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摘    要 

隨著無線網路的發展與可攜式隨身裝置能力的提升，視訊傳遞的應

用越來越廣泛。在有限的資源和與生俱來的限制下，如何適當地調整視

訊成為無線多媒體應用相關領域一個最重要且富挑戰性的議題。在這篇

論文中，我們提出了一個以內容為依據的視訊調整方法，讓資源能夠有

效地利用，並提高影片的視覺品質。藉由分析影片中物件的亮度、位置、

移動向量與能量等屬性，配合客戶端裝置能力與關聯性統計模型取得場

景中較吸引注意的部分。利用區域加權速度失真模型、位元配置與視訊

調整方法，動態地從物件、畫面與 GOP 三個層面來做視訊串流的調整。

從實驗結果可以看出所提出的方法相當實用並可達到較好的品質。 
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Abstract 

With the development of wireless and the improvement of mobile device capability, 

video streaming is more and more widespread applied in such environment. Under the 

limited resource and inherent constraints, appropriate video adaptation has become one of 

the most important and challenging issues in wireless multimedia application related 

areas. We propose a novel approach to adapt video based on content information in order 

to effectively utilize resource and improve visual perceptual quality in this thesis. 

According to the analyzed characteristics of brightness, location, motion vector, and 

energy features, combined with capability of client device and correlational statistic 

model, the attractive or interesting regions of video scene are derived. Therefore, the 

Region Weighted Rate-Distortion is used for adjusting the bit allocation. Video adaptation 

scheme dynamically adapt video bitstream through object, frame, and GOP levels. 

Experimental results show that the proposed scheme is efficient and achieves better 

visual quality. 
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Chapter 1  

Introduction 

1.1 Motivation 

With the development of wireless and the improvement of mobile device capability, 

the desire for mobile users to access video is becoming stronger. These devices including 

cellphone (smart phone), PDA, and laptop have enough computing capability to decode 

and display video and receive video via wireless channel, like 802.11. However, due to 

some inherent constraints in wireless multimedia application, like limited bandwidth in 

wireless and high variation in device resource, how to adequately utilize such resource to 

get better quality is an important issue.  

Video adaptation is usually used in response to the huge variation of resource 

constraints. In traditional video adaptation, the adapter considers available bit rate and 

network buffer occupancy to adjust the transmitted data while streaming video. Although 

the viewpoint of Information Theory, same bitrates deliver same amount of information, 

it may be not true for human visual perception. When viewing video presentations, 

viewers can only be attracted to a relatively small part of the video display with acuity 

drop-off in peripheral areas at any point in time. Accordingly, by adjusting allocation of 

bitrate from peripheral regions of the frame to regions-of-interest, viewers can get better 

visual perceptual quality. So, in opposition to traditional video adaptation, content-based 

video adaptation can effectively utilize content information of video in bit allocation and 

adaptation and is a promising research direction.  

In this thesis, a content aware video adaptation is proposed based on visual attention 

model. It first analyzes the content of video to derive the important regions which have 

high degree of attraction level; then allocate bitrate and assign adapting scheme according 
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to the content information in order to acquire better visual quality and avoid unnecessary 

resource waste in low bitrate constrain. 

 

1.2 Problem Statement 

The problem addressed in this thesis is to utilize content information for improving 

the quality of a transmitted video bitstream subject to low bit-rate constraints, which 

especially applies to mobile device in wireless network environment. In this thesis, three 

major issues are considered:  

(1) How to quickly derive the important object from video. 

(2) How to adapt video streams according to content and mobile device condition. 

(3) How to find an appropriate video adaptation approach or combination to get the 

better quality. 

In the following chapters, we will analyze related issues through theory and 

experiments and thereupon present a system to deal with it. 

 

1.3 Organization 

The rest of this thesis is organized as follows. In Chapter 2, we introduce some 

background knowledge required for video technology. We also survey the previous 

research works on content analysis techniques and video adaptation methods. In Chapter 

3, we propose the design issues of content aware video adaptation in low bitrate 

constraint, including video analyzer, adaptation decision, and bitstream adaptation. The 

experimental results and discussion will be presented in Chapter 4. Finally, we conclude 

the thesis and describe the future works in Chapter 5.
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Chapter 2  

Background 

In Chapter 2, we introduce the background knowledge related to video content 

analysis and video adaptation. Section 2.1 presents a brief overview of MPEG standard. 

In Section 2.2, we describe some research efforts for traditional video adaptation, video 

compressed domain features, and content-based video adaptation. 

 

2.1 Overview of MPEG Standard 

MPEG is the international standard [1] [2] for moving picture video compression, 

which is an acronym for Moving Picture Experts Group. The MPEG activities cover 

video signal compression, digital audio signal compression and the issue of audio-visual 

synchronization. For saving transmission bandwidth and data storage, multimedia 

processing systems require data compression. The processing of video in the proposed 

approach is in compressed domain, because MPEG standard provides good compression. 

Since the research of the thesis is about video data, we focus on the overview of the video 

compression in this section. 

The MPEG Video standard specifies the video bitstream syntax and the corresponding 

video decoding process. The MPEG Video syntax supports three types of coded frames or 

pictures, intra (I-) pictures, coded separately by themselves; predictive (P-) pictures, 

coded with respect to the immediately previous I- or P-picture; and bidirectionally 

predictive (B-) pictures, coded with respect to the immediately previous I- or P-picture as 

well as the immediately next P- or I-picture. 

 

 

 3



Fig. 2-1 shows an example picture structure in MPEG video coding that uses three 

B-pictures between two reference (I- or P-) pictures. In MPEG video coding, an input 

video sequence is divided into groups of pictures (GOPs), where each GOP typically 

starts with an I-picture and the rest of the GOP contains an arrangement of P-pictures and 

B-pictures. A GOP serves as a basic access unit, with the I-picture serving as the entry 

point to facilitate random access. 

 

I    B    B   B   P    B   B    B   P    B   B   B    I

Forward
Motion Vector

Forward
Motion Vector

Backward
Motion Vector

1      2      3      4      5      6      7      8      9      10    11    12    13

 

Fig. 2-1. An example of I-, P-, and B-structure in MPEG coding. 

 

There are some core techniques used in MPEG standard, such as block-based 

transform coding, predictive coding, entropy coding, motion-compensated interpolation, 

etc. The most important ones are block-based transform coding and motion 

compensation. 

Block-based transform coding reduces the spatial redundancy in digital video. The 

substantial correlation between neighboring pixels is greatly reduced in transformed 

coefficients. These coefficients need not be coded with full accuracy and can be 

entropy-coded efficiently for compression. The 8x8-block discrete cosine transform 

(DCT) is popularly used for its near-optimal performance and high speed using fast 
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algorithms. A typical encoding sequence using the DCT is illustrated in Fig. 2-2. Note 

that in video compression other techniques are also involved, so that the actual encoder 

diagram is much more complex. The DCT is also used to encode differential data and 

residue errors after motion compensation. 

 

 
Fig. 2-2. Block diagram of a typical encoding sequence using the DCT. 

