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Student: Xiang-Ming Huang Advisor: Dr. Yung-Show Fang
Department of Civil Engineering

National Chiao Tung University

Abstract

This paper presents experimental data on the change of volume and relative density
in a cohesionless soil mass-due- to-static vertical load and cyclic torsional shearing
compaction. A cyclic tarsional shearing compactor was with a 0.45 m-diameter circular
shearing disc was designed and constructed at National Chiao Tung University. Air-dry
Ottawa sand was used as fill material. The initial relative density of the fill was 36 %.
The static vertical load and cyclic torsional shearing were applied on the surface of a
1.5 m-thick lift, and then on another specimen with five 0.3 m-thick lifts, with the
rotation angles be *5°. Surface settlement of the fill was measured with a laser distance
meter. Soil density cups were buried in the cohesionless specimen to monitor the
distribution of relative density of with depth soil. Based on the test results, the following
conclusions were drawn.

In the first 5 cycles of cyclic torsional shearing application, the surface settlement
increased significantly. However, after 20 cycles, the major part of settlement was
accomplished, soil particle were sheared and reached a densely-packed condition. As a
result, it was difficult to increase the surface settlement any further with more cyclic
shear application. For shearing compaction on five 0.3 m-thick lifts, after 20 cycles of
torsional shearing with the torsional angle of 6 =+5°, the average volumetric strain for

the lift 1, 2, 3, 4, and 5 was 9.77, 10.53, 10.37, 10.05 and 10.32 %, respectively. It was



clear that the cyclic torsional shearing compaction in each lift was relatively uniform.
Most of the relative density measured in compacted fill were greater than 70 %. The
entire soil body was successfully compacted with cyclic torsional shearing compaction.
For five compacted lifts, the mean relative density was 76.3 % with a standard deviation
of 6.2 %. It was obvious that the entire soil body was successfully compacted with this

ground improvement technique.

c torsional shearing ; Relativedensity ; Sand ; Surface
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Chapter 1

INTRODUCTION

In the construction of highway embankments, earth dams, and many other
engineering structures, engineers are often required to compact loose soils to increase
their densities. The purpose of the compaction operation is to improve the engineering
properties of soil such as increasing shear strength, reducing permeability and
compressibility. Various technigues -had been used to increase the bearing capacity of
shallow foundations, to increase the factor of safety against possible slope failure of

embankments and earth dams, and to reduce the shrinkage and swelling of soils.

1.1 Objectives of Study

In the past commonly methods used for soil improvement included compaction,
vibroflotation, dynamic compaction, compaction sand pile, blasting method, vibro rod,
and stone columns. Most of these engineering methods may produce loud noise and
vibration during compaction, thus not suitable for use in the metropolitan area. In this
study, the cyclic torsional shear compaction was introduced as an alternative
construction method. With this compaction method, the relative density of sand could
increase from 36% up 85%. This method produced low noise and no low vibration. The
purpose of this study is to investigate the change of volume and relative density in the

soil mass due to cyclic torsional shear compaction.



1.2 Research Outline

This research utilizes the nonyielding soil bin facility at NCTU and the cyclic
torsional shear compactor (CTSC) to investigate the relative density.

Previous studies by Chen (2011) and Liu (2012) indicated that for the CTSC with
a 0.3m diameter shear disc could compact the loose sand to achieve a relative density
of 70 to 75%. However, the effectively depth of compaction was only 0.15 m-thick. In
NAVFAC DM7.2 (US Navy 1982), the compaction thickness of 0.2-0.3 m was
generally recommended. To achieve the suggested compaction thickness, a new CTSC
with a 0.45m-diameter shearing disc was designed, constructed and test in this study.

Air-dry Ottawa sand was used as fill material. The soil specimen used was 1.5m-
long, 1.5m-wide; and 1.5-high.

This paper reports experimental data associated with the volume and. relative

density change due to the cyclic torsional shearing compaction.

1.3 Organization of Thesis

This thesis was divided into the following parts:

1. Review of past investigations regarding cyclic torsional shear compaction of
cohesionless soils (Chapter 2)

2. Description of the National Chiao Tung University soil bin, and cyclic torsional
shear compactor (Chapter 3)

3. Soil characteristic and soil density control technique (Chapter 4)

4. Testing procedure (Chapter 5)

5. Experimental results of surface settlement, volume change, and relative density
distribution due to compaction (Chapter 6)

6. Conclusions (Chapter 7)



Chapter 2

Literature Review

Das (2010) stated that the soil at a construction site may not always be totally
suitable for supporting structures such as buildings, bridges, highways, and dams. For
example, in granular soil deposits, the in situ soil may be very loose and perform a large
settlement under loading. In such a case, the soil needs to be improved to decrease it
deformability.

Sometimes the top soil layers are undesirable and must be removed and replaced
with better soils on which the structural foundation can be built. The soil used as fill
should be well compacted to sustain the desired structural load. Compacted fills may
also be required in low-lying areas to raise the ground elevation for the construction of
foundation.

To improve its engineering properties, contractors are generally required to
compact the loose soils to increase their unit weights and reducing settlements. Previous
studies associated with the compaction-induced effects such as the change of soil
density, the volume change inthe soil mass and mechanism of soils under compaction

are discussed in this chapter.

2.1 Soil Improvement with Densification

Kramer (1996) defined the common soil improvement techniques to mitigate
seismic hazards. Soil improvement methods were divided into four categories including,

(1) densification techniques (vibrofloatation, vibro rod, dynamic compaction, blasting,
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and compaction grouting); (2) reinforcement techniques (stone columns, compaction
piles, and drilled inclusions); (3) grouting and mixing techniques (permeation grouting,
intrusion grouting, soil mixing, and jet grouting), and (4) drainage techniques. In this

thesis, only the densification of cohesionless soil was discussed.

2.1.1 Densification Techniques

Fig. 2.1 shows two of the many possible ways that a system of equal-sized spheres
can be packed. The simple cubic packing in Fig. 2.1 (a) is the loosest of the stable
arrangements. The dense packings in Fig. 2.1 (b) represent the densest possible state
for such a system. A dense packing of soil spheres can be reached by soil densification

techniques.

2.1.2 Soil Densification with Vibratory Compactor

D’Appolonia et al. (1969) proposed the vibratory rollers are particularly useful for
compacting granular soils. Fig. 2.2 shows the effects of compaction of a 8-ft lift dune
sand after five passes by a vibratory roller. The low unit weight that remains in the
uppermost zone is due to vibration and lack of confinement in sand. Fig. 2.3 shows the
compacted unit-weight profiles for the same dune sand after 2, 5, 15, and 45 roller
passes. For field compaction work, the specification requires that the granular soil be
compacted to a certain minimum relative density at all depths. Determination of the
height of each lift depends on the type of roller and the economic number of passes.
The method for determination of the lift height is shown in Fig. 2.4. For soils at all
depths to reach a minimum relative density Dr = 75%, the lift thickness should be

controlled to be less than 18 inch.



2.2 Cyclic Simple Shear Test

The cyclic simple shear test is a convenient method for determining the shear
modulus and damping ratio of soils. It is also a convenient device for studying the
liquefaction behavior of saturated cohesion less soils. In Fig.2.5, Airey and Wood (1987)
showed the NGI cyclic simple shear apparatus. In the cyclic simple shear test, a soil
specimen, usually 20-30 mm high with a diameter of 60-80 mm, is subjected to a
vertical effective stress ov and a cyclic shear stress 7, as shown in Fig. 2.6. The
horizontal load necessary to deform the specimen is measured by the horizontal load
cell (Fig. 2.5), and the shear deformation of the specimen is measured by the linear

variable differential transformer (L\VVDT).

2.2.1 Study of Youd

Youd (1972) reported the experimental results regarding the void-ratio reduction
of sand due to cyclic simple shearing. Fig. 2.7 shows the gradual densification of sand
by repeated shear displacement in a simple shear test. Each cycle of shear straining
reduces the void ratio of the soil by a certain amount, although at a decreasing rate.
Decrease in volume of the sand, as shown in Fig. 2.7, can take place only if drainage
occurs freely. In the figure, after 10,000 cycles, the void ratio of sand was reduced from
0.54 to 0.42. It is obvious from the figure that cyclic shearing is an effect measure to

densify the cohesionless soil.



2.2.2 Study of Hsu and Vucetic

Hsu and Vucetic (2004) studied the volume decrease of dry or partially saturated
sands subjected to several cycles of cyclic shear strain amplitudes y.. If the cyclic shear
strain amplitudes yc1 are smaller than a certain threshold value called the volumetric
cyclic threshold shear strain yi (ye1 < yw), their volume will not change. Such cyclic
behavior is depicted schematically in Fig. 2.8. In the figure the results of three cyclic
strain-controlled direct simple shear (DSS) tests conducted on dry or partially saturated
specimens are sketched. The variations of shear strainy over time t are presented in Fig.
2.8(a). The resulting variations of vertical strain ey are presented in Fig. 2.8(b). The
relationship between yc , the permanent cyclic vertical strain &y, and the number of
cycles N, is presented in Fig. 2.8(c). The cyclic vertical strain &y in Fig. 2.8(c) is taken
as ey at the end of cycle N, and it is also called the cyclic settlement strain.

