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使使使用用用高高高斯斯斯梯梯梯度度度與與與定定定點點點技技技巧巧巧的的的佈佈佈局局局演演演算算算法法法

研究生：黃川嘉 指導教授：陳宏明教授

國立交通大學 電子工程學系 電子研究所

摘摘摘 要要要

頂尖的全域佈局演算法採用不同的邏輯閘擴散演算法來處理邏輯閘密度。在這項研

究裡，我們發現頂尖的全域佈局演算法對於大型障礙物周圍以及穿越大型障礙物處理

擺放行為的不同。透過我們的研究結果，佈局演算法在大型障礙物周圍的擺放行為對

於可繞線性有顯著的影響，而這項觀察無法由傳統的評價指標去做分析。在解二次方

程的佈局演算法中，SimPL [1] 和 Kraftwerk2 [2]所採用的方法代表了兩種不同的邏輯

閘擴散演算法類別。我們重新實作兩種演算法類別並實際運用在邏輯閘擺放實驗，我

們解釋了這兩種邏輯閘擺放演算法對於在全域與局部兩種規模的控制性有著明顯的不

同。我們進一步觀察這兩種演算法對於可繞線性的影響。

為了同時處理全域與局部兩種規模的擺放行為，我們提出了一個兩階段的全域佈局

演算法。第一階段的目的是藉由移動邏輯閘跨過大型障礙物以取得精準的可用空間分

布。第二階段的目的是藉由邏輯閘在大型障礙物周圍的移動以取得邏輯閘之間正確的

相對關係。我們提出的全域佈局演與 ComPLx [3]有著相同品質的實驗結果表現，而且

基於在大型障礙物周圍的擺放行為使得可繞線性的程度提高了。
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ABSTRACT

State of the art global placers adopt different cell spreading algorithms to handle

density of placement. In this work, we found there exist different placement behavior

when placing cells across and around fixed macros among state of the art global placers.

Our findings also suggest that placement behavior around fixed macros has significant

impact toward routability of the design that cannot be observed through conventional

evaluation metrics. For quadratic placers, the methodologies adopted in SimPL [1] and

Kraftwerk2 [2] represent two distinct class of cell spreading algorithms. Based on our

implementations of the two frameworks, we answer to the question on whether if there

exist different level of controllability in terms of global view and local view among different

cell spreading algorithms. We further investigate the impact of placement behavior on

routability of the design. To address both global view and local view of the placement,

we propose a two stage global placement framework. The first stage aims to assign large

portion of cells with precise amount of white space by moving cells across fixed macros.

The second stage aims to determine accurate relative order of cells and move cells around

fixed macros. Our proposed placement framework achieves equivalent placement quality

compared to ComPLx [3] with placement behavior around fixed macros that is inherently

desirable to routability.
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Chapter 1

Introduction

As design becomes increasingly complex, it becomes more apparent that using HPWL

as the only evaluation metric is inadequate to meet the practical demands. To bridge the

gap between academic effort and design experience, several works suggest that routabil-

ity [8, 10, 11] is a more direct evaluation metric to reflect placement quality. The work

done in [3] have suggested that global placers exhibit different controllability at global

view of placement. However, the vague concept on global view or local view of placement

is rarely discussed in prior arts.

In quadratic placement, using partition based cell spreading algorithm [1] combined

with fixed-point technique [12] has become an increasingly popular approach [1, 3, 4]

due to its precise density control and high efficiency to produce high quality placement in

terms of half-perimeter wirelength (HPWL). On the contrary, although gradient based cell

spreading algorithm in quadratic placement [2] may not deliver as precise density control

compared to partition based approach, its unique placement behavior around fixed macro

blocks is desirable when routability is taken into consideration. In this work, we refer the

cell spreading technique adopted in SimPL [1] as partition based cell algorithm and cell

spreading technique adopted in Kraftwerk2 [2] as gradient based cell algorithm.

Fig. 1.1 illustrates placement solutions using two distinct cell spreading algorithms.

The color of the cells represents each individual design hierarchy. We have implemented

two placers using partition based cell spreading algorithm and gradient based cell spread-

ing algorithm, one is based on SimPL framework and the other is based on Kraftwerk2

framework. Fig. 1.1(a) and Fig. 1.1(b) are the placement solutions based on SimPL frame-

work after global placement and detailed placement. Fig. 1.1(c) and Fig. 1.1(d) are the

1



Chapter 1. Introduction 2

placement solutions based on Kraftwerk2 framework after global placement and detailed

placement.