 

Block-based motion compensation significantly reduces the temporal redundancy in 

digital video, as shown in Fig. 2-3. A best match of the same dimension is found for each 

block in the current frame, thus only the difference (residue error) between the block and 

its match needs to be coded. In MPEG-1 and MPEG-2, backward and bi-directional 

motion compensations are also used. These techniques provide a much higher coding 

efficiency than encoding each frame without looking at its adjacent frames for similarities. 

The unit of motion compensation is usually 16x16 blocks, termed macroblocks (MB) in 

MPEG video. The frequency of motion compensation and how it is done are flexible to 

allow for the tradeoff between encoding complexity and performance. 
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Previous frame 
Motion 
Vector 

Current frame 

Best 
match

 

Fig. 2-3. Block-based motion compensation. 

 

2.2 Related Work 

In this section, we briefly describe several existing methods related to our research. In 

Section 2.2.1, we review the related concepts for video adaptation. Section 2.2.2 

describes the content features of video compressed-domain. Finally, in Section 2.2.3, we 

introduce the related approaches for content-based video adaptation. 

 

2.2.1 General Video Adaptation Concepts 

In pervasive media environments, users may access multimedia content on different 

types of terminals and networks with the development of multimedia systems and the 

advancement of information technology. There are many critical needs in such ubiquitous 

media access environments, and the most important issues are the ability to handle the 

huge variation of resource constraints and adequately utilize such resource to get better 

quality. Video adaptation is an emerging field that includes a body of knowledge and 

techniques responding to the above challenges. It transforms the input video to an output 

video or augmented multimedia form by manipulating at multiple levels (signal, 

structural, or semantic) in order to meet diverse resource constraints and user preferences 
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while optimizing the performance of the video. Its objective is to maximize the quality of 

the adapted presentation while satisfying various constraints.  

There has been a vast amount of activity in research and standard development in this 

filed. Earlier works such as [3] and [4] explored some interesting aspects of adaptation 

like bandwidth reduction, format conversion, and modality replacement for Web 

browsing applications. As time moved on and mobile devices with limited display and 

processing power became reality, video adapting to achieve spatial resolution reduction 

and temporal resolution reduction has also been studied. Recently, international standards 

such as MPEG-7 [5], MPEG-21 [6], W3C, and TV-Anytime have developed related tools 

and protocols to support development and deployment of video adaptation applications.  

Despite the bourgeoning activities and advances, this field is in need of an analytical 

foundation. [7] presented a general framework that defines the fundamental entities and 

important concepts related to video adaptation. Furthermore, the authors indicate that 

most innovative and advanced open issues about video adaptation require joint 

consideration of adaptation with several other closely related issues, such as analysis of 

video content, understanding and modeling of users and environments. [8] provided an 

overview of the video transcoding and introduced some transcoding schemes, such as 

bit-rate reduction, spatial and temporal resolution reduction, and error resilient 

transcoding. Some of these common video adaptations are illustrated in Fig. 2-4. In [A] 

of Fig. 2-4, the transcoded video reduces the bit rate. Fig. 2-4 [B] shows that original 

video is converted to a MPEG-4 video with low frame rate and low spatial resolution. 

Transformation of original video to another format is demonstrated in Fig. 2-4 [C]. 
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Fig. 2-4. Illustration of common video transcoding operations. 

 

2.2.2 Video Compressed-Domain Features 

We choose to derive content features from compressed domain because our 

application scenario need to avoid expensive computation and time consumption 

involved in decoding and/or re-encoding. [9] provided a comprehensive and high-level 

review of audio-visual features that can be extracted from the standard compressed 

domains. Low-level features like color, brightness, edge, texture, and motion are usually 

extracted from the key frames for representing video content information.  

Color feature is usually used for representing the video content, such as color (YUV) 

histogram, DC YCbCr vector, and dominant color. Although color feature is efficient for 

video content representation, it may be indistinguishable while several shots of different 

kind of videos have the same color scheme. Moreover, it is highly susceptible to the 

global color variation caused by different encoding device or lighting changes.  
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Brightness or intensity feature which is subset of color feature sometimes is used 

instead of color, especially human is more sensitive to the luminance rather than the 

chrominance. Generally speaking, brighter regions in a frame have more attraction for 

viewer. So, brightness feature plays an influential role in video analysis process. 

Edge or texture feature which can be extracted from AC coefficients is another 

noticeable characteristic often used for representing the video content, such as edge 

direction histogram described in MPEG-7, AC energy, and edge map. In compressed 

domain, the edge feature can just coarsely estimate the texture and derive rough edge 

direction and edge distribution. 

Motion vectors can be extracted easily from motion field of compressed domain, 

while much motion information, such as camera operation, object moving, and statistical 

information of motion vectors can be obtained by analyzing motion vectors. However, 

motion vectors are just a rough and sparse approximation to real optical flows, and are 

prone to be inaccurate when used to indicate real motion of macroblocks. 

[10] presented a visual attention model to simulate how viewers’ attention are 

attracted based on analyzing low level features of video content without fully semantic 

understanding of video content. Dynamic features such as motion intensity, motion 

spatial coherence, and motion temporal coherence as well as static features such as color 

contrast, intensity contrasts, and orientation contrasts are taken into account. Besides, the 

dominant face and camera motion are also utilized to analyze the degree of attention. 

Their proposed approach model the visual effects based on motion, static, face, and 

camera attention. Although their application scenario is used for video summarization, 

the proposed video attention model is useful in content-based video adaptation. 
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2.2.3 Content-based Video Adaptation 

Today's mobile and wireless users access multimedia content from different types of 

networks and terminals. Such user platforms often add peculiar constraints on media 

consumption — limited user time, low transmission bandwidth, low power, and 

low-resolution display. Furthermore, different tasks influence different user preferences, 

while different contents attract different degree of attention. Most traditional video 

communication systems consider videos as low-level bit streams, ignoring the underlying 

visual content information. Content analysis plays a critical role in developing effective 

solutions in meeting unique resource constraints and user preferences in such usage 

environments. Content analysis provides a promising direction for finding optimal 

adaptation methods under various resource-utility constraints. In the following, we will 

review the related works of video adaptation using content based information. 

[11] proposed a content-aware framework for video communication. The 

content-aware framework is based on the recognition of strong correlation among video 

content, required bandwidth resources, and the resulting video quality. The video content 

is analyzed in several feature domains including texture, motion, and size of object. Then, 

the content-based classifier is used to group video described by a set of content features 

into a finite number of categories. It is reasonable to assume videos belonging to the same 

class exhibit similar behaviors of resource constraints due to their similar features. Finally, 

the authors demonstrated advantages of the content-aware approaches in two applications. 

First, content-based bandwidth prediction was used for dynamic resource allocation. It is 

able to trace changes in visual content and therefore change bit allocation scheme while 

the discontinuities of visual content are detected. This is in contrast to traditional schemes 

that consider only bit rate and network buffer occupancy in their heuristic segmentation 

and resource prediction algorithms. Second, the content-aware framework was used for 

real-time generation of the utility function. They demonstrated a new system for speedup 
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of generation of utility function based on content-based classification technique that 

allowed estimation of utility in real-time. 