It can be seen in Fig. 2.8(c) how below certain yw the soil does not settle (evc = 0),
while above 1t, it settles significantly (eve > 0). Accordingly, the amplitude yw represents
the boundary between two fundamentally different types of volume change behavior.
Below y , the soil particles are not displaced with respect to each other and the soil’s
mineral skeleton and volume remain practically unchanged during cycling loading.
When the soil is subjected to yc > vw , the particles are displaced with respect to each
other irreversibly, resulting in permanent changes of the soil’s volume and
microstructure. It is clear in Fig. 2.8 that the cyclic shearing is an effective method to

reduce the vertical strain of soil, and to densify the soil mass.

2.3 Cyclic Torsional Simple Shear Test

Fig. 2.9 shows the cyclic torsional simple shear device proposed by Ishibashi et al.

(1985). In this device, with a hollow cylindrical specimen 71.1 mm in outside diameter,
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50.8 mm in inside diameter, and 142.2 mm in height, can be subjected to independent
variations of axial stress, inner and outer confining pressure, and torsional shear stress

or strain. The device could closely simulates the in-situ stress condition.

2.3.1 Study of Ishibashi et al.

Ishibashi et al. (1985) studied the volume change of a hollow cylindrical Ottawa
sand specimen subjected to cyclic torsional shearing in drained conditions. The
experiments were conducted under uniform cyclic shear strains and the following
conclusions were drawn. In Fig. 2.10, relationships between the induced cyclic
volumetric strain the uniform cyclic shear strain yeye for a given number of cycle is
nearly linear. It is clear in Fig. 2.10 that the volume reduction of the soil specimen is
significantly influenced by the cyclic shear strain ycyc and the number of cyclic shear

stress application N.



2.4 Densification with Cyclic Torsional Shearing

2.4.1 Study of Yang

Yang (2002) used the disc-shearing instrument (Fig. 2.11(a)) at Chung-Yuan
University to study the soil settlement due to cyclic torsional shearing. The diameter of
the circular shearing disc was 198 mm. The diameter of the cylindrical sandy specimen
was 200 mm, and the height of the soil specimen was 105 mm. The cyclic shear tests
were carried out with initial relative densities from 30 % to 50 %, and normal stresses
applied from 7 kPa to 150 kPa. One-way and cyclic (N=1) shear stresses were applied
on Mailiao sand, Vietnam sand, and Ottawa sand. Fig. 2.11(b) shows the relative density
increase AD, due to cyclic shearing (N=1) was about twice that due to one-way

shearing.

2.4.2 Study of Ren

Ren (2006) studied the soil densification due to cyclic torsional shearing. The
diameter of the sandy specimen was 200 mm and the height was 105 mm. The diameter
of the shear disc was 198 mm. Mailiao sand, Ottawa sand and Vietnam sand were
tested with an initial relative density of 30 %. Normal stresses of 20, 60 and 100 kPa,
and the shear angle 10°, 20°, 30°, 60° and 90° were used for testing.

Fig. 2.12 showed the relative density of sand increased with increasing number of
cyclic shear stress application N. The first 6 cycles ofteyc application was most effective.
Fig. 2.13 showed a greater relative density increment was achieved at a shallow depth.

Less Dy increment due to the cyclic shear stress was observed at a deeper depth.

2.4.3 Study of Huang

To reduce the boundary effects due to a small soil tank, Huang (2008) used a 600
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mme-diameter, 150 mm-high soil bin. The diameter of the shearing disc was 200 mm,
and the (tank diameter)/ (disc diameter) ratio was 3.0.

To include two different grain characteristics, Mailiao sand and Ottawa sand were
selected as soil specimen. The initial relative density of the soil sample before shearing
was 50 %. The applied vertical normal stress varied 10 to 90 kPa, the cyclic shearing
angle varied from 5° to 45° . Fig. 2.14 indicated, for both Mailiao and Ottawa sand,

the relative density of sand increased with increasing normal stress o.

2.4.4 Study of Chen

Chen (2011) presents experimental data on the settlement and relative density
change due to cyclic torsional shearing compaction. A new cyclic torsional shearing
compactor was designed and constructed at NCTU. The thickness (T) of the soil after
compaction was 0.6 m. The initial relative density was 34.5% * 2.3% and the vertical
pressure on the surface loading was 9.2 kPa. Fig. 2.15 showed the soil surface
settlements after 1, 2, 5, 10, 20, 30 and 40 cycles of cyclic torsional shearing. It was
obvious that the soil settlement increased with increasing number of cycles (N) of
torsional shearing.

In the first 2 cycles of torque application, surface settlement increased significantly.
However, after N = 20, the major part of settlement has accomplished, soil particles
were sheared and reached a densely-packed condition. Therefore, it was difficult to
increase the settlement any further with more cyclic shear application.

Fig. 2.16 showed the relative density distributions of the compacted specimen for
N =1, 2,5, 10, 20 and 40. Test results showed that the density distribution increased
with increasing number of cycles of torsional shearing.

In Fig. 2.17, cyclic torsional shearing was applied on the surface of each 0.15m-



thick lift, and the distribution of relative density in Lifts 1 to 4. Test results revealed
that the trend of pressure distribution in each 0.15 m-thick lift was similar. The average
relative density achieved in each lift was greater than the required value of 70 %~75%

(US Navy DM-7 1982).

2.4.5 Study of Liu

Liu (2012) presents experimental data on the settlement, relative density and earth
pressure due to cyclic torsional shearing compaction (CTSC). The CTSC was designed
and constructed by Chen (2011) at NCTU. The vertical static load (g = 9.2 kPa) and
cyclic torsional shearing were applied on the surface of the four 150 mm-thick lifts.
Then cyclic shearing was applied with rotation angles of £1°, *3°, ¥5°, *7°and *10° for
20 cycles. It was obvious that the soil surface settlement increased with increasing
rotation angles (0) of torsional shearing. A cone penetrometer was used to measure cone
resistance gc with depth in the compacted soil mass. Based on the test results, the
following conclusions were drawn.

Fig. 2.18 showed that the variation of surface settlement with the disc rotation
angle from 0°to *10°. After 20 cycles of torsional shearing with the rotation angle of 6
=110°on the surface of the four 150 mm-thick lifts, the average surface settlement was
38.2 mm (volumetric strain = 6.4%). The surface settlement due to the static load q was
19.0mm. The extra surface settlement due to the torsional shearing compaction was
about 19.2 mm. It is obvious that the cyclic torsional shearing compaction (static plus
cyclic loads) is an effective method to densify loose soil.

Fig. 2.19 showed that relative density distribution for 8 =0°to*10°. In the figure,
the relative density of compacted fill increased with increasing disc rotation angle 6.

With static load g = 9.2 kPa and the lift thickness of 150 mm, after 20 cycles of torsional
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shearing with angle 6 of +5°, the relative density achieved was 72 to 84%. The
compacted relative density increased with increasing 6 angle.

Fig 2.20 showed the distribution of normalized qc for the compacted fill. For the
loose fill, the gc/ gc,loose Was 1.0. In Fig 2.20, the cone resistance ratio gc/ gc,loose increased
from 4.6 to about 9.0 due to cyclic torsional shear compaction. Test results showed the
effect of static vertical load and the cyclic torsional shearing on the cone resistance of

soil were quite obvious.

2.5 Requirements of Soil Improvement

ASTM Test Designation D-4253 (2007) provide a procedure for determining the
minimum and maximum dry unit weights of granular soils. These unit weights can be
used to determine the relative density of soil compacted in the field. The term relative
density.is commonly used to indicate the in situ denseness or looseness of a granular

soil. The relative density of soil is defined as :

pp==mas %y 1000 (2.1)
max o EWER
where e = in situ void ratio of the soil, emax = void ratio of the soil in the loosest state,
emin = Void ratio of the soil in the densest state.

Das (2010) reported that the value of Dy may vary from a minimum of 0 % for
very loose soils to a maximum of 100 % for very dense soils. Soils engineers
qualitatively describe the granular soil deposits according to their relative densities. In-
place soils seldom have relative densities less than 20 to 30 %. Compacting a granular

soil to a relative density greater than about 85 % is difficult. Lambe and Whitman (1969)
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reported that for dense soils the value of Dr was 65 to 85 % as shown in Table. 2.1. In
the compaction requirements and procedure, US Navy Design Manual NAVFAC DM-
7 (1982) reported that 70 to 75 % relative density can be obtained by proper compaction
procedures. For coarse-grained, granaler well-graded soil, vibratory compaction

generally is the most effective procedure.

2.6 Maximum Index Density and Unit Weight of Soils

Using a Vibratory Table

ASTM Test Designation D 4253 — 93 (2007) provided a test method for
determining the maximum index density/unit. weight of cohesionless, free-draining
soils using a vertical vibrating table.

