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基於疊代最佳化之網格參數化 

及其於三維著色系統之應用 

 

研究生 : 鄭仁豪             指導教授 : 莊榮宏 博士 

 

國立交通大學資訊工程學系 

 

 

 

摘      要 
    三維著色為一讓使用者直接於三維表面著色之程序。著色筆觸儲存於一張由

網格參數化技術產生之二維貼圖。傳統三維著色的系統，網格參數化為事先產

生，此參數化平面即為三維模型之材質貼圖。在著色過程中，網格參數化是固定

的，並不會根據繪圖筆觸，於顏色訊號變化較為劇烈之處給予較多的貼圖取樣。

為了提高三維著色系統的效能，必須針對使用者的繪圖筆觸，於著色過程中調整

網格參數化使得顏色變化劇烈的區域得到較多的貼圖取樣，且須在互動時間內完

成。在這篇論文中，我們提出一個基於疊代最佳化之網格參數化架構。於互動時

間內，針對顏色訊號變化較為劇烈的區域在貼圖區域上給予較多的取樣空間。 

 

 

關鍵字：網格參數化、三維著色系統、材質貼圖產生 

 



An Iterative-Optimization based Parameterization for
Surface Painting Systems

Student: Ren-Hao Cheng Advisor: Dr. Jung-Hong Chuang

Department of Computer Science and Information Engineering

National Chiao Tung University

ABSTRACT

Surface painting is a procedure that allows the users to paint onto a surface di-

rectly. The painting strokes are stored in a texture via surface parameterization tech-

niques. In current surface painting systems, the underlying surface parameterization is

fixed during the painting process. Such a parameterization is not sensitive to the fre-

quency spectrum of the color signal introduced by painting strokes. To associate the

regions of higher color signal variation with more texture samples, we need to do the

re-parameterization according to users strokes at interactive rates. In this thesis, we pro-

pose a re-parameterization scheme that is based on an iterative-optimization aiming to

allocate more texture samples for regions of high signal variation and to perform at an

interactive rate as well.

Keywords: surface painting, surface parameterization, texture generation.
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C H A P T E R 1

Introduction

1.1 Motivation

Surface painting(also called 3D painting) is a technique that allows the users to paint

directly onto a 3D surface. If the discretization of the surface is fine enough, user can

directly paints on the vertices of the surface. However, in general, the desired precision

for the color is greater than the geometric detail of the model. Assuming that a surface

is provided with a parameterization, it is convenient to store colors in the parameterized

texture space. In current surface painting systems, the underlying mesh parameteriza-

tion is predefined and fixed during the painting process. Such a parameterization is not

sensitive to the frequency spectrum of the color signal as the result of painting strokes,

and in consequence, may introduce distortion at arbitrary locations and waste texture

space in areas of no stroke. Moreover, current surface painting systems parameterize

the surface based only on the geometric aspects. Even though these systems provide

tools allowing users to adjust the underlying parameterization, but it is not intuitive for

normal users.

Most surface parameterization schemes assume no prior knowledge of the signal,

1



1.1 Motivation 2

and take only surface’s geometry information into account. For surface painting, we

want to allocate more texture samples in regions of greater signal detail by doing the

re-parameterization on the fly according to the painting strokes. Moreover, the re-

parameterization should be fast enough to achieve an interactive rate.

Sander’s signal-specialized parameterization [18] minimizes the signal stretch for

a given mesh with signal information. It is, however, not suitable for surface painting

since it utilizes an expensive global optimization, and cannot support the interactive re-

parameterization required after each stroke is painted. To support painting systems, very

few methods have been proposed. In Igarashi and Cosgrove [13], painting strokes are

stored as separate charts which are packed into a texture atlas. The method generates

each chart such that only the region with painting strokes are included, and from which

fine details can be reproduced. However, overlapping strokes made at different poses

are stored in separate charts, and hence additional texture space are required. Carr et

al. proposed a dynamic re-parameterization scheme based on their prior work on multi-

resolution meshed atlas (MMA) [1, 2]. The dynamic re-parameterization is performed

by changing the so called MMA tree hierarchy. This framework is complicated and, in

general, achieves better results only for the model with large polygon count.

Our proposed method first derives an initial parameterization, and then, during the

painting process, analyze the color signal frequency introduced by painting strokes, and

utilizes an iterative optimization to do the re-parameterization to interactively allocate

more texture samples for regions with high color signal variation. The proposed method

is simple to implement and works well for models with either low or large polygon

count.
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1.2 Contributions

This thesis describes a novel and simple framework of the re-parameterization necessary

for future surface painting systems. Along the way to achieve this goal, we present the

following contributions:

• Propose a modified signal metric L2
s that measures the geometric and signal stretch

of a parameterization.

• Propose an interactive approach for the re-parameterization aiming to increase the

sampling ratio in regions with high signal variation.

1.3 Thesis Organization

Chapter 2 introduces some background and previous works related to the thesis, includ-

ing surface parameterization and surface painting. Chapter 3 presents our two-stage

optimization framework for surface painting. Chapter 4 demonstrates the results of the

proposed method and analyzes its performance. Chapter 5 summarizes our method and

mentions some research directions.



C H A P T E R 2

Related Work

In this chapter, reviews on related work of parameterization and surface painting will be

given.

2.1 Theoretic background of parameterization

Several schemes have been proposed that flatten a surface region and establish a param-

eterization over the last ten years in computer graphics. Parameterization is a mapping

from a two dimension domain to a high dimension space. All previous proposed tech-

niques explicitly aim at producing least-distorted parameterizations, and vary only in the

objective function (distortion metric) and the minimization processes used. The main

distinction between the functions is how they measure the difference of the resulting

parameterization from an isometric one (a mapping preserving lengths and angles). In

this section, we introduce several metrics that are directly related to our research.

4



2.1 Theoretic background of parameterization 5

2.1.1 General setup and notation

Before reviewing the fundamental theory, we first introduce some basic concepts and

notations that are useful for introducing the fundamental theory.

Figure 2.1: Parameterization φ and embedding ψ [3].