[12] presented brief overviews of such emerging, fruitful content-based video 

adaptation research area and indicated promising research directions. It is justifiable to 

assume that any given adaptation operation has similar effects on resource/utility 

regarding contents with similar characteristics. [12] showed that optimal tradeoffs of 

frame rate dropping and spatial quality reduction can be accurately predicted using 

computable video features (e.g., motion, spatio-frequency features) and statistical 

classification techniques. 

[13] also considered the tradeoff between spatial quality (image clarity) and temporal 

quality (motion smoothness) under a limited bandwidth to maximize user satisfaction in 

video streaming. They presented a visual perception model to predict viewer’s 

satisfaction given the perceived spatial quality and temporal quality measured by their 

introduced method. Based on this visual perception model, an adaptive video streaming 

system was proposed to maximize the visual quality of the delivered video stream which 

can automatically choose dropping frames (decrease temporal quality) or cutting the 

scalable bitstream (decrease spatial quality) when the bandwidth is insufficient for 

transmitting full quality and frame rate video stream. Fig. 2-5 shows 2 frames of the 

delivered video sequence by their proposed scheme. Fig. 2-5 (a) cuts FGS layer to 

decrease perceived spatial quality but keep full frame rate to maintain smooth motion due 

to the high motion of the interval. Fig. 2-5 (b) drops 2/3 frames and get the best perceived 

spatial quality due to the slight motion of the interval and all B frames can be dropped 

without introducing evident motion jitter. 
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      (a)                                (b) 

Fig. 2-5. Simulation results utilizing perceptual video streaming by adaptive 

spatial-temporal scalability. 

 

[14] proposed a content-based video streaming method based on visual attention 

model to efficiently utilize network bandwidth and achieve better subjective video quality. 

First, visual attention model is exploited to segment the Regions of Interest (ROI) in 

video frames. Features like motion, static, face, and camera motion are utilized to model 

the visual effects. In static attention model, a saliency map as shown in Fig. 2-6 is 

generated from each frame by the 3 channel saliency maps computation: color contrasts, 

intensity contrasts, and orientation contrasts. Motion attention model is built based on 

intensity, spatial coherence, and temporal coherence of motion vector field. Besides, face 

and camera motion are considered because the appearance of dominant faces in frames 

certainly attracts viewers' attention and camera motions are always utilized to emphasize 

or neglect certain objects. Then, considering the ROI is more sensitive to coding error 

than other regions, a region-weighted rate-distortion model is developed to allocate 

suitable bits for all ROI and non-ROI regions. 
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Fig. 2-6. Static attention model generate Saliency Map. 
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Chapter 3  

Content-Aware Video Adaptation 

in Low Bitrate Constraint 

In this chapter, we will present the design issues on content-aware video adaptation in 

low bitrate constraint. In Section 3.1, we introduce the overview of the proposed 

architecture and scheme. A novel video content analyzer is presented in Section 3.2 and a 

hybrid feature-based model for video content adaptation decision is illustrated in Section 

3.3. Finally, Section 3.4 describes the bitstream adaptation approaches we proposed. 

 

3.1 Overview of the Proposed Scheme 

Fig. 3-1 shows the architecture of the proposed content-aware video adaptation 

scheme. Initially, video streams are processed by video analyzer to derive the content 

features of each frame/GOP and the important regions which have high degree of 

attraction. Subsequently, the adaptation decision engine determines the adaptation 

scheme and parameters according to the content information derived from video analyzer, 

device capability obtained from profile, correlational statistic model, and region weighted 

rate-distortion model. Finally, the bitstream adaptation engine adapts video based on the 

bit allocation scheme. 
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Fig. 3-1. The architecture of the proposed system. 

 

3.2 Video Analyzer 

In this section, we describe the first component of the proposed system. Video 

Analyzer is used to analyze features of video content for deriving meaningful information. 

Section 3.2.1 describes the data we use for Video Analyzer. In Section 3.2.2, we import 

the concept of Information Object to represent the content of video. Finally, we introduce 

the relation of selected features with visual perception effects in Section 3.2.3. 

 

3.2.1 Data Extraction  

A video bitstream contains a lot kinds of information that can be extracted from pixel 

or compressed domain. As described above, we consider only the features that can be 

derived from data in compressed domain since fast processing is required to suit the 

presented application scenario. Processing in the compressed domain reduces 

computation because frames do not need to be converted back to the uncompressed (pixel) 

domain. Here, we discuss the compressed-domain data extraction issues.  

 

Video Analyzer 

Adaptation 
Decision 
Engine

Bitstream 
Adaptation

Client Profile

Engine Adapted 
Bitstream 

Input 
Bitstreams 

Adaptation Scheme and 
Parameters 
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In Section 2.1, we have already briefly described the overview of MPEG which is the 

international video compression standard. After compressing, the raw data are 

transformed from pixel domain to compressed domain. So, we can directly extract data in 

compressed domain including DC and AC values of I, P, and B frames, plus motion 

magnitude and direction of P and B frames.  

To reduce the computational complexity and maintain the adaptation scheme 

consistency, it is reasonable to neglect the analysis of the B frame. The DC and AC 

values of P or B frames are less meaningful because they are motion residuals. If we want 

to make them significant, they are needed to process motion compensation first. But it 

wastes too much time to do this process. Besides, the distance between I and P frames (i.e. 

number of B frame between I and P frame) usually is small while the video bitstream 

have strongly temporal coherence. Generally, the B frame content is similar to the 

adjacent P or I frame. Additionally, neglecting analysis of B frames also avoids the large 

change of adaptation decision during short period, which will cause jitter effect. 

In view of the above-mentioned reasons, we choose the DC and AC values of I 

frames plus motion magnitudes and motion directions of P frames as input data of our 

video analyzer. These input data can be easily extracted from compressed video 

sequences. Many features can be derived from these data, including brightness, color, 

edge, energy, motion, and so on. The relations of features with data will be described in 

the following section. 

 

Table 3-1. The input data of video analyzer. 

Motion Data 
Frame 

DC value AC value 
Magnitude Direction 

I ○ ○   
P × × ○ ○ 
B × × × × 
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3.2.2 "Information Object" (IO) Derivation 

[15] presented a theoretical framework and a set of novel methods for maximizing 

information throughput for multimedia browsing on small displays. Although their 

methods mainly deal with adapting general multimedia content including images and web 

pages for browsing on small-resolution devices, these concepts can be extended and be 

employed in video adaptation. First, we will briefly describe the framework of [15] in the 

following. Later, the “Information Object” concept, which is a modification of [15], will 

be presented. 

Different parts of content have different importance values. Attention-based selection 

[15] allows only attention-getting parts be presented to the user without affecting much 

user experience. For example, human faces in a home photo are usually more important 

than the other parts. A piece of media content P usually consists of several information 

objects Bi. An information object is an information carrier that delivers the author’s 

intention and catches part of the user’s attention as a whole. For example, Information 

Object may be a picture, a flash, or a title sentence in different types of multimedia. 

Since each Information Object has different importance values, the property IMP is 

introduced as a quantified value of the weight of each object in contribution to the whole 

information. Besides IMP indicator, the minimal perceptible size (MPS) denotes the 

minimal allowable spatial area of an information object. The alternative (ALT) is a 

substitute of the original content. However, not all of the aforementioned approaches and 

features are suitable for video adaptation, we will present a modified model which 

utilizes the “Information Object” concept. 
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Our proposed Information Object model for video content is defined as below. 

