
DATA LOSS MINIMIZATION FOR FILE SYSTEM CRASH

RECOVERY USING PERSISTENT MAIN MEMORY

Author

Cheng-Yu Hung

Supervisor

Li-Pin Chang

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

NATIONAL CHIAO TUNG UNIVERSITY

HSINCHU, TAIWAN

JULY 2013

c⃝ Copyright by Cheng-Yu Hung, 2013

Table of Contents

Table of Contents iii

List of Tables iv

List of Figures v

Abstract vi

Acknowledgements vii

1 Introduction 1

2 Related Work 4

3 Design Concept 6
3.1 Overview . 6
3.2 Checkpoint-Based Data Recovery . 7
3.3 File-Operation-Based Data Recovery . 9
3.4 Implementation for Ext3 File System . 11

3.4.1 The Recovery Procedure in the Boot Loader 11
3.4.2 Checkpointing with Ext3 Transactions 12
3.4.3 Managing Atomic Sets using Ext3 Handles 14

4 Experimental Results 17
4.1 Experimental Setup and Performance Metrics 17
4.2 Data Recovery Capability . 19

4.2.1 Data loss comparison: Prompt Return 19
4.2.2 Data loss comparison: Worst-case Scenario 19

4.3 MySQL+Sysbench . 20

5 Conclusion 24

Bibliography 25

iii

List of Tables

4.1 Characteristic of the experimental platform 17

4.2 The tools used for experiment . 21

iv

List of Figures

3.1 System Overview . 6

3.2 Timeline of Checkpoint-Based Data Recovery 8

3.3 Timeline of three different kinds of data 9

3.4 Adding signature to block buffer for memory scanning use 10

3.5 The status of an atomic set . 10

3.6 Timeline of File-Operation-Based Data Recovery 11

3.7 The overlaps on the complete atomic set and incomplete atomic set 12

3.8 Merge of two atomic set . 12

3.9 The relation between journal, transaction, and journal head 13

3.10 The concept of reference count on atomic sets 15

3.11 The relation between journal heads and atomic sets 16

4.1 commit intercal= 5 sec . 18

4.2 commit intercal= 10 sec . 20

4.3 commit intercal= 20 sec . 21

4.4 commit intercal= 40 sec . 22

4.5 Three methods comparison . 23

4.6 Sysbench Evaluation . 23

v

Abstract

System failure always happens due to power outage, there would lost many data if power

outage occurs. Even there have some methods like UPS to prevent data loss, but it costs

too high. We proposed a technique based on battery-backed memory to protect file sys-

tems from losing data across power failures and guaranteed file system integrity. The idea

is simple: when power restores after a power outage, our method salvages modified but

unwritten data by scanning and parsing the contents in memory. We have implement our

method on Ext3 file system and improve recovery ability compared to the ordinary file

system recovery. Besides, our approach is also beneficial to integrity-aware applications

like databases.

vi

Acknowledgements

Here, I have many thanks. First, sincerely thanks for my advisor Li-Ping Chang, without

you, I can’t finish my research work. Although I always confused on what I do, but your

patient make me learned efficiently. In these two years, I have learned a lot from my

advisor, not only how to do the research, but learned how to deal with people. I’m grateful

to have you enlighten me, words are really not enough to thank you.

During these two years, I have to thank for all members in our lab. First thanks for

Po-Han Sung, Tung-Yang Chou, Wen-Ping Li, Yi-Kang Chang and Chen-Yi Wen, thank

you for giving advices to me when I got troubles in research. And I have to thank to Ting-

Chieh Haung, Chao-Yuan Mao, and Sheng-Min Huang, thank you for making my master

life so brilliant and enrich my life, I have the best wishes for you in the future. Except

for members mentioned above, thanks for all the junior, thank you Chun-Yu Lin, Pin-Xue

Lai, Guan-Chun Chen, Min-Chi Yan, Po-Hong Chen and Yu-Syun Liou for bringing joyous

atmosphere to our lab.