The maximum index density/unit weight of a given free-draining soil is determined
by placing either oven-dried or wet soil in a mold, applying a 2-1b/in? (13.78 kPa)
surcharge (dead weight) to the surface of soil, and then vertically vibrating the mold,
soil, and surcharge (see Fig. 2.21). Without the surcharge on the soil surface, a low unit
weight zone might remain in the upper most part of the compacter soil due to lack of
confinement in sand. Use either an electromagnetic, eccentrie, or cam-driven vibrating
table having a sinusoid-like time-vertical displacement relationship at a double
amplitude of vertical vibration (peak-to-peak) of about 0.013 in. (0.33 mm) for 8 min
at 60 Hz, or 0.019 in. (0.48 mm) for 10 min at 50 Hz. The maximum index
density/weight is calculated by dividing the oven-dried mass/weight of the densified

soil by it volume (average height of densified soil times area of mold).
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Chapter 3

Experimental Apparatus

To investigate the effects of cyclic torsional shear compaction on the relative density
of a cohesionless soil mass, the instrumented non-yielding model retaining wall facility
at National Chiao Tung University (NCTU) was used. All soil improvement
experiments described in this chapter were conducted in the soil bin of the NCTU non-
yielding model retaining wall facility. This chapter introduces the soil bin, cyclic

torsional shear compactor used for laboratory experiments.

3.1 Soil Bin

The soil bin shown in Fig. 3.1, which was fabricated with steel plates with inside
dimensions of 1,500 mm x1,500 mm x1,600 mm. The model wall in Fig. 3.1. is 1.5 m-
wide, 1.6 m-high, and 45 mm-thick. To achieve an at-rest condition, the wall material
should be nearly rigid. It is hoped that the deformation of the walls could be neglected
when the soil bin is filled with cohesionless soil. In Fig. 3.1, twenty-four 20 mm-thick
steel columns were welded to the four sidewalls to reduce any lateral deformation
during loading. In addition, twelve C-shaped steel beams were welded horizontally
around the box to further increase the stiffness of the box.

Assuming a 1.5 m-thick cohesionless backfill with a unit weight = 17.1 kN/m?,
and an internal friction angle = 41° was pluviated into the soil bin. A 45 mm-thick
solid steel plate with a Young’s modulus of 210 GPa was chosen as the model wall

material. The estimated deflection of the model wall would be only 1.22 x 10 mm.
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Therefore, it can be concluded that the lateral movement of the wall is negligible.

The end-wall and sidewalls of the soil bin were made of 35 mm-thick steel plates.
Outside the steel walls, vertical steel columns and horizontal steel beams were welded
to increase the stiffness of the end-wall and sidewalls. If the soil bin was filled with
dense sand, the estimated maximum deflection of the sidewall would be 1.86 x 10 mm.
From a practical point of view, the deflection of the four walls around the soil bin can

be neglected.

3.2 Cyclic Torsional Shear Compactor

In previous studies Chen (2011), and Liu (2012) showed that cyclic torsional
shearing compaction is an effective method to improve the engineering properties of
loose sand. However, since the diameter of the shearing, disc was only 300mm, the
compaction was effective for only the relatively-thin top soil layer.

Fig 3.2 shows, under the application of the same vertical pressure p, the settlement
S: of a full sized footing of width by in a structure will-always be greater than the
settlement S, of a smaller test plate of width by. This is because the depth to which
vertical pressure of the same intensity p will penetrate is a function of the width b of
the footing.

The effective depth of compaction plays an important role in field earthwork. The
effects of compaction with a smooth-wheel vibratory roller can easily reach an effective
depth of 0.3 m. In this study, the effective depth of compaction was increased by
adjusting the diameter of the shearing disc D up to 450 mm.

To enhance an effective soil compactor with less noise, and less vibration, a cyclic
torsional shear compactor (CTSC) was developed at National Chiao Tung University

(NCTU). To increased effective compaction depth, the diameter of the shearing disc
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was enlarge to 450 mm. Fig 3.3. and Fig 3.4. show the cyclic torsional shear compactor.
The entire cyclic torsional shear compactor consists of four components, namely: (1)
shearing disc; (2) surcharge weight; and (3) torque loading device. The design and
construction of cyclic torsional shear compactor is introduced as follows. The new

compactor was designed by the author of thesis.

3.2.1 Shearing Disc

Fig. 3.3 shows the disc diameter is 450 mm, and the steel base disc is 25 mm-thick.
To efficiently carry the applied cyclic shear stress from the disc to the soil, 12 radial
steel fins were carved on.the bottom of the shearing disc as shown in Fig. 3.5. Fig. 3.6
shows the steel radial fin was 3 mm-thick, 6 mm-wide and the wedge angle of the fin
was 90° . Under the vertical pressure, the steel fin would bite into the soil mass. To
provide adequate friction between the disc and the soil, the bottom of the shearing disc
was covered with a layer of anti-slip frictional material called Safety-Walk (3M). The
slip resistant tape was attached to the disc bottom on the fan-shaped areas between the

steel fins as shown in Fig. 3.7.

3.2.2 Surcharge Weight

1. Ultimate Bearing Capacity of a Circular Footing

Vesic (1973) proposed three failure modes of shallow foundations, which included
general shear failure, local shear failure and punching shear failure. Fig. 3.8 showed a
strip foundation with a width of B resting on the surface of soil, and the nature of
bearing capacity failures Fig 3.8 illustrated the relationship between the load per unit

area g and the foundation settlement for three failure modes. The load per unit area of
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foundation at which shear failure in soil occurred was called the ultimate bearing
capacity.

Vesic (1973) proposed a relationship for the mode of bearing capacity failure of
foundations on resting on sands (shown in Fig. 3.9). The mode of failure was affected
by the relative density of sand, depth of foundation embedment and the effective footing
width. In this study, the initial relative density of loose sand was 36 % (see Fig. 4.12 in
chapter 4), the static was applied on the surface of sand (Ds = 0). To determine the
failure mode of the circular loading disc used in this study, with D, = 36%, D =0, and
B* = B = the diameter of shearing disc. In fig. 3.9, the point was located between the
punching and local shear failure zone.

Terzaghi (1943) suggested that for a continuous foundation, the failure surface in
soil at the ultimate load may be assumed to be similar to that shown in Fig. 3.10. The
effect of soil above the bottom of the foundation may be replaced by an equivalent
surcharge, q = yDy, where y is a unit weight of soil and Dy is the depth of
embedment of the footing.

Using the equilibrium analysis, Terzaghi expressed the ultimate bearing capacity
gy in the form

gy =¢'Ng + qNg + %)/BN), (3.1)
where ¢’ = cohesion of soil
Yy = unit weight of soil
N., N4, N, = bearing capacity factors that are non-dimensional and are
functions only of the soil friction angle @'.

To estimate the ultimate bearing capacity of a circular foundation, Eqg. (3.1) may

be modified to:
qy = 1.3¢'N, + gN, + 0.3yBN,, (3.2)

16



In Eq. (3.2), B equals the diameter of foundation. In this study, B equals the diameter

of the shearing disc of the CTSC. For the foundations that exhibited the local shear
failure mode in soils, Terzaghi suggested the following modification to Eq. (3.2)

q, = 0.867¢'N', + qN'; + 0.3yBN’, (3.3)

N'c, N'g,and N’,, the modified bearing capacity factors, can be calculated by using

the bearing capacity of factors equations (for N¢, Ng, Ny, respectively) by replacing ¢ =
tan‘l(g tan~! ¢"). The variation of N¢, Ng and N; with the soil friction angle is given

in Table 3.1.

Ho (1999) conducted the direct shear tests to establish the relationship between
the internal angle ¢ and unit weight y of Ottawa sand used for this study, as shown in
Fig. 3.11. For the air-pluviated fill, the empirical relationship between soil unit weight
v and ¢ angle was formulated by Chang (2000) as follows

b = 6.43y — 68.99 (3.4)
where
¢ = angle of internal friction of soil (degree)
vy = unit weight of fill (kN/m?®)
Eq. (3.4) is applicable for y = 15.45 ~ 17.45 k/m3 only.

Based on equation (3.4), corresponding toy = 15.6 kN/m? for loose sand, the
corresponding internal friction-angle ¢ = 31.3".

To calculate the ultimate bearing capacity of the circular loading disc eqn. (3.3)
was rearranged.

For a circular disc with diameter 0.45m (B = 0.45 m), acting on the surface (q =
yDf = 0) of a cohesionless soil (C’ = 0), Equation (3.3) became:

q» = 0.3yBN,
For ¢ =31.3°, from Table 3.1, Ny=1.569, and the ultimate bearing capacity qu=
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3.30 kPa.

ASTM Test Designation D 4253 — 93 (2007) provided a test method for
determining the maximum index density/unit weight of cohesionless, free-draining
soils using a vertical vibrating table. In this method, a 2-Ib/in? (13.78 kPa) surcharge
(dead weight) was applied to the surface of soil, then vertically vibrating was applied.
Without the surcharge vertical stress of 13.78kPa on the soil surface, a low unit weight
zone might remain in the upper most part of the compacter soil due to lack of
confinement.