In Fig. 1.1, the distinct placement behavior between the two placement frameworks

can be observed. The placement solution in Fig. 1.1(b) has 4% less HPWL compared

to Fig. 1.1(d), but Fig. 1.1(d) has a much more sparse cell distribution. In addition, an

apparent contour around macro blocks can be observed in gradient based cell spreading

algorithm. From Fig. 1.1, we observe a distinct placement behavior across and around

fixed macro blocks between partition based and gradient based cell spreading algorithms.

Fig. 1.2 illustrates two scenarios which demonstrates strength and weakness of parti-

tion based and gradient based cell spreading algorithm. Fig. 1.2(a) and Fig. 1.2(b) illus-

trate how both cell spreading algorithms move cells around fixed macros. In Fig. 1.2(a),

since partition based cell spreading algorithm only calculates precise amount of white

space without the knowledge on the location of fixed macros, cells are likely to place

around a macro block. In Fig. 1.2(b), gradient based cell spreading algorithm knows the

location of fixed macros based on density function, cells are repelled away from macro

blocks. Wirelength values are the same in the examples illustrated in Fig. 1.2(a) and

Fig. 1.2(b) but with different placement behavior.

Fig. 1.2(c) and Fig. 1.2(d) illustrate how both cell spreading algorithms move cell

across fixed macros. For gradient based cell spreading algorithm in Fig. 1.2(d), local

gradient information is likely to trap cells within a local valley between two large fixed

macros. In Fig. 1.2(c), partition based cell spreading algorithm does not rely on density

function to allocate cells, it progressively expands its search region until required amount

of white space is found.

1.1 Prior arts based on quadratic wirelength model

For quadratic placers, two of the most promising approach to reduce the cell over-

laps are gradient based approach [2] and partition based approach [1, 3–5, 13]. In

Kraftwerk2 [2], each unit area is modeled as a unit charge. Full chip electrical poten-

tial can be obtained by solving Poisson equation and electric field can be derived by

taking the derivative of electrical potential. Move force of each movable cell is calculated

based on electric field that drives cell to move towards area with less electrical potential.

2



Chapter 1. Introduction 3

(a) (b)

(c) (d)

Figure 1.1: Illustration on placement solution of partition based cell spreading algo-
rithm and gradient based cell spreading algorithm. (a) Placement solution based on
partition based framework after global placement. (b) Placement solution based on
partition based framework after detail placement. (c) Placement solution based on gra-
dient based framework after global placement. (d) Placement solution based on gradient

based framework after detail placement.

In SimPL [1], placement solution is obtained using partition based cell spreading

algorithm and fixed point technique within a upper bound and lower bound framework.

The location of fixed points is obtained through rough legalization which is a partition

algorithm that recursively divides cells and then allocate precise portion of white space

to each partitioned cells. Objective function is solved again with additional pseudo nets

3
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Figure 1.2: Illustration on behavior of partition based cell spreading algorithm and
gradient based cell spreading algorithm when dealing with fixed macro block. (a) and
(b) illustrate the ability to move cells around macro. (c) and (d) illustrate the ability

to look beyond macro.

using iterative method. The net weight of pseudo anchors accumulates on each iteration

to avoid placement collapsing to previous state.

1.2 Overview of the Placement Framework

In this work, we implement two quadratic placers using partition based and gradient

based cell spreading algorithms. Both are implemented to a comparable quality compared

to original works [1, 2]. By analyzing our implementation based on the two cell spreading

algorithms, we found cell spreading algorithms have their strength and weakness in terms

of moving cells across and around fixed macros. The ability on dealing with macro blocks

4



Chapter 1. Introduction 5

significantly affects placer’s global view and local view of the placement. Based on the

analysis, we generalize the key elements of the two frameworks and propose a new two

stage global placement framework by combining the strengths of the two cell spreading

algorithms. To obtain smooth transition between the two stages, our second stage global

placer is capable of handling incremental placement.

Fig. 1.3 is the flow chart of the proposed placement framework. The framework

begins by obtaining an initial placement that focuses on better relative order of cells

and fewer modules overlaps. The first stage of global placement applies partition based

cell spreading algorithm, which focuses on white space allocation by moving cells across

macro blocks. The second stage of global placement applies gradient based cell spreading

algorithm, which focuses on relative order of cells and move cells around fixed macro

blocks. In brief, our contributions can be summarized as follows.