Except for members in lab, I have to thank for my girlfriend, Li-Ling Chen, thank you for

supporting me when I’m down during research or my life, and always told me ”Anywhere

seems nowhere, yet somewhere proves to be everywhere.”

Last but not least, I have the most special thanks for my parents. I deeply thanks for

my parents to raise me up. It is you make everything possible. Without you, I can’t finish

this work today. Thank you and I love you.

vii

Chapter 1

Introduction

When the traditional file system encounter the accidental power failure or system crash,

there would lost many data. Since metadata is the most important part of the file system,

if the lost data is metadata, it may cause file system damage. On the other hand, if the

lost data is user data, even user data wouldn’t hurt the file system, but it closely related

to the data that we use. So we don’t want to miss either metadata or user data at all.

System failure always happens due to power outage, operating system crashes, or hard-

ware downs. Even that there have some methods, for example, fsck, the file system consis-

tency check. File system consistency check is performed after crash and before file system

is re-mounted. However, fsck has a big problem: they are too slow. With a very large

disk volume, scanning the entire disk to find all the allocated blocks and read the entire

directory tree may take many minutes or even hours [1], which is unacceptable for servers

demanding high availability. Thus, in order to speed up the recovery of the file system,

the journaling file system [2] was proposed. Journaling is a technique that guarantees file-

operation atomicity for structure consistency of file systems. However, as file systems use

page cache for efficient data access, data in main memory are lost after a power cut.

The method mentioned above is about recovery. If we want to protect the data against

power failure before recovery, it will be more complicated. First, in nowadays, the main

memory used in computer is always volatile, when the power failure, the data in the memory

1

would all vanish. Second, in order to maintain the consistency of the file system, journaling

file system would discard a lot of data even they are already on the disk to guarantee file-

system consistency. To solve the problems of protecting data, the UPS (Un-interruptible

Power Supply) was used, however, it costs too much. The UPS could cost almost nearing

NT$30,000 under high security circumstance to keep data against power failure. Besides,

UPS has some potential problems, suck like it is infeasible for embedded devices, and it

is possible power failure on broken UPS. On the contrary, the NV (non-volatile) Memory

or the battery backup memory would be more economical. The battery we used in the

memory costs only NT$100∼NT$200, it costs almost one tenth of the UPS. File-system

designs using battery-backed memory has been proven feasible in prior work [3]. However,

the prior work aims at efficient file system metadata access rather than data protection

and recovery.

This work introduces a technique based on battery-backed memory to protect file systems

from losing data across power failures. The idea is simple: when power restores after a

power outage, our method salvages modified but unwritten data by scanning and parsing

the contents in memory. Basically our method guarantees that user data are persistent after

a system call to the file system returns. This idea looks simple, but there exist some major

technical difficulty need to overcome. First, we need to analysis the data structure of the file

system when the power restoration. Second, there must have some incomplete file operation

during power failure, if we write back all the data in the memory into the disk without any

consideration, there might cause file system inconsistency. Hence, in order to maintain file

system consistency, we have to minimize the data that need to discard. Third, we cannot

increase the overhead of the data that are not related to what we want to recover. Our

proposed method records the related metadata in the same file-system atomic operation,

once the power failure occur, we can parse memory contents and retrieve modified data of

completed file operations, while discard the data of incomplete file operations.

Our proposed method was implement on ext3 file system successfully. The experimental

results show that, without incurring any file-system inconsistency, our method fully recov-

ered all the modified but unwritten data in main memory, while the original ext3 with

journaling lost 20% of the data. The reason is that once the file system’s system calls

returned, it means that all of the related file operations finished, hence it wouldn’t lose

2

data when the power failure occurs. Besides, we implemented our method to measure the

performance on the databases. Databases frequently perform fsync() to ensure that modi-

fied data reach stable storage, since our proposed method using battery backup memory, it

doesn’t need to perform fsync() once the file operation completed. The experiment result

shows that implement our method on MySQL+sysbench would have three times faster

than original scheme.

