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Environment-Adaptation Mobile Radio
Propagation Prediction Using Radial

Basis Function Neural Networks
Po-Rong Chang,Member, IEEE, and Wen-Hao Yang

Abstract—This paper investigates the application of a radial
basis function (RBF) neural network to the prediction of field
strength based on topographical and morphographical data. The
RBF neural network is a two-layer localized receptive field net-
work whose output nodes from a combination of radial activation
functions computed by the hidden layer nodes. Appropriate
centers and connection weights in the RBF network lead to a
network that is capable of forming the best approximation to
any continuous nonlinear mapping up to an arbitrary resolution.
Such an approximation introduces best nonlinear approxima-
tion capability into the prediction model in order to accurately
predict propagation loss over an arbitrary environment based
on adaptive learning from measurement data. The adaptive
learning employs hybrid competitive and recursive least squares
algorithms. The unsupervised competitive algorithm adjusts the
centers while the recursive least squares (RLS) algorithm esti-
mates the connection weights. Because these two learning rules
are both linear, rapid convergence is guaranteed. This hybrid
algorithm significantly enhances the real-time or adaptive capa-
bility of the RBF-based prediction model. The applications to
Okumura’s data are included to demonstrate the effectiveness of
the RBF neural network approach.

Index Terms—Propagation prediction, RBF neural networks.

I. INTRODUCTION

T HE PROBLEM of finding an exact or approximation
model for propagation loss occurs frequently in planning

mobile communication systems. Nowadays, two strategies for
propagation loss prediction are in use [1]–[3]. One is to derive
an empirical formula for propagation loss from measurement
data. The other strategy is a deterministic method that is
based on the theory of diffraction. However, the deterministic
methods suffer from excessive computation time and the need
for very detailed databases. An empirical formula based on
Okumura’s results [1] has been developed by Hata [2] in order
to make the propagation loss prediction easy to apply. Since
the Okumura’s results are based on field measurements taken
in the Tokyo area, Hata’s formulation is limited to certain types
of environments that are similar to the Tokyo area. Mean-
while, propagation prediction models should be adapted to
different types of environments. Hawthorne [4] has proposed
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an environmental propagation loss model that is based on a
plane earth propagation model. This method involved the use
of a Kalman filter that utilizes propagation measurements to
derive a best fit of the model to the measurement data. An
alternative approach to a propagation loss prediction model
with the flexibility to adapt to different environments is based
on the multilayer perceptron (MLP) [5], [6]. Stockeret al.
[6] demonstrated that a neural-based propagation loss model
trained by back-propagation algorithms showed the superior
accuracy of its prediction. However, the MLP has problems of
slow convergence and unpredictable solutions during training.

To tackle this difficulty, this paper presents a means to ap-
proximate the propagation loss based on radial basis function
(RBF) neural networks [7]–[9]. RBF neural networks offer
a viable alternative to the two-layer perceptron in system
identification and have recently attracted attention in the
neural network community [7]–[9]. Similar to MLP neural
networks, RBF’s possess the properties of approximating
nonlinear functions of several variables. Unlike the former,
radial basis function expansions have a “linear in the pa-
rameters” representation. As a result, rapid convergence of
the parameters can be guaranteed. Furthermore, Girosi and
Poggio [10] showed that the RBF neural networks have the
best approximation property, while MLP neural networks do
not have this property. An approximation scheme is said to
have this property if in the set of approximating functions
there is one that has the minimum distance (norm) from the
given function.