• A two stage global placement framework is proposed to address both global view

and local view of the placement. The global view of the placement is addressed

using partition based cell spreading algorithm that allocates large portion of cells.

The local view of the placement is addressed using gradient based cell spreading

algorithm that focus on determining accurate relative order of cells.

• A surface model using Gaussian Blurring is proposed for gradient based cell spread-

ing algorithm. The dimension of Gaussian Blurring can be easily adjusted to allow

global placer to have global view and local view during placement iteration. To

achieve faster run time for large Gaussian Matrix at finest grid, Gaussian Blurring

is calculated in frequency domain through Fast Fourier Transform (FFT).

• A dynamic step size control methodology and weight adjustment scheme are pro-

posed to handle incremental placement.

In the remainder of this thesis, Section II introduces the force directed system for

quadratic placers. Section III describes the white space allocation at global scale us-

ing partition based cell spreading algorithm. Section IV compares partition based cell

spreading algorithm, gradient cell spreading algorithm and our proposed two stage global

placement framework. Section V presents the experimental result. Finally, Section VI

concludes this work.

5
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YES

Construct and solve star net model

Construct and solve Bound2Bound model
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NO

YES

Figure 1.3: The flow chart of the proposed placement algorithm.
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Chapter 2

Force Directed System for Quadratic

Placers

The main objective for wirelength driven placer is to minimize the total half perimeter

wirelength (HPWL). Since HPWL is non-differentiable, quadratic wirelength model in

Eq. (2.1) is proposed to optimize the HPWL.

Γ = Γx + Γy

=
1

2
wi,j(xi − xj)2 +

1

2
wi,j(yi − yj)2

=
1

2
xTCx + dTx +

1

2
yTCy + dTy (2.1)

Eq. (2.1) optimizes the quadratic wirelength rather than the linear wirelength, Kraftwerk2

proposed the bound to bound wirelength model (B2B) to linearize the quadratic wire-

length objective. The B2B model neglects interconnect of inner pins and set the net

weight wi,j to 2
(P−1)` in which P stands for number of pins in a given net and ` is the

distance between pin i and pin j. The term 2/(P − 1) adjusts number of connections in

a give net and ` linearize the quadratic objective.

F net
x = Cxx + dx (2.2)

7



Chapter 2. Force Directed System for Quadratic Placers 8

Minimal wirelength can be obtained by minimizing Eq. (2.2) which can be solved

efficiently using iterative method. Eq. (2.2) is generally referred as the net force. To

remove the overlaps among cells, a surface model Φ can be obtained given with a density

function. Target location x′ can be calculated by taking derivative of Φ. Eq. (2.3) defines

how to obtain the target location x′ given with a surface model Φ.

x′
i = xi −

∂

∂x
Φ(x, y)

∣∣∣∣
xi,yi

= xi − Φx (2.3)

Kraftwerk2: Fmove
x = C̊x(x− x′) = C̊x · Φx (2.4)

SimPL/ComPLx: Fmove
x = C̊x(x− x′) (2.5)

F hold
x = −(Cxx

′ + dx) (2.6)

The magnitude of step size affects the quality of the placement and execution time.

Thus, implementation of a competitive placer requires precise control of step size on each

iteration. Eq. (2.4) or Fmove controls the cell spreading force by adjusting the matrix C̊x

which defines the weight of step size.

To maintain stability on each iteration, F hold in Eq. 2.6 is introduced to neutralize

F net to prevent placement collapsing to previous state. Thus, Fmove is the only force

that spreads out cells in each iteration. Eq. (2.7) defines the force directed system of

Kraftwerk2 in which all three forces F net, F hold and Fmove are taken into account.

Kraftwerk2: F net
x + F hold

x + Fmove
x = 0

⇒ (Cx + C̊x)(x− x′) = C̊xΦx (2.7)

8



Chapter 2. Force Directed System for Quadratic Placers 9

SimPL/ComPLx: F net
x + Fmove

x = 0

⇒ Cxx + dx + C̊x(x− x′) = 0

⇒ (Cx + C̊x)x = −(dx + ˚Cxx
′) (2.8)

In SimPL, rather than relying on the gradient based method to obtain target location

x′, SimPL obtains x′ using partition based method. In addition, SimPL removes hold

force in Eq. (2.6) and entire system relies on the balance between F net and Fmove. Eq. (2.8)

defines the force directed system used in SimPL and ComPLx.