As shown in Figure 2.1, we call ΩT ∈ R3 the surface of triangulation T and further

let V = V (T ) denote the set of vertices, E = E(T ) the set of edges, and F = F (T )

the set of faces of T . If ΩT has a boundary we distinguish between the disjoint sets

of interior and boundary vertices as VI and VB. Two distinct vertices v, w ∈ V are

neighbors if they are the end points of an edge e = [v, w] ∈ E. For each v ∈ V , Nv =

{w ∈ V : [v, w] ∈ E} denotes the set of neighbors of v. In general, parameterization φ

of a triangulation T over a parameter domain ΠT ∈ R2 is a homeomorphism between

this domain and the surface of T ; that is,

φ : ΠT → ΩT

From differential geometry, we know that such a homeomorphism and its inverse
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ψ = φ−1 exist if and only if ΠT and ΩT are topologically equivalent, i.e. ΠT is a

2-manifold with the same number of boundaries and handles as ΩT . The number of

handles is also called the genus of the manifold. For example, a sphere has genus zero

and the genus of a torus is one, etc. If ΩT and ΠT are not topologically equivalent, some

topological operations are required to change the topology of ΩT such that the result is

topologically equivalent to ΠT .

Most parameterizations are piecewise linear functions. Due to the piecewise linear-

ity, ψ induces a triangulation S which is equivalent to T in the sense that vertices, edges,

and triangles of S and T naturally correspond to each other; that is,

ψ(V (T )) = V (S), ψ(E(T )) = E(S), ψ(T ) = S,

and

φ(V (S)) = V (T ), φ(E(S)) = E(T ), φ(S) = T.

We call triangles of S parameter triangles and S itself the parameter triangulation. Note

that φ and ψ are uniquely determined by the images ψ(v), which we call the parameter

points or parameter values of the vertices v ∈ V . Hence the task of parameterizing T

amounts to finding parameter values ψ(v) ∈ ΠT , one for each vertex v ∈ V . Since we

also expect ψ to be bijective, we have to assure that the parameter points are arranged

such that the parameter triangles do not overlap or flip (adjacent triangles in ΩT with

opposite orientation).

2.1.2 First fundamental form

In this section, we introduce more complicated metrics of parameterizing ΩT based on

the first fundamental form from differential geometry. Given a differentiable surface Ω

and its parameterization φ, we can regard the parameterization φ as a mapping from R2

to R3 by

φ(u, v) = [x(u, v), y(u, v), z(u, v)]
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with the following differential forms

dx =
∂x

∂u
du +

∂x

∂v
dv,

dy =
∂y

∂u
du +

∂y

∂v
dv,

dz =
∂z

∂u
du +

∂z

∂v
dv.

We define the line element as dl2 = dx2 + dy2 + dz2 or alternatively,

dl2 = E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2, (2.1)

where

E(u, v) =
∂φ

∂u
· ∂φ

∂u
=

(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2

,

F (u, v) =
∂φ

∂u
· ∂φ

∂v
=

(
∂x

∂u

)
·
(

∂x

∂v

)
+

(
∂y

∂u

)
·
(

∂y

∂v

)
+

(
∂z

∂u

)
·
(

∂z

∂v

)
,

G(u, v) =
∂φ

∂v
· ∂φ

∂v
=

(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2

.

E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2 in Equation 2.1 is known as the the first

fundamental form which determines the arc length of a curve on the surface. Arranging

the coefficient in a symmetric matrix form

I =


E F

F G


 ,

we have

dl2 =
(
du dv

)
I


du

dv


 .

The matrix I is called the metric tensor, which can be decomposed as

I = JT J

where

J =

[
∂φ

∂u
,
∂φ

∂v

]
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is the Jacobian matrix of φ. We can show that if Γ and γ are singular values of J , Γ2

and γ2 will be eigenvalues of I . Since J can be seen as a local affine mapping from R2

to R3, denoted by

q =
(
J o

)

p

1


 , q, o ∈ R3, p ∈ R2,

where o is the original point for completing the affine mapping, it is intuitive to use Γ

and γ for describing the lengths and angles of vectors in R2 after being mapped by φ.

In other words, the singular values Γ and γ represent the largest and smallest length

obtained after mapping unit-length vectors from R2 to R3, i.e. Γ and γ can represent the

largest and smallest local “stretch” of φ.

Figure 2.2: Γ and γ represent the largest and smallest local stretch [3].

Because triangulated surface ΩT is piecewise linear, φ can be seen as the piecewise

linear map f as shown in Figure 2.2. The common way to represent f is the barycentric

mapping B(p) defined as

B(p) = (< p, p2, p3 > q1+ < p, p3, p1 > q2+ < p, p1, p2 > q3)/ < p1, p2, p3 >

where < a, b, c > denotes the area of 4abc and p is a point on the 4abc. We can
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discretize J and denote it as JT

JT =


∂x/∂u ∂y/∂u ∂z/∂u

∂x/∂v ∂y/∂v ∂z/∂v




t

=


∂B/∂u

∂B/∂v




t

where

∂B/∂u = Bu = (q1(v2 − v3) + q2(v3 − v1) + q3(v1 − v2))/(2A)

∂B/∂v = Bu = (q1(u3 − u2) + q2(u1 − u3) + q3(u2 − u1))/(2A)

and

A =< p1, p2, p3 >= ((u2 − u1)(v3 − v1)− (u3 − u1)(v2 − v1))/2

Thus the Jacobian matrix of ΩT is

JT =
1

2A




x1 x2 x3

y1 y2 y3

z1 z2 z3







(v2 − v3) (u3 − u2)

(v3 − v1) (u1 − u3)

(v1 − v2) (u2 − u1)




and the largest and smallest singular values of JT are given respectively by

Γ =

√
1/2

(
(a + c) +

√
(a− c)2 + 4b2

)
,

γ =

√
1/2

(
(a + c)−

√
(a− c)2 + 4b2

)
.

where a = Bu ·Bu, b = Bu ·Bv, and c = Bv ·Bv.

2.1.3 Some stretch metrics

Based on above deduction, various stretch metrics base on the versatile Γ and γ have

been proposed. For example, Sander et al. [17] define an L2 distortion measure by

taking the root-mean-square of Γ and γ, and define L∞ as the largest singular value Γ:

L2 =
√

Γ2+γ2

2

L∞ = Γ
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Hormann et al. [11] defines a deformation metric as

Ld =
Γ

γ
+

γ

Γ

Sorkine et al. [24] defines a geometric distortion as

Lg = max

{
Γ,

1

γ

}

Khodakovsky et al. [15] defines an area distortion as

Larea = Γ · γ

and an anisotropic distortion as

Langle =
Γ

γ

2.2 Mesh Parameterization

Over the last years, a lot of research has been done in the area of surface parameter-

ization. In the context of parameterization, harmonic maps were first used by Eck et

al. [5]; see Figure 2.5. However, the texture coordinates for boundary vertices must be

fixed a prior and harmonic maps may contain face flips, which violate the bijectivity of

the parameterization.