Definition 1: The basic content representation model for a video shot S is defined as a set 

which has three relative hierarchical levels of Information Objects: 

(1) { } 31      ≤≤= iHS i                                              

and 

{ } NjBH ji ≤≤= 1                                                 (2) 

and 

( )jjj CONIMPB ,=                                               (3) 

where 

Hi,  is the perception of object, frame, or GOP level of S, respectively 

Bj,  is the jth information object in Hi of S 

IMPj,  is the importance value of Bj

and CONj, describes the members the Information Object contained. 

Fig. 3-2 is a content representation model example consisted of some Information 

Objects. The Information Objects generated by content analyzer are basic units of video 

adaptation. 

 

 

 

 

:

:

    
(a) 
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 Frame based IO 
 non-Frame based IO

 



 
(b) 

Fig. 3-2. An example of the content representation model. 

(a) frame based IO (b) object based IO 

 

3.2.3 Feature Selection for Visual Effect 

Visual effect is considered in four feature domains — brightness, spatial location, 

motion, and energy. For each feature, we briefly discuss the extraction methods (i.e. the 

relationship with data extraction), visual perceptive effect, and possible limitation caused 

by certain video content. Some features may be meaningless for some kinds of videos, 

such as motion feature for rather smooth scenes or no motion videos. 

 

Brightness: 

Generally speaking, the human perception is always attracted by the brighter part, 

which is referred to as brightness attraction property. For example, the brightly colored, 

or strongly brightness contrasted parts of a video frame, even in the background, always 

have high attraction. So, the brightness characteristic is an important feature to identify 

the Information Objects. Here, we use the DC value of the luminance of I frame to derive 

the block brightness. Some results of Information Objects derived in view of brightness 

are illustrated in Fig. 3-3. We can discover the brightness attraction property may lose its 

reliability when the overall frame/scene has higher brightness. Moreover, in some special 

cases, the region with large brightness value does not cause human attention, such as the 
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scene has the white wall background, the cloudy sky, the vivid grasslands, and so on. 

Integrating the preceding analysis with an observation in Fig. 3-4: even the same bit rate 

are assigned, the visual distortion of the dark regions is more unobvious. Consequently, 

our brightness attention model containing mean of brightness, variance of brightness, and 

location based brightness histogram will be presented in the following. 

 

 
Ave. Brightness: 80 Ave. Brightness: 73 Ave. Brightness: 155 Ave. Brightness: 140 

Fig. 3-3. Utilizing brightness to derive IO. We can discover the higher brightness 

average is, the more unreliable the derivation result is. 

 

 

 

 

Fig. 3-4. Perceptual distortion comparison between different brightness.  

 

 

 

 

 
(a) (b) 

The visual distortion of brighter regions is more obvious than darker regions. (a) 

An adapted frame using uniform quantization parameter, (b) Original frame. 
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According to our basic assumption, we define the brightness attention B as following: 

var_
_

B
levelB

DCvalueB ×= ,                                            (4) 

where DCvalue is the DC value of luminance, B_level is obtained from the average 

luminance of the previous calculated frame, and B_var denotes the DC value variance of 

current and surrounding eight blocks. 

Besides, in order to improve the brightness attention model in response to attraction, 

we design a location based brightness histogram which utilizes the correlation between 

brightness and distribution to identify the important brightness bin and roughly 

discriminate foreground from background. The module calculates mainly distribution of 

each brightness bin to decide whether the degree of brightness is attractive. For instance, 

the same brightness distributed over center regions or peripheral regions will cause 

different degree of attention, even if they both are quite bright. We will apply the average 

region value of the brightness bin to adjust the B obtained from Eq. (4) when the 

proportion of the brightness bin is greater than certain degree. The function of adjustment 

is as follows: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
<≤+
<≤
<≤−

≤

=

4)( if                      5
3)(4 if                 1
2)(3 if                      
1)(2 if                 1

1)( if                      0

'

Blbbh
BlbbhB
BlbbhB
BlbbhB

Blbbh

B                                    (5)                

where B’ is the adjusted brightness attention value using location based brightness 

histogram model, and the lbbh() function denotes the average region value of the 

brightness bin. In Fig. 3-6, we can evidently discover that the results of the location based 

brightness histogram have large refinement against pure brightness attention model. 
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(a) (b) 

 

Fig. 3-5. Location based brightness histogram.  

(a) The centricity region used to estimate the distribution of brightness bin. (b) An 

example of location based brightness histogram. 

 

 

 

 

Ave. Brightness: 140 Ave. Brightness: 155 Ave. Brightness: 109 Ave. Brightness: 74 

Fig. 3-6. Comparison between the IO derived from brightness without (first row) 

and with combining the location based brightness histogram (second row).  
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Location: 

Human usually pay more attention to the region near the center of a frame, referred to 

as location attraction property. On the other hand, the cameramen always operate the 

camera to focus on the main object, i.e. put the primary object on the center of the camera 

view, in the technique of photography. So, the closer to the center the object is, the more 

important the object is. Even the same objects may have different important values due to 

their location of appearance. To get better subjective perceptual quality, the frames can be 

generated adaptively by emphasizing the regions near the important location and 

deemphasizing the rest regions. The location related information can be generated 

automatically according to the centricity. We introduce a weighting map in accordance 

with centricity to reflect the location characteristic. Fig. 3-7 illustrates the weighting map 

and the adapted result based on the location factor. But, for different type videos, the 

centricity of attraction may be different. A dynamic adjustment of location weighting map 

will be introduced in Section 3.3.3 according to the statistic information of IO 

distribution. 

       

Fig. 3-7. Location weighting map and adapted video according to the location feature. 

 

Motion: 

After extensive observation of a variety of video shots, the relation between the 

camera operation and the object behavior in a scene can be classified into four classes. 

The first class, the camera is fixed and all the objects in the scene are static, such as 
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partial shots of documentary or commercial scenes. The percentage of this type of shots is 

about 10~15%. The second class is fixed camera and some objects moving in the scene, 

like anchor person shots in the news, interview shots in the movie, and surveillance video. 

This type of shots is about 20~30%. The third class, the camera move while no change in 

the scene, is about 30~40%. For instance, some shots of scenery scene belong to this type. 

The fourth class, the camera is moving while some objects move in the scene, such as 

object tracking shots. The proportion of this class is also about 30~40%.  

Because the meaning and the importance degree of the motion vector feature are 

dissimilar in the four classes, it is beneficial to first determine what class a shot belongs 

to while we derive Information Objects. We can utilize the different representations in the 

motion vector field to distinguish the target video shot into applicable class. In the first 

class, all motion vectors are almost zero motions because the adjacent frames are almost 

the same. In the second class, there are partial zero motions due to the fixed camera and 

partial similar motion patterns attributed to moving objects, so that the average and the 

variance of motion magnitude are small and the zero motion have a certain degree 

proportion. In the third class, all motions have similar motion patterns when the camera 

moves along the XY-plane or Z-axis, while the magnitudes of motions may have larger 

variance in other camera motion cases. However, the major direction of motion vectors 

has a rather large proportion in this class. In the fourth class, the overall motions may 

have large variation while some regions belonging to the same object have similar motion 

patterns. According to the above discussions, we use the mean of motion magnitude, the 

variance of motion magnitude, the proportion of zero motion, and the histogram of 

motion direction to determine the video type, as shown in Table 3-2. 
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Table 3-2. The video types are classified according to motion vector. 