One of the major advantages of the RBF network is that
learning tends to be much faster than in the MLP since the
learning process of an RBF network can be broken into two
stages, and the algorithms used in both stages can be made
relatively efficient. In the first stage, a number of unsupervised
clustering algorithms [11], [12] are used to adjust the RBF
centers. Moody and Darken’s -means clustering algorithm
[11] is the well-known method used to adjust centers in real-
time. However, a key problem with the -means algorithm
is that (the number of clusters) should be appropriately
pre-selected, otherwise the algorithm will perform badly. For
tackling this problem, a unsupervised competitive learning
called rival penalized competitive learning (RPCL) is proposed
to automatically and efficiently allocate appropriate locations
of RBF centers [13]. The RPCL algorithm has been developed
from the basic idea that for each input is not only the
winner unit modified to adapt to the input, but also its rival
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is de-learned by a smaller learning rate. Once the centers
of RBF neural networks are fixed, learning in the RBF
connection weights is supervised. It is intrinsically easier since
the network output is linear in the weights. The weights are
typically trained using orthogonal least squares [7] and Givens
least squares [8] algorithms. In this paper, we propose a new
formulation for applying the fast-convergent recursive least
squares (RLS) algorithm [14] to the weight-adjustment in the
RBF networks in order to improve convergence performance
of the above two least squares algorithms. The derivation
of the hybrid RPCL and RLS algorithm is given in Section
III. Section IV describes the procedure for the approximation
of propagation loss model using the trained RBF neural
network. Finally, Section V demonstrates the application of
the proposed RBF neural network to the propagation loss
prediction of selected field measurements.

II. DESCRIPTION OFMOBILE RADIO

PROPAGATION LOSS MODEL IN BUILT-UP AREA

The propagation of radio waves in built-up areas has been
found to be strongly influenced by the nature of the environ-
ment, in particular the size and density of buildings. Generally,
a qualitative description of the environment is often employed
using terms such as rural, urban, and suburban. Rural areas
define open farmland with sparse buildings, woodland, and
forests. Urban areas are generally defined as being dominated
by tall buildings, office blocks, and other commercial premises
while suburban areas comprise residential houses, parks, and
gardens. Usually the propagation loss model is used to express
the measured propagation loss as a function of the variables
associated with the environment and terrain of the mobile,
base station antenna height, frequency , mobile antenna
height , and the distance between transmitting and receiving
antennas . The degree of terrain undulation is given by a
parameter known as intercede range [15]. The value of

depends on the terrain topography. For example, the value
of falls within an interval (20 m, 40 m) for quasismooth
terrain or (40 m, 80 m) for rolling terrain. Thus, a simple
mathematical expression for the propagation loss,, in a
specific type of built-up environment and size of city is
represented by

(1)

Okumuraet al. [1] published an empirical path loss predic-
tion model based on field measurements taken in the Tokyo
area. It provides an initial path loss estimate for the urban
area with a quasismooth terrain ( m). In addition,
some correction factors must be used to adapt to the results in
some other conditions, for example, the type of propagation
environment and the size of city. However, Okumura’s method
cannot be easily automated, because it involves various curves.
In an attempt to make Okumura’s method easy to apply,
Hata [2] established empirical mathematical relationships to
describe the graphical information given by Okumura. Hata’s
formulation is limited to certain ranges of input parameters
and is applicable only over quasismooth terrain. The mathe-

matical expressions for path loss in dB and their range of
applicability in urban areas are

dB (2)

where

MHz

m

km.

is the correction factor for mobile antenna height and
is computed as follows:

1) Small- or Medium-Sized City:

(3)

where .
2) Large City:

MHz
MHz.

(4)
3) Suburban Areas:

urban dB. (5)

4) Open Areas:

urban

dB. (6)

These expressions have considerably enhanced the practical
value of the Okumura’s method, although Hata’s formulations
do not include any of the path-specific corrections available
in the original method. However, Hata did not provide a sys-
tematic procedure to determine his empirical formula based on
measurement data. In order to adapt to a different environment
database, Hawthorne [4] applied Kalman filtering techniques
to obtain the path loss prediction model for Florida area.
More recently, Stockeret al. [6] proposed a novel adaptive
learning algorithm based on a multilayer neural network to
train their prediction model with measurement data from
different environment databases. Their neural-based prediction
model yields acceptable conformity with measurements. Al-
though the multilayer neural network is a useful method for
approximating the propagation loss, many researchers [5], [6]
have shown, however, that it suffers from drawbacks of slow
convergence and unpredictable solutions during learning. To
overcome this difficulty, radial basis function neural networks
that have a “linear in the parameters” representation are
proposed to enhance the real-time learning capability and
achieve the rapid convergence. More details about the RBFNN
will be discussed in the next section.
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Fig. 1. Schematic diagram of RBF neural network.