In this study, a surcharge pressure of g = 10.35 kPa was applied on the soil surface
during the cyclic shearing process. This q = 10.35 kPa was about 3.1times the ultimate
bearing capacity of circular disc on loose sand (qu = 3.30 kPa). This g=10.35 kPa was
only about 75% of the surcharge pressure suggested by the ASTM D4235-93. This
loading was selected because the shear stress applied was directly proportion to the
normal stress applied. A light normal stress would induce a low cyclic shear stress,
which might be hard to compact the loose fill. A heavy stress would induce a high cyclic
shear stress, which might make it impossible to operate the CTSC test manually. It
should be mentioned that the effects of compaction might be strongly affected by the
applied surcharge stress. It was assumed that the contact pressure between the load disc
and the soil was uniform. For this study, the vertical surcharge pressure of 10.35 kPa

was used throughout the investigation.

2. Design of Surcharge Weight

The surcharge weight of the CTSC is loaded by normal loading discs. Table 3.2
shows the mass, thickness, and radius of the normal loading discs available for this
study. As shown Fig 3.12, the outside-diameter steel disc is 290 mm. The diameter of

the screw rod hole is 21.6 mm, the diameter of the torque shaft hole is 43 mm, and the
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diameter of the hoist screw hole is 10.25 mm.

3.2.3 Torque Loading Device

The entire torque loading device consists of two components, namely: (1) Torque
shaft and connecting frame, and (2) Torque wrench.
1. Torque Shaft and Connecting Frame

Fig. 3.13 and 3.14 show the dimensions of the torque loading frame at the top of
the torsional shear device. The hoist ring was placed on top of the frame so that torsional
shear compactor be lifted and lowered by the overhead crane in the laboratory. Two
hexagon caps were fixed on the arms of the connecting frame, which enable the torque
wrench to be hooked up to the connecting frame. The applied torque was transmitted
from the torque wrench, to the connecting frame, then to the torque shaft and shear disc
as illustrated in Fig. 3.2

Fig 3.15 (a) and Fig 3.15 (b) the show the dimensions of the extension tube. It can
use to connect the CTSC and the connecting frame to lengthen the height of the CTSC.
The mass of extension tube is 4.80 kg, which can be the surcharge weight of the CTSC.
Fig 3.16 show the CTSC is connected by the extension tube. It can use to compact the
deep of the soil bin when the CTSC cannot shear with two torque wrenches.
2. Torque Wrench

Fig. 3.17 (a) shows, the torque wrench is 430 mm long. Fig. 3.17 (b) shows the
torque wrench made of stainless steel. During testing, proper wrench length was
selected so that no collision between the torque wrench with the sidewall of the soil bin
would occur. The torque wrench was attached to the torque loading frame to induce
torsional shear on the loose fill.

The digital torque wrench shown in Fig. 3.18 and Fig. 3.19 was used to measure

torque applied to the soil. The digital torque wrench has a digital torque value readout.
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Accuracy in the clockwise direction was +/- 1%, and the accuracy in the
counterclockwise direction was +/- 2%. Readout units included N-m, ft-Ib, in-Ib and
kg-cm. The digital torque wrench made by OLY SCIENTIFIC Equipment Ltd. (model
921/200E) was 530 mm. The maximum operation range is 200 N-m. The square drive
1S 12.7 mm x 12.7 mm.

Without any normal loading disc, the mass of the CTSC frame is 49.4 kg. Adding
5 pieces of 19.80 kg, 1 piece of 9.6 kg, 1piece of 4.8 kg, 1 piece of 1.55 kg, 3 pieces of
1.05 kg and 1 piece of 0.5 kg loading normal discs, the total mass of the entire CTSC
became 168.0 kg.

The weight of the entire CTSC is equal to 1.65 kN. The diameter of the shearing
disc is 0.45 m, and the area of the bottom of the shearing disc is 0.159 m?. The vertical
pressure acting on the surface of the fill due to the weight of the CTSC is q = weight /
area = 10.35 kPa. For all tests, the vertical pressure of 10.35 kPa, which is equal to the
ultimate bearing capacity of the loose sand under circular shearing disc, was used
throughout the investigation. It should be mentioned that this thesis is intended to report
the preliminary experimental results obtained from a light-weight cyclic torsional shear

compactor.
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Chapter 4

Soil Characteristics

This chapter introduces the properties of the fill, and the reduction of friction
between the soil and lubricated side wall. The control and measurement of soil density

distribution in the fill are also introduced.

4.1 Soil Properties

Air-dry Ottawa sand (ASTM C-778) was used throughout this investigation. Table
4.1. showed that physical properties of the soil include Gs = 2.65, emax = 0.76, emin =
0.50, Deo=0.39 mm, and D10 = 0.26 mm. Grain-size distribution of the soil is shown in
Fig. 4.1. Major factors considered in choosing Ottawa sand as the fill material are

summarized as follows.

1. Its round shape, which avoids the effect of angularity of soil grains.

2. Uniform distribution of grain size (coefficient of uniformity C, = 1.5), which
avoids the effects due to soil gradation.

3. High rigidity of solid grains, which reduces possible disintegration of soil particles
under loading.

4. Its high permeability, which allows fast drainage and therefore reduces water

pressure behind the wall.
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4.2 Side-wall Friction

To simulate the field condition of a infinite half space for compaction, the shear
stress between the fill and the side walls of the soil bin should be minimized to nearly
frictionless. To reduce the friction between sidewall and fill Fang et al. (2004) suggested
to use a lubrication layer fabricated with plastic sheets. Two types of plastic sheeting,
one thick and two thin plastic sheets, were adopted to reduce the interface friction. All
plastic sheets were hung vertically on the side walls before the soil was deposited as
shown in Fig. 4.2.

In this study, two thin (0.009 mm-thick) and one thick (0.152 mm-thick) plastic
sheets were adopted for the soil.improvement experiments. Fig. 4.3 shows the variation
of side-wall friction angle 8sw as a function of the normal stress ov for the plastic sheet
method (1 thick + 2 thin sheeting) reported by Fang et al. (2004). The measured side-
wall friction angle with this method was about 7.5°. For all experiments in this paper,

the lubrication layers were applied on four side walls of the soil bin.

4.3 Control of Soil Density

4.3.1 Air-Pluviation of Loose Sand

To achieve a uniform soil density in the fill, Ottawa sand was deposited by air-
pluviation method into the soil bin. The air-pluviation method had been widely used for
a long period of time to reconstitute laboratory sand specimens. Rad and Tumay (1987)
reported that pluviation is the method that provides reasonably homogeneous
specimens with desired relative density. Lo Presti et al. (1992) reported that the

pluviation method could be performed for greater specimens in less time.
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Das (2010) suggested that, for granular soil deposits, the relative density D of
15~50% is defined as loose, Dr = 50~70% is defined as medium, and D = 70~85% is
defined as dense. For the air-pluviation method, Fig. 4.4 shows the soil hopper let the
sand flow through a calibrated slot opening at the lower end. A picture of the soil
pluviating processes is shown in Fig. 4.5. To achieve a loose fill, Chen (2003) adopted
the drop height of 1.0 m and hopper slot opening of 15 mm. In this study, the drop
height of 1.0 m and the hopper slot-opening of 15 mm were also selected to achieve the
loose fill. In Fig. 4.6, under such a condition, Ho(1999) indicated that the expected

relative density of soil was about 35%.

4.3.2 Measurement of Soil Density

To observe the distribution of soil density in the soil bin, soil density cups were
made. The soil density cup made of acrylic is illustrated in Fig. 4.7. The cylindrical cup
wall was only 10 mm-high, so that the shear deformation and volume reduction could
occur in the cup during testing. A picture of the soil density cup is shown in Fig. 4.8.
During the preparation of the 1.5 m-thick loose soil specimen, density cups were buried
in the soil mass at different elevations and different locations in the fill as shown in Fig.
4.9 and Fig. 4.10. After the loose soil had been filled up to 1.5 m from the bottom of
the soil bin by air-pluviation, density cups were dug out from the soil mass carefully.
Fig. 4.11 shows the mass of the cup and soil in the cap was measured with an electrical
scale.

For a 1.5 m-thick air-pluviated Ottawa sand layer, the distribution of soil density
with depth is shown in Fig. 4.12. For the loose sand, the mean unit weight y is 15.6
kN/m?, the mean relative density is Dr = 36 % with the standard deviation of 2.0 %. Das

(2010) suggested that for the granular soil deposit with a relative density 15% < D, <
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50% is defined as loose sand. The loose relative density Dr = 36 % achieved by the air-

pluviation method is this study (Fig. 4.12.) was quite loose and uniform with depth.




Chapter 5

Testing Procedure

The procedure to conduct the cyclic torsional shear test is introduced in this chapter.
The testing procedure can be divided into three parts: (1) specimen preparation; (2)
application of vertical static load; and (3) application of cyclic torsional shearing. These

parts will are illustrated in the following sections with pictures.