 Motion magnitude 

Class Camera Object Mean Variance 

Zero motion

(%) 

Maximum motion 

direction proportion

1 Fixed Static near 0 quite small near 100%  

2 Fixed Moving smaller Smaller middle  

3 Moving Static larger middle/larger small quite large 

4 Moving Moving larger Larger small Smaller 

 

People usually pay more attention to the large motion objects or objects which have 

different motion activity from others, referred to as motion attraction property. Besides, 

motion feature has different importance degree and meaning according to their motion 

class. So, our motion attention model will depend on the above-mentioned motion class 

and is illustrated as the following. 

In Motion Class 1 and 2: 

βα
βα

≥≥×
−

= magnitudeMAmagnitudeMattention   when                     ,      (6) 

In Motion Class 3 and 4: 

βα
βα

≥≥−−×
−

= magnitudeMAmagnitudeMattention      when )5.01( ,      (7)  

where Mattention is the motion attention value, magnitude denotes motion magnitude, 

MA represents the bin proportion of the motion angle histogram for each block, and α,β 

are two thresholds for noise elimination and normalization. 

 

Energy: 

Another influence on perceptual attention is the texture complexity, i.e. the 

distribution of edges. Fig. 3-8 is an example of the edge extracted from a video frame. 

People usually pay more attention to the objects which have greater or less magnitude of 
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edge than average [16], referred to as energy attraction property. For example, the object 

with complicated texture in smooth scene is more attractive, and vice versa. Most edge 

detection methods work on the assumption that there is a very steep gradient in the image. 

By using a weighted mask accordingly, it is possible to detect edges in the pixel domain.  

 

 

(a) (b)  

Fig. 3-8. An example of edge field. (a) Original frame, (b) Edge field. 

 

Although our approach considers issues in the compressed domain, it is reasonable to 

extract edges using the AC coefficients in DCT transformed domain. We use the 

predefined two edge features [19] to derive edges. The two horizontal and vertical edge 

features can be formed by two-dimensional DCT of a block. As shown in Fig. 3-9, the 

two edge feature sets [20] can be used to represent the edges in an 8x8 block.  

{ }
{ 7,...,2,1:   : 

7,...,2,1:   : 
== }

==
jVVFeatureVertical

iHHFeatureHorizontal

j

i          (8) 

in which  and  correspond to the DCT coefficients  and  for u, v = 1, 

2, …, 7. Eq. (9) describes the AC coefficients of DCT: 

iH jV 0,uF vF ,0

   ( ) ( )∑∑
−

=

−

=

++
=

1

0

1

0
,, 2

12cos
2

12cos2 M

i

N

j
jivu N

vj
M

uix
MN

F ππ ,       (9) 

where u = 1, 2, …, M-1, and v = 1, 2, …, N-1. Here M = N = 8 for an 8x8 block.  
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Fig. 3-9. Horizontal and vertical edge features of DCT coefficients in an 8x8 block. 

 

In the DCT domain, the edge pattern of a block can be characterized with only one 

edge component, which is represented by projecting components in the vertical and 

horizontal directions, respectively. The edge features from the DCT basis images is 

shown in Fig. 3-10. 

 

 

Fig. 3-10. The 64 (8 x 8) DCT basis images. 

 

 

 27



The gradient energy of each block is computed as: 

   22 VHE +=                (10a) 

∑∑
==

==
7

1

7

1
   ,   

j
j

i
i VVHH              (10b) 

where Hi is the horizontal feature and Vj is the vertical edge feature. The gradient energy 

of I frame is then obtained which is represented as the edge energy feature.  

 

However, as our observation, the influence of perceptual distortion in parts with large 

edge energy or small edge energy is little, as shown in Fig. 3-11. Although we have 

explained that objects which have greater or less magnitude of edge than average attract 

more human attention. On the contrary, the visual perceptual distortion introduced by 

quantization is small in extremely high or low energy cases. Accordingly, our energy 

model combined the above two aspects is illustrated as below. 

 

 
(a) (b)  

Fig. 3-11. Comparison of the visual distortion in different edge energy regions.  

(a) The original frame. (b) The uniform quantization adapted frame. We can 

discover high energy regions like tree have less visual distortion than other regions 

like walking person in (b). 
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We introduce four thresholds which are derived from the mean and variance of energy 

of the previous calculated frame. According to the energy E obtained from Eq. (10a), 

assign each block the energy attention value, as shown in Fig. 3-12. When the energy E is 

near the energy mean of the frame, we assign the block medium energy attention value. 

When the block energy belongs to higher or lower regions, we assign the block high 

energy attention value. In extreme energy case, we assign such blocks the lowest energy 

attention value because their visual distortion is unobvious. 

 
Low energy High energy 
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3.3.1 Content 

Our content-related adaptation decision is based on the discussion in the Section 3.2. 

We utilize brightness, location, motion, and energy features to derive the Information 

Object of video content. A lot of factors affect human perception. We adopt integration 

model to aggregate attention values from each feature, instead of intersection model. One 

object gaining quite high scores in one feature may attract viewers while another object 

gaining medium high scores in several features may also attract viewers. For example, a 

quite high-speed car appeared in the scene will attract viewers’ attention, while a brightly, 

slowly walking person appearing in the center of the screen also attract people. 

In addition, due to large diverseness in all kinds of video content, it is impossible to 

use the same formula to determine the content-related adaptation decision. We utilize the 

feature characteristic to roughly discriminate content into several classes, and thus a more 

suitable weighted principle is applied to each class, as described in Section 3.3.4. 

 

3.3.2 Device Capability 

In order to reduce the unnecessary waste and increase the utilization of resource, it is 

needed to consider the device capability in adapting video. Especially, as a great amount 

of new devices with diverse capabilities are making a popular boom; their limited 

resolution size, available bandwidth, weaker display support, and relatively powerless 

computation are still obstacles to streaming video against traditional environments. 

Without appropriately adapting video, the resource can not be efficiently utilized and the 

received visual quality may be quite poor. Fig. 3-13 is an example of such delivery 

scenario and shows that the role of video adaptation is important and challenging. 

In our video adaptation scheme related to client device capability, we consider the 

spatial resolution, color depth, brightness, and computation of the received device. In the 

following, we will describe the adjusting methods according to different aspects. 
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tradeoff principle used to determine the appropriate picture resolution is heuristic and 

computation-intensive, which requires pre-encoding attempt.  

Consider our research scenario, some experiments related to determine appropriate 

resolution will be described in the Chapter 4. According to experimental analysis, we 

present the conclusion as following. 

If we can find a resolution that the distortion introduced by down-sampling, encoding 

quantization, and then decreased by interpolation is smaller than the distortion of original 

resolution by encoding quantization in the same bit rate constraint, as Fig. 3-14 illustrated, 

the ideas which utilize the down-sampling approach is beneficial to obtain better visual 

quality. 