Based on earlier work by Tutte [25], Floater proposed a specific weight based on

the barycentric maps to obtain a mapping that is shape-preserving [6]. It guarantees

the embedding for convex boundaries and find a parameterization by solving a linear

system.

The first step of the method is to specify the parameter points ψ(v) of the boundary

vertices v ∈ VB. Then, set each interior vertex v ∈ VI to be a convex combination of

its neighbors. For each interior vertex v, a set of strictly positive convex weights λvw,

w ∈ Nv, is chosen such that
∑

w∈Nv

λvw = 1.
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For all interior vertices, the mapping ψ(v), v ∈ VI , is determined by solving the follow-

ing linear system of equations:

ψ(v) =
∑

w∈Nv

λvwψ(w), v ∈ VI .

This equation can be rewritten as

ψ(v)−
∑

w∈Nv and w∈VI

λvwψ(w) =
∑

w∈Nv and w∈VB

λvwψ(w), v ∈ VI ,

and further as

Bx = c.

The problem remained is how to determine the value of λvw. There are two cases

needed to be discussed. The first case is that v is inside of a triangle as shown in Figure

2.3. We can represent v as

v =
area(v, w1, w2)

area(w1, w2, w3)
· w3 +

area(v, w2, w3)

area(w1, w2, w3)
· w1 +

area(v, w3, w1)

area(w1, w2, w3)
· w2,

and then set
λvw1 = area(v,w2,w3)

area(w1,w2,w3)

λvw2 = area(v,w3,w1)
area(w1,w2,w3)

λvw3 = area(v,w1,w2)
area(w1,w2,w3)

The second case is that v has more than three neighbor vertices. As shown in Figure

2.4, since 4w1w4w5 encloses v, we can solve λvw1 , λvw4 and λvw5 using the previous

method. Similarly, for each triangle k that has an end point wi and encloses v, we

compute λk
vwi

and set λvwi
as

λvwi
=

1

d

∑

k

λk
vwi

where d is the degree of v.

Floater later proposed an improved method, called mean value coordinates, which

derives the weights by using the mean value theorem [7]. The method also guarantees
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Figure 2.3: Determine λvw for v that is inside of a triangle.

Figure 2.4: Determine λvw for v inside a n-sided polygon [6].

the existence of bijective mapping and is faster than the shape-preserving parameteriza-

tion.

Desbrun et al. defined a space of measures spanned by a discrete version of the

Dirichlet energy and a discrete authalic energy [4]. While the authalic energy remedies
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local area deformations, it requires fixed boundaries and, moreover, produces results

that are no better than the one computed by the parameterization using global length

preservation.

Figure 2.5: A cat head model and its harmonic map [5].

Hormann and Greiner proposed MIPS (Most Isometric Parameterizations) algo-

rithm, which attempts to preserve the ratio of singular values over the parameterization

using a hierarchical solver [11, 12]. The method finds a parameterization with “natural

boundary” that minimizes the highly non-linear stretch metric. Figure 2.6 shows the

MIPS parameterization with natural boundary. However, the metric disregards absolute

stretch scale over the surface. As a result, a small domain area can map to a large region

on the surface.

Sander et al. proposed a non-linear stretch that integrate the sum of squared singular

values over the map. We refer to this metric as geometric stretch. The parameterization

is derived by a coarse-to-fine optimization scheme that minimizes the geometric stretch

over the map. Note that the resulting parameterization may encounter parametric crack

problem.

Sander et al. developed a signal-stretch metric that combines both surface area and

surface signal bandwidth [18]. It is shown that the stretch metric is related to SAE
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(a) Most Isometric Parameterization (b) Discrete Harmonic Parameterization

Figure 2.6: Gray-coded deformation energy of different parameterizations [11].

(Signal-Approximation Error) - the difference between a signal defined on the surface

and its reconstruction. Sander’s signal stretch can be seen as the extension of the geome-

try stretch. Figure 2.7 shows the results of the parameterization using geometric-stretch

and signal-stretch parameterizations.

(a) Geometric-stretch parameterization (b) Signal-specialized parameterization

Figure 2.7: Examples of geometric-stretch and signal-stretch parameterizations [18].

Parameterization using either geometric stretch or signal stretch involves a process

of expensive non-linear optimization. Yoshizawa et al. developed a simple and fast

method that computes the parameterization of low geometry stretch [26]. Floater’s

shape preserving parameterization [6] is used as an initial parameterization, which is

then optimized gradually. At each step, the parameterization generated at previous step

is optimized by updating the set of positive convex weights λvw for each interior vertex
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v ∈ VI using geometry stretch. The formula is as follows:

λnew
vw =

λold
vw

σw

, w ∈ Nv

where

σw =
√∑

A(Tu)σ(Uu)2/
∑

A(Tu),

σ(U) =
√

(Γ2 + γ2)/2, U = 〈u1, u2, u3〉 in the parametric plane,

and A(Tu) is the area of triangle Tu and the sums are taken over all triangles Tu sur-

rounding the vertex. After the weights are updated, the new parameterization is com-

puted by solving a linear system, which is fast. Moreover, the parametric cracks that

may happen in Sander’s global optimization will not be encountered. This method is,

however, heuristic and lack of rigorous mathematical support. Nevertheless, it is fast

and powerful for generating parameterization with low geometry stretch. See Figure

2.8 for the comparison.

Figure 2.8: Comparison of two mesh parameterization schemes [26]. Top : Stretch

minimization of Sander et al [17], Down : Yoshizawa et al. [26]

Another approach that minimizes angular distortion is proposed by Sheffer and

Sturler [21]. The parameterization is derived by minimizing the relative distortion of the
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planar angles with respect to their counterparts in the three-dimensional space. Though

the minimization problem is linear, it becomes non-linear as some other non-linear con-

straints have to be taken into account in order to generate a valid solution. As a type of

discrete conformal parameterization, the method suffers more area distortion, especially

in region closed to the center of the surface. The area distortion leads to linear distor-

tion in texture mapping. Sheffer et al. tried to solve the problem by applying a mesh

smoothing procedure to the uniform grid overlaying on the parametric domain [22].

The smoothing uses a sizing function which is based on the ratios between the lengths

of the edges in the three-dimensional surface and their counterparts in parametric do-

main. Figure 2.9 demonstrates the result of texture mapping by overlaying a regular

grid.

Levy et al. computed quasi-conformal parameterizations by measuring the violation

of the Cauchy-Rieman equation in the least square sense [16]. They also show that the

quasi-conformal parameterization exists uniquely, independent of resolution and pre-

serves orientations. Using a standard numerical conjugate gradient solver they are able

to compute least squares approximations to continuous conformal maps very efficiently

without requiring fixed boundary texture coordinates.