5.1 Specimen Preparation

Fig. 5.1 shows air-dry Ottawa sand in the soil storage. The soil was shoveled from
the soil storage to the sand hopper, and the mass of the fill was measured with an
electrical scale (Fig 5.2). Fig. 5.3 shows the sand hopper was lifted by the overhead
crane in the laboratory. Fig. 5.4 shows Ottawa sand was deposited by air-pluviation
method into the soil bin. To achieve the loose backfill, the drop height was controlled
to be 1.0 m and the hopper slot-opening of 15 mm were selected. The 1.0 m-long rope
next to the hopper was used to control the drop distance. Fig. 5.5 (a) and (b) show
portable ladders were placed on top of the sidewalls, and a bridge board was placed
between the ladders. Throughout the test, the operator stayed on the bridge board to
avoid any unexpected surcharge on the soil specimen.

Fig. 5.6 shows the leveling of the pluviated soil surface by the student with a brush.
Fig. 5.7 shows density cups were buried in the soil mass at different elevations in the
fill. Fig. 5.8 shows how check the density cup horizontal with a bubble level. The empty

eight density cups were placed on the surface of the soil layer. The air-pluviation of soil
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and density cup placement operations were repeated unit a fill thickness T = 1.5 m was

reached.

5.2 Application of \ertical Static Load

The procedure to apply the vertical static load on top of the air-pluviated loose sand
is introduced. The cyclic torsional shear compactor (Fig. 3.4) used to apply static load
has a footing diameter of 0.45 m and the vertical static load g = 10.35 kPa. Fig. 5.9 (a),
(b), (c), and (d) illustrates the loading pattern on soil surface. For applying four times
of vertical static load, the 3x3 loading formation is based four points A, B, C, and D.

Fig. 5.10 shows the CTSC was hoisted with overhead crane into the soil bin. Fig.
5.11 shows the vertical static load was applied on the loose sand with four different
loading pattern shown in Fig. 5.9 (a) to (d). The combination of static load footprint
caused a uniform surcharge on the soil structure. Fig. 5.12 shows the soil surface of the

4 patterns of vertical static load.

5.3 Application of Cyclic Torsional Shearing

In this study, the cyclic torsional shear was applied on the soil surface with a
rotation angle of +5° to -5° . Fig. 5.13 show that applied the CTSC with the rotation
angle controller on the loose fill. In Fig. 5.14, 5.15 and 5.16, with a rotation angle
indicator and controller, the rotation angle of the shearing disc could be effectively
controlled to be from 0° to +5° and -5° . The application of cyclic torsional shear to
loose sand is shown in Fig. 5.17.

For the test with N = 20, the soil surface after the torsional shear for the 3x3 loading
formation (Fig. 5.9 (a)) for the first 5 cycles is shown in Fig. 5.18 (a). To prevent disc

penetration due to continuous shearing at the same location, the shearing was moved to
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another 3x3 formation (Fig. 5.9 (b)) for N = 6 to 10. The soil surface after shearing
compaction for N = 6 to 10 is shown in Fig.5.18 (b). Fig. 5.18 (c) and (d) show that the
soil surface after the loading pattern for N = 11 to 15 (Fig. 5.9(c)) and N = 16 to 20 (Fig.
5.9 (d)).

To determine the relative density of soil in the cup, Fig. 5.19 shows the density
cup was carefully dug out of compacted soil mass. Fig. 5.20 (a) to (c) show the scraping
of soil toward the edge of the density cup with a spatula. Fig. 5.21 shows the brush
away of soil particles from the base plate of cup. Soil mass in the cup was measured
with an electrical scale and the relative density of the compacted soil could be

calculated.
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Chapter 6

Test Results

This chapter showed experimental results regarding soil densification due to static
load and cyclic torsional shearing. The vertical static load applied of the fill was q =
10.35 kPa. The cyclic torque T and shear stress T, applied on the soil surface was
measured and calculated, respectively. Experiments were first conducted on the surface
of a 1.5 m-thick soil lift. The surface settlement S and relative density D distribution of
the soil layer due to the static load and cyclic torsional shear were measured. The
rotation angle 6 of the shearing disc varied between +5° and -5° , and the number of
loading cycle N varied from 1 to 40. In the second part of this chapter, to obtain a soil
mass with a relative density greater than 70 to 75%, experiments were applied on the
fill for five 0.30 m-thick lifts. Each lift was compacted with the cyclic torsional shear

compactor with g = 10.35 kPa, 6 =*5° , and N = 20.

6.1 Static Load Tests on a 1.5 m-thick Lift

To separate the densification effects due to static and cyclic loadings, in this
section, the surface of a 1.5 m-thick soil lifts was compressed with the static vertical
loading q only. Effects of soil densification such as the volume change, change of
relative density in the compressed fill were investigate.

For this test, a 1.5 m-thick lift was prepared by air-pluviation method. Fig 6.1 (a)
and (b) showed that the density cups were buried in the soil mass at different elevations

and locations in a 1.5 m-thick fill. Fig 6.2 showed that measure points Ato | for surface
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settlement. The surface settlements of a 1.5 m-thick compressed soil lift due to the static
load of the compactor were investigated. The initial relative density of the loose fill was
36 + 2% (see Fig. 4.12.) The applied static normal stress was q = 10.35 kPa. To
achieve a uniform settlement, the vertical loading was applied on the surface with four

different 3x3 formations as indicated in Fig. 5.9.

6.1.1 Volume Change Due to Static Load

Fig. 6.3 showed the settlement measurement was carried out with the laser distance
meter placed between two steel beams. The surface settlements were measured at
measure at points A to | indicated in Fig 6.2. Fig. 6.4 (a) showed that surface settlement
of Liftl due to static load, the minimum and maximum values were 14.1 mm and 17.4
mm. The average of surface settlement was 15.4 mm.

To express the dimensional volume change characteristics, the volume change data
was normalized by dividing the volume change AV by the original volume Vo to obtain
the volumetric strain ev. The fill in the soil bin does not allow any lateral deformation.
Only vertical compression was allowed for volume change. The horizontal cross-
section of soil mass was kept a constant A. The volumetric strain &, of the soil mass is

defined as:

AHXA

AV AH
ev, %0 = rlte 100 = x 100 = o X 100 (6.1)

0 0XA 0

Fig. 6.4 (b) showed the volumetric strain of Lift 1 due to static loading. The
induced volumetric strain ey was about 1.02 %. It is obvious that static vertical loading
is an effective method to compress the loose fill. To limit the scope of thesis, only the

vertical stress q = 10.35 kPa was used throughout this study.
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6.1.2 Relative Density after Static Load

To investigate the relative density distribution in the compressed fill, density cups
were buried in soil mass at different elevations and locations as shown in Fig. 6.1. (2)
and (b). For the un-compacted loose soil, the initial relative density was about 36 %
(see Fig 4.12). Fig. 6.5 showed the distribution of relative density with depth due to
the application static vertical load = 10.35 kPa on the 1.5 m-thick lift. The segmental
line was obtained by connecting data point closet to the average D, for at the depth. It
is obvious show that the relative density increase at the top of the lift. The relative
density increase was most apparent in the upper 0.45m of the lift, was equal to the
diameter of the shearing disc. However, in the lower part the lift the relative density did
not enough to reach the target value of D; = 70 to 75 % required by NAVFAC DM-7

(US Navy 1982).

6.1.3 Relative Density Increase Ratio

To investigate the effects of the cyclic torsional shear compaction, the relative
density increment AD, =D,y — Dy 00se IS defined, where D, = the relative
density due to compaction with N eycles of shearing, D, ;,0se = the relative density of
loose sand. Fig 6.6 (a) showed that the distribution of relative density increment due
to static load with depth. In the figure, near on the top of the fill, the relative density
increased significantly. Little Dy increase was observed near the bottom of the 1.5 m-
thick fill.

To study the effects due to cyclic torsional shearing compaction, a new index was
defined in this section. The relative density increment was normalized by the relative

density of loose sand. The Relative Density Increase Ratio, RDIR, was defined as:
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D D,nN—D
RDIR= r_o_ N~ “rloose 6.2)

r,loose Dr,loose

where D, ;40s0= relative density of loose sand, D, y= relative density of soil after N
cycles of shearing compaction.

NAVFAC DM-7 (1982) reported that the relative density of 70% to 75% can be
obtained by proper compaction procedures. In this study, the initial relative density of
the loose fill is 36% (see Fig 4.12). Based on Eqn. (6.2), the target of range of soil
improvement corresponding to D; = 70% and 75 % would be 0.94 to 1.08, respectively,

the RDIR due to static load was far from the required relative density increase ratios.

6.2 Cyclic Torsional Shear Compaction on a 1.5 m-thick
Lift
In the experiments, the surface of a 1.5 m-thick single soil lift was first compressed
with the static vertical load (dead-load of the compactor), and then compacted with

cyclic torsional shearing. The effects of soil densification were demonstrated with the

surface settlement and relative density change of the compacted fill.