 

(a) 

(b) 

Fig. 3-14. The above yellow process (a) is the resolution-considered adaptation. 

The below blue process (b) is the original encoding process. The q2 of process (b) 

is much larger than q1 of process (a) due to the same bit rate constraint. 
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Color depth 

The reason for considering the color depth of the device capability is similar to the 

spatial resolution. Some hand-held devices may not support full color depth, i.e. eight bits 

for each component of color space. To avoid unnecessary resource waste, we may utilize 

the color depth information of the device in video adaptation. For example, avoid wasting 

resource to transmit video streams with 24 color depths to the device with only 16 color 

depths.  

The effect of reducing the color depth is similar to the quantization. Therefore, it is 

not necessary to consider reducing color depth further than client capability. Naturally, 

the rate controller will choose higher quantization when the bit rate is insufficient. 

 

Brightness 

Because the variation of extreme of the brightness is not sensitive to visual perception 

and some restrictions are inherent in hand-held device display screens, such as low 

brightness contrast, it is reasonable to remove the extreme value without influencing 

viewers’ experience. Although the improvement in the utilization of resource based on 

extreme brightness remove property is pretty limited, the entropy of encoding is reduced 

without perceived distortion. 

 

Computation 

Due to the weak computation capability of mobile devices, there may be not enough 

time to decode and display video at the frame rate used in the encoder. Appropriately 

reducing the transmitted frame rate can not only avoid the asynchronous problem but also 

exploit the saving bit rate in spatial quality. 

Another advantage is to extend the power consuming time of hand-held devices. In 

opposition to general computer, mobile devices have a significant difference, i.e. their 

power source is limited. If we lower the requirement of the computation, like reducing 
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the temporal quality, certainly the power consumption rate will also slow down. This is 

quite beneficial for mobile device. 

 

3.3.3 Correlational Statistic Model 

We consider the correlational statistic model due to the high correlation between 

adjacent frames. The location which has higher importance value in the preceding frames 

will have higher probability of being Information Object. Similarly, the frame which 

preceding frames have higher importance value will have higher probability of being 

Information Object. So, we analyze the interdependence of Information Objects in spatial 

and temporal domain. From the experimental result of Information Object derived from 

above-mentioned Video Analyzer shown in Fig. 3-15, our opinion can be proven 

explicitly. Based on the above observation, we can predict Information Object utilizing 

the temporal information when the motions of a shot are small, for reducing computation.  
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(a)  

 Fig. 3-15. (a) Information Object correlation of adjacent frames in the GOP 

(b) Information Object correlation of adjacent GOPs. 

 

 
 
 

 34



Furthermore, the correlational statistic model is also used in other aspects, such as 

statistic of each feature value of content, IO distribution, IO density, and Motion Class to 

determine the weight of each content feature and to adjust adaptation decision principle. 

The statistic of each feature value of content, like mean, variance, histogram, and so on, 

used in Video Analyzer have been described in Section 3.2. The statistic of Motion Class 

used in Video Analyzer also has been introduced in Section 3.2 and decision of adaptation 

principle will be presented in Section 3.3.4. In the following, we will describe the 

purpose of the statistic of Information Object. 

Observing the dispersedness of Information Objects in a frame, we can discover large 

variation in distinct videos. For instance, the density and centricity of Information Object 

in Fig. 3-16 (a) and (b) are eminently different. We import the centricity region of Fig. 

3-5 (a) to calculate the percentage of Information Object in each region, as Fig. 3-17 

shown. Therefore, we will dynamically adjust the weighting map of the location feature, 

which has five candidates as Fig. 3-18 (a) shown, according to the statistic of the IO 

density. When the IO is centralized, the candidate (5) is used. On the contrary, the 

candidate (1) is used. 

 

  
 (a) (b) 

Fig. 3-16. The IO regions are marked as yellow masks in distinct videos.  

(a) video c41 (b) video c162. 
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Fig. 3-17. The relation between densities of IO and centricity regions as shown in Fig. 3-5 

(a). Six testing sequences are observed, including c9 (anchor person), c162 (full court 

football), c171 (close-up football), c41 (dense objects), c130 (large object), and speedway. 

 

 

(1) (4) 

(5) (2) 

(3) 

(a) (b)  
Fig. 3-18. (a) The candidates of location weighting map (b) the suitable one for each video. 

 

3.3.4 Decision Principle 

As our preceding description, we take two aspects into consideration to adapt video, 

content information and client device capability. For the first aspect, we adopt content 

features that have explicit visual effect to attract viewer attention, including brightness, 

color, location, motion, and edge energy, to determine Information Object. For the second 

aspect, we consider the spatial resolution, color depth, brightness, and computation 
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capability of client device to influence on the resource utilization and video perception 

quality.  

The motion class described in Section 3.2.3 is useful not only for deriving the 

Information Object by motion feature but also for determining the adaptation scheme. 

Due to vast variety in video content, the decision principle for adaptation scheme must be 

adjustable according to the content information. For example, it is impossible to use the 

same principle for adapting in no motion video and high motion video. In our opinions, 

the Motion Class is a good classification to determine the weight of each feature in the 

Information Object derivation process.   

Table 3-3 shows the detail of the selected features in each Motion Class. In the first 

class, due to the motions are almost zero motions and meaningless, we do not need to 

consider the motion factor. In the second class, the motion is the dominant feature 

because the moving objects are especially attractive in this class. Although, in the third 

class the features we considered, i.e. brightness, location, and energy while motion 

ignored, are the same as the first class, the adaptation schemes are entirely different. In 

the first class, the frame rate can be reduced considerably without introducing the motion 

jitter. Nevertheless, whether the frame rate can be reduced in the third class it depends on 

the speed of the camera motion. 

 

Table 3-3. The importance of feature in different video classes. 

Class Camera Object Brightness Location Motion Energy 

1 Fixed Static ◎ ◎  ◎ 

2 Fixed Moving   ◎  

3 Moving Static ◎ ◎  ◎ 

4 Moving Moving ◎ ◎ ◎ ◎ 
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Besides, as the above description in Section 3.2.2, the Information Objects are 

derived from three relative hierarchical levels, object level, frame level, and GOP level, 

respectively. In object level, the adaptation is based on the IMP of each block to adjust 

individually. In frame level, the whole frame adjustment utilizes the aggregation of the 

IMP in a frame to judge the importance of the frame [17]. Finally, the wide concept is 

used to adjust in GOP level which aggregate the IMP of frames to obtain the importance 

value of GOP. The detailed bit allocation schemes of the three levels will be described in 

Section 3.4.2. 

 

3.4 Bitstream Adaptation 

In this section, we describe the third component of the proposed system. Bitstream 

Adaptation Engine is used to control the bit rate and adapts the bitstream based on Video 

Analyzer and Adaptation Decision Engine. 

In Section 3.4.1, we introduce the concept of Region Weighted Rate-Distortion Model 

used to execute rate control. Subsequently, we present bit allocation scheme of our 

content aware adaptation in Section 3.4.2. 