The rest of this paper is organized as follows. In chapter 2, we describe the background

of this work. Then, we elaborate the system overview in chapter 3. In chapter 4, we explain

how we do the recovery scheme. Performance evaluation results are discussed in chapter5.

Finally, we summarize the conclusion in Section 6.

3

Chapter 2

Related Work

When the file system suddenly crash, there are many methods to fix it. For example, the

file system check, which is usually used to check the state of the file system and do recovery

before the file system mounted. However, fsck(and similar approaches) have a bigger and

perhaps more fundamental problem: they are too slow. With a very large disk volume,

scanning the entire disk to find all the allocated blocks and read the entire directory tree

may take many minutes or even hours, and cause the problem of scalability [1]. Thus, in

order to speed up the recovery of the file system, the journaling file system [2] was proposed.

However, journaling file system was proposed to maintain file system integrity, not aim to

protect data from suddenly system crash, hence when the system suddenly crash, there

would lose a lot of data as usual.

When talk to non-volatile RAM (NVRAM), NVRAM can keep data when power failure

occur, just like what the disk does, but has much better performance. Hence, NVRAM

can make a system more reliable and get higher performance. [4] proposed using NVRAM

as a cache on client site to reduce write traffic to servers in distributed file system. How-

ever, it still cannot protect the data in main memory, once the power failure, the data in

main memory would all gone. The conquest file system [3] was a file system composed

of disk/persistent-RAM, it reduced disk access time and improve performance by storing

small files, metadata, and shared libraries in persistent RAM; disks hold only the data

content of remaining large files. It looks like make the best use of NVRAM, but from the

4

data safety side, it didn’t protect data in main memory at all. Once the power failure, the

data in main memory would all vanish as well. Another study about NVRAM was main

memory databases. [5] used NVRAM as a logging space and archive database. Once the

system crash, it merge data on the archive database and the log to obtain data needed to

recover to the most recent consistent state. However, it just cannot protect the data in

main memory as well.

Another study about NVRAM, such like [6], they proposed a technique to remove lots

of redundant writes from the memory and hence extending the lifetime of the PCM. They

also implemented PCM to achieve the best tradeoff between energy and performance. [7]

used new byte addressable memory to design a file system that has five times faster than

traditional file system. [8] handled crash recovery by using asynchronous mirroring, which

keep backup data on-line, and periodically transfers snapshots of the data from source

volume to destination volume. However, these usages are far from what we proposed.

5

Chapter 3

Design Concept

3.1 Overview

Power

CPUBoot loader

Battery

Disk

File

system

main memory

New/modified components in this study

Figure 3.1: System Overview

A system we used included file system with Ext3, reboot, a boot loader of the system, a

battery-backed memory, consists of 1GB SDRAM (contain 256MB disabled RAID cache)

and two 18650 lithiumion battery, each has 2200mAh and the voltage 3.6V, which can keep

the contents of the main memory for up to 72 hours.

A unit that contains data we want to write called a block buffer, and file system adds

6

special signatures to essential data structures related to block buffer of the underlying

storage devices.

When power failure occurs, the battery supports the main memory until power restores.

Upon power restoration, if the file system is not cleanly un-mounted, then boot loader

intervene the bootstrap process for data recovery. To keep the data in the main-memory

intact, the data recovery procedure must precede the loading of the operating system. The

boot loader scans the memory for block buffers with signatures, and writes them back to

the storage device.

Because power failures occur in the middle of some file system operations, writing all the

block buffers salvaged from main memory to the storage device will damage the file-system

integrity. Our recovery process must judiciously discard a small amount of data to prevent

the recovery process from corrupting the file system in the disk.

3.2 Checkpoint-Based Data Recovery

The data copied from main memory to disk during recovery must not contain any modified

block buffers belong to incomplete file system operation. We first proposed a checkpoint-

based method for data recovery. The file system commits a checkpoint in a fixed frequency.