III. M ODELING NONLINEAR SYSTEMS

USING RBF NEURAL NETWORKS

The RBF network depicted in Fig. 1 is a two-layer network
whose output nodes from a linear combination of the activation
(or basis) functions computed by hidden layer nodes [7]–[9].
Each node in the hidden layer contains a parameter vector
called a center, and the node calculates the Euclidean distance
between the center and the network input vector. The result is
then passed through the activation function. These activation
functions are radially symmetric and produce a localized
response to input stimulus. That is, they produce a significant
nonzero response only when the input falls within a small
localized region of the input space. The second layer (output
layer) is essentially a linear combiner with a set of connection
weights. This output layer nodes form a weighted linear
combination of the outputs from the hidden layer. Thus, the
overall network performs a nonlinear transform from to

by forming a linear combination of the nonlinear basis
functions. The overall response of such a network is a mapping
from , that is

(7)

where is the network input vector, is a continuous
activation function from to ; denotes the Euclidean
norm, and are the RBF centers,

and are the connection weights, is
the number of computing nodes in the hidden layer,

is a connection weight vector, and
is an matrix of centers. Note

that the RBF network can be extended to perform a nonlinear
transformation from to , where [17].

The aim in the present study is to use the RBF network
response to approximate some arbitrary nonlinear real-
valued continuous mapping by selecting
appropriate centers and weights. In other words,

acts as a one-step-ahead predictor for. For
good modeling capability, the radial basis function, , is
typically chosen as the so-called thin-plate spline function [18]

(8)

Other choices of can also be employed. The well-known
one is the Gaussian function. Theoretical investigations and
practical results, however, seem to show that the type of
nonlinearity is not crucial to the performance of RBF
networks [18].

A. Functional Approximation Capability of the RBF Network

The RBF network can be used for functional approximation,
just like the MLP. In theory, the RBF network is capable of
forming an arbitrarily close approximation to any continuous
nonlinear mapping [9], [10]. The primary difference between
these two is in the nature of their basis functions. The hidden
layer nodes in an MLP form sigmoidal basis functions, which
are nonzero over an infinitely large region of the input space,
while the basis functions in the RBF network cover only
small, localized regions. The local tuning property of the
RBF networks is considered to be particularly suited for fast
learning [11].

It is essential to establish the approximation capabilities
of the RBF networks to a nonlinear continuous function

from input/output data pairs
, where is a compact set on . Park and Sandberg

[9] showed that for any with respect to ,
an with a sufficient number of hidden nodes,
appropriate weights, and centers can be found such that

for an arbitrary . Empirical results obtained in [16]
have indicated that an RBF network with centers on a regular
mesh can achieve when the number of hidden nodes grows
exponentially with the dimension of the input space
for large . Moreover, RBF networks also have the best
approximation property [9], [10], i.e., there exists a set of
weights, , and a set of centers, , of the network
such that the network output, , has the minimum
distance from a given function .

B. Learning Algorithms for RBF Neural Networks

One of the major advantages of the RBF networks is that
learning tends to be much faster than in the MLP [11]. The
main reason for this is that the learning process is broken
into two stages, and the algorithms used in both stages can be
made relatively efficient. In the first stage, the positions of the

centers, initially chosen at random from the training set, are
gradually adjusted using the unsupervised adaptive-means
clustering algorithm [11], [12]. In the second stage, the hidden-
layer representation becomes the input to the second layer.
The second layer is trained in supervised mode. Typically, its
connection weights, , are derived by minimizing a sum
of weighted error squares at the output of the network (over
all training patterns) using the orthogonal least squares [7] or
Given least squares [8] algorithm. However, here, we would
like to give a new formulation for applying the fast-convergent
RLS algorithm to the weight-adjustment in the RBF network.