The matrix C̊x in SimPL defines the weight of target location x′ and is set uniformly

for every cell. Since hold force is removed from the equation, the magnitude C̊x needs to

be no less than the previous iteration in order to prevent placement collapsing to previous

state. Note that the SimPL framework does NOT guarantee each cell has a corresponding

target location x′, if a cell is not included during rough legalization, it will not have a

target location. In ComPLx [3], an adjust scheme based on the concept total displacement

is proposed to derive the matrix C̊x.

Regarding to Eq. (2.7) and Eq. (2.8), Kraftwerk2 and SimPL demonstrate the balance

of the force directed system can be achieved using three and two forces. The stability of

Kraftwerk2 relies on the balance between hold force, net force and move force. In SimPL,

hold force is incorporated within the move force and stability of the system is achieved

by overpowering the net weight of pseudo anchors on each iteration. The additional force

in Kraftwerk2 offers better controllability of the placement structure. When move force

is removed from Kraftwerk2, placement maintains its original position. However, when

move force is removed in SimPL, placement collapse back to minimal wirelength solution.

9



Chapter 3

White Space Allocation At Global

Scale

One of the key concept for cell spreading algorithm in SimPL is that relative order

of cells remains unchanged. This indicates that the relative order of cells obtained during

initial placement affects every subsequent placement iterations. The work done in [5,

13] also suggests that choose an intermediate wirelength model between quadratic and

linear produces better wirelength result than focusing on the linear HPWL as placement

objective. This is because although linear wirelength model produces better wirelength,

it also has higher cell overlaps. Thus, unlike SimPL that obtains a lower bound initial

placement, our initial placement is obtained by applying star net model which has less

module overlaps and better relative order of cells compared to B2B wirelength model.

The strength of partition based cell spreading algorithm lies in its precise allocation

of white space. The ability to search for white space across large macros is relatively

inefficient for placers using local gradient information. Gradient based placers rely on

the balance between density function and wirelength function to control the quality of

placement. Thus, when encountering large macro blocks, the weight on density function

must outweighs the weight of wirelength function for placer to overlook the presence of

macro blocks.

In this work, partition based cell spreading algorithm based on SimPL [1] is adopted

to allocate white space at global scale. Compared to SimPL, our partition based cell

spreading algorithm does not require to generate stripes to align cells. There is no evidence

that generating stripes to align cells increases precision of cell spreading. The work done

10



Chapter 3. White Space Allocation At Global Scale 11

in [3] also have shown that precision during rough legalization does not undermine solution

quality.

During early stage of global placement, the primary focus is on white space allocation.

Thus, our placer begins by searching for regions with precise amount of white space to

allocate congested cells. These regions are recursively partitioned based on cell area and

white space of partitioned region. Partitioning of regions stops when the white space of

partitioned region is less than 4 average node area.

Different from SimPL in which cells are constantly aligned to stripes at each iteration

of recursive partition, cells are assigned to each partitioned region after recursive partition

is complete. Our approach removes the redundancy of cell alignment in SimPL since only

final position of cells matters.

11



Chapter 4

Cell Spreading Algorithm

After white space allocation at global scale is complete, the cell spreading algorithm

switch from partition based to gradient based. At this stage, the target location x′ is

obtained using gradient based method instead of using partition based method. Given

with a density function of cell area h(x, y), each unit cell area is regarded as an impulse.

Kraftwerk2 regard each impulse as unit charge and surface model Φ(x, y) is obtained by

solving the Poisson equation. However, since the primary objective is not on the accuracy

of electrical potential, any distribution function is suffice to meet the supply-demand

constraint.

g(x, y) = exp

(
−
(

(x− xo)2

2σ2
x

+
(x− xo)2

2σ2
x

))
(4.1)

− ∂

∂x
g(x, y) =

x− xo
σ2
x

exp

(
−
(

(x− xo)2

2σ2
x

+
(y − yo)2

2σ2
y

))
− ∂

∂y
g(x, y) =

y − yo
σ2
y

exp

(
−
(

(x− xo)2

2σ2
x

+
(y − yo)2

2σ2
y

))
(4.2)

In this work, the surface model is obtained using Gaussian Blurring. Each unit cell

area has an amplitude of 1 unit Gaussian distribution. In terms of image processing,