A checkpoint is a snapshot of cached pages; in a snapshot there is no file-system-level

inconsistency. To commit a checkpoint, the file system locks all the block buffers and waits

until all ongoing file system operations complete. Subsequent writes to the locked buffers

are handled using copy-on-write: when a file system operation modified a locked buffer, the

file system creates a shadow buffer of the locked buffer and write new data in the shadow

buffer. Figure 3.2 shows the timeline of checkpoint-based recovery.

After checkpointing in the memory, these data would flush to disk then. When all

the checkpointed data flush to the stable storage, we call these kind of data are durable.

Instead, if the data just finish checkpoint in the memory and power failure occurs, we call

these data are not durable. This kind of data can be secured when doing recovery. Except

for these two kinds of data, all the data of ongoing operations would be discard during

7

Data can be secured Data loss

Crash

checkpointing done

checkpointing begin

a file operation

Figure 3.2: Timeline of Checkpoint-Based Data Recovery

recovery process, as figure 3.3 shows.

The recovery procedure writes back only the block buffers of a committed checkpoint.

The block buffers that do not belong to a committed checkpoint are discarded during

recovery.

The proposed recovery method requires to identify the block buffers of committed check-

points. We propose adding a signature and a checkpoint ID to a block buffer when the file

system allocates the block buffer. The signature is for the boot loader to identify block

buffers during crash recovery. Figure 3.4 shows the process of adding signature to a block

buffer. The purpose of the checkpoint ID is to identify whether a block buffer belongs to a

committed checkpoint. The file systems must record in main memory the IDs of committed

checkpoints.

Notice that our method do not put all the block buffers of a committed checkpoint in

a linked list and have the boot loader traverse the link list for data recovery. Traversing

in the linked list requires to de-reference pointers, whose memory addresses are logical not

physical. Without the original page table the boot loader can hardly translating the logical

8

Durable Not durable

But can be secured

Crash

checkpointing done

checkpointing begin

a file operation

Data loss

Figure 3.3: Timeline of three different kinds of data

memory addresses into physical memory addresses.

3.3 File-Operation-Based Data Recovery

A major concern of the checkpoint-based method is that the amount of data loss is propor-

tional to the checkpointing frequency. The longer the checkpointing period, the more data

will be discarded during the recovery procedure. However, decreasing the checkpointing

frequency would increase the pressure of memory as the page cache writes back the data

frequently.

Recovering all dirty block buffers from the main-memory could possibly corrupt the

file system because some of the block buffers are modified by the file operations that are

interrupted by power failures. Thus, to guarantee file-system integrity during data recovery,

the recovered block buffer must not be related to any interrupted file system operations.

Now let an atomic set of a file operation be a collection of all the block buffers modified

by the same file operation. As figure 3.5 shows, an atomic set is marked incomplete if

any of its block buffers is modified by an ongoing file operation. It is marked complete

otherwise. A simplistic approach is that, the file system creates an atomic set for a file

operation and adds the modified block buffers to the atomic set during the operation. The

recovery procedure copies back only the atomic set that are not related to an interrupted

9

Block buffer

Block buffer

Block buffer

…

Block buffer

signature

…
Block buffer

signature

Block buffer

signature

Figure 3.4: Adding signature to block buffer for memory scanning use

incomplete

complete

File operation begin
During file operation

File operation complete

complete

Figure 3.5: The status of an atomic set

file operation. Figure 3.6 shows the concept of File-Operation-Based Data Recovery, the

third kind of data can be secured only if it belongs to a complete file operation (atomic

set).

However, the simplistic approach has a problem because operations on different files can

modify the same block buffer of metadata. In most of the cases for ext3 file system, the

overlap is modification on the block-allocation bitmap. For example, figure 3.7 shows that

the atomic set 1 is a complete set, and another modification on the block buffer, which

marked as dark-grey was completed modified by atomic set 1 already, is performed on

atomic set 2. In this case, both atomic set 1 and atomic set 2 must be discard. That is, if

the atomic set of an interrupted file operation overlaps the atomic set of a completed file

operation, then both the two atomic sets must be discarded during data recovery.

