and can further be used to distinguish

possible foreground locations. We call this step as ”Image segmentation using structural

inconsistency”. At this step, we will get a rough object contour.

The result obtained in the structural-inconsistency-based subtraction is a indicating mask

with the approximate foreground object position and silhouette. To further refine the con-

tour, we manager to use the approximate contour to generate strokes like user interaction

of the foreground extraction method. By means of these strokes, we use a graph-cut-based

foreground extraction tool for a more precise segment. We use Geodesic Star Convexity

[Gulshan et al., 2010] at this step because of its content of shape constraint. We will

introduce each step in detail in the following chapters. Figure 3.1 is the flow chart of the

proposed framework.

7
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Figure 3.1: The flow chart of the proposed system.

Our system has three main steps:

1. Image segmentation using structural inconsistency- we first apply image

completion method to predict the background in the user-indicated rectangle region.

We use Image Melding [Darabi et al., 2012] as the essential inpainting method. While

we have predicted backgrounds, we can examine the similarity of the predicted

backgrounds with the original image. By this evaluation, we understand which

region may be the background regions and thus can obtain possible foreground

regions. This method is denoted as ”Structural inconsistency evaluation”. However,

the inpainted regions may have distortion compared with the ”true” background,

so we further apply ”Block-wise background correction” to the inpainted regions.

We divide the inpainted regions into blocks and transform each block geometrically

for correctness. And again, we apply ”Structural inconsistency evaluation” to the
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corrected background. Finally, we can get a ”Structure inconsistency map (SImap)”

indicating possible foreground regions.

2. Indication map generation- we generate an indication map by using the SImap.

Since the contour of SImap is only approximated through structural inconsistency,

we would like to further refine the border by graph-cut-based methods. Therefore,

we construct a more conservative map indicating where are the true foreground

locations and where are the true background locations. The constructed map can

be regarded automatic-predicted strokes (labels) for Graph-cut optimization in the

next step.

3. Graph-cut based foreground extraction- by the indication at the previous step,

we can further take it on a foreground extraction tool for more precise segmentation.

With the helpful labels in the indication map, we can get final precise segmented

results.



Chapter 4

Methods

Existing interactive image segmentation methods may fail in images whose color of fore-

ground is quite similar to the color of backgrounds. For these images, they will ask users

provide more cues about the object locations, such as marking more precise boundary

positions of the desired objects. This situation, however, conflicts the objective of an

intelligent segmentation system. Therefore, we intend to provide a system that only need

the initial bounding box embraced the object, and with no more interactions, our system

can then automatically segment the object more precisely than existing methods. It can

greatly decreases user interactions and benefits to automatic computing systems.

We now introduce our algorithm of image segmentation by structural inconsistency. There

are three main steps: Image Segmentation Using Structural Inconsistency (Sec 4.1), In-

dication Map Generation (Sec 4.2), Graph-Cut-Based Foreground Extraction (Sec 4.3).

10
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4.1 Image Segmentation Using Structural Inconsis-

tency

Image inpainting or image completion is pervasive used as a restoration tool of images

nowadays. We found the ability of inpainted image can be used for extracting foreground

objects by treating the inpainted region as predicted backgrounds. Nevertheless, straight-

forwardly using background subtraction with inpainted images does not have satisfactory

results. Therefore, we proposed a consistency matching framework. Our framework in

this step goes through three parts: background prediction, structural inconsistency eval-

uation and block-wise background correction. We conduct an iterative process to find a

coarse boundary contour of the foreground object by using the characteristics of structural

consistency. For each iteration, we first inpaint the masked region specified by users, and

then subtract the inpainted image from the original source image to obtain a structural

inconsistency map (SImap). By examining each pixel value in the SImap from the bound-

ary of the mask region to the center and discarding pixels under a particular threshold,

we can get a binary mask indicating possible foreground region. Finally, we take this bi-

nary mask as the input of the first step. Then our system iteratively removes background

regions until the binary mask is no longer changed or reaches a particular number of

iterations. The inpainting regions will gradually become smaller in each iteration, which

means, the source region for inpainting will become bigger offering more clues of back-

ground information and resulting in a more accurate inpainting image (Figure 4.1). We

include pseudo-code of our algorithm in Algorithm 1, and the details are described in the

following subsections.