Gaussian blurring is equivalent to the convolution of a Gaussian function to a density

function h(x, y). Eq. (4.1) is the Gaussian function for two dimensional space. The term

12
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Figure 4.1: Illustration of the bin size adjustment scheme between rough legalization
and gradient based cell spreading. (a) Cell distribution in early stage. (f) Cell distri-
bution in latter stage. (b) Lower cluster number. (c) Larger expansion region for each
cluster. (g) Higher cluster number. (h) Smaller expansion region for each cluster. (d)
Lager dimension of Gaussian matrix (e) Cell spreading in larger step size. (i) Smaller

dimension of Gaussian matrix (j) Cell spreading in smaller step size.

σ defines the affected range for each unit cell area. Larger value σ translates to larger

dimension of Gaussian matrix. Eq. (4.2) is the derivative or the gradient function of the

surface model. The discrete surface model Φ[m,n] can be obtained by solving Eq. (4.3).

In Eq. (4.3), g[m,n] and h[m,n] are the discrete representation to g(x, y) and h(x, y)

respectively. According to convolution property: ∂
∂x

(f ∗ g) = f ∗ ∂
∂x
g the gradient of the

surface model Φx and Φy can be obtained by solving Eq. (4.4).

Φ[m,n] =
M−1∑
i=0

M−1∑
j=0

h[i, j]g[x− i, y − j] (4.3)

Φx[m,n] =
M−1∑
i=0

M−1∑
j=0

h[i, j]
∂

∂x
g[x− i, y − j]

Φy[m,n] =
M−1∑
i=0

M−1∑
j=0

h[i, j]
∂

∂y
g[x− i, y − j] (4.4)
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4.1 Bin Size Adjustment

A given design is generally partitioned in to set of bins. The size of bin significantly af-

fects the quality of placement. Fig. 4.1 illustrates the bin size adjustment scheme between

rough legalization and gradient based cell spreading adopted in this work. Fig. 4.1(a)

represents a cell distribution that is highly congested which typically is at the early stage

of placement iterations. Fig. 4.1(f) represents a cell distribution that is more spread out

which typically is at the latter stage of placement iterations.

During rough legalization in the SimPL framework, bin size is decreased by a factor

of 0.97 on each iteration of rough legalization. Decrease in bin size has several implicit

benefits. Larger bin size illustrated in Fig. 4.1(b) and Fig. 4.1(c) has lower cluster number

and larger expansion region for each cluster. Vice versa for smaller bin size illustrated in

Fig. 4.1(g) and Fig. 4.1(h) which produces higher cluster number and smaller expansion

region for each cluster. Larger bin size at the beginning allows placer to have a global

view of the placement, which can effectively allocate cells to regions with precise amount

of white space. As bin size decreases, more local congestion spots can be identified and

less perturbation of cells can be expected since size of expansion region decreases.

In this work, since dimension of Gaussian Blurring can be arbitrary adjusted, such

characteristic can be achieved by using larger value of σ and larger bin size to capture

global view of the placement at the beginning. In Fig. 4.1(d), larger bin size is used

and larger dimension of Gaussian matrix is used to blur local white space region. Local

congestion at the latter stage can be revealed by decreasing the value of σ and bin size as

illustrated in Fig. 4.1(i). Note that in both Fig. 4.1(d) and Fig. 4.1(i), the summation on

dimension of density matrix and Gaussian matrix is a constant in which M +N = 17.

The execution time of two dimensional convolution in spatial domain increases quadrat-

ically with the dimension of Gaussian matrix and density matrix. Suppose a M × M

Gaussian matrix is convolved with a N × N density matrix, the complexity in spatial

domain is O(M2N2). The complexity can be reduced to O(N2logN) by convolving two

functions in frequency domain.

Since larger value of σ implies larger dimension of Gaussian matrix and larger bin

size implies smaller dimension of density matrix, the summation on dimension of Gaussian

matrix and dimension of density matrix can be set to equal to a constant. To fully exploit

the efficiency of convolution at frequency domain, we use Eq. (4.5) to determine the

dimension of a M ×M Gaussian matrix and a N ×N density matrix. Thus, if we set the

14



Chapter 4. Cell Spreading Algorithm 15

constant to 1025 and initialize the dimension of Gaussian matrix to a quarter of density

matrix, then M equals to 205 and N equals to 820.