10

checkpointing done

checkpointing begin

a file operation

Discard

Durable Not durable

But can be secured

Crash

Can be secured

complete file operation

incomplete file operation

Figure 3.6: Timeline of File-Operation-Based Data Recovery

To deal with the problem, we propose merging two atomic sets if they overlap each other.

Figure 3.7 shows the merge operation. Thus, when a complete atomic set is merged with

an incomplete atomic set, the new set is incomplete. This design prevents the recovery

procedure from copying partially modified structural information of the file system to the

storage device.

3.4 Implementation for Ext3 File System

3.4.1 The Recovery Procedure in the Boot Loader

We implemented our proposed method on Ext3 file system. Our implementation involves

both the file system and the boot loader. When the power failure occurred during doing

some file operations, there would exist some data in completed atomic set and some in-

completed atomic set in memory. To keep the data in the main-memory intact, the data

recovery procedure must precede the loading of the operating system. The boot loader first

scans the memory, deciding whether or not write back the salvaged block buffer according

to the recovery policy (i.e., CBR or FBR). Finally, hand over the boot process to the

original boot loader. Note that boot loader here would load into the special location of the

11

atomic set 1

(complete)

block

buffer

block

buffer

block

buffer

block

buffer

block

buffer

block

buffer

atomic set 2

(incomplete)

Figure 3.7: The overlaps on the complete atomic set and incomplete atomic set

1 2

Incomplete

Atomic Set

Metadata

Complete

Atomic Set New

Atomic Set

Merge

Figure 3.8: Merge of two atomic set

memory at the beginning that do not interfere recovery process.

3.4.2 Checkpointing with Ext3 Transactions

In the journaling file system, the read/write requests is cut into many data sets called

transaction in the order of time, the transaction here can be mapped to the checkpoint

mentioned before, and write these data sets to journal before writing them to the disk,

called commit. The corresponding written data stores in buffer head, which is manage by

12

Struct Journal

Running Transaction

Committing Transaction

Journal head Journal head Journal head Journal head

Journal head Journal head Journal head Journal head

Buffer head Buffer head Buffer head Buffer head

…

…

metadata

Buffer head Buffer head Buffer head Buffer head

user data

Figure 3.9: The relation between journal, transaction, and journal head

journal head individually, and add into current active transaction, i.e., running transaction.

Note that the journal head is the block buffer mentioned before. In each journal head, there

records the corresponding transaction ID called tid, meaning that which transaction this

journal head belongs to.

A running transaction transits into a committing transaction every 5 seconds, i.e., the

default commit interval. After that, journaling file system writes the data in committing

transaction to disk journal, this step can be mapped to durable data in Figure 3.3. In the

Ext3 ordered mode, user data must write back to disk first, then flush metadata to journal,

finally write back metadata to disk. Since it only flush data in committing transaction

to disk and disk journal, their might lose data in running transaction, which might lose

important data we need. However, there exists a critical part of committing transaction,

called commit record. Each transaction has its own commit record, and each commit record

is written to journal when data in this transaction are all flush to disk journal to ensure

the data can be safely retrieved from disk journal after untimely crash. Once there is no

time to write a commit record, the system would think that the data in this transaction is

incomplete and do not retrieve them during recovery. However, in our proposed method,

we can recover the data in committing transaction, whether it is written commit record

or not, since all the data are in memory, we don’t need to wait for data flushing to disk

journal.

We put a signature on journal head upon journal head allocation during online oper-

ations. After a power failure, when power restores, the recovery procedure (in the boot

13

loader) detects that the file system is dirty and begins scanning the memory. The recovery

procedure is of two passes. In the first pass, it scans for the signature on transaction to

identify the tid of the running transaction and the committing transaction. In the second

pass, the procedure scans for journal heads by another signature. The second pass copies

all journal head that are with the committing transaction, while discard the journal head

that are with the running transaction.

