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Simulated annealing (SA) is adopted to detect the parameters of circles, ellipses, 

hyperbolas, and to treat lines as asymptotes of hyperbola in image. Also, the algorithm is 
applied to seismic pattern detection. We use the general equation for ellipses and hyper-
bolas in detection and define the distance from a point to a pattern such that the detection 
becomes feasible. The system error between N points and K patterns is defined. The pro-
posed simulated annealing parameter detection system has the capability of searching a 
set of parameter vectors with global minimal error with respect to the input data. Ex-
periments on the detection of circles, ellipses, hyperbolas, and lines in images are quite 
successful. The detection system is also applied to detect the line pattern of direct wave 
and the hyperbolic pattern of reflection wave in the simulated and real one-shot seismo-
gram. The results can improve seismic interpretations and further seismic data process-
ing.   
 
Keywords: simulated annealing, global optimization, seismic pattern recognition, reflec-
tion wave, Hough transform, hyperbolic pattern detection   
 
 

1. INTRODUCTION 
 

Traditionally, parametric pattern detection was accomplished by Hough transform 
(HT), which mapped the points in image space to the parameter space and found the 
peaks in parameter space [1]. The coordinates of a peak in parameter space represented a 
pattern in image space. 

Seismic pattern detection plays an important role in oil exploration. In one-shot 
seismic data, a line in the travel-time figure represents a direct wave and a hyperbola in 
the travel-time figure represents a reflection wave [2-4]. In 1985, Huang et al. had ap-
plied HT to detect line pattern of direct wave and hyperbolic pattern of reflection wave 
[5]. However, peak determination was not easy and memory requirement was also a 
problem. 

In 2002, Hough transform neural network (HTNN) was proposed to the parameter 
detection by neural network method [6]. The competitive network minimized the dis-
tance from points to patterns including lines, circles, and ellipses by gradient descent. In 
2006, Huang et al. also adopted the HTNN to detect lines of direct waves and hyperbolas 
of reflection waves in a one-shot seismogram [7, 8]. The iterative method required less 
memory, but gradient descent method had local minimum problem. 

Simulated annealing (SA) is a global optimization algorithm proposed by Kirkpatrick 
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in 1983 [9]. The algorithm compares the minimization problem to annealing in metal-    
lurgy where careful annealing makes perfect crystal. The key of the algorithm to reach 
the global minimum is in conditionally accepted higher-energy states by Metropolis 
criterion [10].  

Here, we take the advantage of global optimization in SA to minimize the distance 
between input points and patterns such as lines, circles, ellipses, and hyperbolas. Also the 
proposed detection system is applied to the detection of line pattern of direct wave and 
the hyperbolic pattern of reflection wave in the one-shot seismogram. 

In section 2, the proposed system including error definition and the steps of the al-
gorithm is presented. Section 3 shows the experimental results for the simulated image 
patterns, simulated seismic patterns, and real seismic patterns. Conclusions and discus-
sions are presented in the section 4. 

2. SIMULATED ANNEALING PARAMETER DETECTION SYSTEM 

We propose the detection system in Fig. 1. The detection system takes the N data as 
the input, followed by the SA parameter detection system to detect a set of parameter 
vectors of K patterns. After convergence, patterns are recovered from the detected pa-
rameter vectors.  

 

Input  
N data 

Simulated annealing parameter 
detection system 

Detected 
parameters

Detected  
K patterns 

 
Fig. 1. System overview. 

 
SA parameter detection system consists of two main parts: (1) definition of system 

error (energy, distance); (2) SA algorithm for determination of the parameter vectors 
with minimum error. To obtain the system error, we calculate the error or the distance 
from a point to patterns, and combine the errors from all points to patterns to be the sys-
tem error. 
 
2.1 Parametric Patterns 

 
Ellipses and hyperbolas with center at (mx, my) and rotation θ in 2-D space can be 

expressed by the equation using 6 parameters mx, my, a, b, θ, and f as 
 

2 2[( ) cos ( )sin ] [  ( )sin ( )cos ] .
x y x y

a x m y m b x m y m fθ θ θ θ− + − + − − + − =     (1) 
 