M +N = 2n + 1 (4.5)

4.2 Weight Adjustment

In quadratic placement, the step size from x to x′ controls the trade-off curve between

quality of placement and convergence rate. Smaller step size leads to better quality

placement at the expense of longer execution time. The magnitude of step size is controlled

by the matrix C̊x = {ẘ0, ẘ1, ..., ẘM}, which is the matrix that defines the weight of move

force. Eq. (4.6) is the weight adjustment scheme in Kraftwerk2. In Kraftwerk2, a target

step size µT is determined initially, and then weight of move force wi is adjusted such that

average step size µ can be approximated as close to µT as possible.

Eq. (4.7) is the weight adjustment scheme in SimPL and Eq. (4.8) is the weight

adjustment scheme in ComPLx. In Eq. (4.8), Π is total displacement from cell location

to its target location and h is a predefined constant. Since both Eq. (4.7) and Eq. (4.8)

are based on accumulation of move force, weight of move force can only be increased

throughout the iterations. In addition, step size in cell spreading process can only be

indirectly affected and not be accurately controlled.

Kraftwerk2: ẘk+1
i = ẘk

i · (1 + tanh(ln(µT/µ))) (4.6)

SimPL: ẘk+1 =
0.01 · (1 + iterationNumber)

|x− x′|
(4.7)

ComPLx: ẘk+1 = min{2ẘk, ẘk + (Πk+1/Πk)h} (4.8)

15
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Observing the three different weight adjustment schemes defined in Eq. (4.6) to

Eq. (4.8), Kraftwerk2 has different weight ẘi for each individual cell with precise con-

trol over the average step size. On the contrary, SimPL and ComPLx has same weight

ẘ for every cell and can only indirectly determine step size. This indicate gradient based

cell spreading algorithm is more delicate when dealing with relative order of cells at local

scale. To accelerate convergence rate and allowing cells to step across macro blocks at

early stage of placement, we adopt a target step size adjustment scheme described in

Eq. (4.9).

In Eq. (4.9), µHi
T is the upper bound of step size and µLo

T is the lower bound of step

size. Larger step size in beginning motivates cells to move across macro blocks while

smaller step size motivates cells to have more accurate relative order. This is because

larger step size implies that C̊ has larger influence in term (C + C̊)(x− x′) which means

density function has more influence to the objective function. Vice versa for smaller step

size that translates to smaller C̊.

µk+1
T = µk

T −
µHi
T − µLo

T

x
, k = 2, 3..., x− 1 (4.9)

ẘk+1
i = ẘk

i · (1 + tanh(ln((xµk−1
T − µHi

T + µLo
T )/xµ))) (4.10)

4.3 Determining Initial Step Size

One of the critical factor to handle incremental placement is to determine the initial

step size based on the current state of placement (e.g. cell density, total overlapping area,

current value of Γ). Eq. (4.11) defines the initial step size in Kraftwerk2 and Eq. (4.12)

defines the initial step size in ComPLx. Eq. (4.11) is inadequate to handle incremental

placement since its a constant value in which it neglects the current state of placement.

Given with an almost legal placement solution where cell density is roughly flat, using

Eq. (4.11) produces very large step size where forces at local gradient are exaggerated.

On the contrary, although Eq. (4.12) in ComPLx considers the current value of objec-

tive function and total displacement, the absence of hold force in the ComPLx framework

16



Chapter 4. Cell Spreading Algorithm 17

creates certain degree of instability. Since move force are accumulated in ComPLx frame-

work, its very difficult to determine an appropriate step size such the placement will not

collapse to its previous state without the information from previous iteration.

Kraftwerk2: ẘ1 =
Amod,i

Aavg

· 1

M
(4.11)

ComPLx: ẘ1 =
Γ

100Π
(4.12)

In this work, to deal with placement at different level of cell density and different

amount of overlapping area, the initial weight ẘ1 is set inversely proportional to the

average bounded length of each net. Eq. (4.13) is the initial step size used in this work

for gradient based cell spreading. In Eq. (4.13), N denotes total number of nets and Γ is

the value of the objective function in Eq. (2.1).