3.4.3 Managing Atomic Sets using Ext3 Handles

Handle is an important structure in Ext3 file system. Each system call modifying the file

system gives rise to a single atomic operation handle. To prevent data corruption, it must

ensure each system call is handled in an atomic way, i.e., either all or none. Ext3 allocates

a handle before a file operation, and de-allocates the handle upon the completion of the

file operation.

The manipulation of atomic sets is very like that of handles. An atomic set has a

a reference count, an id number, a link list of journal heads, and also has a signature.

Reference count here represents how many ongoing file operations are in this atomic set.

In our method (i.e., Checkpoint-Based Recovery), the journal head includes an atomic-set

id, called jid, to indicate which atomic set it belongs to. When the file system starts a

file operation, it allocates an atomic set and increments its reference count. During the

operation, the file system adds the modified journal heads to the link list of the atomic

set. Upon the completion of the operation, the file system decrements the reference count.

Figure 3.10 shows the concept of reference count on atomic sets.

As mentioned previously, overlapping atomic sets are merged together. Before adding

a journal head to the current atomic set, the file system checks whether the journal head

already belongs to an existing atomic set. If not, then the journal head is added to the

current atomic set. Otherwise, the current atomic set is merged into the existing atomic

set, and the reference count of the existing atomic set is increased by 1. Figure 3.11 depicts

the relationship between journal heads and atomic sets. We record jid on journal head with

the number equal to the atomic set it belongs to.

14

Incomplete

File operation

Metadata

Counter

= 2

atomic set

Incomplete

File operation

Metadata

Counter

= 1

Complete

File operation

Complete

File operation

Metadata

Counter

= 0

Complete

File operation

Can be secured

Figure 3.10: The concept of reference count on atomic sets

Like the journal heads, the atomic sets also have a special signature. The recovery

procedure is of two passes. In the first pass, the boot loader scans the memory for atomic

sets with reference counts of zero, and record it ID in a hash table. This is because if

an atomic set whose reference count is not zero then the atomic set is undergoing a file

operation that has been interrupted by a power failure. In the second pass, the boot loader

scans the journal heads and compare jid with the atomic set ID in hash table, copying only

the journal heads whose associated atomic sets have a zero reference count to disk journal.

Then mounting file system and file system takes over the remaining recovery procedure,

that is, write the data from disk journal to file system.

Note that in Ext3, the physical address of the file data is a pointer pointed by a buffer

head, since we don’t use de-referencing pointers during recovery, we used a variable to

record its physical address. During recovery, we can only use signature scanning for buffer

head and use offset to find the variable that store data’s physical address to find data and

write back them.

15

atomic set 1

Journal head

Journal head

Journal head

…

atomic set 2

Journal head

Journal head

new

Journal head

add to corresponding atomic set

Belong to atomic set 1

record jid= 1

Belong to atomic set 2

record jid= 2

Belong to atomic set 2

reference count= 0 reference count= 1

Figure 3.11: The relation between journal heads and atomic sets

16

Chapter 4

Experimental Results

4.1 Experimental Setup and Performance Metrics

The platform used in our experiments was collected from VessRAID 1841i, a NAS (Network-

Attached Storage). Note that the memory used in VessRAID 1841i was provided courtesy

of Promise Inc. with a battery-backed memory, consists of 1GB SDRAM (contain 256MB

disabled RAID cache) and two 18650 lithiumion battery, each has 2200mAh and the voltage

3.6V. Table 4.1 is a platform we used.

Platform Operating system File system
NAS Linux 2.6.17 Ext3

Table 4.1: Characteristic of the experimental platform

At the beginning, we used instruction cp to copy a file on VessRAID 1841i, once the

prompt returned, let the system power off and power on immediately. Since our proposed

recovery scheme can save more data than original recovery scheme, we compared destination

file with source file, using the data lost&correct file ratio as the compared metric. The more

correct data exist, means that the more efficient our proposed method has. Second, we used

sysbench as the benchmark to evaluate the synchronous write performance on database.

The total execution time would reduce since we don’t need to perform fsync, thus we use

17

the execution time as the performance metric.