6.2.1 Measurement of Applied Torque

Fig. 6.7 showed the torque applied on the soil surface was measured with a digital
torque meter. Fig 6.8 showed that relationship between the measured torque T’ and
applied torque T. Fig 6.9 showed the difference between the CTSC with extension tube
or without extension tube. For the rotation angle 6 of shearing disc changing from +5
° to-5° , the torques measured at N = 1, 5, 10, 15, and 20 were shown in Fig. 6.10,
6.11, and 6.12, respectively. In Fig.6.8, for N = 1 the applied torque varied between

67.8 to -65.8 N-m. In Fig. 6.12 (b), for N = 20 the applied torque varied between 69.7
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to -70.2 N-m. Fig 6.13 showed the applied torque T as a function of the number of cycle
of cyclic torsional shearing. Test results indicated that the applied torque did not change
with increasing number of shearing cycles. Test Results also indicated that the
application extension tube (see Fig. 6.5 (b)) did not affect the transmission of torque
the torque loading device to the shearing disc.

Fig. 6.14 showed the how to determine the maximum torsional shear stress tmax at
the edge of the shearing disc due to the applied torque T. A linear distribution of shear
stress from the center to the edge of the disc was assumed. Fig. 6.15 showed the

maximum shear stress with increasing number of cycle of torsional shearing.

6.2.2 Volume Change Due to Cyclic Torsional Shear

Compaction

Fig 6.16 showed that, after the application of the static loading, cyclic torsional
shear was applied on the surface of soil fill with the 3x3 formation for N =1, 2, 3, 4, 5,
10, 15, 20, 30, 40. The applied vertical stress was 10.35 kPa. The rotation angle of the
shearing disc varied between +5° to-5°. The diameter of the shearing disc was 0.45 m.
The cyclic torsional shear was applied on the 3x3 loading pattern. Fig. 6.17 (a) showed
the surface settlement after the first cycle of torsional shearing application. The
measured surface settlement varied from 17.6 to 21.6 mm, the average value of surface
settlement was 19.4 mm. Fig. 6.26 (a) showed the surface settlement after 40 cycles of
cyclic torsional shearing application. The measured surface settlement varied from 34.3
to 39.8 mm, and the average value was 37.4 mm. The extra settlement due to the cyclic
torsional shearing compaction was about 22 mm, which was more than the settlement
due to static vertical loading. Fig 6.27 (a) show the measured surface settlement of the

1.5 m-thick fill after the application cyclic torsional shearing cycles of 1, 2, 3, 4, 5, 10,
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15, 20, 30 and 40 cycles. In the figure, the surface settlement increased with increasing
number of tmax application. Fig. 6.28 (a) showed the variation of surface settlement
from 19.4 to 37.4 mm with increasing value from static load to N = 40.

Fig 6.17 (b) showed the volumetric strain after the first of cycles of torsional
shearing application. The volume change was normalized by the initial soil volume by
Eq. (6.1), the value of the volumetric strain due to the first cycle of tmax varied from
1.17 % to 1.44%, the average value was 1.29 %. Fig. 6.26 (b) showed the volumetric
strain after 40 cycles of varied from 2.28 % to 2.65 %, the average value was 2.49 %.
Fig 6.27 (b) showed the volumetric strain of the 1.5 m-thick fill after application of
cycle shearing for 1, 2, 3,4,5,10, 15, 20, 30 and 40 cycles. In the figure, the volumetric
strain increased with increasing number of cycles of cyclic torsional shearing. Fig 6.28
(b) showed the variation of surface settlement and volumetric strain with number of
cycle N of shearing. It should be mentioned that, for 1.5 m-thick soil fill, the
densification due to shearing compaction occurred only at the upper most part of the
soil mass. Little volume change occurred at the lower part of the fill. Therefore, the
volumetric strain of the entire soil body may not be very significant.

In Fig 6.28 (a), in the first 5 cycles of cyclic torsional shearing application, the
surface settlement was increased significantly. However, after 20 cycles, the major part
of settlement was accomplished, soil particles were sheared and reached a densely-
packed condition. As a result, it was difficult to increase the surface settlement any
further with more cyclic shear application. Thus, N = 20 may be the optimal number

for cyclic torsional shearing construction.
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6.2.3 Relative Density Distribution after Change Due to Surface

Compaction

Fig 6.29, 6.30, 6.31 showed the distribution of relative density due to cyclic
torsional shearing for N =5, 10 and 20, respectively. It is clear in these figures, the soil
density increase due to static load and shearing compaction was most obvious in the
upper of the lift. There was little density increase at the bottom of the 1.5 m-thick lift.
To achieve the required relative density Dr = 70 to 75 %, for the entire soil mass, several
strategies were proposed: (1) enlarging the diameter of shearing disc D (to influenced
depth); (2) reducing the lift thickness of fill layers, (for example, from T=15mto T
= 0.3 m); (3) increase the applied torque T and.the cyclic torsional applied shear stress
Tmax accordingly.

Fig. 6.32 showed the distribution of relative density after the application of cyclic
torsional shearing for N = O (static load), 5, 10, 20. In the figure, the relative density of
the compacted fill increased with increasing number of cycles of torsional shearing
application. The US Navy design manual (NAVFAC DM-7.2 1982) described that for
coarse-grained, granular well-graded soils, 70 to 75 % relative density can be obtained
by proper compaction procedures. In this study, the range Dy = 70 to 75 % is selected
as the minimum required relative density. In Fig. 6.31, N = 20 was selected as suggested
by Fig. 6.28 (a), the corresponding effective-depth of compaction would be about 0.30
m. The effective depth of compaction and the the number of cycles of compaction
during construction could be reduced by properly adjusting the applied rotation angle

0, and the normal load . Further study should be carried out regarding these factors.

6.2.4 Relative Density Increase Ratio

Fig 6.33 (a), 6.34 (a), and 6.35(a) showed that the distributions of the relative

density increment with depth after cyclic compaction for N =5, 10 and 20, respectively.
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In these figures, the relative density increment AD; observed near the top of the fill
were greater than that near the bottom. Fig 6.36 (a) showed that the distributions of the
relative density increment AD; with depth for various number of shearing cycles. In Fig.
6.33 (a) for N = 5, at the depth z = 0.3 m, the relative density increment AD; after 20
cycles of cyclic torsional shearing compaction was 22 to 28 %. These values were less
than the required relative density Dr = 70 to 75 %. However, after 20 cycles of shearing
application, in Fig.6.35 (a), the relative density of compacted soil reached the required
values. Thus test results indicated that cyclic torsional shearing was an effective method
for compacting the upper 0.3 m fill.

Fig. 6.33 (b), 6.34 (b), and 6.35 (b) showed that the distribution of the relative
density increase ratio with depth after cyclic torsional shearing compaction. On the top
of lift (depth =0 to 0.3m), the ratio reached the range of RDIR = 0.94 to 1.08. This
means that, the relative density of the loose fill must increase about 94 to 108 % to
reach the required state. In Fig. 6.35 (b), after 20 cycles of shearing loading, the RDIR
varied from 0.94 to 1.03. Fig. 6.36 showed that at different depth, that RDIR mostly

increased with increasing number of cycles of shearing compaction.

6.3 Compaction on Five 0.30 m-thick Lifts

In the field, it is often necessary to compact the entire soil mass to a requirement
minimum relative density. In this study, a 1.5 m-thick fill was accomplished by
compacting five 0.30 m-thick lifts with the cyclic torsional shear compactor (CTSC).
The applied vertical load g was 10.35 kPa, and the number of cycle shear stress

application N was 20.
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6.3.1 Compaction of Lift One

Fig. 6.37 illustrated the thickness of soil fill was 0.3 m and soil density cups were
buried at different elevations in Lift 1. Fig. 6.38 showed the surface settlement and
volumetric strain after the application of the static load on lift 1. In Fig. 6.38 (b), the
minimum and the maximum of volumetric strain of the soil were 4.4 and 7.6 %, and
the average value was 5.9 %. Fig. 6.39 shows the surface settlement and volumetric
strain after 20 cycles of shearing compaction. In Fig. 6.39 (b), the minimum and the
maximum of the volumetric strain were 8.9 and 11.3 %, and the average value was
9.8%. It apparently indicated that cyclic torsional shearing compaction is an effective
method to compact the soil in Lift 1. The extra volumetric strain due to the cyclic
torsional shearing compaction on Lift 1 was 3.9 %. Test results indicated that static
compression alone was not sufficient to compact the soil fill.

The distribution of relative density after 20 cycles of shearing compaction was
shown in Fig. 6.40. After the static compression and cyclic torsional shearing
compaction, the relative density increased significantly. The relative density in Lift 1
increased from about 36 %values mostly to above 70 %.

Fig. 6.41 showed the relative density increment and relative density increase ratio
after 20 cycles of shearing compaction. Fig. 6.41 (a) showed the relative density

increment successfully increased reached the target zone (for Dy = 70~75%)

6.3.2 Compaction of Lift Two

Fig. 6.42 showed soil density cups were buried at different elevations in lifts 1 and
2. Both lifts were compacted on the surface with the CTSC. Fig. 6.43 (a) and Fig.6.44
(a) showed the accumulated settlement after static load and cyclic torsional shearing

compaction, respectively. In Fig 6.44 (b), the accumulated volumetric strain after 20
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cycles of shearing compaction range from 9.8 to 11.4 %, the average volumetric strain
was 10.5 %.