ẘ1 =
Amod,i

Aavg

· N
Γ

(4.13)
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Chapter 5

Experimental Results

In this section, experimental results of our implementations are presented. All of our

implementations are self contained and implemented using standard C++ language and

performed on a Intel Xeon E5620 machine running at 2.4Ghz. To evaluate the HPWL

quality of our placer, we compared our implementations with state of the art global

placers including Kraftwerk2 [2], SimPL [1], ComPLx [3], MAPLE [4], BonnPlace [5],

NTUplace3 [6], mPL6 [7] on ISPD2005 benchmarks [14]. We also compared our im-

plementation with RIPPLE 2.0 [8] on ICCAD 2012 Placement Benchmarks [9]. Latest

binaries from NTUplace3 (v12.06.05) and mPL6 are obtained from original authors and

evaluate on same machine. We do not have the access to Kraftwerk2 [2], SimPL [1],

ComPLx [3], MAPLE [4], RIPPLE2.0 [8] and BonnPlace [5], so execution time from these

global placers are omitted. Result of our proposed framework is presented using default

setting without specific tuning for each individual testcase.

For ISPD 2005 Placement Benchmarks, FastDP [15] is used as the detailed placer.

FastDP is not compatible with ICCAD 2012 Placement Benchmarks. Since we do not

have access to the source code of FastDP, we implement legalization algorithm based on

Abacus [16], detailed placer based on FastDP [15] and used them on ICCAD 2012 Place-

ment Benchmarks. NCTUgr 2.0 [17] is used as the global router to evaluate routability

of the placement.

The discussion in this section is divided to three parts. The first part presents qual-

ity of global placers using HWPL as evaluating metrics. The second part analyze our

implementation on partition based cell spreading algorithm, gradient based cell spreading

algorithm and our two stage global placement framework. Analysis is performed using

18



Chapter 5. Experimental Results 19

routability metric and evaluating distance from each cell to its optimal region after legal-

ization and detailed placement. The third part of this section concludes our findings and

discusses future improvement of proposed framework.

5.1 Evaluation on ISPD2005 Benchmarks

Table 5.1 compares the performance of HPWL on ISPD 2005 Placement benchmarks.

Our implementation using partition based cell spreading algorithm (P-Based) achieves

quality within 1.56% compared to SimPL. Our implementation using gradient based cell

spreading algorithm (G-Based) achieves quality within 1.18% compared to Kraftwerk2.

This demonstrate our implementation based on the two frameworks achieves comparable

quality compared to the original work.

Our proposed two stage global placement framework achieves equivalent quality com-

pared to ComPlx [3], outperforms Kraftwerk2 [2], mPL6 [7], NTUplace3 [6] and SimPL [1]

by 6.15%, 3.50%, 6.97%, 0.40% respectively, and trail behind MAPLE [4] and Bon-

nPlace [13] by 1.39% and 1.74% respectively.

5.2 Evaluation on ICCAD2012 Benchmarks

We compared our implementations with RIPPLE 2.0 [8] on ICCAD 2012 Placement

Benchmarks [9] since only RIPPLE 2.0 released their wirelength driven result on this set

of benchmarks. Results are presented in Table 5.3. Our two-stage framework outperforms

RIPPLE2.0 by 3.14% in HPWL. Our implementation on P-Based cell spreading algorithm

leads by a marginal 0.28% and P-Based cell spreading algorithms trails behind by 7.38%.

5.3 Analysis on Distance to Optimal Region

To analyze placement behavior among different global placers, we analyze the distance

from each cell to its optimal region. Our assumption is that if a given placement has more

percentage of cells within optimal region, it implies that this placement has better local

view. Vice versa for a given placement has more percentage of cells that are far apart

from its optimal region, which implies worse global view.
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Table 5.4 and Table 5.5 presents the result on distance from each cell to its optimal

region on ISPD 2005 benchmarks and ICCAD 2012 benchmarks respectively. Unit is

defined by one half of the row height. In Table 5.4 and Table 5.5, G-Based cell spreading

algorithm has the highest percentage of cells within optimal region on 16 out 16 testcases

while P-Based cell spreading algorithm has the least percentage of cells on 14 out 16

testcases. Our two stage placement framework has more percentage of cells within optimal

region on 14 out 16 testcases compared to P-Based cell spreading algorithm.

When analyzing percentage of cells that are placed more than 10*0.5 row height away

from its optimal region, G-Based cell spreading algorithm has the highest percentage on

11 out 16 benchmarks while our two-stage framework has the least percentage of cells on

15 out of 16 testcases.