 
 

3.4.1 Region Weighted Rate-Distortion Model  

Rate control is a fundamental technique in the coding process, which is based on the 

rate distortion theory. Based on the fact that regions with different attention level have 

different sensitivity to coding error, [14] proposed a video region-weighted rate-distortion 

(R-D) function: 

iR
iiii ewRD γσ −= **)( 2 ,                         (11) 

where denotes the mean square value of the error of Regions-of-InterestiD i (ROIi) 

between decoded video frame and original video frame, denotes the weight coefficient iw
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of ROIi, which is determined by the attention level of ROIiA i, γ is a constant number, 

is the variance of the encoding signal, and is the bit rate (bits/pixel) used to encode 

the ROI

2
iσ iR

i. Here, the background region excluding all the ROIs is considered as a least ROI 

region. 

Since the constraint of total bandwidth is the same, so the sum of all regions (1, 2,…, 

N) bit rate is a constant: 

R
S

RSRSRS NN =
⋅++⋅+⋅ K2211 ,               (12) 

where Si denotes the area size of ROIi, S is the whole frame size, and R denotes the total 

bit rate for the whole frame. 

The essence of the problem of rate allocation is a global optimization issue and can be 

described by the following equation: 
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where denotes the total degree of distortion of the whole frame. ),,,( 21 NRRRD K

In order to minimize the total distortion , Lagrange multiplier 

method is applied to solver it, and derives the following function: 
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Then, to make get its minimum value, assign the differential to be 

zero as the following: 
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Solve Eq. (15) to get: 
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Assume the variance of the encoding signal in one frame is equal at all spatial 

 39



regions: ji σσ = . The result can be simplified to: 
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By the theory of acoustics, the human’s perception of sound, sonority S, is a 

logarithmic form of the energy of sound E. The same discipline is for light. The attention 

level of ROIi, Ai, represents the human’s visual perception. The weight coefficient wi 

represents the weight of luminance (energy of light), so Ai is a logarithmic form of wi, 

while wi is an exponential form of Ai. 

Assume wi has an exponential form as: 

                           k
A

i

i

eCw ⋅= ,                      (18) 

where Ai is attention value of ROIi , k and C are constants. 

The ROIs are encoded by different quantization parameter QPi, to meet the target bit 

rate Ri, according to the R-Q model [18]: 

                     β
α

βα
iR

i eQPQPR
−

=⇒−= log             (19) 

where, αandβare parameters, αaccounts for overhead bits. 

Based on the analysis of the region weighted RD model, we can obtain the 

appropriate bit rates and quantization parameters of each attention level region for 

content aware bitstream adaptation. 

 

3.4.2 Bit Allocation Scheme 

Based on the attention analysis results, we establish a content-aware video adaptation 

model. When the bandwidth is insufficient for the transmission of original full quality 

video stream, the adaptation system must have an efficient scheme to modulate video 

according to certain principle, such as high resource utilization, better temporal quality, 

better spatial quality, and/or low computation complexity. In our allocation scheme, we 
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consider two major principles: improve visual perceptual quality and avoid unnecessary 

resource waste.  

For the first principle, we shift the bit rate from the non-attention regions to the 

attention regions, which are discriminated by Video Analyzer. In order to consolidate the 

effect of adaptation, our bit allocation scheme is also divided into three relative 

hierarchical levels, i.e. object, frame, and GOP levels as the adaptation decision principle. 

In the following we will describe the GOP, frame, and object level bit allocation scheme, 

respectively. 

In GOP level, we consider the GOP based Importance Value, average motion mean, 

and average motion variance to determine adapted scheme. For example, when the 

motion of video is slight, more frames can be dropped without producing motion jitter 

and keeping acceptable temporal quality. Besides, when the GOP based Importance Value 

is small, the same approach will be used to shift resource to more significant parts. There 

are three schemes as the following. 

(1) Full frame rate. No frames are dropped to maintain full temporal quality.  

(2) 1/3 frame rate. Suppose the GOP structure of compressed video stream is 

“IBBPBBPBBPBBPBB”. All the B frames are dropped, and all the saving bitrate 

is assigned to I/P frames. 

(3) Skip all frame except I frame. It is used in very motionless video. 

 

In frame level, we utilize variable frame type to dynamically adjust I, P, and B frames. 

In traditional video coding, the frame structure of the GOP and frame type are 

predetermined before the actual encoding process, so they have nothing to do with video 

contents. If we change such parameters based on video content analysis, i.e. dynamic 

frame type adjustment as shown in Fig. 3-19, we can expect higher coding efficiency and 

higher quality [17]. 
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Fig. 3-19. Frame based dynamic bit allocation scheme. 

 

In object level, we utilize the above-mentioned region-weighted RD model to adjust 

the quantization parameters in different attention Information Object regions. The bit 

allocation in object level must base on the GOP level determination. The R in Eq. (12) is 

varied with the GOP level adaptation scheme determination.  

For the second principle, we consider the capability of client device in order to avoid 

transmitting the redundant or useless data. For example, the mobile device is weaker in 

spatial resolution, color depth, computation power, and so forth. According to the profile 

of the client device to adapt the video to be transmitted as described in Section 3.3.2, the 

utilization of the resource is more effective. 
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Chapter 4  

Experimental Results and Discussion 

The proposed approach of content-aware video adaptation is applied to various kinds 

of videos. The contents of testing video sequences mainly include news, interview, 

walking person, soccer, baseball, tennis, and scenery. We present the experimental results, 

including Information Object masks region of content analysis, influence of device 

capability, Motion Class, bit allocation scheme, and visual perceptual quality as 

following.  

 

IO mask region (content analysis) 

First, we experiment on the performance of Information Object derived from Video 

Analyzer. The Fig. 4-1 is our graphical user interface of Video Analyzer. In the process of 

modeling the Video Analyzer, we control the (a) part of the Fig. 4-1 to observe the 

influence of each content feature. The setting button of the top of the Fig. 4-1 is used to 

set the analysis feature and the device profile. After the modeling process, the Video 

Analyzer will automatically derive Information Object without user setting involving, 

including the parameter of each feature, feature weight, and so on. The image shown in 

center of the Fig. 4-1 is the result of Information Object which marked as yellow mask in 

Video Analyzer. 
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Set device profile Display result Message area 

(a) Feature parameter control area (b) Analysis and display controller  

Fig. 4-1. Interface of Video Analyzer. 

 

Many previous researches about Video Analyzer major suit to one or two class videos, 

such as static background video analysis, like surveillance video analysis, and restricted 

domain video analysis, like tennis video analysis. Our Video Analyzer is more general for 

content type of videos. The four types of Motion Class as we described above are used to 

verify the accuracy of our Video Analyzer. Some experimental results of Video Analyzer 

are demonstrated in Fig. 4-2. 
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(a) c84.mpg (b) c41.mpg 

(c) c15.mpg (d) c9.mpg 

 

(e) c130.mpg (f) c207.mpg 
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(g) c24.mpg (h) c5.mpg 

(i) c1.mpg (j) 104.mpg 

(k) 162.mpg (l) d17.mpg 

Fig. 4-2. Information Object results of Video Analyzer.  