Besides, the original ext3 would lose data in committing transaction which doesn’t write

commit record yet, called unwritten committing transaction, and lose data in running trans-

action also. In our proposed method, checkpoint-based recovery (CBR) could save data

from unwritten committing transactions and file-operation-based recovery (FBR) could

save data from running transactions.

Reiterate that the file system we used was Linux 2.6.17 whose file system was Ext3 with

ordered mode, setting commit interval to a default value, 5 sec, and the disk volume size

was 1 TB. Since it is ordered mode, user data must flush to disk before metadata, so there

would not exist the corrupted file, we only discussed the correct and lost file below.

90%

10%

correct

lost

(a) Ext3

100%

0%

correct

lost

100%

0%

correct

lost

(B) CBR (c) FBR

Figure 4.1: commit intercal= 5 sec

18

4.2 Data Recovery Capability

4.2.1 Data loss comparison: Prompt Return

In this experiment, we executed file copy process with a 148MB file consists of 27532

data. Once the prompt returned, let the system power off and power on immediately, and

compare three cases: original ext3, CBR, FBR with their recovery capability.

Figure4.1 shows that, in the default commit interval 5 seconds, original ext3 lost 10%

of the data. Note that original ext3 with journaling may reduce data loss by changing the

commit interval to smaller value, but it may degrade performance. We adjust the commit

interval to 10 sec, 20 sec, 40sec, i.e., some larger values, and find that the longer commit

interval was, the more data lost in original ext3. On contrast, CBR and FBR could still

save 100% of the data since all the file operation are finished. Figure4.2, 4.3, 4.4 show the

result of these experiments. Figures 4.4 shows that when prompt return, all the data are in

the running transaction, since the commit interval in figure 4.4 is larger than copy process

time, thus CBR cannot save any data here. Besides, the reason why sometimes the data

recovered by Ext3 equals to CBR and some times FBR equal to CBR, such like figure 4.1,

4.2, 4.3 is that, when prompt return, there might exist committing transaction or running

transaction. If there exist running transaction, then CBR is good-for-nothing, thus CBR

equals to Ext3. If the last running transaction has transferred to committing transaction

when power off, we can only see committing transaction in the memory. Although FBR is

good-for-nothing here, FBR still equal to CBR since the data in committing transaction

are all transfer from the previous running transaction.

4.2.2 Data loss comparison: Worst-case Scenario

If the system accidentally shut down at the moment that the committing transaction have

not write the commit record and the running transaction has not locked, there would have

the maximum discrepancy between our proposed method and original ext3.

19

(a) Ext3

100%

0%

correct

lost

100%

0%

correct

lost

(B) CBR (c) FBR

82%

18%

correct

lost

Figure 4.2: commit intercal= 10 sec

In this part, we show 3 different cases of this experiment. We setup a special circum-

stance to show the superiority of our recovery scheme. When the running transaction meet

the commit interval, it would transfer to a committing transaction, once it transfers to a

committing transaction, CBR could save all the data in committing transaction, as the ar-

row marked 1 shows in figure4.5. The original ext3 could save data only in the transaction

which has written commit record, the arrow marked 2 in figure4.5 shows this circumstance.

Other narrows, i.e., narrow 3 to narrow 5 mainly shows the superiority of FBR. At this

point, i.e., 27 sec, FBR could save nearly 88% of the data, since it contains data in running

transaction. CBR could save about 80% since it contains a committing transaction which

has not written commit record yet. However, there does not have committing transaction

which has written commit record, original ext3 could save only 61% of the data. In figure4.5

we show the maximum discrepancy between our proposed method and original ext3.

4.3 MySQL+Sysbench

The tools used in this experiment is shown in Table 4.2. Since the general database consists

lots of synchronous write during its operation, we used MySQL as our database workload,

20

(a) Ext3

100%

0%

correct

lost

(B) CBR (c) FBR

71%

29%
correct

lost

71%

29%
correct

lost

Figure 4.3: commit intercal= 20 sec

and blktrace we used to observe how many synchronous/asynchronous write were involved

in.