Fig. 6.45 showed that distribution of relative density with depth after 20 cycles of
shearing compaction on the top of lift 2. In the figure, the relative density in the lift 2
obviously reached the target zone of D = 70 to 75 %. In the two 0.3 m-thick compacted
lifts, most of the measured relative densities were above to 70 %. The relative density
increment AD, and relative density increase ratio RDIR after 20 cycles of shearing
compaction on the top of lift 2 were shown in Fig. 6.45 (a) and (b). Test results indicated
that cyclic torsional shear compaction was an effective method to compacte the

cohesionless soil fill.

6.3.3 Compaction of Lift Three

Fig. 6.47 showed soil fill and soil density cups buried at different elevations in lifts.
After static load and shearing compaction on the surface of Lift 3, the accumulated
settlement and the volumetric strain were shown in Fig. 6.48 and Fig. 6.49. The
accumulated volumetric strain after 20 cycles of shearing compaction on Lift 3 varied
from 9.4 to 11.0 %.

Fig. 6.50 illustrated the distribution of relative density with depth after 20 cycles
of shearing compaction on Lift 3. In the figure, the measured relative density values
were mostly above to 70 %. Some of the relative densities measured near the top of
each lift were even greater than 80 %. Fig. 6.51 (a) and (b) showed the variation of
relative density increment and relative density increase ratio with depth. In Fig 6.51 (a)
and (b), the measured values were mostly above the shaded target zone, especially the

values measured near the top of each lift.
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6.3.4 Compaction of Lift Four

Fig. 6.52 showed the soil density cups buried in lifts 1 to 4. After the static load
and cyclic shearing compaction on the surface of each lift, the accumulated settlement
and the volumetric strain were shown in Fig. 6.53 and Fig. 6.54. Fig. 6.54 (b) showed
the accumulated volumetric strain after 20 cycles of shearing compaction varied from
9.54 10 10.7 %.

The distribution of the relative density with depth after 20 cycles of shearing
compaction were applied on top of lift 1 to 4 were shown in Fig. 6.55. In the figure, the
most of the relative densities were above 70 %. The distributions of AD, and RDIR

with depth were shown in Fig. 6.56 (a) and (b).

6.3.5 Compaction of Lift Five

Fig. 6.57 showed the density cups buried at different elevations in lifts 1 to 5. After
static compression and cyclic compaction on the surface of each lift, the accumulated
settlement and the volumetric strain were shown in Fig. 6.58 and Fig. 6.59. For the five
0.3 m-thick compacted soil lifts, the accumulated settlements varied from 147.4 mm to
166 mm. The average settlement was 154.8 mm. In Fig. 6.59 (b), the accumulated
volumetric strain varied from 9.84 % to 11.0 %, the average value was 10.3 %. In Fig.
6.39 (b), Fig 6.44 (b), Fig 6.49 (b), Fig. 6.54 (b) and Fig 6.59 (b), the average volumetric
after cyclic shearing on top of lift 1, 2, 3, 4 and 5 strain were 9.77 %, 10.53 %, 10.37
%, 10.05 % and 10.32 %,respectively. It indicated that the volume change due to the
cyclic torsional shearing compaction on each lift was quite uniformly.

Fig. 6.60 showed that distribution of relative density with depth after 20 cycles of
shearing compaction on lift 5. At this stage, the cyclic shearing compaction for the

entire soil body was completed. In Fig 6.60, most of the measured relative densities
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were greater than 70%. Fig 6.61 showed the mean relative density of the compacted
soil mass was 76.39 with a standard deviation of 6.2%. It is clear in Fig 6.61 that the
entire soil body was successfully compacted with this ground improvement technique.

Fig 6.62 showed the AD, and RDIR with depth after 20 cycles of cyclic shearing.

6.4 Cyclic Torsional Shear Compaction with Different

Shearing Angles

To discuss the effects due to variation of shearing angles, test were conducted for
the shearing angle of £1°,+2°,-+3° 15, #10°, £15°, £20" and 30", and the number
of loading cycles were set to be N = 20. Compaction was applied on the fill surface for

a 1.5 m-thick lift.

6.4.1 Applied Torque for Different Shearing Angles

Fig. 6.63 showed the controller used for different shearing angle with angle. At N
= 20, the torque measured T for 6 = +1°, +2° £3° 15° +10°, £15°, £20° and +30°
were shown in Fig. 6.64. For 0 = £1° the applied torgue varied between -53.9 to 52.6
N-m. For 6 = £30° the applied torque varied between -89.5 to 92.3 N-m. Fig. 6.65
showed the applied torque T as a function of the shearing angle 6. Test results indicated
that the applied torque increased with increasing shearing angle 6.

Fig. 6.66 showed the maximum shear stress as a function of the shearing angle 6.
Test results indicated that maximum shear stress tmax increased with increasing shearing

angle 6.
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6.4.2 Volume Change of Soil with Shearing Angles

Fig. 6.68 (a) showed the surface settlement after 20 cycles of shearing application
with the shearing angle 6 = +1°. The measured surface settlement varied from 20.6 to
27.6 mm, the average value was 23.2 mm. Fig. 6.75 (a) showed the surface settlement
after 20 cycles of shearing application with the shearing angle 6 = +30°. The measured
surface settlement varied from 34.4 to 47.6 mm, the average value was 42.2 mm. Fig.
6.76 (a) showed the measured surface settlement for a 1.5 m-thick fill after 20 cycles
of shearing application for shearing angles of 6 = +1°, +2° *3° £5° 110" *15°, +20
*and £30°, In the Fig. 6.76 (a), the surface settlement increased with increasing
shearing disc angle. Fig. 6.77 (a) showed the variation of surface settlement from 18.1
to 43.1 mm with increasing shearing angle 6 from 0 to +30°,

Fig. 6.76 (b) showed the volumetric strain of the 1.5 m-thick fill after 20 cycles
of application of shearing angle for 6= +1°, £2°, £3° +5° +10°, +15°, +20° and %30
". In Fig. 6.76 (b), the volumetric strain increased with increasing shearing disc angle.
It should be mentioned that, for 1.5 m-thick soil fill, the densification due to shearing

compaction occurred only at the upper-most part of the soil mass.
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Chapter 7

CONCLUSIONS

In this study, the change of volume and relative density in the soil due to static

vertical loading, and cyclic torsional shearing compaction were investigated. Based on

the experiment results, the following conclusions were drawn.

A. For the 1.5 m-thick lift:

1.

Under the static load of g = 10.35 kPa, the relative density increase was most
apparent in the upper 0.45 m of lift. However, in the lower part of the lift, little
relative density change occurred.

The densification due to cyclic shearing compaction occurred only at the upper
part of the soil mass. Little volume change occurred at the lower part of the fill.
In the first 5 cycles of cyclic torsional shearing application, the surface
settlement increased significantly. However, after 20 cycles, the major part of
settlement was accomplished, soil particle were sheared and reached a densely-
packed condition. As a result, it was difficult to increase the surface settlement
any further with more cyclic shear application.

The relative density distribution after the application of cyclic torsional shearing
for N = 0 (static load), 5, 10, and 20 increased with increasing number of cycles
of shearing application.

After 20 cycles of shearing application with rotation angle 6 =+5° the relative
density of the compacted soil reached the required Dr = 70 to 75 %. Test results
indicated that cyclic torsional shearing was an effective method for compacting

the upper 0.3 m of fill.
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B. For five 0.3 m-thick lifts

1. For shearing compaction on five 0.3 m-thick lifts, after 20 cycles of torsional
shearing with the torsional angle of 6 =+5°, the average volumetric strain for
the lift 1, 2, 3, 4, and 5 was 9.77, 10.53, 10.37, 10.05 and 10.32 %, respectively.
It was clear that the cyclic torsional shearing compaction in each lift was
relatively uniform.

2. Most of the relative density measured in compacted fill were greater than 70 %.
The entire soil body was successfully compacted with cyclic torsional shearing
compaction.