(a) belongs to the Motion Class 1, fixed camera and static object. (b)-(e) are Motion Class 

2, fixed camera and moving objects. (f)-(g) are Motion Class 3, moving camera and static 

scene. (h)-(l) are Motion Class 4, moving camera and moving objects, i.e. object tracking. 
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In order to further improve the Video Analyzer, we proposed the Correlational 

statistic model in Section 3.3.3. Based on this model, the information of the foregoing 

frames will be utilized in the later analysis. Accordingly, we can obtain better 

performance in later frames, as Fig. 4-3 illustrated.  

 

(a) c15.mpg (b) c130.mpg 

 

(c) c5.mpg (d) c104.mpg 

Fig. 4-3. Information Object results of Video Analyzer in later frames. We can 

compare with Fig. 4-2 to discover the efficiency of Correlational statistic model. 
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Influence of device capability  

In the influence of device capability, we discuss the tradeoff between the appropriate 

picture resolution with quantization precision. In our simulation, the original video 

resolution is 320x240, and the device resolution is 240x180. We observe the quality of 

the different resolutions and different bitrates under the same constraint. Due to the 

dissimilar behavior in different bitrate environments, the bandwidth constraint of our 

experiments vary from high to very low, i.e. 1152 kbps to 52 kbps. The resolution we 

considered is varied from original (320x240) to quarter (80x60). The Fig. 4-4 shows the 

visual result of experiments.  

 

Fig. 4-4. Comparison of visual quality. The resolution is equal in the same column and 

decreasing in x-axis. The bandwidth is equal in the same row and increasing in y-axis.  
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For objective quality, we use the PSNR and MPSNR to compare the distortion in 

different bitrate constraints, as illustrated in Fig. 4-5. Owing to PSNR the same resolution 

considered, we modify the definition to reasonably show the objective quality by linear 

interpolation before imitating the PSNR, which we refer to as MPSNR. 

 

 

 

Fig. 4-5. The PSNR and MPSNR in different bitrate constraints. The x-axis is the 

percentage of original video resolution. 
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In Fig. 4-5, we can find a resolution that the distortion introduced by down-sampling, 

encoding quantization, and then decreased by interpolation is smaller than the distortion 

of original resolution by encoding quantization under the same bit rate constraint. Thus, 

we obtain an experimental result that reducing the video resolution as device resolution 

or 2/3 device resolution while raising the quantization precision is useful in low bitrate 

constraint, such as 75 to 100 kbps. Fig. 4-6 can be observed that the visual quality of (b) 

is better than (a) and validate the approach is efficient. 
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Fig. 4-7. The videos used in analyzing Motion Class process. 
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Fig. 4-8. Motion magnitude mean of four Motion Class videos. 

 

0

20

40

60

80

100

1 2 3 P-Frame#

c84

c9

c207

c104

 

Fig. 4-9. Motion magnitude variance of four Motion Class videos. 
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Fig. 4-10. Percentage of zero motion of four Motion Class videos. 
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Table 4-1. Test sequences of Motion Class. 
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Fig. 4-12. Motion Classification results of test sequences. 

Table 4-2. The accuracy of Motion Class.  

ideo belong to one Motion Class, while BC 

 

NC means the narrowly correct, i.e. one v
means the broadly correct, i.e. each shot may belong to different Motion Classes 
according to their behavior of motions. 

 

 

 53



Owing to the above experimental analysis, as illustrated in Fig. 4-8 ~ Fig. 4-11, we 

conclude that the video can be classified according to the behavior of motion using 

motion magnitude mean, motion magnitude variance, percentage of the zero motion, and 

proportion of the maximum motion direction as shown in Table 3-2. We use fifteen video 

shots, as shown in Table 4-1, to test the accuracy of the proposed Motion Class, and the 

classification results illustrated in Fig. 4-12. The Motion Class accuracy of test video 

shots is shown as Table 4-2. Because the P frame of the first GOP sometimes use intra 

coding mode, i.e. zero motion vector, the accuracy of Motion Class in the first GOP is 

lower than others. Therefore, we adjust the adapting scheme after the first GOP in our 

video adaptation. 

 

Bit allocation scheme 

In order to judge the rationality of the GOP based adaptation and bit allocation 

scheme, the Fig. 4-13 shows the relation between video content and the bit allocation 

scheme.  
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Fig. 4-13. Example of Bit allocation scheme. 
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When the motions of the interval are larger, like main object moving as (a) of Fig. 

4-13 and camera panning as (c) of Fig. 4-13, the adapter adopts GOPscheme 1 to keep 

full frame rate and maintain smooth motion. On the contrary, when the motions of the 

interval are smaller, like (b) and (d) of Fig. 4-13, the adapter adopts GOPscheme 2 to 

drop 2/3 frames without introduce evident motion jitter. 

 

Visual perceptual quality  

Finally, we compare the visual quality with adapting video using our approach, 

referred to as Content-aware coding, and with adapting video using conventional uniform 

approach, which referred to as normal coding under the same bitrate constraint. Several 

video sequences of four Motion Classes are used to test. The original video, Information 

Object, visual perceptual quality of normal coding, and visual perceptual quality of 

Content-aware coding are shown in Fig. 4-14, respectively.  

We can see that, the visual quality of our proposed Content-aware coding is better 

than that of the conventional normal coding, especially in attraction regions, such as two 

pictures in Fig. 4-14 (a), anchor person in Fig. 4-14 (b), football gate in Fig. 4-14 (c), and 

major walking person in Fig. 4-14 (d). It proved that our content-aware video adaptation 

is effective. 

 55



 
(a) Motion Class 1 video: c84.mpg. 

 

(b) Motion Class 2 video: c9.mpg. 
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(c) Motion Class 3 video: c207.mpg. 

 

(d) Motion Class 4 video: c104.mpg. 

Fig. 4-14. Comparison of visual quality.  

The upper-left is original video. The upper-right is Information Object result of 

Video Analyzer. The bottom-left is the result video of normal uniform adaptation. 

The bottom-right is the result video of our proposed adaptation. 
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Chapter 5  

Conclusion and Future Work 

In order to effectively utilize resource and improve visual perceptual quality, 

content-aware video adaptation is needed, especially in limited resource environments 

such as very low bitrate constraint. In this thesis, we proposed a video analyzer to 

determine visual attention regions and a video adapter to dynamically adjust bitstream in 

accordance with the information of content and variations of resource. Regions which 

attract more attention of viewers should be allocated more bits. In our approach, video 

analyzer first analyzes some features of video content such as brightness, location, 

motion, and energy to determine Information Objects. Then, adaptation decision engine 

decides the adapting scheme and determines the target bit rate of each region for 

bitstream adaptation engine to suitably adapt video. The scheme is not restricted to 

specific codecs and can be easily implemented in many popular video-coding standards, 

such as MPEG-1, MPEG-2, MPEG-4, and H.264. Our experimental results have shown 

that the proposed method is effective and achieves better subjective quality than 

conventional method under the same bandwidth constant.  

However, we can find the determination of some thresholds is unstable and intangible 

in the experiments due to the wide variation in video content. In order to improve the 

quality of the proposed approach, we can further classify the video in the video analysis 

process. Therefore, we can utilize the information of video type to adapt video according 

to the characteristic of different classes or their domain knowledge.  
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