5.4 Evaluation on Routability

Evaluation on routability of partition based, gradient based cell spreading algorithm

and our two-stage framework is presented in Table 5.6. While gradient based cell spreading

algorithm has better local view, it also has the worst global view. Routability of gradient

based cell spreading algorithm is significantly compromised due to its higher HPWL. This

also shows that our implementation on gradient based cell spreading algorithm exhibit

inherent difficulty in controlling density at global scale.

An interesting phenomenon can be observed by comparing partition based cell spread-

ing algorithm and our two stage framework. Both placers achieves nearly equivalent qual-

ity in terms of HPWL, but our two-stage framework has 43% less total overflow and

34% reduction in maximum overflow compared to partition based cell spreading algo-

rithm. This shows that two placements with same HPWL can exhibit entirely different

routability. Our explanation to this phenomenon lies in controllability of cell spreading

algorithms at local view of placement. Improving local view of placement significantly

improves routability.

5.5 Discussion and Future Improvements

Experimental results presented in Table 5.4, Table 5.5 and Table 5.6 supports our

original hypothesis. Our findings are discussed as follows. (1) There exhibit different

20



Chapter 5. Experimental Results 21

controllability among different cell spreading algorithms at global view and local view of

placement. (2) Gradient based cell spreading algorithm exhibit better controllability at

local view and worse controllability at global view. (3) A two stage global placement

framework can have better controllability on both global and local view of placement.

(4) Improving global view of placement have more obvious improvement on HPWL while

improving local view of placement have more obvious improvement on routability.
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Table 5.2: Comparison of runtime in minutes with Our proposed framework, Partition
based (P-Based) and Gradient based (G-Based) on ISPD2005 benchmarks for mPL6 [7]
and NTUPlace [6]. Runtime is normalized to the known optimal placement solution.

(G.M. stands for geometric mean)

# Two Stage P-Based G-Based NTUPlace3 [6] mPL6 [7]
AD1 6.51 4.27 8.96 7.82 24.22
AD2 7.81 6.34 11.73 8.87 26.57
AD3 15.20 11.72 19.04 19.93 76.02
AD4 13.31 12.64 17.66 25.40 71.34
BB1 8.51 6.67 10.31 14.45 31.60
BB2 12.39 9.28 18.14 35.13 81.01
BB3 27.85 26.52 50.98 38.88 110.68
BB4 53.53 49.35 76.61 111.38 253.58

G.M. 122.25% 100.00% 172.80% 198.15% 544.48%

Table 5.3: Comparison of HPWL and runtime in minutes with Our proposed frame-
work, Partition based (P-Based) and Gradient based (G-Based) on ICCAD2012 bench-

marks for RIPPLE 2.0 [8]. (G.M. stands for geometric mean)

Two Stage P-Based G-Based RIPPLE 2.0 [8]
HPWL Time HPWL Time HPWL Time HPWL

superblue1 259625987 16.17 260008361 11.96 290051349 17.74 272906304
superblue3 307662108 17.29 305324913 12.86 319436744 18.25 307528119
superblue4 211549386 10.99 210924662 7.66 229463294 10.94 218230511
superblue5 342149887 13.78 340303341 9.84 365500638 14.02 335332413
superblue7 402442619 27.04 398444616 20.80 462238462 36.83 395288349
superblue10 533745854 20.47 535118536 15.32 559797179 20.09 565020331
superblue16 251757882 13.32 256752919 9.23 258444606 14.47 249202445
superblue18 146527792 11.49 143596983 8.19 152419258 12.51 171609483

G.M. 100.28% 137.58% 100.00% 100.00% 107.38% 148.63% 103.43%
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Chapter 6

Conclusion

In this work, we implement two state of the art placement frameworks based on

SimPL and Kraftwerk2. Our observations indicate there exist a distinct difference in

controllability at global view and local view of placement between the two frameworks.

Partition based cell spreading algorithm adopted in the SimPL framework has better

knowledge at how much macro blocks during placement, and gradient based cell spreading

algorithm adopted in the Kraftwerk2 framework has better knowledge at where are the

macro blocks during placement. Based on our implementation experience, this leads

to better controllability at global view for SimPL framework and better controllability at

local view for the Kraftwerk2 framework. The SimPL framework resolves relative order at

local view by aligning cells to stripes. The Kraftwerk2 framework allocates white space at

global view by imposing a demand supply constraint. While both placement frameworks

can cover both global and local view of the placement, we propose a two stage global

placement framework by combining the strength of partition based and gradient based

cell spreading algorithm.
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