Figure 4.1: An example of the changing of foreground regions in each iteration with
the first image as the input.
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Algorithm 1 Framework of Image Segmentation Using Structural Inconsistency

Input: Input image S and bounding box mask T
Output: Binary mask B indicating foreground region
1: Downscale S and mask T
2: m = T
3: for iteration i = 1→ n do
4: Ω← BackgroundPrediction (S,m)
5: D = ∥Ω− S∥
6: t← PredictDiffThreshold(D,m)
7: m← StructuralInconsistencyEvaluation(D, t,m)
8: Ω′ ← BackgroundCorrection(Ω, S)
9: D′ = ∥Ω′ − S∥
10: m← StructuralInconsistencyEvaluation(D′, t,m)
11: if IsConverged(m) then
12: break
13: end if
14: end for
15:

16: Upscale m
17: B = m

4.1.1 Background Prediction

We choose Image Melding [Darabi et al., 2012] as our inpainting tool since it outperforms

previous state-of-the-art methods in the field of image inpainting. Image Melding builds

upon a patch-based optimization foundation.

Given a user-defined rectangle mask, the input image is then divided into the source

region S and the target region T (Figure 4.2). The objective is to replace content of T

with content from region S. They suggest a patch-based optimization problem by minimize

the following function:

E(T, S) =
∑
q⊂T

min
p⊂S

(D(Q,P ) + λD(▽Q,▽P )), (4.1)

where Q = N(q) is a ω × ω patch with target pixel q at its upper left corner, and P =

f(N(p)) is a ω × ω patch that is a result of a geometric and photometric transformation
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Figure 4.2: Left: the input image image with user provided bounding box. Right: the
target region T and the source region S for image inpainting.

f applied on a small neighborhood N around source pixel p. P and Q has three color

channels. ▽P and ▽Q are the two luminance gradient channels on source and target

region respectively. The above energy function finds a cover of the missing data using the

available one. That is, to find the optimal patches which are the most similar to the local

neighborhood in the source region. With this method, we can get a background prediction

for separating the different structure in the foreground (Figure 4.3).

4.1.2 Block-wise Background Correction and Structural Incon-

sistency Evaluation

Even though the predicted background is highly similar to the original region, there may

be still slight unfitness between the predicted background and the original one. Thus,

we further apply local image warping to the inpainted region. We divide the inpainted

region into 15×15 blocks. For each block, our system finds the best affine transformation

to the block in the original image. It is denoted as ”Block-wise Background Correction”.

The minimization function aim to find the best affine matrix of predicted background and

original image:
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argmin
A

∑
i

|I(Aqi)− I(pi)|2, i ∈ block region (4.2)

subject to |A− I|2 < threshold k (4.3)

where A is the affine transformation matrix, I(p) gets the color value in position p,

and q is in predicted background image, p is in original source image. I is the identity

matrix. With a constraint of matrix A, it bounds the transformation in a small set

preventing big deformation. We use Levenberg-Marquardt algorithm to find the best affine

transformation. In this way, each inpainted block will deform to a more precise fitting to

the ground truth input image.

As long as we have the predicted background image, we can evaluate the inconsistency

between source image and predicted backgrounds. We call this step as ”Structural In-

consistency Evaluation”. We can obtain a Structural Inconsistency map (SImap) by

subtracting predicted background from source image (Figure 4.5).

Figure 4.3: An example of background prediction result. Left: input image with a
bounding box specified by users. Right: the inpainted result.
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D(i) = ∥Ω(pi)− S(pi)∥, (4.4)

where i is pixels belonged to source image, Ω is the inpainted image with best warping,

and S is the source image. D collects the L1 norm distance of each pixel. Then, we check

each pixel in D inwardly from the border of the rectangle mask.

Seg(i) =

1 , if D(i) > t;

0 , otherwise.
(4.5)

Seg(i) is a binary mask gathering the pixels whose value is above a threshold t. The

notable strategy is that we check each pixel inwardly from the mask border, until there is

a boundary contour whose values of pixels belonged to the contour are above the threshold

t. A concept demonstration is showed in Figure 4.4. The threshold t is predicted as the

value at the last 10% of difference distribution in mask region.

Figure 4.4: Inward structural inconsistency checking. The process starts from the
mask boundary to the center in sequence and converges until there is a boundary blocked
out checking process. The pixel values outside the boundary region are all under the

threshold t.