2.3 Surface Painting

Surface painting system allows users to paint directly onto a three-dimensional surface

and stores the painting result in a texture. The mapping between mesh and texture space

is built via a parameterization. In current surface painting systems, the parameterization

is pre-computed and remains fixed during the painting process. One and the only thing

done by surface painting systems is to sample painting stokes into the texture space.

In this way, it is often that insufficient samples will be found in the regions with high

painting detail. The left side of Figure 2.10 shows that the aliasing occurs in the region
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Figure 2.9: Texture mapping for a cat head model [22]. (a) cat head model. (b) ABF

parameterization. (c) ABF texturing result. (d) Uniform Grid G1. (e) Smoothed grid

G2. (f) Texturing result after applying G2.

spaced in-between black and white. The right part of Figure 2.10 depicts same model

with reduced aliasing, as the result of using a parameterization that takes the signal

variation into account.

Hanrahan and Haeberli firstly proposed the concept of three dimensional surface

painting, in which the color signal is stored directly in mesh vertices [10]. Based on this

method, the shading result is interpolated between mesh vertices, though we could not

reveal rich texture detail.

Igarashi and Cosgrove stored the paint strokes image that occurred for each pose

as separate charts packed into a texture atlas [13]. As shown in Figure 2.11, the eyes

and mouth were first painted. Mesh triangles affected by these strokes are found and
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Figure 2.10: Texturing result of geometry stretch and signal stretch [18].

projected onto a two dimensional domain to form an atlas. Similarly, each subsequent

stroke is stored in a new atlas. When the painting process complete, all the atlas are

packed together to form the final texture atlas. The major disadvantage of the method is

that a stroke that overlapping other strokes may appear in more than one atlas; as shown

in Figure 2.11. In such cases, texture space may be wasted.

Before going on the approach proposed by Carr et al., we address the concept of

procedural texturing. The simplest form of texturing is texture mapping. The texture

space is usually created from an image file, often a photograph or artist’s rendering of

the material. The major disadvantage is that aliasing occurs when the texturing is under
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Figure 2.11: Each stroke is stored in an individual atlas [13].

either minification or magnification. Another issue is that the mapping function itself

could be complicated. The essential idea of procedural texturing is that the color of a

pixel is based functionally on the three dimensional coordinates of its corresponding

vertex.

In general, the result of procedural texturing is stored via texture atlases. Some

methods for constructing mesh atlas have been proposed, for example, uniform mesh

atlas (Figure 2.12), area-weighted mesh atlas (Figure 2.13) and length-weighted mesh

atlas. There are two major drawbacks among these methods. The first is that the texture

sample space is not completely used. As shown in Figure 2.13, much texture space are

wasted at the right-side of the atlas. The second drawback is that these methods do not

take the triangles’ shape and area into account. As shown in Figure 2.12, each triangle

has the same sample space no matter how large it is.

Carr and Hart made use of the Metis algorithm [14] to recursively partition the mesh

into several charts; see Figure 2.14. A quaternary tree hierarchy, called MMA, is then

constructed. The construction is based on the clustering of charts via a top-down or a

bottom-up approach. The MMA framework takes the size of mesh triangles into account

such that each triangle could be allocated suitable texture sample space.
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Figure 2.12: Uniform mesh atlas for a cloud textured moon [1].

Figure 2.13: Rhino sculpted from wood and its area-weighted mesh atlas [1].

Based on the MMA framework, Carr and Hart proposed a method aiming to derive a

parameterization that is sensitive to signal distribution [2]. The method consists of three

steps. Firstly, the mesh is divided into several charts based on the method proposed

by Sander et al. [19]. Several triangles are chosen as seed of the charts and from

each of which faces are joined into chart based on the geometric distance and normal

difference between face and chart. Secondly, each chart is parameterized into a two
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Figure 2.14: Recursively partition the mesh using Metis algorithm [1].

dimensional domain based on Sander et al’s geometry stretch metric [17]. Finally, an

MMA hierarchy is constructed for all charts built in step one. Each chart has the weight

as its L2 stretch computed in step two. The MMA hierarchy can be presented by a

quaternary tree, in which tree nodes at the same level have the same weight, and, in

consequence, have equivalent texture space. As shown in Figure 2.15, each of the four

child nodes occupies one-fourth texture space of its parent node.

During the surface painting process, all painting strokes are rendered into texture and

then the stroke frequency distributed on the texture is analyzed using graphics hardware.

After the analysis, an importance value computed from frequency analysis for previous

strokes is attached to each chart and the MMA hierarchy(quaternary tree) is re-balanced

to generate a new parameterization. All of the charts are placed in a priority queue based

on the importance value. The MMA hierarchy is reconstructed via the priority queue.

Each chart should consist of a quite large number of faces in order to reduce distortion

introduced by the parameterization. Moreover, the re-balancing is more significant with

more number of charts. Therefore this method is suitable for meshes with large number

of triangles.
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Figure 2.15: A multiresolution meshed atlas of a cow. Each node in the tree corresponds

to (a) a cluster of triangles (b) and a square region in the texture domain. (c) Each node’s

cluster is the union of its children’s clusters [2].



C H A P T E R 3

A Re-parameterization
Framework for Surface

Painting

3.1 Approach overview

To optimize the sampling resolution in parametric space, our basic idea is to increase

the resolution of regions with high signal variation while decreasing the resolution of

other regions.

Our parameterization optimization framework for surface painting comprises the

following steps as shown in Figure 3.1:

1. Transform the closed-surface Ω∗
T into an open-surface Ω′

T using topological surgery,

construct a global initial parameterization for the surface mesh, and generate a

base texture based on the parameterization.

2. Resample painting strokes into the base texture. Analyze the signal frequency on

base texture using graphics hardware to generate the importance map. Another

23
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map called geometry stretch map is also computed using graphics hardware.

3. Apply a uniform grid G underlying the parameterization domain, in which each

point of G is assigned a L2
s stretch value derived from importance map and ge-

ometry stretch map, and then apply a two-stage optimization to get an optimized

uniform grid Gopt.

4. Re-parameterize Ω′
T according to the optimized uniform grid Gopt, and resample

the painting strokes according to the new parameterization.

Our proposed parameterization optimization framework has the following charac-

teristics:

• Topological surgery is used to automatically transform the closed-surface into an

open-surface which is topologically equivalent to a disk.

• A method which analyzes the surface signal variation by using graphics hardware.

• A re-parameterization derived based on optimized uniform grid approach is fast

enough for interactive applications.