Moody and Darken [11] first introduced the -means
clustering procedure as a good updating rule for the RBF
centers. However, this clustering algorithm has a problem of
selecting an appropriate, the number of clusters. It has been
shown that the -means clustering algorithm significantly
deteriorates its performance when the number of clusters is
inappropriately chosen [13]. More recently, Xuet al. [13]
proposed a new algorithm called rival penalized competitive
learning (RPCL) to determine the RBF centers. The experi-
mental results show that significant improvements have been
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obtained by their RPCL. The basic idea of RPCL is that for
each input, not only the winner center is modified to adapt to
the input, but also its rival (the second winner) is de-learned
by a smaller learning rate. RPCL can automatically allocate
an appropriate number of clusters for an input data set. RPCL
can be regarded as an unsupervised extension of Kohonen’s

, which is a supervised vector quantization algorithm,
and is closer in effect to Bayes decision theory.

For each input, the center vectorof the RBF network that
wins the competition is modified to adapt to the input with a
learning rate , but also the center vector of its rival is
de-learned by a learning rate much smaller than that used
by , i.e., for . The RPCL algorithm
is summarized in the following.

Given initial centers and and two initial
learning rates and , where , at each
time point , the RPCL algorithm consists of the following
computational steps:

1) Let an indicator, be

if such that

if such that

otherwise
(9)

where and is the cumulative
number of occurrences of .

2) Update the center vector by

if
if
otherwise.

(10)

The initial centers are often chosen randomly. Two learning
rates and with should slowly decrease
to zero. In the present application, both and are
computed according to the same rule

(11)

where denotes the integer part of the argument. In (10),
, for is always true when

.
The RPCL clustering is based on a linear learning rule, thus

guaranteeing rapid convergence. It is also an unsupervised
procedure using only the network input data. No desired
response is required and the procedure will not be affected
by the learning rule used for weights.

In this paper, we use the well-known RLS algorithm for
adjusting the connection weights of the second layer. The
learning is based on a sequence of random input/output pairs

, where is the function to
be approximated and , , and are the samples of

, , and observation noise at time instant, respectively. So,
at each time instant , determine the appropriate
RBF network, such
that

(12)

is minimized, where
, the appropriate centers ,

are determined by the above-mentioned clustering method,
, are

the connection weights estimated frominput/output pairs,
and is a forgetting factor.

Since is linear in the parameter vector
, we can therefore use the following fast-convergent RLS

algorithm to update . At the th time instant, let us
define the input vector

, the desired
output is , and the estimated weight vector

. The on-line RLS estimation of
an optimal weight vector is then recursively expressed by

(13)

(14)

(15)

where denotes the inverse of the input correlation matrix
and represents the Kalman gain vector. For the initial
condition at , we have and ,
where is a small positive constant andrepresents an identity
matrix. While reaching a optimal weight vector , this would
lead to a RLS-based RBF network prediction of an unknown
function .

IV. PROPAGATION LOSS MODEL

IDENTIFICATION BY RBF NEURAL NETWORKS

In general, model identification is usually recognized as a
process to train RBF neural networks to represent
nonlinear systems . This would be distinctly helpful
in achieving the accurate propagation loss prediction for a
specified mobile environment.

From (1), the system plant dynamics for the propagation
loss can be modeled as follows:

(16)

and the measurement equations are given by

(17)

where , denotes the measurement
noise and represents the unmodeled system error.