Table 1 lists the relation between the graph of the equation and parameters a, b, and 

f. If a > 0, b > 0, and f > 0 or a < 0, b < 0, and f < 0, the graph is an ellipse; if a > 0, b < 0, 
and f ≠ 0 or a < 0, b > 0, and f ≠ 0 the graph is a hyperbola. If a > 0, b < 0, and f = 0 or a 
< 0, b > 0, and f = 0, the graph represents the asymptotes of the hyperbola. When f = 0, 
the graph is a set of asymptote of a hyperbola and which are two crossing lines, so we 
can use Eq. (1) to represent lines. 
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Table 1. Relation between graph and parameters a, b, and f in Eq. (1). 

a b f Graph 
+ + + Ellipse 
− − − Ellipse 
+ − + Hyperbola 
− + + Hyperbola 
+ − − Hyperbola 
− + − Hyperbola 
+ − 0 Asymptote 
− + 0 Asymptote 
− − + No graph 
+ + − No graph 
+ + 0 Point 
− − 0 Point 

 

In vector form, a parameter vector, p = [mx, my, a, b, θ, f]T represents a pattern. For 
the kth pattern, pk = [mk,x, mk,y, ak, bk, θk, fk]T, and for all K patterns, the matrix P = [p1, 
p2, …, pK] represents all K patterns. 
 
2.2 System Error 

 
To define the error or energy of the system, we first define the distance from a point 

to a pattern. Then, the error from a point to K patterns is the geometric mean of the dis-
tances from the point to all individual patterns. Finally, the system error or energy is the 
arithmetic mean of the error of N points. The definition is in the following. 
 
2.2.1 Distance from a point to a pattern 

 
Here, the detected patterns include ellipses, circles, hyperbolas, and lines as asymp-

totes. The distance from a point xi = [xi, yi]T to the kth pattern is defined as 

2
, , ,

2
,

( ) | [( ) cos ( )sin ] [ ( )sin

              ( ) cos ] |.
k i k i k x k i k y k k i k x k

i k y k k

d a x m y m b x m

y m f

θ θ θ

θ

= − + − + − −

+ − −

x
    (2) 

Distance measure in Eq. (2) has a minimum d(xi) = 0 when a = 0, b = 0, and f = 0. 
However, these are not our desired parameters. Also, the distance from a point to the pat- 
tern is affected by the scale of coefficients. We normalize the parameter b and a by | |,ab  
i.e., new | |  and | | .b b ab a a ab′ ′= =   
 
2.2.2 Error from a point to K patterns 

 
Error or distance from a point to the patterns is defined as the geometric mean of the 

distances from the point to all patterns. The error or energy of the ith point xi is 

[ ]
1

1 2( ) ( ) ( )... ( )... ( ) K
i i i i k i K iE E d d d d= =x x x x x     (3) 
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Fig. 3. Total error of the system and procedure of simulated annealing. 

where K is the total number of patterns. If the point is on any pattern, the error of this 
point will be zero. Fig. 2 shows the error of a point to all patterns. The distance layer 
computes the distance from a point to each pattern by Eq. (2), and the error layer outputs 
the error from a point to all patterns by Eq. (3). 
 
2.2.3 Error from N points to K patterns 

 
Fig. 3 illustrates the error or energy of the system from N input points to K patterns. 

The error or energy of the system is defined as the average of the error of points, 

1

1 .
N

i
i

E E
N =

= ∑     (4) 

Distance 
Layer: 
distance from 
a point to 
each pattern 

Error layer 

Error from a point to 
all patterns 

xi yi 

Ei 

… …

Ei= [d1(xi) d2(xi)… dk(xi)…dK(xi)]1/K 

Parameter vectors 
pk = [mk,x, mk,y, ak, bk, θk, fk]T 

P = [p1, p2, …, pK] 
m1,x 

m1,y

mk,x mk,y

mK,x

mK,y

d1(xi) dK(xi)dk(xi)

dk(xi)=|a[(xi-mk,x)cosθk+(yi-mk,y)sinθk ]2 

+b[-(xi-mk,x)sinθk+(yi-mk,y) cosθk]2-fk| 

 
Fig. 2. Distance from a point to all patterns; i is the index of the input point; k is the index of the 

pattern, and K is the number of patterns. 

Total error E 
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E1 
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2.3 Simulated Annealing for Parameter Detection 
 

We use SA to detect the parameter vector of each pattern. Our goal is to find a set of 
parameter vectors that can globally minimize the error of the system. Using the tempera-
ture decreasing function T(t) 

 
T(t) = Tmax × 0.98(t-1), for t = 1, 2, 3, …    (5) 

 
as in [9]. 