3.2 Topological surgery

To parameterize ΩT onto a planar domain, ΩT should be topologically equivalent to a

disk. If ΩT is a closed-surface we want to transform ΩT to an open-surface Ω′
T that is

equivalent to a topological disk. To achieve this goal we use the topological surgery

proposed in [9].

The topological surgery consists of two steps, as depicted in Figure 3.2. In step 1,

we find a good cut ρ to reduce the potential distortions of the parameterization. Such a

cutting may introduce parametric discontinuity. Several automatic solutions for finding
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Figure 3.1: The overall process of our method.

Figure 3.2: Procedure of parameterizing closed-surface [3].

such a cutting while reducing parametric discontinuity have been proposed. To this end,

the total length of ρ should be as short as possible [8, 9, 20, 23]. In this thesis, we
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slightly modify Gu’s cutting algorithm [9]. The algorithm begins by finding an initial

cut, and followed by iteratively augmenting the cut in parametric domain D to reduce

the potential distortion of the embedding. For each iteration, instead of geometry stretch

parameterization [17], a faster parameterization proposed by Yoshizawa [26] is applied

to speed up the cutting process.

Figure 3.3: Slice the closed-mesh along the cut [3].

After finding a ρ, ΩT is cut into Ω′
T , which is topologically equivalent to a disk.

Each non-boundary edge of ρ is split into two boundary edges to form an open cut ρ′ as

shown in Figure 3.3. This directed loop of edges ρ′ is then the boundary edges of Ω′
T .

We say that two edges in ρ′ are mates if they result from the splitting of an edge

in ρ. A vertex v with valence k in ρ is replicated as k vertices in ρ′. Vertices in ρ that

have valence k 6= 2 in the cut are called cut-nodes of ρ and ρ′. A cut-path is the set of

boundary edges and vertices between two ordered cut-nodes in the loop ρ′.

The slicing algorithm starts from a cut node in ρ, and recursively traces the path

along the cut until all cut vertices and edges have been produced. Note that, whenever

the algorithm traces to a cut node and there are more than two paths to trace, the paths

should be traced clockwisely to avoid path overlapping.
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3.3 Initial parameterization

Although many parameterization techniques are adequate to derive a global initial pa-

rameterization, the one aiming to guarantee uniform sampling and preserve conformal-

ity structure of the input mesh is most preferable. Here, we use the method proposed

by Yoshizawa et al. [26] because it meets the preferable properties and requires solving

a simple, sparse linear system, which is usually handled in a matter of seconds using

Conjugate Gradient solver with good preconditioning.

3.4 Stroke sampling

To sample painting stroke into texture, we use the method proposed by Carr et al [2],

in which each paint stroke applied in the same object pose (i.e. modelview coordinates

of the model) is rendered directly into base texture map using graphics hardware. For

this task, we need a stroke buffer for storing the painting data and a depth buffer for the

depth of current object pose.

The resampling is done by a vertex shader and a fragment shader. The vertex shader

transforms the world space position into model view coordinates and then swaps each

vertex’s model view coordinates with its texture coordinates. The fragment shader is

applied to render the new base texture by taking the stroke buffer, depth buffer, and

the original base texture as input. The alpha channel in stroke buffer represents the

existence of paint strokes to ensure that only the strokes can overwrite the existing base

texture. The depth buffer is used to prevent paint being applied to invisible portions of

the model.

This process is performed for the stroke painted at each pose. The following pseudo

code gives an overview of this method.
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Pseudo code 1
// Vertex Shader .

Procedure vertexShader()

// take input texture coordinates as output vertex coordinates

OUT.Pos ← IN.texCoord

// take model view coordinates as output texture coordinates

OUT.Tex ← mul(mvp, IN.position)

// Fragment Shader .

Procedure fragmentShader()

// oldColor got from original base texture

oldColor ← tex2D(baseMap, t1)

// newColor got from stroke buffer

newColor ← tex2D(strokeMap, t0)

// depth value got from depth buffer

shadowCoeff ← tex2D(shadowMap, t0)

// alpha channel of stroke buffer stores the existence of stroke color

test ← newColor.alpha ∗ shadowCoeff

if test > 0 then

result ← newTexColor

else

result ← oldTexColor

end if

3.5 Importance map and geometry stretch map

The signal stretch derived by Sander et al. [18] is define as:

Eh(s, t) = ‖h(s, t)− h̃ij(s, t)‖2 = ‖h(si + ŝ, tj + t̂)− h(si, tj)‖2
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where (s, t) = (si + ŝ, tj + t̂), as shown in Figure3.4 , h is the function that maps (s, t)

from texture domain to signal domain and h̃ is its reconstruction from a discrete sam-

pling of the texture domain given by h̃ij(s, t) = h(si, tj). Therefore Eh(s, t) estimates

the difference between (si + ŝ, tj + t̂) and (si, tj), i.e. Eh(s, t) represents the gradient

of h(s, t). Therefore Eh(s, t) can be re-written as

Eh(s, t) =
∂h

∂s
· ∂h

∂s
+

∂h

∂t
· ∂h

∂t

Figure 3.4: Texture domain.

To analyze the base texture for finding regions that requires additional samples, a

four-tap gradient magnitude filter is used in [2] to find undersampled regions. The

four-tap filter fetches four samples from the input texture, and outputs the result in half

resolution. For the four-tap gradient magnitude filter, some gradient features will be

missed. For example, as shown in Figure 3.5, each red rectangle represents 4 pixels on

the texture, and we detected the gradient in s-direction of paint (a), but not in paint (b).

Here we modify previous four-tap filter. For each pixel on the base texture, we

calculated its magnitude of the gradient using fragment shader arithmetic by central

difference, as shown in Figure 3.6. Actually, this is the Sobel Filter in the filed of image
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Figure 3.5: Problems of four-tap filter.

processing. The filter is applied for each pixel of the base texture, therefore the output

image is the same resolution as the base texture. Figure 3.7 demonstrates the result of

two filters which shows that our modified filter is more accurate than four-tap filter.

Figure 3.6: Our filter.

Besides the importance map, another map called geometry stretch map is also com-

puted. This geometric stretch map stores L2 stretch value for each face on parametric

domain as shown in Figure 3.8. We normalize the value of geometric stretch of each

face to lie between 0 and 1. Next, we render the mesh on parametric domain using the

normalized geometric stretch value as the color of the face.



3.6 The L2
s stretch 31

Figure 3.7: Four-tap filter and our filter.