The basic configuration for achieving the propagation loss
prediction is shown schematically in Fig. 2. A RBF neural
network with a single hidden layer is placed in parallel with the
propagation loss system and receives the same inputas the
system. The system output provides the measured propagation
loss, , during training. The purpose of the identification is



CHANG AND YANG: ENVIRONMENT-ADAPTATION MOBILE RADIO PROPAGATION PREDICTION 159

Fig. 2. Schematic configuration of RBF neural network for propagation loss
prediction.

to find the appropriate centers and weights, i.e.,’s and ’s
with response that matches the response of the system for
a given set of inputs . During the identification, the norm
of the error, , is minimized through a
number of center and weight adjustments by RPCL and RLS
algorithms, respectively. Fig. 2 shows the case for which the
network attempts to model the mapping of propagation loss
system input to output with both input and output measured
at the same time. As mentioned in Section III, the RBF neural
network will be identical to the system in the domain of
interest when the number of hidden units is sufficiently large.

V. SIMULATION RESULTS

In order to compare our method with the well-known Hata
formula, the RBF-based propagation loss prediction model is
trained by Okumura’s field measurements taken in the Tokyo
area. Since the terrain of Okumura’s method is assumed to
be quasismooth ( m), the propagation loss of (1)
becomes a function of four variables and is given by

(18)

This implies that the RBF neural network used to approxi-
mate the unknown propagation loss function of (18) has four
inputs; . For training and test purposes, a set of 292
measurement points taken in the large city was divided into
231 training patterns and 61 test patterns. The parameters for
the RPCL algorithm are chosen as ,

, and . For the RLS algorithm, and
are chosen as one and , respectively. In our simulation, the
number of hidden nodes is chosen as 30. Note that
initial centers are randomly chosen from the domain of interest.
By inputting 231 training patterns into the RBF neural network
and then performing both RPCL and RLS algorithms, the
training mean-squared error can be found as 2.4 dB. Table I
shows the training mean-squared errors for various numbers of
hidden nodes. The training mean-squared error decreases when
the number of hidden nodes increases. For Hata’s formula, its
mean-squared error for these 231 data is 5.84 dB.

Next, we would like to verify the approximation capability
of the trained RBF-based propagation prediction model by
a set of 61 test patterns. A comparison of curves shown in

TABLE I
TRAINING MEAN-SQUARED ERROR(�e) VERSUSNUMBER OFHIDDEN NODES(m)

Fig. 3. Comparison of propagation losses achieved by Okumura’s measure-
ment, RBF neural network, and Hata’s empirical model versus path profile
when fc = 453 MHz, h

b
= 140 m, andhm = 3 m.

Fig. 3 shows that the RBF-based propagation loss prediction
curve along the path profile ( km) is much closer
to the measurement curve achieved by 26 test patterns than
Hata’s prediction curve when , , are set to be 453
MHz, 140 m, and 3 m, respectively. The deviations between
the Hata’s approach and the measurement curve, in particular,
become extremely large when km. However, the RBF
approach provides a uniform approximation to the propagation
loss over a wider range of path profile. Figs. 4 and 5 show that
this argument is also true for various values of the parameters

, , and . The mean-squared error achieved by the RBF-
based prediction model over the 61 test patterns is 2.35 dB. For
the same 61 test patterns, the mean-squared error for Hata’s
model is 7.5 dB.

VI. CONCLUSION

This paper has presented a new propagation prediction
model based on a two-layer RBF neural network that is capable
of predicting the field strength by using a hybrid RPCL and
RLS algorithm. In particular, the advantage of this approach
is that a particular propagation prediction model can be con-
structed to take account of various types of environments based
on measurement data taken in the desired environment. This
approach enhances the flexibility of the RBF-based prediction
model to adapt to the terrain database of the environment.
Simulation results have shown that the RBF approach provides
more accurate predictions of field strength loss than that
of Hata’s model. This verifies the effectiveness of the best
approximation capability of the RBF neural network.
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Fig. 4. Comparison of propagation losses achieved by Okumura’s measure-
ment, RBF neural network, and Hata’s empirical model versus path profile
when fc = 922 MHz, h

b
= 220 m, andhm = 3 m.

Fig. 5. Comparison of propagation losses achieved by Okumura’s measure-
ment, RBF neural network, and Hata’s empirical model versus path profile
when fc = 1:318 GHz, h

b
= 140 m, andhm = 3 m.
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