HTNN used gradient descent method in adjusting pattern parameters [6]. Adjusting 
all parameters at one time was not efficient in convergence [6]. SA is a random adjusting 
of parameters. It needs more computation in the adjusting parameters than HTNN. So for 
efficiency, we also use four steps in adjusting parameters. The adjusting order is the cen-
ter (mx, my), the major and minor axes, b and a, and then the rotation angle θ, followed by 
the size f. This algorithm is the general algorithm to detect K circles, ellipses, hyperbolas, 
and it treats lines as asymptotes of hyperbolas, where the number K is preset in the algo-
rithm. In [11], the number of K patterns could be determined by the minimum from the 
error vs. K. 

 
Algorithm: SA algorithm to detect parameter vectors of K patterns including circles, 
ellipses, hyperbolas, and lines as asymptotes. 
Input: N points in an image. A number K as the number of patterns. 
Output: A set of detected K parameter vectors. 
Method: 
Step 1: Initialization. 

In the initial step t = 1, choose T(1) = Tmax at high temperature, and define the tem-
perature decreasing function as in Eq. (5), T(t) = Tmax × 0.98(t-1). Initialize parameter vec-
tors p1, p2, …, pk, …, pK, where pk = [mk,x, mk,y, ak, bk, θk, fk]T, one p is for one pattern, and 
set P = [p1, p2, …, pk, …, pK]. Calculate energy E(P) as Eqs. (2), (3), and (4). 

 
Step 2: Randomly change parameter vectors and decide the new parameter vectors in the 

same temperature or in one cooling cycle. 
For m = 1 to Nt (Nt trials in a temperature) 
For k = 1 to K (k is the index of the pattern) 
Start a trial, including steps 2.1 to 2.3 in the following. 

Step 2.1: Randomly change the center of the kth pattern:  
 

, , ,[   ] [  ]T T
k x k,y k x k y mm' m' m m α= + n     (6) 

 
where n = [n1 n2]T is a 2 × 1 random vector, n1 and n2 are Gaussian random variables with 
N(0, 1) and αm is a constant. Now, pk′ = [m′k,x, m′k,y, ak, bk, θk, fk]T, and P′ = [p1, p2, …, 
p′k, …, pK]. 

Calculate the new energy E(P′) from N points to K patterns. Using Metropolis crite-
rion decides whether or not to accept P′: If the new energy is less than or equal to the 
original one, ∆E = E(P′) − E(P) ≤ 0, accept P′. Otherwise, the new energy is higher than 
the original one, ∆E = E(P′) − E(P) > 0. In this case, it computes prob = exp[− ∆E/T(t)], 
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and generates a random number x uniformly distributed over [0, 1]. If prob ≥ x, accept P′; 
otherwise, reject it, and keep original P. 

 
Step 2.2: Randomly change the shape parameters:  
 

[  ]  [  ]T T
k k k k aba b a b α′ ′ = + n     (7) 

 
and normalize it by ,| |k ka b′ ′  where n = [n1 n2]T is a 2 × 1 random vector, n1 and n2 are  
Gaussian random variables with N(0, 1) and αab is a constant. Now, p′k = [mk,x, mk,y, ak′, 
bk′, θk, fk]T, and P′ = [p1, p2, …, p′k, …, pK]. Similar to step 2.1, calculate the new energy 
E(P′) from N points to K patterns. Using Metropolis criterion decides whether to accept 
P′, or keep original P. 
 
Step 2.3: Randomly change the angle: 
 

θk′ = θk + αθn   (8) 

where n is a Gaussian random variable with N(0, 1) and αθ is a constant. Here, the angle 
is in degree. Now, p′k = [mk,x, mk,y, ak, bk, θk′, fk]T, and P′ = [p1, p2, …, p′k, …, pK]. Similar 
to step 2.1, calculate the new energy E(P′) from N points to K patterns. Using Metropolis 
criterion decides whether to accept P′, or keep original P. 

 
Step 2.4: Randomly change the size: 

 
fk′ = |fk + αfn| (9) 

where n is a Gaussian random variable with N(0, 1) and αf is a constant. Now, p′k = [mk,x, 
mk,y, ak, bk, θk, fk′]T, and P′ = [p1, p2, …, p′k, …, pK]. Similar to step 2.1, calculate the new 
energy E(P′) from N points to K patterns. Using Metropolis criterion decides whether to 
accept P′, or keep original P. 