3.6 The L2
s stretch

After the generation of importance map and geometry stretch map, the L2
s stretch is

derived from these two maps. As mentioned in [18], the signal stretch can have zero

gradient since the signal may be locally constant on a region of the surface. Therefore,

a tiny fraction of geometry stretch is added into the energy function to be minimized.
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Figure 3.8: Face model with its parameterization, geometry stretch map and importance

map.

The L2
s stretch is defined as follows:

L2
s(s, t) =





1− L2(s, t) , if Eh(s, t) = 0

1− (α · L2(s, t) + β · Eh(s, t)) , otherwise.

where Eh(s, t) is the signal stretch proposed by Sander et al. [18], and L2(s, t) is the

geometry stretch [17]. The two values are obtained from importance map and geome-

try stretch map, respectively. In the region with signal variation, we use the weighted
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geometric stretch and signal stretch as in [18]. Otherwise, in the region without signal

variation, we purely take the geometry stretch into account to prevent undersampling in

regions with no signal variation. The L2
s stretch could be considered as the extension of

signal stretch.

3.7 Rapid re-parameterization

This section describes the main contribution of this thesis, an iterative optimization

framework for the re-parameterization procedure. After constructing an initial param-

eterization, we re-parameterize Ω′
T in response to the strokes painted by the user. The

objective of the re-parameterization is to assign more texture samples to the regions with

high signal variation.

3.7.1 Iterative optimization based on uniform grid

For interactive applications, the parameterization proposed by Sander et al. [18] has two

major problems when it is applied to surface painting systems. First, since the signal

introduced by painting strokes is not constant over the triangle, numerical integration is

used to compute the signal stretch on each triangle. All the mesh triangles are subdi-

vided into 64 sub-triangles and the signal stretch are evaluated at all the vertices. The

second drawback is that the optimization process proposed by Sander et al. is a non-

linear, global optimization. As a result, the parameterization is expensive and therefore

not suitable for interactive surface painting applications.

To reduce the cost of computing signal stretch, instead of subdividing each triangle,

we derive the signal stretch on parametric domain. We apply an N ×N uniform grid G

to the parametric domain in which the initial parameterization lies as shown in Figure

3.9. These grid points, rather than the mapping of mesh vertices, are used to sample L2
s

stretch on parametric domain, that is, we compute L2
s stretch for each grid point. Such
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an approach allows us to control the sampling resolution. Moreover, the grid is used to

be the target for stretch optimization. By doing this, the computational complexity of

performing optimization will be dependent on the resolution of the grid, rather than the

mesh.

We then optimize G by the following steps:

1. For each point N ∈ G, derive L2
s(N) from importance map and geometry stretch

map by graphics hardware.

2. For each interior point Ni ∈ G in turn,

compute Ñi =

∑
N ′∈1-ring of Ni

L2
s(N

′) ·N ′
∑

N ′∈1-ring of Ni
L2

s(N
′)

,

set Ni = Ñi.

3. Repeat 1 and 2 until ‖Ñi −Ni‖ < ε for every i.

Figure 3.9(a) shows the face model with a red painting stroke and the resulting

importance map is shown in Figure 3.9(d). A 64 × 64 uniform grid G is applied to the

parametric domain, where each sample point is assigned a L2
s stretch value as shown in

Figure 3.9(e) (we take only signal stretch into account in this case). Figure 3.9(f) shows

the optimized grid Gopt, where the sample points are more sparse in the regions with

signal variation. The optimization procedure on the grid points is illustrated in Figure

3.10. Figure 3.10(a) depicts the grid points and the corresponding parametric domain

with signal distributed. Since the L2
s stretch values of p2, p7 and p12 are smaller than

that of p0, p5 and p10, p1, p6 and p11 are moved toward p0, p5 and p10. Similarly, p3, p8

and p13 are moved toward p4, p9 and p14; as shown in Figure 3.10(b)(c).

The optimization procedure is an iterative optimization process, in which the local

optimization optimizes a grid point in one iteration. After the optimization, we will get

an optimized uniform grid Gopt. On Gopt, grid points will become dense in the regions
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(a) The face model with a painting

stroke.

(b) Initial parameterization. (c) Initial uniform grid G.

(d) Importance map. (e) Stretch value on each sample

points (64× 64).

(f) Optimized uniform sample points

Gopt.

Figure 3.9: The optimization result base on one iteration.

(a) Initial grid. (b) The optimization process. (c) The optimized grid.

Figure 3.10: Chart diagram of the optimization process.

with high L2
s stretch (lower signal variation), and sparse otherwise. After the opti-

mization process, the underlying parameterization will be re-computed by barycentric
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interpolation according to the optimized grid points as described in next section.

3.7.2 Re-parameterization

After optimizing the initial uniform sample points G, we re-parameterize the parameter-

ization by the barycentric interpolation based on the optimized uniform sample points

Gopt. For each vertex vj ∈ VI , let N j0 , N j1 , N j2 and N j3 be the sample points of the

cell that contains vj . Barycentric coordinates w0, w1, w2 and w3 are derived such that

vj =
3∑

i=0

wi ·N ji .

The new position of vj will be

vopt
j =

3∑
i=0

wi ·N ji
opt,

where N j0
opt, N j1

opt, N j2
opt and N j3

opt are the homologous points of N j0 , N j1 , N j2 and N j3 in

Gopt.

Figure 3.11 demonstrates the re-parameterization process for venus model with no

painting strokes. Figure 3.11(c) shows that the geometry stretch is high in the center

of parametric domain. Therefore, the central region should have more texture space to

minimize the overall geometry stretch. After the process, Figure 3.11(d) shows the op-

timized uniform grid Gopt in which the grid points become dense in high stretch areas

and sparse otherwise. After the barycentric interpolation, the central region on para-

metric domain will be assigned more texture space. Figure 3.11(e) shows the optimized

parameterization, where geometry stretch is reduced from 0.075163 to 0.069868.

3.7.3 Stroke resampling over optimized parameterization

Finally, we resample the base texture based on the optimized parameterization. The

sampling process is similar to the method mentioned in section 3.4. The only difference
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is that now we have two texture coordinates, i.e. parameter values tprev and topt for

each vertex, which are derived from initial parameterization φ and optimized param-

eterization φopt, respectively. As described in section 3.4, we first swap each vertex’s

model view coordinates with its current texture coordinates topt in vertex shader, and

then we resample painting strokes to form a new base texture. The resampling proce-

dure here consists of two step. The first step resamples current painting strokes stored in

stroke buffer; step two resamples previous painting strokes stored in the previous base

texture. Therefore current model view coordinates and topt are used to sample current

stroke from stroke buffer and tprev is used to sample previous stroke form previous base

texture.