4.1.3 Refinement

In this step, we further manipulate the Seg(i) image for a better result. First, we use ma-

jority to the binary mask, a morphological operation which sets a pixel to 1 if five or more
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Figure 4.5: An example of structural inconsistency map (right) produced by subtract-
ing inpainted image (middle) from source image (left).

pixels in its 3-by-3 neighborhood are 1s; otherwise, it sets the pixel to 0. This operation

attempts to centralize the mask helping to get a compact boundary contour. Second, We

find the biggest connected component of the binary image eliminating unconnected parts.

Our system iteratively executes three steps introduced in section 4.1.1 to 4.1.3. Our ob-

jective is to gradually shrink the possible foreground regions, in other words, to reduce

the essential background prediction regions. This strategy takes the advantages of image

completion results since the image completion is good at borders within the inpainting re-

gions. And therefore, we use the inwardly structural inconsistency evaluation as described

in section 4.1.2. For each pixel, the larger its distance away from inpainting boundary,

the less information it can receive about the surrounding objects. Compared with the

one-shot procedure by executing background prediction one time and then tried to ana-

lyze the only SImap, we found that our iterative procedure can gradually approach the

object silhouette and lessen the effects of imperfect inpainting results.

4.2 Indication Map Generation

This step intend to generate an indication map denoting foreground strokes and back-

ground strokes for graph-cut optimization. As we have obtained a coarse binary mask of
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the foreground object, it can be used to create strokes for a more precise segmentation.

At first, we take the boundary contour Cs of the binary mask Seg. Then, by applying

dilation operation on Cs, we can get a band shape of thicker contour. This band has two

boundaries: one inside the mask region of Seg, and the other one outside. We then treat

the outside boundary as the background strokes, and inside boundary as the foreground

strokes (Figure 4.6).

(a) (b) (c)

Figure 4.6: (A) The final mask obtained from Sec 4.1. (B) The Indication Map. (C) A
demonstration of locations of foreground strokes (Red) and background strokes (Black).

4.3 Graph-cut-based Foreground Extraction

We have tried various foreground extraction tools [Boykov and Jolly, 2001, Grady, 2006,

Liu et al., 2009] and find the method of Geodesic Star Convexity [Gulshan et al., 2010]

gets the best result with our indication map. We take the indication map as the input

of GSC. With the shape constraint introduced by GSC, we obtain a precise segmentation

at this final step. Insufficient segmented boundary can be improved at this step (Figure

4.7).



Chapter 4. Methods 18

Figure 4.7: The result of GSC by our indication map (Figure 4.6).



Chapter 5

Experiments

5.1 Quantitative Evaluation

We compare the average quality of our method to the previous methods, Grabcut [Rother

et al., 2004] and LVK [Lempitsky et al., 2009]. Both of these two methods can be initial-

ized by one user-provided bounding box. Without further user interaction, our method

outperforms these methods and provide more precise segmentation results.

We construct a database with 80 images which have obvious structural backgrounds. Some

images are difficult to be segmented because the color of foreground objects is quite similar

to the background objects. We took 72 images from LabelMe dataset [Russell et al., 2008]

with ground truth marked by users. And 8 images are from Grabcut database with ground

truth provided by the authors.

5.1.1 Evaluation

We utilize the two well-known measures precision and recall and F2-measure to evaluate

the accuracy of comparative methods. The precision and recall is defined by

19
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Precision =
tp

tp+ fp
(5.1)

Recall =
tp

tp+ fn
(5.2)

where tp is the set of correct results, fp is the set of unexpected results, and fn is the set

of missing results. The score is measure by F2-measure.

F2 =
5 · Precision ·Recall

4 · Precision+Recall
. (5.3)

Table 5.1 shows the F2-measure of our method together with Grabcut [Rother et al.,

2004] and LVK [Lempitsky et al., 2009]. Our method achieve the highest score in this

dataset. Figure 5.1, 5.2 and 5.3 show some examples of the segmentation results. We can

see many objects are difficult to distinguish out. But our method performs the highest

quality segmentation results.

Method F2-measure

Our method 0.9594

LVK 0.9207

Grabcut 0.8713

Table 5.1: F2-measure scores in our structural dataset.

5.1.2 Comparison on Other Dataset

In order to prove the generality of our approach, we further test our method on Com-

plex Scene Saliency Dataset [Yan et al.]. Because our algorithm depends on background

prediction by image completion, we can not handle objects without sufficient background

information. Therefore, we choose 50 out of 200 images as the testing data. We demon-

strate the F2-measure scores and compare with Grabcut [Rother et al., 2004] and LVK
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[Lempitsky et al., 2009] in Table 5.2. It shows that our performance is as good as LVK

method. And it confirms the generality of our approach even though the backgrounds are

not structural objects. Results are showed in Figure 5.4.