 
End for k (pattern) 
End for m (trial) 
 

Step 3: Cool the System. 
Decrease temperature T according to the cooling function Eq. (5), T(t) = Tmax × 

0.98(t-1), for t = 1, 2, 3, …, and repeat steps 2 and 3 until the temperature is low enough, 
for examples, repeat 500 times. 

3. EXPERIMENTAL RESULTS 

The experiments are first on simulated pattern detections in images with size 50 × 
50. We use the general algorithm to detect hyperbolas, ellipses, and consider lines as 
asymptotes of hyperbolas. Then, we use the algorithm just for North-South opening hy-
perbolas in seismic applications. In seismic applications, we detect line pattern of direct 
wave and hyperbolic pattern of reflection wave in the simulated and real seismic data. 
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3.1 Detection of Circles, Ellipses, Hyperbolas, and Lines 
 

The general algorithm can detect circles, ellipses, hyperbolas, and treats line as as-
ymptote. In initial stage, mx and my are randomly distributed over [0, 50], fk = 0, ak = 1, bk 
= 1, and θk = 0. The cooling function is as Eq. (5) with a high enough temperature, Tmax = 
500. We have 100 trials in the same temperature. The temperature decreases 500 times to 
T = 0.0209, and this temperature is low enough. Constants αm = 1, αab = 1, αθ = 2, and αf 
= 2.   

    
(a) 2 ellipses with noise, K = 2.            (b) 2 hyperbolas with noise, K = 2. 

   
(c) and (d) corresponding plot of energy vs. cooling cycle. 

Fig. 4. Detection of ellipses and hyperbolas. 

Fig. 4 shows the detection result of ellipses and hyperbolas where K = 2. Patterns 
are with Gaussian noise N(0, 0.5) × N(0, 0.5). Figures of energy vs. cooling cycles are 
also shown. Fig. 5 shows the detection result of mixed ellipse, hyperbola, and line in an 
image. In Figs. 5 (b) and (c), the detected line is a hyperbola with small size. In Fig. 5 (d), 
since an asymptote is a pair of crossing lines, we set K = 1 and f = 0 and use this to detect 
two crossing lines.   
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(a) 1 ellipse and 1 hyperbola with noise, K = 2.    (b) 1 ellipse and 1 line with noise, K = 2. 

     
(c) 1 hyperbola and 1 line with noise, K = 2.        (d) 2 lines with noise, K = 1, f = 0. 

Fig. 5. Detection of ellipses, hyperbolas, and lines. 

 
3.2 Seismic Applications 
 

In a seismogram, the line pattern of direct wave and hyperbolic pattern of reflection 
wave are always North-South opening [2-4]. The equation is 

a(x − mx)2 + b(y − my)2 = f                                           (10) 

with a < 0, b > 0, and f ≥ 0. Five parameters p = [mx, my, a, b, f]T represents a pattern. In 
the algorithm, there are three steps in adjusting parameters. The adjusting order is the 
center (mx, my), the major and minor axes, b and a, followed by the size f. 
 
3.2.1 Experiments on simulated one-shot seismogram 

 
In simulated seismic application, experiment is on horizontal reflection layer. Two 

lines are the asymptote of the hyperbola [2-4], and the asymptote is a hyperbola with size 
zero. So a line can be treated as a hyperbola.  
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Fig. 6 is the shot-receiver relation. An exploration or a shot is produced at the mid-
dle and several receiving stations locate along the line of both sides expand from the ex-
ploration. The distance between the shot and the receiving station is x. The depth of layer 
is h. The velocity of p-wave is v. The travelling time formula is hyperbolic as Eq. (11). 

2 2
22h x t

v v
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (11) 

For the direct wave, the time-distance curve is a line.  

xt
v

=     (12) 

 
Fig. 6. Shot-receiver relation. 

The simulated horizontal reflection layer in Fig. 6 is with the depth 500 m and the 
velocity of the p-wave in the sedimentary rock is 2,500m/sec. There are 65 receiving 
stations with 50 m between each other, the shot is in the middle. The sampling interval is 
0.004 sec. The impulse response is 25 Hz Ricker wavelet. Reflection coefficient is 0.2 
and noise is band-passed, 10.2539Hz ~ 59.5703Hz, with uniform distributed over [− 0.2, 
0.2]. Fig. 7 (a) shows the one-shot seismogram from Fig. 6. The horizontal axis is the 
trace number and the vertical axis stands for time t. The one-shot seismogram is first 
preprocessed by envelope processing, thresholding, and peak detection [5] and shown in 
Fig. 7 (b) with the threshold 0.15. The image size is 512 × 65. The points are then used as 
the input to the parameter detection system. 