3.8 Two-stage re-parameterization framework

Compared to Sander’s signal-specialized parameterization [18], the proposed frame-

work tends to be a local optimization process. Figure 3.12 shows the re-parameterization

result using a 256x256 uniform sample points. We can see that the relaxation of sample

points is bounded inside the cell it lies. As shown by the red arrow in Figure 3.12, there

should be less sample space in these regions with lower signal gradient. However, the

movement of the sample points in these regions is not much due to the fact that the

L2
s stretch of these points are almost the same. Therefore the relaxation works well in

the regions with high gradient, but may not work well in the other regions. To solve

this problem, a two stage optimization framework is used instead of the single stage

optimization.

In the two-stage optimization, we expect that the first stage diminishes the texture

sample space in region with lower signal gradient and the second stage magnifies the

texture space in regions with high signal gradient. To achieve this goal, a lower resolu-

tion uniform grid is used in the first stage and a high resolution grid in the second stage.
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Figure 3.13 illustrates the optimization result using a high resolution grid. As shown in

Figure 3.13(c), only these sample points near the regions of low L2
s stretch value (high

signal variation) will be moved after the iterative optimization. Other sample points will

remain fixed in other regions where neighboring points have the same L2
s stretch value.

Figure 3.13(d) shows the final result of the optimization. The regions with lower signal

stretch are expected to obtain less texture space. Apparently, optimization using a high

resolution grid does not work well for this purpose, see the comparison highlighted by

the blue circle in Figure 3.13(a) and Figure 3.13(d).

The optimization resulting from using a lower resolution grid will have more con-

vergence effect in the regions of high L2
s stretch (lower signal variation), and allocate

less texture space in these regions. See the comparison shown in Figure 3.14(a) and

Figure 3.14(d).

Compare to Figure 3.11, Figure 3.15 shows the two-stage optimization result of the

venus model. A 8×8 uniform grid is used in the first stage and a 64×64 uniform grid is

used in the second stage. The geometry stretch is reduced from 0.075163 to 0.059678,

which is better than that of single stage optimization.

Figure 3.16(b) shows that the sample points of 16 × 16 resolution int the first stage

and Figure 3.16(d) is the result of using the sample points of 256 × 256 resolution in

the second stage. We see that the texture space in regions of lower signal gradient is

diminished in stage one; as shown in Figure 3.16(c), while in stage two, more texture

space in the regions of high signal gradient are allocated; see Figure 3.16(e). Figure 3.17

shows the result of single stage optimization and two stage optimization for comparison.

Obviously, the texture space is used more efficiently using the two stage optimization

method, especially in the regions of lower signal gradient, see the comparison high-

lighted by the red arrows in Figure 3.17.
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Figure 3.11: Venus model and optimized parameterization.
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(a) Parasaur model (b) Optimized uniform sample

points

(c) Base texture

Figure 3.12: Parasaur model : single stage optimization using 256x256 uniform sample

points

(a) Initial grid. (b) The optimization process.

(c) The relaxed grid points. (d) The optimization result.

Figure 3.13: High resolution uniform grid points.
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(a) Initial grid. (b) The optimization process.

(c) The relaxed grid points. (d) The optimization result.

Figure 3.14: Low resolution uniform grid points.
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Figure 3.15: Venus model and two-stage optimized parameterization.
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(a) Parasaur model. (b) Optimized 16× 16 grid in the

first stage.

(c) Base texture (Stage 1).

(d) Optimized 256 × 256 grid in

the second stage.

(e) Base texture (Stage 2).

Figure 3.16: Parasaur model : Two-stage optimization using 16 × 16 and 256 × 256

grids.
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(a) Single stage optimization (b) Two stage optimization

Figure 3.17: Comparison of single and two stage optimization



C H A P T E R 4

Results and Performance
Analysis

All results are performed with a AMD Athlon64 3000+ PC, 512 MB RAM and an

NVIDIA GeForce 6800 graphics card. It is running Windows XP with NVIDIA Cg

1.3 compiler, vp40 vertex shader profile and fp40 fragment shader profile. We use

the pBuffer extension for efficient texture rendering. We demonstrate the result of our

method applied to surface painting in section 4.1. We compare our result with that

based on static parameterization in current surface painting systems. In section 4.2, we

analyze the performance of our method for interactive use. In section 4.3, we compare

the texturing result of our parameterization with signal-specialized parameterization[18]

proposed by Sander et al. Finally, a simple comparison between Painting Detail [2] and

our method is given in section 4.4.

45
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4.1 Results of surface painting

In current surface painting systems, the underlying surface parameterization is fixed

during surface painting process. Therefore some texturing artifacts appear in the regions

where texture samples are insufficient. In this section, we demonstrate the effect of our

optimization framework used in surface painting system.

We paint stroke onto the mesh surface directly and the strokes are stored in strokes

buffer. The strokes are rendered by OpenGL “GL POINTS” and “GL POINT SMOOTH”

procedure.

We paint the wear and a flag on the back of the venus body. Figure 4.1 and Figure

4.2 show the painting result of our surface painting system. The left columns show the

result of current surface painting systems, i.e. with fixed underlying parameterization.

The right columns show the result of our two-stage optimization process. Our method

depicts better texturing quality than that for current surface painting systems.

Figure 4.3, Figure 4.4 and Figure 4.5 demonstrate other painting results. Aliasing

occurs in undersampling regions and our method alleviate this problem efficiently.

The strokes of all the results shown in Figure 4.1 to Figure 4.5 are painted manu-

ally. Figure 4.6 shows the result where an image is texture mapped to simulate painting

strokes. The artifact, blur, occurs due to the fact that texture is undersampled using fixed

parameterization as shown in the left column of Figure 4.6. The right column shows that

the result of two-stage optimization is much more better. Figure 4.7 demonstrates an-

other result. Four images is texture mapped to simulate painting strokes for the parasaur

model.
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Figure 4.1: Painting results of the venus model. Result of a fixed-parameterization (left

column) and the result of our two-stage optimized parameterization (right column).

4.2 Analysis of interactive application

The performance of re-parameterization is an important issue for surface painting sys-

tem. Table 4.1 shows the computation time for initial parameterization, two-stage op-

timization and re-parameterization occurs during surface painting process. Because the

optimization procedure is done on parametric domain, the computation cost of two-stage
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Figure 4.2: Back-view of the painting results of the venus model. Result of a fixed-

parameterization (left column) and the result of our two-stage optimized parameteriza-

tion (right column).

optimization is independent on the face number of input model. The timing required by

the two-stage optimization is reasonable for the interactive application of surface paint-

ing systems. Figure 4.8 shows the optimization time after each stroke is applied on

the triceratops model. Since the geometry stretch is minimized in the first optimization
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Figure 4.3: Painting results of the triceratops model. Result of a fixed-parameterization

(left column) and the result of our two-stage optimized parameterization (right column).

process, the timing is higher than succeeding optimizations.