3. For five compacted lifts, the mean relative density was 76.3 % with a standard
deviation of 6.2 %. It was obvious that the entire soil body was successfully

compacted with this ground improvement technique.
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Table. 2.1. Qualitative description of granular soil deposits

Relative density (%) Relative density (%) Description of soil deposit
Das (2010) Lambe and Whitman
(1969)

0-15 0-15 Very loose

15-50 15-35 Loose

50-70 Medium

70 - 85 Dense
85-100 \ery dense
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Table 3.1. Terzaghi’s Modified Capacity Factors N';, Ny, and N,

& N; N, N, @ N; N N,
0 5.70 1.00 0.00 26 15.53 6.05 259
1 5.90 1.07 0.005 27 16.30 6.54 2.88
2 6.10 1.14 0.02 28 17.13 7.07 3.29
3 6.30 1.22 0.04 29 18.03 7.66 3.76
4 6.51 130 0.055 30 18.99 8.31 439
5 6.74 139 0.074 31 20.03 9.03 483
6 6.97 1.49 0.10 32 21.16 9.82 5.51
7 7.22 1.59 0.128 33 22.39 10.69 6.32
8 747 170 0.16 34 2372 1167 722
9 7.74 1.82 0.20 35 25.18 12.75 8.35

10 8.02 1.94 0.24 36 26.77 13.97 9.41

1 8.32 2.08 0.30 37 2851 1532 10.90

12 8.63 2.22 035 38 3043 16.85 12.75

13 8.96 2.38 0.42 39 32.53 18.56 14.71

14 9.31 2.55 0.48 40 34.87 20.50 17.22

15 9.67 273 0.57 41 3745 22.70 19.75

16 10.06 2.92 0.67 42 40.33 25.21 22.50

17 10.47 313 0.76 43 43.54 28.06 26.25

18 10.90 3.36 0.88 44 47.13 31.34 30.40

19 11.36 3.61 1.03 45 5117 35.11 36.00

20 11.85 3.88 1.12 46 55.73 39.48 41.70

21 1237 417 135 47 60.91 44.45 4930

2 12.92 448 1.55 48 66.80 50.46 59.25

3 1351 482 1.74 49 73.55 57.41 7145

bl 14.14 5.20 1.97 50 81.31 65.60 85.75

25 14.80 5.60 2.25
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Table. 3.2.

Characteristics of normal loading discs

Mass
(kg)

19.80

9.60

4.80

1.55

1.05

0.50

Thickness
Disc
(mm)

37.5

20.0

10.0

3.0

2.0

1.0

Disc
Diameter
(mm)

290

Quantity
Available

290

290

290
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Table. 4.1. Physical properties of Ottawa sand

Shape Rounded
Emax 0.76
€min 0.50

Gs 2.65
Deo, (mm) 0.39
Deo, (Mm) 0.26

Cu 1.50
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\{ 1896

Fig. 2.4. Approximate method for determining lift height required to achieve a
minimum compacted relative density of 75% with five roller passes using data for a

large lift height(after D’ Appolonia et al. 1969)
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Fig. 2.8. Sketch of typical results of cyclic simple shear strain-controlled tests with

definitions of volumetric cyclic threshold strain (after Hsu and Vucetic, 2004)
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Fig. 2.11. Change of relative density with one-way and cyclic disc shearing versus
normal stress (after Yang, 2002)
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Fig. 3.7. Bottom of shearing disc with Safety-Walk
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Fig. 3.12. Dimensions of normal loading disc for mass = 19.80 kg
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Fig. 3.13. Torque loading frame (after Chen, 2011)
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Fig. 3.16. CTSC and torque loading frame are connected by extension tube
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Fig. 4.5 Pluviation of Ottawa sand into soil bin (after Chen, 2011)
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Fig. 4.8. Soil density cup
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Fig. 5.1. Soil storage
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Fig. 5.4. Air-pluviation of Ottawa sand into soil bin
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Fig. 5.6. Leveling of soil surface with a brush
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(b)
Fig. 5.8. Horizontal check of density cup with a bubble level
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Fig. 5.10. Hoist of CTSC into the soil bin
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Fig. 5.11. Apply vertical static load on loose sand
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Rotation angle indicator
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Fig. 5.13. Cyclic torsional shear compactor with rotation angle indicator and

controller
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Rotation angle controller

Ottawa Sand
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Fig. 5.17. The application of cyclic torsional shear to loose sand
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(b) N=6~10
Fig. 5.18. Compacted soil surface after 3x3 formation of cyclic torsional shear
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Fig. 5.19. Soil density cup dug out of compacted soil mass
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Fig. 5.20. Scraping of soils toward edge of density cup with a spatula
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(b)

Fig. 5.21. Brush away soil particles from base plate of density cup
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Fig. 6.1 Density cups buried in soil mass at different elevations and locations
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Fig. 6.4. Surface settlement and Volumetric strain due to static vertical load

127



Relative Density, (%)

0 20 40 60 80 100
0 | T | | |
q )
| Ottawa sand oe® © o
I T=150m ) o oo o
D=045m o -
1 q=10.35kPa g O ere
- N = 0 (static load) °
05
E
N
5
o
(]
A
Loose)
N =0)
\] — O)
15

Fig. 6. ibution of relative density after G

128




Relative Density Increment, ADy (%)
0 10 20 30 40 50 60
T T ‘ T
Ottawa sand

T=1.50m
D=0.45m
q=10.35kPa

N = 0 (static load)

o

Depth, z (m)

awa sand

est 0621
Test 0624

Depth, z (m

:0 04

70 % (RDIR;

1.5

Fig. 6.6. Change of density due to vertical static load (N = 0)
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Fig. 6.9. The cyclic torsional shear compactor
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Fig. 6.11. Variation of torque T with shearing disc angle 6
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Fig. 6.12. Variation of torque T with shearing disc angle 6
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Fig. 6.17. Surface settlement and Volumetric strain due to cyclic torsional shear at N =
1
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Fig. 6.18. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=2
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Fig. 6.19. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=3
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Fig. 6.20. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=4
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Fig. 6.21. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=5
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Fig. 6.22. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=10
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Fig. 6.23. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=15
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Fig. 6.24. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=20
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Fig. 6.25. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=30
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Fig. 6.26. Surface settlement and VVolumetric strain due to cyclic torsional shear at N
=40
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151



Number of cycles, N

0 10 20 30 40
° ‘ | ~ |
Ottwa Sand
_| —<&—— Test 0612
T=150m | —@—— Test 0614
10 4 q=10.35kPa
p=150 |

Surface Settlement, S(mm)

Volumetric Strain

(b) Volumetric strain for N = 1~40

Fig. 6.28. Variation of surface settlement and volumetric strain for N = 1 to 40
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Fig. 6.34. Change of density due to cyclic torsional shearing at N = 10
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Fig. 6.36. Change of density due to cyclic torsional shearing
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Fig. 6.41. Change of density after shearing compaction for N = 20 in lift 1
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Fig. 6.43. Surface settlement and Volumetric strain after static load on Lift 2
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Fig. 6.46. Change of density after shearing compaction for N = 20 in Lift 1 and 2
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Fig. 6.48. Surface settlement and Volumetric strain after static load on Lifts 3

172



Distance from Left Sidewall , d (m)
0 03 06 0.9 1.2 15

_ Ottawa sand

O ABC
a0 ¥°3t00§é9 5 - DEF
= U. mXx
D=045m O GHI
B q=10.35kPa
0=150

oo
o
\

{

N=20 g

Surface Settlement , S (mm)

0)

Volumetric strain, g

14 —

16

(b) Volumetric strain after shearing compaction for N = 20 on Lift 3
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Fig. 6.51. Change of density after shearing compaction for N = 20 in Lift 1 and 3
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Fig. 6.56. Change of density after shearing compaction for N = 20 in Lift 1 to 4

180



Lubricated
Side Wall Density Cup

. / Depth
]

. Ottawa L=

LiftS —. Sand =

. | ﬂ;m
G = = 0
Lifta = dene— = . . o0
(V2]
D
CD
-9

“:‘-""’

181



Distance from Left Sidewall , d (m)
0 03 06 0.9 1.2 15

Ottawa sand
40 |

—O— ABC
Test 0819
| T=030mx5 —H— DEF
D =0.45m —<— GHI
80 | q=10.35kPa
0=150

N = 0 (static load)

Surface Settlement , S (mm)

0)

45 m

\ = 10.35 kPa
' _ .

Volumetric strain, g

14 —

16

(b) Volumetric strain static load on Lift 1 to Lift 5
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(b) Volumetric strain after shearing compaction for N = 20 on Lift 5

Fig. 6.59. Surface settlement and Volumetric strain after shearing compaction for N =
20 on Lift 5
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Fig. 6.62. Change of density due to cyclic torsional shearing in Lift 1 to 5
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Fig. 6.63. Controllers for different shearing angles
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Fig. 6.67. Surface settlement and Volumetric strain due to static vertical load
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Fig. 6.68. Surface settlement and Volumetric strain due to shearing angle
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Fig. 6.69. Surface settlement and Volumetric strain due to shearing angle
0= 12
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Fig. 6.70. Surface settlement and Volumetric strain due to shearing angle
0= 13
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Fig. 6.71. Surface settlement and Volumetric strain due to shearing angle

0= 15
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Fig. 6.72. Surface settlement and Volumetric strain due to shearing angle
0= $10°
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Fig. 6.73. Surface settlement and Volumetric strain due to shearing angle
0= 115
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Fig. 6.74. Surface settlement and Volumetric strain due to shearing angle
0= 120°
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Fig. 6.75. Surface settlement and Volumetric strain due to shearing angle
0= 130°
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Fig. 6.76. Variation of surface settlement and volumetric strain for 6 = 1 to 30
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Fig. 6.77. Variation of surface settlement and volumetric strain for 6 = 1 to 30

201