The initial parameter mk,x and mk,y are random between 0 and 50, ak = − 1, bk = 1, 
and fk = 1. The cooling function is as Eq. (5) with a high enough temperature, Tmax = 600. 
There are Nt = 100 trials in a temperature. The temperature decreases 500 times. Con-
stants αm = 1, αab = 0.5, and αf = 5. Since lines of direct wave is asymptotes of a hyper-
bola, we set f1 = 0. The detection result and the error plot of Fig. 7 are shown in Figs. 8 (a) 
and (b). Table 2 lists the detected parameters in Fig. 8 (a). 

Table 2. Detected parameters in Fig. 8 (a) in image space 512 × 65. 

 mx my a b f 
Direct wave 33.0 8.2 − 5.0 0.2 0 (preset)

Reflection wave 32.9 40.1 − 4.4 0.2 1040.9 
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(a) Simulated one-shot seismogram (horizontal 

reflection layer). 
(b) After envelope and peak detection. 

Fig. 7. Simulated seismic patterns. 

   
(a) Detection result.                     (b) Energy vs. cooling cycle. 

Fig. 8. Detection of simulated seismic patterns in Fig. 7. 

3.2.2 Experiments on real one-shot seismogram 
 
The system is also applied to detect direct wave and reflection wave in real seismic 

data. We obtain data from Seismic Unix System developed by Colorado School of Mine 
[4]. 

The real data showed in Fig. 9 is at Canadian Artic, which has 48 traces and 3100 
samples per trace with sampling interval 0.002 seconds. The horizontal axis is the trace 
number and the vertical axis is time t.  

After preprocessing of envelope processing, thresholding, and peak detection [5], 
we only choose points with t < 1.4 seconds which includes points from direct wave, first 
reflection wave, and second reflection wave as in Fig. 10 (a), where there are 88 points. 
The detection result is shown in Fig. 10 (b). Table 3 lists the detected parameters in im-
age space 3,100 × 48.  
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Fig. 9. Real seismic data at Canadian Artic. 

   
(a)                                      (b)  

Fig. 10. (a) After envelope and threshold preprocessing, choose peaks with t < 1.4 sec.; (b) Detec-
tion result of seismic patterns in (a). 

Table 3. Detected parameters in Fig. 10 (b) with fixed f1 = 0 in image space 3,100 × 48. 

 mx my a b f 
Direct wave 24.5 8.6 − 25.7 0.04 0 (preset) 

Reflection wave 24.8 28.8 − 22.9 0.04 2,441.7 
Second reflection wave 24.7 49.6 − 23.1 0.04 8,942.7 

4. CONCLUSIONS AND DISCUSSIONS 

We have proposed a pattern detection system, which adopts the simulated annealing 
algorithm to detect patterns such as lines, circles, ellipses, and hyperbolas by finding 
their parameters in an unsupervised manner and global minimum fitting error between N 
points and K patterns in an image. We define the distance from a point to a pattern and 
this makes the computation feasible, especially for hyperbola. The system error between 
N points and K patterns is defined. Using four steps to adjust parameters from center, 
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shape, angle, to the size of the pattern can get fast convergence. Experimental results on 
the detection of circles, ellipses, hyperbolas, and lines in images are successful. The de-
tection results of line pattern of direct wave and hyperbolic pattern of reflection wave in 
simulated and real one-shot seismogram are good and can improve seismic interpreta-
tions and further seismic data processing. The detected parameters of lines and hyperbo-
las help geophysicists to estimate the p-wave velocity, the depth of the reflection layer 
and the dipping angle. 

For the cooling schedule, the value of initial temperature Tmax, and the number of 
trials in one temperature Nt have been tested many times. The used value in this study 
can get good performance in the experiments. 

In seismic pattern detection, we have no constraint on the center. However, for ideal 
case, the hyperbola has the center on x-axis, i.e. t = 0. In the detection result of simulated 
seismic data, we can find that the center is not on the x-axis, because convolution pro-
duces a shift. So preprocessing is quite critical. Wavelet and deconvolution processing 
may be needed in the preprocessing to improve the detection result. 
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