Tools Description
BlkTrace a block layer IO tracing tool
SysBench a benchmark use for evaluate database server performance
MySQL a database

Table 4.2: The tools used for experiment

SysBench is a database benchmark tool developed by MySQL that supports both com-

mon and distributed database. The BlkTrace evaluate both read and write performance,

but here only care about write performance of synchronous write, we only discuss write

portion below.

MySQL frequently performs fsync to ensure that modified data reach stable storage,

since CBR and FBR using battery-backed memory, it doesn’t need to perform fsync once

the file operation completed. The traditional file system may wait to ensure all the data

is flushed to the stable storage during database operations, waste lots of time. Since we

use battery-backed memory, a kind of stable storage, no matter the power failure or not,

we can always keep the data there, do not lose them, and shortens the waiting time, hence

21

(a) Ext3

100%

0%

correct

lost

(B) CBR (c) FBR

0%

100%

correct

lost

0%

100%

correct

lost

Figure 4.4: commit intercal= 40 sec

improve the performance of synchronous write.

Now we disable fsync since we had a battery-backed memory as a stable storage. We

setup parameter for the SysBench with 16 threads, 10,000 table size, and 10,000 requests.

The request operations within SysBench include alter-table, large table, connect, create,

insert, select and transaction. Figure 4.6 shows the result of the experiment.

As the figure4.6 shows, the performance without synchronous write is better than that

with synchronous write, and this is what we expected.

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35

c

o

r

r

e

c

t

(

%

)

c

o

r

r

e

c

t

(

%

)

c

o

r

r

e

c

t

(

%

)

c

o

r

r

e

c

t

(

%

)

time (sec)

time (sec)time (sec)

time (sec)

Ext4

CBR

FBR

1

2

3

4

5

Figure 4.5: Three methods comparison

0

100

200

300

400

500

600

700

800

900

1000

No fsync Has fsync

T
ra
n
sa
ct
io
n
/
se
c

Figure 4.6: Sysbench Evaluation

23

Chapter 5

Conclusion

This work introduces a technique based on battery-backed memory to protect file systems

from losing data across power failures and guaranteed file system integrity. The idea is

simple: when power restores after a power outage, our method salvages modified but un-

written data by scanning and parsing the contents in memory. We have implement our

method on Ext3 file system and the experimental results shows that our methods defi-

nitely improve recovery ability compared to the ordinary file system recovery. Besides, our

method is efficient in terms of hardware cost and time/space overheads and also make some

integrity-aware applications like databases have much better performance.

24

Bibliography

[1] A. A.-D. Remzi Arpaci-Dusseau, Operating Systems: Three Easy Pieces, 0th ed.

Arpaci-Dusseau Books, 2012.

[2] S. Tweedie, “Ext3, journaling filesystem,” in Ottawa Linux Symposium, 2000, pp. 24–29.

[3] A.-I. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning, “Conquest: Better per-

formance through a disk/persistent-ram hybrid file system,” in Proceedings of the 2002

USENIX Annual technical Conference, 2002.

[4] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and M. Seltzer, “Non-volatile memory

for fast, reliable file systems,” in ACM SIGPLAN Notices, vol. 27, no. 9. ACM, 1992,

pp. 10–22.

[5] M. H. Eich, “Main memory database recovery,” in Proceedings of 1986 ACM Fall joint

computer conference. IEEE Computer Society Press, 1986, pp. 1226–1232.

[6] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory

using phase change memory technology,” in ACM SIGARCH Computer Architecture

News, vol. 37, no. 3. ACM, 2009, pp. 14–23.

[7] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,

“Better i/o through byte-addressable, persistent memory,” in Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles. ACM, 2009, pp. 133–146.

[8] H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara,

“Snapmirror R⃝: file system based asynchronous mirroring for disaster recovery,” in Pro-

ceedings of the 1st USENIX Conference on File and Storage Technologies. USENIX

Association, 2002, pp. 9–9.

25