Method F2-measure

Our method 0.9267

LVK 0.9248

Grabcut 0.8928

Table 5.2: F2-measure scores in Complex Scene Saliency Dataset.

5.2 Discussions

We mainly compare our method to Grabcut and LVK. Indeed, Grabcut provides an ef-

ficient, iterative version of graph-cut-based optimization. They use Gaussian Mixture

Models for color data modelling and estimating the probability of each pixel. The itera-

tive energy minimization benefits to improve the parameters of GMMs. This method is

good at images with simple backgrounds and objects of high contrast color distributions.

Following from the concept of Grabcut, LVK further adds a bounding box prior to the

Grabcut framework. They propose an algorithm helping for finding a tight shape. The

shape should satisfy the tightness of user-provided bounding box. Nevertheless, LVK can

not understand the real shape of an object. They can only find a conservative shape

which can satisfy the tightness constraint. As a result, if the target object has a similar

color distribution to the background, the approach of LVK will fail to segment in this

situation. However, our method takes the advantage of consistent background structure,

and recognizes the shape of an object by the distinct structure from backgrounds. Our

method can segment the desired object with high accuracy.



Chapter 5. Experiments 22

    

    

    

    

Figure 5.1: Results from our structural dataset. From left to right: (1) The input
image. (2) The results of Grabcut. (3) The results of LVK. (4) Our results.
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Figure 5.2: Results from our structural dataset. From left to right: (1) The input
image. (2) The results of Grabcut. (3) The results of LVK. (4) Our results.
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Figure 5.3: Results from our structural dataset. From left to right: (1) The input
image. (2) The results of Grabcut. (3) The results of LVK. (4) Our results.
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Figure 5.4: Results from the CSSD dataset. From left to right: (1) The input image.
(2) The results of Grabcut. (3) The results of LVK. (4) Our results.



Chapter 6

Conclusions and Limitations

We have shown a structure-based image segmentation framework that use structure con-

sensus for foregrounded and background separation. Our method combines principles

from image completion and foreground extraction approaches into a powerful unified en-

gine. And we demonstrate the high precision of our method in indistinguishable images

by only one box as input. Our method can greatly decrease user interaction and benefits

to further automatic segmentation systems.

Our method still has a few limitations: the input image should content sufficient back-

ground information. And if there is another object identical to the target object in the

image, our system may regard the object as parts of background and will fail in this

situation.

26



Bibliography

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. ”grabcut”: interactive

foreground extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309–

314, August 2004. ISSN 0730-0301. doi: 10.1145/1015706.1015720. URL http:

//doi.acm.org/10.1145/1015706.1015720.

Victor S. Lempitsky, Pushmeet Kohli, Carsten Rother, and Toby Sharp. Image seg-

mentation with a bounding box prior. In ICCV, pages 277–284. IEEE, 2009. URL

http://dblp.uni-trier.de/db/conf/iccv/iccv2009.html#LempitskyKRS09.

Y.Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary amp; region

segmentation of objects in n-d images. In Computer Vision, 2001. ICCV 2001. Proceed-

ings. Eighth IEEE International Conference on, volume 1, pages 105–112 vol.1, 2001.

doi: 10.1109/ICCV.2001.937505.

Carsten Rother, Tom Minka, Andrew Blake, and Vladimir Kolmogorov. Cosegmentation

of image pairs by histogram matching - incorporating a global constraint into mrfs. In

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition - Volume 1, CVPR ’06, pages 993–1000, Washington, DC, USA,

2006. IEEE Computer Society. ISBN 0-7695-2597-0. doi: 10.1109/CVPR.2006.91. URL

http://dx.doi.org/10.1109/CVPR.2006.91.

Nir Friedman and Stuart Russell. Image segmentation in video sequences: a probabilistic

approach. In Proceedings of the Thirteenth conference on Uncertainty in artificial in-

telligence, UAI’97, pages 175–181, San Francisco, CA, USA, 1997. Morgan Kaufmann

27

http://doi.acm.org/10.1145/1015706.1015720
http://doi.acm.org/10.1145/1015706.1015720
http://dblp.uni-trier.de/db/conf/iccv/iccv2009.html#LempitskyKRS09
http://dx.doi.org/10.1109/CVPR.2006.91


Reference 28

Publishers Inc. ISBN 1-55860-485-5. URL http://dl.acm.org/citation.cfm?id=

2074226.2074247.

Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal. Context-aware saliency detection.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(10):1915–1926,

2012. ISSN 0162-8828. doi: 10.1109/TPAMI.2011.272.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via

graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001. URL

http://dblp.uni-trier.de/db/journals/pami/pami23.html#BoykovVZ01.

C. Nieuwenhuis and D. Cremers. Spatially varying color distributions for interactive multi-

label segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35(5):1234–1247, 2013. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.

1109/TPAMI.2012.183.

Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy snapping. ACM Trans.

Graph., 23(3):303–308, August 2004. ISSN 0730-0301. doi: 10.1145/1015706.1015719.

URL http://doi.acm.org/10.1145/1015706.1015719.

V. Gulshan, C. Rother, Antonio Criminisi, A. Blake, and A. Zisserman. Geodesic

star convexity for interactive image segmentation. In Computer Vision and Pat-

tern Recognition (CVPR), 2010 IEEE Conference on, pages 3129–3136, 2010. doi:

10.1109/CVPR.2010.5540073.

A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-based inpainting.

In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer

Society Conference on, volume 2, pages II–721–II–728 vol.2, 2003. doi: 10.1109/CVPR.

2003.1211538.

Yael Pritch, Eitam Kav-Venaki, and Shmuel Peleg. Shift-map image editing. In IEEE 12th

International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September

27 - October 4, 2009, pages 151–158. IEEE, 2009. doi: http://dx.doi.org/10.1109/

ICCV.2009.5459159.

http://dl.acm.org/citation.cfm?id=2074226.2074247
http://dl.acm.org/citation.cfm?id=2074226.2074247
http://dblp.uni-trier.de/db/journals/pami/pami23.html#BoykovVZ01
http://doi.acm.org/10.1145/1015706.1015719


Reference 29

Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B. Goldman, and Pradeep Sen. Im-

age melding: combining inconsistent images using patch-based synthesis. ACM Trans.

Graph., 31(4):82, 2012. URL http://dblp.uni-trier.de/db/journals/tog/tog31.

html#DarabiSBGS12.

L. Grady. Random walks for image segmentation. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 28(11):1768–1783, 2006. ISSN 0162-8828. doi:

10.1109/TPAMI.2006.233.

Jiangyu Liu, Jian Sun, and Heung-Yeung Shum. Paint selection. In ACM SIGGRAPH

2009 papers, SIGGRAPH ’09, pages 69:1–69:7, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-726-4. doi: 10.1145/1576246.1531375. URL http://doi.acm.org/10.

1145/1576246.1531375.

Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Labelme:

A database and web-based tool for image annotation. Int. J. Comput. Vision, 77

(1-3):157–173, May 2008. ISSN 0920-5691. doi: 10.1007/s11263-007-0090-8. URL

http://dx.doi.org/10.1007/s11263-007-0090-8.

Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Complex scene saliency dataset.

http://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/dataset.html.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-

CAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam Finkelstein. The gen-

eralized patchmatch correspondence algorithm. In Kostas Daniilidis, Petros Mara-

gos, and Nikos Paragios, editors, ECCV (3), volume 6313 of Lecture Notes in Com-

puter Science, pages 29–43. Springer, 2010. ISBN 978-3-642-15557-4. URL http:

//dblp.uni-trier.de/db/conf/eccv/eccv2010-3.html#BarnesSGF10.

http://dblp.uni-trier.de/db/journals/tog/tog31.html#DarabiSBGS12
http://dblp.uni-trier.de/db/journals/tog/tog31.html#DarabiSBGS12
http://doi.acm.org/10.1145/1576246.1531375
http://doi.acm.org/10.1145/1576246.1531375
http://dx.doi.org/10.1007/s11263-007-0090-8
http://dblp.uni-trier.de/db/conf/eccv/eccv2010-3.html#BarnesSGF10
http://dblp.uni-trier.de/db/conf/eccv/eccv2010-3.html#BarnesSGF10


Reference 30

Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion of video.

IEEE Trans. Pattern Anal. Mach. Intell., 29(3):463–476, 2007. URL http://dblp.

uni-trier.de/db/journals/pami/pami29.html#WexlerSI07.

Johannes Kopf, Wolf Kienzle, Steven M. Drucker, and Sing Bing Kang. Quality pre-

diction for image completion. ACM Trans. Graph., 31(6):131, 2012. URL http:

//dblp.uni-trier.de/db/journals/tog/tog31.html#KopfKDK12.
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