4.3 Signal-specialized parameterization versus our method

The signal-specialized parameterization proposed by Sander et al.[18] is thought to be

the state-of-art work in mesh parameterization which is sensitive to surface signal. We
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Figure 4.4: Painting results of the face model. Result of a fixed-parameterization (left

column) and the result of our two-stage optimized parameterization (right column).

compare the parameterization performance between our two-stage optimization frame-

work and signal-specialized parameterization. The comparison is done as follows:

Firstly, the parasaur model with its signal-specialized parameterization φsig and a high

resolution texture(2048x2048) based on φsig are given. Then we load the parasaur model
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Figure 4.5: Painting results of the face model. Result of a fixed-parameterization (left

column) and the result of our two-stage optimized parameterization (right column).

and form its initial parameterization φinit as described in section 3.3. Next, for each

two-stage optimization process, we resample the color from the high resolution texture

into our lower resolution base texture. After resampling, texture frequency analysis is

processed then the two-stage optimization process comes next. After the two-stage op-

timization, we obtain the optimized parameterization. Finally the resampling procedure

is executed again to output the resulted based texture.

Figure 4.9(a)(b) show the result of signal-specialized parameterization using 2048×
2048 and 128× 128 texture maps, respectively. Figure 4.9(c)(d) shows the result of our
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Figure 4.6: An image is texture mapped to simulate painting strokes. Result of a fixed-

parameterization (left column) and the result of our two-stage optimized parameteriza-

tion (right column).

two-stage optimization under two different texture map resolutions. Our result is pretty

good under resolution of 256x256 and still fine under resolution of 128x128.
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Model face Init-param.
Two-stage Optimization

Re-param.
range avg.

venus 1396 0.625 0.718 - 3.843 1.784 0.016

triceratops 5660 3.234 0.625 - 3.156 1.739 0.063

face 1162 0.5 1.531 - 3.828 1.690 0.016

horse 7500 4.906 1.031 - 3.125 1.375 0.078

Table 4.1: Statistics of initial parameterization, two-stage optimization and re-

parameterization time (sec.) for four different models.

4.4 Comparison to painting detail

Finally, we compare our method to Painting Detail proposed by Carr et al [2]. The

re-parameterization for Painting Detail is based on the re-balancing of the MMA tree

hierarchy. To get significant re-balancing effect, a quite deep tree hierarchy is expected.

Therefore, Painting Detail works better on models with large polygon count. On the

contrary, our optimization procedure is performed on parametric domain, hence works

for models of high and low polygon count.

The common drawback of the methods based on texture atlases, such as Painting

Detail, is the problem of mip-mapping. In Painting Detail, a quaternary MMA tree is

used to alleviate the problem. For our methods, the based texture is not constructed by

atlases. There is no mip-mapping problem in our scheme.
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Figure 4.7: Four images is texture mapped to simulate painting strokes. Result of a

fixed-parameterization (left column) and the result of our two-stage optimized parame-

terization (right column).
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Figure 4.8: The optimization process of triceratops model.
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(a) Signal-specialized (2048x2048) (b) Signal-specialized (128x128)

(c) Two-stage optimization (256x256) (d) Two-stage optimization (128x128)

Figure 4.9: Comparison of our result with signal specialized parameterization under

different texture map resolutions.



C H A P T E R 5

Conclusion and Future
Work

5.1 Conclusion

Texture mapping increases the vividness of rendering effects in computer graphics. It is

a simple and efficient way to model and represent the surface’s details. Surface painting

is a technique that allows a user to paint directly onto three dimensional surface. In gen-

eral, the result is stored in parametric space as texture. Therefore a fine parameterization

is required to construct a good texture when the regions with high signal variation will

obtain more samples in parametric space. Furthermore, the signal varies during surface

painting process, hence a re-parameterization framework that can interactively respond

to the signal variation is strongly desirable.

We have proposed a rapidly re-parameterization framework for surface painting

which redistributes texture sample space according to the surface signal variation. We

proposed a two stage uniform grid optimization framework which diminished sample

space in lower gradient regions in stage one and magnifies sample space for high gradi-
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ent regions in stage two. In addition, this two stage optimization framework is suitable

for interactive use required by surface painting. For the optimization process, we de-

rived the modified L2 metric denoted as L2
s. The L2

s metric takes signal stretch into

account in the regions of signal variation and combines geometry stretch in the regions

without signal variation.

5.2 Future work

Some potential future work are listed as follows:

• Better stroke sampling method

The stroke sampling method[2] based on graphics hardware is simple and fast for

interactive use. However the result is bad when the resampling was done under

either magnification or minification. Perhaps some filter on image space could

alleviate this problem.

• Parameterization metric

In the proposed L2
s stretch, geometry stretch is applied in the regions without sig-

nal gradient to prevent the excessively undersampling in the un-painted regions.

The major issue is that the same value of geometry and signal stretch does not

imply the equal significance. Therefore, a study on the weighted relationship be-

tween geometry and signal stretch will enhance the theoretical background of our

method. Though our L2
s metric works well for a surface painting system, but it

is a little heuristic in some measure. We look for a better metric, especially the

one which is more sensitive for the anisotropical distribution of surface signal on

parametric domain.

• Hierarchical optimization
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Optimization based on adaptive sample points can be utilized to improve the per-

formance. In our two-stage optimization framework, the sample points are uni-

formly distributed on parametric domain at each step. To use the sample points

more efficiently, we distribute more sample points on the regions of high signal

gradient to accurately grab the signal variation. Less sample points are distributed

on the regions of lower signal gradient, thus these regions will be converged more

quickly. To achieve the goal, a hierarchy architecture of uniform grid is required

to maintain the different resolution of grid points. For sampling, there are two

major problems of the hierarchical method. The first one is the determination of

high gradient region and lower gradient region. A two-pass method will be prac-

tical to accomplish this. The second problem is that a theoretical and efficient

method to propagate the L2
s stretch from high resolution grid pints to lower reso-

lution grid points is required. In addition to the problems of sampling, an efficient

optimization algorithm for the hierarchical gird architecture is also required.

• Dynamic cutting

Topological surgery is used to transform the closed surface into an open-one.

Current method [9] only takes the geometric information into account. A signal

sensitive topological surgery will be a novel and great contribution for current

surface surface painting system. The main issue is the time complexity of the

cutting algorithm.
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